1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known and on return 982 /// contains the known bit of the shift value source. KZF and KOF are 983 /// operator-specific functions that, given the known-zero or known-one bits 984 /// respectively, and a shift amount, compute the implied known-zero or 985 /// known-one bits of the shift operator's result respectively for that shift 986 /// amount. The results from calling KZF and KOF are conservatively combined for 987 /// all permitted shift amounts. 988 static void computeKnownBitsFromShiftOperator( 989 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 990 KnownBits &Known2, unsigned Depth, const Query &Q, 991 function_ref<APInt(const APInt &, unsigned)> KZF, 992 function_ref<APInt(const APInt &, unsigned)> KOF) { 993 unsigned BitWidth = Known.getBitWidth(); 994 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 995 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 996 997 if (Known.isConstant()) { 998 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 999 Known.Zero = KZF(Known2.Zero, ShiftAmt); 1000 Known.One = KOF(Known2.One, ShiftAmt); 1001 1002 // If the known bits conflict, this must be an overflowing left shift, so 1003 // the shift result is poison. We can return anything we want. Choose 0 for 1004 // the best folding opportunity. 1005 if (Known.hasConflict()) 1006 Known.setAllZero(); 1007 1008 return; 1009 } 1010 1011 // If the shift amount could be greater than or equal to the bit-width of the 1012 // LHS, the value could be poison, but bail out because the check below is 1013 // expensive. 1014 // TODO: Should we just carry on? 1015 if (Known.getMaxValue().uge(BitWidth)) { 1016 Known.resetAll(); 1017 return; 1018 } 1019 1020 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1021 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1022 // limit value (which implies all bits are known). 1023 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1024 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1025 1026 // It would be more-clearly correct to use the two temporaries for this 1027 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1028 Known.resetAll(); 1029 1030 // If we know the shifter operand is nonzero, we can sometimes infer more 1031 // known bits. However this is expensive to compute, so be lazy about it and 1032 // only compute it when absolutely necessary. 1033 Optional<bool> ShifterOperandIsNonZero; 1034 1035 // Early exit if we can't constrain any well-defined shift amount. 1036 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1037 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1038 ShifterOperandIsNonZero = 1039 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1040 if (!*ShifterOperandIsNonZero) 1041 return; 1042 } 1043 1044 Known.Zero.setAllBits(); 1045 Known.One.setAllBits(); 1046 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1047 // Combine the shifted known input bits only for those shift amounts 1048 // compatible with its known constraints. 1049 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1050 continue; 1051 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1052 continue; 1053 // If we know the shifter is nonzero, we may be able to infer more known 1054 // bits. This check is sunk down as far as possible to avoid the expensive 1055 // call to isKnownNonZero if the cheaper checks above fail. 1056 if (ShiftAmt == 0) { 1057 if (!ShifterOperandIsNonZero.hasValue()) 1058 ShifterOperandIsNonZero = 1059 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1060 if (*ShifterOperandIsNonZero) 1061 continue; 1062 } 1063 1064 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1065 Known.One &= KOF(Known2.One, ShiftAmt); 1066 } 1067 1068 // If the known bits conflict, the result is poison. Return a 0 and hope the 1069 // caller can further optimize that. 1070 if (Known.hasConflict()) 1071 Known.setAllZero(); 1072 } 1073 1074 static void computeKnownBitsFromOperator(const Operator *I, 1075 const APInt &DemandedElts, 1076 KnownBits &Known, unsigned Depth, 1077 const Query &Q) { 1078 unsigned BitWidth = Known.getBitWidth(); 1079 1080 KnownBits Known2(BitWidth); 1081 switch (I->getOpcode()) { 1082 default: break; 1083 case Instruction::Load: 1084 if (MDNode *MD = 1085 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1086 computeKnownBitsFromRangeMetadata(*MD, Known); 1087 break; 1088 case Instruction::And: { 1089 // If either the LHS or the RHS are Zero, the result is zero. 1090 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1091 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1092 1093 Known &= Known2; 1094 1095 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1096 // here we handle the more general case of adding any odd number by 1097 // matching the form add(x, add(x, y)) where y is odd. 1098 // TODO: This could be generalized to clearing any bit set in y where the 1099 // following bit is known to be unset in y. 1100 Value *X = nullptr, *Y = nullptr; 1101 if (!Known.Zero[0] && !Known.One[0] && 1102 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1103 Known2.resetAll(); 1104 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1105 if (Known2.countMinTrailingOnes() > 0) 1106 Known.Zero.setBit(0); 1107 } 1108 break; 1109 } 1110 case Instruction::Or: 1111 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1112 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1113 1114 Known |= Known2; 1115 break; 1116 case Instruction::Xor: 1117 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1118 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1119 1120 Known ^= Known2; 1121 break; 1122 case Instruction::Mul: { 1123 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1124 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1125 Known, Known2, Depth, Q); 1126 break; 1127 } 1128 case Instruction::UDiv: { 1129 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1130 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1131 Known = KnownBits::udiv(Known, Known2); 1132 break; 1133 } 1134 case Instruction::Select: { 1135 const Value *LHS = nullptr, *RHS = nullptr; 1136 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1137 if (SelectPatternResult::isMinOrMax(SPF)) { 1138 computeKnownBits(RHS, Known, Depth + 1, Q); 1139 computeKnownBits(LHS, Known2, Depth + 1, Q); 1140 switch (SPF) { 1141 default: 1142 llvm_unreachable("Unhandled select pattern flavor!"); 1143 case SPF_SMAX: 1144 Known = KnownBits::smax(Known, Known2); 1145 break; 1146 case SPF_SMIN: 1147 Known = KnownBits::smin(Known, Known2); 1148 break; 1149 case SPF_UMAX: 1150 Known = KnownBits::umax(Known, Known2); 1151 break; 1152 case SPF_UMIN: 1153 Known = KnownBits::umin(Known, Known2); 1154 break; 1155 } 1156 break; 1157 } 1158 1159 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1160 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1161 1162 // Only known if known in both the LHS and RHS. 1163 Known.One &= Known2.One; 1164 Known.Zero &= Known2.Zero; 1165 1166 if (SPF == SPF_ABS) { 1167 // RHS from matchSelectPattern returns the negation part of abs pattern. 1168 // If the negate has an NSW flag we can assume the sign bit of the result 1169 // will be 0 because that makes abs(INT_MIN) undefined. 1170 if (match(RHS, m_Neg(m_Specific(LHS))) && 1171 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1172 Known.Zero.setSignBit(); 1173 } 1174 1175 break; 1176 } 1177 case Instruction::FPTrunc: 1178 case Instruction::FPExt: 1179 case Instruction::FPToUI: 1180 case Instruction::FPToSI: 1181 case Instruction::SIToFP: 1182 case Instruction::UIToFP: 1183 break; // Can't work with floating point. 1184 case Instruction::PtrToInt: 1185 case Instruction::IntToPtr: 1186 // Fall through and handle them the same as zext/trunc. 1187 LLVM_FALLTHROUGH; 1188 case Instruction::ZExt: 1189 case Instruction::Trunc: { 1190 Type *SrcTy = I->getOperand(0)->getType(); 1191 1192 unsigned SrcBitWidth; 1193 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1194 // which fall through here. 1195 Type *ScalarTy = SrcTy->getScalarType(); 1196 SrcBitWidth = ScalarTy->isPointerTy() ? 1197 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1198 Q.DL.getTypeSizeInBits(ScalarTy); 1199 1200 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1201 Known = Known.anyextOrTrunc(SrcBitWidth); 1202 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1203 Known = Known.zextOrTrunc(BitWidth); 1204 break; 1205 } 1206 case Instruction::BitCast: { 1207 Type *SrcTy = I->getOperand(0)->getType(); 1208 if (SrcTy->isIntOrPtrTy() && 1209 // TODO: For now, not handling conversions like: 1210 // (bitcast i64 %x to <2 x i32>) 1211 !I->getType()->isVectorTy()) { 1212 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1213 break; 1214 } 1215 break; 1216 } 1217 case Instruction::SExt: { 1218 // Compute the bits in the result that are not present in the input. 1219 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1220 1221 Known = Known.trunc(SrcBitWidth); 1222 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1223 // If the sign bit of the input is known set or clear, then we know the 1224 // top bits of the result. 1225 Known = Known.sext(BitWidth); 1226 break; 1227 } 1228 case Instruction::Shl: { 1229 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1230 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1231 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1232 APInt KZResult = KnownZero << ShiftAmt; 1233 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1234 // If this shift has "nsw" keyword, then the result is either a poison 1235 // value or has the same sign bit as the first operand. 1236 if (NSW && KnownZero.isSignBitSet()) 1237 KZResult.setSignBit(); 1238 return KZResult; 1239 }; 1240 1241 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1242 APInt KOResult = KnownOne << ShiftAmt; 1243 if (NSW && KnownOne.isSignBitSet()) 1244 KOResult.setSignBit(); 1245 return KOResult; 1246 }; 1247 1248 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1249 KZF, KOF); 1250 break; 1251 } 1252 case Instruction::LShr: { 1253 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1254 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1255 APInt KZResult = KnownZero.lshr(ShiftAmt); 1256 // High bits known zero. 1257 KZResult.setHighBits(ShiftAmt); 1258 return KZResult; 1259 }; 1260 1261 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1262 return KnownOne.lshr(ShiftAmt); 1263 }; 1264 1265 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1266 KZF, KOF); 1267 break; 1268 } 1269 case Instruction::AShr: { 1270 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1271 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1272 return KnownZero.ashr(ShiftAmt); 1273 }; 1274 1275 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1276 return KnownOne.ashr(ShiftAmt); 1277 }; 1278 1279 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1280 KZF, KOF); 1281 break; 1282 } 1283 case Instruction::Sub: { 1284 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1285 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1286 DemandedElts, Known, Known2, Depth, Q); 1287 break; 1288 } 1289 case Instruction::Add: { 1290 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1291 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1292 DemandedElts, Known, Known2, Depth, Q); 1293 break; 1294 } 1295 case Instruction::SRem: 1296 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1297 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1298 Known = KnownBits::srem(Known, Known2); 1299 break; 1300 1301 case Instruction::URem: 1302 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1303 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1304 Known = KnownBits::urem(Known, Known2); 1305 break; 1306 case Instruction::Alloca: 1307 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1308 break; 1309 case Instruction::GetElementPtr: { 1310 // Analyze all of the subscripts of this getelementptr instruction 1311 // to determine if we can prove known low zero bits. 1312 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1313 // Accumulate the constant indices in a separate variable 1314 // to minimize the number of calls to computeForAddSub. 1315 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1316 1317 gep_type_iterator GTI = gep_type_begin(I); 1318 // If the inbounds keyword is not present, the offsets are added to the 1319 // base address with silently-wrapping two’s complement arithmetic. 1320 bool IsInBounds = cast<GEPOperator>(I)->isInBounds(); 1321 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1322 // TrailZ can only become smaller, short-circuit if we hit zero. 1323 if (Known.isUnknown()) 1324 break; 1325 1326 Value *Index = I->getOperand(i); 1327 1328 // Handle case when index is zero. 1329 Constant *CIndex = dyn_cast<Constant>(Index); 1330 if (CIndex && CIndex->isZeroValue()) 1331 continue; 1332 1333 if (StructType *STy = GTI.getStructTypeOrNull()) { 1334 // Handle struct member offset arithmetic. 1335 1336 assert(CIndex && 1337 "Access to structure field must be known at compile time"); 1338 1339 if (CIndex->getType()->isVectorTy()) 1340 Index = CIndex->getSplatValue(); 1341 1342 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1343 const StructLayout *SL = Q.DL.getStructLayout(STy); 1344 uint64_t Offset = SL->getElementOffset(Idx); 1345 AccConstIndices += Offset; 1346 continue; 1347 } 1348 1349 // Handle array index arithmetic. 1350 Type *IndexedTy = GTI.getIndexedType(); 1351 if (!IndexedTy->isSized()) { 1352 Known.resetAll(); 1353 break; 1354 } 1355 1356 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1357 KnownBits IndexBits(IndexBitWidth); 1358 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1359 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1360 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1361 KnownBits ScalingFactor(IndexBitWidth); 1362 // Multiply by current sizeof type. 1363 // &A[i] == A + i * sizeof(*A[i]). 1364 if (IndexTypeSize.isScalable()) { 1365 // For scalable types the only thing we know about sizeof is 1366 // that this is a multiple of the minimum size. 1367 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1368 } else if (IndexBits.isConstant()) { 1369 APInt IndexConst = IndexBits.getConstant(); 1370 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1371 IndexConst *= ScalingFactor; 1372 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1373 continue; 1374 } else { 1375 ScalingFactor.Zero = ~TypeSizeInBytes; 1376 ScalingFactor.One = TypeSizeInBytes; 1377 } 1378 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1379 1380 // If the offsets have a different width from the pointer, according 1381 // to the language reference we need to sign-extend or truncate them 1382 // to the width of the pointer. 1383 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1384 1385 Known = KnownBits::computeForAddSub( 1386 /*Add=*/true, 1387 /*NSW=*/IsInBounds, Known, IndexBits); 1388 } 1389 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1390 KnownBits Index(BitWidth); 1391 Index.Zero = ~AccConstIndices; 1392 Index.One = AccConstIndices; 1393 Known = KnownBits::computeForAddSub( 1394 /*Add=*/true, 1395 /*NSW=*/IsInBounds, Known, Index); 1396 } 1397 break; 1398 } 1399 case Instruction::PHI: { 1400 const PHINode *P = cast<PHINode>(I); 1401 // Handle the case of a simple two-predecessor recurrence PHI. 1402 // There's a lot more that could theoretically be done here, but 1403 // this is sufficient to catch some interesting cases. 1404 if (P->getNumIncomingValues() == 2) { 1405 for (unsigned i = 0; i != 2; ++i) { 1406 Value *L = P->getIncomingValue(i); 1407 Value *R = P->getIncomingValue(!i); 1408 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1409 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1410 Operator *LU = dyn_cast<Operator>(L); 1411 if (!LU) 1412 continue; 1413 unsigned Opcode = LU->getOpcode(); 1414 // Check for operations that have the property that if 1415 // both their operands have low zero bits, the result 1416 // will have low zero bits. 1417 if (Opcode == Instruction::Add || 1418 Opcode == Instruction::Sub || 1419 Opcode == Instruction::And || 1420 Opcode == Instruction::Or || 1421 Opcode == Instruction::Mul) { 1422 Value *LL = LU->getOperand(0); 1423 Value *LR = LU->getOperand(1); 1424 // Find a recurrence. 1425 if (LL == I) 1426 L = LR; 1427 else if (LR == I) 1428 L = LL; 1429 else 1430 continue; // Check for recurrence with L and R flipped. 1431 1432 // Change the context instruction to the "edge" that flows into the 1433 // phi. This is important because that is where the value is actually 1434 // "evaluated" even though it is used later somewhere else. (see also 1435 // D69571). 1436 Query RecQ = Q; 1437 1438 // Ok, we have a PHI of the form L op= R. Check for low 1439 // zero bits. 1440 RecQ.CxtI = RInst; 1441 computeKnownBits(R, Known2, Depth + 1, RecQ); 1442 1443 // We need to take the minimum number of known bits 1444 KnownBits Known3(BitWidth); 1445 RecQ.CxtI = LInst; 1446 computeKnownBits(L, Known3, Depth + 1, RecQ); 1447 1448 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1449 Known3.countMinTrailingZeros())); 1450 1451 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1452 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1453 // If initial value of recurrence is nonnegative, and we are adding 1454 // a nonnegative number with nsw, the result can only be nonnegative 1455 // or poison value regardless of the number of times we execute the 1456 // add in phi recurrence. If initial value is negative and we are 1457 // adding a negative number with nsw, the result can only be 1458 // negative or poison value. Similar arguments apply to sub and mul. 1459 // 1460 // (add non-negative, non-negative) --> non-negative 1461 // (add negative, negative) --> negative 1462 if (Opcode == Instruction::Add) { 1463 if (Known2.isNonNegative() && Known3.isNonNegative()) 1464 Known.makeNonNegative(); 1465 else if (Known2.isNegative() && Known3.isNegative()) 1466 Known.makeNegative(); 1467 } 1468 1469 // (sub nsw non-negative, negative) --> non-negative 1470 // (sub nsw negative, non-negative) --> negative 1471 else if (Opcode == Instruction::Sub && LL == I) { 1472 if (Known2.isNonNegative() && Known3.isNegative()) 1473 Known.makeNonNegative(); 1474 else if (Known2.isNegative() && Known3.isNonNegative()) 1475 Known.makeNegative(); 1476 } 1477 1478 // (mul nsw non-negative, non-negative) --> non-negative 1479 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1480 Known3.isNonNegative()) 1481 Known.makeNonNegative(); 1482 } 1483 1484 break; 1485 } 1486 } 1487 } 1488 1489 // Unreachable blocks may have zero-operand PHI nodes. 1490 if (P->getNumIncomingValues() == 0) 1491 break; 1492 1493 // Otherwise take the unions of the known bit sets of the operands, 1494 // taking conservative care to avoid excessive recursion. 1495 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1496 // Skip if every incoming value references to ourself. 1497 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1498 break; 1499 1500 Known.Zero.setAllBits(); 1501 Known.One.setAllBits(); 1502 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1503 Value *IncValue = P->getIncomingValue(u); 1504 // Skip direct self references. 1505 if (IncValue == P) continue; 1506 1507 // Change the context instruction to the "edge" that flows into the 1508 // phi. This is important because that is where the value is actually 1509 // "evaluated" even though it is used later somewhere else. (see also 1510 // D69571). 1511 Query RecQ = Q; 1512 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1513 1514 Known2 = KnownBits(BitWidth); 1515 // Recurse, but cap the recursion to one level, because we don't 1516 // want to waste time spinning around in loops. 1517 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1518 Known.Zero &= Known2.Zero; 1519 Known.One &= Known2.One; 1520 // If all bits have been ruled out, there's no need to check 1521 // more operands. 1522 if (!Known.Zero && !Known.One) 1523 break; 1524 } 1525 } 1526 break; 1527 } 1528 case Instruction::Call: 1529 case Instruction::Invoke: 1530 // If range metadata is attached to this call, set known bits from that, 1531 // and then intersect with known bits based on other properties of the 1532 // function. 1533 if (MDNode *MD = 1534 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1535 computeKnownBitsFromRangeMetadata(*MD, Known); 1536 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1537 computeKnownBits(RV, Known2, Depth + 1, Q); 1538 Known.Zero |= Known2.Zero; 1539 Known.One |= Known2.One; 1540 } 1541 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1542 switch (II->getIntrinsicID()) { 1543 default: break; 1544 case Intrinsic::abs: 1545 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1546 1547 // If the source's MSB is zero then we know the rest of the bits. 1548 if (Known2.isNonNegative()) { 1549 Known.Zero |= Known2.Zero; 1550 Known.One |= Known2.One; 1551 break; 1552 } 1553 1554 // Absolute value preserves trailing zero count. 1555 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1556 1557 // If this call is undefined for INT_MIN, the result is positive. We 1558 // also know it can't be INT_MIN if there is a set bit that isn't the 1559 // sign bit. 1560 Known2.One.clearSignBit(); 1561 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1562 Known.Zero.setSignBit(); 1563 // FIXME: Handle known negative input? 1564 // FIXME: Calculate the negated Known bits and combine them? 1565 break; 1566 case Intrinsic::bitreverse: 1567 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1568 Known.Zero |= Known2.Zero.reverseBits(); 1569 Known.One |= Known2.One.reverseBits(); 1570 break; 1571 case Intrinsic::bswap: 1572 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1573 Known.Zero |= Known2.Zero.byteSwap(); 1574 Known.One |= Known2.One.byteSwap(); 1575 break; 1576 case Intrinsic::ctlz: { 1577 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1578 // If we have a known 1, its position is our upper bound. 1579 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1580 // If this call is undefined for 0, the result will be less than 2^n. 1581 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1582 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1583 unsigned LowBits = Log2_32(PossibleLZ)+1; 1584 Known.Zero.setBitsFrom(LowBits); 1585 break; 1586 } 1587 case Intrinsic::cttz: { 1588 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1589 // If we have a known 1, its position is our upper bound. 1590 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1591 // If this call is undefined for 0, the result will be less than 2^n. 1592 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1593 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1594 unsigned LowBits = Log2_32(PossibleTZ)+1; 1595 Known.Zero.setBitsFrom(LowBits); 1596 break; 1597 } 1598 case Intrinsic::ctpop: { 1599 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1600 // We can bound the space the count needs. Also, bits known to be zero 1601 // can't contribute to the population. 1602 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1603 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1604 Known.Zero.setBitsFrom(LowBits); 1605 // TODO: we could bound KnownOne using the lower bound on the number 1606 // of bits which might be set provided by popcnt KnownOne2. 1607 break; 1608 } 1609 case Intrinsic::fshr: 1610 case Intrinsic::fshl: { 1611 const APInt *SA; 1612 if (!match(I->getOperand(2), m_APInt(SA))) 1613 break; 1614 1615 // Normalize to funnel shift left. 1616 uint64_t ShiftAmt = SA->urem(BitWidth); 1617 if (II->getIntrinsicID() == Intrinsic::fshr) 1618 ShiftAmt = BitWidth - ShiftAmt; 1619 1620 KnownBits Known3(BitWidth); 1621 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1622 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1623 1624 Known.Zero = 1625 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1626 Known.One = 1627 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1628 break; 1629 } 1630 case Intrinsic::uadd_sat: 1631 case Intrinsic::usub_sat: { 1632 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1633 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1634 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1635 1636 // Add: Leading ones of either operand are preserved. 1637 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1638 // as leading zeros in the result. 1639 unsigned LeadingKnown; 1640 if (IsAdd) 1641 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1642 Known2.countMinLeadingOnes()); 1643 else 1644 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1645 Known2.countMinLeadingOnes()); 1646 1647 Known = KnownBits::computeForAddSub( 1648 IsAdd, /* NSW */ false, Known, Known2); 1649 1650 // We select between the operation result and all-ones/zero 1651 // respectively, so we can preserve known ones/zeros. 