1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = Shuf->getType()->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 178 if (DemandedElts.isNullValue()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 Type *Ty = V->getType(); 210 APInt DemandedElts = 211 Ty->isVectorTy() 212 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 213 : APInt(1, 1); 214 computeKnownBits(V, DemandedElts, Known, Depth, Q); 215 } 216 217 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 218 const DataLayout &DL, unsigned Depth, 219 AssumptionCache *AC, const Instruction *CxtI, 220 const DominatorTree *DT, 221 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 222 ::computeKnownBits(V, Known, Depth, 223 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 224 } 225 226 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 227 KnownBits &Known, const DataLayout &DL, 228 unsigned Depth, AssumptionCache *AC, 229 const Instruction *CxtI, const DominatorTree *DT, 230 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 231 ::computeKnownBits(V, DemandedElts, Known, Depth, 232 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 233 } 234 235 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 236 unsigned Depth, const Query &Q); 237 238 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 239 const Query &Q); 240 241 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 242 unsigned Depth, AssumptionCache *AC, 243 const Instruction *CxtI, 244 const DominatorTree *DT, 245 OptimizationRemarkEmitter *ORE, 246 bool UseInstrInfo) { 247 return ::computeKnownBits( 248 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 249 } 250 251 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 252 const DataLayout &DL, unsigned Depth, 253 AssumptionCache *AC, const Instruction *CxtI, 254 const DominatorTree *DT, 255 OptimizationRemarkEmitter *ORE, 256 bool UseInstrInfo) { 257 return ::computeKnownBits( 258 V, DemandedElts, Depth, 259 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 260 } 261 262 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 263 const DataLayout &DL, AssumptionCache *AC, 264 const Instruction *CxtI, const DominatorTree *DT, 265 bool UseInstrInfo) { 266 assert(LHS->getType() == RHS->getType() && 267 "LHS and RHS should have the same type"); 268 assert(LHS->getType()->isIntOrIntVectorTy() && 269 "LHS and RHS should be integers"); 270 // Look for an inverted mask: (X & ~M) op (Y & M). 271 Value *M; 272 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 273 match(RHS, m_c_And(m_Specific(M), m_Value()))) 274 return true; 275 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(LHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 279 KnownBits LHSKnown(IT->getBitWidth()); 280 KnownBits RHSKnown(IT->getBitWidth()); 281 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 282 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 283 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 284 } 285 286 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 287 for (const User *U : CxtI->users()) { 288 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 289 if (IC->isEquality()) 290 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 291 if (C->isNullValue()) 292 continue; 293 return false; 294 } 295 return true; 296 } 297 298 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 299 const Query &Q); 300 301 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 302 bool OrZero, unsigned Depth, 303 AssumptionCache *AC, const Instruction *CxtI, 304 const DominatorTree *DT, bool UseInstrInfo) { 305 return ::isKnownToBeAPowerOfTwo( 306 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 307 } 308 309 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 310 unsigned Depth, const Query &Q); 311 312 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 313 314 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 315 AssumptionCache *AC, const Instruction *CxtI, 316 const DominatorTree *DT, bool UseInstrInfo) { 317 return ::isKnownNonZero(V, Depth, 318 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 319 } 320 321 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 322 unsigned Depth, AssumptionCache *AC, 323 const Instruction *CxtI, const DominatorTree *DT, 324 bool UseInstrInfo) { 325 KnownBits Known = 326 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 327 return Known.isNonNegative(); 328 } 329 330 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 331 AssumptionCache *AC, const Instruction *CxtI, 332 const DominatorTree *DT, bool UseInstrInfo) { 333 if (auto *CI = dyn_cast<ConstantInt>(V)) 334 return CI->getValue().isStrictlyPositive(); 335 336 // TODO: We'd doing two recursive queries here. We should factor this such 337 // that only a single query is needed. 338 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 339 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 340 } 341 342 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 343 AssumptionCache *AC, const Instruction *CxtI, 344 const DominatorTree *DT, bool UseInstrInfo) { 345 KnownBits Known = 346 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 347 return Known.isNegative(); 348 } 349 350 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 351 352 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 353 const DataLayout &DL, AssumptionCache *AC, 354 const Instruction *CxtI, const DominatorTree *DT, 355 bool UseInstrInfo) { 356 return ::isKnownNonEqual(V1, V2, 357 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 358 UseInstrInfo, /*ORE=*/nullptr)); 359 } 360 361 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 362 const Query &Q); 363 364 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 365 const DataLayout &DL, unsigned Depth, 366 AssumptionCache *AC, const Instruction *CxtI, 367 const DominatorTree *DT, bool UseInstrInfo) { 368 return ::MaskedValueIsZero( 369 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 370 } 371 372 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 373 unsigned Depth, const Query &Q); 374 375 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 376 const Query &Q) { 377 Type *Ty = V->getType(); 378 APInt DemandedElts = 379 Ty->isVectorTy() 380 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 381 : APInt(1, 1); 382 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 383 } 384 385 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 386 unsigned Depth, AssumptionCache *AC, 387 const Instruction *CxtI, 388 const DominatorTree *DT, bool UseInstrInfo) { 389 return ::ComputeNumSignBits( 390 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 391 } 392 393 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 394 bool NSW, const APInt &DemandedElts, 395 KnownBits &KnownOut, KnownBits &Known2, 396 unsigned Depth, const Query &Q) { 397 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 398 399 // If one operand is unknown and we have no nowrap information, 400 // the result will be unknown independently of the second operand. 401 if (KnownOut.isUnknown() && !NSW) 402 return; 403 404 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 405 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 406 } 407 408 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 409 const APInt &DemandedElts, KnownBits &Known, 410 KnownBits &Known2, unsigned Depth, 411 const Query &Q) { 412 unsigned BitWidth = Known.getBitWidth(); 413 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 414 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 415 416 bool isKnownNegative = false; 417 bool isKnownNonNegative = false; 418 // If the multiplication is known not to overflow, compute the sign bit. 419 if (NSW) { 420 if (Op0 == Op1) { 421 // The product of a number with itself is non-negative. 422 isKnownNonNegative = true; 423 } else { 424 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 425 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 426 bool isKnownNegativeOp1 = Known.isNegative(); 427 bool isKnownNegativeOp0 = Known2.isNegative(); 428 // The product of two numbers with the same sign is non-negative. 429 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 430 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 431 // The product of a negative number and a non-negative number is either 432 // negative or zero. 433 if (!isKnownNonNegative) 434 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 435 isKnownNonZero(Op0, Depth, Q)) || 436 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 437 isKnownNonZero(Op1, Depth, Q)); 438 } 439 } 440 441 assert(!Known.hasConflict() && !Known2.hasConflict()); 442 // Compute a conservative estimate for high known-0 bits. 443 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 444 Known2.countMinLeadingZeros(), 445 BitWidth) - BitWidth; 446 LeadZ = std::min(LeadZ, BitWidth); 447 448 // The result of the bottom bits of an integer multiply can be 449 // inferred by looking at the bottom bits of both operands and 450 // multiplying them together. 451 // We can infer at least the minimum number of known trailing bits 452 // of both operands. Depending on number of trailing zeros, we can 453 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 454 // a and b are divisible by m and n respectively. 455 // We then calculate how many of those bits are inferrable and set 456 // the output. For example, the i8 mul: 457 // a = XXXX1100 (12) 458 // b = XXXX1110 (14) 459 // We know the bottom 3 bits are zero since the first can be divided by 460 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 461 // Applying the multiplication to the trimmed arguments gets: 462 // XX11 (3) 463 // X111 (7) 464 // ------- 465 // XX11 466 // XX11 467 // XX11 468 // XX11 469 // ------- 470 // XXXXX01 471 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 472 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 473 // The proof for this can be described as: 474 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 475 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 476 // umin(countTrailingZeros(C2), C6) + 477 // umin(C5 - umin(countTrailingZeros(C1), C5), 478 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 479 // %aa = shl i8 %a, C5 480 // %bb = shl i8 %b, C6 481 // %aaa = or i8 %aa, C1 482 // %bbb = or i8 %bb, C2 483 // %mul = mul i8 %aaa, %bbb 484 // %mask = and i8 %mul, C7 485 // => 486 // %mask = i8 ((C1*C2)&C7) 487 // Where C5, C6 describe the known bits of %a, %b 488 // C1, C2 describe the known bottom bits of %a, %b. 489 // C7 describes the mask of the known bits of the result. 490 APInt Bottom0 = Known.One; 491 APInt Bottom1 = Known2.One; 492 493 // How many times we'd be able to divide each argument by 2 (shr by 1). 494 // This gives us the number of trailing zeros on the multiplication result. 495 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 496 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 497 unsigned TrailZero0 = Known.countMinTrailingZeros(); 498 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 499 unsigned TrailZ = TrailZero0 + TrailZero1; 500 501 // Figure out the fewest known-bits operand. 502 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 503 TrailBitsKnown1 - TrailZero1); 504 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 505 506 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 507 Bottom1.getLoBits(TrailBitsKnown1); 508 509 Known.resetAll(); 510 Known.Zero.setHighBits(LeadZ); 511 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 512 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 513 514 // Only make use of no-wrap flags if we failed to compute the sign bit 515 // directly. This matters if the multiplication always overflows, in 516 // which case we prefer to follow the result of the direct computation, 517 // though as the program is invoking undefined behaviour we can choose 518 // whatever we like here. 519 if (isKnownNonNegative && !Known.isNegative()) 520 Known.makeNonNegative(); 521 else if (isKnownNegative && !Known.isNonNegative()) 522 Known.makeNegative(); 523 } 524 525 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 526 KnownBits &Known) { 527 unsigned BitWidth = Known.getBitWidth(); 528 unsigned NumRanges = Ranges.getNumOperands() / 2; 529 assert(NumRanges >= 1); 530 531 Known.Zero.setAllBits(); 532 Known.One.setAllBits(); 533 534 for (unsigned i = 0; i < NumRanges; ++i) { 535 ConstantInt *Lower = 536 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 537 ConstantInt *Upper = 538 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 539 ConstantRange Range(Lower->getValue(), Upper->getValue()); 540 541 // The first CommonPrefixBits of all values in Range are equal. 542 unsigned CommonPrefixBits = 543 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 544 545 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 546 Known.One &= Range.getUnsignedMax() & Mask; 547 Known.Zero &= ~Range.getUnsignedMax() & Mask; 548 } 549 } 550 551 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 552 SmallVector<const Value *, 16> WorkSet(1, I); 553 SmallPtrSet<const Value *, 32> Visited; 554 SmallPtrSet<const Value *, 16> EphValues; 555 556 // The instruction defining an assumption's condition itself is always 557 // considered ephemeral to that assumption (even if it has other 558 // non-ephemeral users). See r246696's test case for an example. 559 if (is_contained(I->operands(), E)) 560 return true; 561 562 while (!WorkSet.empty()) { 563 const Value *V = WorkSet.pop_back_val(); 564 if (!Visited.insert(V).second) 565 continue; 566 567 // If all uses of this value are ephemeral, then so is this value. 568 if (llvm::all_of(V->users(), [&](const User *U) { 569 return EphValues.count(U); 570 })) { 571 if (V == E) 572 return true; 573 574 if (V == I || isSafeToSpeculativelyExecute(V)) { 575 EphValues.insert(V); 576 if (const User *U = dyn_cast<User>(V)) 577 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 578 J != JE; ++J) 579 WorkSet.push_back(*J); 580 } 581 } 582 } 583 584 return false; 585 } 586 587 // Is this an intrinsic that cannot be speculated but also cannot trap? 588 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 589 if (const CallInst *CI = dyn_cast<CallInst>(I)) 590 if (Function *F = CI->getCalledFunction()) 591 switch (F->getIntrinsicID()) { 592 default: break; 593 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 594 case Intrinsic::assume: 595 case Intrinsic::sideeffect: 596 case Intrinsic::dbg_declare: 597 case Intrinsic::dbg_value: 598 case Intrinsic::dbg_label: 599 case Intrinsic::invariant_start: 600 case Intrinsic::invariant_end: 601 case Intrinsic::lifetime_start: 602 case Intrinsic::lifetime_end: 603 case Intrinsic::objectsize: 604 case Intrinsic::ptr_annotation: 605 case Intrinsic::var_annotation: 606 return true; 607 } 608 609 return false; 610 } 611 612 bool llvm::isValidAssumeForContext(const Instruction *Inv, 613 const Instruction *CxtI, 614 const DominatorTree *DT) { 615 // There are two restrictions on the use of an assume: 616 // 1. The assume must dominate the context (or the control flow must 617 // reach the assume whenever it reaches the context). 618 // 2. The context must not be in the assume's set of ephemeral values 619 // (otherwise we will use the assume to prove that the condition 620 // feeding the assume is trivially true, thus causing the removal of 621 // the assume). 622 623 if (Inv->getParent() == CxtI->getParent()) { 624 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 625 // in the BB. 626 if (Inv->comesBefore(CxtI)) 627 return true; 628 629 // Don't let an assume affect itself - this would cause the problems 630 // `isEphemeralValueOf` is trying to prevent, and it would also make 631 // the loop below go out of bounds. 632 if (Inv == CxtI) 633 return false; 634 635 // The context comes first, but they're both in the same block. 636 // Make sure there is nothing in between that might interrupt 637 // the control flow, not even CxtI itself. 638 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 639 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 640 return false; 641 642 return !isEphemeralValueOf(Inv, CxtI); 643 } 644 645 // Inv and CxtI are in different blocks. 646 if (DT) { 647 if (DT->dominates(Inv, CxtI)) 648 return true; 649 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 650 // We don't have a DT, but this trivially dominates. 651 return true; 652 } 653 654 return false; 655 } 656 657 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 658 // Use of assumptions is context-sensitive. If we don't have a context, we 659 // cannot use them! 660 if (!Q.AC || !Q.CxtI) 661 return false; 662 663 // Note that the patterns below need to be kept in sync with the code 664 // in AssumptionCache::updateAffectedValues. 665 666 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 667 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 668 669 Value *RHS; 670 CmpInst::Predicate Pred; 671 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 672 return false; 673 // assume(v u> y) -> assume(v != 0) 674 if (Pred == ICmpInst::ICMP_UGT) 675 return true; 676 677 // assume(v != 0) 678 // We special-case this one to ensure that we handle `assume(v != null)`. 679 if (Pred == ICmpInst::ICMP_NE) 680 return match(RHS, m_Zero()); 681 682 // All other predicates - rely on generic ConstantRange handling. 683 ConstantInt *CI; 684 if (!match(RHS, m_ConstantInt(CI))) 685 return false; 686 ConstantRange RHSRange(CI->getValue()); 687 ConstantRange TrueValues = 688 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 689 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 690 }; 691 692 if (Q.CxtI && V->getType()->isPointerTy()) { 693 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 694 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 695 V->getType()->getPointerAddressSpace())) 696 AttrKinds.push_back(Attribute::Dereferenceable); 697 698 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 699 return true; 700 } 701 702 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 703 if (!AssumeVH) 704 continue; 705 CallInst *I = cast<CallInst>(AssumeVH); 706 assert(I->getFunction() == Q.CxtI->getFunction() && 707 "Got assumption for the wrong function!"); 708 if (Q.isExcluded(I)) 709 continue; 710 711 // Warning: This loop can end up being somewhat performance sensitive. 712 // We're running this loop for once for each value queried resulting in a 713 // runtime of ~O(#assumes * #values). 714 715 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 716 "must be an assume intrinsic"); 717 718 Value *Arg = I->getArgOperand(0); 719 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 720 if (!Cmp) 721 continue; 722 723 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 724 return true; 725 } 726 727 return false; 728 } 729 730 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 731 unsigned Depth, const Query &Q) { 732 // Use of assumptions is context-sensitive. If we don't have a context, we 733 // cannot use them! 734 if (!Q.AC || !Q.CxtI) 735 return; 736 737 unsigned BitWidth = Known.getBitWidth(); 738 739 // Note that the patterns below need to be kept in sync with the code 740 // in AssumptionCache::updateAffectedValues. 741 742 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 743 if (!AssumeVH) 744 continue; 745 CallInst *I = cast<CallInst>(AssumeVH); 746 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 747 "Got assumption for the wrong function!"); 748 if (Q.isExcluded(I)) 749 continue; 750 751 // Warning: This loop can end up being somewhat performance sensitive. 752 // We're running this loop for once for each value queried resulting in a 753 // runtime of ~O(#assumes * #values). 754 755 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 756 "must be an assume intrinsic"); 757 758 Value *Arg = I->getArgOperand(0); 759 760 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 assert(BitWidth == 1 && "assume operand is not i1?"); 762 Known.setAllOnes(); 763 return; 764 } 765 if (match(Arg, m_Not(m_Specific(V))) && 766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllZero(); 769 return; 770 } 771 772 // The remaining tests are all recursive, so bail out if we hit the limit. 773 if (Depth == MaxDepth) 774 continue; 775 776 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 777 if (!Cmp) 778 continue; 779 780 Value *A, *B; 781 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 782 783 CmpInst::Predicate Pred; 784 uint64_t C; 785 switch (Cmp->getPredicate()) { 786 default: 787 break; 788 case ICmpInst::ICMP_EQ: 789 // assume(v = a) 790 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 791 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 792 KnownBits RHSKnown(BitWidth); 793 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 794 Known.Zero |= RHSKnown.Zero; 795 Known.One |= RHSKnown.One; 796 // assume(v & b = a) 797 } else if (match(Cmp, 798 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown(BitWidth); 801 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 802 KnownBits MaskKnown(BitWidth); 803 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 804 805 // For those bits in the mask that are known to be one, we can propagate 806 // known bits from the RHS to V. 807 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 808 Known.One |= RHSKnown.One & MaskKnown.One; 809 // assume(~(v & b) = a) 810 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 811 m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown(BitWidth); 814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 815 KnownBits MaskKnown(BitWidth); 816 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 817 818 // For those bits in the mask that are known to be one, we can propagate 819 // inverted known bits from the RHS to V. 820 Known.Zero |= RHSKnown.One & MaskKnown.One; 821 Known.One |= RHSKnown.Zero & MaskKnown.One; 822 // assume(v | b = a) 823 } else if (match(Cmp, 824 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 825 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 826 KnownBits RHSKnown(BitWidth); 827 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 828 KnownBits BKnown(BitWidth); 829 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 830 831 // For those bits in B that are known to be zero, we can propagate known 832 // bits from the RHS to V. 833 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 834 Known.One |= RHSKnown.One & BKnown.Zero; 835 // assume(~(v | b) = a) 836 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 837 m_Value(A))) && 838 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 839 KnownBits RHSKnown(BitWidth); 840 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 841 KnownBits BKnown(BitWidth); 842 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 843 844 // For those bits in B that are known to be zero, we can propagate 845 // inverted known bits from the RHS to V. 846 Known.Zero |= RHSKnown.One & BKnown.Zero; 847 Known.One |= RHSKnown.Zero & BKnown.Zero; 848 // assume(v ^ b = a) 849 } else if (match(Cmp, 850 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 852 KnownBits RHSKnown(BitWidth); 853 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 854 KnownBits BKnown(BitWidth); 855 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 856 857 // For those bits in B that are known to be zero, we can propagate known 858 // bits from the RHS to V. For those bits in B that are known to be one, 859 // we can propagate inverted known bits from the RHS to V. 860 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 861 Known.One |= RHSKnown.One & BKnown.Zero; 862 Known.Zero |= RHSKnown.One & BKnown.One; 863 Known.One |= RHSKnown.Zero & BKnown.One; 864 // assume(~(v ^ b) = a) 865 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 866 m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown(BitWidth); 869 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 870 KnownBits BKnown(BitWidth); 871 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 872 873 // For those bits in B that are known to be zero, we can propagate 874 // inverted known bits from the RHS to V. For those bits in B that are 875 // known to be one, we can propagate known bits from the RHS to V. 876 Known.Zero |= RHSKnown.One & BKnown.Zero; 877 Known.One |= RHSKnown.Zero & BKnown.Zero; 878 Known.Zero |= RHSKnown.Zero & BKnown.One; 879 Known.One |= RHSKnown.One & BKnown.One; 880 // assume(v << c = a) 881 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 882 m_Value(A))) && 883 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 884 KnownBits RHSKnown(BitWidth); 885 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 886 // For those bits in RHS that are known, we can propagate them to known 887 // bits in V shifted to the right by C. 888 RHSKnown.Zero.lshrInPlace(C); 889 Known.Zero |= RHSKnown.Zero; 890 RHSKnown.One.lshrInPlace(C); 891 Known.One |= RHSKnown.One; 892 // assume(~(v << c) = a) 893 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 894 m_Value(A))) && 895 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 896 KnownBits RHSKnown(BitWidth); 897 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 898 // For those bits in RHS that are known, we can propagate them inverted 899 // to known bits in V shifted to the right by C. 900 RHSKnown.One.lshrInPlace(C); 901 Known.Zero |= RHSKnown.One; 902 RHSKnown.Zero.lshrInPlace(C); 903 Known.One |= RHSKnown.Zero; 904 // assume(v >> c = a) 905 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 906 m_Value(A))) && 907 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 908 KnownBits RHSKnown(BitWidth); 909 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 910 // For those bits in RHS that are known, we can propagate them to known 911 // bits in V shifted to the right by C. 912 Known.Zero |= RHSKnown.Zero << C; 913 Known.One |= RHSKnown.One << C; 914 // assume(~(v >> c) = a) 915 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 916 m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 918 KnownBits RHSKnown(BitWidth); 919 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 920 // For those bits in RHS that are known, we can propagate them inverted 921 // to known bits in V shifted to the right by C. 922 Known.Zero |= RHSKnown.One << C; 923 Known.One |= RHSKnown.Zero << C; 924 } 925 break; 926 case ICmpInst::ICMP_SGE: 927 // assume(v >=_s c) where c is non-negative 928 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 929 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 930 KnownBits RHSKnown(BitWidth); 931 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 932 933 if (RHSKnown.isNonNegative()) { 934 // We know that the sign bit is zero. 935 Known.makeNonNegative(); 936 } 937 } 938 break; 939 case ICmpInst::ICMP_SGT: 940 // assume(v >_s c) where c is at least -1. 941 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 942 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 943 KnownBits RHSKnown(BitWidth); 944 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 945 946 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 947 // We know that the sign bit is zero. 948 Known.makeNonNegative(); 949 } 950 } 951 break; 952 case ICmpInst::ICMP_SLE: 953 // assume(v <=_s c) where c is negative 954 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 955 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 956 KnownBits RHSKnown(BitWidth); 957 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 958 959 if (RHSKnown.isNegative()) { 960 // We know that the sign bit is one. 961 Known.makeNegative(); 962 } 963 } 964 break; 965 case ICmpInst::ICMP_SLT: 966 // assume(v <_s c) where c is non-positive 967 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 968 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 969 KnownBits RHSKnown(BitWidth); 970 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 971 972 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 973 // We know that the sign bit is one. 974 Known.makeNegative(); 975 } 976 } 977 break; 978 case ICmpInst::ICMP_ULE: 979 // assume(v <=_u c) 980 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 981 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 982 KnownBits RHSKnown(BitWidth); 983 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 984 985 // Whatever high bits in c are zero are known to be zero. 986 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 987 } 988 break; 989 case ICmpInst::ICMP_ULT: 990 // assume(v <_u c) 991 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 992 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 993 KnownBits RHSKnown(BitWidth); 994 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 995 996 // If the RHS is known zero, then this assumption must be wrong (nothing 997 // is unsigned less than zero). Signal a conflict and get out of here. 998 if (RHSKnown.isZero()) { 999 Known.Zero.setAllBits(); 1000 Known.One.setAllBits(); 1001 break; 1002 } 1003 1004 // Whatever high bits in c are zero are known to be zero (if c is a power 1005 // of 2, then one more). 