1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 unsigned BitWidth = Known.getBitWidth(); 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 isKnownNonZero(Op0, Depth, Q)) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 443 isKnownNonZero(Op1, Depth, Q)); 444 } 445 } 446 447 assert(!Known.hasConflict() && !Known2.hasConflict()); 448 // Compute a conservative estimate for high known-0 bits. 449 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 450 Known2.countMinLeadingZeros(), 451 BitWidth) - BitWidth; 452 LeadZ = std::min(LeadZ, BitWidth); 453 454 // The result of the bottom bits of an integer multiply can be 455 // inferred by looking at the bottom bits of both operands and 456 // multiplying them together. 457 // We can infer at least the minimum number of known trailing bits 458 // of both operands. Depending on number of trailing zeros, we can 459 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 460 // a and b are divisible by m and n respectively. 461 // We then calculate how many of those bits are inferrable and set 462 // the output. For example, the i8 mul: 463 // a = XXXX1100 (12) 464 // b = XXXX1110 (14) 465 // We know the bottom 3 bits are zero since the first can be divided by 466 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 467 // Applying the multiplication to the trimmed arguments gets: 468 // XX11 (3) 469 // X111 (7) 470 // ------- 471 // XX11 472 // XX11 473 // XX11 474 // XX11 475 // ------- 476 // XXXXX01 477 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 478 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 479 // The proof for this can be described as: 480 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 481 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 482 // umin(countTrailingZeros(C2), C6) + 483 // umin(C5 - umin(countTrailingZeros(C1), C5), 484 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 485 // %aa = shl i8 %a, C5 486 // %bb = shl i8 %b, C6 487 // %aaa = or i8 %aa, C1 488 // %bbb = or i8 %bb, C2 489 // %mul = mul i8 %aaa, %bbb 490 // %mask = and i8 %mul, C7 491 // => 492 // %mask = i8 ((C1*C2)&C7) 493 // Where C5, C6 describe the known bits of %a, %b 494 // C1, C2 describe the known bottom bits of %a, %b. 495 // C7 describes the mask of the known bits of the result. 496 APInt Bottom0 = Known.One; 497 APInt Bottom1 = Known2.One; 498 499 // How many times we'd be able to divide each argument by 2 (shr by 1). 500 // This gives us the number of trailing zeros on the multiplication result. 501 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 502 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 503 unsigned TrailZero0 = Known.countMinTrailingZeros(); 504 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 505 unsigned TrailZ = TrailZero0 + TrailZero1; 506 507 // Figure out the fewest known-bits operand. 508 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 509 TrailBitsKnown1 - TrailZero1); 510 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 511 512 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 513 Bottom1.getLoBits(TrailBitsKnown1); 514 515 Known.resetAll(); 516 Known.Zero.setHighBits(LeadZ); 517 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 518 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 519 520 // Only make use of no-wrap flags if we failed to compute the sign bit 521 // directly. This matters if the multiplication always overflows, in 522 // which case we prefer to follow the result of the direct computation, 523 // though as the program is invoking undefined behaviour we can choose 524 // whatever we like here. 525 if (isKnownNonNegative && !Known.isNegative()) 526 Known.makeNonNegative(); 527 else if (isKnownNegative && !Known.isNonNegative()) 528 Known.makeNegative(); 529 } 530 531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 532 KnownBits &Known) { 533 unsigned BitWidth = Known.getBitWidth(); 534 unsigned NumRanges = Ranges.getNumOperands() / 2; 535 assert(NumRanges >= 1); 536 537 Known.Zero.setAllBits(); 538 Known.One.setAllBits(); 539 540 for (unsigned i = 0; i < NumRanges; ++i) { 541 ConstantInt *Lower = 542 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 543 ConstantInt *Upper = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 545 ConstantRange Range(Lower->getValue(), Upper->getValue()); 546 547 // The first CommonPrefixBits of all values in Range are equal. 548 unsigned CommonPrefixBits = 549 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 550 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 551 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 552 Known.One &= UnsignedMax & Mask; 553 Known.Zero &= ~UnsignedMax & Mask; 554 } 555 } 556 557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 558 SmallVector<const Value *, 16> WorkSet(1, I); 559 SmallPtrSet<const Value *, 32> Visited; 560 SmallPtrSet<const Value *, 16> EphValues; 561 562 // The instruction defining an assumption's condition itself is always 563 // considered ephemeral to that assumption (even if it has other 564 // non-ephemeral users). See r246696's test case for an example. 565 if (is_contained(I->operands(), E)) 566 return true; 567 568 while (!WorkSet.empty()) { 569 const Value *V = WorkSet.pop_back_val(); 570 if (!Visited.insert(V).second) 571 continue; 572 573 // If all uses of this value are ephemeral, then so is this value. 574 if (llvm::all_of(V->users(), [&](const User *U) { 575 return EphValues.count(U); 576 })) { 577 if (V == E) 578 return true; 579 580 if (V == I || isSafeToSpeculativelyExecute(V)) { 581 EphValues.insert(V); 582 if (const User *U = dyn_cast<User>(V)) 583 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 584 J != JE; ++J) 585 WorkSet.push_back(*J); 586 } 587 } 588 } 589 590 return false; 591 } 592 593 // Is this an intrinsic that cannot be speculated but also cannot trap? 594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 595 if (const CallInst *CI = dyn_cast<CallInst>(I)) 596 if (Function *F = CI->getCalledFunction()) 597 switch (F->getIntrinsicID()) { 598 default: break; 599 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 600 case Intrinsic::assume: 601 case Intrinsic::sideeffect: 602 case Intrinsic::dbg_declare: 603 case Intrinsic::dbg_value: 604 case Intrinsic::dbg_label: 605 case Intrinsic::invariant_start: 606 case Intrinsic::invariant_end: 607 case Intrinsic::lifetime_start: 608 case Intrinsic::lifetime_end: 609 case Intrinsic::objectsize: 610 case Intrinsic::ptr_annotation: 611 case Intrinsic::var_annotation: 612 return true; 613 } 614 615 return false; 616 } 617 618 bool llvm::isValidAssumeForContext(const Instruction *Inv, 619 const Instruction *CxtI, 620 const DominatorTree *DT) { 621 // There are two restrictions on the use of an assume: 622 // 1. The assume must dominate the context (or the control flow must 623 // reach the assume whenever it reaches the context). 624 // 2. The context must not be in the assume's set of ephemeral values 625 // (otherwise we will use the assume to prove that the condition 626 // feeding the assume is trivially true, thus causing the removal of 627 // the assume). 628 629 if (Inv->getParent() == CxtI->getParent()) { 630 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 631 // in the BB. 632 if (Inv->comesBefore(CxtI)) 633 return true; 634 635 // Don't let an assume affect itself - this would cause the problems 636 // `isEphemeralValueOf` is trying to prevent, and it would also make 637 // the loop below go out of bounds. 638 if (Inv == CxtI) 639 return false; 640 641 // The context comes first, but they're both in the same block. 642 // Make sure there is nothing in between that might interrupt 643 // the control flow, not even CxtI itself. 644 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 645 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 646 return false; 647 648 return !isEphemeralValueOf(Inv, CxtI); 649 } 650 651 // Inv and CxtI are in different blocks. 652 if (DT) { 653 if (DT->dominates(Inv, CxtI)) 654 return true; 655 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 656 // We don't have a DT, but this trivially dominates. 657 return true; 658 } 659 660 return false; 661 } 662 663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 664 // Use of assumptions is context-sensitive. If we don't have a context, we 665 // cannot use them! 666 if (!Q.AC || !Q.CxtI) 667 return false; 668 669 // Note that the patterns below need to be kept in sync with the code 670 // in AssumptionCache::updateAffectedValues. 671 672 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 673 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 674 675 Value *RHS; 676 CmpInst::Predicate Pred; 677 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 678 return false; 679 // assume(v u> y) -> assume(v != 0) 680 if (Pred == ICmpInst::ICMP_UGT) 681 return true; 682 683 // assume(v != 0) 684 // We special-case this one to ensure that we handle `assume(v != null)`. 685 if (Pred == ICmpInst::ICMP_NE) 686 return match(RHS, m_Zero()); 687 688 // All other predicates - rely on generic ConstantRange handling. 689 ConstantInt *CI; 690 if (!match(RHS, m_ConstantInt(CI))) 691 return false; 692 ConstantRange RHSRange(CI->getValue()); 693 ConstantRange TrueValues = 694 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 695 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 696 }; 697 698 if (Q.CxtI && V->getType()->isPointerTy()) { 699 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 700 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 701 V->getType()->getPointerAddressSpace())) 702 AttrKinds.push_back(Attribute::Dereferenceable); 703 704 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 705 return true; 706 } 707 708 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 709 if (!AssumeVH) 710 continue; 711 CallInst *I = cast<CallInst>(AssumeVH); 712 assert(I->getFunction() == Q.CxtI->getFunction() && 713 "Got assumption for the wrong function!"); 714 if (Q.isExcluded(I)) 715 continue; 716 717 // Warning: This loop can end up being somewhat performance sensitive. 718 // We're running this loop for once for each value queried resulting in a 719 // runtime of ~O(#assumes * #values). 720 721 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 722 "must be an assume intrinsic"); 723 724 Value *Arg = I->getArgOperand(0); 725 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 726 if (!Cmp) 727 continue; 728 729 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 730 return true; 731 } 732 733 return false; 734 } 735 736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 737 unsigned Depth, const Query &Q) { 738 // Use of assumptions is context-sensitive. If we don't have a context, we 739 // cannot use them! 740 if (!Q.AC || !Q.CxtI) 741 return; 742 743 unsigned BitWidth = Known.getBitWidth(); 744 745 // Note that the patterns below need to be kept in sync with the code 746 // in AssumptionCache::updateAffectedValues. 747 748 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 749 if (!AssumeVH) 750 continue; 751 CallInst *I = cast<CallInst>(AssumeVH); 752 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 753 "Got assumption for the wrong function!"); 754 if (Q.isExcluded(I)) 755 continue; 756 757 // Warning: This loop can end up being somewhat performance sensitive. 758 // We're running this loop for once for each value queried resulting in a 759 // runtime of ~O(#assumes * #values). 760 761 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 762 "must be an assume intrinsic"); 763 764 Value *Arg = I->getArgOperand(0); 765 766 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllOnes(); 769 return; 770 } 771 if (match(Arg, m_Not(m_Specific(V))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 assert(BitWidth == 1 && "assume operand is not i1?"); 774 Known.setAllZero(); 775 return; 776 } 777 778 // The remaining tests are all recursive, so bail out if we hit the limit. 