1652 if (IsAdd) { 1653 Known.One.setHighBits(LeadingKnown); 1654 Known.Zero.clearAllBits(); 1655 } else { 1656 Known.Zero.setHighBits(LeadingKnown); 1657 Known.One.clearAllBits(); 1658 } 1659 break; 1660 } 1661 case Intrinsic::umin: 1662 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1663 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1664 Known = KnownBits::umin(Known, Known2); 1665 break; 1666 case Intrinsic::umax: 1667 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1668 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1669 Known = KnownBits::umax(Known, Known2); 1670 break; 1671 case Intrinsic::smin: 1672 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1673 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1674 Known = KnownBits::smin(Known, Known2); 1675 break; 1676 case Intrinsic::smax: 1677 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1678 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1679 Known = KnownBits::smax(Known, Known2); 1680 break; 1681 case Intrinsic::x86_sse42_crc32_64_64: 1682 Known.Zero.setBitsFrom(32); 1683 break; 1684 } 1685 } 1686 break; 1687 case Instruction::ShuffleVector: { 1688 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1689 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1690 if (!Shuf) { 1691 Known.resetAll(); 1692 return; 1693 } 1694 // For undef elements, we don't know anything about the common state of 1695 // the shuffle result. 1696 APInt DemandedLHS, DemandedRHS; 1697 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1698 Known.resetAll(); 1699 return; 1700 } 1701 Known.One.setAllBits(); 1702 Known.Zero.setAllBits(); 1703 if (!!DemandedLHS) { 1704 const Value *LHS = Shuf->getOperand(0); 1705 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1706 // If we don't know any bits, early out. 1707 if (Known.isUnknown()) 1708 break; 1709 } 1710 if (!!DemandedRHS) { 1711 const Value *RHS = Shuf->getOperand(1); 1712 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1713 Known.One &= Known2.One; 1714 Known.Zero &= Known2.Zero; 1715 } 1716 break; 1717 } 1718 case Instruction::InsertElement: { 1719 const Value *Vec = I->getOperand(0); 1720 const Value *Elt = I->getOperand(1); 1721 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1722 // Early out if the index is non-constant or out-of-range. 1723 unsigned NumElts = DemandedElts.getBitWidth(); 1724 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1725 Known.resetAll(); 1726 return; 1727 } 1728 Known.One.setAllBits(); 1729 Known.Zero.setAllBits(); 1730 unsigned EltIdx = CIdx->getZExtValue(); 1731 // Do we demand the inserted element? 1732 if (DemandedElts[EltIdx]) { 1733 computeKnownBits(Elt, Known, Depth + 1, Q); 1734 // If we don't know any bits, early out. 1735 if (Known.isUnknown()) 1736 break; 1737 } 1738 // We don't need the base vector element that has been inserted. 1739 APInt DemandedVecElts = DemandedElts; 1740 DemandedVecElts.clearBit(EltIdx); 1741 if (!!DemandedVecElts) { 1742 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1743 Known.One &= Known2.One; 1744 Known.Zero &= Known2.Zero; 1745 } 1746 break; 1747 } 1748 case Instruction::ExtractElement: { 1749 // Look through extract element. If the index is non-constant or 1750 // out-of-range demand all elements, otherwise just the extracted element. 1751 const Value *Vec = I->getOperand(0); 1752 const Value *Idx = I->getOperand(1); 1753 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1754 if (isa<ScalableVectorType>(Vec->getType())) { 1755 // FIXME: there's probably *something* we can do with scalable vectors 1756 Known.resetAll(); 1757 break; 1758 } 1759 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1760 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1761 if (CIdx && CIdx->getValue().ult(NumElts)) 1762 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1763 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1764 break; 1765 } 1766 case Instruction::ExtractValue: 1767 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1768 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1769 if (EVI->getNumIndices() != 1) break; 1770 if (EVI->getIndices()[0] == 0) { 1771 switch (II->getIntrinsicID()) { 1772 default: break; 1773 case Intrinsic::uadd_with_overflow: 1774 case Intrinsic::sadd_with_overflow: 1775 computeKnownBitsAddSub(true, II->getArgOperand(0), 1776 II->getArgOperand(1), false, DemandedElts, 1777 Known, Known2, Depth, Q); 1778 break; 1779 case Intrinsic::usub_with_overflow: 1780 case Intrinsic::ssub_with_overflow: 1781 computeKnownBitsAddSub(false, II->getArgOperand(0), 1782 II->getArgOperand(1), false, DemandedElts, 1783 Known, Known2, Depth, Q); 1784 break; 1785 case Intrinsic::umul_with_overflow: 1786 case Intrinsic::smul_with_overflow: 1787 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1788 DemandedElts, Known, Known2, Depth, Q); 1789 break; 1790 } 1791 } 1792 } 1793 break; 1794 case Instruction::Freeze: 1795 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1796 Depth + 1)) 1797 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1798 break; 1799 } 1800 } 1801 1802 /// Determine which bits of V are known to be either zero or one and return 1803 /// them. 1804 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1805 unsigned Depth, const Query &Q) { 1806 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1807 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1808 return Known; 1809 } 1810 1811 /// Determine which bits of V are known to be either zero or one and return 1812 /// them. 1813 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1814 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1815 computeKnownBits(V, Known, Depth, Q); 1816 return Known; 1817 } 1818 1819 /// Determine which bits of V are known to be either zero or one and return 1820 /// them in the Known bit set. 1821 /// 1822 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1823 /// we cannot optimize based on the assumption that it is zero without changing 1824 /// it to be an explicit zero. If we don't change it to zero, other code could 1825 /// optimized based on the contradictory assumption that it is non-zero. 1826 /// Because instcombine aggressively folds operations with undef args anyway, 1827 /// this won't lose us code quality. 1828 /// 1829 /// This function is defined on values with integer type, values with pointer 1830 /// type, and vectors of integers. In the case 1831 /// where V is a vector, known zero, and known one values are the 1832 /// same width as the vector element, and the bit is set only if it is true 1833 /// for all of the demanded elements in the vector specified by DemandedElts. 1834 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1835 KnownBits &Known, unsigned Depth, const Query &Q) { 1836 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1837 // No demanded elts or V is a scalable vector, better to assume we don't 1838 // know anything. 1839 Known.resetAll(); 1840 return; 1841 } 1842 1843 assert(V && "No Value?"); 1844 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1845 1846 #ifndef NDEBUG 1847 Type *Ty = V->getType(); 1848 unsigned BitWidth = Known.getBitWidth(); 1849 1850 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1851 "Not integer or pointer type!"); 1852 1853 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1854 assert( 1855 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1856 "DemandedElt width should equal the fixed vector number of elements"); 1857 } else { 1858 assert(DemandedElts == APInt(1, 1) && 1859 "DemandedElt width should be 1 for scalars"); 1860 } 1861 1862 Type *ScalarTy = Ty->getScalarType(); 1863 if (ScalarTy->isPointerTy()) { 1864 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1865 "V and Known should have same BitWidth"); 1866 } else { 1867 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1868 "V and Known should have same BitWidth"); 1869 } 1870 #endif 1871 1872 const APInt *C; 1873 if (match(V, m_APInt(C))) { 1874 // We know all of the bits for a scalar constant or a splat vector constant! 1875 Known.One = *C; 1876 Known.Zero = ~Known.One; 1877 return; 1878 } 1879 // Null and aggregate-zero are all-zeros. 1880 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1881 Known.setAllZero(); 1882 return; 1883 } 1884 // Handle a constant vector by taking the intersection of the known bits of 1885 // each element. 1886 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1887 // We know that CDV must be a vector of integers. Take the intersection of 1888 // each element. 1889 Known.Zero.setAllBits(); Known.One.setAllBits(); 1890 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1891 if (!DemandedElts[i]) 1892 continue; 1893 APInt Elt = CDV->getElementAsAPInt(i); 1894 Known.Zero &= ~Elt; 1895 Known.One &= Elt; 1896 } 1897 return; 1898 } 1899 1900 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1901 // We know that CV must be a vector of integers. Take the intersection of 1902 // each element. 1903 Known.Zero.setAllBits(); Known.One.setAllBits(); 1904 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1905 if (!DemandedElts[i]) 1906 continue; 1907 Constant *Element = CV->getAggregateElement(i); 1908 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1909 if (!ElementCI) { 1910 Known.resetAll(); 1911 return; 1912 } 1913 const APInt &Elt = ElementCI->getValue(); 1914 Known.Zero &= ~Elt; 1915 Known.One &= Elt; 1916 } 1917 return; 1918 } 1919 1920 // Start out not knowing anything. 1921 Known.resetAll(); 1922 1923 // We can't imply anything about undefs. 1924 if (isa<UndefValue>(V)) 1925 return; 1926 1927 // There's no point in looking through other users of ConstantData for 1928 // assumptions. Confirm that we've handled them all. 1929 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1930 1931 // All recursive calls that increase depth must come after this. 1932 if (Depth == MaxAnalysisRecursionDepth) 1933 return; 1934 1935 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1936 // the bits of its aliasee. 1937 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1938 if (!GA->isInterposable()) 1939 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1940 return; 1941 } 1942 1943 if (const Operator *I = dyn_cast<Operator>(V)) 1944 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1945 1946 // Aligned pointers have trailing zeros - refine Known.Zero set 1947 if (isa<PointerType>(V->getType())) { 1948 Align Alignment = V->getPointerAlignment(Q.DL); 1949 Known.Zero.setLowBits(Log2(Alignment)); 1950 } 1951 1952 // computeKnownBitsFromAssume strictly refines Known. 1953 // Therefore, we run them after computeKnownBitsFromOperator. 1954 1955 // Check whether a nearby assume intrinsic can determine some known bits. 1956 computeKnownBitsFromAssume(V, Known, Depth, Q); 1957 1958 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1959 } 1960 1961 /// Return true if the given value is known to have exactly one 1962 /// bit set when defined. For vectors return true if every element is known to 1963 /// be a power of two when defined. Supports values with integer or pointer 1964 /// types and vectors of integers. 1965 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1966 const Query &Q) { 1967 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1968 1969 // Attempt to match against constants. 1970 if (OrZero && match(V, m_Power2OrZero())) 1971 return true; 1972 if (match(V, m_Power2())) 1973 return true; 1974 1975 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1976 // it is shifted off the end then the result is undefined. 1977 if (match(V, m_Shl(m_One(), m_Value()))) 1978 return true; 1979 1980 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1981 // the bottom. If it is shifted off the bottom then the result is undefined. 1982 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1983 return true; 1984 1985 // The remaining tests are all recursive, so bail out if we hit the limit. 1986 if (Depth++ == MaxAnalysisRecursionDepth) 1987 return false; 1988 1989 Value *X = nullptr, *Y = nullptr; 1990 // A shift left or a logical shift right of a power of two is a power of two 1991 // or zero. 1992 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1993 match(V, m_LShr(m_Value(X), m_Value())))) 1994 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1995 1996 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1997 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1998 1999 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2000 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2001 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2002 2003 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2004 // A power of two and'd with anything is a power of two or zero. 2005 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2006 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2007 return true; 2008 // X & (-X) is always a power of two or zero. 2009 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2010 return true; 2011 return false; 2012 } 2013 2014 // Adding a power-of-two or zero to the same power-of-two or zero yields 2015 // either the original power-of-two, a larger power-of-two or zero. 2016 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2017 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2018 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2019 Q.IIQ.hasNoSignedWrap(VOBO)) { 2020 if (match(X, m_And(m_Specific(Y), m_Value())) || 2021 match(X, m_And(m_Value(), m_Specific(Y)))) 2022 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2023 return true; 2024 if (match(Y, m_And(m_Specific(X), m_Value())) || 2025 match(Y, m_And(m_Value(), m_Specific(X)))) 2026 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2027 return true; 2028 2029 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2030 KnownBits LHSBits(BitWidth); 2031 computeKnownBits(X, LHSBits, Depth, Q); 2032 2033 KnownBits RHSBits(BitWidth); 2034 computeKnownBits(Y, RHSBits, Depth, Q); 2035 // If i8 V is a power of two or zero: 2036 // ZeroBits: 1 1 1 0 1 1 1 1 2037 // ~ZeroBits: 0 0 0 1 0 0 0 0 2038 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2039 // If OrZero isn't set, we cannot give back a zero result. 2040 // Make sure either the LHS or RHS has a bit set. 2041 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2042 return true; 2043 } 2044 } 2045 2046 // An exact divide or right shift can only shift off zero bits, so the result 2047 // is a power of two only if the first operand is a power of two and not 2048 // copying a sign bit (sdiv int_min, 2). 2049 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2050 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2051 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2052 Depth, Q); 2053 } 2054 2055 return false; 2056 } 2057 2058 /// Test whether a GEP's result is known to be non-null. 2059 /// 2060 /// Uses properties inherent in a GEP to try to determine whether it is known 2061 /// to be non-null. 2062 /// 2063 /// Currently this routine does not support vector GEPs. 2064 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2065 const Query &Q) { 2066 const Function *F = nullptr; 2067 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2068 F = I->getFunction(); 2069 2070 if (!GEP->isInBounds() || 2071 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2072 return false; 2073 2074 // FIXME: Support vector-GEPs. 2075 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2076 2077 // If the base pointer is non-null, we cannot walk to a null address with an 2078 // inbounds GEP in address space zero. 2079 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2080 return true; 2081 2082 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2083 // If so, then the GEP cannot produce a null pointer, as doing so would 2084 // inherently violate the inbounds contract within address space zero. 2085 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2086 GTI != GTE; ++GTI) { 2087 // Struct types are easy -- they must always be indexed by a constant. 2088 if (StructType *STy = GTI.getStructTypeOrNull()) { 2089 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2090 unsigned ElementIdx = OpC->getZExtValue(); 2091 const StructLayout *SL = Q.DL.getStructLayout(STy); 2092 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2093 if (ElementOffset > 0) 2094 return true; 2095 continue; 2096 } 2097 2098 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2099 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2100 continue; 2101 2102 // Fast path the constant operand case both for efficiency and so we don't 2103 // increment Depth when just zipping down an all-constant GEP. 2104 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2105 if (!OpC->isZero()) 2106 return true; 2107 continue; 2108 } 2109 2110 // We post-increment Depth here because while isKnownNonZero increments it 2111 // as well, when we pop back up that increment won't persist. We don't want 2112 // to recurse 10k times just because we have 10k GEP operands. We don't 2113 // bail completely out because we want to handle constant GEPs regardless 2114 // of depth. 2115 if (Depth++ >= MaxAnalysisRecursionDepth) 2116 continue; 2117 2118 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2119 return true; 2120 } 2121 2122 return false; 2123 } 2124 2125 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2126 const Instruction *CtxI, 2127 const DominatorTree *DT) { 2128 if (isa<Constant>(V)) 2129 return false; 2130 2131 if (!CtxI || !DT) 2132 return false; 2133 2134 unsigned NumUsesExplored = 0; 2135 for (auto *U : V->users()) { 2136 // Avoid massive lists 2137 if (NumUsesExplored >= DomConditionsMaxUses) 2138 break; 2139 NumUsesExplored++; 2140 2141 // If the value is used as an argument to a call or invoke, then argument 2142 // attributes may provide an answer about null-ness. 2143 if (const auto *CB = dyn_cast<CallBase>(U)) 2144 if (auto *CalledFunc = CB->getCalledFunction()) 2145 for (const Argument &Arg : CalledFunc->args()) 2146 if (CB->getArgOperand(Arg.getArgNo()) == V && 2147 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2148 return true; 2149 2150 // If the value is used as a load/store, then the pointer must be non null. 2151 if (V == getLoadStorePointerOperand(U)) { 2152 const Instruction *I = cast<Instruction>(U); 2153 if (!NullPointerIsDefined(I->getFunction(), 2154 V->getType()->getPointerAddressSpace()) && 2155 DT->dominates(I, CtxI)) 2156 return true; 2157 } 2158 2159 // Consider only compare instructions uniquely controlling a branch 2160 CmpInst::Predicate Pred; 2161 if (!match(const_cast<User *>(U), 2162 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2163 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2164 continue; 2165 2166 SmallVector<const User *, 4> WorkList; 2167 SmallPtrSet<const User *, 4> Visited; 2168 for (auto *CmpU : U->users()) { 2169 assert(WorkList.empty() && "Should be!"); 2170 if (Visited.insert(CmpU).second) 2171 WorkList.push_back(CmpU); 2172 2173 while (!WorkList.empty()) { 2174 auto *Curr = WorkList.pop_back_val(); 2175 2176 // If a user is an AND, add all its users to the work list. We only 2177 // propagate "pred != null" condition through AND because it is only 2178 // correct to assume that all conditions of AND are met in true branch. 2179 // TODO: Support similar logic of OR and EQ predicate? 2180 if (Pred == ICmpInst::ICMP_NE) 2181 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2182 if (BO->getOpcode() == Instruction::And) { 2183 for (auto *BOU : BO->users()) 2184 if (Visited.insert(BOU).second) 2185 WorkList.push_back(BOU); 2186 continue; 2187 } 2188 2189 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2190 assert(BI->isConditional() && "uses a comparison!"); 2191 2192 BasicBlock *NonNullSuccessor = 2193 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2194 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2195 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2196 return true; 2197 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2198 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2199 return true; 2200 } 2201 } 2202 } 2203 } 2204 2205 return false; 2206 } 2207 2208 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2209 /// ensure that the value it's attached to is never Value? 'RangeType' is 2210 /// is the type of the value described by the range. 2211 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2212 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2213 assert(NumRanges >= 1); 2214 for (unsigned i = 0; i < NumRanges; ++i) { 2215 ConstantInt *Lower = 2216 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2217 ConstantInt *Upper = 2218 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2219 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2220 if (Range.contains(Value)) 2221 return false; 2222 } 2223 return true; 2224 } 2225 2226 /// Return true if the given value is known to be non-zero when defined. For 2227 /// vectors, return true if every demanded element is known to be non-zero when 2228 /// defined. For pointers, if the context instruction and dominator tree are 2229 /// specified, perform context-sensitive analysis and return true if the 2230 /// pointer couldn't possibly be null at the specified instruction. 2231 /// Supports values with integer or pointer type and vectors of integers. 2232 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2233 const Query &Q) { 2234 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2235 // vector 2236 if (isa<ScalableVectorType>(V->getType())) 2237 return false; 2238 2239 if (auto *C = dyn_cast<Constant>(V)) { 2240 if (C->isNullValue()) 2241 return false; 2242 if (isa<ConstantInt>(C)) 2243 // Must be non-zero due to null test above. 2244 return true; 2245 2246 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2247 // See the comment for IntToPtr/PtrToInt instructions below. 2248 if (CE->getOpcode() == Instruction::IntToPtr || 2249 CE->getOpcode() == Instruction::PtrToInt) 2250 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2251 .getFixedSize() <= 2252 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2253 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2254 } 2255 2256 // For constant vectors, check that all elements are undefined or known 2257 // non-zero to determine that the whole vector is known non-zero. 2258 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2259 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2260 if (!DemandedElts[i]) 2261 continue; 2262 Constant *Elt = C->getAggregateElement(i); 2263 if (!Elt || Elt->isNullValue()) 2264 return false; 2265 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2266 return false; 2267 } 2268 return true; 2269 } 2270 2271 // A global variable in address space 0 is non null unless extern weak 2272 // or an absolute symbol reference. Other address spaces may have null as a 2273 // valid address for a global, so we can't assume anything. 2274 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2275 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2276 GV->getType()->getAddressSpace() == 0) 2277 return true; 2278 } else 2279 return false; 2280 } 2281 2282 if (auto *I = dyn_cast<Instruction>(V)) { 2283 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2284 // If the possible ranges don't contain zero, then the value is 2285 // definitely non-zero. 2286 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2287 const APInt ZeroValue(Ty->getBitWidth(), 0); 2288 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2289 return true; 2290 } 2291 } 2292 } 2293 2294 if (isKnownNonZeroFromAssume(V, Q)) 2295 return true; 2296 2297 // Some of the tests below are recursive, so bail out if we hit the limit. 2298 if (Depth++ >= MaxAnalysisRecursionDepth) 2299 return false; 2300 2301 // Check for pointer simplifications. 2302 2303 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2304 // Alloca never returns null, malloc might. 2305 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2306 return true; 2307 2308 // A byval, inalloca may not be null in a non-default addres space. A 2309 // nonnull argument is assumed never 0. 2310 if (const Argument *A = dyn_cast<Argument>(V)) { 2311 if (((A->hasPassPointeeByValueCopyAttr() && 2312 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2313 A->hasNonNullAttr())) 2314 return true; 2315 } 2316 2317 // A Load tagged with nonnull metadata is never null. 2318 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2319 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2320 return true; 2321 2322 if (const auto *Call = dyn_cast<CallBase>(V)) { 2323 if (Call->isReturnNonNull()) 2324 return true; 2325 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2326 return isKnownNonZero(RP, Depth, Q); 2327 } 2328 } 2329 2330 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2331 return true; 2332 2333 // Check for recursive pointer simplifications. 2334 if (V->getType()->isPointerTy()) { 2335 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2336 // do not alter the value, or at least not the nullness property of the 2337 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2338 // 2339 // Note that we have to take special care to avoid looking through 2340 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2341 // as casts that can alter the value, e.g., AddrSpaceCasts. 2342 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2343 return isGEPKnownNonNull(GEP, Depth, Q); 2344 2345 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2346 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2347 2348 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2349 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2350 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2351 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2352 } 2353 2354 // Similar to int2ptr above, we can look through ptr2int here if the cast 2355 // is a no-op or an extend and not a truncate. 2356 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2357 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2358 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2359 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2360 2361 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2362 2363 // X | Y != 0 if X != 0 or Y != 0. 