1006 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1007 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1008 else 1009 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1010 } 1011 break; 1012 } 1013 } 1014 1015 // If assumptions conflict with each other or previous known bits, then we 1016 // have a logical fallacy. It's possible that the assumption is not reachable, 1017 // so this isn't a real bug. On the other hand, the program may have undefined 1018 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1019 // clear out the known bits, try to warn the user, and hope for the best. 1020 if (Known.Zero.intersects(Known.One)) { 1021 Known.resetAll(); 1022 1023 if (Q.ORE) 1024 Q.ORE->emit([&]() { 1025 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1026 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1027 CxtI) 1028 << "Detected conflicting code assumptions. Program may " 1029 "have undefined behavior, or compiler may have " 1030 "internal error."; 1031 }); 1032 } 1033 } 1034 1035 /// Compute known bits from a shift operator, including those with a 1036 /// non-constant shift amount. Known is the output of this function. Known2 is a 1037 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1038 /// operator-specific functions that, given the known-zero or known-one bits 1039 /// respectively, and a shift amount, compute the implied known-zero or 1040 /// known-one bits of the shift operator's result respectively for that shift 1041 /// amount. The results from calling KZF and KOF are conservatively combined for 1042 /// all permitted shift amounts. 1043 static void computeKnownBitsFromShiftOperator( 1044 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1045 KnownBits &Known2, unsigned Depth, const Query &Q, 1046 function_ref<APInt(const APInt &, unsigned)> KZF, 1047 function_ref<APInt(const APInt &, unsigned)> KOF) { 1048 unsigned BitWidth = Known.getBitWidth(); 1049 1050 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1051 if (Known.isConstant()) { 1052 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1053 1054 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1055 Known.Zero = KZF(Known.Zero, ShiftAmt); 1056 Known.One = KOF(Known.One, ShiftAmt); 1057 // If the known bits conflict, this must be an overflowing left shift, so 1058 // the shift result is poison. We can return anything we want. Choose 0 for 1059 // the best folding opportunity. 1060 if (Known.hasConflict()) 1061 Known.setAllZero(); 1062 1063 return; 1064 } 1065 1066 // If the shift amount could be greater than or equal to the bit-width of the 1067 // LHS, the value could be poison, but bail out because the check below is 1068 // expensive. 1069 // TODO: Should we just carry on? 1070 if (Known.getMaxValue().uge(BitWidth)) { 1071 Known.resetAll(); 1072 return; 1073 } 1074 1075 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1076 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1077 // limit value (which implies all bits are known). 1078 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1079 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1080 1081 // It would be more-clearly correct to use the two temporaries for this 1082 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1083 Known.resetAll(); 1084 1085 // If we know the shifter operand is nonzero, we can sometimes infer more 1086 // known bits. However this is expensive to compute, so be lazy about it and 1087 // only compute it when absolutely necessary. 1088 Optional<bool> ShifterOperandIsNonZero; 1089 1090 // Early exit if we can't constrain any well-defined shift amount. 1091 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1092 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1093 ShifterOperandIsNonZero = 1094 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1095 if (!*ShifterOperandIsNonZero) 1096 return; 1097 } 1098 1099 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1100 1101 Known.Zero.setAllBits(); 1102 Known.One.setAllBits(); 1103 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1104 // Combine the shifted known input bits only for those shift amounts 1105 // compatible with its known constraints. 1106 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1107 continue; 1108 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1109 continue; 1110 // If we know the shifter is nonzero, we may be able to infer more known 1111 // bits. This check is sunk down as far as possible to avoid the expensive 1112 // call to isKnownNonZero if the cheaper checks above fail. 1113 if (ShiftAmt == 0) { 1114 if (!ShifterOperandIsNonZero.hasValue()) 1115 ShifterOperandIsNonZero = 1116 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1117 if (*ShifterOperandIsNonZero) 1118 continue; 1119 } 1120 1121 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1122 Known.One &= KOF(Known2.One, ShiftAmt); 1123 } 1124 1125 // If the known bits conflict, the result is poison. Return a 0 and hope the 1126 // caller can further optimize that. 1127 if (Known.hasConflict()) 1128 Known.setAllZero(); 1129 } 1130 1131 static void computeKnownBitsFromOperator(const Operator *I, 1132 const APInt &DemandedElts, 1133 KnownBits &Known, unsigned Depth, 1134 const Query &Q) { 1135 unsigned BitWidth = Known.getBitWidth(); 1136 1137 KnownBits Known2(BitWidth); 1138 switch (I->getOpcode()) { 1139 default: break; 1140 case Instruction::Load: 1141 if (MDNode *MD = 1142 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1143 computeKnownBitsFromRangeMetadata(*MD, Known); 1144 break; 1145 case Instruction::And: { 1146 // If either the LHS or the RHS are Zero, the result is zero. 1147 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1148 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1149 1150 Known &= Known2; 1151 1152 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1153 // here we handle the more general case of adding any odd number by 1154 // matching the form add(x, add(x, y)) where y is odd. 1155 // TODO: This could be generalized to clearing any bit set in y where the 1156 // following bit is known to be unset in y. 1157 Value *X = nullptr, *Y = nullptr; 1158 if (!Known.Zero[0] && !Known.One[0] && 1159 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1160 Known2.resetAll(); 1161 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1162 if (Known2.countMinTrailingOnes() > 0) 1163 Known.Zero.setBit(0); 1164 } 1165 break; 1166 } 1167 case Instruction::Or: 1168 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1169 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1170 1171 Known |= Known2; 1172 break; 1173 case Instruction::Xor: 1174 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1175 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1176 1177 Known ^= Known2; 1178 break; 1179 case Instruction::Mul: { 1180 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1181 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1182 Known, Known2, Depth, Q); 1183 break; 1184 } 1185 case Instruction::UDiv: { 1186 // For the purposes of computing leading zeros we can conservatively 1187 // treat a udiv as a logical right shift by the power of 2 known to 1188 // be less than the denominator. 1189 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1190 unsigned LeadZ = Known2.countMinLeadingZeros(); 1191 1192 Known2.resetAll(); 1193 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1194 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1195 if (RHSMaxLeadingZeros != BitWidth) 1196 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1197 1198 Known.Zero.setHighBits(LeadZ); 1199 break; 1200 } 1201 case Instruction::Select: { 1202 const Value *LHS = nullptr, *RHS = nullptr; 1203 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1204 if (SelectPatternResult::isMinOrMax(SPF)) { 1205 computeKnownBits(RHS, Known, Depth + 1, Q); 1206 computeKnownBits(LHS, Known2, Depth + 1, Q); 1207 } else { 1208 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1209 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1210 } 1211 1212 unsigned MaxHighOnes = 0; 1213 unsigned MaxHighZeros = 0; 1214 if (SPF == SPF_SMAX) { 1215 // If both sides are negative, the result is negative. 1216 if (Known.isNegative() && Known2.isNegative()) 1217 // We can derive a lower bound on the result by taking the max of the 1218 // leading one bits. 1219 MaxHighOnes = 1220 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1221 // If either side is non-negative, the result is non-negative. 1222 else if (Known.isNonNegative() || Known2.isNonNegative()) 1223 MaxHighZeros = 1; 1224 } else if (SPF == SPF_SMIN) { 1225 // If both sides are non-negative, the result is non-negative. 1226 if (Known.isNonNegative() && Known2.isNonNegative()) 1227 // We can derive an upper bound on the result by taking the max of the 1228 // leading zero bits. 1229 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1230 Known2.countMinLeadingZeros()); 1231 // If either side is negative, the result is negative. 1232 else if (Known.isNegative() || Known2.isNegative()) 1233 MaxHighOnes = 1; 1234 } else if (SPF == SPF_UMAX) { 1235 // We can derive a lower bound on the result by taking the max of the 1236 // leading one bits. 1237 MaxHighOnes = 1238 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1239 } else if (SPF == SPF_UMIN) { 1240 // We can derive an upper bound on the result by taking the max of the 1241 // leading zero bits. 1242 MaxHighZeros = 1243 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1244 } else if (SPF == SPF_ABS) { 1245 // RHS from matchSelectPattern returns the negation part of abs pattern. 1246 // If the negate has an NSW flag we can assume the sign bit of the result 1247 // will be 0 because that makes abs(INT_MIN) undefined. 1248 if (match(RHS, m_Neg(m_Specific(LHS))) && 1249 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1250 MaxHighZeros = 1; 1251 } 1252 1253 // Only known if known in both the LHS and RHS. 1254 Known.One &= Known2.One; 1255 Known.Zero &= Known2.Zero; 1256 if (MaxHighOnes > 0) 1257 Known.One.setHighBits(MaxHighOnes); 1258 if (MaxHighZeros > 0) 1259 Known.Zero.setHighBits(MaxHighZeros); 1260 break; 1261 } 1262 case Instruction::FPTrunc: 1263 case Instruction::FPExt: 1264 case Instruction::FPToUI: 1265 case Instruction::FPToSI: 1266 case Instruction::SIToFP: 1267 case Instruction::UIToFP: 1268 break; // Can't work with floating point. 1269 case Instruction::PtrToInt: 1270 case Instruction::IntToPtr: 1271 // Fall through and handle them the same as zext/trunc. 1272 LLVM_FALLTHROUGH; 1273 case Instruction::ZExt: 1274 case Instruction::Trunc: { 1275 Type *SrcTy = I->getOperand(0)->getType(); 1276 1277 unsigned SrcBitWidth; 1278 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1279 // which fall through here. 1280 Type *ScalarTy = SrcTy->getScalarType(); 1281 SrcBitWidth = ScalarTy->isPointerTy() ? 1282 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1283 Q.DL.getTypeSizeInBits(ScalarTy); 1284 1285 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1286 Known = Known.anyextOrTrunc(SrcBitWidth); 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 Known = Known.zextOrTrunc(BitWidth); 1289 break; 1290 } 1291 case Instruction::BitCast: { 1292 Type *SrcTy = I->getOperand(0)->getType(); 1293 if (SrcTy->isIntOrPtrTy() && 1294 // TODO: For now, not handling conversions like: 1295 // (bitcast i64 %x to <2 x i32>) 1296 !I->getType()->isVectorTy()) { 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 break; 1299 } 1300 break; 1301 } 1302 case Instruction::SExt: { 1303 // Compute the bits in the result that are not present in the input. 1304 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1305 1306 Known = Known.trunc(SrcBitWidth); 1307 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1308 // If the sign bit of the input is known set or clear, then we know the 1309 // top bits of the result. 1310 Known = Known.sext(BitWidth); 1311 break; 1312 } 1313 case Instruction::Shl: { 1314 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1315 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1316 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1317 APInt KZResult = KnownZero << ShiftAmt; 1318 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1319 // If this shift has "nsw" keyword, then the result is either a poison 1320 // value or has the same sign bit as the first operand. 1321 if (NSW && KnownZero.isSignBitSet()) 1322 KZResult.setSignBit(); 1323 return KZResult; 1324 }; 1325 1326 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1327 APInt KOResult = KnownOne << ShiftAmt; 1328 if (NSW && KnownOne.isSignBitSet()) 1329 KOResult.setSignBit(); 1330 return KOResult; 1331 }; 1332 1333 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1334 KZF, KOF); 1335 break; 1336 } 1337 case Instruction::LShr: { 1338 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1339 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1340 APInt KZResult = KnownZero.lshr(ShiftAmt); 1341 // High bits known zero. 1342 KZResult.setHighBits(ShiftAmt); 1343 return KZResult; 1344 }; 1345 1346 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1347 return KnownOne.lshr(ShiftAmt); 1348 }; 1349 1350 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1351 KZF, KOF); 1352 break; 1353 } 1354 case Instruction::AShr: { 1355 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1356 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1357 return KnownZero.ashr(ShiftAmt); 1358 }; 1359 1360 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1361 return KnownOne.ashr(ShiftAmt); 1362 }; 1363 1364 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1365 KZF, KOF); 1366 break; 1367 } 1368 case Instruction::Sub: { 1369 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1370 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1371 DemandedElts, Known, Known2, Depth, Q); 1372 break; 1373 } 1374 case Instruction::Add: { 1375 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1376 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1377 DemandedElts, Known, Known2, Depth, Q); 1378 break; 1379 } 1380 case Instruction::SRem: 1381 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1382 APInt RA = Rem->getValue().abs(); 1383 if (RA.isPowerOf2()) { 1384 APInt LowBits = RA - 1; 1385 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1386 1387 // The low bits of the first operand are unchanged by the srem. 1388 Known.Zero = Known2.Zero & LowBits; 1389 Known.One = Known2.One & LowBits; 1390 1391 // If the first operand is non-negative or has all low bits zero, then 1392 // the upper bits are all zero. 1393 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1394 Known.Zero |= ~LowBits; 1395 1396 // If the first operand is negative and not all low bits are zero, then 1397 // the upper bits are all one. 1398 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1399 Known.One |= ~LowBits; 1400 1401 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1402 break; 1403 } 1404 } 1405 1406 // The sign bit is the LHS's sign bit, except when the result of the 1407 // remainder is zero. 1408 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1409 // If it's known zero, our sign bit is also zero. 1410 if (Known2.isNonNegative()) 1411 Known.makeNonNegative(); 1412 1413 break; 1414 case Instruction::URem: { 1415 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1416 const APInt &RA = Rem->getValue(); 1417 if (RA.isPowerOf2()) { 1418 APInt LowBits = (RA - 1); 1419 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1420 Known.Zero |= ~LowBits; 1421 Known.One &= LowBits; 1422 break; 1423 } 1424 } 1425 1426 // Since the result is less than or equal to either operand, any leading 1427 // zero bits in either operand must also exist in the result. 1428 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1429 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1430 1431 unsigned Leaders = 1432 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1433 Known.resetAll(); 1434 Known.Zero.setHighBits(Leaders); 1435 break; 1436 } 1437 1438 case Instruction::Alloca: { 1439 const AllocaInst *AI = cast<AllocaInst>(I); 1440 unsigned Align = AI->getAlignment(); 1441 if (Align == 0) 1442 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1443 1444 if (Align > 0) 1445 Known.Zero.setLowBits(countTrailingZeros(Align)); 1446 break; 1447 } 1448 case Instruction::GetElementPtr: { 1449 // Analyze all of the subscripts of this getelementptr instruction 1450 // to determine if we can prove known low zero bits. 1451 KnownBits LocalKnown(BitWidth); 1452 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1453 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1454 1455 gep_type_iterator GTI = gep_type_begin(I); 1456 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1457 // TrailZ can only become smaller, short-circuit if we hit zero. 1458 if (TrailZ == 0) 1459 break; 1460 1461 Value *Index = I->getOperand(i); 1462 if (StructType *STy = GTI.getStructTypeOrNull()) { 1463 // Handle struct member offset arithmetic. 1464 1465 // Handle case when index is vector zeroinitializer 1466 Constant *CIndex = cast<Constant>(Index); 1467 if (CIndex->isZeroValue()) 1468 continue; 1469 1470 if (CIndex->getType()->isVectorTy()) 1471 Index = CIndex->getSplatValue(); 1472 1473 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1474 const StructLayout *SL = Q.DL.getStructLayout(STy); 1475 uint64_t Offset = SL->getElementOffset(Idx); 1476 TrailZ = std::min<unsigned>(TrailZ, 1477 countTrailingZeros(Offset)); 1478 } else { 1479 // Handle array index arithmetic. 1480 Type *IndexedTy = GTI.getIndexedType(); 1481 if (!IndexedTy->isSized()) { 1482 TrailZ = 0; 1483 break; 1484 } 1485 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1486 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1487 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1488 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1489 TrailZ = std::min(TrailZ, 1490 unsigned(countTrailingZeros(TypeSize) + 1491 LocalKnown.countMinTrailingZeros())); 1492 } 1493 } 1494 1495 Known.Zero.setLowBits(TrailZ); 1496 break; 1497 } 1498 case Instruction::PHI: { 1499 const PHINode *P = cast<PHINode>(I); 1500 // Handle the case of a simple two-predecessor recurrence PHI. 1501 // There's a lot more that could theoretically be done here, but 1502 // this is sufficient to catch some interesting cases. 1503 if (P->getNumIncomingValues() == 2) { 1504 for (unsigned i = 0; i != 2; ++i) { 1505 Value *L = P->getIncomingValue(i); 1506 Value *R = P->getIncomingValue(!i); 1507 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1508 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1509 Operator *LU = dyn_cast<Operator>(L); 1510 if (!LU) 1511 continue; 1512 unsigned Opcode = LU->getOpcode(); 1513 // Check for operations that have the property that if 1514 // both their operands have low zero bits, the result 1515 // will have low zero bits. 1516 if (Opcode == Instruction::Add || 1517 Opcode == Instruction::Sub || 1518 Opcode == Instruction::And || 1519 Opcode == Instruction::Or || 1520 Opcode == Instruction::Mul) { 1521 Value *LL = LU->getOperand(0); 1522 Value *LR = LU->getOperand(1); 1523 // Find a recurrence. 1524 if (LL == I) 1525 L = LR; 1526 else if (LR == I) 1527 L = LL; 1528 else 1529 continue; // Check for recurrence with L and R flipped. 1530 1531 // Change the context instruction to the "edge" that flows into the 1532 // phi. This is important because that is where the value is actually 1533 // "evaluated" even though it is used later somewhere else. (see also 1534 // D69571). 1535 Query RecQ = Q; 1536 1537 // Ok, we have a PHI of the form L op= R. Check for low 1538 // zero bits. 1539 RecQ.CxtI = RInst; 1540 computeKnownBits(R, Known2, Depth + 1, RecQ); 1541 1542 // We need to take the minimum number of known bits 1543 KnownBits Known3(BitWidth); 1544 RecQ.CxtI = LInst; 1545 computeKnownBits(L, Known3, Depth + 1, RecQ); 1546 1547 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1548 Known3.countMinTrailingZeros())); 1549 1550 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1551 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1552 // If initial value of recurrence is nonnegative, and we are adding 1553 // a nonnegative number with nsw, the result can only be nonnegative 1554 // or poison value regardless of the number of times we execute the 1555 // add in phi recurrence. If initial value is negative and we are 1556 // adding a negative number with nsw, the result can only be 1557 // negative or poison value. Similar arguments apply to sub and mul. 1558 // 1559 // (add non-negative, non-negative) --> non-negative 1560 // (add negative, negative) --> negative 1561 if (Opcode == Instruction::Add) { 1562 if (Known2.isNonNegative() && Known3.isNonNegative()) 1563 Known.makeNonNegative(); 1564 else if (Known2.isNegative() && Known3.isNegative()) 1565 Known.makeNegative(); 1566 } 1567 1568 // (sub nsw non-negative, negative) --> non-negative 1569 // (sub nsw negative, non-negative) --> negative 1570 else if (Opcode == Instruction::Sub && LL == I) { 1571 if (Known2.isNonNegative() && Known3.isNegative()) 1572 Known.makeNonNegative(); 1573 else if (Known2.isNegative() && Known3.isNonNegative()) 1574 Known.makeNegative(); 1575 } 1576 1577 // (mul nsw non-negative, non-negative) --> non-negative 1578 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1579 Known3.isNonNegative()) 1580 Known.makeNonNegative(); 1581 } 1582 1583 break; 1584 } 1585 } 1586 } 1587 1588 // Unreachable blocks may have zero-operand PHI nodes. 1589 if (P->getNumIncomingValues() == 0) 1590 break; 1591 1592 // Otherwise take the unions of the known bit sets of the operands, 1593 // taking conservative care to avoid excessive recursion. 1594 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1595 // Skip if every incoming value references to ourself. 1596 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1597 break; 1598 1599 Known.Zero.setAllBits(); 1600 Known.One.setAllBits(); 1601 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1602 Value *IncValue = P->getIncomingValue(u); 1603 // Skip direct self references. 1604 if (IncValue == P) continue; 1605 1606 // Change the context instruction to the "edge" that flows into the 1607 // phi. This is important because that is where the value is actually 1608 // "evaluated" even though it is used later somewhere else. (see also 1609 // D69571). 1610 Query RecQ = Q; 1611 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1612 1613 Known2 = KnownBits(BitWidth); 1614 // Recurse, but cap the recursion to one level, because we don't 1615 // want to waste time spinning around in loops. 1616 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1617 Known.Zero &= Known2.Zero; 1618 Known.One &= Known2.One; 1619 // If all bits have been ruled out, there's no need to check 1620 // more operands. 1621 if (!Known.Zero && !Known.One) 1622 break; 1623 } 1624 } 1625 break; 1626 } 1627 case Instruction::Call: 1628 case Instruction::Invoke: 1629 // If range metadata is attached to this call, set known bits from that, 1630 // and then intersect with known bits based on other properties of the 1631 // function. 1632 if (MDNode *MD = 1633 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1634 computeKnownBitsFromRangeMetadata(*MD, Known); 1635 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1636 computeKnownBits(RV, Known2, Depth + 1, Q); 1637 Known.Zero |= Known2.Zero; 1638 Known.One |= Known2.One; 1639 } 1640 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1641 switch (II->getIntrinsicID()) { 1642 default: break; 1643 case Intrinsic::bitreverse: 1644 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1645 Known.Zero |= Known2.Zero.reverseBits(); 1646 Known.One |= Known2.One.reverseBits(); 1647 break; 1648 case Intrinsic::bswap: 1649 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1650 Known.Zero |= Known2.Zero.byteSwap(); 1651 Known.One |= Known2.One.byteSwap(); 1652 break; 1653 case Intrinsic::ctlz: { 1654 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1655 // If we have a known 1, its position is our upper bound. 1656 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1657 // If this call is undefined for 0, the result will be less than 2^n. 1658 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1659 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1660 unsigned LowBits = Log2_32(PossibleLZ)+1; 1661 Known.Zero.setBitsFrom(LowBits); 1662 break; 1663 } 1664 case Intrinsic::cttz: { 1665 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1666 // If we have a known 1, its position is our upper bound. 1667 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1668 // If this call is undefined for 0, the result will be less than 2^n. 1669 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1670 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1671 unsigned LowBits = Log2_32(PossibleTZ)+1; 1672 Known.Zero.setBitsFrom(LowBits); 1673 break; 1674 } 1675 case Intrinsic::ctpop: { 1676 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1677 // We can bound the space the count needs. Also, bits known to be zero 1678 // can't contribute to the population. 1679 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1680 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1681 Known.Zero.setBitsFrom(LowBits); 1682 // TODO: we could bound KnownOne using the lower bound on the number 1683 // of bits which might be set provided by popcnt KnownOne2. 1684 break; 1685 } 1686 case Intrinsic::fshr: 1687 case Intrinsic::fshl: { 1688 const APInt *SA; 1689 if (!match(I->getOperand(2), m_APInt(SA))) 1690 break; 1691 1692 // Normalize to funnel shift left. 1693 uint64_t ShiftAmt = SA->urem(BitWidth); 1694 if (II->getIntrinsicID() == Intrinsic::fshr) 1695 ShiftAmt = BitWidth - ShiftAmt; 1696 1697 KnownBits Known3(BitWidth); 1698 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1699 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1700 1701 Known.Zero = 1702 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1703 Known.One = 1704 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1705 break; 1706 } 1707 case Intrinsic::uadd_sat: 1708 case Intrinsic::usub_sat: { 1709 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1710 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1711 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1712 1713 // Add: Leading ones of either operand are preserved. 1714 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1715 // as leading zeros in the result. 1716 unsigned LeadingKnown; 1717 if (IsAdd) 1718 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1719 Known2.countMinLeadingOnes()); 1720 else 1721 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1722 Known2.countMinLeadingOnes()); 1723 1724 Known = KnownBits::computeForAddSub( 1725 IsAdd, /* NSW */ false, Known, Known2); 1726 1727 // We select between the operation result and all-ones/zero 1728 // respectively, so we can preserve known ones/zeros. 