779 if (Depth == MaxAnalysisRecursionDepth) 780 continue; 781 782 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 783 if (!Cmp) 784 continue; 785 786 // Note that ptrtoint may change the bitwidth. 787 Value *A, *B; 788 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 789 790 CmpInst::Predicate Pred; 791 uint64_t C; 792 switch (Cmp->getPredicate()) { 793 default: 794 break; 795 case ICmpInst::ICMP_EQ: 796 // assume(v = a) 797 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 Known.Zero |= RHSKnown.Zero; 802 Known.One |= RHSKnown.One; 803 // assume(v & b = a) 804 } else if (match(Cmp, 805 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown = 808 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 KnownBits MaskKnown = 810 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 812 // For those bits in the mask that are known to be one, we can propagate 813 // known bits from the RHS to V. 814 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 815 Known.One |= RHSKnown.One & MaskKnown.One; 816 // assume(~(v & b) = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 KnownBits MaskKnown = 823 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 825 // For those bits in the mask that are known to be one, we can propagate 826 // inverted known bits from the RHS to V. 827 Known.Zero |= RHSKnown.One & MaskKnown.One; 828 Known.One |= RHSKnown.Zero & MaskKnown.One; 829 // assume(v | b = a) 830 } else if (match(Cmp, 831 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 KnownBits BKnown = 836 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 838 // For those bits in B that are known to be zero, we can propagate known 839 // bits from the RHS to V. 840 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 841 Known.One |= RHSKnown.One & BKnown.Zero; 842 // assume(~(v | b) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 KnownBits BKnown = 849 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 851 // For those bits in B that are known to be zero, we can propagate 852 // inverted known bits from the RHS to V. 853 Known.Zero |= RHSKnown.One & BKnown.Zero; 854 Known.One |= RHSKnown.Zero & BKnown.Zero; 855 // assume(v ^ b = a) 856 } else if (match(Cmp, 857 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 861 KnownBits BKnown = 862 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 864 // For those bits in B that are known to be zero, we can propagate known 865 // bits from the RHS to V. For those bits in B that are known to be one, 866 // we can propagate inverted known bits from the RHS to V. 867 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 868 Known.One |= RHSKnown.One & BKnown.Zero; 869 Known.Zero |= RHSKnown.One & BKnown.One; 870 Known.One |= RHSKnown.Zero & BKnown.One; 871 // assume(~(v ^ b) = a) 872 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 873 m_Value(A))) && 874 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 875 KnownBits RHSKnown = 876 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 877 KnownBits BKnown = 878 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 880 // For those bits in B that are known to be zero, we can propagate 881 // inverted known bits from the RHS to V. For those bits in B that are 882 // known to be one, we can propagate known bits from the RHS to V. 883 Known.Zero |= RHSKnown.One & BKnown.Zero; 884 Known.One |= RHSKnown.Zero & BKnown.Zero; 885 Known.Zero |= RHSKnown.Zero & BKnown.One; 886 Known.One |= RHSKnown.One & BKnown.One; 887 // assume(v << c = a) 888 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 889 m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 891 KnownBits RHSKnown = 892 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 893 894 // For those bits in RHS that are known, we can propagate them to known 895 // bits in V shifted to the right by C. 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.Zero |= RHSKnown.Zero; 898 RHSKnown.One.lshrInPlace(C); 899 Known.One |= RHSKnown.One; 900 // assume(~(v << c) = a) 901 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 902 m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 904 KnownBits RHSKnown = 905 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 906 // For those bits in RHS that are known, we can propagate them inverted 907 // to known bits in V shifted to the right by C. 908 RHSKnown.One.lshrInPlace(C); 909 Known.Zero |= RHSKnown.One; 910 RHSKnown.Zero.lshrInPlace(C); 911 Known.One |= RHSKnown.Zero; 912 // assume(v >> c = a) 913 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 914 m_Value(A))) && 915 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 916 KnownBits RHSKnown = 917 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 918 // For those bits in RHS that are known, we can propagate them to known 919 // bits in V shifted to the right by C. 920 Known.Zero |= RHSKnown.Zero << C; 921 Known.One |= RHSKnown.One << C; 922 // assume(~(v >> c) = a) 923 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 924 m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 // For those bits in RHS that are known, we can propagate them inverted 929 // to known bits in V shifted to the right by C. 930 Known.Zero |= RHSKnown.One << C; 931 Known.One |= RHSKnown.Zero << C; 932 } 933 break; 934 case ICmpInst::ICMP_SGE: 935 // assume(v >=_s c) where c is non-negative 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown = 939 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 940 941 if (RHSKnown.isNonNegative()) { 942 // We know that the sign bit is zero. 943 Known.makeNonNegative(); 944 } 945 } 946 break; 947 case ICmpInst::ICMP_SGT: 948 // assume(v >_s c) where c is at least -1. 949 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 950 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 951 KnownBits RHSKnown = 952 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 953 954 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 955 // We know that the sign bit is zero. 956 Known.makeNonNegative(); 957 } 958 } 959 break; 960 case ICmpInst::ICMP_SLE: 961 // assume(v <=_s c) where c is negative 962 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 963 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 964 KnownBits RHSKnown = 965 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 966 967 if (RHSKnown.isNegative()) { 968 // We know that the sign bit is one. 969 Known.makeNegative(); 970 } 971 } 972 break; 973 case ICmpInst::ICMP_SLT: 974 // assume(v <_s c) where c is non-positive 975 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 976 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 977 KnownBits RHSKnown = 978 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 979 980 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 981 // We know that the sign bit is one. 982 Known.makeNegative(); 983 } 984 } 985 break; 986 case ICmpInst::ICMP_ULE: 987 // assume(v <=_u c) 988 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 989 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 990 KnownBits RHSKnown = 991 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 992 993 // Whatever high bits in c are zero are known to be zero. 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 995 } 996 break; 997 case ICmpInst::ICMP_ULT: 998 // assume(v <_u c) 999 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1000 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1001 KnownBits RHSKnown = 1002 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1003 1004 // If the RHS is known zero, then this assumption must be wrong (nothing 1005 // is unsigned less than zero). Signal a conflict and get out of here. 1006 if (RHSKnown.isZero()) { 1007 Known.Zero.setAllBits(); 1008 Known.One.setAllBits(); 1009 break; 1010 } 1011 1012 // Whatever high bits in c are zero are known to be zero (if c is a power 1013 // of 2, then one more). 1014 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1015 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1016 else 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1018 } 1019 break; 1020 } 1021 } 1022 1023 // If assumptions conflict with each other or previous known bits, then we 1024 // have a logical fallacy. It's possible that the assumption is not reachable, 1025 // so this isn't a real bug. On the other hand, the program may have undefined 1026 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1027 // clear out the known bits, try to warn the user, and hope for the best. 1028 if (Known.Zero.intersects(Known.One)) { 1029 Known.resetAll(); 1030 1031 if (Q.ORE) 1032 Q.ORE->emit([&]() { 1033 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1034 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1035 CxtI) 1036 << "Detected conflicting code assumptions. Program may " 1037 "have undefined behavior, or compiler may have " 1038 "internal error."; 1039 }); 1040 } 1041 } 1042 1043 /// Compute known bits from a shift operator, including those with a 1044 /// non-constant shift amount. Known is the output of this function. Known2 is a 1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1046 /// operator-specific functions that, given the known-zero or known-one bits 1047 /// respectively, and a shift amount, compute the implied known-zero or 1048 /// known-one bits of the shift operator's result respectively for that shift 1049 /// amount. The results from calling KZF and KOF are conservatively combined for 1050 /// all permitted shift amounts. 1051 static void computeKnownBitsFromShiftOperator( 1052 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1053 KnownBits &Known2, unsigned Depth, const Query &Q, 1054 function_ref<APInt(const APInt &, unsigned)> KZF, 1055 function_ref<APInt(const APInt &, unsigned)> KOF) { 1056 unsigned BitWidth = Known.getBitWidth(); 1057 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 if (Known.isConstant()) { 1060 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1061 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1063 Known.Zero = KZF(Known.Zero, ShiftAmt); 1064 Known.One = KOF(Known.One, ShiftAmt); 1065 // If the known bits conflict, this must be an overflowing left shift, so 1066 // the shift result is poison. We can return anything we want. Choose 0 for 1067 // the best folding opportunity. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 1071 return; 1072 } 1073 1074 // If the shift amount could be greater than or equal to the bit-width of the 1075 // LHS, the value could be poison, but bail out because the check below is 1076 // expensive. 1077 // TODO: Should we just carry on? 1078 if (Known.getMaxValue().uge(BitWidth)) { 1079 Known.resetAll(); 1080 return; 1081 } 1082 1083 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1084 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1085 // limit value (which implies all bits are known). 1086 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1087 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1088 1089 // It would be more-clearly correct to use the two temporaries for this 1090 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1091 Known.resetAll(); 1092 1093 // If we know the shifter operand is nonzero, we can sometimes infer more 1094 // known bits. However this is expensive to compute, so be lazy about it and 1095 // only compute it when absolutely necessary. 1096 Optional<bool> ShifterOperandIsNonZero; 1097 1098 // Early exit if we can't constrain any well-defined shift amount. 1099 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1100 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1101 ShifterOperandIsNonZero = 1102 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1103 if (!*ShifterOperandIsNonZero) 1104 return; 1105 } 1106 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1112 // Combine the shifted known input bits only for those shift amounts 1113 // compatible with its known constraints. 