2364 Value *X = nullptr, *Y = nullptr; 2365 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2366 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2367 isKnownNonZero(Y, DemandedElts, Depth, Q); 2368 2369 // ext X != 0 if X != 0. 2370 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2371 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2372 2373 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2374 // if the lowest bit is shifted off the end. 2375 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2376 // shl nuw can't remove any non-zero bits. 2377 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2378 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2379 return isKnownNonZero(X, Depth, Q); 2380 2381 KnownBits Known(BitWidth); 2382 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2383 if (Known.One[0]) 2384 return true; 2385 } 2386 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2387 // defined if the sign bit is shifted off the end. 2388 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2389 // shr exact can only shift out zero bits. 2390 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2391 if (BO->isExact()) 2392 return isKnownNonZero(X, Depth, Q); 2393 2394 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2395 if (Known.isNegative()) 2396 return true; 2397 2398 // If the shifter operand is a constant, and all of the bits shifted 2399 // out are known to be zero, and X is known non-zero then at least one 2400 // non-zero bit must remain. 2401 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2402 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2403 // Is there a known one in the portion not shifted out? 2404 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2405 return true; 2406 // Are all the bits to be shifted out known zero? 2407 if (Known.countMinTrailingZeros() >= ShiftVal) 2408 return isKnownNonZero(X, DemandedElts, Depth, Q); 2409 } 2410 } 2411 // div exact can only produce a zero if the dividend is zero. 2412 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2413 return isKnownNonZero(X, DemandedElts, Depth, Q); 2414 } 2415 // X + Y. 2416 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2417 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2418 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2419 2420 // If X and Y are both non-negative (as signed values) then their sum is not 2421 // zero unless both X and Y are zero. 2422 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2423 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2424 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2425 return true; 2426 2427 // If X and Y are both negative (as signed values) then their sum is not 2428 // zero unless both X and Y equal INT_MIN. 2429 if (XKnown.isNegative() && YKnown.isNegative()) { 2430 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2431 // The sign bit of X is set. If some other bit is set then X is not equal 2432 // to INT_MIN. 2433 if (XKnown.One.intersects(Mask)) 2434 return true; 2435 // The sign bit of Y is set. If some other bit is set then Y is not equal 2436 // to INT_MIN. 2437 if (YKnown.One.intersects(Mask)) 2438 return true; 2439 } 2440 2441 // The sum of a non-negative number and a power of two is not zero. 2442 if (XKnown.isNonNegative() && 2443 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2444 return true; 2445 if (YKnown.isNonNegative() && 2446 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2447 return true; 2448 } 2449 // X * Y. 2450 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2451 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2452 // If X and Y are non-zero then so is X * Y as long as the multiplication 2453 // does not overflow. 2454 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2455 isKnownNonZero(X, DemandedElts, Depth, Q) && 2456 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2457 return true; 2458 } 2459 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2460 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2461 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2462 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2463 return true; 2464 } 2465 // PHI 2466 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2467 // Try and detect a recurrence that monotonically increases from a 2468 // starting value, as these are common as induction variables. 2469 if (PN->getNumIncomingValues() == 2) { 2470 Value *Start = PN->getIncomingValue(0); 2471 Value *Induction = PN->getIncomingValue(1); 2472 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2473 std::swap(Start, Induction); 2474 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2475 if (!C->isZero() && !C->isNegative()) { 2476 ConstantInt *X; 2477 if (Q.IIQ.UseInstrInfo && 2478 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2479 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2480 !X->isNegative()) 2481 return true; 2482 } 2483 } 2484 } 2485 // Check if all incoming values are non-zero using recursion. 2486 Query RecQ = Q; 2487 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2488 return llvm::all_of(PN->operands(), [&](const Use &U) { 2489 if (U.get() == PN) 2490 return true; 2491 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2492 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2493 }); 2494 } 2495 // ExtractElement 2496 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2497 const Value *Vec = EEI->getVectorOperand(); 2498 const Value *Idx = EEI->getIndexOperand(); 2499 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2500 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2501 unsigned NumElts = VecTy->getNumElements(); 2502 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2503 if (CIdx && CIdx->getValue().ult(NumElts)) 2504 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2505 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2506 } 2507 } 2508 // Freeze 2509 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2510 auto *Op = FI->getOperand(0); 2511 if (isKnownNonZero(Op, Depth, Q) && 2512 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2513 return true; 2514 } 2515 2516 KnownBits Known(BitWidth); 2517 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2518 return Known.One != 0; 2519 } 2520 2521 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2522 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2523 // vector 2524 if (isa<ScalableVectorType>(V->getType())) 2525 return false; 2526 2527 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2528 APInt DemandedElts = 2529 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2530 return isKnownNonZero(V, DemandedElts, Depth, Q); 2531 } 2532 2533 /// Return true if V2 == V1 + X, where X is known non-zero. 2534 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2535 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2536 if (!BO || BO->getOpcode() != Instruction::Add) 2537 return false; 2538 Value *Op = nullptr; 2539 if (V2 == BO->getOperand(0)) 2540 Op = BO->getOperand(1); 2541 else if (V2 == BO->getOperand(1)) 2542 Op = BO->getOperand(0); 2543 else 2544 return false; 2545 return isKnownNonZero(Op, 0, Q); 2546 } 2547 2548 /// Return true if it is known that V1 != V2. 2549 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2550 if (V1 == V2) 2551 return false; 2552 if (V1->getType() != V2->getType()) 2553 // We can't look through casts yet. 2554 return false; 2555 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2556 return true; 2557 2558 if (V1->getType()->isIntOrIntVectorTy()) { 2559 // Are any known bits in V1 contradictory to known bits in V2? If V1 2560 // has a known zero where V2 has a known one, they must not be equal. 2561 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2562 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2563 2564 if (Known1.Zero.intersects(Known2.One) || 2565 Known2.Zero.intersects(Known1.One)) 2566 return true; 2567 } 2568 return false; 2569 } 2570 2571 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2572 /// simplify operations downstream. Mask is known to be zero for bits that V 2573 /// cannot have. 2574 /// 2575 /// This function is defined on values with integer type, values with pointer 2576 /// type, and vectors of integers. In the case 2577 /// where V is a vector, the mask, known zero, and known one values are the 2578 /// same width as the vector element, and the bit is set only if it is true 2579 /// for all of the elements in the vector. 2580 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2581 const Query &Q) { 2582 KnownBits Known(Mask.getBitWidth()); 2583 computeKnownBits(V, Known, Depth, Q); 2584 return Mask.isSubsetOf(Known.Zero); 2585 } 2586 2587 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2588 // Returns the input and lower/upper bounds. 2589 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2590 const APInt *&CLow, const APInt *&CHigh) { 2591 assert(isa<Operator>(Select) && 2592 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2593 "Input should be a Select!"); 2594 2595 const Value *LHS = nullptr, *RHS = nullptr; 2596 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2597 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2598 return false; 2599 2600 if (!match(RHS, m_APInt(CLow))) 2601 return false; 2602 2603 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2604 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2605 if (getInverseMinMaxFlavor(SPF) != SPF2) 2606 return false; 2607 2608 if (!match(RHS2, m_APInt(CHigh))) 2609 return false; 2610 2611 if (SPF == SPF_SMIN) 2612 std::swap(CLow, CHigh); 2613 2614 In = LHS2; 2615 return CLow->sle(*CHigh); 2616 } 2617 2618 /// For vector constants, loop over the elements and find the constant with the 2619 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2620 /// or if any element was not analyzed; otherwise, return the count for the 2621 /// element with the minimum number of sign bits. 2622 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2623 const APInt &DemandedElts, 2624 unsigned TyBits) { 2625 const auto *CV = dyn_cast<Constant>(V); 2626 if (!CV || !isa<FixedVectorType>(CV->getType())) 2627 return 0; 2628 2629 unsigned MinSignBits = TyBits; 2630 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2631 for (unsigned i = 0; i != NumElts; ++i) { 2632 if (!DemandedElts[i]) 2633 continue; 2634 // If we find a non-ConstantInt, bail out. 2635 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2636 if (!Elt) 2637 return 0; 2638 2639 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2640 } 2641 2642 return MinSignBits; 2643 } 2644 2645 static unsigned ComputeNumSignBitsImpl(const Value *V, 2646 const APInt &DemandedElts, 2647 unsigned Depth, const Query &Q); 2648 2649 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2650 unsigned Depth, const Query &Q) { 2651 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2652 assert(Result > 0 && "At least one sign bit needs to be present!"); 2653 return Result; 2654 } 2655 2656 /// Return the number of times the sign bit of the register is replicated into 2657 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2658 /// (itself), but other cases can give us information. For example, immediately 2659 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2660 /// other, so we return 3. For vectors, return the number of sign bits for the 2661 /// vector element with the minimum number of known sign bits of the demanded 2662 /// elements in the vector specified by DemandedElts. 2663 static unsigned ComputeNumSignBitsImpl(const Value *V, 2664 const APInt &DemandedElts, 2665 unsigned Depth, const Query &Q) { 2666 Type *Ty = V->getType(); 2667 2668 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2669 // vector 2670 if (isa<ScalableVectorType>(Ty)) 2671 return 1; 2672 2673 #ifndef NDEBUG 2674 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2675 2676 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2677 assert( 2678 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2679 "DemandedElt width should equal the fixed vector number of elements"); 2680 } else { 2681 assert(DemandedElts == APInt(1, 1) && 2682 "DemandedElt width should be 1 for scalars"); 2683 } 2684 #endif 2685 2686 // We return the minimum number of sign bits that are guaranteed to be present 2687 // in V, so for undef we have to conservatively return 1. We don't have the 2688 // same behavior for poison though -- that's a FIXME today. 2689 2690 Type *ScalarTy = Ty->getScalarType(); 2691 unsigned TyBits = ScalarTy->isPointerTy() ? 2692 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2693 Q.DL.getTypeSizeInBits(ScalarTy); 2694 2695 unsigned Tmp, Tmp2; 2696 unsigned FirstAnswer = 1; 2697 2698 // Note that ConstantInt is handled by the general computeKnownBits case 2699 // below. 2700 2701 if (Depth == MaxAnalysisRecursionDepth) 2702 return 1; 2703 2704 if (auto *U = dyn_cast<Operator>(V)) { 2705 switch (Operator::getOpcode(V)) { 2706 default: break; 2707 case Instruction::SExt: 2708 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2709 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2710 2711 case Instruction::SDiv: { 2712 const APInt *Denominator; 2713 // sdiv X, C -> adds log(C) sign bits. 2714 if (match(U->getOperand(1), m_APInt(Denominator))) { 2715 2716 // Ignore non-positive denominator. 2717 if (!Denominator->isStrictlyPositive()) 2718 break; 2719 2720 // Calculate the incoming numerator bits. 2721 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2722 2723 // Add floor(log(C)) bits to the numerator bits. 2724 return std::min(TyBits, NumBits + Denominator->logBase2()); 2725 } 2726 break; 2727 } 2728 2729 case Instruction::SRem: { 2730 const APInt *Denominator; 2731 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2732 // positive constant. This let us put a lower bound on the number of sign 2733 // bits. 2734 if (match(U->getOperand(1), m_APInt(Denominator))) { 2735 2736 // Ignore non-positive denominator. 2737 if (!Denominator->isStrictlyPositive()) 2738 break; 2739 2740 // Calculate the incoming numerator bits. SRem by a positive constant 2741 // can't lower the number of sign bits. 2742 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2743 2744 // Calculate the leading sign bit constraints by examining the 2745 // denominator. Given that the denominator is positive, there are two 2746 // cases: 2747 // 2748 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2749 // (1 << ceilLogBase2(C)). 2750 // 2751 // 2. the numerator is negative. Then the result range is (-C,0] and 2752 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2753 // 2754 // Thus a lower bound on the number of sign bits is `TyBits - 2755 // ceilLogBase2(C)`. 2756 2757 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2758 return std::max(NumrBits, ResBits); 2759 } 2760 break; 2761 } 2762 2763 case Instruction::AShr: { 2764 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2765 // ashr X, C -> adds C sign bits. Vectors too. 2766 const APInt *ShAmt; 2767 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2768 if (ShAmt->uge(TyBits)) 2769 break; // Bad shift. 2770 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2771 Tmp += ShAmtLimited; 2772 if (Tmp > TyBits) Tmp = TyBits; 2773 } 2774 return Tmp; 2775 } 2776 case Instruction::Shl: { 2777 const APInt *ShAmt; 2778 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2779 // shl destroys sign bits. 2780 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2781 if (ShAmt->uge(TyBits) || // Bad shift. 2782 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2783 Tmp2 = ShAmt->getZExtValue(); 2784 return Tmp - Tmp2; 2785 } 2786 break; 2787 } 2788 case Instruction::And: 2789 case Instruction::Or: 2790 case Instruction::Xor: // NOT is handled here. 2791 // Logical binary ops preserve the number of sign bits at the worst. 2792 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2793 if (Tmp != 1) { 2794 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2795 FirstAnswer = std::min(Tmp, Tmp2); 2796 // We computed what we know about the sign bits as our first 2797 // answer. Now proceed to the generic code that uses 2798 // computeKnownBits, and pick whichever answer is better. 2799 } 2800 break; 2801 2802 case Instruction::Select: { 2803 // If we have a clamp pattern, we know that the number of sign bits will 2804 // be the minimum of the clamp min/max range. 2805 const Value *X; 2806 const APInt *CLow, *CHigh; 2807 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2808 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2809 2810 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2811 if (Tmp == 1) break; 2812 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2813 return std::min(Tmp, Tmp2); 2814 } 2815 2816 case Instruction::Add: 2817 // Add can have at most one carry bit. Thus we know that the output 2818 // is, at worst, one more bit than the inputs. 2819 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2820 if (Tmp == 1) break; 2821 2822 // Special case decrementing a value (ADD X, -1): 2823 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2824 if (CRHS->isAllOnesValue()) { 2825 KnownBits Known(TyBits); 2826 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2827 2828 // If the input is known to be 0 or 1, the output is 0/-1, which is 2829 // all sign bits set. 2830 if ((Known.Zero | 1).isAllOnesValue()) 2831 return TyBits; 2832 2833 // If we are subtracting one from a positive number, there is no carry 2834 // out of the result. 2835 if (Known.isNonNegative()) 2836 return Tmp; 2837 } 2838 2839 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2840 if (Tmp2 == 1) break; 2841 return std::min(Tmp, Tmp2) - 1; 2842 2843 case Instruction::Sub: 2844 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2845 if (Tmp2 == 1) break; 2846 2847 // Handle NEG. 2848 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2849 if (CLHS->isNullValue()) { 2850 KnownBits Known(TyBits); 2851 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2852 // If the input is known to be 0 or 1, the output is 0/-1, which is 2853 // all sign bits set. 2854 if ((Known.Zero | 1).isAllOnesValue()) 2855 return TyBits; 2856 2857 // If the input is known to be positive (the sign bit is known clear), 2858 // the output of the NEG has the same number of sign bits as the 2859 // input. 2860 if (Known.isNonNegative()) 2861 return Tmp2; 2862 2863 // Otherwise, we treat this like a SUB. 2864 } 2865 2866 // Sub can have at most one carry bit. Thus we know that the output 2867 // is, at worst, one more bit than the inputs. 2868 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2869 if (Tmp == 1) break; 2870 return std::min(Tmp, Tmp2) - 1; 2871 2872 case Instruction::Mul: { 2873 // The output of the Mul can be at most twice the valid bits in the 2874 // inputs. 2875 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2876 if (SignBitsOp0 == 1) break; 2877 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2878 if (SignBitsOp1 == 1) break; 2879 unsigned OutValidBits = 2880 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2881 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2882 } 2883 2884 case Instruction::PHI: { 2885 const PHINode *PN = cast<PHINode>(U); 2886 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2887 // Don't analyze large in-degree PHIs. 2888 if (NumIncomingValues > 4) break; 2889 // Unreachable blocks may have zero-operand PHI nodes. 2890 if (NumIncomingValues == 0) break; 2891 2892 // Take the minimum of all incoming values. This can't infinitely loop 2893 // because of our depth threshold. 2894 Query RecQ = Q; 2895 Tmp = TyBits; 2896 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2897 if (Tmp == 1) return Tmp; 2898 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2899 Tmp = std::min( 2900 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2901 } 2902 return Tmp; 2903 } 2904 2905 case Instruction::Trunc: 2906 // FIXME: it's tricky to do anything useful for this, but it is an 2907 // important case for targets like X86. 2908 break; 2909 2910 case Instruction::ExtractElement: 2911 // Look through extract element. At the moment we keep this simple and 2912 // skip tracking the specific element. But at least we might find 2913 // information valid for all elements of the vector (for example if vector 2914 // is sign extended, shifted, etc). 2915 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2916 2917 case Instruction::ShuffleVector: { 2918 // Collect the minimum number of sign bits that are shared by every vector 2919 // element referenced by the shuffle. 2920 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2921 if (!Shuf) { 2922 // FIXME: Add support for shufflevector constant expressions. 2923 return 1; 2924 } 2925 APInt DemandedLHS, DemandedRHS; 2926 // For undef elements, we don't know anything about the common state of 2927 // the shuffle result. 2928 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2929 return 1; 2930 Tmp = std::numeric_limits<unsigned>::max(); 2931 if (!!DemandedLHS) { 2932 const Value *LHS = Shuf->getOperand(0); 2933 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2934 } 2935 // If we don't know anything, early out and try computeKnownBits 2936 // fall-back. 2937 if (Tmp == 1) 2938 break; 2939 if (!!DemandedRHS) { 2940 const Value *RHS = Shuf->getOperand(1); 2941 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2942 Tmp = std::min(Tmp, Tmp2); 2943 } 2944 // If we don't know anything, early out and try computeKnownBits 2945 // fall-back. 2946 if (Tmp == 1) 2947 break; 2948 assert(Tmp <= Ty->getScalarSizeInBits() && 2949 "Failed to determine minimum sign bits"); 2950 return Tmp; 2951 } 2952 case Instruction::Call: { 2953 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2954 switch (II->getIntrinsicID()) { 2955 default: break; 2956 case Intrinsic::abs: 2957 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2958 if (Tmp == 1) break; 2959 2960 // Absolute value reduces number of sign bits by at most 1. 2961 return Tmp - 1; 2962 } 2963 } 2964 } 2965 } 2966 } 2967 2968 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2969 // use this information. 2970 2971 // If we can examine all elements of a vector constant successfully, we're 2972 // done (we can't do any better than that). If not, keep trying. 2973 if (unsigned VecSignBits = 2974 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2975 return VecSignBits; 2976 2977 KnownBits Known(TyBits); 2978 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2979 2980 // If we know that the sign bit is either zero or one, determine the number of 2981 // identical bits in the top of the input value. 2982 return std::max(FirstAnswer, Known.countMinSignBits()); 2983 } 2984 2985 /// This function computes the integer multiple of Base that equals V. 2986 /// If successful, it returns true and returns the multiple in 2987 /// Multiple. If unsuccessful, it returns false. It looks 2988 /// through SExt instructions only if LookThroughSExt is true. 2989 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2990 bool LookThroughSExt, unsigned Depth) { 2991 assert(V && "No Value?"); 2992 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2993 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2994 2995 Type *T = V->getType(); 2996 2997 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2998 2999 if (Base == 0) 3000 return false; 3001 3002 if (Base == 1) { 3003 Multiple = V; 3004 return true; 3005 } 3006 3007 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3008 Constant *BaseVal = ConstantInt::get(T, Base); 3009 if (CO && CO == BaseVal) { 3010 // Multiple is 1. 3011 Multiple = ConstantInt::get(T, 1); 3012 return true; 3013 } 3014 3015 if (CI && CI->getZExtValue() % Base == 0) { 3016 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3017 return true; 3018 } 3019 3020 if (Depth == MaxAnalysisRecursionDepth) return false; 3021 3022 Operator *I = dyn_cast<Operator>(V); 3023 if (!I) return false; 3024 3025 switch (I->getOpcode()) { 3026 default: break; 3027 case Instruction::SExt: 3028 if (!LookThroughSExt) return false; 3029 // otherwise fall through to ZExt 3030 LLVM_FALLTHROUGH; 3031 case Instruction::ZExt: 3032 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3033 LookThroughSExt, Depth+1); 3034 case Instruction::Shl: 3035 case Instruction::Mul: { 3036 Value *Op0 = I->getOperand(0); 3037 Value *Op1 = I->getOperand(1); 3038 3039 if (I->getOpcode() == Instruction::Shl) { 3040 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3041 if (!Op1CI) return false; 3042 // Turn Op0 << Op1 into Op0 * 2^Op1 3043 APInt Op1Int = Op1CI->getValue(); 3044 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3045 APInt API(Op1Int.getBitWidth(), 0); 3046 API.setBit(BitToSet); 3047 Op1 = ConstantInt::get(V->getContext(), API); 3048 } 3049 3050 Value *Mul0 = nullptr; 3051 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3052 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3053 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3054 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3055 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3056 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3057 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3058 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3059 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3060 3061 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3062 Multiple = ConstantExpr::getMul(MulC, Op1C); 3063 return true; 3064 } 3065 3066 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3067 if (Mul0CI->getValue() == 1) { 3068 // V == Base * Op1, so return Op1 3069 Multiple = Op1; 3070 return true; 3071 } 3072 } 3073 3074 Value *Mul1 = nullptr; 3075 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3076 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3077 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3078 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3079 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3080 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3081 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3082 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3083 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3084 3085 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3086 Multiple = ConstantExpr::getMul(MulC, Op0C); 3087 return true; 3088 } 3089 3090 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3091 if (Mul1CI->getValue() == 1) { 3092 // V == Base * Op0, so return Op0 3093 Multiple = Op0; 3094 return true; 3095 } 3096 } 3097 } 3098 } 3099 3100 // We could not determine if V is a multiple of Base. 3101 return false; 3102 } 3103 3104 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3105 const TargetLibraryInfo *TLI) { 3106 const Function *F = CB.getCalledFunction(); 3107 if (!F) 3108 return Intrinsic::not_intrinsic; 3109 3110 if (F->isIntrinsic()) 3111 return F->getIntrinsicID(); 3112 3113 // We are going to infer semantics of a library function based on mapping it 3114 // to an LLVM intrinsic. Check that the library function is available from 3115 // this callbase and in this environment. 