1729 if (IsAdd) { 1730 Known.One.setHighBits(LeadingKnown); 1731 Known.Zero.clearAllBits(); 1732 } else { 1733 Known.Zero.setHighBits(LeadingKnown); 1734 Known.One.clearAllBits(); 1735 } 1736 break; 1737 } 1738 case Intrinsic::x86_sse42_crc32_64_64: 1739 Known.Zero.setBitsFrom(32); 1740 break; 1741 } 1742 } 1743 break; 1744 case Instruction::ShuffleVector: { 1745 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1746 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1747 if (!Shuf) { 1748 Known.resetAll(); 1749 return; 1750 } 1751 // For undef elements, we don't know anything about the common state of 1752 // the shuffle result. 1753 APInt DemandedLHS, DemandedRHS; 1754 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1755 Known.resetAll(); 1756 return; 1757 } 1758 Known.One.setAllBits(); 1759 Known.Zero.setAllBits(); 1760 if (!!DemandedLHS) { 1761 const Value *LHS = Shuf->getOperand(0); 1762 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1763 // If we don't know any bits, early out. 1764 if (Known.isUnknown()) 1765 break; 1766 } 1767 if (!!DemandedRHS) { 1768 const Value *RHS = Shuf->getOperand(1); 1769 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1770 Known.One &= Known2.One; 1771 Known.Zero &= Known2.Zero; 1772 } 1773 break; 1774 } 1775 case Instruction::InsertElement: { 1776 const Value *Vec = I->getOperand(0); 1777 const Value *Elt = I->getOperand(1); 1778 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1779 // Early out if the index is non-constant or out-of-range. 1780 unsigned NumElts = DemandedElts.getBitWidth(); 1781 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1782 Known.resetAll(); 1783 return; 1784 } 1785 Known.One.setAllBits(); 1786 Known.Zero.setAllBits(); 1787 unsigned EltIdx = CIdx->getZExtValue(); 1788 // Do we demand the inserted element? 1789 if (DemandedElts[EltIdx]) { 1790 computeKnownBits(Elt, Known, Depth + 1, Q); 1791 // If we don't know any bits, early out. 1792 if (Known.isUnknown()) 1793 break; 1794 } 1795 // We don't need the base vector element that has been inserted. 1796 APInt DemandedVecElts = DemandedElts; 1797 DemandedVecElts.clearBit(EltIdx); 1798 if (!!DemandedVecElts) { 1799 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1800 Known.One &= Known2.One; 1801 Known.Zero &= Known2.Zero; 1802 } 1803 break; 1804 } 1805 case Instruction::ExtractElement: { 1806 // Look through extract element. If the index is non-constant or 1807 // out-of-range demand all elements, otherwise just the extracted element. 1808 const Value *Vec = I->getOperand(0); 1809 const Value *Idx = I->getOperand(1); 1810 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1811 unsigned NumElts = cast<VectorType>(Vec->getType())->getNumElements(); 1812 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1813 if (CIdx && CIdx->getValue().ult(NumElts)) 1814 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1815 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1816 break; 1817 } 1818 case Instruction::ExtractValue: 1819 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1820 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1821 if (EVI->getNumIndices() != 1) break; 1822 if (EVI->getIndices()[0] == 0) { 1823 switch (II->getIntrinsicID()) { 1824 default: break; 1825 case Intrinsic::uadd_with_overflow: 1826 case Intrinsic::sadd_with_overflow: 1827 computeKnownBitsAddSub(true, II->getArgOperand(0), 1828 II->getArgOperand(1), false, DemandedElts, 1829 Known, Known2, Depth, Q); 1830 break; 1831 case Intrinsic::usub_with_overflow: 1832 case Intrinsic::ssub_with_overflow: 1833 computeKnownBitsAddSub(false, II->getArgOperand(0), 1834 II->getArgOperand(1), false, DemandedElts, 1835 Known, Known2, Depth, Q); 1836 break; 1837 case Intrinsic::umul_with_overflow: 1838 case Intrinsic::smul_with_overflow: 1839 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1840 DemandedElts, Known, Known2, Depth, Q); 1841 break; 1842 } 1843 } 1844 } 1845 break; 1846 } 1847 } 1848 1849 /// Determine which bits of V are known to be either zero or one and return 1850 /// them. 1851 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1852 unsigned Depth, const Query &Q) { 1853 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1854 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1855 return Known; 1856 } 1857 1858 /// Determine which bits of V are known to be either zero or one and return 1859 /// them. 1860 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1861 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1862 computeKnownBits(V, Known, Depth, Q); 1863 return Known; 1864 } 1865 1866 /// Determine which bits of V are known to be either zero or one and return 1867 /// them in the Known bit set. 1868 /// 1869 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1870 /// we cannot optimize based on the assumption that it is zero without changing 1871 /// it to be an explicit zero. If we don't change it to zero, other code could 1872 /// optimized based on the contradictory assumption that it is non-zero. 1873 /// Because instcombine aggressively folds operations with undef args anyway, 1874 /// this won't lose us code quality. 1875 /// 1876 /// This function is defined on values with integer type, values with pointer 1877 /// type, and vectors of integers. In the case 1878 /// where V is a vector, known zero, and known one values are the 1879 /// same width as the vector element, and the bit is set only if it is true 1880 /// for all of the demanded elements in the vector specified by DemandedElts. 1881 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1882 KnownBits &Known, unsigned Depth, const Query &Q) { 1883 assert(V && "No Value?"); 1884 assert(Depth <= MaxDepth && "Limit Search Depth"); 1885 unsigned BitWidth = Known.getBitWidth(); 1886 1887 Type *Ty = V->getType(); 1888 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1889 "Not integer or pointer type!"); 1890 assert(((Ty->isVectorTy() && cast<VectorType>(Ty)->getNumElements() == 1891 DemandedElts.getBitWidth()) || 1892 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1893 "Unexpected vector size"); 1894 1895 Type *ScalarTy = Ty->getScalarType(); 1896 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1897 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1898 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1899 (void)BitWidth; 1900 (void)ExpectedWidth; 1901 1902 if (!DemandedElts) { 1903 // No demanded elts, better to assume we don't know anything. 1904 Known.resetAll(); 1905 return; 1906 } 1907 1908 const APInt *C; 1909 if (match(V, m_APInt(C))) { 1910 // We know all of the bits for a scalar constant or a splat vector constant! 1911 Known.One = *C; 1912 Known.Zero = ~Known.One; 1913 return; 1914 } 1915 // Null and aggregate-zero are all-zeros. 1916 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1917 Known.setAllZero(); 1918 return; 1919 } 1920 // Handle a constant vector by taking the intersection of the known bits of 1921 // each element. 1922 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1923 assert((!Ty->isVectorTy() || 1924 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1925 "Unexpected vector size"); 1926 // We know that CDS must be a vector of integers. Take the intersection of 1927 // each element. 1928 Known.Zero.setAllBits(); Known.One.setAllBits(); 1929 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1930 if (Ty->isVectorTy() && !DemandedElts[i]) 1931 continue; 1932 APInt Elt = CDS->getElementAsAPInt(i); 1933 Known.Zero &= ~Elt; 1934 Known.One &= Elt; 1935 } 1936 return; 1937 } 1938 1939 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1940 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1941 "Unexpected vector size"); 1942 // We know that CV must be a vector of integers. Take the intersection of 1943 // each element. 1944 Known.Zero.setAllBits(); Known.One.setAllBits(); 1945 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1946 if (!DemandedElts[i]) 1947 continue; 1948 Constant *Element = CV->getAggregateElement(i); 1949 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1950 if (!ElementCI) { 1951 Known.resetAll(); 1952 return; 1953 } 1954 const APInt &Elt = ElementCI->getValue(); 1955 Known.Zero &= ~Elt; 1956 Known.One &= Elt; 1957 } 1958 return; 1959 } 1960 1961 // Start out not knowing anything. 1962 Known.resetAll(); 1963 1964 // We can't imply anything about undefs. 1965 if (isa<UndefValue>(V)) 1966 return; 1967 1968 // There's no point in looking through other users of ConstantData for 1969 // assumptions. Confirm that we've handled them all. 1970 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1971 1972 // Limit search depth. 1973 // All recursive calls that increase depth must come after this. 1974 if (Depth == MaxDepth) 1975 return; 1976 1977 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1978 // the bits of its aliasee. 1979 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1980 if (!GA->isInterposable()) 1981 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1982 return; 1983 } 1984 1985 if (const Operator *I = dyn_cast<Operator>(V)) 1986 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1987 1988 // Aligned pointers have trailing zeros - refine Known.Zero set 1989 if (Ty->isPointerTy()) { 1990 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1991 if (Align) 1992 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1993 } 1994 1995 // computeKnownBitsFromAssume strictly refines Known. 1996 // Therefore, we run them after computeKnownBitsFromOperator. 1997 1998 // Check whether a nearby assume intrinsic can determine some known bits. 1999 computeKnownBitsFromAssume(V, Known, Depth, Q); 2000 2001 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2002 } 2003 2004 /// Return true if the given value is known to have exactly one 2005 /// bit set when defined. For vectors return true if every element is known to 2006 /// be a power of two when defined. Supports values with integer or pointer 2007 /// types and vectors of integers. 2008 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2009 const Query &Q) { 2010 assert(Depth <= MaxDepth && "Limit Search Depth"); 2011 2012 // Attempt to match against constants. 2013 if (OrZero && match(V, m_Power2OrZero())) 2014 return true; 2015 if (match(V, m_Power2())) 2016 return true; 2017 2018 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2019 // it is shifted off the end then the result is undefined. 2020 if (match(V, m_Shl(m_One(), m_Value()))) 2021 return true; 2022 2023 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2024 // the bottom. If it is shifted off the bottom then the result is undefined. 2025 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2026 return true; 2027 2028 // The remaining tests are all recursive, so bail out if we hit the limit. 2029 if (Depth++ == MaxDepth) 2030 return false; 2031 2032 Value *X = nullptr, *Y = nullptr; 2033 // A shift left or a logical shift right of a power of two is a power of two 2034 // or zero. 2035 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2036 match(V, m_LShr(m_Value(X), m_Value())))) 2037 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2038 2039 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2040 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2041 2042 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2043 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2044 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2045 2046 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2047 // A power of two and'd with anything is a power of two or zero. 2048 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2049 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2050 return true; 2051 // X & (-X) is always a power of two or zero. 2052 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2053 return true; 2054 return false; 2055 } 2056 2057 // Adding a power-of-two or zero to the same power-of-two or zero yields 2058 // either the original power-of-two, a larger power-of-two or zero. 2059 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2060 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2061 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2062 Q.IIQ.hasNoSignedWrap(VOBO)) { 2063 if (match(X, m_And(m_Specific(Y), m_Value())) || 2064 match(X, m_And(m_Value(), m_Specific(Y)))) 2065 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2066 return true; 2067 if (match(Y, m_And(m_Specific(X), m_Value())) || 2068 match(Y, m_And(m_Value(), m_Specific(X)))) 2069 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2070 return true; 2071 2072 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2073 KnownBits LHSBits(BitWidth); 2074 computeKnownBits(X, LHSBits, Depth, Q); 2075 2076 KnownBits RHSBits(BitWidth); 2077 computeKnownBits(Y, RHSBits, Depth, Q); 2078 // If i8 V is a power of two or zero: 2079 // ZeroBits: 1 1 1 0 1 1 1 1 2080 // ~ZeroBits: 0 0 0 1 0 0 0 0 2081 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2082 // If OrZero isn't set, we cannot give back a zero result. 2083 // Make sure either the LHS or RHS has a bit set. 2084 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2085 return true; 2086 } 2087 } 2088 2089 // An exact divide or right shift can only shift off zero bits, so the result 2090 // is a power of two only if the first operand is a power of two and not 2091 // copying a sign bit (sdiv int_min, 2). 2092 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2093 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2094 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2095 Depth, Q); 2096 } 2097 2098 return false; 2099 } 2100 2101 /// Test whether a GEP's result is known to be non-null. 2102 /// 2103 /// Uses properties inherent in a GEP to try to determine whether it is known 2104 /// to be non-null. 2105 /// 2106 /// Currently this routine does not support vector GEPs. 2107 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2108 const Query &Q) { 2109 const Function *F = nullptr; 2110 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2111 F = I->getFunction(); 2112 2113 if (!GEP->isInBounds() || 2114 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2115 return false; 2116 2117 // FIXME: Support vector-GEPs. 2118 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2119 2120 // If the base pointer is non-null, we cannot walk to a null address with an 2121 // inbounds GEP in address space zero. 2122 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2123 return true; 2124 2125 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2126 // If so, then the GEP cannot produce a null pointer, as doing so would 2127 // inherently violate the inbounds contract within address space zero. 2128 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2129 GTI != GTE; ++GTI) { 2130 // Struct types are easy -- they must always be indexed by a constant. 2131 if (StructType *STy = GTI.getStructTypeOrNull()) { 2132 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2133 unsigned ElementIdx = OpC->getZExtValue(); 2134 const StructLayout *SL = Q.DL.getStructLayout(STy); 2135 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2136 if (ElementOffset > 0) 2137 return true; 2138 continue; 2139 } 2140 2141 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2142 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2143 continue; 2144 2145 // Fast path the constant operand case both for efficiency and so we don't 2146 // increment Depth when just zipping down an all-constant GEP. 2147 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2148 if (!OpC->isZero()) 2149 return true; 2150 continue; 2151 } 2152 2153 // We post-increment Depth here because while isKnownNonZero increments it 2154 // as well, when we pop back up that increment won't persist. We don't want 2155 // to recurse 10k times just because we have 10k GEP operands. We don't 2156 // bail completely out because we want to handle constant GEPs regardless 2157 // of depth. 2158 if (Depth++ >= MaxDepth) 2159 continue; 2160 2161 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2162 return true; 2163 } 2164 2165 return false; 2166 } 2167 2168 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2169 const Instruction *CtxI, 2170 const DominatorTree *DT) { 2171 if (isa<Constant>(V)) 2172 return false; 2173 2174 if (!CtxI || !DT) 2175 return false; 2176 2177 unsigned NumUsesExplored = 0; 2178 for (auto *U : V->users()) { 2179 // Avoid massive lists 2180 if (NumUsesExplored >= DomConditionsMaxUses) 2181 break; 2182 NumUsesExplored++; 2183 2184 // If the value is used as an argument to a call or invoke, then argument 2185 // attributes may provide an answer about null-ness. 2186 if (const auto *CB = dyn_cast<CallBase>(U)) 2187 if (auto *CalledFunc = CB->getCalledFunction()) 2188 for (const Argument &Arg : CalledFunc->args()) 2189 if (CB->getArgOperand(Arg.getArgNo()) == V && 2190 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2191 return true; 2192 2193 // If the value is used as a load/store, then the pointer must be non null. 2194 if (V == getLoadStorePointerOperand(U)) { 2195 const Instruction *I = cast<Instruction>(U); 2196 if (!NullPointerIsDefined(I->getFunction(), 2197 V->getType()->getPointerAddressSpace()) && 2198 DT->dominates(I, CtxI)) 2199 return true; 2200 } 2201 2202 // Consider only compare instructions uniquely controlling a branch 2203 CmpInst::Predicate Pred; 2204 if (!match(const_cast<User *>(U), 2205 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2206 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2207 continue; 2208 2209 SmallVector<const User *, 4> WorkList; 2210 SmallPtrSet<const User *, 4> Visited; 2211 for (auto *CmpU : U->users()) { 2212 assert(WorkList.empty() && "Should be!"); 2213 if (Visited.insert(CmpU).second) 2214 WorkList.push_back(CmpU); 2215 2216 while (!WorkList.empty()) { 2217 auto *Curr = WorkList.pop_back_val(); 2218 2219 // If a user is an AND, add all its users to the work list. We only 2220 // propagate "pred != null" condition through AND because it is only 2221 // correct to assume that all conditions of AND are met in true branch. 2222 // TODO: Support similar logic of OR and EQ predicate? 2223 if (Pred == ICmpInst::ICMP_NE) 2224 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2225 if (BO->getOpcode() == Instruction::And) { 2226 for (auto *BOU : BO->users()) 2227 if (Visited.insert(BOU).second) 2228 WorkList.push_back(BOU); 2229 continue; 2230 } 2231 2232 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2233 assert(BI->isConditional() && "uses a comparison!"); 2234 2235 BasicBlock *NonNullSuccessor = 2236 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2237 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2238 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2239 return true; 2240 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2241 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2242 return true; 2243 } 2244 } 2245 } 2246 } 2247 2248 return false; 2249 } 2250 2251 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2252 /// ensure that the value it's attached to is never Value? 'RangeType' is 2253 /// is the type of the value described by the range. 2254 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2255 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2256 assert(NumRanges >= 1); 2257 for (unsigned i = 0; i < NumRanges; ++i) { 2258 ConstantInt *Lower = 2259 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2260 ConstantInt *Upper = 2261 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2262 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2263 if (Range.contains(Value)) 2264 return false; 2265 } 2266 return true; 2267 } 2268 2269 /// Return true if the given value is known to be non-zero when defined. For 2270 /// vectors, return true if every demanded element is known to be non-zero when 2271 /// defined. For pointers, if the context instruction and dominator tree are 2272 /// specified, perform context-sensitive analysis and return true if the 2273 /// pointer couldn't possibly be null at the specified instruction. 2274 /// Supports values with integer or pointer type and vectors of integers. 2275 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2276 const Query &Q) { 2277 if (auto *C = dyn_cast<Constant>(V)) { 2278 if (C->isNullValue()) 2279 return false; 2280 if (isa<ConstantInt>(C)) 2281 // Must be non-zero due to null test above. 2282 return true; 2283 2284 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2285 // See the comment for IntToPtr/PtrToInt instructions below. 2286 if (CE->getOpcode() == Instruction::IntToPtr || 2287 CE->getOpcode() == Instruction::PtrToInt) 2288 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2289 Q.DL.getTypeSizeInBits(CE->getType())) 2290 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2291 } 2292 2293 // For constant vectors, check that all elements are undefined or known 2294 // non-zero to determine that the whole vector is known non-zero. 2295 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2296 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2297 if (!DemandedElts[i]) 2298 continue; 2299 Constant *Elt = C->getAggregateElement(i); 2300 if (!Elt || Elt->isNullValue()) 2301 return false; 2302 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2303 return false; 2304 } 2305 return true; 2306 } 2307 2308 // A global variable in address space 0 is non null unless extern weak 2309 // or an absolute symbol reference. Other address spaces may have null as a 2310 // valid address for a global, so we can't assume anything. 2311 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2312 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2313 GV->getType()->getAddressSpace() == 0) 2314 return true; 2315 } else 2316 return false; 2317 } 2318 2319 if (auto *I = dyn_cast<Instruction>(V)) { 2320 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2321 // If the possible ranges don't contain zero, then the value is 2322 // definitely non-zero. 2323 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2324 const APInt ZeroValue(Ty->getBitWidth(), 0); 2325 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2326 return true; 2327 } 2328 } 2329 } 2330 2331 if (isKnownNonZeroFromAssume(V, Q)) 2332 return true; 2333 2334 // Some of the tests below are recursive, so bail out if we hit the limit. 2335 if (Depth++ >= MaxDepth) 2336 return false; 2337 2338 // Check for pointer simplifications. 2339 if (V->getType()->isPointerTy()) { 2340 // Alloca never returns null, malloc might. 2341 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2342 return true; 2343 2344 // A byval, inalloca, or nonnull argument is never null. 2345 if (const Argument *A = dyn_cast<Argument>(V)) 2346 if (A->hasPassPointeeByValueAttr() || A->hasNonNullAttr()) 2347 return true; 2348 2349 // A Load tagged with nonnull metadata is never null. 2350 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2351 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2352 return true; 2353 2354 if (const auto *Call = dyn_cast<CallBase>(V)) { 2355 if (Call->isReturnNonNull()) 2356 return true; 2357 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2358 return isKnownNonZero(RP, Depth, Q); 2359 } 2360 } 2361 2362 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2363 return true; 2364 2365 // Check for recursive pointer simplifications. 2366 if (V->getType()->isPointerTy()) { 2367 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2368 // do not alter the value, or at least not the nullness property of the 2369 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2370 // 2371 // Note that we have to take special care to avoid looking through 2372 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2373 // as casts that can alter the value, e.g., AddrSpaceCasts. 2374 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2375 if (isGEPKnownNonNull(GEP, Depth, Q)) 2376 return true; 2377 2378 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2379 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2380 2381 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2382 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2383 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2384 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2385 } 2386 2387 // Similar to int2ptr above, we can look through ptr2int here if the cast 2388 // is a no-op or an extend and not a truncate. 2389 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2390 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2391 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2392 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2393 2394 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2395 2396 // X | Y != 0 if X != 0 or Y != 0. 2397 Value *X = nullptr, *Y = nullptr; 2398 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2399 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2400 isKnownNonZero(Y, DemandedElts, Depth, Q); 2401 2402 // ext X != 0 if X != 0. 2403 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2404 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2405 2406 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2407 // if the lowest bit is shifted off the end. 2408 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2409 // shl nuw can't remove any non-zero bits. 2410 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2411 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2412 return isKnownNonZero(X, Depth, Q); 2413 2414 KnownBits Known(BitWidth); 2415 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2416 if (Known.One[0]) 2417 return true; 2418 } 2419 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2420 // defined if the sign bit is shifted off the end. 2421 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2422 // shr exact can only shift out zero bits. 2423 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2424 if (BO->isExact()) 2425 return isKnownNonZero(X, Depth, Q); 2426 2427 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2428 if (Known.isNegative()) 2429 return true; 2430 2431 // If the shifter operand is a constant, and all of the bits shifted 2432 // out are known to be zero, and X is known non-zero then at least one 2433 // non-zero bit must remain. 2434 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2435 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2436 // Is there a known one in the portion not shifted out? 2437 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2438 return true; 2439 // Are all the bits to be shifted out known zero? 2440 if (Known.countMinTrailingZeros() >= ShiftVal) 2441 return isKnownNonZero(X, DemandedElts, Depth, Q); 2442 } 2443 } 2444 // div exact can only produce a zero if the dividend is zero. 2445 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2446 return isKnownNonZero(X, DemandedElts, Depth, Q); 2447 } 2448 // X + Y. 2449 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2450 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2451 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2452 2453 // If X and Y are both non-negative (as signed values) then their sum is not 2454 // zero unless both X and Y are zero. 2455 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2456 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2457 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2458 return true; 2459 2460 // If X and Y are both negative (as signed values) then their sum is not 2461 // zero unless both X and Y equal INT_MIN. 2462 if (XKnown.isNegative() && YKnown.isNegative()) { 2463 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2464 // The sign bit of X is set. If some other bit is set then X is not equal 2465 // to INT_MIN. 2466 if (XKnown.One.intersects(Mask)) 2467 return true; 2468 // The sign bit of Y is set. If some other bit is set then Y is not equal 2469 // to INT_MIN. 2470 if (YKnown.One.intersects(Mask)) 2471 return true; 2472 } 2473 2474 // The sum of a non-negative number and a power of two is not zero. 2475 if (XKnown.isNonNegative() && 2476 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2477 return true; 2478 if (YKnown.isNonNegative() && 2479 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2480 return true; 2481 } 2482 // X * Y. 2483 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2484 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2485 // If X and Y are non-zero then so is X * Y as long as the multiplication 2486 // does not overflow. 