1114 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1115 continue; 1116 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1117 continue; 1118 // If we know the shifter is nonzero, we may be able to infer more known 1119 // bits. This check is sunk down as far as possible to avoid the expensive 1120 // call to isKnownNonZero if the cheaper checks above fail. 1121 if (ShiftAmt == 0) { 1122 if (!ShifterOperandIsNonZero.hasValue()) 1123 ShifterOperandIsNonZero = 1124 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1125 if (*ShifterOperandIsNonZero) 1126 continue; 1127 } 1128 1129 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1130 Known.One &= KOF(Known2.One, ShiftAmt); 1131 } 1132 1133 // If the known bits conflict, the result is poison. Return a 0 and hope the 1134 // caller can further optimize that. 1135 if (Known.hasConflict()) 1136 Known.setAllZero(); 1137 } 1138 1139 static void computeKnownBitsFromOperator(const Operator *I, 1140 const APInt &DemandedElts, 1141 KnownBits &Known, unsigned Depth, 1142 const Query &Q) { 1143 unsigned BitWidth = Known.getBitWidth(); 1144 1145 KnownBits Known2(BitWidth); 1146 switch (I->getOpcode()) { 1147 default: break; 1148 case Instruction::Load: 1149 if (MDNode *MD = 1150 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1151 computeKnownBitsFromRangeMetadata(*MD, Known); 1152 break; 1153 case Instruction::And: { 1154 // If either the LHS or the RHS are Zero, the result is zero. 1155 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1157 1158 Known &= Known2; 1159 1160 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1161 // here we handle the more general case of adding any odd number by 1162 // matching the form add(x, add(x, y)) where y is odd. 1163 // TODO: This could be generalized to clearing any bit set in y where the 1164 // following bit is known to be unset in y. 1165 Value *X = nullptr, *Y = nullptr; 1166 if (!Known.Zero[0] && !Known.One[0] && 1167 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1168 Known2.resetAll(); 1169 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1170 if (Known2.countMinTrailingOnes() > 0) 1171 Known.Zero.setBit(0); 1172 } 1173 break; 1174 } 1175 case Instruction::Or: 1176 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1178 1179 Known |= Known2; 1180 break; 1181 case Instruction::Xor: 1182 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1183 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1184 1185 Known ^= Known2; 1186 break; 1187 case Instruction::Mul: { 1188 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1189 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::UDiv: { 1194 // For the purposes of computing leading zeros we can conservatively 1195 // treat a udiv as a logical right shift by the power of 2 known to 1196 // be less than the denominator. 1197 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1198 unsigned LeadZ = Known2.countMinLeadingZeros(); 1199 1200 Known2.resetAll(); 1201 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1202 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1203 if (RHSMaxLeadingZeros != BitWidth) 1204 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1205 1206 Known.Zero.setHighBits(LeadZ); 1207 break; 1208 } 1209 case Instruction::Select: { 1210 const Value *LHS = nullptr, *RHS = nullptr; 1211 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1212 if (SelectPatternResult::isMinOrMax(SPF)) { 1213 computeKnownBits(RHS, Known, Depth + 1, Q); 1214 computeKnownBits(LHS, Known2, Depth + 1, Q); 1215 switch (SPF) { 1216 default: 1217 llvm_unreachable("Unhandled select pattern flavor!"); 1218 case SPF_SMAX: 1219 Known = KnownBits::smax(Known, Known2); 1220 break; 1221 case SPF_SMIN: 1222 Known = KnownBits::smin(Known, Known2); 1223 break; 1224 case SPF_UMAX: 1225 Known = KnownBits::umax(Known, Known2); 1226 break; 1227 case SPF_UMIN: 1228 Known = KnownBits::umin(Known, Known2); 1229 break; 1230 } 1231 break; 1232 } 1233 1234 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1235 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1236 1237 // Only known if known in both the LHS and RHS. 1238 Known.One &= Known2.One; 1239 Known.Zero &= Known2.Zero; 1240 1241 if (SPF == SPF_ABS) { 1242 // RHS from matchSelectPattern returns the negation part of abs pattern. 1243 // If the negate has an NSW flag we can assume the sign bit of the result 1244 // will be 0 because that makes abs(INT_MIN) undefined. 1245 if (match(RHS, m_Neg(m_Specific(LHS))) && 1246 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1247 Known.Zero.setSignBit(); 1248 } 1249 1250 break; 1251 } 1252 case Instruction::FPTrunc: 1253 case Instruction::FPExt: 1254 case Instruction::FPToUI: 1255 case Instruction::FPToSI: 1256 case Instruction::SIToFP: 1257 case Instruction::UIToFP: 1258 break; // Can't work with floating point. 1259 case Instruction::PtrToInt: 1260 case Instruction::IntToPtr: 1261 // Fall through and handle them the same as zext/trunc. 1262 LLVM_FALLTHROUGH; 1263 case Instruction::ZExt: 1264 case Instruction::Trunc: { 1265 Type *SrcTy = I->getOperand(0)->getType(); 1266 1267 unsigned SrcBitWidth; 1268 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1269 // which fall through here. 1270 Type *ScalarTy = SrcTy->getScalarType(); 1271 SrcBitWidth = ScalarTy->isPointerTy() ? 1272 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1273 Q.DL.getTypeSizeInBits(ScalarTy); 1274 1275 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1276 Known = Known.anyextOrTrunc(SrcBitWidth); 1277 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1278 Known = Known.zextOrTrunc(BitWidth); 1279 break; 1280 } 1281 case Instruction::BitCast: { 1282 Type *SrcTy = I->getOperand(0)->getType(); 1283 if (SrcTy->isIntOrPtrTy() && 1284 // TODO: For now, not handling conversions like: 1285 // (bitcast i64 %x to <2 x i32>) 1286 !I->getType()->isVectorTy()) { 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 break; 1289 } 1290 break; 1291 } 1292 case Instruction::SExt: { 1293 // Compute the bits in the result that are not present in the input. 1294 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1295 1296 Known = Known.trunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 // If the sign bit of the input is known set or clear, then we know the 1299 // top bits of the result. 1300 Known = Known.sext(BitWidth); 1301 break; 1302 } 1303 case Instruction::Shl: { 1304 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1305 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1306 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1307 APInt KZResult = KnownZero << ShiftAmt; 1308 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1309 // If this shift has "nsw" keyword, then the result is either a poison 1310 // value or has the same sign bit as the first operand. 1311 if (NSW && KnownZero.isSignBitSet()) 1312 KZResult.setSignBit(); 1313 return KZResult; 1314 }; 1315 1316 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1317 APInt KOResult = KnownOne << ShiftAmt; 1318 if (NSW && KnownOne.isSignBitSet()) 1319 KOResult.setSignBit(); 1320 return KOResult; 1321 }; 1322 1323 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1324 KZF, KOF); 1325 break; 1326 } 1327 case Instruction::LShr: { 1328 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1329 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1330 APInt KZResult = KnownZero.lshr(ShiftAmt); 1331 // High bits known zero. 1332 KZResult.setHighBits(ShiftAmt); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1337 return KnownOne.lshr(ShiftAmt); 1338 }; 1339 1340 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1341 KZF, KOF); 1342 break; 1343 } 1344 case Instruction::AShr: { 1345 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1346 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1347 return KnownZero.ashr(ShiftAmt); 1348 }; 1349 1350 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1351 return KnownOne.ashr(ShiftAmt); 1352 }; 1353 1354 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1355 KZF, KOF); 1356 break; 1357 } 1358 case Instruction::Sub: { 1359 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1360 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1361 DemandedElts, Known, Known2, Depth, Q); 1362 break; 1363 } 1364 case Instruction::Add: { 1365 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1366 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1367 DemandedElts, Known, Known2, Depth, Q); 1368 break; 1369 } 1370 case Instruction::SRem: 1371 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1372 APInt RA = Rem->getValue().abs(); 1373 if (RA.isPowerOf2()) { 1374 APInt LowBits = RA - 1; 1375 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1376 1377 // The low bits of the first operand are unchanged by the srem. 1378 Known.Zero = Known2.Zero & LowBits; 1379 Known.One = Known2.One & LowBits; 1380 1381 // If the first operand is non-negative or has all low bits zero, then 1382 // the upper bits are all zero. 1383 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1384 Known.Zero |= ~LowBits; 1385 1386 // If the first operand is negative and not all low bits are zero, then 1387 // the upper bits are all one. 1388 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1389 Known.One |= ~LowBits; 1390 1391 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1392 break; 1393 } 1394 } 1395 1396 // The sign bit is the LHS's sign bit, except when the result of the 1397 // remainder is zero. 1398 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1399 // If it's known zero, our sign bit is also zero. 1400 if (Known2.isNonNegative()) 1401 Known.makeNonNegative(); 1402 1403 break; 1404 case Instruction::URem: { 1405 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1406 const APInt &RA = Rem->getValue(); 1407 if (RA.isPowerOf2()) { 1408 APInt LowBits = (RA - 1); 1409 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1410 Known.Zero |= ~LowBits; 1411 Known.One &= LowBits; 1412 break; 1413 } 1414 } 1415 1416 // Since the result is less than or equal to either operand, any leading 1417 // zero bits in either operand must also exist in the result. 1418 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1419 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1420 1421 unsigned Leaders = 1422 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1423 Known.resetAll(); 1424 Known.Zero.setHighBits(Leaders); 1425 break; 1426 } 1427 case Instruction::Alloca: 1428 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1429 break; 1430 case Instruction::GetElementPtr: { 1431 // Analyze all of the subscripts of this getelementptr instruction 1432 // to determine if we can prove known low zero bits. 1433 KnownBits LocalKnown(BitWidth); 1434 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1435 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1436 1437 gep_type_iterator GTI = gep_type_begin(I); 1438 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1439 // TrailZ can only become smaller, short-circuit if we hit zero. 1440 if (TrailZ == 0) 1441 break; 1442 1443 Value *Index = I->getOperand(i); 1444 if (StructType *STy = GTI.getStructTypeOrNull()) { 1445 // Handle struct member offset arithmetic. 1446 1447 // Handle case when index is vector zeroinitializer 1448 Constant *CIndex = cast<Constant>(Index); 1449 if (CIndex->isZeroValue()) 1450 continue; 1451 1452 if (CIndex->getType()->isVectorTy()) 1453 Index = CIndex->getSplatValue(); 1454 1455 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1456 const StructLayout *SL = Q.DL.getStructLayout(STy); 1457 uint64_t Offset = SL->getElementOffset(Idx); 1458 TrailZ = std::min<unsigned>(TrailZ, 1459 countTrailingZeros(Offset)); 1460 } else { 1461 // Handle array index arithmetic. 