3116 LibFunc Func; 3117 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3118 !CB.onlyReadsMemory()) 3119 return Intrinsic::not_intrinsic; 3120 3121 switch (Func) { 3122 default: 3123 break; 3124 case LibFunc_sin: 3125 case LibFunc_sinf: 3126 case LibFunc_sinl: 3127 return Intrinsic::sin; 3128 case LibFunc_cos: 3129 case LibFunc_cosf: 3130 case LibFunc_cosl: 3131 return Intrinsic::cos; 3132 case LibFunc_exp: 3133 case LibFunc_expf: 3134 case LibFunc_expl: 3135 return Intrinsic::exp; 3136 case LibFunc_exp2: 3137 case LibFunc_exp2f: 3138 case LibFunc_exp2l: 3139 return Intrinsic::exp2; 3140 case LibFunc_log: 3141 case LibFunc_logf: 3142 case LibFunc_logl: 3143 return Intrinsic::log; 3144 case LibFunc_log10: 3145 case LibFunc_log10f: 3146 case LibFunc_log10l: 3147 return Intrinsic::log10; 3148 case LibFunc_log2: 3149 case LibFunc_log2f: 3150 case LibFunc_log2l: 3151 return Intrinsic::log2; 3152 case LibFunc_fabs: 3153 case LibFunc_fabsf: 3154 case LibFunc_fabsl: 3155 return Intrinsic::fabs; 3156 case LibFunc_fmin: 3157 case LibFunc_fminf: 3158 case LibFunc_fminl: 3159 return Intrinsic::minnum; 3160 case LibFunc_fmax: 3161 case LibFunc_fmaxf: 3162 case LibFunc_fmaxl: 3163 return Intrinsic::maxnum; 3164 case LibFunc_copysign: 3165 case LibFunc_copysignf: 3166 case LibFunc_copysignl: 3167 return Intrinsic::copysign; 3168 case LibFunc_floor: 3169 case LibFunc_floorf: 3170 case LibFunc_floorl: 3171 return Intrinsic::floor; 3172 case LibFunc_ceil: 3173 case LibFunc_ceilf: 3174 case LibFunc_ceill: 3175 return Intrinsic::ceil; 3176 case LibFunc_trunc: 3177 case LibFunc_truncf: 3178 case LibFunc_truncl: 3179 return Intrinsic::trunc; 3180 case LibFunc_rint: 3181 case LibFunc_rintf: 3182 case LibFunc_rintl: 3183 return Intrinsic::rint; 3184 case LibFunc_nearbyint: 3185 case LibFunc_nearbyintf: 3186 case LibFunc_nearbyintl: 3187 return Intrinsic::nearbyint; 3188 case LibFunc_round: 3189 case LibFunc_roundf: 3190 case LibFunc_roundl: 3191 return Intrinsic::round; 3192 case LibFunc_roundeven: 3193 case LibFunc_roundevenf: 3194 case LibFunc_roundevenl: 3195 return Intrinsic::roundeven; 3196 case LibFunc_pow: 3197 case LibFunc_powf: 3198 case LibFunc_powl: 3199 return Intrinsic::pow; 3200 case LibFunc_sqrt: 3201 case LibFunc_sqrtf: 3202 case LibFunc_sqrtl: 3203 return Intrinsic::sqrt; 3204 } 3205 3206 return Intrinsic::not_intrinsic; 3207 } 3208 3209 /// Return true if we can prove that the specified FP value is never equal to 3210 /// -0.0. 3211 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3212 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3213 /// the same as +0.0 in floating-point ops. 3214 /// 3215 /// NOTE: this function will need to be revisited when we support non-default 3216 /// rounding modes! 3217 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3218 unsigned Depth) { 3219 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3220 return !CFP->getValueAPF().isNegZero(); 3221 3222 if (Depth == MaxAnalysisRecursionDepth) 3223 return false; 3224 3225 auto *Op = dyn_cast<Operator>(V); 3226 if (!Op) 3227 return false; 3228 3229 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3230 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3231 return true; 3232 3233 // sitofp and uitofp turn into +0.0 for zero. 3234 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3235 return true; 3236 3237 if (auto *Call = dyn_cast<CallInst>(Op)) { 3238 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3239 switch (IID) { 3240 default: 3241 break; 3242 // sqrt(-0.0) = -0.0, no other negative results are possible. 3243 case Intrinsic::sqrt: 3244 case Intrinsic::canonicalize: 3245 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3246 // fabs(x) != -0.0 3247 case Intrinsic::fabs: 3248 return true; 3249 } 3250 } 3251 3252 return false; 3253 } 3254 3255 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3256 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3257 /// bit despite comparing equal. 3258 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3259 const TargetLibraryInfo *TLI, 3260 bool SignBitOnly, 3261 unsigned Depth) { 3262 // TODO: This function does not do the right thing when SignBitOnly is true 3263 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3264 // which flips the sign bits of NaNs. See 3265 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3266 3267 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3268 return !CFP->getValueAPF().isNegative() || 3269 (!SignBitOnly && CFP->getValueAPF().isZero()); 3270 } 3271 3272 // Handle vector of constants. 3273 if (auto *CV = dyn_cast<Constant>(V)) { 3274 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3275 unsigned NumElts = CVFVTy->getNumElements(); 3276 for (unsigned i = 0; i != NumElts; ++i) { 3277 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3278 if (!CFP) 3279 return false; 3280 if (CFP->getValueAPF().isNegative() && 3281 (SignBitOnly || !CFP->getValueAPF().isZero())) 3282 return false; 3283 } 3284 3285 // All non-negative ConstantFPs. 3286 return true; 3287 } 3288 } 3289 3290 if (Depth == MaxAnalysisRecursionDepth) 3291 return false; 3292 3293 const Operator *I = dyn_cast<Operator>(V); 3294 if (!I) 3295 return false; 3296 3297 switch (I->getOpcode()) { 3298 default: 3299 break; 3300 // Unsigned integers are always nonnegative. 3301 case Instruction::UIToFP: 3302 return true; 3303 case Instruction::FMul: 3304 case Instruction::FDiv: 3305 // X * X is always non-negative or a NaN. 3306 // X / X is always exactly 1.0 or a NaN. 3307 if (I->getOperand(0) == I->getOperand(1) && 3308 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3309 return true; 3310 3311 LLVM_FALLTHROUGH; 3312 case Instruction::FAdd: 3313 case Instruction::FRem: 3314 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3315 Depth + 1) && 3316 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3317 Depth + 1); 3318 case Instruction::Select: 3319 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3320 Depth + 1) && 3321 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3322 Depth + 1); 3323 case Instruction::FPExt: 3324 case Instruction::FPTrunc: 3325 // Widening/narrowing never change sign. 3326 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3327 Depth + 1); 3328 case Instruction::ExtractElement: 3329 // Look through extract element. At the moment we keep this simple and skip 3330 // tracking the specific element. But at least we might find information 3331 // valid for all elements of the vector. 3332 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3333 Depth + 1); 3334 case Instruction::Call: 3335 const auto *CI = cast<CallInst>(I); 3336 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3337 switch (IID) { 3338 default: 3339 break; 3340 case Intrinsic::maxnum: { 3341 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3342 auto isPositiveNum = [&](Value *V) { 3343 if (SignBitOnly) { 3344 // With SignBitOnly, this is tricky because the result of 3345 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3346 // a constant strictly greater than 0.0. 3347 const APFloat *C; 3348 return match(V, m_APFloat(C)) && 3349 *C > APFloat::getZero(C->getSemantics()); 3350 } 3351 3352 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3353 // maxnum can't be ordered-less-than-zero. 3354 return isKnownNeverNaN(V, TLI) && 3355 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3356 }; 3357 3358 // TODO: This could be improved. We could also check that neither operand 3359 // has its sign bit set (and at least 1 is not-NAN?). 3360 return isPositiveNum(V0) || isPositiveNum(V1); 3361 } 3362 3363 case Intrinsic::maximum: 3364 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3365 Depth + 1) || 3366 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3367 Depth + 1); 3368 case Intrinsic::minnum: 3369 case Intrinsic::minimum: 3370 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3371 Depth + 1) && 3372 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3373 Depth + 1); 3374 case Intrinsic::exp: 3375 case Intrinsic::exp2: 3376 case Intrinsic::fabs: 3377 return true; 3378 3379 case Intrinsic::sqrt: 3380 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3381 if (!SignBitOnly) 3382 return true; 3383 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3384 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3385 3386 case Intrinsic::powi: 3387 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3388 // powi(x,n) is non-negative if n is even. 3389 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3390 return true; 3391 } 3392 // TODO: This is not correct. Given that exp is an integer, here are the 3393 // ways that pow can return a negative value: 3394 // 3395 // pow(x, exp) --> negative if exp is odd and x is negative. 3396 // pow(-0, exp) --> -inf if exp is negative odd. 3397 // pow(-0, exp) --> -0 if exp is positive odd. 3398 // pow(-inf, exp) --> -0 if exp is negative odd. 3399 // pow(-inf, exp) --> -inf if exp is positive odd. 3400 // 3401 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3402 // but we must return false if x == -0. Unfortunately we do not currently 3403 // have a way of expressing this constraint. See details in 3404 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3405 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3406 Depth + 1); 3407 3408 case Intrinsic::fma: 3409 case Intrinsic::fmuladd: 3410 // x*x+y is non-negative if y is non-negative. 3411 return I->getOperand(0) == I->getOperand(1) && 3412 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3413 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3414 Depth + 1); 3415 } 3416 break; 3417 } 3418 return false; 3419 } 3420 3421 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3422 const TargetLibraryInfo *TLI) { 3423 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3424 } 3425 3426 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3427 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3428 } 3429 3430 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3431 unsigned Depth) { 3432 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3433 3434 // If we're told that infinities won't happen, assume they won't. 3435 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3436 if (FPMathOp->hasNoInfs()) 3437 return true; 3438 3439 // Handle scalar constants. 3440 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3441 return !CFP->isInfinity(); 3442 3443 if (Depth == MaxAnalysisRecursionDepth) 3444 return false; 3445 3446 if (auto *Inst = dyn_cast<Instruction>(V)) { 3447 switch (Inst->getOpcode()) { 3448 case Instruction::Select: { 3449 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3450 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3451 } 3452 case Instruction::SIToFP: 3453 case Instruction::UIToFP: { 3454 // Get width of largest magnitude integer (remove a bit if signed). 3455 // This still works for a signed minimum value because the largest FP 3456 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3457 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3458 if (Inst->getOpcode() == Instruction::SIToFP) 3459 --IntSize; 3460 3461 // If the exponent of the largest finite FP value can hold the largest 3462 // integer, the result of the cast must be finite. 3463 Type *FPTy = Inst->getType()->getScalarType(); 3464 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3465 } 3466 default: 3467 break; 3468 } 3469 } 3470 3471 // try to handle fixed width vector constants 3472 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3473 if (VFVTy && isa<Constant>(V)) { 3474 // For vectors, verify that each element is not infinity. 3475 unsigned NumElts = VFVTy->getNumElements(); 3476 for (unsigned i = 0; i != NumElts; ++i) { 3477 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3478 if (!Elt) 3479 return false; 3480 if (isa<UndefValue>(Elt)) 3481 continue; 3482 auto *CElt = dyn_cast<ConstantFP>(Elt); 3483 if (!CElt || CElt->isInfinity()) 3484 return false; 3485 } 3486 // All elements were confirmed non-infinity or undefined. 3487 return true; 3488 } 3489 3490 // was not able to prove that V never contains infinity 3491 return false; 3492 } 3493 3494 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3495 unsigned Depth) { 3496 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3497 3498 // If we're told that NaNs won't happen, assume they won't. 3499 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3500 if (FPMathOp->hasNoNaNs()) 3501 return true; 3502 3503 // Handle scalar constants. 3504 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3505 return !CFP->isNaN(); 3506 3507 if (Depth == MaxAnalysisRecursionDepth) 3508 return false; 3509 3510 if (auto *Inst = dyn_cast<Instruction>(V)) { 3511 switch (Inst->getOpcode()) { 3512 case Instruction::FAdd: 3513 case Instruction::FSub: 3514 // Adding positive and negative infinity produces NaN. 3515 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3516 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3517 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3518 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3519 3520 case Instruction::FMul: 3521 // Zero multiplied with infinity produces NaN. 3522 // FIXME: If neither side can be zero fmul never produces NaN. 3523 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3524 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3525 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3526 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3527 3528 case Instruction::FDiv: 3529 case Instruction::FRem: 3530 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3531 return false; 3532 3533 case Instruction::Select: { 3534 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3535 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3536 } 3537 case Instruction::SIToFP: 3538 case Instruction::UIToFP: 3539 return true; 3540 case Instruction::FPTrunc: 3541 case Instruction::FPExt: 3542 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3543 default: 3544 break; 3545 } 3546 } 3547 3548 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3549 switch (II->getIntrinsicID()) { 3550 case Intrinsic::canonicalize: 3551 case Intrinsic::fabs: 3552 case Intrinsic::copysign: 3553 case Intrinsic::exp: 3554 case Intrinsic::exp2: 3555 case Intrinsic::floor: 3556 case Intrinsic::ceil: 3557 case Intrinsic::trunc: 3558 case Intrinsic::rint: 3559 case Intrinsic::nearbyint: 3560 case Intrinsic::round: 3561 case Intrinsic::roundeven: 3562 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3563 case Intrinsic::sqrt: 3564 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3565 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3566 case Intrinsic::minnum: 3567 case Intrinsic::maxnum: 3568 // If either operand is not NaN, the result is not NaN. 3569 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3570 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3571 default: 3572 return false; 3573 } 3574 } 3575 3576 // Try to handle fixed width vector constants 3577 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3578 if (VFVTy && isa<Constant>(V)) { 3579 // For vectors, verify that each element is not NaN. 3580 unsigned NumElts = VFVTy->getNumElements(); 3581 for (unsigned i = 0; i != NumElts; ++i) { 3582 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3583 if (!Elt) 3584 return false; 3585 if (isa<UndefValue>(Elt)) 3586 continue; 3587 auto *CElt = dyn_cast<ConstantFP>(Elt); 3588 if (!CElt || CElt->isNaN()) 3589 return false; 3590 } 3591 // All elements were confirmed not-NaN or undefined. 3592 return true; 3593 } 3594 3595 // Was not able to prove that V never contains NaN 3596 return false; 3597 } 3598 3599 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3600 3601 // All byte-wide stores are splatable, even of arbitrary variables. 3602 if (V->getType()->isIntegerTy(8)) 3603 return V; 3604 3605 LLVMContext &Ctx = V->getContext(); 3606 3607 // Undef don't care. 3608 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3609 if (isa<UndefValue>(V)) 3610 return UndefInt8; 3611 3612 // Return Undef for zero-sized type. 3613 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3614 return UndefInt8; 3615 3616 Constant *C = dyn_cast<Constant>(V); 3617 if (!C) { 3618 // Conceptually, we could handle things like: 3619 // %a = zext i8 %X to i16 3620 // %b = shl i16 %a, 8 3621 // %c = or i16 %a, %b 3622 // but until there is an example that actually needs this, it doesn't seem 3623 // worth worrying about. 3624 return nullptr; 3625 } 3626 3627 // Handle 'null' ConstantArrayZero etc. 3628 if (C->isNullValue()) 3629 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3630 3631 // Constant floating-point values can be handled as integer values if the 3632 // corresponding integer value is "byteable". An important case is 0.0. 3633 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3634 Type *Ty = nullptr; 3635 if (CFP->getType()->isHalfTy()) 3636 Ty = Type::getInt16Ty(Ctx); 3637 else if (CFP->getType()->isFloatTy()) 3638 Ty = Type::getInt32Ty(Ctx); 3639 else if (CFP->getType()->isDoubleTy()) 3640 Ty = Type::getInt64Ty(Ctx); 3641 // Don't handle long double formats, which have strange constraints. 3642 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3643 : nullptr; 3644 } 3645 3646 // We can handle constant integers that are multiple of 8 bits. 3647 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3648 if (CI->getBitWidth() % 8 == 0) { 3649 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3650 if (!CI->getValue().isSplat(8)) 3651 return nullptr; 3652 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3653 } 3654 } 3655 3656 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3657 if (CE->getOpcode() == Instruction::IntToPtr) { 3658 auto PS = DL.getPointerSizeInBits( 3659 cast<PointerType>(CE->getType())->getAddressSpace()); 3660 return isBytewiseValue( 3661 ConstantExpr::getIntegerCast(CE->getOperand(0), 3662 Type::getIntNTy(Ctx, PS), false), 3663 DL); 3664 } 3665 } 3666 3667 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3668 if (LHS == RHS) 3669 return LHS; 3670 if (!LHS || !RHS) 3671 return nullptr; 3672 if (LHS == UndefInt8) 3673 return RHS; 3674 if (RHS == UndefInt8) 3675 return LHS; 3676 return nullptr; 3677 }; 3678 3679 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3680 Value *Val = UndefInt8; 3681 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3682 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3683 return nullptr; 3684 return Val; 3685 } 3686 3687 if (isa<ConstantAggregate>(C)) { 3688 Value *Val = UndefInt8; 3689 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3690 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3691 return nullptr; 3692 return Val; 3693 } 3694 3695 // Don't try to handle the handful of other constants. 3696 return nullptr; 3697 } 3698 3699 // This is the recursive version of BuildSubAggregate. It takes a few different 3700 // arguments. Idxs is the index within the nested struct From that we are 3701 // looking at now (which is of type IndexedType). IdxSkip is the number of 3702 // indices from Idxs that should be left out when inserting into the resulting 3703 // struct. To is the result struct built so far, new insertvalue instructions 3704 // build on that. 3705 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3706 SmallVectorImpl<unsigned> &Idxs, 3707 unsigned IdxSkip, 3708 Instruction *InsertBefore) { 3709 StructType *STy = dyn_cast<StructType>(IndexedType); 3710 if (STy) { 3711 // Save the original To argument so we can modify it 3712 Value *OrigTo = To; 3713 // General case, the type indexed by Idxs is a struct 3714 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3715 // Process each struct element recursively 3716 Idxs.push_back(i); 3717 Value *PrevTo = To; 3718 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3719 InsertBefore); 3720 Idxs.pop_back(); 3721 if (!To) { 3722 // Couldn't find any inserted value for this index? Cleanup 3723 while (PrevTo != OrigTo) { 3724 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3725 PrevTo = Del->getAggregateOperand(); 3726 Del->eraseFromParent(); 3727 } 3728 // Stop processing elements 3729 break; 3730 } 3731 } 3732 // If we successfully found a value for each of our subaggregates 3733 if (To) 3734 return To; 3735 } 3736 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3737 // the struct's elements had a value that was inserted directly. In the latter 3738 // case, perhaps we can't determine each of the subelements individually, but 3739 // we might be able to find the complete struct somewhere. 3740 3741 // Find the value that is at that particular spot 3742 Value *V = FindInsertedValue(From, Idxs); 3743 3744 if (!V) 3745 return nullptr; 3746 3747 // Insert the value in the new (sub) aggregate 3748 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3749 "tmp", InsertBefore); 3750 } 3751 3752 // This helper takes a nested struct and extracts a part of it (which is again a 3753 // struct) into a new value. For example, given the struct: 3754 // { a, { b, { c, d }, e } } 3755 // and the indices "1, 1" this returns 3756 // { c, d }. 3757 // 3758 // It does this by inserting an insertvalue for each element in the resulting 3759 // struct, as opposed to just inserting a single struct. This will only work if 3760 // each of the elements of the substruct are known (ie, inserted into From by an 3761 // insertvalue instruction somewhere). 3762 // 3763 // All inserted insertvalue instructions are inserted before InsertBefore 3764 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3765 Instruction *InsertBefore) { 3766 assert(InsertBefore && "Must have someplace to insert!"); 3767 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3768 idx_range); 3769 Value *To = UndefValue::get(IndexedType); 3770 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3771 unsigned IdxSkip = Idxs.size(); 3772 3773 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3774 } 3775 3776 /// Given an aggregate and a sequence of indices, see if the scalar value 3777 /// indexed is already around as a register, for example if it was inserted 3778 /// directly into the aggregate. 3779 /// 3780 /// If InsertBefore is not null, this function will duplicate (modified) 3781 /// insertvalues when a part of a nested struct is extracted. 3782 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3783 Instruction *InsertBefore) { 3784 // Nothing to index? Just return V then (this is useful at the end of our 3785 // recursion). 3786 if (idx_range.empty()) 3787 return V; 3788 // We have indices, so V should have an indexable type. 3789 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3790 "Not looking at a struct or array?"); 3791 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3792 "Invalid indices for type?"); 3793 3794 if (Constant *C = dyn_cast<Constant>(V)) { 3795 C = C->getAggregateElement(idx_range[0]); 3796 if (!C) return nullptr; 3797 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3798 } 3799 3800 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3801 // Loop the indices for the insertvalue instruction in parallel with the 3802 // requested indices 3803 const unsigned *req_idx = idx_range.begin(); 3804 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3805 i != e; ++i, ++req_idx) { 3806 if (req_idx == idx_range.end()) { 3807 // We can't handle this without inserting insertvalues 3808 if (!InsertBefore) 3809 return nullptr; 3810 3811 // The requested index identifies a part of a nested aggregate. Handle 3812 // this specially. For example, 3813 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3814 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3815 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3816 // This can be changed into 3817 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3818 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3819 // which allows the unused 0,0 element from the nested struct to be 3820 // removed. 