2487 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2488 isKnownNonZero(X, DemandedElts, Depth, Q) && 2489 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2490 return true; 2491 } 2492 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2493 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2494 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2495 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2496 return true; 2497 } 2498 // PHI 2499 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2500 // Try and detect a recurrence that monotonically increases from a 2501 // starting value, as these are common as induction variables. 2502 if (PN->getNumIncomingValues() == 2) { 2503 Value *Start = PN->getIncomingValue(0); 2504 Value *Induction = PN->getIncomingValue(1); 2505 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2506 std::swap(Start, Induction); 2507 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2508 if (!C->isZero() && !C->isNegative()) { 2509 ConstantInt *X; 2510 if (Q.IIQ.UseInstrInfo && 2511 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2512 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2513 !X->isNegative()) 2514 return true; 2515 } 2516 } 2517 } 2518 // Check if all incoming values are non-zero constant. 2519 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2520 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2521 }); 2522 if (AllNonZeroConstants) 2523 return true; 2524 } 2525 // ExtractElement 2526 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2527 const Value *Vec = EEI->getVectorOperand(); 2528 const Value *Idx = EEI->getIndexOperand(); 2529 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2530 unsigned NumElts = cast<VectorType>(Vec->getType())->getNumElements(); 2531 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2532 if (CIdx && CIdx->getValue().ult(NumElts)) 2533 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2534 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2535 } 2536 2537 KnownBits Known(BitWidth); 2538 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2539 return Known.One != 0; 2540 } 2541 2542 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2543 Type *Ty = V->getType(); 2544 APInt DemandedElts = 2545 Ty->isVectorTy() 2546 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 2547 : APInt(1, 1); 2548 return isKnownNonZero(V, DemandedElts, Depth, Q); 2549 } 2550 2551 /// Return true if V2 == V1 + X, where X is known non-zero. 2552 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2553 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2554 if (!BO || BO->getOpcode() != Instruction::Add) 2555 return false; 2556 Value *Op = nullptr; 2557 if (V2 == BO->getOperand(0)) 2558 Op = BO->getOperand(1); 2559 else if (V2 == BO->getOperand(1)) 2560 Op = BO->getOperand(0); 2561 else 2562 return false; 2563 return isKnownNonZero(Op, 0, Q); 2564 } 2565 2566 /// Return true if it is known that V1 != V2. 2567 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2568 if (V1 == V2) 2569 return false; 2570 if (V1->getType() != V2->getType()) 2571 // We can't look through casts yet. 2572 return false; 2573 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2574 return true; 2575 2576 if (V1->getType()->isIntOrIntVectorTy()) { 2577 // Are any known bits in V1 contradictory to known bits in V2? If V1 2578 // has a known zero where V2 has a known one, they must not be equal. 2579 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2580 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2581 2582 if (Known1.Zero.intersects(Known2.One) || 2583 Known2.Zero.intersects(Known1.One)) 2584 return true; 2585 } 2586 return false; 2587 } 2588 2589 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2590 /// simplify operations downstream. Mask is known to be zero for bits that V 2591 /// cannot have. 2592 /// 2593 /// This function is defined on values with integer type, values with pointer 2594 /// type, and vectors of integers. In the case 2595 /// where V is a vector, the mask, known zero, and known one values are the 2596 /// same width as the vector element, and the bit is set only if it is true 2597 /// for all of the elements in the vector. 2598 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2599 const Query &Q) { 2600 KnownBits Known(Mask.getBitWidth()); 2601 computeKnownBits(V, Known, Depth, Q); 2602 return Mask.isSubsetOf(Known.Zero); 2603 } 2604 2605 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2606 // Returns the input and lower/upper bounds. 2607 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2608 const APInt *&CLow, const APInt *&CHigh) { 2609 assert(isa<Operator>(Select) && 2610 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2611 "Input should be a Select!"); 2612 2613 const Value *LHS = nullptr, *RHS = nullptr; 2614 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2615 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2616 return false; 2617 2618 if (!match(RHS, m_APInt(CLow))) 2619 return false; 2620 2621 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2622 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2623 if (getInverseMinMaxFlavor(SPF) != SPF2) 2624 return false; 2625 2626 if (!match(RHS2, m_APInt(CHigh))) 2627 return false; 2628 2629 if (SPF == SPF_SMIN) 2630 std::swap(CLow, CHigh); 2631 2632 In = LHS2; 2633 return CLow->sle(*CHigh); 2634 } 2635 2636 /// For vector constants, loop over the elements and find the constant with the 2637 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2638 /// or if any element was not analyzed; otherwise, return the count for the 2639 /// element with the minimum number of sign bits. 2640 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2641 const APInt &DemandedElts, 2642 unsigned TyBits) { 2643 const auto *CV = dyn_cast<Constant>(V); 2644 if (!CV || !CV->getType()->isVectorTy()) 2645 return 0; 2646 2647 unsigned MinSignBits = TyBits; 2648 unsigned NumElts = cast<VectorType>(CV->getType())->getNumElements(); 2649 for (unsigned i = 0; i != NumElts; ++i) { 2650 if (!DemandedElts[i]) 2651 continue; 2652 // If we find a non-ConstantInt, bail out. 2653 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2654 if (!Elt) 2655 return 0; 2656 2657 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2658 } 2659 2660 return MinSignBits; 2661 } 2662 2663 static unsigned ComputeNumSignBitsImpl(const Value *V, 2664 const APInt &DemandedElts, 2665 unsigned Depth, const Query &Q); 2666 2667 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2668 unsigned Depth, const Query &Q) { 2669 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2670 assert(Result > 0 && "At least one sign bit needs to be present!"); 2671 return Result; 2672 } 2673 2674 /// Return the number of times the sign bit of the register is replicated into 2675 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2676 /// (itself), but other cases can give us information. For example, immediately 2677 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2678 /// other, so we return 3. For vectors, return the number of sign bits for the 2679 /// vector element with the minimum number of known sign bits of the demanded 2680 /// elements in the vector specified by DemandedElts. 2681 static unsigned ComputeNumSignBitsImpl(const Value *V, 2682 const APInt &DemandedElts, 2683 unsigned Depth, const Query &Q) { 2684 assert(Depth <= MaxDepth && "Limit Search Depth"); 2685 2686 // We return the minimum number of sign bits that are guaranteed to be present 2687 // in V, so for undef we have to conservatively return 1. We don't have the 2688 // same behavior for poison though -- that's a FIXME today. 2689 2690 Type *Ty = V->getType(); 2691 assert(((Ty->isVectorTy() && cast<VectorType>(Ty)->getNumElements() == 2692 DemandedElts.getBitWidth()) || 2693 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2694 "Unexpected vector size"); 2695 2696 Type *ScalarTy = Ty->getScalarType(); 2697 unsigned TyBits = ScalarTy->isPointerTy() ? 2698 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2699 Q.DL.getTypeSizeInBits(ScalarTy); 2700 2701 unsigned Tmp, Tmp2; 2702 unsigned FirstAnswer = 1; 2703 2704 // Note that ConstantInt is handled by the general computeKnownBits case 2705 // below. 2706 2707 if (Depth == MaxDepth) 2708 return 1; // Limit search depth. 2709 2710 if (auto *U = dyn_cast<Operator>(V)) { 2711 switch (Operator::getOpcode(V)) { 2712 default: break; 2713 case Instruction::SExt: 2714 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2715 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2716 2717 case Instruction::SDiv: { 2718 const APInt *Denominator; 2719 // sdiv X, C -> adds log(C) sign bits. 2720 if (match(U->getOperand(1), m_APInt(Denominator))) { 2721 2722 // Ignore non-positive denominator. 2723 if (!Denominator->isStrictlyPositive()) 2724 break; 2725 2726 // Calculate the incoming numerator bits. 2727 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2728 2729 // Add floor(log(C)) bits to the numerator bits. 2730 return std::min(TyBits, NumBits + Denominator->logBase2()); 2731 } 2732 break; 2733 } 2734 2735 case Instruction::SRem: { 2736 const APInt *Denominator; 2737 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2738 // positive constant. This let us put a lower bound on the number of sign 2739 // bits. 2740 if (match(U->getOperand(1), m_APInt(Denominator))) { 2741 2742 // Ignore non-positive denominator. 2743 if (!Denominator->isStrictlyPositive()) 2744 break; 2745 2746 // Calculate the incoming numerator bits. SRem by a positive constant 2747 // can't lower the number of sign bits. 2748 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2749 2750 // Calculate the leading sign bit constraints by examining the 2751 // denominator. Given that the denominator is positive, there are two 2752 // cases: 2753 // 2754 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2755 // (1 << ceilLogBase2(C)). 2756 // 2757 // 2. the numerator is negative. Then the result range is (-C,0] and 2758 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2759 // 2760 // Thus a lower bound on the number of sign bits is `TyBits - 2761 // ceilLogBase2(C)`. 2762 2763 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2764 return std::max(NumrBits, ResBits); 2765 } 2766 break; 2767 } 2768 2769 case Instruction::AShr: { 2770 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2771 // ashr X, C -> adds C sign bits. Vectors too. 2772 const APInt *ShAmt; 2773 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2774 if (ShAmt->uge(TyBits)) 2775 break; // Bad shift. 2776 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2777 Tmp += ShAmtLimited; 2778 if (Tmp > TyBits) Tmp = TyBits; 2779 } 2780 return Tmp; 2781 } 2782 case Instruction::Shl: { 2783 const APInt *ShAmt; 2784 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2785 // shl destroys sign bits. 2786 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2787 if (ShAmt->uge(TyBits) || // Bad shift. 2788 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2789 Tmp2 = ShAmt->getZExtValue(); 2790 return Tmp - Tmp2; 2791 } 2792 break; 2793 } 2794 case Instruction::And: 2795 case Instruction::Or: 2796 case Instruction::Xor: // NOT is handled here. 2797 // Logical binary ops preserve the number of sign bits at the worst. 2798 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2799 if (Tmp != 1) { 2800 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2801 FirstAnswer = std::min(Tmp, Tmp2); 2802 // We computed what we know about the sign bits as our first 2803 // answer. Now proceed to the generic code that uses 2804 // computeKnownBits, and pick whichever answer is better. 2805 } 2806 break; 2807 2808 case Instruction::Select: { 2809 // If we have a clamp pattern, we know that the number of sign bits will 2810 // be the minimum of the clamp min/max range. 2811 const Value *X; 2812 const APInt *CLow, *CHigh; 2813 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2814 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2815 2816 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2817 if (Tmp == 1) break; 2818 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2819 return std::min(Tmp, Tmp2); 2820 } 2821 2822 case Instruction::Add: 2823 // Add can have at most one carry bit. Thus we know that the output 2824 // is, at worst, one more bit than the inputs. 2825 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2826 if (Tmp == 1) break; 2827 2828 // Special case decrementing a value (ADD X, -1): 2829 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2830 if (CRHS->isAllOnesValue()) { 2831 KnownBits Known(TyBits); 2832 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2833 2834 // If the input is known to be 0 or 1, the output is 0/-1, which is 2835 // all sign bits set. 2836 if ((Known.Zero | 1).isAllOnesValue()) 2837 return TyBits; 2838 2839 // If we are subtracting one from a positive number, there is no carry 2840 // out of the result. 2841 if (Known.isNonNegative()) 2842 return Tmp; 2843 } 2844 2845 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2846 if (Tmp2 == 1) break; 2847 return std::min(Tmp, Tmp2) - 1; 2848 2849 case Instruction::Sub: 2850 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2851 if (Tmp2 == 1) break; 2852 2853 // Handle NEG. 2854 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2855 if (CLHS->isNullValue()) { 2856 KnownBits Known(TyBits); 2857 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2858 // If the input is known to be 0 or 1, the output is 0/-1, which is 2859 // all sign bits set. 2860 if ((Known.Zero | 1).isAllOnesValue()) 2861 return TyBits; 2862 2863 // If the input is known to be positive (the sign bit is known clear), 2864 // the output of the NEG has the same number of sign bits as the 2865 // input. 2866 if (Known.isNonNegative()) 2867 return Tmp2; 2868 2869 // Otherwise, we treat this like a SUB. 2870 } 2871 2872 // Sub can have at most one carry bit. Thus we know that the output 2873 // is, at worst, one more bit than the inputs. 2874 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2875 if (Tmp == 1) break; 2876 return std::min(Tmp, Tmp2) - 1; 2877 2878 case Instruction::Mul: { 2879 // The output of the Mul can be at most twice the valid bits in the 2880 // inputs. 2881 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2882 if (SignBitsOp0 == 1) break; 2883 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2884 if (SignBitsOp1 == 1) break; 2885 unsigned OutValidBits = 2886 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2887 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2888 } 2889 2890 case Instruction::PHI: { 2891 const PHINode *PN = cast<PHINode>(U); 2892 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2893 // Don't analyze large in-degree PHIs. 2894 if (NumIncomingValues > 4) break; 2895 // Unreachable blocks may have zero-operand PHI nodes. 2896 if (NumIncomingValues == 0) break; 2897 2898 // Take the minimum of all incoming values. This can't infinitely loop 2899 // because of our depth threshold. 2900 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2901 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2902 if (Tmp == 1) return Tmp; 2903 Tmp = std::min( 2904 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2905 } 2906 return Tmp; 2907 } 2908 2909 case Instruction::Trunc: 2910 // FIXME: it's tricky to do anything useful for this, but it is an 2911 // important case for targets like X86. 2912 break; 2913 2914 case Instruction::ExtractElement: 2915 // Look through extract element. At the moment we keep this simple and 2916 // skip tracking the specific element. But at least we might find 2917 // information valid for all elements of the vector (for example if vector 2918 // is sign extended, shifted, etc). 2919 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2920 2921 case Instruction::ShuffleVector: { 2922 // Collect the minimum number of sign bits that are shared by every vector 2923 // element referenced by the shuffle. 2924 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2925 if (!Shuf) { 2926 // FIXME: Add support for shufflevector constant expressions. 2927 return 1; 2928 } 2929 APInt DemandedLHS, DemandedRHS; 2930 // For undef elements, we don't know anything about the common state of 2931 // the shuffle result. 2932 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2933 return 1; 2934 Tmp = std::numeric_limits<unsigned>::max(); 2935 if (!!DemandedLHS) { 2936 const Value *LHS = Shuf->getOperand(0); 2937 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2938 } 2939 // If we don't know anything, early out and try computeKnownBits 2940 // fall-back. 2941 if (Tmp == 1) 2942 break; 2943 if (!!DemandedRHS) { 2944 const Value *RHS = Shuf->getOperand(1); 2945 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2946 Tmp = std::min(Tmp, Tmp2); 2947 } 2948 // If we don't know anything, early out and try computeKnownBits 2949 // fall-back. 2950 if (Tmp == 1) 2951 break; 2952 assert(Tmp <= Ty->getScalarSizeInBits() && 2953 "Failed to determine minimum sign bits"); 2954 return Tmp; 2955 } 2956 } 2957 } 2958 2959 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2960 // use this information. 2961 2962 // If we can examine all elements of a vector constant successfully, we're 2963 // done (we can't do any better than that). If not, keep trying. 2964 if (unsigned VecSignBits = 2965 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2966 return VecSignBits; 2967 2968 KnownBits Known(TyBits); 2969 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2970 2971 // If we know that the sign bit is either zero or one, determine the number of 2972 // identical bits in the top of the input value. 2973 return std::max(FirstAnswer, Known.countMinSignBits()); 2974 } 2975 2976 /// This function computes the integer multiple of Base that equals V. 2977 /// If successful, it returns true and returns the multiple in 2978 /// Multiple. If unsuccessful, it returns false. It looks 2979 /// through SExt instructions only if LookThroughSExt is true. 2980 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2981 bool LookThroughSExt, unsigned Depth) { 2982 assert(V && "No Value?"); 2983 assert(Depth <= MaxDepth && "Limit Search Depth"); 2984 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2985 2986 Type *T = V->getType(); 2987 2988 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2989 2990 if (Base == 0) 2991 return false; 2992 2993 if (Base == 1) { 2994 Multiple = V; 2995 return true; 2996 } 2997 2998 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2999 Constant *BaseVal = ConstantInt::get(T, Base); 3000 if (CO && CO == BaseVal) { 3001 // Multiple is 1. 3002 Multiple = ConstantInt::get(T, 1); 3003 return true; 3004 } 3005 3006 if (CI && CI->getZExtValue() % Base == 0) { 3007 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3008 return true; 3009 } 3010 3011 if (Depth == MaxDepth) return false; // Limit search depth. 3012 3013 Operator *I = dyn_cast<Operator>(V); 3014 if (!I) return false; 3015 3016 switch (I->getOpcode()) { 3017 default: break; 3018 case Instruction::SExt: 3019 if (!LookThroughSExt) return false; 3020 // otherwise fall through to ZExt 3021 LLVM_FALLTHROUGH; 3022 case Instruction::ZExt: 3023 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3024 LookThroughSExt, Depth+1); 3025 case Instruction::Shl: 3026 case Instruction::Mul: { 3027 Value *Op0 = I->getOperand(0); 3028 Value *Op1 = I->getOperand(1); 3029 3030 if (I->getOpcode() == Instruction::Shl) { 3031 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3032 if (!Op1CI) return false; 3033 // Turn Op0 << Op1 into Op0 * 2^Op1 3034 APInt Op1Int = Op1CI->getValue(); 3035 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3036 APInt API(Op1Int.getBitWidth(), 0); 3037 API.setBit(BitToSet); 3038 Op1 = ConstantInt::get(V->getContext(), API); 3039 } 3040 3041 Value *Mul0 = nullptr; 3042 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3043 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3044 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3045 if (Op1C->getType()->getPrimitiveSizeInBits() < 3046 MulC->getType()->getPrimitiveSizeInBits()) 3047 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3048 if (Op1C->getType()->getPrimitiveSizeInBits() > 3049 MulC->getType()->getPrimitiveSizeInBits()) 3050 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3051 3052 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3053 Multiple = ConstantExpr::getMul(MulC, Op1C); 3054 return true; 3055 } 3056 3057 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3058 if (Mul0CI->getValue() == 1) { 3059 // V == Base * Op1, so return Op1 3060 Multiple = Op1; 3061 return true; 3062 } 3063 } 3064 3065 Value *Mul1 = nullptr; 3066 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3067 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3068 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3069 if (Op0C->getType()->getPrimitiveSizeInBits() < 3070 MulC->getType()->getPrimitiveSizeInBits()) 3071 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3072 if (Op0C->getType()->getPrimitiveSizeInBits() > 3073 MulC->getType()->getPrimitiveSizeInBits()) 3074 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3075 3076 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3077 Multiple = ConstantExpr::getMul(MulC, Op0C); 3078 return true; 3079 } 3080 3081 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3082 if (Mul1CI->getValue() == 1) { 3083 // V == Base * Op0, so return Op0 3084 Multiple = Op0; 3085 return true; 3086 } 3087 } 3088 } 3089 } 3090 3091 // We could not determine if V is a multiple of Base. 3092 return false; 3093 } 3094 3095 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3096 const TargetLibraryInfo *TLI) { 3097 const Function *F = CB.getCalledFunction(); 3098 if (!F) 3099 return Intrinsic::not_intrinsic; 3100 3101 if (F->isIntrinsic()) 3102 return F->getIntrinsicID(); 3103 3104 if (!TLI) 3105 return Intrinsic::not_intrinsic; 3106 3107 LibFunc Func; 3108 // We're going to make assumptions on the semantics of the functions, check 3109 // that the target knows that it's available in this environment and it does 3110 // not have local linkage. 3111 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3112 return Intrinsic::not_intrinsic; 3113 3114 if (!CB.onlyReadsMemory()) 3115 return Intrinsic::not_intrinsic; 3116 3117 // Otherwise check if we have a call to a function that can be turned into a 3118 // vector intrinsic. 3119 switch (Func) { 3120 default: 3121 break; 3122 case LibFunc_sin: 3123 case LibFunc_sinf: 3124 case LibFunc_sinl: 3125 return Intrinsic::sin; 3126 case LibFunc_cos: 3127 case LibFunc_cosf: 3128 case LibFunc_cosl: 3129 return Intrinsic::cos; 3130 case LibFunc_exp: 3131 case LibFunc_expf: 3132 case LibFunc_expl: 3133 return Intrinsic::exp; 3134 case LibFunc_exp2: 3135 case LibFunc_exp2f: 3136 case LibFunc_exp2l: 3137 return Intrinsic::exp2; 3138 case LibFunc_log: 3139 case LibFunc_logf: 3140 case LibFunc_logl: 3141 return Intrinsic::log; 3142 case LibFunc_log10: 3143 case LibFunc_log10f: 3144 case LibFunc_log10l: 3145 return Intrinsic::log10; 3146 case LibFunc_log2: 3147 case LibFunc_log2f: 3148 case LibFunc_log2l: 3149 return Intrinsic::log2; 3150 case LibFunc_fabs: 3151 case LibFunc_fabsf: 3152 case LibFunc_fabsl: 3153 return Intrinsic::fabs; 3154 case LibFunc_fmin: 3155 case LibFunc_fminf: 3156 case LibFunc_fminl: 3157 return Intrinsic::minnum; 3158 case LibFunc_fmax: 3159 case LibFunc_fmaxf: 3160 case LibFunc_fmaxl: 3161 return Intrinsic::maxnum; 3162 case LibFunc_copysign: 3163 case LibFunc_copysignf: 3164 case LibFunc_copysignl: 3165 return Intrinsic::copysign; 3166 case LibFunc_floor: 3167 case LibFunc_floorf: 3168 case LibFunc_floorl: 3169 return Intrinsic::floor; 3170 case LibFunc_ceil: 3171 case LibFunc_ceilf: 3172 case LibFunc_ceill: 3173 return Intrinsic::ceil; 3174 case LibFunc_trunc: 3175 case LibFunc_truncf: 3176 case LibFunc_truncl: 3177 return Intrinsic::trunc; 3178 case LibFunc_rint: 3179 case LibFunc_rintf: 3180 case LibFunc_rintl: 3181 return Intrinsic::rint; 3182 case LibFunc_nearbyint: 3183 case LibFunc_nearbyintf: 3184 case LibFunc_nearbyintl: 3185 return Intrinsic::nearbyint; 3186 case LibFunc_round: 3187 case LibFunc_roundf: 3188 case LibFunc_roundl: 3189 return Intrinsic::round; 3190 case LibFunc_pow: 3191 case LibFunc_powf: 3192 case LibFunc_powl: 3193 return Intrinsic::pow; 3194 case LibFunc_sqrt: 3195 case LibFunc_sqrtf: 3196 case LibFunc_sqrtl: 3197 return Intrinsic::sqrt; 3198 } 3199 3200 return Intrinsic::not_intrinsic; 3201 } 3202 3203 /// Return true if we can prove that the specified FP value is never equal to 3204 /// -0.0. 3205 /// 3206 /// NOTE: this function will need to be revisited when we support non-default 3207 /// rounding modes! 3208 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3209 unsigned Depth) { 3210 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3211 return !CFP->getValueAPF().isNegZero(); 3212 3213 // Limit search depth. 3214 if (Depth == MaxDepth) 3215 return false; 3216 3217 auto *Op = dyn_cast<Operator>(V); 3218 if (!Op) 3219 return false; 3220 3221 // Check if the nsz fast-math flag is set. 3222 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3223 if (FPO->hasNoSignedZeros()) 3224 return true; 3225 3226 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3227 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3228 return true; 3229 3230 // sitofp and uitofp turn into +0.0 for zero. 3231 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3232 return true; 3233 3234 if (auto *Call = dyn_cast<CallInst>(Op)) { 3235 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3236 switch (IID) { 3237 default: 3238 break; 3239 // sqrt(-0.0) = -0.0, no other negative results are possible. 3240 case Intrinsic::sqrt: 3241 case Intrinsic::canonicalize: 3242 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3243 // fabs(x) != -0.0 3244 case Intrinsic::fabs: 3245 return true; 3246 } 3247 } 3248 3249 return false; 3250 } 3251 3252 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3253 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3254 /// bit despite comparing equal. 3255 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3256 const TargetLibraryInfo *TLI, 3257 bool SignBitOnly, 3258 unsigned Depth) { 3259 // TODO: This function does not do the right thing when SignBitOnly is true 3260 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3261 // which flips the sign bits of NaNs. See 3262 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3263 3264 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3265 return !CFP->getValueAPF().isNegative() || 3266 (!SignBitOnly && CFP->getValueAPF().isZero()); 3267 } 3268 3269 // Handle vector of constants. 3270 if (auto *CV = dyn_cast<Constant>(V)) { 3271 if (auto *CVVTy = dyn_cast<VectorType>(CV->getType())) { 3272 unsigned NumElts = CVVTy->getNumElements(); 3273 for (unsigned i = 0; i != NumElts; ++i) { 3274 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3275 if (!CFP) 3276 return false; 3277 if (CFP->getValueAPF().isNegative() && 3278 (SignBitOnly || !CFP->getValueAPF().isZero())) 3279 return false; 3280 } 3281 3282 // All non-negative ConstantFPs. 3283 return true; 3284 } 3285 } 3286 3287 if (Depth == MaxDepth) 3288 return false; // Limit search depth. 3289 3290 const Operator *I = dyn_cast<Operator>(V); 3291 if (!I) 3292 return false; 3293 3294 switch (I->getOpcode()) { 3295 default: 3296 break; 3297 // Unsigned integers are always nonnegative. 