1462 Type *IndexedTy = GTI.getIndexedType(); 1463 if (!IndexedTy->isSized()) { 1464 TrailZ = 0; 1465 break; 1466 } 1467 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1468 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1469 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1470 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1471 TrailZ = std::min(TrailZ, 1472 unsigned(countTrailingZeros(TypeSize) + 1473 LocalKnown.countMinTrailingZeros())); 1474 } 1475 } 1476 1477 Known.Zero.setLowBits(TrailZ); 1478 break; 1479 } 1480 case Instruction::PHI: { 1481 const PHINode *P = cast<PHINode>(I); 1482 // Handle the case of a simple two-predecessor recurrence PHI. 1483 // There's a lot more that could theoretically be done here, but 1484 // this is sufficient to catch some interesting cases. 1485 if (P->getNumIncomingValues() == 2) { 1486 for (unsigned i = 0; i != 2; ++i) { 1487 Value *L = P->getIncomingValue(i); 1488 Value *R = P->getIncomingValue(!i); 1489 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1490 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1491 Operator *LU = dyn_cast<Operator>(L); 1492 if (!LU) 1493 continue; 1494 unsigned Opcode = LU->getOpcode(); 1495 // Check for operations that have the property that if 1496 // both their operands have low zero bits, the result 1497 // will have low zero bits. 1498 if (Opcode == Instruction::Add || 1499 Opcode == Instruction::Sub || 1500 Opcode == Instruction::And || 1501 Opcode == Instruction::Or || 1502 Opcode == Instruction::Mul) { 1503 Value *LL = LU->getOperand(0); 1504 Value *LR = LU->getOperand(1); 1505 // Find a recurrence. 1506 if (LL == I) 1507 L = LR; 1508 else if (LR == I) 1509 L = LL; 1510 else 1511 continue; // Check for recurrence with L and R flipped. 1512 1513 // Change the context instruction to the "edge" that flows into the 1514 // phi. This is important because that is where the value is actually 1515 // "evaluated" even though it is used later somewhere else. (see also 1516 // D69571). 1517 Query RecQ = Q; 1518 1519 // Ok, we have a PHI of the form L op= R. Check for low 1520 // zero bits. 1521 RecQ.CxtI = RInst; 1522 computeKnownBits(R, Known2, Depth + 1, RecQ); 1523 1524 // We need to take the minimum number of known bits 1525 KnownBits Known3(BitWidth); 1526 RecQ.CxtI = LInst; 1527 computeKnownBits(L, Known3, Depth + 1, RecQ); 1528 1529 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1530 Known3.countMinTrailingZeros())); 1531 1532 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1533 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1534 // If initial value of recurrence is nonnegative, and we are adding 1535 // a nonnegative number with nsw, the result can only be nonnegative 1536 // or poison value regardless of the number of times we execute the 1537 // add in phi recurrence. If initial value is negative and we are 1538 // adding a negative number with nsw, the result can only be 1539 // negative or poison value. Similar arguments apply to sub and mul. 1540 // 1541 // (add non-negative, non-negative) --> non-negative 1542 // (add negative, negative) --> negative 1543 if (Opcode == Instruction::Add) { 1544 if (Known2.isNonNegative() && Known3.isNonNegative()) 1545 Known.makeNonNegative(); 1546 else if (Known2.isNegative() && Known3.isNegative()) 1547 Known.makeNegative(); 1548 } 1549 1550 // (sub nsw non-negative, negative) --> non-negative 1551 // (sub nsw negative, non-negative) --> negative 1552 else if (Opcode == Instruction::Sub && LL == I) { 1553 if (Known2.isNonNegative() && Known3.isNegative()) 1554 Known.makeNonNegative(); 1555 else if (Known2.isNegative() && Known3.isNonNegative()) 1556 Known.makeNegative(); 1557 } 1558 1559 // (mul nsw non-negative, non-negative) --> non-negative 1560 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1561 Known3.isNonNegative()) 1562 Known.makeNonNegative(); 1563 } 1564 1565 break; 1566 } 1567 } 1568 } 1569 1570 // Unreachable blocks may have zero-operand PHI nodes. 1571 if (P->getNumIncomingValues() == 0) 1572 break; 1573 1574 // Otherwise take the unions of the known bit sets of the operands, 1575 // taking conservative care to avoid excessive recursion. 1576 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1577 // Skip if every incoming value references to ourself. 1578 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1579 break; 1580 1581 Known.Zero.setAllBits(); 1582 Known.One.setAllBits(); 1583 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1584 Value *IncValue = P->getIncomingValue(u); 1585 // Skip direct self references. 1586 if (IncValue == P) continue; 1587 1588 // Change the context instruction to the "edge" that flows into the 1589 // phi. This is important because that is where the value is actually 1590 // "evaluated" even though it is used later somewhere else. (see also 1591 // D69571). 1592 Query RecQ = Q; 1593 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1594 1595 Known2 = KnownBits(BitWidth); 1596 // Recurse, but cap the recursion to one level, because we don't 1597 // want to waste time spinning around in loops. 1598 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1599 Known.Zero &= Known2.Zero; 1600 Known.One &= Known2.One; 1601 // If all bits have been ruled out, there's no need to check 1602 // more operands. 1603 if (!Known.Zero && !Known.One) 1604 break; 1605 } 1606 } 1607 break; 1608 } 1609 case Instruction::Call: 1610 case Instruction::Invoke: 1611 // If range metadata is attached to this call, set known bits from that, 1612 // and then intersect with known bits based on other properties of the 1613 // function. 1614 if (MDNode *MD = 1615 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1616 computeKnownBitsFromRangeMetadata(*MD, Known); 1617 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1618 computeKnownBits(RV, Known2, Depth + 1, Q); 1619 Known.Zero |= Known2.Zero; 1620 Known.One |= Known2.One; 1621 } 1622 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1623 switch (II->getIntrinsicID()) { 1624 default: break; 1625 case Intrinsic::abs: 1626 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1627 1628 // If the source's MSB is zero then we know the rest of the bits. 1629 if (Known2.isNonNegative()) { 1630 Known.Zero |= Known2.Zero; 1631 Known.One |= Known2.One; 1632 break; 1633 } 1634 1635 // Absolute value preserves trailing zero count. 1636 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1637 1638 // If this call is undefined for INT_MIN, the result is positive. We 1639 // also know it can't be INT_MIN if there is a set bit that isn't the 1640 // sign bit. 1641 Known2.One.clearSignBit(); 1642 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1643 Known.Zero.setSignBit(); 1644 // FIXME: Handle known negative input? 1645 // FIXME: Calculate the negated Known bits and combine them? 1646 break; 1647 case Intrinsic::bitreverse: 1648 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1649 Known.Zero |= Known2.Zero.reverseBits(); 1650 Known.One |= Known2.One.reverseBits(); 1651 break; 1652 case Intrinsic::bswap: 1653 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1654 Known.Zero |= Known2.Zero.byteSwap(); 1655 Known.One |= Known2.One.byteSwap(); 1656 break; 1657 case Intrinsic::ctlz: { 1658 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1659 // If we have a known 1, its position is our upper bound. 1660 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1661 // If this call is undefined for 0, the result will be less than 2^n. 1662 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1663 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1664 unsigned LowBits = Log2_32(PossibleLZ)+1; 1665 Known.Zero.setBitsFrom(LowBits); 1666 break; 1667 } 1668 case Intrinsic::cttz: { 1669 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1670 // If we have a known 1, its position is our upper bound. 1671 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1672 // If this call is undefined for 0, the result will be less than 2^n. 1673 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1674 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1675 unsigned LowBits = Log2_32(PossibleTZ)+1; 1676 Known.Zero.setBitsFrom(LowBits); 1677 break; 1678 } 1679 case Intrinsic::ctpop: { 1680 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1681 // We can bound the space the count needs. Also, bits known to be zero 1682 // can't contribute to the population. 1683 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1684 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1685 Known.Zero.setBitsFrom(LowBits); 1686 // TODO: we could bound KnownOne using the lower bound on the number 1687 // of bits which might be set provided by popcnt KnownOne2. 1688 break; 1689 } 1690 case Intrinsic::fshr: 1691 case Intrinsic::fshl: { 1692 const APInt *SA; 1693 if (!match(I->getOperand(2), m_APInt(SA))) 1694 break; 1695 1696 // Normalize to funnel shift left. 1697 uint64_t ShiftAmt = SA->urem(BitWidth); 1698 if (II->getIntrinsicID() == Intrinsic::fshr) 1699 ShiftAmt = BitWidth - ShiftAmt; 1700 1701 KnownBits Known3(BitWidth); 1702 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1703 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1704 1705 Known.Zero = 1706 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1707 Known.One = 1708 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1709 break; 1710 } 1711 case Intrinsic::uadd_sat: 1712 case Intrinsic::usub_sat: { 1713 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1714 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1715 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1716 1717 // Add: Leading ones of either operand are preserved. 1718 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1719 // as leading zeros in the result. 1720 unsigned LeadingKnown; 1721 if (IsAdd) 1722 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1723 Known2.countMinLeadingOnes()); 1724 else 1725 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1726 Known2.countMinLeadingOnes()); 1727 1728 Known = KnownBits::computeForAddSub( 1729 IsAdd, /* NSW */ false, Known, Known2); 1730 1731 // We select between the operation result and all-ones/zero 1732 // respectively, so we can preserve known ones/zeros. 1733 if (IsAdd) { 1734 Known.One.setHighBits(LeadingKnown); 1735 Known.Zero.clearAllBits(); 1736 } else { 1737 Known.Zero.setHighBits(LeadingKnown); 1738 Known.One.clearAllBits(); 1739 } 1740 break; 1741 } 1742 case Intrinsic::x86_sse42_crc32_64_64: 1743 Known.Zero.setBitsFrom(32); 1744 break; 1745 } 1746 } 1747 break; 1748 case Instruction::ShuffleVector: { 1749 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1750 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1751 if (!Shuf) { 1752 Known.resetAll(); 1753 return; 1754 } 1755 // For undef elements, we don't know anything about the common state of 1756 // the shuffle result. 1757 APInt DemandedLHS, DemandedRHS; 1758 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1759 Known.resetAll(); 1760 return; 1761 } 1762 Known.One.setAllBits(); 1763 Known.Zero.setAllBits(); 1764 if (!!DemandedLHS) { 1765 const Value *LHS = Shuf->getOperand(0); 1766 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1767 // If we don't know any bits, early out. 1768 if (Known.isUnknown()) 1769 break; 1770 } 1771 if (!!DemandedRHS) { 1772 const Value *RHS = Shuf->getOperand(1); 1773 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1774 Known.One &= Known2.One; 1775 Known.Zero &= Known2.Zero; 1776 } 1777 break; 1778 } 1779 case Instruction::InsertElement: { 1780 const Value *Vec = I->getOperand(0); 1781 const Value *Elt = I->getOperand(1); 1782 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1783 // Early out if the index is non-constant or out-of-range. 1784 unsigned NumElts = DemandedElts.getBitWidth(); 1785 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1786 Known.resetAll(); 1787 return; 1788 } 1789 Known.One.setAllBits(); 1790 Known.Zero.setAllBits(); 1791 unsigned EltIdx = CIdx->getZExtValue(); 1792 // Do we demand the inserted element? 