3821 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3822 InsertBefore); 3823 } 3824 3825 // This insert value inserts something else than what we are looking for. 3826 // See if the (aggregate) value inserted into has the value we are 3827 // looking for, then. 3828 if (*req_idx != *i) 3829 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3830 InsertBefore); 3831 } 3832 // If we end up here, the indices of the insertvalue match with those 3833 // requested (though possibly only partially). Now we recursively look at 3834 // the inserted value, passing any remaining indices. 3835 return FindInsertedValue(I->getInsertedValueOperand(), 3836 makeArrayRef(req_idx, idx_range.end()), 3837 InsertBefore); 3838 } 3839 3840 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3841 // If we're extracting a value from an aggregate that was extracted from 3842 // something else, we can extract from that something else directly instead. 3843 // However, we will need to chain I's indices with the requested indices. 3844 3845 // Calculate the number of indices required 3846 unsigned size = I->getNumIndices() + idx_range.size(); 3847 // Allocate some space to put the new indices in 3848 SmallVector<unsigned, 5> Idxs; 3849 Idxs.reserve(size); 3850 // Add indices from the extract value instruction 3851 Idxs.append(I->idx_begin(), I->idx_end()); 3852 3853 // Add requested indices 3854 Idxs.append(idx_range.begin(), idx_range.end()); 3855 3856 assert(Idxs.size() == size 3857 && "Number of indices added not correct?"); 3858 3859 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3860 } 3861 // Otherwise, we don't know (such as, extracting from a function return value 3862 // or load instruction) 3863 return nullptr; 3864 } 3865 3866 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3867 unsigned CharSize) { 3868 // Make sure the GEP has exactly three arguments. 3869 if (GEP->getNumOperands() != 3) 3870 return false; 3871 3872 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3873 // CharSize. 3874 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3875 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3876 return false; 3877 3878 // Check to make sure that the first operand of the GEP is an integer and 3879 // has value 0 so that we are sure we're indexing into the initializer. 3880 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3881 if (!FirstIdx || !FirstIdx->isZero()) 3882 return false; 3883 3884 return true; 3885 } 3886 3887 bool llvm::getConstantDataArrayInfo(const Value *V, 3888 ConstantDataArraySlice &Slice, 3889 unsigned ElementSize, uint64_t Offset) { 3890 assert(V); 3891 3892 // Look through bitcast instructions and geps. 3893 V = V->stripPointerCasts(); 3894 3895 // If the value is a GEP instruction or constant expression, treat it as an 3896 // offset. 3897 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3898 // The GEP operator should be based on a pointer to string constant, and is 3899 // indexing into the string constant. 3900 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3901 return false; 3902 3903 // If the second index isn't a ConstantInt, then this is a variable index 3904 // into the array. If this occurs, we can't say anything meaningful about 3905 // the string. 3906 uint64_t StartIdx = 0; 3907 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3908 StartIdx = CI->getZExtValue(); 3909 else 3910 return false; 3911 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3912 StartIdx + Offset); 3913 } 3914 3915 // The GEP instruction, constant or instruction, must reference a global 3916 // variable that is a constant and is initialized. The referenced constant 3917 // initializer is the array that we'll use for optimization. 3918 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3919 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3920 return false; 3921 3922 const ConstantDataArray *Array; 3923 ArrayType *ArrayTy; 3924 if (GV->getInitializer()->isNullValue()) { 3925 Type *GVTy = GV->getValueType(); 3926 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3927 // A zeroinitializer for the array; there is no ConstantDataArray. 3928 Array = nullptr; 3929 } else { 3930 const DataLayout &DL = GV->getParent()->getDataLayout(); 3931 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3932 uint64_t Length = SizeInBytes / (ElementSize / 8); 3933 if (Length <= Offset) 3934 return false; 3935 3936 Slice.Array = nullptr; 3937 Slice.Offset = 0; 3938 Slice.Length = Length - Offset; 3939 return true; 3940 } 3941 } else { 3942 // This must be a ConstantDataArray. 3943 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3944 if (!Array) 3945 return false; 3946 ArrayTy = Array->getType(); 3947 } 3948 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3949 return false; 3950 3951 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3952 if (Offset > NumElts) 3953 return false; 3954 3955 Slice.Array = Array; 3956 Slice.Offset = Offset; 3957 Slice.Length = NumElts - Offset; 3958 return true; 3959 } 3960 3961 /// This function computes the length of a null-terminated C string pointed to 3962 /// by V. If successful, it returns true and returns the string in Str. 3963 /// If unsuccessful, it returns false. 3964 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3965 uint64_t Offset, bool TrimAtNul) { 3966 ConstantDataArraySlice Slice; 3967 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3968 return false; 3969 3970 if (Slice.Array == nullptr) { 3971 if (TrimAtNul) { 3972 Str = StringRef(); 3973 return true; 3974 } 3975 if (Slice.Length == 1) { 3976 Str = StringRef("", 1); 3977 return true; 3978 } 3979 // We cannot instantiate a StringRef as we do not have an appropriate string 3980 // of 0s at hand. 3981 return false; 3982 } 3983 3984 // Start out with the entire array in the StringRef. 3985 Str = Slice.Array->getAsString(); 3986 // Skip over 'offset' bytes. 3987 Str = Str.substr(Slice.Offset); 3988 3989 if (TrimAtNul) { 3990 // Trim off the \0 and anything after it. If the array is not nul 3991 // terminated, we just return the whole end of string. The client may know 3992 // some other way that the string is length-bound. 3993 Str = Str.substr(0, Str.find('\0')); 3994 } 3995 return true; 3996 } 3997 3998 // These next two are very similar to the above, but also look through PHI 3999 // nodes. 4000 // TODO: See if we can integrate these two together. 4001 4002 /// If we can compute the length of the string pointed to by 4003 /// the specified pointer, return 'len+1'. If we can't, return 0. 4004 static uint64_t GetStringLengthH(const Value *V, 4005 SmallPtrSetImpl<const PHINode*> &PHIs, 4006 unsigned CharSize) { 4007 // Look through noop bitcast instructions. 4008 V = V->stripPointerCasts(); 4009 4010 // If this is a PHI node, there are two cases: either we have already seen it 4011 // or we haven't. 4012 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4013 if (!PHIs.insert(PN).second) 4014 return ~0ULL; // already in the set. 4015 4016 // If it was new, see if all the input strings are the same length. 4017 uint64_t LenSoFar = ~0ULL; 4018 for (Value *IncValue : PN->incoming_values()) { 4019 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4020 if (Len == 0) return 0; // Unknown length -> unknown. 4021 4022 if (Len == ~0ULL) continue; 4023 4024 if (Len != LenSoFar && LenSoFar != ~0ULL) 4025 return 0; // Disagree -> unknown. 4026 LenSoFar = Len; 4027 } 4028 4029 // Success, all agree. 4030 return LenSoFar; 4031 } 4032 4033 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4034 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4035 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4036 if (Len1 == 0) return 0; 4037 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4038 if (Len2 == 0) return 0; 4039 if (Len1 == ~0ULL) return Len2; 4040 if (Len2 == ~0ULL) return Len1; 4041 if (Len1 != Len2) return 0; 4042 return Len1; 4043 } 4044 4045 // Otherwise, see if we can read the string. 4046 ConstantDataArraySlice Slice; 4047 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4048 return 0; 4049 4050 if (Slice.Array == nullptr) 4051 return 1; 4052 4053 // Search for nul characters 4054 unsigned NullIndex = 0; 4055 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4056 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4057 break; 4058 } 4059 4060 return NullIndex + 1; 4061 } 4062 4063 /// If we can compute the length of the string pointed to by 4064 /// the specified pointer, return 'len+1'. If we can't, return 0. 4065 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4066 if (!V->getType()->isPointerTy()) 4067 return 0; 4068 4069 SmallPtrSet<const PHINode*, 32> PHIs; 4070 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4071 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4072 // an empty string as a length. 4073 return Len == ~0ULL ? 1 : Len; 4074 } 4075 4076 const Value * 4077 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4078 bool MustPreserveNullness) { 4079 assert(Call && 4080 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4081 if (const Value *RV = Call->getReturnedArgOperand()) 4082 return RV; 4083 // This can be used only as a aliasing property. 4084 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4085 Call, MustPreserveNullness)) 4086 return Call->getArgOperand(0); 4087 return nullptr; 4088 } 4089 4090 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4091 const CallBase *Call, bool MustPreserveNullness) { 4092 switch (Call->getIntrinsicID()) { 4093 case Intrinsic::launder_invariant_group: 4094 case Intrinsic::strip_invariant_group: 4095 case Intrinsic::aarch64_irg: 4096 case Intrinsic::aarch64_tagp: 4097 return true; 4098 case Intrinsic::ptrmask: 4099 return !MustPreserveNullness; 4100 default: 4101 return false; 4102 } 4103 } 4104 4105 /// \p PN defines a loop-variant pointer to an object. Check if the 4106 /// previous iteration of the loop was referring to the same object as \p PN. 4107 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4108 const LoopInfo *LI) { 4109 // Find the loop-defined value. 4110 Loop *L = LI->getLoopFor(PN->getParent()); 4111 if (PN->getNumIncomingValues() != 2) 4112 return true; 4113 4114 // Find the value from previous iteration. 4115 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4116 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4117 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4118 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4119 return true; 4120 4121 // If a new pointer is loaded in the loop, the pointer references a different 4122 // object in every iteration. E.g.: 4123 // for (i) 4124 // int *p = a[i]; 4125 // ... 4126 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4127 if (!L->isLoopInvariant(Load->getPointerOperand())) 4128 return false; 4129 return true; 4130 } 4131 4132 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4133 if (!V->getType()->isPointerTy()) 4134 return V; 4135 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4136 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4137 V = GEP->getPointerOperand(); 4138 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4139 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4140 V = cast<Operator>(V)->getOperand(0); 4141 if (!V->getType()->isPointerTy()) 4142 return V; 4143 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4144 if (GA->isInterposable()) 4145 return V; 4146 V = GA->getAliasee(); 4147 } else { 4148 if (auto *PHI = dyn_cast<PHINode>(V)) { 4149 // Look through single-arg phi nodes created by LCSSA. 4150 if (PHI->getNumIncomingValues() == 1) { 4151 V = PHI->getIncomingValue(0); 4152 continue; 4153 } 4154 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4155 // CaptureTracking can know about special capturing properties of some 4156 // intrinsics like launder.invariant.group, that can't be expressed with 4157 // the attributes, but have properties like returning aliasing pointer. 4158 // Because some analysis may assume that nocaptured pointer is not 4159 // returned from some special intrinsic (because function would have to 4160 // be marked with returns attribute), it is crucial to use this function 4161 // because it should be in sync with CaptureTracking. Not using it may 4162 // cause weird miscompilations where 2 aliasing pointers are assumed to 4163 // noalias. 4164 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4165 V = RP; 4166 continue; 4167 } 4168 } 4169 4170 return V; 4171 } 4172 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4173 } 4174 return V; 4175 } 4176 4177 void llvm::getUnderlyingObjects(const Value *V, 4178 SmallVectorImpl<const Value *> &Objects, 4179 LoopInfo *LI, unsigned MaxLookup) { 4180 SmallPtrSet<const Value *, 4> Visited; 4181 SmallVector<const Value *, 4> Worklist; 4182 Worklist.push_back(V); 4183 do { 4184 const Value *P = Worklist.pop_back_val(); 4185 P = getUnderlyingObject(P, MaxLookup); 4186 4187 if (!Visited.insert(P).second) 4188 continue; 4189 4190 if (auto *SI = dyn_cast<SelectInst>(P)) { 4191 Worklist.push_back(SI->getTrueValue()); 4192 Worklist.push_back(SI->getFalseValue()); 4193 continue; 4194 } 4195 4196 if (auto *PN = dyn_cast<PHINode>(P)) { 4197 // If this PHI changes the underlying object in every iteration of the 4198 // loop, don't look through it. Consider: 4199 // int **A; 4200 // for (i) { 4201 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4202 // Curr = A[i]; 4203 // *Prev, *Curr; 4204 // 4205 // Prev is tracking Curr one iteration behind so they refer to different 4206 // underlying objects. 4207 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4208 isSameUnderlyingObjectInLoop(PN, LI)) 4209 for (Value *IncValue : PN->incoming_values()) 4210 Worklist.push_back(IncValue); 4211 continue; 4212 } 4213 4214 Objects.push_back(P); 4215 } while (!Worklist.empty()); 4216 } 4217 4218 /// This is the function that does the work of looking through basic 4219 /// ptrtoint+arithmetic+inttoptr sequences. 4220 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4221 do { 4222 if (const Operator *U = dyn_cast<Operator>(V)) { 4223 // If we find a ptrtoint, we can transfer control back to the 4224 // regular getUnderlyingObjectFromInt. 4225 if (U->getOpcode() == Instruction::PtrToInt) 4226 return U->getOperand(0); 4227 // If we find an add of a constant, a multiplied value, or a phi, it's 4228 // likely that the other operand will lead us to the base 4229 // object. We don't have to worry about the case where the 4230 // object address is somehow being computed by the multiply, 4231 // because our callers only care when the result is an 4232 // identifiable object. 4233 if (U->getOpcode() != Instruction::Add || 4234 (!isa<ConstantInt>(U->getOperand(1)) && 4235 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4236 !isa<PHINode>(U->getOperand(1)))) 4237 return V; 4238 V = U->getOperand(0); 4239 } else { 4240 return V; 4241 } 4242 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4243 } while (true); 4244 } 4245 4246 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4247 /// ptrtoint+arithmetic+inttoptr sequences. 4248 /// It returns false if unidentified object is found in getUnderlyingObjects. 4249 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4250 SmallVectorImpl<Value *> &Objects) { 4251 SmallPtrSet<const Value *, 16> Visited; 4252 SmallVector<const Value *, 4> Working(1, V); 4253 do { 4254 V = Working.pop_back_val(); 4255 4256 SmallVector<const Value *, 4> Objs; 4257 getUnderlyingObjects(V, Objs); 4258 4259 for (const Value *V : Objs) { 4260 if (!Visited.insert(V).second) 4261 continue; 4262 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4263 const Value *O = 4264 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4265 if (O->getType()->isPointerTy()) { 4266 Working.push_back(O); 4267 continue; 4268 } 4269 } 4270 // If getUnderlyingObjects fails to find an identifiable object, 4271 // getUnderlyingObjectsForCodeGen also fails for safety. 4272 if (!isIdentifiedObject(V)) { 4273 Objects.clear(); 4274 return false; 4275 } 4276 Objects.push_back(const_cast<Value *>(V)); 4277 } 4278 } while (!Working.empty()); 4279 return true; 4280 } 4281 4282 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4283 AllocaInst *Result = nullptr; 4284 SmallPtrSet<Value *, 4> Visited; 4285 SmallVector<Value *, 4> Worklist; 4286 4287 auto AddWork = [&](Value *V) { 4288 if (Visited.insert(V).second) 4289 Worklist.push_back(V); 4290 }; 4291 4292 AddWork(V); 4293 do { 4294 V = Worklist.pop_back_val(); 4295 assert(Visited.count(V)); 4296 4297 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4298 if (Result && Result != AI) 4299 return nullptr; 4300 Result = AI; 4301 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4302 AddWork(CI->getOperand(0)); 4303 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4304 for (Value *IncValue : PN->incoming_values()) 4305 AddWork(IncValue); 4306 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4307 AddWork(SI->getTrueValue()); 4308 AddWork(SI->getFalseValue()); 4309 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4310 if (OffsetZero && !GEP->hasAllZeroIndices()) 4311 return nullptr; 4312 AddWork(GEP->getPointerOperand()); 4313 } else { 4314 return nullptr; 4315 } 4316 } while (!Worklist.empty()); 4317 4318 return Result; 4319 } 4320 4321 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4322 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4323 for (const User *U : V->users()) { 4324 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4325 if (!II) 4326 return false; 4327 4328 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4329 continue; 4330 4331 if (AllowDroppable && II->isDroppable()) 4332 continue; 4333 4334 return false; 4335 } 4336 return true; 4337 } 4338 4339 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4340 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4341 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4342 } 4343 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4344 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4345 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4346 } 4347 4348 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4349 if (!LI.isUnordered()) 4350 return true; 4351 const Function &F = *LI.getFunction(); 4352 // Speculative load may create a race that did not exist in the source. 4353 return F.hasFnAttribute(Attribute::SanitizeThread) || 4354 // Speculative load may load data from dirty regions. 4355 F.hasFnAttribute(Attribute::SanitizeAddress) || 4356 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4357 } 4358 4359 4360 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4361 const Instruction *CtxI, 4362 const DominatorTree *DT) { 4363 const Operator *Inst = dyn_cast<Operator>(V); 4364 if (!Inst) 4365 return false; 4366 4367 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4368 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4369 if (C->canTrap()) 4370 return false; 4371 4372 switch (Inst->getOpcode()) { 4373 default: 4374 return true; 4375 case Instruction::UDiv: 4376 case Instruction::URem: { 4377 // x / y is undefined if y == 0. 4378 const APInt *V; 4379 if (match(Inst->getOperand(1), m_APInt(V))) 4380 return *V != 0; 4381 return false; 4382 } 4383 case Instruction::SDiv: 4384 case Instruction::SRem: { 4385 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4386 const APInt *Numerator, *Denominator; 4387 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4388 return false; 4389 // We cannot hoist this division if the denominator is 0. 4390 if (*Denominator == 0) 4391 return false; 4392 // It's safe to hoist if the denominator is not 0 or -1. 4393 if (*Denominator != -1) 4394 return true; 4395 // At this point we know that the denominator is -1. It is safe to hoist as 4396 // long we know that the numerator is not INT_MIN. 4397 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4398 return !Numerator->isMinSignedValue(); 4399 // The numerator *might* be MinSignedValue. 4400 return false; 4401 } 4402 case Instruction::Load: { 4403 const LoadInst *LI = cast<LoadInst>(Inst); 4404 if (mustSuppressSpeculation(*LI)) 4405 return false; 4406 const DataLayout &DL = LI->getModule()->getDataLayout(); 4407 return isDereferenceableAndAlignedPointer( 4408 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4409 DL, CtxI, DT); 4410 } 4411 case Instruction::Call: { 4412 auto *CI = cast<const CallInst>(Inst); 4413 const Function *Callee = CI->getCalledFunction(); 4414 4415 // The called function could have undefined behavior or side-effects, even 4416 // if marked readnone nounwind. 4417 return Callee && Callee->isSpeculatable(); 4418 } 4419 case Instruction::VAArg: 4420 case Instruction::Alloca: 4421 case Instruction::Invoke: 4422 case Instruction::CallBr: 4423 case Instruction::PHI: 4424 case Instruction::Store: 4425 case Instruction::Ret: 4426 case Instruction::Br: 4427 case Instruction::IndirectBr: 4428 case Instruction::Switch: 4429 case Instruction::Unreachable: 4430 case Instruction::Fence: 4431 case Instruction::AtomicRMW: 4432 case Instruction::AtomicCmpXchg: 4433 case Instruction::LandingPad: 4434 case Instruction::Resume: 4435 case Instruction::CatchSwitch: 4436 case Instruction::CatchPad: 4437 case Instruction::CatchRet: 4438 case Instruction::CleanupPad: 4439 case Instruction::CleanupRet: 4440 return false; // Misc instructions which have effects 4441 } 4442 } 4443 4444 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4445 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4446 } 4447 4448 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4449 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4450 switch (OR) { 4451 case ConstantRange::OverflowResult::MayOverflow: 4452 return OverflowResult::MayOverflow; 4453 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4454 return OverflowResult::AlwaysOverflowsLow; 4455 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4456 return OverflowResult::AlwaysOverflowsHigh; 4457 case ConstantRange::OverflowResult::NeverOverflows: 4458 return OverflowResult::NeverOverflows; 4459 } 4460 llvm_unreachable("Unknown OverflowResult"); 4461 } 4462 4463 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4464 static ConstantRange computeConstantRangeIncludingKnownBits( 4465 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4466 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4467 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4468 KnownBits Known = computeKnownBits( 4469 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4470 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4471 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4472 ConstantRange::PreferredRangeType RangeType = 4473 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4474 return CR1.intersectWith(CR2, RangeType); 4475 } 4476 4477 OverflowResult llvm::computeOverflowForUnsignedMul( 4478 const Value *LHS, const Value *RHS, const DataLayout &DL, 4479 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4480 bool UseInstrInfo) { 4481 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4482 nullptr, UseInstrInfo); 4483 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4484 nullptr, UseInstrInfo); 4485 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4486 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4487 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4488 } 4489 4490 OverflowResult 4491 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4492 const DataLayout &DL, AssumptionCache *AC, 4493 const Instruction *CxtI, 4494 const DominatorTree *DT, bool UseInstrInfo) { 4495 // Multiplying n * m significant bits yields a result of n + m significant 4496 // bits. If the total number of significant bits does not exceed the 4497 // result bit width (minus 1), there is no overflow. 4498 // This means if we have enough leading sign bits in the operands 4499 // we can guarantee that the result does not overflow. 4500 // Ref: "Hacker's Delight" by Henry Warren 4501 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4502 4503 // Note that underestimating the number of sign bits gives a more 4504 // conservative answer. 4505 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4506 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4507 4508 // First handle the easy case: if we have enough sign bits there's 4509 // definitely no overflow. 4510 if (SignBits > BitWidth + 1) 4511 return OverflowResult::NeverOverflows; 4512 4513 // There are two ambiguous cases where there can be no overflow: 4514 // SignBits == BitWidth + 1 and 4515 // SignBits == BitWidth 4516 // The second case is difficult to check, therefore we only handle the 4517 // first case. 4518 if (SignBits == BitWidth + 1) { 4519 // It overflows only when both arguments are negative and the true 4520 // product is exactly the minimum negative number. 4521 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4522 // For simplicity we just check if at least one side is not negative. 4523 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4524 nullptr, UseInstrInfo); 4525 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4526 nullptr, UseInstrInfo); 4527 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4528 return OverflowResult::NeverOverflows; 4529 } 4530 return OverflowResult::MayOverflow; 4531 } 4532 4533 OverflowResult llvm::computeOverflowForUnsignedAdd( 4534 const Value *LHS, const Value *RHS, const DataLayout &DL, 4535 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4536 bool UseInstrInfo) { 4537 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4538 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4539 nullptr, UseInstrInfo); 4540 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4541 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4542 nullptr, UseInstrInfo); 4543 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4544 } 4545 4546 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4547 const Value *RHS, 4548 const AddOperator *Add, 4549 const DataLayout &DL, 4550 AssumptionCache *AC, 4551 const Instruction *CxtI, 4552 const DominatorTree *DT) { 4553 if (Add && Add->hasNoSignedWrap()) { 4554 return OverflowResult::NeverOverflows; 4555 } 4556 4557 // If LHS and RHS each have at least two sign bits, the addition will look 4558 // like 4559 // 4560 // XX..... + 4561 // YY..... 4562 // 4563 // If the carry into the most significant position is 0, X and Y can't both 4564 // be 1 and therefore the carry out of the addition is also 0. 