3298 case Instruction::UIToFP: 3299 return true; 3300 case Instruction::FMul: 3301 // x*x is always non-negative or a NaN. 3302 if (I->getOperand(0) == I->getOperand(1) && 3303 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3304 return true; 3305 3306 LLVM_FALLTHROUGH; 3307 case Instruction::FAdd: 3308 case Instruction::FDiv: 3309 case Instruction::FRem: 3310 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3311 Depth + 1) && 3312 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3313 Depth + 1); 3314 case Instruction::Select: 3315 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3316 Depth + 1) && 3317 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3318 Depth + 1); 3319 case Instruction::FPExt: 3320 case Instruction::FPTrunc: 3321 // Widening/narrowing never change sign. 3322 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3323 Depth + 1); 3324 case Instruction::ExtractElement: 3325 // Look through extract element. At the moment we keep this simple and skip 3326 // tracking the specific element. But at least we might find information 3327 // valid for all elements of the vector. 3328 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3329 Depth + 1); 3330 case Instruction::Call: 3331 const auto *CI = cast<CallInst>(I); 3332 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3333 switch (IID) { 3334 default: 3335 break; 3336 case Intrinsic::maxnum: 3337 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3338 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3339 SignBitOnly, Depth + 1)) || 3340 (isKnownNeverNaN(I->getOperand(1), TLI) && 3341 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3342 SignBitOnly, Depth + 1)); 3343 3344 case Intrinsic::maximum: 3345 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3346 Depth + 1) || 3347 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3348 Depth + 1); 3349 case Intrinsic::minnum: 3350 case Intrinsic::minimum: 3351 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3352 Depth + 1) && 3353 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3354 Depth + 1); 3355 case Intrinsic::exp: 3356 case Intrinsic::exp2: 3357 case Intrinsic::fabs: 3358 return true; 3359 3360 case Intrinsic::sqrt: 3361 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3362 if (!SignBitOnly) 3363 return true; 3364 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3365 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3366 3367 case Intrinsic::powi: 3368 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3369 // powi(x,n) is non-negative if n is even. 3370 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3371 return true; 3372 } 3373 // TODO: This is not correct. Given that exp is an integer, here are the 3374 // ways that pow can return a negative value: 3375 // 3376 // pow(x, exp) --> negative if exp is odd and x is negative. 3377 // pow(-0, exp) --> -inf if exp is negative odd. 3378 // pow(-0, exp) --> -0 if exp is positive odd. 3379 // pow(-inf, exp) --> -0 if exp is negative odd. 3380 // pow(-inf, exp) --> -inf if exp is positive odd. 3381 // 3382 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3383 // but we must return false if x == -0. Unfortunately we do not currently 3384 // have a way of expressing this constraint. See details in 3385 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3386 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3387 Depth + 1); 3388 3389 case Intrinsic::fma: 3390 case Intrinsic::fmuladd: 3391 // x*x+y is non-negative if y is non-negative. 3392 return I->getOperand(0) == I->getOperand(1) && 3393 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3394 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3395 Depth + 1); 3396 } 3397 break; 3398 } 3399 return false; 3400 } 3401 3402 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3403 const TargetLibraryInfo *TLI) { 3404 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3405 } 3406 3407 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3408 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3409 } 3410 3411 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3412 unsigned Depth) { 3413 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3414 3415 // If we're told that infinities won't happen, assume they won't. 3416 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3417 if (FPMathOp->hasNoInfs()) 3418 return true; 3419 3420 // Handle scalar constants. 3421 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3422 return !CFP->isInfinity(); 3423 3424 if (Depth == MaxDepth) 3425 return false; 3426 3427 if (auto *Inst = dyn_cast<Instruction>(V)) { 3428 switch (Inst->getOpcode()) { 3429 case Instruction::Select: { 3430 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3431 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3432 } 3433 case Instruction::UIToFP: 3434 // If the input type fits into the floating type the result is finite. 3435 return ilogb(APFloat::getLargest( 3436 Inst->getType()->getScalarType()->getFltSemantics())) >= 3437 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3438 default: 3439 break; 3440 } 3441 } 3442 3443 // Bail out for constant expressions, but try to handle vector constants. 3444 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3445 return false; 3446 3447 // For vectors, verify that each element is not infinity. 3448 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3449 for (unsigned i = 0; i != NumElts; ++i) { 3450 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3451 if (!Elt) 3452 return false; 3453 if (isa<UndefValue>(Elt)) 3454 continue; 3455 auto *CElt = dyn_cast<ConstantFP>(Elt); 3456 if (!CElt || CElt->isInfinity()) 3457 return false; 3458 } 3459 // All elements were confirmed non-infinity or undefined. 3460 return true; 3461 } 3462 3463 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3464 unsigned Depth) { 3465 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3466 3467 // If we're told that NaNs won't happen, assume they won't. 3468 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3469 if (FPMathOp->hasNoNaNs()) 3470 return true; 3471 3472 // Handle scalar constants. 3473 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3474 return !CFP->isNaN(); 3475 3476 if (Depth == MaxDepth) 3477 return false; 3478 3479 if (auto *Inst = dyn_cast<Instruction>(V)) { 3480 switch (Inst->getOpcode()) { 3481 case Instruction::FAdd: 3482 case Instruction::FSub: 3483 // Adding positive and negative infinity produces NaN. 3484 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3485 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3486 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3487 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3488 3489 case Instruction::FMul: 3490 // Zero multiplied with infinity produces NaN. 3491 // FIXME: If neither side can be zero fmul never produces NaN. 3492 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3493 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3494 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3495 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3496 3497 case Instruction::FDiv: 3498 case Instruction::FRem: 3499 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3500 return false; 3501 3502 case Instruction::Select: { 3503 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3504 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3505 } 3506 case Instruction::SIToFP: 3507 case Instruction::UIToFP: 3508 return true; 3509 case Instruction::FPTrunc: 3510 case Instruction::FPExt: 3511 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3512 default: 3513 break; 3514 } 3515 } 3516 3517 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3518 switch (II->getIntrinsicID()) { 3519 case Intrinsic::canonicalize: 3520 case Intrinsic::fabs: 3521 case Intrinsic::copysign: 3522 case Intrinsic::exp: 3523 case Intrinsic::exp2: 3524 case Intrinsic::floor: 3525 case Intrinsic::ceil: 3526 case Intrinsic::trunc: 3527 case Intrinsic::rint: 3528 case Intrinsic::nearbyint: 3529 case Intrinsic::round: 3530 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3531 case Intrinsic::sqrt: 3532 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3533 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3534 case Intrinsic::minnum: 3535 case Intrinsic::maxnum: 3536 // If either operand is not NaN, the result is not NaN. 3537 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3538 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3539 default: 3540 return false; 3541 } 3542 } 3543 3544 // Bail out for constant expressions, but try to handle vector constants. 3545 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3546 return false; 3547 3548 // For vectors, verify that each element is not NaN. 3549 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3550 for (unsigned i = 0; i != NumElts; ++i) { 3551 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3552 if (!Elt) 3553 return false; 3554 if (isa<UndefValue>(Elt)) 3555 continue; 3556 auto *CElt = dyn_cast<ConstantFP>(Elt); 3557 if (!CElt || CElt->isNaN()) 3558 return false; 3559 } 3560 // All elements were confirmed not-NaN or undefined. 3561 return true; 3562 } 3563 3564 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3565 3566 // All byte-wide stores are splatable, even of arbitrary variables. 3567 if (V->getType()->isIntegerTy(8)) 3568 return V; 3569 3570 LLVMContext &Ctx = V->getContext(); 3571 3572 // Undef don't care. 3573 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3574 if (isa<UndefValue>(V)) 3575 return UndefInt8; 3576 3577 // Return Undef for zero-sized type. 3578 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3579 return UndefInt8; 3580 3581 Constant *C = dyn_cast<Constant>(V); 3582 if (!C) { 3583 // Conceptually, we could handle things like: 3584 // %a = zext i8 %X to i16 3585 // %b = shl i16 %a, 8 3586 // %c = or i16 %a, %b 3587 // but until there is an example that actually needs this, it doesn't seem 3588 // worth worrying about. 3589 return nullptr; 3590 } 3591 3592 // Handle 'null' ConstantArrayZero etc. 3593 if (C->isNullValue()) 3594 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3595 3596 // Constant floating-point values can be handled as integer values if the 3597 // corresponding integer value is "byteable". An important case is 0.0. 3598 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3599 Type *Ty = nullptr; 3600 if (CFP->getType()->isHalfTy()) 3601 Ty = Type::getInt16Ty(Ctx); 3602 else if (CFP->getType()->isFloatTy()) 3603 Ty = Type::getInt32Ty(Ctx); 3604 else if (CFP->getType()->isDoubleTy()) 3605 Ty = Type::getInt64Ty(Ctx); 3606 // Don't handle long double formats, which have strange constraints. 3607 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3608 : nullptr; 3609 } 3610 3611 // We can handle constant integers that are multiple of 8 bits. 3612 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3613 if (CI->getBitWidth() % 8 == 0) { 3614 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3615 if (!CI->getValue().isSplat(8)) 3616 return nullptr; 3617 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3618 } 3619 } 3620 3621 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3622 if (CE->getOpcode() == Instruction::IntToPtr) { 3623 auto PS = DL.getPointerSizeInBits( 3624 cast<PointerType>(CE->getType())->getAddressSpace()); 3625 return isBytewiseValue( 3626 ConstantExpr::getIntegerCast(CE->getOperand(0), 3627 Type::getIntNTy(Ctx, PS), false), 3628 DL); 3629 } 3630 } 3631 3632 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3633 if (LHS == RHS) 3634 return LHS; 3635 if (!LHS || !RHS) 3636 return nullptr; 3637 if (LHS == UndefInt8) 3638 return RHS; 3639 if (RHS == UndefInt8) 3640 return LHS; 3641 return nullptr; 3642 }; 3643 3644 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3645 Value *Val = UndefInt8; 3646 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3647 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3648 return nullptr; 3649 return Val; 3650 } 3651 3652 if (isa<ConstantAggregate>(C)) { 3653 Value *Val = UndefInt8; 3654 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3655 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3656 return nullptr; 3657 return Val; 3658 } 3659 3660 // Don't try to handle the handful of other constants. 3661 return nullptr; 3662 } 3663 3664 // This is the recursive version of BuildSubAggregate. It takes a few different 3665 // arguments. Idxs is the index within the nested struct From that we are 3666 // looking at now (which is of type IndexedType). IdxSkip is the number of 3667 // indices from Idxs that should be left out when inserting into the resulting 3668 // struct. To is the result struct built so far, new insertvalue instructions 3669 // build on that. 3670 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3671 SmallVectorImpl<unsigned> &Idxs, 3672 unsigned IdxSkip, 3673 Instruction *InsertBefore) { 3674 StructType *STy = dyn_cast<StructType>(IndexedType); 3675 if (STy) { 3676 // Save the original To argument so we can modify it 3677 Value *OrigTo = To; 3678 // General case, the type indexed by Idxs is a struct 3679 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3680 // Process each struct element recursively 3681 Idxs.push_back(i); 3682 Value *PrevTo = To; 3683 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3684 InsertBefore); 3685 Idxs.pop_back(); 3686 if (!To) { 3687 // Couldn't find any inserted value for this index? Cleanup 3688 while (PrevTo != OrigTo) { 3689 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3690 PrevTo = Del->getAggregateOperand(); 3691 Del->eraseFromParent(); 3692 } 3693 // Stop processing elements 3694 break; 3695 } 3696 } 3697 // If we successfully found a value for each of our subaggregates 3698 if (To) 3699 return To; 3700 } 3701 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3702 // the struct's elements had a value that was inserted directly. In the latter 3703 // case, perhaps we can't determine each of the subelements individually, but 3704 // we might be able to find the complete struct somewhere. 3705 3706 // Find the value that is at that particular spot 3707 Value *V = FindInsertedValue(From, Idxs); 3708 3709 if (!V) 3710 return nullptr; 3711 3712 // Insert the value in the new (sub) aggregate 3713 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3714 "tmp", InsertBefore); 3715 } 3716 3717 // This helper takes a nested struct and extracts a part of it (which is again a 3718 // struct) into a new value. For example, given the struct: 3719 // { a, { b, { c, d }, e } } 3720 // and the indices "1, 1" this returns 3721 // { c, d }. 3722 // 3723 // It does this by inserting an insertvalue for each element in the resulting 3724 // struct, as opposed to just inserting a single struct. This will only work if 3725 // each of the elements of the substruct are known (ie, inserted into From by an 3726 // insertvalue instruction somewhere). 3727 // 3728 // All inserted insertvalue instructions are inserted before InsertBefore 3729 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3730 Instruction *InsertBefore) { 3731 assert(InsertBefore && "Must have someplace to insert!"); 3732 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3733 idx_range); 3734 Value *To = UndefValue::get(IndexedType); 3735 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3736 unsigned IdxSkip = Idxs.size(); 3737 3738 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3739 } 3740 3741 /// Given an aggregate and a sequence of indices, see if the scalar value 3742 /// indexed is already around as a register, for example if it was inserted 3743 /// directly into the aggregate. 3744 /// 3745 /// If InsertBefore is not null, this function will duplicate (modified) 3746 /// insertvalues when a part of a nested struct is extracted. 3747 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3748 Instruction *InsertBefore) { 3749 // Nothing to index? Just return V then (this is useful at the end of our 3750 // recursion). 3751 if (idx_range.empty()) 3752 return V; 3753 // We have indices, so V should have an indexable type. 3754 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3755 "Not looking at a struct or array?"); 3756 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3757 "Invalid indices for type?"); 3758 3759 if (Constant *C = dyn_cast<Constant>(V)) { 3760 C = C->getAggregateElement(idx_range[0]); 3761 if (!C) return nullptr; 3762 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3763 } 3764 3765 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3766 // Loop the indices for the insertvalue instruction in parallel with the 3767 // requested indices 3768 const unsigned *req_idx = idx_range.begin(); 3769 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3770 i != e; ++i, ++req_idx) { 3771 if (req_idx == idx_range.end()) { 3772 // We can't handle this without inserting insertvalues 3773 if (!InsertBefore) 3774 return nullptr; 3775 3776 // The requested index identifies a part of a nested aggregate. Handle 3777 // this specially. For example, 3778 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3779 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3780 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3781 // This can be changed into 3782 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3783 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3784 // which allows the unused 0,0 element from the nested struct to be 3785 // removed. 3786 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3787 InsertBefore); 3788 } 3789 3790 // This insert value inserts something else than what we are looking for. 3791 // See if the (aggregate) value inserted into has the value we are 3792 // looking for, then. 3793 if (*req_idx != *i) 3794 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3795 InsertBefore); 3796 } 3797 // If we end up here, the indices of the insertvalue match with those 3798 // requested (though possibly only partially). Now we recursively look at 3799 // the inserted value, passing any remaining indices. 3800 return FindInsertedValue(I->getInsertedValueOperand(), 3801 makeArrayRef(req_idx, idx_range.end()), 3802 InsertBefore); 3803 } 3804 3805 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3806 // If we're extracting a value from an aggregate that was extracted from 3807 // something else, we can extract from that something else directly instead. 3808 // However, we will need to chain I's indices with the requested indices. 3809 3810 // Calculate the number of indices required 3811 unsigned size = I->getNumIndices() + idx_range.size(); 3812 // Allocate some space to put the new indices in 3813 SmallVector<unsigned, 5> Idxs; 3814 Idxs.reserve(size); 3815 // Add indices from the extract value instruction 3816 Idxs.append(I->idx_begin(), I->idx_end()); 3817 3818 // Add requested indices 3819 Idxs.append(idx_range.begin(), idx_range.end()); 3820 3821 assert(Idxs.size() == size 3822 && "Number of indices added not correct?"); 3823 3824 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3825 } 3826 // Otherwise, we don't know (such as, extracting from a function return value 3827 // or load instruction) 3828 return nullptr; 3829 } 3830 3831 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3832 unsigned CharSize) { 3833 // Make sure the GEP has exactly three arguments. 3834 if (GEP->getNumOperands() != 3) 3835 return false; 3836 3837 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3838 // CharSize. 3839 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3840 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3841 return false; 3842 3843 // Check to make sure that the first operand of the GEP is an integer and 3844 // has value 0 so that we are sure we're indexing into the initializer. 3845 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3846 if (!FirstIdx || !FirstIdx->isZero()) 3847 return false; 3848 3849 return true; 3850 } 3851 3852 bool llvm::getConstantDataArrayInfo(const Value *V, 3853 ConstantDataArraySlice &Slice, 3854 unsigned ElementSize, uint64_t Offset) { 3855 assert(V); 3856 3857 // Look through bitcast instructions and geps. 3858 V = V->stripPointerCasts(); 3859 3860 // If the value is a GEP instruction or constant expression, treat it as an 3861 // offset. 3862 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3863 // The GEP operator should be based on a pointer to string constant, and is 3864 // indexing into the string constant. 3865 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3866 return false; 3867 3868 // If the second index isn't a ConstantInt, then this is a variable index 3869 // into the array. If this occurs, we can't say anything meaningful about 3870 // the string. 3871 uint64_t StartIdx = 0; 3872 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3873 StartIdx = CI->getZExtValue(); 3874 else 3875 return false; 3876 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3877 StartIdx + Offset); 3878 } 3879 3880 // The GEP instruction, constant or instruction, must reference a global 3881 // variable that is a constant and is initialized. The referenced constant 3882 // initializer is the array that we'll use for optimization. 3883 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3884 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3885 return false; 3886 3887 const ConstantDataArray *Array; 3888 ArrayType *ArrayTy; 3889 if (GV->getInitializer()->isNullValue()) { 3890 Type *GVTy = GV->getValueType(); 3891 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3892 // A zeroinitializer for the array; there is no ConstantDataArray. 3893 Array = nullptr; 3894 } else { 3895 const DataLayout &DL = GV->getParent()->getDataLayout(); 3896 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3897 uint64_t Length = SizeInBytes / (ElementSize / 8); 3898 if (Length <= Offset) 3899 return false; 3900 3901 Slice.Array = nullptr; 3902 Slice.Offset = 0; 3903 Slice.Length = Length - Offset; 3904 return true; 3905 } 3906 } else { 3907 // This must be a ConstantDataArray. 3908 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3909 if (!Array) 3910 return false; 3911 ArrayTy = Array->getType(); 3912 } 3913 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3914 return false; 3915 3916 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3917 if (Offset > NumElts) 3918 return false; 3919 3920 Slice.Array = Array; 3921 Slice.Offset = Offset; 3922 Slice.Length = NumElts - Offset; 3923 return true; 3924 } 3925 3926 /// This function computes the length of a null-terminated C string pointed to 3927 /// by V. If successful, it returns true and returns the string in Str. 3928 /// If unsuccessful, it returns false. 3929 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3930 uint64_t Offset, bool TrimAtNul) { 3931 ConstantDataArraySlice Slice; 3932 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3933 return false; 3934 3935 if (Slice.Array == nullptr) { 3936 if (TrimAtNul) { 3937 Str = StringRef(); 3938 return true; 3939 } 3940 if (Slice.Length == 1) { 3941 Str = StringRef("", 1); 3942 return true; 3943 } 3944 // We cannot instantiate a StringRef as we do not have an appropriate string 3945 // of 0s at hand. 3946 return false; 3947 } 3948 3949 // Start out with the entire array in the StringRef. 3950 Str = Slice.Array->getAsString(); 3951 // Skip over 'offset' bytes. 3952 Str = Str.substr(Slice.Offset); 3953 3954 if (TrimAtNul) { 3955 // Trim off the \0 and anything after it. If the array is not nul 3956 // terminated, we just return the whole end of string. The client may know 3957 // some other way that the string is length-bound. 3958 Str = Str.substr(0, Str.find('\0')); 3959 } 3960 return true; 3961 } 3962 3963 // These next two are very similar to the above, but also look through PHI 3964 // nodes. 3965 // TODO: See if we can integrate these two together. 3966 3967 /// If we can compute the length of the string pointed to by 3968 /// the specified pointer, return 'len+1'. If we can't, return 0. 3969 static uint64_t GetStringLengthH(const Value *V, 3970 SmallPtrSetImpl<const PHINode*> &PHIs, 3971 unsigned CharSize) { 3972 // Look through noop bitcast instructions. 3973 V = V->stripPointerCasts(); 3974 3975 // If this is a PHI node, there are two cases: either we have already seen it 3976 // or we haven't. 3977 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3978 if (!PHIs.insert(PN).second) 3979 return ~0ULL; // already in the set. 3980 3981 // If it was new, see if all the input strings are the same length. 3982 uint64_t LenSoFar = ~0ULL; 3983 for (Value *IncValue : PN->incoming_values()) { 3984 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3985 if (Len == 0) return 0; // Unknown length -> unknown. 3986 3987 if (Len == ~0ULL) continue; 3988 3989 if (Len != LenSoFar && LenSoFar != ~0ULL) 3990 return 0; // Disagree -> unknown. 3991 LenSoFar = Len; 3992 } 3993 3994 // Success, all agree. 3995 return LenSoFar; 3996 } 3997 3998 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3999 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4000 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4001 if (Len1 == 0) return 0; 4002 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4003 if (Len2 == 0) return 0; 4004 if (Len1 == ~0ULL) return Len2; 4005 if (Len2 == ~0ULL) return Len1; 4006 if (Len1 != Len2) return 0; 4007 return Len1; 4008 } 4009 4010 // Otherwise, see if we can read the string. 4011 ConstantDataArraySlice Slice; 4012 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4013 return 0; 4014 4015 if (Slice.Array == nullptr) 4016 return 1; 4017 4018 // Search for nul characters 4019 unsigned NullIndex = 0; 4020 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4021 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4022 break; 4023 } 4024 4025 return NullIndex + 1; 4026 } 4027 4028 /// If we can compute the length of the string pointed to by 4029 /// the specified pointer, return 'len+1'. If we can't, return 0. 4030 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4031 if (!V->getType()->isPointerTy()) 4032 return 0; 4033 4034 SmallPtrSet<const PHINode*, 32> PHIs; 4035 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4036 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4037 // an empty string as a length. 4038 return Len == ~0ULL ? 1 : Len; 4039 } 4040 4041 const Value * 4042 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4043 bool MustPreserveNullness) { 4044 assert(Call && 4045 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4046 if (const Value *RV = Call->getReturnedArgOperand()) 4047 return RV; 4048 // This can be used only as a aliasing property. 4049 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4050 Call, MustPreserveNullness)) 4051 return Call->getArgOperand(0); 4052 return nullptr; 4053 } 4054 4055 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4056 const CallBase *Call, bool MustPreserveNullness) { 4057 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4058 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4059 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4060 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4061 (!MustPreserveNullness && 4062 Call->getIntrinsicID() == Intrinsic::ptrmask); 4063 } 4064 4065 /// \p PN defines a loop-variant pointer to an object. Check if the 4066 /// previous iteration of the loop was referring to the same object as \p PN. 4067 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4068 const LoopInfo *LI) { 4069 // Find the loop-defined value. 4070 Loop *L = LI->getLoopFor(PN->getParent()); 4071 if (PN->getNumIncomingValues() != 2) 4072 return true; 4073 4074 // Find the value from previous iteration. 4075 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4076 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4077 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4078 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4079 return true; 4080 4081 // If a new pointer is loaded in the loop, the pointer references a different 4082 // object in every iteration. E.g.: 4083 // for (i) 4084 // int *p = a[i]; 4085 // ... 