1793 if (DemandedElts[EltIdx]) { 1794 computeKnownBits(Elt, Known, Depth + 1, Q); 1795 // If we don't know any bits, early out. 1796 if (Known.isUnknown()) 1797 break; 1798 } 1799 // We don't need the base vector element that has been inserted. 1800 APInt DemandedVecElts = DemandedElts; 1801 DemandedVecElts.clearBit(EltIdx); 1802 if (!!DemandedVecElts) { 1803 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1804 Known.One &= Known2.One; 1805 Known.Zero &= Known2.Zero; 1806 } 1807 break; 1808 } 1809 case Instruction::ExtractElement: { 1810 // Look through extract element. If the index is non-constant or 1811 // out-of-range demand all elements, otherwise just the extracted element. 1812 const Value *Vec = I->getOperand(0); 1813 const Value *Idx = I->getOperand(1); 1814 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1815 if (isa<ScalableVectorType>(Vec->getType())) { 1816 // FIXME: there's probably *something* we can do with scalable vectors 1817 Known.resetAll(); 1818 break; 1819 } 1820 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1821 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1822 if (CIdx && CIdx->getValue().ult(NumElts)) 1823 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1824 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1825 break; 1826 } 1827 case Instruction::ExtractValue: 1828 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1829 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1830 if (EVI->getNumIndices() != 1) break; 1831 if (EVI->getIndices()[0] == 0) { 1832 switch (II->getIntrinsicID()) { 1833 default: break; 1834 case Intrinsic::uadd_with_overflow: 1835 case Intrinsic::sadd_with_overflow: 1836 computeKnownBitsAddSub(true, II->getArgOperand(0), 1837 II->getArgOperand(1), false, DemandedElts, 1838 Known, Known2, Depth, Q); 1839 break; 1840 case Intrinsic::usub_with_overflow: 1841 case Intrinsic::ssub_with_overflow: 1842 computeKnownBitsAddSub(false, II->getArgOperand(0), 1843 II->getArgOperand(1), false, DemandedElts, 1844 Known, Known2, Depth, Q); 1845 break; 1846 case Intrinsic::umul_with_overflow: 1847 case Intrinsic::smul_with_overflow: 1848 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1849 DemandedElts, Known, Known2, Depth, Q); 1850 break; 1851 } 1852 } 1853 } 1854 break; 1855 } 1856 } 1857 1858 /// Determine which bits of V are known to be either zero or one and return 1859 /// them. 1860 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1861 unsigned Depth, const Query &Q) { 1862 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1863 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1864 return Known; 1865 } 1866 1867 /// Determine which bits of V are known to be either zero or one and return 1868 /// them. 1869 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1870 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1871 computeKnownBits(V, Known, Depth, Q); 1872 return Known; 1873 } 1874 1875 /// Determine which bits of V are known to be either zero or one and return 1876 /// them in the Known bit set. 1877 /// 1878 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1879 /// we cannot optimize based on the assumption that it is zero without changing 1880 /// it to be an explicit zero. If we don't change it to zero, other code could 1881 /// optimized based on the contradictory assumption that it is non-zero. 1882 /// Because instcombine aggressively folds operations with undef args anyway, 1883 /// this won't lose us code quality. 1884 /// 1885 /// This function is defined on values with integer type, values with pointer 1886 /// type, and vectors of integers. In the case 1887 /// where V is a vector, known zero, and known one values are the 1888 /// same width as the vector element, and the bit is set only if it is true 1889 /// for all of the demanded elements in the vector specified by DemandedElts. 1890 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1891 KnownBits &Known, unsigned Depth, const Query &Q) { 1892 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1893 // No demanded elts or V is a scalable vector, better to assume we don't 1894 // know anything. 1895 Known.resetAll(); 1896 return; 1897 } 1898 1899 assert(V && "No Value?"); 1900 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1901 1902 #ifndef NDEBUG 1903 Type *Ty = V->getType(); 1904 unsigned BitWidth = Known.getBitWidth(); 1905 1906 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1907 "Not integer or pointer type!"); 1908 1909 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1910 assert( 1911 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1912 "DemandedElt width should equal the fixed vector number of elements"); 1913 } else { 1914 assert(DemandedElts == APInt(1, 1) && 1915 "DemandedElt width should be 1 for scalars"); 1916 } 1917 1918 Type *ScalarTy = Ty->getScalarType(); 1919 if (ScalarTy->isPointerTy()) { 1920 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1921 "V and Known should have same BitWidth"); 1922 } else { 1923 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1924 "V and Known should have same BitWidth"); 1925 } 1926 #endif 1927 1928 const APInt *C; 1929 if (match(V, m_APInt(C))) { 1930 // We know all of the bits for a scalar constant or a splat vector constant! 1931 Known.One = *C; 1932 Known.Zero = ~Known.One; 1933 return; 1934 } 1935 // Null and aggregate-zero are all-zeros. 1936 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1937 Known.setAllZero(); 1938 return; 1939 } 1940 // Handle a constant vector by taking the intersection of the known bits of 1941 // each element. 1942 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1943 // We know that CDV must be a vector of integers. Take the intersection of 1944 // each element. 1945 Known.Zero.setAllBits(); Known.One.setAllBits(); 1946 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1947 if (!DemandedElts[i]) 1948 continue; 1949 APInt Elt = CDV->getElementAsAPInt(i); 1950 Known.Zero &= ~Elt; 1951 Known.One &= Elt; 1952 } 1953 return; 1954 } 1955 1956 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1957 // We know that CV must be a vector of integers. Take the intersection of 1958 // each element. 1959 Known.Zero.setAllBits(); Known.One.setAllBits(); 1960 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1961 if (!DemandedElts[i]) 1962 continue; 1963 Constant *Element = CV->getAggregateElement(i); 1964 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1965 if (!ElementCI) { 1966 Known.resetAll(); 1967 return; 1968 } 1969 const APInt &Elt = ElementCI->getValue(); 1970 Known.Zero &= ~Elt; 1971 Known.One &= Elt; 1972 } 1973 return; 1974 } 1975 1976 // Start out not knowing anything. 1977 Known.resetAll(); 1978 1979 // We can't imply anything about undefs. 1980 if (isa<UndefValue>(V)) 1981 return; 1982 1983 // There's no point in looking through other users of ConstantData for 1984 // assumptions. Confirm that we've handled them all. 1985 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1986 1987 // All recursive calls that increase depth must come after this. 1988 if (Depth == MaxAnalysisRecursionDepth) 1989 return; 1990 1991 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1992 // the bits of its aliasee. 1993 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1994 if (!GA->isInterposable()) 1995 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1996 return; 1997 } 1998 1999 if (const Operator *I = dyn_cast<Operator>(V)) 2000 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2001 2002 // Aligned pointers have trailing zeros - refine Known.Zero set 2003 if (isa<PointerType>(V->getType())) { 2004 Align Alignment = V->getPointerAlignment(Q.DL); 2005 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2006 } 2007 2008 // computeKnownBitsFromAssume strictly refines Known. 2009 // Therefore, we run them after computeKnownBitsFromOperator. 2010 2011 // Check whether a nearby assume intrinsic can determine some known bits. 2012 computeKnownBitsFromAssume(V, Known, Depth, Q); 2013 2014 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2015 } 2016 2017 /// Return true if the given value is known to have exactly one 2018 /// bit set when defined. For vectors return true if every element is known to 2019 /// be a power of two when defined. Supports values with integer or pointer 2020 /// types and vectors of integers. 2021 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2022 const Query &Q) { 2023 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2024 2025 // Attempt to match against constants. 2026 if (OrZero && match(V, m_Power2OrZero())) 2027 return true; 2028 if (match(V, m_Power2())) 2029 return true; 2030 2031 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2032 // it is shifted off the end then the result is undefined. 2033 if (match(V, m_Shl(m_One(), m_Value()))) 2034 return true; 2035 2036 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2037 // the bottom. If it is shifted off the bottom then the result is undefined. 2038 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2039 return true; 2040 2041 // The remaining tests are all recursive, so bail out if we hit the limit. 2042 if (Depth++ == MaxAnalysisRecursionDepth) 2043 return false; 2044 2045 Value *X = nullptr, *Y = nullptr; 2046 // A shift left or a logical shift right of a power of two is a power of two 2047 // or zero. 2048 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2049 match(V, m_LShr(m_Value(X), m_Value())))) 2050 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2051 2052 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2053 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2054 2055 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2056 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2057 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2058 2059 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2060 // A power of two and'd with anything is a power of two or zero. 2061 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2062 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2063 return true; 2064 // X & (-X) is always a power of two or zero. 2065 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2066 return true; 2067 return false; 2068 } 2069 2070 // Adding a power-of-two or zero to the same power-of-two or zero yields 2071 // either the original power-of-two, a larger power-of-two or zero. 2072 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2073 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2074 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2075 Q.IIQ.hasNoSignedWrap(VOBO)) { 2076 if (match(X, m_And(m_Specific(Y), m_Value())) || 2077 match(X, m_And(m_Value(), m_Specific(Y)))) 2078 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2079 return true; 2080 if (match(Y, m_And(m_Specific(X), m_Value())) || 2081 match(Y, m_And(m_Value(), m_Specific(X)))) 2082 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2083 return true; 2084 2085 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2086 KnownBits LHSBits(BitWidth); 2087 computeKnownBits(X, LHSBits, Depth, Q); 2088 2089 KnownBits RHSBits(BitWidth); 2090 computeKnownBits(Y, RHSBits, Depth, Q); 2091 // If i8 V is a power of two or zero: 2092 // ZeroBits: 1 1 1 0 1 1 1 1 2093 // ~ZeroBits: 0 0 0 1 0 0 0 0 2094 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2095 // If OrZero isn't set, we cannot give back a zero result. 2096 // Make sure either the LHS or RHS has a bit set. 2097 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2098 return true; 2099 } 2100 } 2101 2102 // An exact divide or right shift can only shift off zero bits, so the result 2103 // is a power of two only if the first operand is a power of two and not 2104 // copying a sign bit (sdiv int_min, 2). 