4565 // 4566 // If the carry into the most significant position is 1, X and Y can't both 4567 // be 0 and therefore the carry out of the addition is also 1. 4568 // 4569 // Since the carry into the most significant position is always equal to 4570 // the carry out of the addition, there is no signed overflow. 4571 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4572 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4573 return OverflowResult::NeverOverflows; 4574 4575 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4576 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4577 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4578 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4579 OverflowResult OR = 4580 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4581 if (OR != OverflowResult::MayOverflow) 4582 return OR; 4583 4584 // The remaining code needs Add to be available. Early returns if not so. 4585 if (!Add) 4586 return OverflowResult::MayOverflow; 4587 4588 // If the sign of Add is the same as at least one of the operands, this add 4589 // CANNOT overflow. If this can be determined from the known bits of the 4590 // operands the above signedAddMayOverflow() check will have already done so. 4591 // The only other way to improve on the known bits is from an assumption, so 4592 // call computeKnownBitsFromAssume() directly. 4593 bool LHSOrRHSKnownNonNegative = 4594 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4595 bool LHSOrRHSKnownNegative = 4596 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4597 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4598 KnownBits AddKnown(LHSRange.getBitWidth()); 4599 computeKnownBitsFromAssume( 4600 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4601 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4602 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4603 return OverflowResult::NeverOverflows; 4604 } 4605 4606 return OverflowResult::MayOverflow; 4607 } 4608 4609 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4610 const Value *RHS, 4611 const DataLayout &DL, 4612 AssumptionCache *AC, 4613 const Instruction *CxtI, 4614 const DominatorTree *DT) { 4615 // Checking for conditions implied by dominating conditions may be expensive. 4616 // Limit it to usub_with_overflow calls for now. 4617 if (match(CxtI, 4618 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4619 if (auto C = 4620 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4621 if (*C) 4622 return OverflowResult::NeverOverflows; 4623 return OverflowResult::AlwaysOverflowsLow; 4624 } 4625 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4626 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4627 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4628 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4629 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4630 } 4631 4632 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4633 const Value *RHS, 4634 const DataLayout &DL, 4635 AssumptionCache *AC, 4636 const Instruction *CxtI, 4637 const DominatorTree *DT) { 4638 // If LHS and RHS each have at least two sign bits, the subtraction 4639 // cannot overflow. 4640 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4641 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4642 return OverflowResult::NeverOverflows; 4643 4644 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4645 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4646 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4647 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4648 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4649 } 4650 4651 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4652 const DominatorTree &DT) { 4653 SmallVector<const BranchInst *, 2> GuardingBranches; 4654 SmallVector<const ExtractValueInst *, 2> Results; 4655 4656 for (const User *U : WO->users()) { 4657 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4658 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4659 4660 if (EVI->getIndices()[0] == 0) 4661 Results.push_back(EVI); 4662 else { 4663 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4664 4665 for (const auto *U : EVI->users()) 4666 if (const auto *B = dyn_cast<BranchInst>(U)) { 4667 assert(B->isConditional() && "How else is it using an i1?"); 4668 GuardingBranches.push_back(B); 4669 } 4670 } 4671 } else { 4672 // We are using the aggregate directly in a way we don't want to analyze 4673 // here (storing it to a global, say). 4674 return false; 4675 } 4676 } 4677 4678 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4679 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4680 if (!NoWrapEdge.isSingleEdge()) 4681 return false; 4682 4683 // Check if all users of the add are provably no-wrap. 4684 for (const auto *Result : Results) { 4685 // If the extractvalue itself is not executed on overflow, the we don't 4686 // need to check each use separately, since domination is transitive. 4687 if (DT.dominates(NoWrapEdge, Result->getParent())) 4688 continue; 4689 4690 for (auto &RU : Result->uses()) 4691 if (!DT.dominates(NoWrapEdge, RU)) 4692 return false; 4693 } 4694 4695 return true; 4696 }; 4697 4698 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4699 } 4700 4701 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4702 // See whether I has flags that may create poison 4703 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4704 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4705 return true; 4706 } 4707 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4708 if (ExactOp->isExact()) 4709 return true; 4710 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4711 auto FMF = FP->getFastMathFlags(); 4712 if (FMF.noNaNs() || FMF.noInfs()) 4713 return true; 4714 } 4715 4716 unsigned Opcode = Op->getOpcode(); 4717 4718 // Check whether opcode is a poison/undef-generating operation 4719 switch (Opcode) { 4720 case Instruction::Shl: 4721 case Instruction::AShr: 4722 case Instruction::LShr: { 4723 // Shifts return poison if shiftwidth is larger than the bitwidth. 4724 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4725 SmallVector<Constant *, 4> ShiftAmounts; 4726 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4727 unsigned NumElts = FVTy->getNumElements(); 4728 for (unsigned i = 0; i < NumElts; ++i) 4729 ShiftAmounts.push_back(C->getAggregateElement(i)); 4730 } else if (isa<ScalableVectorType>(C->getType())) 4731 return true; // Can't tell, just return true to be safe 4732 else 4733 ShiftAmounts.push_back(C); 4734 4735 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4736 auto *CI = dyn_cast<ConstantInt>(C); 4737 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4738 }); 4739 return !Safe; 4740 } 4741 return true; 4742 } 4743 case Instruction::FPToSI: 4744 case Instruction::FPToUI: 4745 // fptosi/ui yields poison if the resulting value does not fit in the 4746 // destination type. 4747 return true; 4748 case Instruction::Call: 4749 case Instruction::CallBr: 4750 case Instruction::Invoke: { 4751 const auto *CB = cast<CallBase>(Op); 4752 return !CB->hasRetAttr(Attribute::NoUndef); 4753 } 4754 case Instruction::InsertElement: 4755 case Instruction::ExtractElement: { 4756 // If index exceeds the length of the vector, it returns poison 4757 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4758 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4759 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4760 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4761 return true; 4762 return false; 4763 } 4764 case Instruction::ShuffleVector: { 4765 // shufflevector may return undef. 4766 if (PoisonOnly) 4767 return false; 4768 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4769 ? cast<ConstantExpr>(Op)->getShuffleMask() 4770 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4771 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4772 } 4773 case Instruction::FNeg: 4774 case Instruction::PHI: 4775 case Instruction::Select: 4776 case Instruction::URem: 4777 case Instruction::SRem: 4778 case Instruction::ExtractValue: 4779 case Instruction::InsertValue: 4780 case Instruction::Freeze: 4781 case Instruction::ICmp: 4782 case Instruction::FCmp: 4783 return false; 4784 case Instruction::GetElementPtr: { 4785 const auto *GEP = cast<GEPOperator>(Op); 4786 return GEP->isInBounds(); 4787 } 4788 default: { 4789 const auto *CE = dyn_cast<ConstantExpr>(Op); 4790 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4791 return false; 4792 else if (Instruction::isBinaryOp(Opcode)) 4793 return false; 4794 // Be conservative and return true. 4795 return true; 4796 } 4797 } 4798 } 4799 4800 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4801 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4802 } 4803 4804 bool llvm::canCreatePoison(const Operator *Op) { 4805 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4806 } 4807 4808 static bool programUndefinedIfUndefOrPoison(const Value *V, 4809 bool PoisonOnly); 4810 4811 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4812 AssumptionCache *AC, 4813 const Instruction *CtxI, 4814 const DominatorTree *DT, 4815 unsigned Depth, bool PoisonOnly) { 4816 if (Depth >= MaxAnalysisRecursionDepth) 4817 return false; 4818 4819 if (isa<MetadataAsValue>(V)) 4820 return false; 4821 4822 if (const auto *A = dyn_cast<Argument>(V)) { 4823 if (A->hasAttribute(Attribute::NoUndef)) 4824 return true; 4825 } 4826 4827 if (auto *C = dyn_cast<Constant>(V)) { 4828 if (isa<UndefValue>(C)) 4829 return PoisonOnly; 4830 4831 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4832 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4833 return true; 4834 4835 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4836 return (PoisonOnly || !C->containsUndefElement()) && 4837 !C->containsConstantExpression(); 4838 } 4839 4840 // Strip cast operations from a pointer value. 4841 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4842 // inbounds with zero offset. To guarantee that the result isn't poison, the 4843 // stripped pointer is checked as it has to be pointing into an allocated 4844 // object or be null `null` to ensure `inbounds` getelement pointers with a 4845 // zero offset could not produce poison. 4846 // It can strip off addrspacecast that do not change bit representation as 4847 // well. We believe that such addrspacecast is equivalent to no-op. 4848 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4849 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4850 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4851 return true; 4852 4853 auto OpCheck = [&](const Value *V) { 4854 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4855 PoisonOnly); 4856 }; 4857 4858 if (auto *Opr = dyn_cast<Operator>(V)) { 4859 // If the value is a freeze instruction, then it can never 4860 // be undef or poison. 4861 if (isa<FreezeInst>(V)) 4862 return true; 4863 4864 if (const auto *CB = dyn_cast<CallBase>(V)) { 4865 if (CB->hasRetAttr(Attribute::NoUndef)) 4866 return true; 4867 } 4868 4869 if (const auto *PN = dyn_cast<PHINode>(V)) { 4870 unsigned Num = PN->getNumIncomingValues(); 4871 bool IsWellDefined = true; 4872 for (unsigned i = 0; i < Num; ++i) { 4873 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4874 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4875 DT, Depth + 1, PoisonOnly)) { 4876 IsWellDefined = false; 4877 break; 4878 } 4879 } 4880 if (IsWellDefined) 4881 return true; 4882 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4883 return true; 4884 } 4885 4886 if (auto *I = dyn_cast<LoadInst>(V)) 4887 if (I->getMetadata(LLVMContext::MD_noundef)) 4888 return true; 4889 4890 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4891 return true; 4892 4893 // CxtI may be null or a cloned instruction. 4894 if (!CtxI || !CtxI->getParent() || !DT) 4895 return false; 4896 4897 auto *DNode = DT->getNode(CtxI->getParent()); 4898 if (!DNode) 4899 // Unreachable block 4900 return false; 4901 4902 // If V is used as a branch condition before reaching CtxI, V cannot be 4903 // undef or poison. 4904 // br V, BB1, BB2 4905 // BB1: 4906 // CtxI ; V cannot be undef or poison here 4907 auto *Dominator = DNode->getIDom(); 4908 while (Dominator) { 4909 auto *TI = Dominator->getBlock()->getTerminator(); 4910 4911 Value *Cond = nullptr; 4912 if (auto BI = dyn_cast<BranchInst>(TI)) { 4913 if (BI->isConditional()) 4914 Cond = BI->getCondition(); 4915 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4916 Cond = SI->getCondition(); 4917 } 4918 4919 if (Cond) { 4920 if (Cond == V) 4921 return true; 4922 else if (PoisonOnly && isa<Operator>(Cond)) { 4923 // For poison, we can analyze further 4924 auto *Opr = cast<Operator>(Cond); 4925 if (propagatesPoison(Opr) && 4926 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4927 return true; 4928 } 4929 } 4930 4931 Dominator = Dominator->getIDom(); 4932 } 4933 4934 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4935 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4936 return true; 4937 4938 return false; 4939 } 4940 4941 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4942 const Instruction *CtxI, 4943 const DominatorTree *DT, 4944 unsigned Depth) { 4945 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4946 } 4947 4948 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4949 const Instruction *CtxI, 4950 const DominatorTree *DT, unsigned Depth) { 4951 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4952 } 4953 4954 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4955 const DataLayout &DL, 4956 AssumptionCache *AC, 4957 const Instruction *CxtI, 4958 const DominatorTree *DT) { 4959 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4960 Add, DL, AC, CxtI, DT); 4961 } 4962 4963 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4964 const Value *RHS, 4965 const DataLayout &DL, 4966 AssumptionCache *AC, 4967 const Instruction *CxtI, 4968 const DominatorTree *DT) { 4969 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4970 } 4971 4972 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4973 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4974 // of time because it's possible for another thread to interfere with it for an 4975 // arbitrary length of time, but programs aren't allowed to rely on that. 4976 4977 // If there is no successor, then execution can't transfer to it. 4978 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4979 return !CRI->unwindsToCaller(); 4980 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4981 return !CatchSwitch->unwindsToCaller(); 4982 if (isa<ResumeInst>(I)) 4983 return false; 4984 if (isa<ReturnInst>(I)) 4985 return false; 4986 if (isa<UnreachableInst>(I)) 4987 return false; 4988 4989 // Calls can throw, or contain an infinite loop, or kill the process. 4990 if (const auto *CB = dyn_cast<CallBase>(I)) { 4991 // Call sites that throw have implicit non-local control flow. 4992 if (!CB->doesNotThrow()) 4993 return false; 4994 4995 // A function which doens't throw and has "willreturn" attribute will 4996 // always return. 4997 if (CB->hasFnAttr(Attribute::WillReturn)) 4998 return true; 4999 5000 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5001 // etc. and thus not return. However, LLVM already assumes that 5002 // 5003 // - Thread exiting actions are modeled as writes to memory invisible to 5004 // the program. 5005 // 5006 // - Loops that don't have side effects (side effects are volatile/atomic 5007 // stores and IO) always terminate (see http://llvm.org/PR965). 5008 // Furthermore IO itself is also modeled as writes to memory invisible to 5009 // the program. 5010 // 5011 // We rely on those assumptions here, and use the memory effects of the call 5012 // target as a proxy for checking that it always returns. 5013 5014 // FIXME: This isn't aggressive enough; a call which only writes to a global 5015 // is guaranteed to return. 5016 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5017 } 5018 5019 // Other instructions return normally. 5020 return true; 5021 } 5022 5023 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5024 // TODO: This is slightly conservative for invoke instruction since exiting 5025 // via an exception *is* normal control for them. 5026 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5027 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5028 return false; 5029 return true; 5030 } 5031 5032 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5033 const Loop *L) { 5034 // The loop header is guaranteed to be executed for every iteration. 5035 // 5036 // FIXME: Relax this constraint to cover all basic blocks that are 5037 // guaranteed to be executed at every iteration. 5038 if (I->getParent() != L->getHeader()) return false; 5039 5040 for (const Instruction &LI : *L->getHeader()) { 5041 if (&LI == I) return true; 5042 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5043 } 5044 llvm_unreachable("Instruction not contained in its own parent basic block."); 5045 } 5046 5047 bool llvm::propagatesPoison(const Operator *I) { 5048 switch (I->getOpcode()) { 5049 case Instruction::Freeze: 5050 case Instruction::Select: 5051 case Instruction::PHI: 5052 case Instruction::Call: 5053 case Instruction::Invoke: 5054 return false; 5055 case Instruction::ICmp: 5056 case Instruction::FCmp: 5057 case Instruction::GetElementPtr: 5058 return true; 5059 default: 5060 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5061 return true; 5062 5063 // Be conservative and return false. 5064 return false; 5065 } 5066 } 5067 5068 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5069 SmallPtrSetImpl<const Value *> &Operands) { 5070 switch (I->getOpcode()) { 5071 case Instruction::Store: 5072 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5073 break; 5074 5075 case Instruction::Load: 5076 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5077 break; 5078 5079 case Instruction::AtomicCmpXchg: 5080 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5081 break; 5082 5083 case Instruction::AtomicRMW: 5084 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5085 break; 5086 5087 case Instruction::UDiv: 5088 case Instruction::SDiv: 5089 case Instruction::URem: 5090 case Instruction::SRem: 5091 Operands.insert(I->getOperand(1)); 5092 break; 5093 5094 case Instruction::Call: 5095 case Instruction::Invoke: { 5096 const CallBase *CB = cast<CallBase>(I); 5097 if (CB->isIndirectCall()) 5098 Operands.insert(CB->getCalledOperand()); 5099 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5100 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5101 Operands.insert(CB->getArgOperand(i)); 5102 } 5103 break; 5104 } 5105 5106 default: 5107 break; 5108 } 5109 } 5110 5111 bool llvm::mustTriggerUB(const Instruction *I, 5112 const SmallSet<const Value *, 16>& KnownPoison) { 5113 SmallPtrSet<const Value *, 4> NonPoisonOps; 5114 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5115 5116 for (const auto *V : NonPoisonOps) 5117 if (KnownPoison.count(V)) 5118 return true; 5119 5120 return false; 5121 } 5122 5123 static bool programUndefinedIfUndefOrPoison(const Value *V, 5124 bool PoisonOnly) { 5125 // We currently only look for uses of values within the same basic 5126 // block, as that makes it easier to guarantee that the uses will be 5127 // executed given that Inst is executed. 5128 // 5129 // FIXME: Expand this to consider uses beyond the same basic block. To do 5130 // this, look out for the distinction between post-dominance and strong 5131 // post-dominance. 5132 const BasicBlock *BB = nullptr; 5133 BasicBlock::const_iterator Begin; 5134 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5135 BB = Inst->getParent(); 5136 Begin = Inst->getIterator(); 5137 Begin++; 5138 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5139 BB = &Arg->getParent()->getEntryBlock(); 5140 Begin = BB->begin(); 5141 } else { 5142 return false; 5143 } 5144 5145 BasicBlock::const_iterator End = BB->end(); 5146 5147 if (!PoisonOnly) { 5148 // Be conservative & just check whether a value is passed to a noundef 5149 // argument. 5150 // Instructions that raise UB with a poison operand are well-defined 5151 // or have unclear semantics when the input is partially undef. 5152 // For example, 'udiv x, (undef | 1)' isn't UB. 5153 5154 for (auto &I : make_range(Begin, End)) { 5155 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5156 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5157 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5158 CB->getArgOperand(i) == V) 5159 return true; 5160 } 5161 } 5162 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5163 break; 5164 } 5165 return false; 5166 } 5167 5168 // Set of instructions that we have proved will yield poison if Inst 5169 // does. 5170 SmallSet<const Value *, 16> YieldsPoison; 5171 SmallSet<const BasicBlock *, 4> Visited; 5172 5173 YieldsPoison.insert(V); 5174 auto Propagate = [&](const User *User) { 5175 if (propagatesPoison(cast<Operator>(User))) 5176 YieldsPoison.insert(User); 5177 }; 5178 for_each(V->users(), Propagate); 5179 Visited.insert(BB); 5180 5181 unsigned Iter = 0; 5182 while (Iter++ < MaxAnalysisRecursionDepth) { 5183 for (auto &I : make_range(Begin, End)) { 5184 if (mustTriggerUB(&I, YieldsPoison)) 5185 return true; 5186 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5187 return false; 5188 5189 // Mark poison that propagates from I through uses of I. 5190 if (YieldsPoison.count(&I)) 5191 for_each(I.users(), Propagate); 5192 } 5193 5194 if (auto *NextBB = BB->getSingleSuccessor()) { 5195 if (Visited.insert(NextBB).second) { 5196 BB = NextBB; 5197 Begin = BB->getFirstNonPHI()->getIterator(); 5198 End = BB->end(); 5199 continue; 5200 } 5201 } 5202 5203 break; 5204 } 5205 return false; 5206 } 5207 5208 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5209 return ::programUndefinedIfUndefOrPoison(Inst, false); 5210 } 5211 5212 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5213 return ::programUndefinedIfUndefOrPoison(Inst, true); 5214 } 5215 5216 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5217 if (FMF.noNaNs()) 5218 return true; 5219 5220 if (auto *C = dyn_cast<ConstantFP>(V)) 5221 return !C->isNaN(); 5222 5223 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5224 if (!C->getElementType()->isFloatingPointTy()) 5225 return false; 5226 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5227 if (C->getElementAsAPFloat(I).isNaN()) 5228 return false; 5229 } 5230 return true; 5231 } 5232 5233 if (isa<ConstantAggregateZero>(V)) 5234 return true; 5235 5236 return false; 5237 } 5238 5239 static bool isKnownNonZero(const Value *V) { 5240 if (auto *C = dyn_cast<ConstantFP>(V)) 5241 return !C->isZero(); 5242 5243 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5244 if (!C->getElementType()->isFloatingPointTy()) 5245 return false; 5246 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5247 if (C->getElementAsAPFloat(I).isZero()) 5248 return false; 5249 } 5250 return true; 5251 } 5252 5253 return false; 5254 } 5255 5256 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5257 /// Given non-min/max outer cmp/select from the clamp pattern this 5258 /// function recognizes if it can be substitued by a "canonical" min/max 5259 /// pattern. 5260 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5261 Value *CmpLHS, Value *CmpRHS, 5262 Value *TrueVal, Value *FalseVal, 5263 Value *&LHS, Value *&RHS) { 5264 // Try to match 5265 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5266 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5267 // and return description of the outer Max/Min. 5268 5269 // First, check if select has inverse order: 5270 if (CmpRHS == FalseVal) { 5271 std::swap(TrueVal, FalseVal); 5272 Pred = CmpInst::getInversePredicate(Pred); 5273 } 5274 5275 // Assume success now. If there's no match, callers should not use these anyway. 5276 LHS = TrueVal; 5277 RHS = FalseVal; 5278 5279 const APFloat *FC1; 5280 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5281 return {SPF_UNKNOWN, SPNB_NA, false}; 5282 5283 const APFloat *FC2; 5284 switch (Pred) { 5285 case CmpInst::FCMP_OLT: 5286 case CmpInst::FCMP_OLE: 5287 case CmpInst::FCMP_ULT: 5288 case CmpInst::FCMP_ULE: 5289 if (match(FalseVal, 5290 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5291 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5292 *FC1 < *FC2) 5293 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5294 break; 5295 case CmpInst::FCMP_OGT: 5296 case CmpInst::FCMP_OGE: 5297 case CmpInst::FCMP_UGT: 5298 case CmpInst::FCMP_UGE: 5299 if (match(FalseVal, 5300 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5301 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5302 *FC1 > *FC2) 5303 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5304 break; 5305 default: 5306 break; 5307 } 5308 5309 return {SPF_UNKNOWN, SPNB_NA, false}; 5310 } 5311 5312 /// Recognize variations of: 5313 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5314 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5315 Value *CmpLHS, Value *CmpRHS, 5316 Value *TrueVal, Value *FalseVal) { 5317 // Swap the select operands and predicate to match the patterns below. 