4086 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4087 if (!L->isLoopInvariant(Load->getPointerOperand())) 4088 return false; 4089 return true; 4090 } 4091 4092 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4093 unsigned MaxLookup) { 4094 if (!V->getType()->isPointerTy()) 4095 return V; 4096 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4097 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4098 V = GEP->getPointerOperand(); 4099 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4100 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4101 V = cast<Operator>(V)->getOperand(0); 4102 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4103 if (GA->isInterposable()) 4104 return V; 4105 V = GA->getAliasee(); 4106 } else if (isa<AllocaInst>(V)) { 4107 // An alloca can't be further simplified. 4108 return V; 4109 } else { 4110 if (auto *Call = dyn_cast<CallBase>(V)) { 4111 // CaptureTracking can know about special capturing properties of some 4112 // intrinsics like launder.invariant.group, that can't be expressed with 4113 // the attributes, but have properties like returning aliasing pointer. 4114 // Because some analysis may assume that nocaptured pointer is not 4115 // returned from some special intrinsic (because function would have to 4116 // be marked with returns attribute), it is crucial to use this function 4117 // because it should be in sync with CaptureTracking. Not using it may 4118 // cause weird miscompilations where 2 aliasing pointers are assumed to 4119 // noalias. 4120 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4121 V = RP; 4122 continue; 4123 } 4124 } 4125 4126 // See if InstructionSimplify knows any relevant tricks. 4127 if (Instruction *I = dyn_cast<Instruction>(V)) 4128 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4129 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4130 V = Simplified; 4131 continue; 4132 } 4133 4134 return V; 4135 } 4136 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4137 } 4138 return V; 4139 } 4140 4141 void llvm::GetUnderlyingObjects(const Value *V, 4142 SmallVectorImpl<const Value *> &Objects, 4143 const DataLayout &DL, LoopInfo *LI, 4144 unsigned MaxLookup) { 4145 SmallPtrSet<const Value *, 4> Visited; 4146 SmallVector<const Value *, 4> Worklist; 4147 Worklist.push_back(V); 4148 do { 4149 const Value *P = Worklist.pop_back_val(); 4150 P = GetUnderlyingObject(P, DL, MaxLookup); 4151 4152 if (!Visited.insert(P).second) 4153 continue; 4154 4155 if (auto *SI = dyn_cast<SelectInst>(P)) { 4156 Worklist.push_back(SI->getTrueValue()); 4157 Worklist.push_back(SI->getFalseValue()); 4158 continue; 4159 } 4160 4161 if (auto *PN = dyn_cast<PHINode>(P)) { 4162 // If this PHI changes the underlying object in every iteration of the 4163 // loop, don't look through it. Consider: 4164 // int **A; 4165 // for (i) { 4166 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4167 // Curr = A[i]; 4168 // *Prev, *Curr; 4169 // 4170 // Prev is tracking Curr one iteration behind so they refer to different 4171 // underlying objects. 4172 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4173 isSameUnderlyingObjectInLoop(PN, LI)) 4174 for (Value *IncValue : PN->incoming_values()) 4175 Worklist.push_back(IncValue); 4176 continue; 4177 } 4178 4179 Objects.push_back(P); 4180 } while (!Worklist.empty()); 4181 } 4182 4183 /// This is the function that does the work of looking through basic 4184 /// ptrtoint+arithmetic+inttoptr sequences. 4185 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4186 do { 4187 if (const Operator *U = dyn_cast<Operator>(V)) { 4188 // If we find a ptrtoint, we can transfer control back to the 4189 // regular getUnderlyingObjectFromInt. 4190 if (U->getOpcode() == Instruction::PtrToInt) 4191 return U->getOperand(0); 4192 // If we find an add of a constant, a multiplied value, or a phi, it's 4193 // likely that the other operand will lead us to the base 4194 // object. We don't have to worry about the case where the 4195 // object address is somehow being computed by the multiply, 4196 // because our callers only care when the result is an 4197 // identifiable object. 4198 if (U->getOpcode() != Instruction::Add || 4199 (!isa<ConstantInt>(U->getOperand(1)) && 4200 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4201 !isa<PHINode>(U->getOperand(1)))) 4202 return V; 4203 V = U->getOperand(0); 4204 } else { 4205 return V; 4206 } 4207 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4208 } while (true); 4209 } 4210 4211 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4212 /// ptrtoint+arithmetic+inttoptr sequences. 4213 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4214 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4215 SmallVectorImpl<Value *> &Objects, 4216 const DataLayout &DL) { 4217 SmallPtrSet<const Value *, 16> Visited; 4218 SmallVector<const Value *, 4> Working(1, V); 4219 do { 4220 V = Working.pop_back_val(); 4221 4222 SmallVector<const Value *, 4> Objs; 4223 GetUnderlyingObjects(V, Objs, DL); 4224 4225 for (const Value *V : Objs) { 4226 if (!Visited.insert(V).second) 4227 continue; 4228 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4229 const Value *O = 4230 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4231 if (O->getType()->isPointerTy()) { 4232 Working.push_back(O); 4233 continue; 4234 } 4235 } 4236 // If GetUnderlyingObjects fails to find an identifiable object, 4237 // getUnderlyingObjectsForCodeGen also fails for safety. 4238 if (!isIdentifiedObject(V)) { 4239 Objects.clear(); 4240 return false; 4241 } 4242 Objects.push_back(const_cast<Value *>(V)); 4243 } 4244 } while (!Working.empty()); 4245 return true; 4246 } 4247 4248 /// Return true if the only users of this pointer are lifetime markers. 4249 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4250 for (const User *U : V->users()) { 4251 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4252 if (!II) return false; 4253 4254 if (!II->isLifetimeStartOrEnd()) 4255 return false; 4256 } 4257 return true; 4258 } 4259 4260 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4261 if (!LI.isUnordered()) 4262 return true; 4263 const Function &F = *LI.getFunction(); 4264 // Speculative load may create a race that did not exist in the source. 4265 return F.hasFnAttribute(Attribute::SanitizeThread) || 4266 // Speculative load may load data from dirty regions. 4267 F.hasFnAttribute(Attribute::SanitizeAddress) || 4268 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4269 } 4270 4271 4272 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4273 const Instruction *CtxI, 4274 const DominatorTree *DT) { 4275 const Operator *Inst = dyn_cast<Operator>(V); 4276 if (!Inst) 4277 return false; 4278 4279 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4280 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4281 if (C->canTrap()) 4282 return false; 4283 4284 switch (Inst->getOpcode()) { 4285 default: 4286 return true; 4287 case Instruction::UDiv: 4288 case Instruction::URem: { 4289 // x / y is undefined if y == 0. 4290 const APInt *V; 4291 if (match(Inst->getOperand(1), m_APInt(V))) 4292 return *V != 0; 4293 return false; 4294 } 4295 case Instruction::SDiv: 4296 case Instruction::SRem: { 4297 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4298 const APInt *Numerator, *Denominator; 4299 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4300 return false; 4301 // We cannot hoist this division if the denominator is 0. 4302 if (*Denominator == 0) 4303 return false; 4304 // It's safe to hoist if the denominator is not 0 or -1. 4305 if (*Denominator != -1) 4306 return true; 4307 // At this point we know that the denominator is -1. It is safe to hoist as 4308 // long we know that the numerator is not INT_MIN. 4309 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4310 return !Numerator->isMinSignedValue(); 4311 // The numerator *might* be MinSignedValue. 4312 return false; 4313 } 4314 case Instruction::Load: { 4315 const LoadInst *LI = cast<LoadInst>(Inst); 4316 if (mustSuppressSpeculation(*LI)) 4317 return false; 4318 const DataLayout &DL = LI->getModule()->getDataLayout(); 4319 return isDereferenceableAndAlignedPointer( 4320 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4321 DL, CtxI, DT); 4322 } 4323 case Instruction::Call: { 4324 auto *CI = cast<const CallInst>(Inst); 4325 const Function *Callee = CI->getCalledFunction(); 4326 4327 // The called function could have undefined behavior or side-effects, even 4328 // if marked readnone nounwind. 4329 return Callee && Callee->isSpeculatable(); 4330 } 4331 case Instruction::VAArg: 4332 case Instruction::Alloca: 4333 case Instruction::Invoke: 4334 case Instruction::CallBr: 4335 case Instruction::PHI: 4336 case Instruction::Store: 4337 case Instruction::Ret: 4338 case Instruction::Br: 4339 case Instruction::IndirectBr: 4340 case Instruction::Switch: 4341 case Instruction::Unreachable: 4342 case Instruction::Fence: 4343 case Instruction::AtomicRMW: 4344 case Instruction::AtomicCmpXchg: 4345 case Instruction::LandingPad: 4346 case Instruction::Resume: 4347 case Instruction::CatchSwitch: 4348 case Instruction::CatchPad: 4349 case Instruction::CatchRet: 4350 case Instruction::CleanupPad: 4351 case Instruction::CleanupRet: 4352 return false; // Misc instructions which have effects 4353 } 4354 } 4355 4356 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4357 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4358 } 4359 4360 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4361 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4362 switch (OR) { 4363 case ConstantRange::OverflowResult::MayOverflow: 4364 return OverflowResult::MayOverflow; 4365 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4366 return OverflowResult::AlwaysOverflowsLow; 4367 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4368 return OverflowResult::AlwaysOverflowsHigh; 4369 case ConstantRange::OverflowResult::NeverOverflows: 4370 return OverflowResult::NeverOverflows; 4371 } 4372 llvm_unreachable("Unknown OverflowResult"); 4373 } 4374 4375 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4376 static ConstantRange computeConstantRangeIncludingKnownBits( 4377 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4378 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4379 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4380 KnownBits Known = computeKnownBits( 4381 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4382 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4383 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4384 ConstantRange::PreferredRangeType RangeType = 4385 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4386 return CR1.intersectWith(CR2, RangeType); 4387 } 4388 4389 OverflowResult llvm::computeOverflowForUnsignedMul( 4390 const Value *LHS, const Value *RHS, const DataLayout &DL, 4391 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4392 bool UseInstrInfo) { 4393 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4394 nullptr, UseInstrInfo); 4395 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4396 nullptr, UseInstrInfo); 4397 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4398 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4399 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4400 } 4401 4402 OverflowResult 4403 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4404 const DataLayout &DL, AssumptionCache *AC, 4405 const Instruction *CxtI, 4406 const DominatorTree *DT, bool UseInstrInfo) { 4407 // Multiplying n * m significant bits yields a result of n + m significant 4408 // bits. If the total number of significant bits does not exceed the 4409 // result bit width (minus 1), there is no overflow. 4410 // This means if we have enough leading sign bits in the operands 4411 // we can guarantee that the result does not overflow. 4412 // Ref: "Hacker's Delight" by Henry Warren 4413 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4414 4415 // Note that underestimating the number of sign bits gives a more 4416 // conservative answer. 4417 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4418 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4419 4420 // First handle the easy case: if we have enough sign bits there's 4421 // definitely no overflow. 4422 if (SignBits > BitWidth + 1) 4423 return OverflowResult::NeverOverflows; 4424 4425 // There are two ambiguous cases where there can be no overflow: 4426 // SignBits == BitWidth + 1 and 4427 // SignBits == BitWidth 4428 // The second case is difficult to check, therefore we only handle the 4429 // first case. 4430 if (SignBits == BitWidth + 1) { 4431 // It overflows only when both arguments are negative and the true 4432 // product is exactly the minimum negative number. 4433 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4434 // For simplicity we just check if at least one side is not negative. 4435 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4436 nullptr, UseInstrInfo); 4437 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4438 nullptr, UseInstrInfo); 4439 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4440 return OverflowResult::NeverOverflows; 4441 } 4442 return OverflowResult::MayOverflow; 4443 } 4444 4445 OverflowResult llvm::computeOverflowForUnsignedAdd( 4446 const Value *LHS, const Value *RHS, const DataLayout &DL, 4447 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4448 bool UseInstrInfo) { 4449 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4450 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4451 nullptr, UseInstrInfo); 4452 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4453 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4454 nullptr, UseInstrInfo); 4455 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4456 } 4457 4458 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4459 const Value *RHS, 4460 const AddOperator *Add, 4461 const DataLayout &DL, 4462 AssumptionCache *AC, 4463 const Instruction *CxtI, 4464 const DominatorTree *DT) { 4465 if (Add && Add->hasNoSignedWrap()) { 4466 return OverflowResult::NeverOverflows; 4467 } 4468 4469 // If LHS and RHS each have at least two sign bits, the addition will look 4470 // like 4471 // 4472 // XX..... + 4473 // YY..... 4474 // 4475 // If the carry into the most significant position is 0, X and Y can't both 4476 // be 1 and therefore the carry out of the addition is also 0. 4477 // 4478 // If the carry into the most significant position is 1, X and Y can't both 4479 // be 0 and therefore the carry out of the addition is also 1. 4480 // 4481 // Since the carry into the most significant position is always equal to 4482 // the carry out of the addition, there is no signed overflow. 4483 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4484 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4485 return OverflowResult::NeverOverflows; 4486 4487 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4488 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4489 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4490 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4491 OverflowResult OR = 4492 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4493 if (OR != OverflowResult::MayOverflow) 4494 return OR; 4495 4496 // The remaining code needs Add to be available. Early returns if not so. 4497 if (!Add) 4498 return OverflowResult::MayOverflow; 4499 4500 // If the sign of Add is the same as at least one of the operands, this add 4501 // CANNOT overflow. If this can be determined from the known bits of the 4502 // operands the above signedAddMayOverflow() check will have already done so. 4503 // The only other way to improve on the known bits is from an assumption, so 4504 // call computeKnownBitsFromAssume() directly. 4505 bool LHSOrRHSKnownNonNegative = 4506 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4507 bool LHSOrRHSKnownNegative = 4508 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4509 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4510 KnownBits AddKnown(LHSRange.getBitWidth()); 4511 computeKnownBitsFromAssume( 4512 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4513 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4514 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4515 return OverflowResult::NeverOverflows; 4516 } 4517 4518 return OverflowResult::MayOverflow; 4519 } 4520 4521 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4522 const Value *RHS, 4523 const DataLayout &DL, 4524 AssumptionCache *AC, 4525 const Instruction *CxtI, 4526 const DominatorTree *DT) { 4527 // Checking for conditions implied by dominating conditions may be expensive. 4528 // Limit it to usub_with_overflow calls for now. 4529 if (match(CxtI, 4530 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4531 if (auto C = 4532 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4533 if (*C) 4534 return OverflowResult::NeverOverflows; 4535 return OverflowResult::AlwaysOverflowsLow; 4536 } 4537 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4538 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4539 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4540 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4541 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4542 } 4543 4544 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4545 const Value *RHS, 4546 const DataLayout &DL, 4547 AssumptionCache *AC, 4548 const Instruction *CxtI, 4549 const DominatorTree *DT) { 4550 // If LHS and RHS each have at least two sign bits, the subtraction 4551 // cannot overflow. 4552 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4553 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4554 return OverflowResult::NeverOverflows; 4555 4556 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4557 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4558 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4559 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4560 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4561 } 4562 4563 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4564 const DominatorTree &DT) { 4565 SmallVector<const BranchInst *, 2> GuardingBranches; 4566 SmallVector<const ExtractValueInst *, 2> Results; 4567 4568 for (const User *U : WO->users()) { 4569 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4570 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4571 4572 if (EVI->getIndices()[0] == 0) 4573 Results.push_back(EVI); 4574 else { 4575 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4576 4577 for (const auto *U : EVI->users()) 4578 if (const auto *B = dyn_cast<BranchInst>(U)) { 4579 assert(B->isConditional() && "How else is it using an i1?"); 4580 GuardingBranches.push_back(B); 4581 } 4582 } 4583 } else { 4584 // We are using the aggregate directly in a way we don't want to analyze 4585 // here (storing it to a global, say). 4586 return false; 4587 } 4588 } 4589 4590 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4591 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4592 if (!NoWrapEdge.isSingleEdge()) 4593 return false; 4594 4595 // Check if all users of the add are provably no-wrap. 4596 for (const auto *Result : Results) { 4597 // If the extractvalue itself is not executed on overflow, the we don't 4598 // need to check each use separately, since domination is transitive. 4599 if (DT.dominates(NoWrapEdge, Result->getParent())) 4600 continue; 4601 4602 for (auto &RU : Result->uses()) 4603 if (!DT.dominates(NoWrapEdge, RU)) 4604 return false; 4605 } 4606 4607 return true; 4608 }; 4609 4610 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4611 } 4612 4613 bool llvm::canCreatePoison(const Instruction *I) { 4614 // See whether I has flags that may create poison 4615 if (isa<OverflowingBinaryOperator>(I) && 4616 (I->hasNoSignedWrap() || I->hasNoUnsignedWrap())) 4617 return true; 4618 if (isa<PossiblyExactOperator>(I) && I->isExact()) 4619 return true; 4620 if (auto *FP = dyn_cast<FPMathOperator>(I)) { 4621 auto FMF = FP->getFastMathFlags(); 4622 if (FMF.noNaNs() || FMF.noInfs()) 4623 return true; 4624 } 4625 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4626 if (GEP->isInBounds()) 4627 return true; 4628 4629 unsigned Opcode = I->getOpcode(); 4630 4631 // Check whether opcode is a poison-generating operation 4632 switch (Opcode) { 4633 case Instruction::Shl: 4634 case Instruction::AShr: 4635 case Instruction::LShr: { 4636 // Shifts return poison if shiftwidth is larger than the bitwidth. 4637 if (auto *C = dyn_cast<Constant>(I->getOperand(1))) { 4638 SmallVector<Constant *, 4> ShiftAmounts; 4639 if (C->getType()->isVectorTy()) { 4640 unsigned NumElts = cast<VectorType>(C->getType())->getNumElements(); 4641 for (unsigned i = 0; i < NumElts; ++i) 4642 ShiftAmounts.push_back(C->getAggregateElement(i)); 4643 } else 4644 ShiftAmounts.push_back(C); 4645 4646 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4647 auto *CI = dyn_cast<ConstantInt>(C); 4648 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4649 }); 4650 return !Safe; 4651 } 4652 return true; 4653 } 4654 case Instruction::FPToSI: 4655 case Instruction::FPToUI: 4656 // fptosi/ui yields poison if the resulting value does not fit in the 4657 // destination type. 4658 return true; 4659 case Instruction::Call: 4660 case Instruction::CallBr: 4661 case Instruction::Invoke: 4662 // Function calls can return a poison value even if args are non-poison 4663 // values. 4664 return true; 4665 case Instruction::InsertElement: 4666 case Instruction::ExtractElement: { 4667 // If index exceeds the length of the vector, it returns poison 4668 auto *VTy = cast<VectorType>(I->getOperand(0)->getType()); 4669 unsigned IdxOp = I->getOpcode() == Instruction::InsertElement ? 2 : 1; 4670 auto *Idx = dyn_cast<ConstantInt>(I->getOperand(IdxOp)); 4671 if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min) 4672 return true; 4673 return false; 4674 } 4675 case Instruction::FNeg: 4676 case Instruction::PHI: 4677 case Instruction::Select: 4678 case Instruction::URem: 4679 case Instruction::SRem: 4680 case Instruction::ShuffleVector: 4681 case Instruction::ExtractValue: 4682 case Instruction::InsertValue: 4683 case Instruction::Freeze: 4684 case Instruction::ICmp: 4685 case Instruction::FCmp: 4686 case Instruction::GetElementPtr: 4687 return false; 4688 default: 4689 if (isa<CastInst>(I)) 4690 return false; 4691 else if (isa<BinaryOperator>(I)) 4692 return false; 4693 // Be conservative and return true. 4694 return true; 4695 } 4696 } 4697 4698 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4699 const Instruction *CtxI, 4700 const DominatorTree *DT, 4701 unsigned Depth) { 4702 if (Depth >= MaxDepth) 4703 return false; 4704 4705 // If the value is a freeze instruction, then it can never 4706 // be undef or poison. 4707 if (isa<FreezeInst>(V)) 4708 return true; 4709 // TODO: Some instructions are guaranteed to return neither undef 4710 // nor poison if their arguments are not poison/undef. 4711 4712 if (auto *C = dyn_cast<Constant>(V)) { 4713 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4714 // possibility of poison. 4715 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4716 return false; 4717 4718 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4719 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4720 return true; 4721 4722 if (C->getType()->isVectorTy()) 4723 return !C->containsUndefElement() && !C->containsConstantExpression(); 4724 4725 // TODO: Recursively analyze aggregates or other constants. 4726 return false; 4727 } 4728 4729 // Strip cast operations from a pointer value. 4730 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4731 // inbounds with zero offset. To guarantee that the result isn't poison, the 4732 // stripped pointer is checked as it has to be pointing into an allocated 4733 // object or be null `null` to ensure `inbounds` getelement pointers with a 4734 // zero offset could not produce poison. 4735 // It can strip off addrspacecast that do not change bit representation as 4736 // well. We believe that such addrspacecast is equivalent to no-op. 4737 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4738 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4739 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4740 return true; 4741 4742 auto OpCheck = [&](const Value *V) { 4743 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4744 }; 4745 4746 if (auto *I = dyn_cast<Instruction>(V)) { 4747 switch (I->getOpcode()) { 4748 case Instruction::GetElementPtr: { 4749 auto *GEPI = dyn_cast<GetElementPtrInst>(I); 4750 if (!GEPI->isInBounds() && llvm::all_of(GEPI->operands(), OpCheck)) 4751 return true; 4752 break; 4753 } 4754 case Instruction::FCmp: { 4755 auto *FI = dyn_cast<FCmpInst>(I); 4756 if (FI->getFastMathFlags().none() && 4757 llvm::all_of(FI->operands(), OpCheck)) 4758 return true; 4759 break; 4760 } 4761 case Instruction::BitCast: 4762 case Instruction::PHI: 4763 case Instruction::ICmp: 4764 if (llvm::all_of(I->operands(), OpCheck)) 4765 return true; 4766 break; 4767 default: 4768 break; 4769 } 4770 4771 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4772 // Note: once we have an agreement that poison is a value-wise concept, 4773 // we can remove the isIntegerTy(1) constraint. 4774 return true; 4775 } 4776 4777 // CxtI may be null or a cloned instruction. 4778 if (!CtxI || !CtxI->getParent() || !DT) 4779 return false; 4780 4781 // If V is used as a branch condition before reaching CtxI, V cannot be 4782 // undef or poison. 4783 // br V, BB1, BB2 4784 // BB1: 4785 // CtxI ; V cannot be undef or poison here 4786 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4787 while (Dominator) { 4788 auto *TI = Dominator->getBlock()->getTerminator(); 4789 4790 if (auto BI = dyn_cast<BranchInst>(TI)) { 4791 if (BI->isConditional() && BI->getCondition() == V) 4792 return true; 4793 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4794 if (SI->getCondition() == V) 4795 return true; 4796 } 4797 4798 Dominator = Dominator->getIDom(); 4799 } 4800 4801 return false; 4802 } 4803 4804 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4805 const DataLayout &DL, 4806 AssumptionCache *AC, 4807 const Instruction *CxtI, 4808 const DominatorTree *DT) { 4809 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4810 Add, DL, AC, CxtI, DT); 4811 } 4812 4813 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4814 const Value *RHS, 4815 const DataLayout &DL, 4816 AssumptionCache *AC, 4817 const Instruction *CxtI, 4818 const DominatorTree *DT) { 4819 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4820 } 4821 4822 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4823 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4824 // of time because it's possible for another thread to interfere with it for an 4825 // arbitrary length of time, but programs aren't allowed to rely on that. 4826 4827 // If there is no successor, then execution can't transfer to it. 4828 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4829 return !CRI->unwindsToCaller(); 4830 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4831 return !CatchSwitch->unwindsToCaller(); 4832 if (isa<ResumeInst>(I)) 4833 return false; 4834 if (isa<ReturnInst>(I)) 4835 return false; 4836 if (isa<UnreachableInst>(I)) 4837 return false; 4838 4839 // Calls can throw, or contain an infinite loop, or kill the process. 4840 if (const auto *CB = dyn_cast<CallBase>(I)) { 4841 // Call sites that throw have implicit non-local control flow. 4842 if (!CB->doesNotThrow()) 4843 return false; 4844 4845 // A function which doens't throw and has "willreturn" attribute will 4846 // always return. 4847 if (CB->hasFnAttr(Attribute::WillReturn)) 4848 return true; 4849 4850 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4851 // etc. and thus not return. However, LLVM already assumes that 4852 // 4853 // - Thread exiting actions are modeled as writes to memory invisible to 4854 // the program. 