2105 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2106 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2107 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2108 Depth, Q); 2109 } 2110 2111 return false; 2112 } 2113 2114 /// Test whether a GEP's result is known to be non-null. 2115 /// 2116 /// Uses properties inherent in a GEP to try to determine whether it is known 2117 /// to be non-null. 2118 /// 2119 /// Currently this routine does not support vector GEPs. 2120 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2121 const Query &Q) { 2122 const Function *F = nullptr; 2123 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2124 F = I->getFunction(); 2125 2126 if (!GEP->isInBounds() || 2127 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2128 return false; 2129 2130 // FIXME: Support vector-GEPs. 2131 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2132 2133 // If the base pointer is non-null, we cannot walk to a null address with an 2134 // inbounds GEP in address space zero. 2135 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2136 return true; 2137 2138 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2139 // If so, then the GEP cannot produce a null pointer, as doing so would 2140 // inherently violate the inbounds contract within address space zero. 2141 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2142 GTI != GTE; ++GTI) { 2143 // Struct types are easy -- they must always be indexed by a constant. 2144 if (StructType *STy = GTI.getStructTypeOrNull()) { 2145 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2146 unsigned ElementIdx = OpC->getZExtValue(); 2147 const StructLayout *SL = Q.DL.getStructLayout(STy); 2148 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2149 if (ElementOffset > 0) 2150 return true; 2151 continue; 2152 } 2153 2154 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2155 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2156 continue; 2157 2158 // Fast path the constant operand case both for efficiency and so we don't 2159 // increment Depth when just zipping down an all-constant GEP. 2160 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2161 if (!OpC->isZero()) 2162 return true; 2163 continue; 2164 } 2165 2166 // We post-increment Depth here because while isKnownNonZero increments it 2167 // as well, when we pop back up that increment won't persist. We don't want 2168 // to recurse 10k times just because we have 10k GEP operands. We don't 2169 // bail completely out because we want to handle constant GEPs regardless 2170 // of depth. 2171 if (Depth++ >= MaxAnalysisRecursionDepth) 2172 continue; 2173 2174 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2175 return true; 2176 } 2177 2178 return false; 2179 } 2180 2181 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2182 const Instruction *CtxI, 2183 const DominatorTree *DT) { 2184 if (isa<Constant>(V)) 2185 return false; 2186 2187 if (!CtxI || !DT) 2188 return false; 2189 2190 unsigned NumUsesExplored = 0; 2191 for (auto *U : V->users()) { 2192 // Avoid massive lists 2193 if (NumUsesExplored >= DomConditionsMaxUses) 2194 break; 2195 NumUsesExplored++; 2196 2197 // If the value is used as an argument to a call or invoke, then argument 2198 // attributes may provide an answer about null-ness. 2199 if (const auto *CB = dyn_cast<CallBase>(U)) 2200 if (auto *CalledFunc = CB->getCalledFunction()) 2201 for (const Argument &Arg : CalledFunc->args()) 2202 if (CB->getArgOperand(Arg.getArgNo()) == V && 2203 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2204 return true; 2205 2206 // If the value is used as a load/store, then the pointer must be non null. 2207 if (V == getLoadStorePointerOperand(U)) { 2208 const Instruction *I = cast<Instruction>(U); 2209 if (!NullPointerIsDefined(I->getFunction(), 2210 V->getType()->getPointerAddressSpace()) && 2211 DT->dominates(I, CtxI)) 2212 return true; 2213 } 2214 2215 // Consider only compare instructions uniquely controlling a branch 2216 CmpInst::Predicate Pred; 2217 if (!match(const_cast<User *>(U), 2218 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2219 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2220 continue; 2221 2222 SmallVector<const User *, 4> WorkList; 2223 SmallPtrSet<const User *, 4> Visited; 2224 for (auto *CmpU : U->users()) { 2225 assert(WorkList.empty() && "Should be!"); 2226 if (Visited.insert(CmpU).second) 2227 WorkList.push_back(CmpU); 2228 2229 while (!WorkList.empty()) { 2230 auto *Curr = WorkList.pop_back_val(); 2231 2232 // If a user is an AND, add all its users to the work list. We only 2233 // propagate "pred != null" condition through AND because it is only 2234 // correct to assume that all conditions of AND are met in true branch. 2235 // TODO: Support similar logic of OR and EQ predicate? 2236 if (Pred == ICmpInst::ICMP_NE) 2237 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2238 if (BO->getOpcode() == Instruction::And) { 2239 for (auto *BOU : BO->users()) 2240 if (Visited.insert(BOU).second) 2241 WorkList.push_back(BOU); 2242 continue; 2243 } 2244 2245 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2246 assert(BI->isConditional() && "uses a comparison!"); 2247 2248 BasicBlock *NonNullSuccessor = 2249 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2250 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2251 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2252 return true; 2253 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2254 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2255 return true; 2256 } 2257 } 2258 } 2259 } 2260 2261 return false; 2262 } 2263 2264 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2265 /// ensure that the value it's attached to is never Value? 'RangeType' is 2266 /// is the type of the value described by the range. 2267 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2268 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2269 assert(NumRanges >= 1); 2270 for (unsigned i = 0; i < NumRanges; ++i) { 2271 ConstantInt *Lower = 2272 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2273 ConstantInt *Upper = 2274 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2275 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2276 if (Range.contains(Value)) 2277 return false; 2278 } 2279 return true; 2280 } 2281 2282 /// Return true if the given value is known to be non-zero when defined. For 2283 /// vectors, return true if every demanded element is known to be non-zero when 2284 /// defined. For pointers, if the context instruction and dominator tree are 2285 /// specified, perform context-sensitive analysis and return true if the 2286 /// pointer couldn't possibly be null at the specified instruction. 2287 /// Supports values with integer or pointer type and vectors of integers. 2288 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2289 const Query &Q) { 2290 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2291 // vector 2292 if (isa<ScalableVectorType>(V->getType())) 2293 return false; 2294 2295 if (auto *C = dyn_cast<Constant>(V)) { 2296 if (C->isNullValue()) 2297 return false; 2298 if (isa<ConstantInt>(C)) 2299 // Must be non-zero due to null test above. 2300 return true; 2301 2302 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2303 // See the comment for IntToPtr/PtrToInt instructions below. 2304 if (CE->getOpcode() == Instruction::IntToPtr || 2305 CE->getOpcode() == Instruction::PtrToInt) 2306 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2307 Q.DL.getTypeSizeInBits(CE->getType())) 2308 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2309 } 2310 2311 // For constant vectors, check that all elements are undefined or known 2312 // non-zero to determine that the whole vector is known non-zero. 2313 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2314 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2315 if (!DemandedElts[i]) 2316 continue; 2317 Constant *Elt = C->getAggregateElement(i); 2318 if (!Elt || Elt->isNullValue()) 2319 return false; 2320 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2321 return false; 2322 } 2323 return true; 2324 } 2325 2326 // A global variable in address space 0 is non null unless extern weak 2327 // or an absolute symbol reference. Other address spaces may have null as a 2328 // valid address for a global, so we can't assume anything. 2329 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2330 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2331 GV->getType()->getAddressSpace() == 0) 2332 return true; 2333 } else 2334 return false; 2335 } 2336 2337 if (auto *I = dyn_cast<Instruction>(V)) { 2338 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2339 // If the possible ranges don't contain zero, then the value is 2340 // definitely non-zero. 2341 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2342 const APInt ZeroValue(Ty->getBitWidth(), 0); 2343 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2344 return true; 2345 } 2346 } 2347 } 2348 2349 if (isKnownNonZeroFromAssume(V, Q)) 2350 return true; 2351 2352 // Some of the tests below are recursive, so bail out if we hit the limit. 2353 if (Depth++ >= MaxAnalysisRecursionDepth) 2354 return false; 2355 2356 // Check for pointer simplifications. 2357 2358 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2359 // Alloca never returns null, malloc might. 2360 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2361 return true; 2362 2363 // A byval, inalloca may not be null in a non-default addres space. A 2364 // nonnull argument is assumed never 0. 2365 if (const Argument *A = dyn_cast<Argument>(V)) { 2366 if (((A->hasPassPointeeByValueCopyAttr() && 2367 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2368 A->hasNonNullAttr())) 2369 return true; 2370 } 2371 2372 // A Load tagged with nonnull metadata is never null. 2373 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2374 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2375 return true; 2376 2377 if (const auto *Call = dyn_cast<CallBase>(V)) { 2378 if (Call->isReturnNonNull()) 2379 return true; 2380 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2381 return isKnownNonZero(RP, Depth, Q); 2382 } 2383 } 2384 2385 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2386 return true; 2387 2388 // Check for recursive pointer simplifications. 2389 if (V->getType()->isPointerTy()) { 2390 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2391 // do not alter the value, or at least not the nullness property of the 2392 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2393 // 2394 // Note that we have to take special care to avoid looking through 2395 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2396 // as casts that can alter the value, e.g., AddrSpaceCasts. 2397 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2398 return isGEPKnownNonNull(GEP, Depth, Q); 2399 2400 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2401 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2402 2403 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2404 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2405 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2406 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2407 } 2408 2409 // Similar to int2ptr above, we can look through ptr2int here if the cast 2410 // is a no-op or an extend and not a truncate. 2411 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2412 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2413 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2414 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2415 2416 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2417 2418 // X | Y != 0 if X != 0 or Y != 0. 2419 Value *X = nullptr, *Y = nullptr; 2420 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2421 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2422 isKnownNonZero(Y, DemandedElts, Depth, Q); 2423 2424 // ext X != 0 if X != 0. 