5318 if (CmpRHS != TrueVal) { 5319 Pred = ICmpInst::getSwappedPredicate(Pred); 5320 std::swap(TrueVal, FalseVal); 5321 } 5322 const APInt *C1; 5323 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5324 const APInt *C2; 5325 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5326 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5327 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5328 return {SPF_SMAX, SPNB_NA, false}; 5329 5330 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5331 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5332 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5333 return {SPF_SMIN, SPNB_NA, false}; 5334 5335 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5336 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5337 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5338 return {SPF_UMAX, SPNB_NA, false}; 5339 5340 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5341 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5342 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5343 return {SPF_UMIN, SPNB_NA, false}; 5344 } 5345 return {SPF_UNKNOWN, SPNB_NA, false}; 5346 } 5347 5348 /// Recognize variations of: 5349 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5350 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5351 Value *CmpLHS, Value *CmpRHS, 5352 Value *TVal, Value *FVal, 5353 unsigned Depth) { 5354 // TODO: Allow FP min/max with nnan/nsz. 5355 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5356 5357 Value *A = nullptr, *B = nullptr; 5358 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5359 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5360 return {SPF_UNKNOWN, SPNB_NA, false}; 5361 5362 Value *C = nullptr, *D = nullptr; 5363 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5364 if (L.Flavor != R.Flavor) 5365 return {SPF_UNKNOWN, SPNB_NA, false}; 5366 5367 // We have something like: x Pred y ? min(a, b) : min(c, d). 5368 // Try to match the compare to the min/max operations of the select operands. 5369 // First, make sure we have the right compare predicate. 5370 switch (L.Flavor) { 5371 case SPF_SMIN: 5372 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5373 Pred = ICmpInst::getSwappedPredicate(Pred); 5374 std::swap(CmpLHS, CmpRHS); 5375 } 5376 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5377 break; 5378 return {SPF_UNKNOWN, SPNB_NA, false}; 5379 case SPF_SMAX: 5380 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5381 Pred = ICmpInst::getSwappedPredicate(Pred); 5382 std::swap(CmpLHS, CmpRHS); 5383 } 5384 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5385 break; 5386 return {SPF_UNKNOWN, SPNB_NA, false}; 5387 case SPF_UMIN: 5388 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5389 Pred = ICmpInst::getSwappedPredicate(Pred); 5390 std::swap(CmpLHS, CmpRHS); 5391 } 5392 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5393 break; 5394 return {SPF_UNKNOWN, SPNB_NA, false}; 5395 case SPF_UMAX: 5396 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5397 Pred = ICmpInst::getSwappedPredicate(Pred); 5398 std::swap(CmpLHS, CmpRHS); 5399 } 5400 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5401 break; 5402 return {SPF_UNKNOWN, SPNB_NA, false}; 5403 default: 5404 return {SPF_UNKNOWN, SPNB_NA, false}; 5405 } 5406 5407 // If there is a common operand in the already matched min/max and the other 5408 // min/max operands match the compare operands (either directly or inverted), 5409 // then this is min/max of the same flavor. 5410 5411 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5412 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5413 if (D == B) { 5414 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5415 match(A, m_Not(m_Specific(CmpRHS))))) 5416 return {L.Flavor, SPNB_NA, false}; 5417 } 5418 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5419 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5420 if (C == B) { 5421 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5422 match(A, m_Not(m_Specific(CmpRHS))))) 5423 return {L.Flavor, SPNB_NA, false}; 5424 } 5425 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5426 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5427 if (D == A) { 5428 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5429 match(B, m_Not(m_Specific(CmpRHS))))) 5430 return {L.Flavor, SPNB_NA, false}; 5431 } 5432 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5433 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5434 if (C == A) { 5435 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5436 match(B, m_Not(m_Specific(CmpRHS))))) 5437 return {L.Flavor, SPNB_NA, false}; 5438 } 5439 5440 return {SPF_UNKNOWN, SPNB_NA, false}; 5441 } 5442 5443 /// If the input value is the result of a 'not' op, constant integer, or vector 5444 /// splat of a constant integer, return the bitwise-not source value. 5445 /// TODO: This could be extended to handle non-splat vector integer constants. 5446 static Value *getNotValue(Value *V) { 5447 Value *NotV; 5448 if (match(V, m_Not(m_Value(NotV)))) 5449 return NotV; 5450 5451 const APInt *C; 5452 if (match(V, m_APInt(C))) 5453 return ConstantInt::get(V->getType(), ~(*C)); 5454 5455 return nullptr; 5456 } 5457 5458 /// Match non-obvious integer minimum and maximum sequences. 5459 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5460 Value *CmpLHS, Value *CmpRHS, 5461 Value *TrueVal, Value *FalseVal, 5462 Value *&LHS, Value *&RHS, 5463 unsigned Depth) { 5464 // Assume success. If there's no match, callers should not use these anyway. 5465 LHS = TrueVal; 5466 RHS = FalseVal; 5467 5468 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5469 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5470 return SPR; 5471 5472 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5473 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5474 return SPR; 5475 5476 // Look through 'not' ops to find disguised min/max. 5477 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5478 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5479 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5480 switch (Pred) { 5481 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5482 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5483 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5484 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5485 default: break; 5486 } 5487 } 5488 5489 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5490 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5491 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5492 switch (Pred) { 5493 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5494 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5495 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5496 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5497 default: break; 5498 } 5499 } 5500 5501 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5502 return {SPF_UNKNOWN, SPNB_NA, false}; 5503 5504 // Z = X -nsw Y 5505 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5506 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5507 if (match(TrueVal, m_Zero()) && 5508 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5509 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5510 5511 // Z = X -nsw Y 5512 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5513 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5514 if (match(FalseVal, m_Zero()) && 5515 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5516 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5517 5518 const APInt *C1; 5519 if (!match(CmpRHS, m_APInt(C1))) 5520 return {SPF_UNKNOWN, SPNB_NA, false}; 5521 5522 // An unsigned min/max can be written with a signed compare. 5523 const APInt *C2; 5524 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5525 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5526 // Is the sign bit set? 5527 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5528 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5529 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5530 C2->isMaxSignedValue()) 5531 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5532 5533 // Is the sign bit clear? 5534 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5535 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5536 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5537 C2->isMinSignedValue()) 5538 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5539 } 5540 5541 return {SPF_UNKNOWN, SPNB_NA, false}; 5542 } 5543 5544 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5545 assert(X && Y && "Invalid operand"); 5546 5547 // X = sub (0, Y) || X = sub nsw (0, Y) 5548 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5549 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5550 return true; 5551 5552 // Y = sub (0, X) || Y = sub nsw (0, X) 5553 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5554 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5555 return true; 5556 5557 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5558 Value *A, *B; 5559 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5560 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5561 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5562 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5563 } 5564 5565 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5566 FastMathFlags FMF, 5567 Value *CmpLHS, Value *CmpRHS, 5568 Value *TrueVal, Value *FalseVal, 5569 Value *&LHS, Value *&RHS, 5570 unsigned Depth) { 5571 if (CmpInst::isFPPredicate(Pred)) { 5572 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5573 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5574 // purpose of identifying min/max. Disregard vector constants with undefined 5575 // elements because those can not be back-propagated for analysis. 5576 Value *OutputZeroVal = nullptr; 5577 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5578 !cast<Constant>(TrueVal)->containsUndefElement()) 5579 OutputZeroVal = TrueVal; 5580 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5581 !cast<Constant>(FalseVal)->containsUndefElement()) 5582 OutputZeroVal = FalseVal; 5583 5584 if (OutputZeroVal) { 5585 if (match(CmpLHS, m_AnyZeroFP())) 5586 CmpLHS = OutputZeroVal; 5587 if (match(CmpRHS, m_AnyZeroFP())) 5588 CmpRHS = OutputZeroVal; 5589 } 5590 } 5591 5592 LHS = CmpLHS; 5593 RHS = CmpRHS; 5594 5595 // Signed zero may return inconsistent results between implementations. 5596 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5597 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5598 // Therefore, we behave conservatively and only proceed if at least one of the 5599 // operands is known to not be zero or if we don't care about signed zero. 5600 switch (Pred) { 5601 default: break; 5602 // FIXME: Include OGT/OLT/UGT/ULT. 5603 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5604 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5605 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5606 !isKnownNonZero(CmpRHS)) 5607 return {SPF_UNKNOWN, SPNB_NA, false}; 5608 } 5609 5610 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5611 bool Ordered = false; 5612 5613 // When given one NaN and one non-NaN input: 5614 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5615 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5616 // ordered comparison fails), which could be NaN or non-NaN. 5617 // so here we discover exactly what NaN behavior is required/accepted. 5618 if (CmpInst::isFPPredicate(Pred)) { 5619 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5620 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5621 5622 if (LHSSafe && RHSSafe) { 5623 // Both operands are known non-NaN. 5624 NaNBehavior = SPNB_RETURNS_ANY; 5625 } else if (CmpInst::isOrdered(Pred)) { 5626 // An ordered comparison will return false when given a NaN, so it 5627 // returns the RHS. 5628 Ordered = true; 5629 if (LHSSafe) 5630 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5631 NaNBehavior = SPNB_RETURNS_NAN; 5632 else if (RHSSafe) 5633 NaNBehavior = SPNB_RETURNS_OTHER; 5634 else 5635 // Completely unsafe. 5636 return {SPF_UNKNOWN, SPNB_NA, false}; 5637 } else { 5638 Ordered = false; 5639 // An unordered comparison will return true when given a NaN, so it 5640 // returns the LHS. 5641 if (LHSSafe) 5642 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5643 NaNBehavior = SPNB_RETURNS_OTHER; 5644 else if (RHSSafe) 5645 NaNBehavior = SPNB_RETURNS_NAN; 5646 else 5647 // Completely unsafe. 5648 return {SPF_UNKNOWN, SPNB_NA, false}; 5649 } 5650 } 5651 5652 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5653 std::swap(CmpLHS, CmpRHS); 5654 Pred = CmpInst::getSwappedPredicate(Pred); 5655 if (NaNBehavior == SPNB_RETURNS_NAN) 5656 NaNBehavior = SPNB_RETURNS_OTHER; 5657 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5658 NaNBehavior = SPNB_RETURNS_NAN; 5659 Ordered = !Ordered; 5660 } 5661 5662 // ([if]cmp X, Y) ? X : Y 5663 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5664 switch (Pred) { 5665 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5666 case ICmpInst::ICMP_UGT: 5667 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5668 case ICmpInst::ICMP_SGT: 5669 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5670 case ICmpInst::ICMP_ULT: 5671 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5672 case ICmpInst::ICMP_SLT: 5673 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5674 case FCmpInst::FCMP_UGT: 5675 case FCmpInst::FCMP_UGE: 5676 case FCmpInst::FCMP_OGT: 5677 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5678 case FCmpInst::FCMP_ULT: 5679 case FCmpInst::FCMP_ULE: 5680 case FCmpInst::FCMP_OLT: 5681 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5682 } 5683 } 5684 5685 if (isKnownNegation(TrueVal, FalseVal)) { 5686 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5687 // match against either LHS or sext(LHS). 5688 auto MaybeSExtCmpLHS = 5689 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5690 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5691 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5692 if (match(TrueVal, MaybeSExtCmpLHS)) { 5693 // Set the return values. If the compare uses the negated value (-X >s 0), 5694 // swap the return values because the negated value is always 'RHS'. 5695 LHS = TrueVal; 5696 RHS = FalseVal; 5697 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5698 std::swap(LHS, RHS); 5699 5700 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5701 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5702 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5703 return {SPF_ABS, SPNB_NA, false}; 5704 5705 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5706 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5707 return {SPF_ABS, SPNB_NA, false}; 5708 5709 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5710 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5711 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5712 return {SPF_NABS, SPNB_NA, false}; 5713 } 5714 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5715 // Set the return values. If the compare uses the negated value (-X >s 0), 5716 // swap the return values because the negated value is always 'RHS'. 5717 LHS = FalseVal; 5718 RHS = TrueVal; 5719 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5720 std::swap(LHS, RHS); 5721 5722 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5723 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5724 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5725 return {SPF_NABS, SPNB_NA, false}; 5726 5727 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5728 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5729 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5730 return {SPF_ABS, SPNB_NA, false}; 5731 } 5732 } 5733 5734 if (CmpInst::isIntPredicate(Pred)) 5735 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5736 5737 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5738 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5739 // semantics than minNum. Be conservative in such case. 5740 if (NaNBehavior != SPNB_RETURNS_ANY || 5741 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5742 !isKnownNonZero(CmpRHS))) 5743 return {SPF_UNKNOWN, SPNB_NA, false}; 5744 5745 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5746 } 5747 5748 /// Helps to match a select pattern in case of a type mismatch. 5749 /// 5750 /// The function processes the case when type of true and false values of a 5751 /// select instruction differs from type of the cmp instruction operands because 5752 /// of a cast instruction. The function checks if it is legal to move the cast 5753 /// operation after "select". If yes, it returns the new second value of 5754 /// "select" (with the assumption that cast is moved): 5755 /// 1. As operand of cast instruction when both values of "select" are same cast 5756 /// instructions. 5757 /// 2. As restored constant (by applying reverse cast operation) when the first 5758 /// value of the "select" is a cast operation and the second value is a 5759 /// constant. 5760 /// NOTE: We return only the new second value because the first value could be 5761 /// accessed as operand of cast instruction. 5762 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5763 Instruction::CastOps *CastOp) { 5764 auto *Cast1 = dyn_cast<CastInst>(V1); 5765 if (!Cast1) 5766 return nullptr; 5767 5768 *CastOp = Cast1->getOpcode(); 5769 Type *SrcTy = Cast1->getSrcTy(); 5770 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5771 // If V1 and V2 are both the same cast from the same type, look through V1. 5772 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5773 return Cast2->getOperand(0); 5774 return nullptr; 5775 } 5776 5777 auto *C = dyn_cast<Constant>(V2); 5778 if (!C) 5779 return nullptr; 5780 5781 Constant *CastedTo = nullptr; 5782 switch (*CastOp) { 5783 case Instruction::ZExt: 5784 if (CmpI->isUnsigned()) 5785 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5786 break; 5787 case Instruction::SExt: 5788 if (CmpI->isSigned()) 5789 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5790 break; 5791 case Instruction::Trunc: 5792 Constant *CmpConst; 5793 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5794 CmpConst->getType() == SrcTy) { 5795 // Here we have the following case: 5796 // 5797 // %cond = cmp iN %x, CmpConst 5798 // %tr = trunc iN %x to iK 5799 // %narrowsel = select i1 %cond, iK %t, iK C 5800 // 5801 // We can always move trunc after select operation: 5802 // 5803 // %cond = cmp iN %x, CmpConst 5804 // %widesel = select i1 %cond, iN %x, iN CmpConst 5805 // %tr = trunc iN %widesel to iK 5806 // 5807 // Note that C could be extended in any way because we don't care about 5808 // upper bits after truncation. It can't be abs pattern, because it would 5809 // look like: 5810 // 5811 // select i1 %cond, x, -x. 5812 // 5813 // So only min/max pattern could be matched. Such match requires widened C 5814 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5815 // CmpConst == C is checked below. 5816 CastedTo = CmpConst; 5817 } else { 5818 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5819 } 5820 break; 5821 case Instruction::FPTrunc: 5822 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5823 break; 5824 case Instruction::FPExt: 5825 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5826 break; 5827 case Instruction::FPToUI: 5828 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5829 break; 5830 case Instruction::FPToSI: 5831 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5832 break; 5833 case Instruction::UIToFP: 5834 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5835 break; 5836 case Instruction::SIToFP: 5837 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5838 break; 5839 default: 5840 break; 5841 } 5842 5843 if (!CastedTo) 5844 return nullptr; 5845 5846 // Make sure the cast doesn't lose any information. 5847 Constant *CastedBack = 5848 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5849 if (CastedBack != C) 5850 return nullptr; 5851 5852 return CastedTo; 5853 } 5854 5855 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5856 Instruction::CastOps *CastOp, 5857 unsigned Depth) { 5858 if (Depth >= MaxAnalysisRecursionDepth) 5859 return {SPF_UNKNOWN, SPNB_NA, false}; 5860 5861 SelectInst *SI = dyn_cast<SelectInst>(V); 5862 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5863 5864 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5865 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5866 5867 Value *TrueVal = SI->getTrueValue(); 5868 Value *FalseVal = SI->getFalseValue(); 5869 5870 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5871 CastOp, Depth); 5872 } 5873 5874 SelectPatternResult llvm::matchDecomposedSelectPattern( 5875 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5876 Instruction::CastOps *CastOp, unsigned Depth) { 5877 CmpInst::Predicate Pred = CmpI->getPredicate(); 5878 Value *CmpLHS = CmpI->getOperand(0); 5879 Value *CmpRHS = CmpI->getOperand(1); 5880 FastMathFlags FMF; 5881 if (isa<FPMathOperator>(CmpI)) 5882 FMF = CmpI->getFastMathFlags(); 5883 5884 // Bail out early. 5885 if (CmpI->isEquality()) 5886 return {SPF_UNKNOWN, SPNB_NA, false}; 5887 5888 // Deal with type mismatches. 5889 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5890 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5891 // If this is a potential fmin/fmax with a cast to integer, then ignore 5892 // -0.0 because there is no corresponding integer value. 5893 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5894 FMF.setNoSignedZeros(); 5895 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5896 cast<CastInst>(TrueVal)->getOperand(0), C, 5897 LHS, RHS, Depth); 5898 } 5899 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5900 // If this is a potential fmin/fmax with a cast to integer, then ignore 5901 // -0.0 because there is no corresponding integer value. 5902 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5903 FMF.setNoSignedZeros(); 5904 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5905 C, cast<CastInst>(FalseVal)->getOperand(0), 5906 LHS, RHS, Depth); 5907 } 5908 } 5909 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5910 LHS, RHS, Depth); 5911 } 5912 5913 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5914 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5915 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5916 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5917 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5918 if (SPF == SPF_FMINNUM) 5919 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5920 if (SPF == SPF_FMAXNUM) 5921 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5922 llvm_unreachable("unhandled!"); 5923 } 5924 5925 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5926 if (SPF == SPF_SMIN) return SPF_SMAX; 5927 if (SPF == SPF_UMIN) return SPF_UMAX; 5928 if (SPF == SPF_SMAX) return SPF_SMIN; 5929 if (SPF == SPF_UMAX) return SPF_UMIN; 5930 llvm_unreachable("unhandled!"); 5931 } 5932 5933 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5934 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5935 } 5936 5937 std::pair<Intrinsic::ID, bool> 5938 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5939 // Check if VL contains select instructions that can be folded into a min/max 5940 // vector intrinsic and return the intrinsic if it is possible. 5941 // TODO: Support floating point min/max. 5942 bool AllCmpSingleUse = true; 5943 SelectPatternResult SelectPattern; 5944 SelectPattern.Flavor = SPF_UNKNOWN; 5945 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5946 Value *LHS, *RHS; 5947 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5948 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5949 CurrentPattern.Flavor == SPF_FMINNUM || 5950 CurrentPattern.Flavor == SPF_FMAXNUM || 5951 !I->getType()->isIntOrIntVectorTy()) 5952 return false; 5953 if (SelectPattern.Flavor != SPF_UNKNOWN && 5954 SelectPattern.Flavor != CurrentPattern.Flavor) 5955 return false; 5956 SelectPattern = CurrentPattern; 5957 AllCmpSingleUse &= 5958 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5959 return true; 5960 })) { 5961 switch (SelectPattern.Flavor) { 5962 case SPF_SMIN: 5963 return {Intrinsic::smin, AllCmpSingleUse}; 5964 case SPF_UMIN: 5965 return {Intrinsic::umin, AllCmpSingleUse}; 5966 case SPF_SMAX: 5967 return {Intrinsic::smax, AllCmpSingleUse}; 5968 case SPF_UMAX: 5969 return {Intrinsic::umax, AllCmpSingleUse}; 5970 default: 5971 llvm_unreachable("unexpected select pattern flavor"); 5972 } 5973 } 5974 return {Intrinsic::not_intrinsic, false}; 5975 } 5976 5977 /// Return true if "icmp Pred LHS RHS" is always true. 5978 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5979 const Value *RHS, const DataLayout &DL, 5980 unsigned Depth) { 5981 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5982 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5983 return true; 5984 5985 switch (Pred) { 5986 default: 5987 return false; 5988 5989 case CmpInst::ICMP_SLE: { 5990 const APInt *C; 5991 5992 // LHS s<= LHS +_{nsw} C if C >= 0 5993 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5994 return !C->isNegative(); 5995 return false; 5996 } 5997 5998 case CmpInst::ICMP_ULE: { 5999 const APInt *C; 6000 6001 // LHS u<= LHS +_{nuw} C for any C 6002 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6003 return true; 6004 6005 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6006 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6007 const Value *&X, 6008 const APInt *&CA, const APInt *&CB) { 6009 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6010 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6011 return true; 6012 6013 // If X & C == 0 then (X | C) == X +_{nuw} C 6014 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6015 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6016 KnownBits Known(CA->getBitWidth()); 6017 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6018 /*CxtI*/ nullptr, /*DT*/ nullptr); 6019 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6020 return true; 6021 } 6022 6023 return false; 6024 }; 6025 6026 const Value *X; 6027 const APInt *CLHS, *CRHS; 6028 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6029 return CLHS->ule(*CRHS); 6030 6031 return false; 6032 } 6033 } 6034 } 6035 6036 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6037 /// ALHS ARHS" is true. Otherwise, return None. 6038 static Optional<bool> 6039 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6040 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6041 const DataLayout &DL, unsigned Depth) { 6042 switch (Pred) { 6043 default: 6044 return None; 6045 6046 case CmpInst::ICMP_SLT: 6047 case CmpInst::ICMP_SLE: 6048 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6049 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6050 return true; 6051 return None; 6052 6053 case CmpInst::ICMP_ULT: 6054 case CmpInst::ICMP_ULE: 6055 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6056 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6057 return true; 6058 return None; 6059 } 6060 } 6061 6062 /// Return true if the operands of the two compares match. IsSwappedOps is true 6063 /// when the operands match, but are swapped. 