4855 // 4856 // - Loops that don't have side effects (side effects are volatile/atomic 4857 // stores and IO) always terminate (see http://llvm.org/PR965). 4858 // Furthermore IO itself is also modeled as writes to memory invisible to 4859 // the program. 4860 // 4861 // We rely on those assumptions here, and use the memory effects of the call 4862 // target as a proxy for checking that it always returns. 4863 4864 // FIXME: This isn't aggressive enough; a call which only writes to a global 4865 // is guaranteed to return. 4866 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4867 } 4868 4869 // Other instructions return normally. 4870 return true; 4871 } 4872 4873 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4874 // TODO: This is slightly conservative for invoke instruction since exiting 4875 // via an exception *is* normal control for them. 4876 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4877 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4878 return false; 4879 return true; 4880 } 4881 4882 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4883 const Loop *L) { 4884 // The loop header is guaranteed to be executed for every iteration. 4885 // 4886 // FIXME: Relax this constraint to cover all basic blocks that are 4887 // guaranteed to be executed at every iteration. 4888 if (I->getParent() != L->getHeader()) return false; 4889 4890 for (const Instruction &LI : *L->getHeader()) { 4891 if (&LI == I) return true; 4892 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4893 } 4894 llvm_unreachable("Instruction not contained in its own parent basic block."); 4895 } 4896 4897 bool llvm::propagatesPoison(const Instruction *I) { 4898 // TODO: This should include all instructions apart from phis, selects and 4899 // call-like instructions. 4900 switch (I->getOpcode()) { 4901 case Instruction::Add: 4902 case Instruction::Sub: 4903 case Instruction::Xor: 4904 case Instruction::Trunc: 4905 case Instruction::BitCast: 4906 case Instruction::AddrSpaceCast: 4907 case Instruction::Mul: 4908 case Instruction::Shl: 4909 case Instruction::GetElementPtr: 4910 // These operations all propagate poison unconditionally. Note that poison 4911 // is not any particular value, so xor or subtraction of poison with 4912 // itself still yields poison, not zero. 4913 return true; 4914 4915 case Instruction::AShr: 4916 case Instruction::SExt: 4917 // For these operations, one bit of the input is replicated across 4918 // multiple output bits. A replicated poison bit is still poison. 4919 return true; 4920 4921 case Instruction::ICmp: 4922 // Comparing poison with any value yields poison. This is why, for 4923 // instance, x s< (x +nsw 1) can be folded to true. 4924 return true; 4925 4926 default: 4927 return false; 4928 } 4929 } 4930 4931 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) { 4932 switch (I->getOpcode()) { 4933 case Instruction::Store: 4934 return cast<StoreInst>(I)->getPointerOperand(); 4935 4936 case Instruction::Load: 4937 return cast<LoadInst>(I)->getPointerOperand(); 4938 4939 case Instruction::AtomicCmpXchg: 4940 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4941 4942 case Instruction::AtomicRMW: 4943 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4944 4945 case Instruction::UDiv: 4946 case Instruction::SDiv: 4947 case Instruction::URem: 4948 case Instruction::SRem: 4949 return I->getOperand(1); 4950 4951 case Instruction::Call: 4952 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4953 switch (II->getIntrinsicID()) { 4954 case Intrinsic::assume: 4955 return II->getArgOperand(0); 4956 default: 4957 return nullptr; 4958 } 4959 } 4960 return nullptr; 4961 4962 default: 4963 return nullptr; 4964 } 4965 } 4966 4967 bool llvm::mustTriggerUB(const Instruction *I, 4968 const SmallSet<const Value *, 16>& KnownPoison) { 4969 auto *NotPoison = getGuaranteedNonPoisonOp(I); 4970 return (NotPoison && KnownPoison.count(NotPoison)); 4971 } 4972 4973 4974 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 4975 // We currently only look for uses of poison values within the same basic 4976 // block, as that makes it easier to guarantee that the uses will be 4977 // executed given that PoisonI is executed. 4978 // 4979 // FIXME: Expand this to consider uses beyond the same basic block. To do 4980 // this, look out for the distinction between post-dominance and strong 4981 // post-dominance. 4982 const BasicBlock *BB = PoisonI->getParent(); 4983 4984 // Set of instructions that we have proved will yield poison if PoisonI 4985 // does. 4986 SmallSet<const Value *, 16> YieldsPoison; 4987 SmallSet<const BasicBlock *, 4> Visited; 4988 YieldsPoison.insert(PoisonI); 4989 Visited.insert(PoisonI->getParent()); 4990 4991 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4992 4993 unsigned Iter = 0; 4994 while (Iter++ < MaxDepth) { 4995 for (auto &I : make_range(Begin, End)) { 4996 if (&I != PoisonI) { 4997 if (mustTriggerUB(&I, YieldsPoison)) 4998 return true; 4999 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5000 return false; 5001 } 5002 5003 // Mark poison that propagates from I through uses of I. 5004 if (YieldsPoison.count(&I)) { 5005 for (const User *User : I.users()) { 5006 const Instruction *UserI = cast<Instruction>(User); 5007 if (propagatesPoison(UserI)) 5008 YieldsPoison.insert(User); 5009 } 5010 } 5011 } 5012 5013 if (auto *NextBB = BB->getSingleSuccessor()) { 5014 if (Visited.insert(NextBB).second) { 5015 BB = NextBB; 5016 Begin = BB->getFirstNonPHI()->getIterator(); 5017 End = BB->end(); 5018 continue; 5019 } 5020 } 5021 5022 break; 5023 } 5024 return false; 5025 } 5026 5027 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5028 if (FMF.noNaNs()) 5029 return true; 5030 5031 if (auto *C = dyn_cast<ConstantFP>(V)) 5032 return !C->isNaN(); 5033 5034 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5035 if (!C->getElementType()->isFloatingPointTy()) 5036 return false; 5037 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5038 if (C->getElementAsAPFloat(I).isNaN()) 5039 return false; 5040 } 5041 return true; 5042 } 5043 5044 if (isa<ConstantAggregateZero>(V)) 5045 return true; 5046 5047 return false; 5048 } 5049 5050 static bool isKnownNonZero(const Value *V) { 5051 if (auto *C = dyn_cast<ConstantFP>(V)) 5052 return !C->isZero(); 5053 5054 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5055 if (!C->getElementType()->isFloatingPointTy()) 5056 return false; 5057 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5058 if (C->getElementAsAPFloat(I).isZero()) 5059 return false; 5060 } 5061 return true; 5062 } 5063 5064 return false; 5065 } 5066 5067 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5068 /// Given non-min/max outer cmp/select from the clamp pattern this 5069 /// function recognizes if it can be substitued by a "canonical" min/max 5070 /// pattern. 5071 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5072 Value *CmpLHS, Value *CmpRHS, 5073 Value *TrueVal, Value *FalseVal, 5074 Value *&LHS, Value *&RHS) { 5075 // Try to match 5076 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5077 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5078 // and return description of the outer Max/Min. 5079 5080 // First, check if select has inverse order: 5081 if (CmpRHS == FalseVal) { 5082 std::swap(TrueVal, FalseVal); 5083 Pred = CmpInst::getInversePredicate(Pred); 5084 } 5085 5086 // Assume success now. If there's no match, callers should not use these anyway. 5087 LHS = TrueVal; 5088 RHS = FalseVal; 5089 5090 const APFloat *FC1; 5091 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5092 return {SPF_UNKNOWN, SPNB_NA, false}; 5093 5094 const APFloat *FC2; 5095 switch (Pred) { 5096 case CmpInst::FCMP_OLT: 5097 case CmpInst::FCMP_OLE: 5098 case CmpInst::FCMP_ULT: 5099 case CmpInst::FCMP_ULE: 5100 if (match(FalseVal, 5101 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5102 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5103 *FC1 < *FC2) 5104 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5105 break; 5106 case CmpInst::FCMP_OGT: 5107 case CmpInst::FCMP_OGE: 5108 case CmpInst::FCMP_UGT: 5109 case CmpInst::FCMP_UGE: 5110 if (match(FalseVal, 5111 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5112 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5113 *FC1 > *FC2) 5114 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5115 break; 5116 default: 5117 break; 5118 } 5119 5120 return {SPF_UNKNOWN, SPNB_NA, false}; 5121 } 5122 5123 /// Recognize variations of: 5124 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5125 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5126 Value *CmpLHS, Value *CmpRHS, 5127 Value *TrueVal, Value *FalseVal) { 5128 // Swap the select operands and predicate to match the patterns below. 5129 if (CmpRHS != TrueVal) { 5130 Pred = ICmpInst::getSwappedPredicate(Pred); 5131 std::swap(TrueVal, FalseVal); 5132 } 5133 const APInt *C1; 5134 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5135 const APInt *C2; 5136 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5137 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5138 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5139 return {SPF_SMAX, SPNB_NA, false}; 5140 5141 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5142 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5143 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5144 return {SPF_SMIN, SPNB_NA, false}; 5145 5146 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5147 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5148 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5149 return {SPF_UMAX, SPNB_NA, false}; 5150 5151 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5152 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5153 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5154 return {SPF_UMIN, SPNB_NA, false}; 5155 } 5156 return {SPF_UNKNOWN, SPNB_NA, false}; 5157 } 5158 5159 /// Recognize variations of: 5160 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5161 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5162 Value *CmpLHS, Value *CmpRHS, 5163 Value *TVal, Value *FVal, 5164 unsigned Depth) { 5165 // TODO: Allow FP min/max with nnan/nsz. 5166 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5167 5168 Value *A = nullptr, *B = nullptr; 5169 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5170 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5171 return {SPF_UNKNOWN, SPNB_NA, false}; 5172 5173 Value *C = nullptr, *D = nullptr; 5174 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5175 if (L.Flavor != R.Flavor) 5176 return {SPF_UNKNOWN, SPNB_NA, false}; 5177 5178 // We have something like: x Pred y ? min(a, b) : min(c, d). 5179 // Try to match the compare to the min/max operations of the select operands. 5180 // First, make sure we have the right compare predicate. 5181 switch (L.Flavor) { 5182 case SPF_SMIN: 5183 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5184 Pred = ICmpInst::getSwappedPredicate(Pred); 5185 std::swap(CmpLHS, CmpRHS); 5186 } 5187 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5188 break; 5189 return {SPF_UNKNOWN, SPNB_NA, false}; 5190 case SPF_SMAX: 5191 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5192 Pred = ICmpInst::getSwappedPredicate(Pred); 5193 std::swap(CmpLHS, CmpRHS); 5194 } 5195 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5196 break; 5197 return {SPF_UNKNOWN, SPNB_NA, false}; 5198 case SPF_UMIN: 5199 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5200 Pred = ICmpInst::getSwappedPredicate(Pred); 5201 std::swap(CmpLHS, CmpRHS); 5202 } 5203 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5204 break; 5205 return {SPF_UNKNOWN, SPNB_NA, false}; 5206 case SPF_UMAX: 5207 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5208 Pred = ICmpInst::getSwappedPredicate(Pred); 5209 std::swap(CmpLHS, CmpRHS); 5210 } 5211 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5212 break; 5213 return {SPF_UNKNOWN, SPNB_NA, false}; 5214 default: 5215 return {SPF_UNKNOWN, SPNB_NA, false}; 5216 } 5217 5218 // If there is a common operand in the already matched min/max and the other 5219 // min/max operands match the compare operands (either directly or inverted), 5220 // then this is min/max of the same flavor. 5221 5222 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5223 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5224 if (D == B) { 5225 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5226 match(A, m_Not(m_Specific(CmpRHS))))) 5227 return {L.Flavor, SPNB_NA, false}; 5228 } 5229 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5230 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5231 if (C == B) { 5232 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5233 match(A, m_Not(m_Specific(CmpRHS))))) 5234 return {L.Flavor, SPNB_NA, false}; 5235 } 5236 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5237 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5238 if (D == A) { 5239 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5240 match(B, m_Not(m_Specific(CmpRHS))))) 5241 return {L.Flavor, SPNB_NA, false}; 5242 } 5243 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5244 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5245 if (C == A) { 5246 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5247 match(B, m_Not(m_Specific(CmpRHS))))) 5248 return {L.Flavor, SPNB_NA, false}; 5249 } 5250 5251 return {SPF_UNKNOWN, SPNB_NA, false}; 5252 } 5253 5254 /// If the input value is the result of a 'not' op, constant integer, or vector 5255 /// splat of a constant integer, return the bitwise-not source value. 5256 /// TODO: This could be extended to handle non-splat vector integer constants. 5257 static Value *getNotValue(Value *V) { 5258 Value *NotV; 5259 if (match(V, m_Not(m_Value(NotV)))) 5260 return NotV; 5261 5262 const APInt *C; 5263 if (match(V, m_APInt(C))) 5264 return ConstantInt::get(V->getType(), ~(*C)); 5265 5266 return nullptr; 5267 } 5268 5269 /// Match non-obvious integer minimum and maximum sequences. 5270 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5271 Value *CmpLHS, Value *CmpRHS, 5272 Value *TrueVal, Value *FalseVal, 5273 Value *&LHS, Value *&RHS, 5274 unsigned Depth) { 5275 // Assume success. If there's no match, callers should not use these anyway. 5276 LHS = TrueVal; 5277 RHS = FalseVal; 5278 5279 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5280 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5281 return SPR; 5282 5283 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5284 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5285 return SPR; 5286 5287 // Look through 'not' ops to find disguised min/max. 5288 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5289 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5290 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5291 switch (Pred) { 5292 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5293 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5294 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5295 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5296 default: break; 5297 } 5298 } 5299 5300 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5301 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5302 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5303 switch (Pred) { 5304 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5305 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5306 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5307 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5308 default: break; 5309 } 5310 } 5311 5312 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5313 return {SPF_UNKNOWN, SPNB_NA, false}; 5314 5315 // Z = X -nsw Y 5316 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5317 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5318 if (match(TrueVal, m_Zero()) && 5319 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5320 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5321 5322 // Z = X -nsw Y 5323 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5324 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5325 if (match(FalseVal, m_Zero()) && 5326 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5327 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5328 5329 const APInt *C1; 5330 if (!match(CmpRHS, m_APInt(C1))) 5331 return {SPF_UNKNOWN, SPNB_NA, false}; 5332 5333 // An unsigned min/max can be written with a signed compare. 5334 const APInt *C2; 5335 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5336 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5337 // Is the sign bit set? 5338 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5339 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5340 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5341 C2->isMaxSignedValue()) 5342 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5343 5344 // Is the sign bit clear? 5345 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5346 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5347 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5348 C2->isMinSignedValue()) 5349 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5350 } 5351 5352 return {SPF_UNKNOWN, SPNB_NA, false}; 5353 } 5354 5355 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5356 assert(X && Y && "Invalid operand"); 5357 5358 // X = sub (0, Y) || X = sub nsw (0, Y) 5359 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5360 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5361 return true; 5362 5363 // Y = sub (0, X) || Y = sub nsw (0, X) 5364 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5365 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5366 return true; 5367 5368 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5369 Value *A, *B; 5370 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5371 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5372 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5373 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5374 } 5375 5376 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5377 FastMathFlags FMF, 5378 Value *CmpLHS, Value *CmpRHS, 5379 Value *TrueVal, Value *FalseVal, 5380 Value *&LHS, Value *&RHS, 5381 unsigned Depth) { 5382 if (CmpInst::isFPPredicate(Pred)) { 5383 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5384 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5385 // purpose of identifying min/max. Disregard vector constants with undefined 5386 // elements because those can not be back-propagated for analysis. 5387 Value *OutputZeroVal = nullptr; 5388 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5389 !cast<Constant>(TrueVal)->containsUndefElement()) 5390 OutputZeroVal = TrueVal; 5391 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5392 !cast<Constant>(FalseVal)->containsUndefElement()) 5393 OutputZeroVal = FalseVal; 5394 5395 if (OutputZeroVal) { 5396 if (match(CmpLHS, m_AnyZeroFP())) 5397 CmpLHS = OutputZeroVal; 5398 if (match(CmpRHS, m_AnyZeroFP())) 5399 CmpRHS = OutputZeroVal; 5400 } 5401 } 5402 5403 LHS = CmpLHS; 5404 RHS = CmpRHS; 5405 5406 // Signed zero may return inconsistent results between implementations. 5407 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5408 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5409 // Therefore, we behave conservatively and only proceed if at least one of the 5410 // operands is known to not be zero or if we don't care about signed zero. 5411 switch (Pred) { 5412 default: break; 5413 // FIXME: Include OGT/OLT/UGT/ULT. 5414 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5415 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5416 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5417 !isKnownNonZero(CmpRHS)) 5418 return {SPF_UNKNOWN, SPNB_NA, false}; 5419 } 5420 5421 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5422 bool Ordered = false; 5423 5424 // When given one NaN and one non-NaN input: 5425 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5426 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5427 // ordered comparison fails), which could be NaN or non-NaN. 5428 // so here we discover exactly what NaN behavior is required/accepted. 5429 if (CmpInst::isFPPredicate(Pred)) { 5430 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5431 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5432 5433 if (LHSSafe && RHSSafe) { 5434 // Both operands are known non-NaN. 5435 NaNBehavior = SPNB_RETURNS_ANY; 5436 } else if (CmpInst::isOrdered(Pred)) { 5437 // An ordered comparison will return false when given a NaN, so it 5438 // returns the RHS. 5439 Ordered = true; 5440 if (LHSSafe) 5441 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5442 NaNBehavior = SPNB_RETURNS_NAN; 5443 else if (RHSSafe) 5444 NaNBehavior = SPNB_RETURNS_OTHER; 5445 else 5446 // Completely unsafe. 5447 return {SPF_UNKNOWN, SPNB_NA, false}; 5448 } else { 5449 Ordered = false; 5450 // An unordered comparison will return true when given a NaN, so it 5451 // returns the LHS. 5452 if (LHSSafe) 5453 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5454 NaNBehavior = SPNB_RETURNS_OTHER; 5455 else if (RHSSafe) 5456 NaNBehavior = SPNB_RETURNS_NAN; 5457 else 5458 // Completely unsafe. 5459 return {SPF_UNKNOWN, SPNB_NA, false}; 5460 } 5461 } 5462 5463 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5464 std::swap(CmpLHS, CmpRHS); 5465 Pred = CmpInst::getSwappedPredicate(Pred); 5466 if (NaNBehavior == SPNB_RETURNS_NAN) 5467 NaNBehavior = SPNB_RETURNS_OTHER; 5468 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5469 NaNBehavior = SPNB_RETURNS_NAN; 5470 Ordered = !Ordered; 5471 } 5472 5473 // ([if]cmp X, Y) ? X : Y 5474 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5475 switch (Pred) { 5476 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5477 case ICmpInst::ICMP_UGT: 5478 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5479 case ICmpInst::ICMP_SGT: 5480 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5481 case ICmpInst::ICMP_ULT: 5482 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5483 case ICmpInst::ICMP_SLT: 5484 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5485 case FCmpInst::FCMP_UGT: 5486 case FCmpInst::FCMP_UGE: 5487 case FCmpInst::FCMP_OGT: 5488 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5489 case FCmpInst::FCMP_ULT: 5490 case FCmpInst::FCMP_ULE: 5491 case FCmpInst::FCMP_OLT: 5492 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5493 } 5494 } 5495 5496 if (isKnownNegation(TrueVal, FalseVal)) { 5497 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5498 // match against either LHS or sext(LHS). 5499 auto MaybeSExtCmpLHS = 5500 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5501 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5502 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5503 if (match(TrueVal, MaybeSExtCmpLHS)) { 5504 // Set the return values. If the compare uses the negated value (-X >s 0), 5505 // swap the return values because the negated value is always 'RHS'. 5506 LHS = TrueVal; 5507 RHS = FalseVal; 5508 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5509 std::swap(LHS, RHS); 5510 5511 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5512 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5513 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5514 return {SPF_ABS, SPNB_NA, false}; 5515 5516 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5517 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5518 return {SPF_ABS, SPNB_NA, false}; 5519 5520 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5521 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5522 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5523 return {SPF_NABS, SPNB_NA, false}; 5524 } 5525 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5526 // Set the return values. If the compare uses the negated value (-X >s 0), 5527 // swap the return values because the negated value is always 'RHS'. 5528 LHS = FalseVal; 5529 RHS = TrueVal; 5530 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5531 std::swap(LHS, RHS); 5532 5533 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5534 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5535 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5536 return {SPF_NABS, SPNB_NA, false}; 5537 5538 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5539 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5540 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5541 return {SPF_ABS, SPNB_NA, false}; 5542 } 5543 } 5544 5545 if (CmpInst::isIntPredicate(Pred)) 5546 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5547 5548 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5549 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5550 // semantics than minNum. Be conservative in such case. 5551 if (NaNBehavior != SPNB_RETURNS_ANY || 5552 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5553 !isKnownNonZero(CmpRHS))) 5554 return {SPF_UNKNOWN, SPNB_NA, false}; 5555 5556 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5557 } 5558 5559 /// Helps to match a select pattern in case of a type mismatch. 5560 /// 5561 /// The function processes the case when type of true and false values of a 5562 /// select instruction differs from type of the cmp instruction operands because 5563 /// of a cast instruction. The function checks if it is legal to move the cast 5564 /// operation after "select". If yes, it returns the new second value of 5565 /// "select" (with the assumption that cast is moved): 5566 /// 1. As operand of cast instruction when both values of "select" are same cast 5567 /// instructions. 5568 /// 2. As restored constant (by applying reverse cast operation) when the first 5569 /// value of the "select" is a cast operation and the second value is a 5570 /// constant. 5571 /// NOTE: We return only the new second value because the first value could be 5572 /// accessed as operand of cast instruction. 5573 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5574 Instruction::CastOps *CastOp) { 5575 auto *Cast1 = dyn_cast<CastInst>(V1); 5576 if (!Cast1) 5577 return nullptr; 5578 5579 *CastOp = Cast1->getOpcode(); 5580 Type *SrcTy = Cast1->getSrcTy(); 5581 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5582 // If V1 and V2 are both the same cast from the same type, look through V1. 5583 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5584 return Cast2->getOperand(0); 5585 return nullptr; 5586 } 5587 5588 auto *C = dyn_cast<Constant>(V2); 5589 if (!C) 5590 return nullptr; 5591 5592 Constant *CastedTo = nullptr; 5593 switch (*CastOp) { 5594 case Instruction::ZExt: 5595 if (CmpI->isUnsigned()) 5596 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5597 break; 5598 case Instruction::SExt: 5599 if (CmpI->isSigned()) 5600 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5601 break; 5602 case Instruction::Trunc: 5603 Constant *CmpConst; 5604 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5605 CmpConst->getType() == SrcTy) { 5606 // Here we have the following case: 5607 // 5608 // %cond = cmp iN %x, CmpConst 5609 // %tr = trunc iN %x to iK 5610 // %narrowsel = select i1 %cond, iK %t, iK C 5611 // 5612 // We can always move trunc after select operation: 5613 // 5614 // %cond = cmp iN %x, CmpConst 5615 // %widesel = select i1 %cond, iN %x, iN CmpConst 5616 // %tr = trunc iN %widesel to iK 5617 // 5618 // Note that C could be extended in any way because we don't care about 5619 // upper bits after truncation. It can't be abs pattern, because it would 5620 // look like: 5621 // 5622 // select i1 %cond, x, -x. 5623 // 5624 // So only min/max pattern could be matched. Such match requires widened C 5625 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5626 // CmpConst == C is checked below. 