2425 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2426 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2427 2428 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2429 // if the lowest bit is shifted off the end. 2430 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2431 // shl nuw can't remove any non-zero bits. 2432 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2433 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2434 return isKnownNonZero(X, Depth, Q); 2435 2436 KnownBits Known(BitWidth); 2437 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2438 if (Known.One[0]) 2439 return true; 2440 } 2441 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2442 // defined if the sign bit is shifted off the end. 2443 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2444 // shr exact can only shift out zero bits. 2445 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2446 if (BO->isExact()) 2447 return isKnownNonZero(X, Depth, Q); 2448 2449 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2450 if (Known.isNegative()) 2451 return true; 2452 2453 // If the shifter operand is a constant, and all of the bits shifted 2454 // out are known to be zero, and X is known non-zero then at least one 2455 // non-zero bit must remain. 2456 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2457 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2458 // Is there a known one in the portion not shifted out? 2459 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2460 return true; 2461 // Are all the bits to be shifted out known zero? 2462 if (Known.countMinTrailingZeros() >= ShiftVal) 2463 return isKnownNonZero(X, DemandedElts, Depth, Q); 2464 } 2465 } 2466 // div exact can only produce a zero if the dividend is zero. 2467 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2468 return isKnownNonZero(X, DemandedElts, Depth, Q); 2469 } 2470 // X + Y. 2471 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2472 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2473 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2474 2475 // If X and Y are both non-negative (as signed values) then their sum is not 2476 // zero unless both X and Y are zero. 2477 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2478 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2479 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2480 return true; 2481 2482 // If X and Y are both negative (as signed values) then their sum is not 2483 // zero unless both X and Y equal INT_MIN. 2484 if (XKnown.isNegative() && YKnown.isNegative()) { 2485 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2486 // The sign bit of X is set. If some other bit is set then X is not equal 2487 // to INT_MIN. 2488 if (XKnown.One.intersects(Mask)) 2489 return true; 2490 // The sign bit of Y is set. If some other bit is set then Y is not equal 2491 // to INT_MIN. 2492 if (YKnown.One.intersects(Mask)) 2493 return true; 2494 } 2495 2496 // The sum of a non-negative number and a power of two is not zero. 2497 if (XKnown.isNonNegative() && 2498 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2499 return true; 2500 if (YKnown.isNonNegative() && 2501 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2502 return true; 2503 } 2504 // X * Y. 2505 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2506 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2507 // If X and Y are non-zero then so is X * Y as long as the multiplication 2508 // does not overflow. 2509 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2510 isKnownNonZero(X, DemandedElts, Depth, Q) && 2511 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2512 return true; 2513 } 2514 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2515 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2516 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2517 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2518 return true; 2519 } 2520 // PHI 2521 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2522 // Try and detect a recurrence that monotonically increases from a 2523 // starting value, as these are common as induction variables. 2524 if (PN->getNumIncomingValues() == 2) { 2525 Value *Start = PN->getIncomingValue(0); 2526 Value *Induction = PN->getIncomingValue(1); 2527 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2528 std::swap(Start, Induction); 2529 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2530 if (!C->isZero() && !C->isNegative()) { 2531 ConstantInt *X; 2532 if (Q.IIQ.UseInstrInfo && 2533 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2534 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2535 !X->isNegative()) 2536 return true; 2537 } 2538 } 2539 } 2540 // Check if all incoming values are non-zero constant. 2541 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2542 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2543 }); 2544 if (AllNonZeroConstants) 2545 return true; 2546 } 2547 // ExtractElement 2548 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2549 const Value *Vec = EEI->getVectorOperand(); 2550 const Value *Idx = EEI->getIndexOperand(); 2551 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2552 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2553 unsigned NumElts = VecTy->getNumElements(); 2554 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2555 if (CIdx && CIdx->getValue().ult(NumElts)) 2556 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2557 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2558 } 2559 } 2560 2561 KnownBits Known(BitWidth); 2562 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2563 return Known.One != 0; 2564 } 2565 2566 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2567 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2568 // vector 2569 if (isa<ScalableVectorType>(V->getType())) 2570 return false; 2571 2572 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2573 APInt DemandedElts = 2574 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2575 return isKnownNonZero(V, DemandedElts, Depth, Q); 2576 } 2577 2578 /// Return true if V2 == V1 + X, where X is known non-zero. 2579 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2580 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2581 if (!BO || BO->getOpcode() != Instruction::Add) 2582 return false; 2583 Value *Op = nullptr; 2584 if (V2 == BO->getOperand(0)) 2585 Op = BO->getOperand(1); 2586 else if (V2 == BO->getOperand(1)) 2587 Op = BO->getOperand(0); 2588 else 2589 return false; 2590 return isKnownNonZero(Op, 0, Q); 2591 } 2592 2593 /// Return true if it is known that V1 != V2. 2594 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2595 if (V1 == V2) 2596 return false; 2597 if (V1->getType() != V2->getType()) 2598 // We can't look through casts yet. 2599 return false; 2600 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2601 return true; 2602 2603 if (V1->getType()->isIntOrIntVectorTy()) { 2604 // Are any known bits in V1 contradictory to known bits in V2? If V1 2605 // has a known zero where V2 has a known one, they must not be equal. 2606 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2607 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2608 2609 if (Known1.Zero.intersects(Known2.One) || 2610 Known2.Zero.intersects(Known1.One)) 2611 return true; 2612 } 2613 return false; 2614 } 2615 2616 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2617 /// simplify operations downstream. Mask is known to be zero for bits that V 2618 /// cannot have. 2619 /// 2620 /// This function is defined on values with integer type, values with pointer 2621 /// type, and vectors of integers. In the case 2622 /// where V is a vector, the mask, known zero, and known one values are the 2623 /// same width as the vector element, and the bit is set only if it is true 2624 /// for all of the elements in the vector. 2625 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2626 const Query &Q) { 2627 KnownBits Known(Mask.getBitWidth()); 2628 computeKnownBits(V, Known, Depth, Q); 2629 return Mask.isSubsetOf(Known.Zero); 2630 } 2631 2632 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2633 // Returns the input and lower/upper bounds. 2634 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2635 const APInt *&CLow, const APInt *&CHigh) { 2636 assert(isa<Operator>(Select) && 2637 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2638 "Input should be a Select!"); 2639 2640 const Value *LHS = nullptr, *RHS = nullptr; 2641 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2642 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2643 return false; 2644 2645 if (!match(RHS, m_APInt(CLow))) 2646 return false; 2647 2648 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2649 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2650 if (getInverseMinMaxFlavor(SPF) != SPF2) 2651 return false; 2652 2653 if (!match(RHS2, m_APInt(CHigh))) 2654 return false; 2655 2656 if (SPF == SPF_SMIN) 2657 std::swap(CLow, CHigh); 2658 2659 In = LHS2; 2660 return CLow->sle(*CHigh); 2661 } 2662 2663 /// For vector constants, loop over the elements and find the constant with the 2664 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2665 /// or if any element was not analyzed; otherwise, return the count for the 2666 /// element with the minimum number of sign bits. 2667 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2668 const APInt &DemandedElts, 2669 unsigned TyBits) { 2670 const auto *CV = dyn_cast<Constant>(V); 2671 if (!CV || !isa<FixedVectorType>(CV->getType())) 2672 return 0; 2673 2674 unsigned MinSignBits = TyBits; 2675 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2676 for (unsigned i = 0; i != NumElts; ++i) { 2677 if (!DemandedElts[i]) 2678 continue; 2679 // If we find a non-ConstantInt, bail out. 2680 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2681 if (!Elt) 2682 return 0; 2683 2684 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2685 } 2686 2687 return MinSignBits; 2688 } 2689 2690 static unsigned ComputeNumSignBitsImpl(const Value *V, 2691 const APInt &DemandedElts, 2692 unsigned Depth, const Query &Q); 2693 2694 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2695 unsigned Depth, const Query &Q) { 2696 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2697 assert(Result > 0 && "At least one sign bit needs to be present!"); 2698 return Result; 2699 } 2700 2701 /// Return the number of times the sign bit of the register is replicated into 2702 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2703 /// (itself), but other cases can give us information. For example, immediately 2704 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2705 /// other, so we return 3. For vectors, return the number of sign bits for the 2706 /// vector element with the minimum number of known sign bits of the demanded 2707 /// elements in the vector specified by DemandedElts. 2708 static unsigned ComputeNumSignBitsImpl(const Value *V, 2709 const APInt &DemandedElts, 2710 unsigned Depth, const Query &Q) { 2711 Type *Ty = V->getType(); 2712 2713 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2714 // vector 2715 if (isa<ScalableVectorType>(Ty)) 2716 return 1; 2717 2718 #ifndef NDEBUG 2719 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2720 2721 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2722 assert( 2723 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2724 "DemandedElt width should equal the fixed vector number of elements"); 2725 } else { 2726 assert(DemandedElts == APInt(1, 1) && 2727 "DemandedElt width should be 1 for scalars"); 2728 } 2729 #endif 2730 2731 // We return the minimum number of sign bits that are guaranteed to be present 2732 // in V, so for undef we have to conservatively return 1. We don't have the 2733 // same behavior for poison though -- that's a FIXME today. 