6064 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6065 const Value *BLHS, const Value *BRHS, 6066 bool &IsSwappedOps) { 6067 6068 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6069 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6070 return IsMatchingOps || IsSwappedOps; 6071 } 6072 6073 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6074 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6075 /// Otherwise, return None if we can't infer anything. 6076 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6077 CmpInst::Predicate BPred, 6078 bool AreSwappedOps) { 6079 // Canonicalize the predicate as if the operands were not commuted. 6080 if (AreSwappedOps) 6081 BPred = ICmpInst::getSwappedPredicate(BPred); 6082 6083 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6084 return true; 6085 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6086 return false; 6087 6088 return None; 6089 } 6090 6091 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6092 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6093 /// Otherwise, return None if we can't infer anything. 6094 static Optional<bool> 6095 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6096 const ConstantInt *C1, 6097 CmpInst::Predicate BPred, 6098 const ConstantInt *C2) { 6099 ConstantRange DomCR = 6100 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6101 ConstantRange CR = 6102 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6103 ConstantRange Intersection = DomCR.intersectWith(CR); 6104 ConstantRange Difference = DomCR.difference(CR); 6105 if (Intersection.isEmptySet()) 6106 return false; 6107 if (Difference.isEmptySet()) 6108 return true; 6109 return None; 6110 } 6111 6112 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6113 /// false. Otherwise, return None if we can't infer anything. 6114 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6115 CmpInst::Predicate BPred, 6116 const Value *BLHS, const Value *BRHS, 6117 const DataLayout &DL, bool LHSIsTrue, 6118 unsigned Depth) { 6119 Value *ALHS = LHS->getOperand(0); 6120 Value *ARHS = LHS->getOperand(1); 6121 6122 // The rest of the logic assumes the LHS condition is true. If that's not the 6123 // case, invert the predicate to make it so. 6124 CmpInst::Predicate APred = 6125 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6126 6127 // Can we infer anything when the two compares have matching operands? 6128 bool AreSwappedOps; 6129 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6130 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6131 APred, BPred, AreSwappedOps)) 6132 return Implication; 6133 // No amount of additional analysis will infer the second condition, so 6134 // early exit. 6135 return None; 6136 } 6137 6138 // Can we infer anything when the LHS operands match and the RHS operands are 6139 // constants (not necessarily matching)? 6140 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6141 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6142 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6143 return Implication; 6144 // No amount of additional analysis will infer the second condition, so 6145 // early exit. 6146 return None; 6147 } 6148 6149 if (APred == BPred) 6150 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6151 return None; 6152 } 6153 6154 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6155 /// false. Otherwise, return None if we can't infer anything. We expect the 6156 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6157 static Optional<bool> 6158 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6159 const Value *RHSOp0, const Value *RHSOp1, 6160 6161 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6162 // The LHS must be an 'or' or an 'and' instruction. 6163 assert((LHS->getOpcode() == Instruction::And || 6164 LHS->getOpcode() == Instruction::Or) && 6165 "Expected LHS to be 'and' or 'or'."); 6166 6167 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6168 6169 // If the result of an 'or' is false, then we know both legs of the 'or' are 6170 // false. Similarly, if the result of an 'and' is true, then we know both 6171 // legs of the 'and' are true. 6172 Value *ALHS, *ARHS; 6173 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6174 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6175 // FIXME: Make this non-recursion. 6176 if (Optional<bool> Implication = isImpliedCondition( 6177 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6178 return Implication; 6179 if (Optional<bool> Implication = isImpliedCondition( 6180 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6181 return Implication; 6182 return None; 6183 } 6184 return None; 6185 } 6186 6187 Optional<bool> 6188 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6189 const Value *RHSOp0, const Value *RHSOp1, 6190 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6191 // Bail out when we hit the limit. 6192 if (Depth == MaxAnalysisRecursionDepth) 6193 return None; 6194 6195 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6196 // example. 6197 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6198 return None; 6199 6200 Type *OpTy = LHS->getType(); 6201 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6202 6203 // FIXME: Extending the code below to handle vectors. 6204 if (OpTy->isVectorTy()) 6205 return None; 6206 6207 assert(OpTy->isIntegerTy(1) && "implied by above"); 6208 6209 // Both LHS and RHS are icmps. 6210 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6211 if (LHSCmp) 6212 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6213 Depth); 6214 6215 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6216 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6217 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6218 if (LHSBO) { 6219 if ((LHSBO->getOpcode() == Instruction::And || 6220 LHSBO->getOpcode() == Instruction::Or)) 6221 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6222 Depth); 6223 } 6224 return None; 6225 } 6226 6227 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6228 const DataLayout &DL, bool LHSIsTrue, 6229 unsigned Depth) { 6230 // LHS ==> RHS by definition 6231 if (LHS == RHS) 6232 return LHSIsTrue; 6233 6234 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6235 if (RHSCmp) 6236 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6237 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6238 LHSIsTrue, Depth); 6239 return None; 6240 } 6241 6242 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6243 // condition dominating ContextI or nullptr, if no condition is found. 6244 static std::pair<Value *, bool> 6245 getDomPredecessorCondition(const Instruction *ContextI) { 6246 if (!ContextI || !ContextI->getParent()) 6247 return {nullptr, false}; 6248 6249 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6250 // dominator tree (eg, from a SimplifyQuery) instead? 6251 const BasicBlock *ContextBB = ContextI->getParent(); 6252 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6253 if (!PredBB) 6254 return {nullptr, false}; 6255 6256 // We need a conditional branch in the predecessor. 6257 Value *PredCond; 6258 BasicBlock *TrueBB, *FalseBB; 6259 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6260 return {nullptr, false}; 6261 6262 // The branch should get simplified. Don't bother simplifying this condition. 6263 if (TrueBB == FalseBB) 6264 return {nullptr, false}; 6265 6266 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6267 "Predecessor block does not point to successor?"); 6268 6269 // Is this condition implied by the predecessor condition? 6270 return {PredCond, TrueBB == ContextBB}; 6271 } 6272 6273 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6274 const Instruction *ContextI, 6275 const DataLayout &DL) { 6276 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6277 auto PredCond = getDomPredecessorCondition(ContextI); 6278 if (PredCond.first) 6279 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6280 return None; 6281 } 6282 6283 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6284 const Value *LHS, const Value *RHS, 6285 const Instruction *ContextI, 6286 const DataLayout &DL) { 6287 auto PredCond = getDomPredecessorCondition(ContextI); 6288 if (PredCond.first) 6289 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6290 PredCond.second); 6291 return None; 6292 } 6293 6294 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6295 APInt &Upper, const InstrInfoQuery &IIQ) { 6296 unsigned Width = Lower.getBitWidth(); 6297 const APInt *C; 6298 switch (BO.getOpcode()) { 6299 case Instruction::Add: 6300 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6301 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6302 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6303 // 'add nuw x, C' produces [C, UINT_MAX]. 6304 Lower = *C; 6305 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6306 if (C->isNegative()) { 6307 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6308 Lower = APInt::getSignedMinValue(Width); 6309 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6310 } else { 6311 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6312 Lower = APInt::getSignedMinValue(Width) + *C; 6313 Upper = APInt::getSignedMaxValue(Width) + 1; 6314 } 6315 } 6316 } 6317 break; 6318 6319 case Instruction::And: 6320 if (match(BO.getOperand(1), m_APInt(C))) 6321 // 'and x, C' produces [0, C]. 6322 Upper = *C + 1; 6323 break; 6324 6325 case Instruction::Or: 6326 if (match(BO.getOperand(1), m_APInt(C))) 6327 // 'or x, C' produces [C, UINT_MAX]. 6328 Lower = *C; 6329 break; 6330 6331 case Instruction::AShr: 6332 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6333 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6334 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6335 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6336 } else if (match(BO.getOperand(0), m_APInt(C))) { 6337 unsigned ShiftAmount = Width - 1; 6338 if (!C->isNullValue() && IIQ.isExact(&BO)) 6339 ShiftAmount = C->countTrailingZeros(); 6340 if (C->isNegative()) { 6341 // 'ashr C, x' produces [C, C >> (Width-1)] 6342 Lower = *C; 6343 Upper = C->ashr(ShiftAmount) + 1; 6344 } else { 6345 // 'ashr C, x' produces [C >> (Width-1), C] 6346 Lower = C->ashr(ShiftAmount); 6347 Upper = *C + 1; 6348 } 6349 } 6350 break; 6351 6352 case Instruction::LShr: 6353 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6354 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6355 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6356 } else if (match(BO.getOperand(0), m_APInt(C))) { 6357 // 'lshr C, x' produces [C >> (Width-1), C]. 6358 unsigned ShiftAmount = Width - 1; 6359 if (!C->isNullValue() && IIQ.isExact(&BO)) 6360 ShiftAmount = C->countTrailingZeros(); 6361 Lower = C->lshr(ShiftAmount); 6362 Upper = *C + 1; 6363 } 6364 break; 6365 6366 case Instruction::Shl: 6367 if (match(BO.getOperand(0), m_APInt(C))) { 6368 if (IIQ.hasNoUnsignedWrap(&BO)) { 6369 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6370 Lower = *C; 6371 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6372 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6373 if (C->isNegative()) { 6374 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6375 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6376 Lower = C->shl(ShiftAmount); 6377 Upper = *C + 1; 6378 } else { 6379 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6380 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6381 Lower = *C; 6382 Upper = C->shl(ShiftAmount) + 1; 6383 } 6384 } 6385 } 6386 break; 6387 6388 case Instruction::SDiv: 6389 if (match(BO.getOperand(1), m_APInt(C))) { 6390 APInt IntMin = APInt::getSignedMinValue(Width); 6391 APInt IntMax = APInt::getSignedMaxValue(Width); 6392 if (C->isAllOnesValue()) { 6393 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6394 // where C != -1 and C != 0 and C != 1 6395 Lower = IntMin + 1; 6396 Upper = IntMax + 1; 6397 } else if (C->countLeadingZeros() < Width - 1) { 6398 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6399 // where C != -1 and C != 0 and C != 1 6400 Lower = IntMin.sdiv(*C); 6401 Upper = IntMax.sdiv(*C); 6402 if (Lower.sgt(Upper)) 6403 std::swap(Lower, Upper); 6404 Upper = Upper + 1; 6405 assert(Upper != Lower && "Upper part of range has wrapped!"); 6406 } 6407 } else if (match(BO.getOperand(0), m_APInt(C))) { 6408 if (C->isMinSignedValue()) { 6409 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6410 Lower = *C; 6411 Upper = Lower.lshr(1) + 1; 6412 } else { 6413 // 'sdiv C, x' produces [-|C|, |C|]. 6414 Upper = C->abs() + 1; 6415 Lower = (-Upper) + 1; 6416 } 6417 } 6418 break; 6419 6420 case Instruction::UDiv: 6421 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6422 // 'udiv x, C' produces [0, UINT_MAX / C]. 6423 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6424 } else if (match(BO.getOperand(0), m_APInt(C))) { 6425 // 'udiv C, x' produces [0, C]. 6426 Upper = *C + 1; 6427 } 6428 break; 6429 6430 case Instruction::SRem: 6431 if (match(BO.getOperand(1), m_APInt(C))) { 6432 // 'srem x, C' produces (-|C|, |C|). 6433 Upper = C->abs(); 6434 Lower = (-Upper) + 1; 6435 } 6436 break; 6437 6438 case Instruction::URem: 6439 if (match(BO.getOperand(1), m_APInt(C))) 6440 // 'urem x, C' produces [0, C). 6441 Upper = *C; 6442 break; 6443 6444 default: 6445 break; 6446 } 6447 } 6448 6449 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6450 APInt &Upper) { 6451 unsigned Width = Lower.getBitWidth(); 6452 const APInt *C; 6453 switch (II.getIntrinsicID()) { 6454 case Intrinsic::ctpop: 6455 case Intrinsic::ctlz: 6456 case Intrinsic::cttz: 6457 // Maximum of set/clear bits is the bit width. 6458 assert(Lower == 0 && "Expected lower bound to be zero"); 6459 Upper = Width + 1; 6460 break; 6461 case Intrinsic::uadd_sat: 6462 // uadd.sat(x, C) produces [C, UINT_MAX]. 6463 if (match(II.getOperand(0), m_APInt(C)) || 6464 match(II.getOperand(1), m_APInt(C))) 6465 Lower = *C; 6466 break; 6467 case Intrinsic::sadd_sat: 6468 if (match(II.getOperand(0), m_APInt(C)) || 6469 match(II.getOperand(1), m_APInt(C))) { 6470 if (C->isNegative()) { 6471 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6472 Lower = APInt::getSignedMinValue(Width); 6473 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6474 } else { 6475 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6476 Lower = APInt::getSignedMinValue(Width) + *C; 6477 Upper = APInt::getSignedMaxValue(Width) + 1; 6478 } 6479 } 6480 break; 6481 case Intrinsic::usub_sat: 6482 // usub.sat(C, x) produces [0, C]. 6483 if (match(II.getOperand(0), m_APInt(C))) 6484 Upper = *C + 1; 6485 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6486 else if (match(II.getOperand(1), m_APInt(C))) 6487 Upper = APInt::getMaxValue(Width) - *C + 1; 6488 break; 6489 case Intrinsic::ssub_sat: 6490 if (match(II.getOperand(0), m_APInt(C))) { 6491 if (C->isNegative()) { 6492 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6493 Lower = APInt::getSignedMinValue(Width); 6494 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6495 } else { 6496 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6497 Lower = *C - APInt::getSignedMaxValue(Width); 6498 Upper = APInt::getSignedMaxValue(Width) + 1; 6499 } 6500 } else if (match(II.getOperand(1), m_APInt(C))) { 6501 if (C->isNegative()) { 6502 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6503 Lower = APInt::getSignedMinValue(Width) - *C; 6504 Upper = APInt::getSignedMaxValue(Width) + 1; 6505 } else { 6506 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6507 Lower = APInt::getSignedMinValue(Width); 6508 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6509 } 6510 } 6511 break; 6512 case Intrinsic::umin: 6513 case Intrinsic::umax: 6514 case Intrinsic::smin: 6515 case Intrinsic::smax: 6516 if (!match(II.getOperand(0), m_APInt(C)) && 6517 !match(II.getOperand(1), m_APInt(C))) 6518 break; 6519 6520 switch (II.getIntrinsicID()) { 6521 case Intrinsic::umin: 6522 Upper = *C + 1; 6523 break; 6524 case Intrinsic::umax: 6525 Lower = *C; 6526 break; 6527 case Intrinsic::smin: 6528 Lower = APInt::getSignedMinValue(Width); 6529 Upper = *C + 1; 6530 break; 6531 case Intrinsic::smax: 6532 Lower = *C; 6533 Upper = APInt::getSignedMaxValue(Width) + 1; 6534 break; 6535 default: 6536 llvm_unreachable("Must be min/max intrinsic"); 6537 } 6538 break; 6539 case Intrinsic::abs: 6540 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6541 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6542 if (match(II.getOperand(1), m_One())) 6543 Upper = APInt::getSignedMaxValue(Width) + 1; 6544 else 6545 Upper = APInt::getSignedMinValue(Width) + 1; 6546 break; 6547 default: 6548 break; 6549 } 6550 } 6551 6552 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6553 APInt &Upper, const InstrInfoQuery &IIQ) { 6554 const Value *LHS = nullptr, *RHS = nullptr; 6555 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6556 if (R.Flavor == SPF_UNKNOWN) 6557 return; 6558 6559 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6560 6561 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6562 // If the negation part of the abs (in RHS) has the NSW flag, 6563 // then the result of abs(X) is [0..SIGNED_MAX], 6564 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6565 Lower = APInt::getNullValue(BitWidth); 6566 if (match(RHS, m_Neg(m_Specific(LHS))) && 6567 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6568 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6569 else 6570 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6571 return; 6572 } 6573 6574 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6575 // The result of -abs(X) is <= 0. 6576 Lower = APInt::getSignedMinValue(BitWidth); 6577 Upper = APInt(BitWidth, 1); 6578 return; 6579 } 6580 6581 const APInt *C; 6582 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6583 return; 6584 6585 switch (R.Flavor) { 6586 case SPF_UMIN: 6587 Upper = *C + 1; 6588 break; 6589 case SPF_UMAX: 6590 Lower = *C; 6591 break; 6592 case SPF_SMIN: 6593 Lower = APInt::getSignedMinValue(BitWidth); 6594 Upper = *C + 1; 6595 break; 6596 case SPF_SMAX: 6597 Lower = *C; 6598 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6599 break; 6600 default: 6601 break; 6602 } 6603 } 6604 6605 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6606 AssumptionCache *AC, 6607 const Instruction *CtxI, 6608 unsigned Depth) { 6609 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6610 6611 if (Depth == MaxAnalysisRecursionDepth) 6612 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6613 6614 const APInt *C; 6615 if (match(V, m_APInt(C))) 6616 return ConstantRange(*C); 6617 6618 InstrInfoQuery IIQ(UseInstrInfo); 6619 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6620 APInt Lower = APInt(BitWidth, 0); 6621 APInt Upper = APInt(BitWidth, 0); 6622 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6623 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6624 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6625 setLimitsForIntrinsic(*II, Lower, Upper); 6626 else if (auto *SI = dyn_cast<SelectInst>(V)) 6627 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6628 6629 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6630 6631 if (auto *I = dyn_cast<Instruction>(V)) 6632 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6633 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6634 6635 if (CtxI && AC) { 6636 // Try to restrict the range based on information from assumptions. 6637 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6638 if (!AssumeVH) 6639 continue; 6640 CallInst *I = cast<CallInst>(AssumeVH); 6641 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6642 "Got assumption for the wrong function!"); 6643 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6644 "must be an assume intrinsic"); 6645 6646 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6647 continue; 6648 Value *Arg = I->getArgOperand(0); 6649 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6650 // Currently we just use information from comparisons. 6651 if (!Cmp || Cmp->getOperand(0) != V) 6652 continue; 6653 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6654 AC, I, Depth + 1); 6655 CR = CR.intersectWith( 6656 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6657 } 6658 } 6659 6660 return CR; 6661 } 6662 6663 static Optional<int64_t> 6664 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6665 // Skip over the first indices. 6666 gep_type_iterator GTI = gep_type_begin(GEP); 6667 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6668 /*skip along*/; 6669 6670 // Compute the offset implied by the rest of the indices. 6671 int64_t Offset = 0; 6672 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6673 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6674 if (!OpC) 6675 return None; 6676 if (OpC->isZero()) 6677 continue; // No offset. 6678 6679 // Handle struct indices, which add their field offset to the pointer. 6680 if (StructType *STy = GTI.getStructTypeOrNull()) { 6681 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6682 continue; 6683 } 6684 6685 // Otherwise, we have a sequential type like an array or fixed-length 6686 // vector. Multiply the index by the ElementSize. 6687 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6688 if (Size.isScalable()) 6689 return None; 6690 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6691 } 6692 6693 return Offset; 6694 } 6695 6696 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6697 const DataLayout &DL) { 6698 Ptr1 = Ptr1->stripPointerCasts(); 6699 Ptr2 = Ptr2->stripPointerCasts(); 6700 6701 // Handle the trivial case first. 6702 if (Ptr1 == Ptr2) { 6703 return 0; 6704 } 6705 6706 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6707 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6708 6709 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6710 // as in "P" and "gep P, 1". 6711 // Also do this iteratively to handle the the following case: 6712 // Ptr_t1 = GEP Ptr1, c1 6713 // Ptr_t2 = GEP Ptr_t1, c2 6714 // Ptr2 = GEP Ptr_t2, c3 6715 // where we will return c1+c2+c3. 6716 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6717 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6718 // are the same, and return the difference between offsets. 6719 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6720 const Value *Ptr) -> Optional<int64_t> { 6721 const GEPOperator *GEP_T = GEP; 6722 int64_t OffsetVal = 0; 6723 bool HasSameBase = false; 6724 while (GEP_T) { 6725 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6726 if (!Offset) 6727 return None; 6728 OffsetVal += *Offset; 6729 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6730 if (Op0 == Ptr) { 6731 HasSameBase = true; 6732 break; 6733 } 6734 GEP_T = dyn_cast<GEPOperator>(Op0); 6735 } 6736 if (!HasSameBase) 6737 return None; 6738 return OffsetVal; 6739 }; 6740 6741 if (GEP1) { 6742 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6743 if (Offset) 6744 return -*Offset; 6745 } 6746 if (GEP2) { 6747 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6748 if (Offset) 6749 return Offset; 6750 } 6751 6752 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6753 // base. After that base, they may have some number of common (and 6754 // potentially variable) indices. After that they handle some constant 6755 // offset, which determines their offset from each other. At this point, we 6756 // handle no other case. 6757 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6758 return None; 6759 6760 // Skip any common indices and track the GEP types. 6761 unsigned Idx = 1; 6762 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6763 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6764 break; 6765 6766 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6767 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6768 if (!Offset1 || !Offset2) 6769 return None; 6770 return *Offset2 - *Offset1; 6771 } 6772