5627 CastedTo = CmpConst; 5628 } else { 5629 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5630 } 5631 break; 5632 case Instruction::FPTrunc: 5633 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5634 break; 5635 case Instruction::FPExt: 5636 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5637 break; 5638 case Instruction::FPToUI: 5639 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5640 break; 5641 case Instruction::FPToSI: 5642 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5643 break; 5644 case Instruction::UIToFP: 5645 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5646 break; 5647 case Instruction::SIToFP: 5648 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5649 break; 5650 default: 5651 break; 5652 } 5653 5654 if (!CastedTo) 5655 return nullptr; 5656 5657 // Make sure the cast doesn't lose any information. 5658 Constant *CastedBack = 5659 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5660 if (CastedBack != C) 5661 return nullptr; 5662 5663 return CastedTo; 5664 } 5665 5666 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5667 Instruction::CastOps *CastOp, 5668 unsigned Depth) { 5669 if (Depth >= MaxDepth) 5670 return {SPF_UNKNOWN, SPNB_NA, false}; 5671 5672 SelectInst *SI = dyn_cast<SelectInst>(V); 5673 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5674 5675 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5676 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5677 5678 Value *TrueVal = SI->getTrueValue(); 5679 Value *FalseVal = SI->getFalseValue(); 5680 5681 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5682 CastOp, Depth); 5683 } 5684 5685 SelectPatternResult llvm::matchDecomposedSelectPattern( 5686 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5687 Instruction::CastOps *CastOp, unsigned Depth) { 5688 CmpInst::Predicate Pred = CmpI->getPredicate(); 5689 Value *CmpLHS = CmpI->getOperand(0); 5690 Value *CmpRHS = CmpI->getOperand(1); 5691 FastMathFlags FMF; 5692 if (isa<FPMathOperator>(CmpI)) 5693 FMF = CmpI->getFastMathFlags(); 5694 5695 // Bail out early. 5696 if (CmpI->isEquality()) 5697 return {SPF_UNKNOWN, SPNB_NA, false}; 5698 5699 // Deal with type mismatches. 5700 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5701 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5702 // If this is a potential fmin/fmax with a cast to integer, then ignore 5703 // -0.0 because there is no corresponding integer value. 5704 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5705 FMF.setNoSignedZeros(); 5706 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5707 cast<CastInst>(TrueVal)->getOperand(0), C, 5708 LHS, RHS, Depth); 5709 } 5710 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5711 // If this is a potential fmin/fmax with a cast to integer, then ignore 5712 // -0.0 because there is no corresponding integer value. 5713 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5714 FMF.setNoSignedZeros(); 5715 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5716 C, cast<CastInst>(FalseVal)->getOperand(0), 5717 LHS, RHS, Depth); 5718 } 5719 } 5720 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5721 LHS, RHS, Depth); 5722 } 5723 5724 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5725 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5726 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5727 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5728 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5729 if (SPF == SPF_FMINNUM) 5730 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5731 if (SPF == SPF_FMAXNUM) 5732 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5733 llvm_unreachable("unhandled!"); 5734 } 5735 5736 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5737 if (SPF == SPF_SMIN) return SPF_SMAX; 5738 if (SPF == SPF_UMIN) return SPF_UMAX; 5739 if (SPF == SPF_SMAX) return SPF_SMIN; 5740 if (SPF == SPF_UMAX) return SPF_UMIN; 5741 llvm_unreachable("unhandled!"); 5742 } 5743 5744 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5745 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5746 } 5747 5748 /// Return true if "icmp Pred LHS RHS" is always true. 5749 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5750 const Value *RHS, const DataLayout &DL, 5751 unsigned Depth) { 5752 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5753 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5754 return true; 5755 5756 switch (Pred) { 5757 default: 5758 return false; 5759 5760 case CmpInst::ICMP_SLE: { 5761 const APInt *C; 5762 5763 // LHS s<= LHS +_{nsw} C if C >= 0 5764 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5765 return !C->isNegative(); 5766 return false; 5767 } 5768 5769 case CmpInst::ICMP_ULE: { 5770 const APInt *C; 5771 5772 // LHS u<= LHS +_{nuw} C for any C 5773 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5774 return true; 5775 5776 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5777 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5778 const Value *&X, 5779 const APInt *&CA, const APInt *&CB) { 5780 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5781 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5782 return true; 5783 5784 // If X & C == 0 then (X | C) == X +_{nuw} C 5785 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5786 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5787 KnownBits Known(CA->getBitWidth()); 5788 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5789 /*CxtI*/ nullptr, /*DT*/ nullptr); 5790 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5791 return true; 5792 } 5793 5794 return false; 5795 }; 5796 5797 const Value *X; 5798 const APInt *CLHS, *CRHS; 5799 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5800 return CLHS->ule(*CRHS); 5801 5802 return false; 5803 } 5804 } 5805 } 5806 5807 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5808 /// ALHS ARHS" is true. Otherwise, return None. 5809 static Optional<bool> 5810 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5811 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5812 const DataLayout &DL, unsigned Depth) { 5813 switch (Pred) { 5814 default: 5815 return None; 5816 5817 case CmpInst::ICMP_SLT: 5818 case CmpInst::ICMP_SLE: 5819 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5820 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5821 return true; 5822 return None; 5823 5824 case CmpInst::ICMP_ULT: 5825 case CmpInst::ICMP_ULE: 5826 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5827 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5828 return true; 5829 return None; 5830 } 5831 } 5832 5833 /// Return true if the operands of the two compares match. IsSwappedOps is true 5834 /// when the operands match, but are swapped. 5835 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5836 const Value *BLHS, const Value *BRHS, 5837 bool &IsSwappedOps) { 5838 5839 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5840 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5841 return IsMatchingOps || IsSwappedOps; 5842 } 5843 5844 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5845 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5846 /// Otherwise, return None if we can't infer anything. 5847 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5848 CmpInst::Predicate BPred, 5849 bool AreSwappedOps) { 5850 // Canonicalize the predicate as if the operands were not commuted. 5851 if (AreSwappedOps) 5852 BPred = ICmpInst::getSwappedPredicate(BPred); 5853 5854 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5855 return true; 5856 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5857 return false; 5858 5859 return None; 5860 } 5861 5862 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5863 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5864 /// Otherwise, return None if we can't infer anything. 5865 static Optional<bool> 5866 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5867 const ConstantInt *C1, 5868 CmpInst::Predicate BPred, 5869 const ConstantInt *C2) { 5870 ConstantRange DomCR = 5871 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5872 ConstantRange CR = 5873 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5874 ConstantRange Intersection = DomCR.intersectWith(CR); 5875 ConstantRange Difference = DomCR.difference(CR); 5876 if (Intersection.isEmptySet()) 5877 return false; 5878 if (Difference.isEmptySet()) 5879 return true; 5880 return None; 5881 } 5882 5883 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5884 /// false. Otherwise, return None if we can't infer anything. 5885 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5886 CmpInst::Predicate BPred, 5887 const Value *BLHS, const Value *BRHS, 5888 const DataLayout &DL, bool LHSIsTrue, 5889 unsigned Depth) { 5890 Value *ALHS = LHS->getOperand(0); 5891 Value *ARHS = LHS->getOperand(1); 5892 5893 // The rest of the logic assumes the LHS condition is true. If that's not the 5894 // case, invert the predicate to make it so. 5895 CmpInst::Predicate APred = 5896 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5897 5898 // Can we infer anything when the two compares have matching operands? 5899 bool AreSwappedOps; 5900 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5901 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5902 APred, BPred, AreSwappedOps)) 5903 return Implication; 5904 // No amount of additional analysis will infer the second condition, so 5905 // early exit. 5906 return None; 5907 } 5908 5909 // Can we infer anything when the LHS operands match and the RHS operands are 5910 // constants (not necessarily matching)? 5911 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5912 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5913 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5914 return Implication; 5915 // No amount of additional analysis will infer the second condition, so 5916 // early exit. 5917 return None; 5918 } 5919 5920 if (APred == BPred) 5921 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5922 return None; 5923 } 5924 5925 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5926 /// false. Otherwise, return None if we can't infer anything. We expect the 5927 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5928 static Optional<bool> 5929 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5930 const Value *RHSOp0, const Value *RHSOp1, 5931 5932 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5933 // The LHS must be an 'or' or an 'and' instruction. 5934 assert((LHS->getOpcode() == Instruction::And || 5935 LHS->getOpcode() == Instruction::Or) && 5936 "Expected LHS to be 'and' or 'or'."); 5937 5938 assert(Depth <= MaxDepth && "Hit recursion limit"); 5939 5940 // If the result of an 'or' is false, then we know both legs of the 'or' are 5941 // false. Similarly, if the result of an 'and' is true, then we know both 5942 // legs of the 'and' are true. 5943 Value *ALHS, *ARHS; 5944 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5945 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5946 // FIXME: Make this non-recursion. 5947 if (Optional<bool> Implication = isImpliedCondition( 5948 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5949 return Implication; 5950 if (Optional<bool> Implication = isImpliedCondition( 5951 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5952 return Implication; 5953 return None; 5954 } 5955 return None; 5956 } 5957 5958 Optional<bool> 5959 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5960 const Value *RHSOp0, const Value *RHSOp1, 5961 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5962 // Bail out when we hit the limit. 5963 if (Depth == MaxDepth) 5964 return None; 5965 5966 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5967 // example. 5968 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5969 return None; 5970 5971 Type *OpTy = LHS->getType(); 5972 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5973 5974 // FIXME: Extending the code below to handle vectors. 5975 if (OpTy->isVectorTy()) 5976 return None; 5977 5978 assert(OpTy->isIntegerTy(1) && "implied by above"); 5979 5980 // Both LHS and RHS are icmps. 5981 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5982 if (LHSCmp) 5983 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5984 Depth); 5985 5986 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5987 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5988 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5989 if (LHSBO) { 5990 if ((LHSBO->getOpcode() == Instruction::And || 5991 LHSBO->getOpcode() == Instruction::Or)) 5992 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5993 Depth); 5994 } 5995 return None; 5996 } 5997 5998 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5999 const DataLayout &DL, bool LHSIsTrue, 6000 unsigned Depth) { 6001 // LHS ==> RHS by definition 6002 if (LHS == RHS) 6003 return LHSIsTrue; 6004 6005 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6006 if (RHSCmp) 6007 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6008 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6009 LHSIsTrue, Depth); 6010 return None; 6011 } 6012 6013 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6014 // condition dominating ContextI or nullptr, if no condition is found. 6015 static std::pair<Value *, bool> 6016 getDomPredecessorCondition(const Instruction *ContextI) { 6017 if (!ContextI || !ContextI->getParent()) 6018 return {nullptr, false}; 6019 6020 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6021 // dominator tree (eg, from a SimplifyQuery) instead? 6022 const BasicBlock *ContextBB = ContextI->getParent(); 6023 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6024 if (!PredBB) 6025 return {nullptr, false}; 6026 6027 // We need a conditional branch in the predecessor. 6028 Value *PredCond; 6029 BasicBlock *TrueBB, *FalseBB; 6030 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6031 return {nullptr, false}; 6032 6033 // The branch should get simplified. Don't bother simplifying this condition. 6034 if (TrueBB == FalseBB) 6035 return {nullptr, false}; 6036 6037 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6038 "Predecessor block does not point to successor?"); 6039 6040 // Is this condition implied by the predecessor condition? 6041 return {PredCond, TrueBB == ContextBB}; 6042 } 6043 6044 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6045 const Instruction *ContextI, 6046 const DataLayout &DL) { 6047 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6048 auto PredCond = getDomPredecessorCondition(ContextI); 6049 if (PredCond.first) 6050 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6051 return None; 6052 } 6053 6054 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6055 const Value *LHS, const Value *RHS, 6056 const Instruction *ContextI, 6057 const DataLayout &DL) { 6058 auto PredCond = getDomPredecessorCondition(ContextI); 6059 if (PredCond.first) 6060 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6061 PredCond.second); 6062 return None; 6063 } 6064 6065 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6066 APInt &Upper, const InstrInfoQuery &IIQ) { 6067 unsigned Width = Lower.getBitWidth(); 6068 const APInt *C; 6069 switch (BO.getOpcode()) { 6070 case Instruction::Add: 6071 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6072 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6073 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6074 // 'add nuw x, C' produces [C, UINT_MAX]. 6075 Lower = *C; 6076 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6077 if (C->isNegative()) { 6078 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6079 Lower = APInt::getSignedMinValue(Width); 6080 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6081 } else { 6082 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6083 Lower = APInt::getSignedMinValue(Width) + *C; 6084 Upper = APInt::getSignedMaxValue(Width) + 1; 6085 } 6086 } 6087 } 6088 break; 6089 6090 case Instruction::And: 6091 if (match(BO.getOperand(1), m_APInt(C))) 6092 // 'and x, C' produces [0, C]. 6093 Upper = *C + 1; 6094 break; 6095 6096 case Instruction::Or: 6097 if (match(BO.getOperand(1), m_APInt(C))) 6098 // 'or x, C' produces [C, UINT_MAX]. 6099 Lower = *C; 6100 break; 6101 6102 case Instruction::AShr: 6103 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6104 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6105 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6106 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6107 } else if (match(BO.getOperand(0), m_APInt(C))) { 6108 unsigned ShiftAmount = Width - 1; 6109 if (!C->isNullValue() && IIQ.isExact(&BO)) 6110 ShiftAmount = C->countTrailingZeros(); 6111 if (C->isNegative()) { 6112 // 'ashr C, x' produces [C, C >> (Width-1)] 6113 Lower = *C; 6114 Upper = C->ashr(ShiftAmount) + 1; 6115 } else { 6116 // 'ashr C, x' produces [C >> (Width-1), C] 6117 Lower = C->ashr(ShiftAmount); 6118 Upper = *C + 1; 6119 } 6120 } 6121 break; 6122 6123 case Instruction::LShr: 6124 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6125 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6126 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6127 } else if (match(BO.getOperand(0), m_APInt(C))) { 6128 // 'lshr C, x' produces [C >> (Width-1), C]. 6129 unsigned ShiftAmount = Width - 1; 6130 if (!C->isNullValue() && IIQ.isExact(&BO)) 6131 ShiftAmount = C->countTrailingZeros(); 6132 Lower = C->lshr(ShiftAmount); 6133 Upper = *C + 1; 6134 } 6135 break; 6136 6137 case Instruction::Shl: 6138 if (match(BO.getOperand(0), m_APInt(C))) { 6139 if (IIQ.hasNoUnsignedWrap(&BO)) { 6140 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6141 Lower = *C; 6142 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6143 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6144 if (C->isNegative()) { 6145 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6146 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6147 Lower = C->shl(ShiftAmount); 6148 Upper = *C + 1; 6149 } else { 6150 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6151 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6152 Lower = *C; 6153 Upper = C->shl(ShiftAmount) + 1; 6154 } 6155 } 6156 } 6157 break; 6158 6159 case Instruction::SDiv: 6160 if (match(BO.getOperand(1), m_APInt(C))) { 6161 APInt IntMin = APInt::getSignedMinValue(Width); 6162 APInt IntMax = APInt::getSignedMaxValue(Width); 6163 if (C->isAllOnesValue()) { 6164 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6165 // where C != -1 and C != 0 and C != 1 6166 Lower = IntMin + 1; 6167 Upper = IntMax + 1; 6168 } else if (C->countLeadingZeros() < Width - 1) { 6169 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6170 // where C != -1 and C != 0 and C != 1 6171 Lower = IntMin.sdiv(*C); 6172 Upper = IntMax.sdiv(*C); 6173 if (Lower.sgt(Upper)) 6174 std::swap(Lower, Upper); 6175 Upper = Upper + 1; 6176 assert(Upper != Lower && "Upper part of range has wrapped!"); 6177 } 6178 } else if (match(BO.getOperand(0), m_APInt(C))) { 6179 if (C->isMinSignedValue()) { 6180 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6181 Lower = *C; 6182 Upper = Lower.lshr(1) + 1; 6183 } else { 6184 // 'sdiv C, x' produces [-|C|, |C|]. 6185 Upper = C->abs() + 1; 6186 Lower = (-Upper) + 1; 6187 } 6188 } 6189 break; 6190 6191 case Instruction::UDiv: 6192 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6193 // 'udiv x, C' produces [0, UINT_MAX / C]. 6194 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6195 } else if (match(BO.getOperand(0), m_APInt(C))) { 6196 // 'udiv C, x' produces [0, C]. 6197 Upper = *C + 1; 6198 } 6199 break; 6200 6201 case Instruction::SRem: 6202 if (match(BO.getOperand(1), m_APInt(C))) { 6203 // 'srem x, C' produces (-|C|, |C|). 6204 Upper = C->abs(); 6205 Lower = (-Upper) + 1; 6206 } 6207 break; 6208 6209 case Instruction::URem: 6210 if (match(BO.getOperand(1), m_APInt(C))) 6211 // 'urem x, C' produces [0, C). 6212 Upper = *C; 6213 break; 6214 6215 default: 6216 break; 6217 } 6218 } 6219 6220 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6221 APInt &Upper) { 6222 unsigned Width = Lower.getBitWidth(); 6223 const APInt *C; 6224 switch (II.getIntrinsicID()) { 6225 case Intrinsic::uadd_sat: 6226 // uadd.sat(x, C) produces [C, UINT_MAX]. 6227 if (match(II.getOperand(0), m_APInt(C)) || 6228 match(II.getOperand(1), m_APInt(C))) 6229 Lower = *C; 6230 break; 6231 case Intrinsic::sadd_sat: 6232 if (match(II.getOperand(0), m_APInt(C)) || 6233 match(II.getOperand(1), m_APInt(C))) { 6234 if (C->isNegative()) { 6235 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6236 Lower = APInt::getSignedMinValue(Width); 6237 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6238 } else { 6239 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6240 Lower = APInt::getSignedMinValue(Width) + *C; 6241 Upper = APInt::getSignedMaxValue(Width) + 1; 6242 } 6243 } 6244 break; 6245 case Intrinsic::usub_sat: 6246 // usub.sat(C, x) produces [0, C]. 6247 if (match(II.getOperand(0), m_APInt(C))) 6248 Upper = *C + 1; 6249 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6250 else if (match(II.getOperand(1), m_APInt(C))) 6251 Upper = APInt::getMaxValue(Width) - *C + 1; 6252 break; 6253 case Intrinsic::ssub_sat: 6254 if (match(II.getOperand(0), m_APInt(C))) { 6255 if (C->isNegative()) { 6256 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6257 Lower = APInt::getSignedMinValue(Width); 6258 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6259 } else { 6260 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6261 Lower = *C - APInt::getSignedMaxValue(Width); 6262 Upper = APInt::getSignedMaxValue(Width) + 1; 6263 } 6264 } else if (match(II.getOperand(1), m_APInt(C))) { 6265 if (C->isNegative()) { 6266 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6267 Lower = APInt::getSignedMinValue(Width) - *C; 6268 Upper = APInt::getSignedMaxValue(Width) + 1; 6269 } else { 6270 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6271 Lower = APInt::getSignedMinValue(Width); 6272 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6273 } 6274 } 6275 break; 6276 default: 6277 break; 6278 } 6279 } 6280 6281 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6282 APInt &Upper, const InstrInfoQuery &IIQ) { 6283 const Value *LHS = nullptr, *RHS = nullptr; 6284 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6285 if (R.Flavor == SPF_UNKNOWN) 6286 return; 6287 6288 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6289 6290 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6291 // If the negation part of the abs (in RHS) has the NSW flag, 6292 // then the result of abs(X) is [0..SIGNED_MAX], 6293 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6294 Lower = APInt::getNullValue(BitWidth); 6295 if (match(RHS, m_Neg(m_Specific(LHS))) && 6296 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6297 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6298 else 6299 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6300 return; 6301 } 6302 6303 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6304 // The result of -abs(X) is <= 0. 6305 Lower = APInt::getSignedMinValue(BitWidth); 6306 Upper = APInt(BitWidth, 1); 6307 return; 6308 } 6309 6310 const APInt *C; 6311 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6312 return; 6313 6314 switch (R.Flavor) { 6315 case SPF_UMIN: 6316 Upper = *C + 1; 6317 break; 6318 case SPF_UMAX: 6319 Lower = *C; 6320 break; 6321 case SPF_SMIN: 6322 Lower = APInt::getSignedMinValue(BitWidth); 6323 Upper = *C + 1; 6324 break; 6325 case SPF_SMAX: 6326 Lower = *C; 6327 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6328 break; 6329 default: 6330 break; 6331 } 6332 } 6333 6334 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6335 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6336 6337 const APInt *C; 6338 if (match(V, m_APInt(C))) 6339 return ConstantRange(*C); 6340 6341 InstrInfoQuery IIQ(UseInstrInfo); 6342 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6343 APInt Lower = APInt(BitWidth, 0); 6344 APInt Upper = APInt(BitWidth, 0); 6345 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6346 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6347 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6348 setLimitsForIntrinsic(*II, Lower, Upper); 6349 else if (auto *SI = dyn_cast<SelectInst>(V)) 6350 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6351 6352 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6353 6354 if (auto *I = dyn_cast<Instruction>(V)) 6355 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6356 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6357 6358 return CR; 6359 } 6360 6361 static Optional<int64_t> 6362 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6363 // Skip over the first indices. 6364 gep_type_iterator GTI = gep_type_begin(GEP); 6365 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6366 /*skip along*/; 6367 6368 // Compute the offset implied by the rest of the indices. 6369 int64_t Offset = 0; 6370 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6371 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6372 if (!OpC) 6373 return None; 6374 if (OpC->isZero()) 6375 continue; // No offset. 6376 6377 // Handle struct indices, which add their field offset to the pointer. 6378 if (StructType *STy = GTI.getStructTypeOrNull()) { 6379 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6380 continue; 6381 } 6382 6383 // Otherwise, we have a sequential type like an array or fixed-length 6384 // vector. Multiply the index by the ElementSize. 6385 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6386 if (Size.isScalable()) 6387 return None; 6388 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6389 } 6390 6391 return Offset; 6392 } 6393 6394 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6395 const DataLayout &DL) { 6396 Ptr1 = Ptr1->stripPointerCasts(); 6397 Ptr2 = Ptr2->stripPointerCasts(); 6398 6399 // Handle the trivial case first. 6400 if (Ptr1 == Ptr2) { 6401 return 0; 6402 } 6403 6404 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6405 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6406 6407 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6408 // as in "P" and "gep P, 1". 6409 // Also do this iteratively to handle the the following case: 6410 // Ptr_t1 = GEP Ptr1, c1 6411 // Ptr_t2 = GEP Ptr_t1, c2 6412 // Ptr2 = GEP Ptr_t2, c3 6413 // where we will return c1+c2+c3. 6414 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6415 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6416 // are the same, and return the difference between offsets. 6417 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6418 const Value *Ptr) -> Optional<int64_t> { 6419 const GEPOperator *GEP_T = GEP; 6420 int64_t OffsetVal = 0; 6421 bool HasSameBase = false; 6422 while (GEP_T) { 6423 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6424 if (!Offset) 6425 return None; 6426 OffsetVal += *Offset; 6427 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6428 if (Op0 == Ptr) { 6429 HasSameBase = true; 6430 break; 6431 } 6432 GEP_T = dyn_cast<GEPOperator>(Op0); 6433 } 6434 if (!HasSameBase) 6435 return None; 6436 return OffsetVal; 6437 }; 6438 6439 if (GEP1) { 6440 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6441 if (Offset) 6442 return -*Offset; 6443 } 6444 if (GEP2) { 6445 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6446 if (Offset) 6447 return Offset; 6448 } 6449 6450 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6451 // base. After that base, they may have some number of common (and 6452 // potentially variable) indices. After that they handle some constant 6453 // offset, which determines their offset from each other. At this point, we 6454 // handle no other case. 6455 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6456 return None; 6457 6458 // Skip any common indices and track the GEP types. 6459 unsigned Idx = 1; 6460 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6461 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6462 break; 6463 6464 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6465 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6466 if (!Offset1 || !Offset2) 6467 return None; 6468 return *Offset2 - *Offset1; 6469 } 6470