2734 2735 Type *ScalarTy = Ty->getScalarType(); 2736 unsigned TyBits = ScalarTy->isPointerTy() ? 2737 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2738 Q.DL.getTypeSizeInBits(ScalarTy); 2739 2740 unsigned Tmp, Tmp2; 2741 unsigned FirstAnswer = 1; 2742 2743 // Note that ConstantInt is handled by the general computeKnownBits case 2744 // below. 2745 2746 if (Depth == MaxAnalysisRecursionDepth) 2747 return 1; 2748 2749 if (auto *U = dyn_cast<Operator>(V)) { 2750 switch (Operator::getOpcode(V)) { 2751 default: break; 2752 case Instruction::SExt: 2753 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2754 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2755 2756 case Instruction::SDiv: { 2757 const APInt *Denominator; 2758 // sdiv X, C -> adds log(C) sign bits. 2759 if (match(U->getOperand(1), m_APInt(Denominator))) { 2760 2761 // Ignore non-positive denominator. 2762 if (!Denominator->isStrictlyPositive()) 2763 break; 2764 2765 // Calculate the incoming numerator bits. 2766 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2767 2768 // Add floor(log(C)) bits to the numerator bits. 2769 return std::min(TyBits, NumBits + Denominator->logBase2()); 2770 } 2771 break; 2772 } 2773 2774 case Instruction::SRem: { 2775 const APInt *Denominator; 2776 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2777 // positive constant. This let us put a lower bound on the number of sign 2778 // bits. 2779 if (match(U->getOperand(1), m_APInt(Denominator))) { 2780 2781 // Ignore non-positive denominator. 2782 if (!Denominator->isStrictlyPositive()) 2783 break; 2784 2785 // Calculate the incoming numerator bits. SRem by a positive constant 2786 // can't lower the number of sign bits. 2787 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2788 2789 // Calculate the leading sign bit constraints by examining the 2790 // denominator. Given that the denominator is positive, there are two 2791 // cases: 2792 // 2793 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2794 // (1 << ceilLogBase2(C)). 2795 // 2796 // 2. the numerator is negative. Then the result range is (-C,0] and 2797 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2798 // 2799 // Thus a lower bound on the number of sign bits is `TyBits - 2800 // ceilLogBase2(C)`. 2801 2802 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2803 return std::max(NumrBits, ResBits); 2804 } 2805 break; 2806 } 2807 2808 case Instruction::AShr: { 2809 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2810 // ashr X, C -> adds C sign bits. Vectors too. 2811 const APInt *ShAmt; 2812 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2813 if (ShAmt->uge(TyBits)) 2814 break; // Bad shift. 2815 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2816 Tmp += ShAmtLimited; 2817 if (Tmp > TyBits) Tmp = TyBits; 2818 } 2819 return Tmp; 2820 } 2821 case Instruction::Shl: { 2822 const APInt *ShAmt; 2823 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2824 // shl destroys sign bits. 2825 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2826 if (ShAmt->uge(TyBits) || // Bad shift. 2827 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2828 Tmp2 = ShAmt->getZExtValue(); 2829 return Tmp - Tmp2; 2830 } 2831 break; 2832 } 2833 case Instruction::And: 2834 case Instruction::Or: 2835 case Instruction::Xor: // NOT is handled here. 2836 // Logical binary ops preserve the number of sign bits at the worst. 2837 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2838 if (Tmp != 1) { 2839 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2840 FirstAnswer = std::min(Tmp, Tmp2); 2841 // We computed what we know about the sign bits as our first 2842 // answer. Now proceed to the generic code that uses 2843 // computeKnownBits, and pick whichever answer is better. 2844 } 2845 break; 2846 2847 case Instruction::Select: { 2848 // If we have a clamp pattern, we know that the number of sign bits will 2849 // be the minimum of the clamp min/max range. 2850 const Value *X; 2851 const APInt *CLow, *CHigh; 2852 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2853 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2854 2855 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2856 if (Tmp == 1) break; 2857 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2858 return std::min(Tmp, Tmp2); 2859 } 2860 2861 case Instruction::Add: 2862 // Add can have at most one carry bit. Thus we know that the output 2863 // is, at worst, one more bit than the inputs. 2864 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2865 if (Tmp == 1) break; 2866 2867 // Special case decrementing a value (ADD X, -1): 2868 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2869 if (CRHS->isAllOnesValue()) { 2870 KnownBits Known(TyBits); 2871 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2872 2873 // If the input is known to be 0 or 1, the output is 0/-1, which is 2874 // all sign bits set. 2875 if ((Known.Zero | 1).isAllOnesValue()) 2876 return TyBits; 2877 2878 // If we are subtracting one from a positive number, there is no carry 2879 // out of the result. 2880 if (Known.isNonNegative()) 2881 return Tmp; 2882 } 2883 2884 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2885 if (Tmp2 == 1) break; 2886 return std::min(Tmp, Tmp2) - 1; 2887 2888 case Instruction::Sub: 2889 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2890 if (Tmp2 == 1) break; 2891 2892 // Handle NEG. 2893 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2894 if (CLHS->isNullValue()) { 2895 KnownBits Known(TyBits); 2896 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2897 // If the input is known to be 0 or 1, the output is 0/-1, which is 2898 // all sign bits set. 2899 if ((Known.Zero | 1).isAllOnesValue()) 2900 return TyBits; 2901 2902 // If the input is known to be positive (the sign bit is known clear), 2903 // the output of the NEG has the same number of sign bits as the 2904 // input. 2905 if (Known.isNonNegative()) 2906 return Tmp2; 2907 2908 // Otherwise, we treat this like a SUB. 2909 } 2910 2911 // Sub can have at most one carry bit. Thus we know that the output 2912 // is, at worst, one more bit than the inputs. 2913 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2914 if (Tmp == 1) break; 2915 return std::min(Tmp, Tmp2) - 1; 2916 2917 case Instruction::Mul: { 2918 // The output of the Mul can be at most twice the valid bits in the 2919 // inputs. 2920 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2921 if (SignBitsOp0 == 1) break; 2922 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2923 if (SignBitsOp1 == 1) break; 2924 unsigned OutValidBits = 2925 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2926 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2927 } 2928 2929 case Instruction::PHI: { 2930 const PHINode *PN = cast<PHINode>(U); 2931 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2932 // Don't analyze large in-degree PHIs. 2933 if (NumIncomingValues > 4) break; 2934 // Unreachable blocks may have zero-operand PHI nodes. 2935 if (NumIncomingValues == 0) break; 2936 2937 // Take the minimum of all incoming values. This can't infinitely loop 2938 // because of our depth threshold. 2939 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2940 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2941 if (Tmp == 1) return Tmp; 2942 Tmp = std::min( 2943 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2944 } 2945 return Tmp; 2946 } 2947 2948 case Instruction::Trunc: 2949 // FIXME: it's tricky to do anything useful for this, but it is an 2950 // important case for targets like X86. 2951 break; 2952 2953 case Instruction::ExtractElement: 2954 // Look through extract element. At the moment we keep this simple and 2955 // skip tracking the specific element. But at least we might find 2956 // information valid for all elements of the vector (for example if vector 2957 // is sign extended, shifted, etc). 2958 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2959 2960 case Instruction::ShuffleVector: { 2961 // Collect the minimum number of sign bits that are shared by every vector 2962 // element referenced by the shuffle. 2963 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2964 if (!Shuf) { 2965 // FIXME: Add support for shufflevector constant expressions. 2966 return 1; 2967 } 2968 APInt DemandedLHS, DemandedRHS; 2969 // For undef elements, we don't know anything about the common state of 2970 // the shuffle result. 2971 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2972 return 1; 2973 Tmp = std::numeric_limits<unsigned>::max(); 2974 if (!!DemandedLHS) { 2975 const Value *LHS = Shuf->getOperand(0); 2976 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2977 } 2978 // If we don't know anything, early out and try computeKnownBits 2979 // fall-back. 2980 if (Tmp == 1) 2981 break; 2982 if (!!DemandedRHS) { 2983 const Value *RHS = Shuf->getOperand(1); 2984 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2985 Tmp = std::min(Tmp, Tmp2); 2986 } 2987 // If we don't know anything, early out and try computeKnownBits 2988 // fall-back. 2989 if (Tmp == 1) 2990 break; 2991 assert(Tmp <= Ty->getScalarSizeInBits() && 2992 "Failed to determine minimum sign bits"); 2993 return Tmp; 2994 } 2995 case Instruction::Call: { 2996 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2997 switch (II->getIntrinsicID()) { 2998 default: break; 2999 case Intrinsic::abs: 3000 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3001 if (Tmp == 1) break; 3002 3003 // Absolute value reduces number of sign bits by at most 1. 3004 return Tmp - 1; 3005 } 3006 } 3007 } 3008 } 3009 } 3010 3011 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3012 // use this information. 3013 3014 // If we can examine all elements of a vector constant successfully, we're 3015 // done (we can't do any better than that). If not, keep trying. 3016 if (unsigned VecSignBits = 3017 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3018 return VecSignBits; 3019 3020 KnownBits Known(TyBits); 3021 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3022 3023 // If we know that the sign bit is either zero or one, determine the number of 3024 // identical bits in the top of the input value. 3025 return std::max(FirstAnswer, Known.countMinSignBits()); 3026 } 3027 3028 /// This function computes the integer multiple of Base that equals V. 3029 /// If successful, it returns true and returns the multiple in 3030 /// Multiple. If unsuccessful, it returns false. It looks 3031 /// through SExt instructions only if LookThroughSExt is true. 3032 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3033 bool LookThroughSExt, unsigned Depth) { 3034 assert(V && "No Value?"); 3035 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3036 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3037 3038 Type *T = V->getType(); 3039 3040 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3041 3042 if (Base == 0) 3043 return false; 3044 3045 if (Base == 1) { 3046 Multiple = V; 3047 return true; 3048 } 3049 3050 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3051 Constant *BaseVal = ConstantInt::get(T, Base); 3052 if (CO && CO == BaseVal) { 3053 // Multiple is 1. 3054 Multiple = ConstantInt::get(T, 1); 3055 return true; 3056 } 3057 3058 if (CI && CI->getZExtValue() % Base == 0) { 3059 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3060 return true; 3061 } 3062 3063 if (Depth == MaxAnalysisRecursionDepth) return false; 3064 3065 Operator *I = dyn_cast<Operator>(V); 3066 if (!I) return false; 3067 3068 switch (I->getOpcode()) { 3069 default: break; 3070 case Instruction::SExt: 3071 if (!LookThroughSExt) return false; 3072 // otherwise fall through to ZExt 3073 LLVM_FALLTHROUGH; 3074 case Instruction::ZExt: 3075 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3076 LookThroughSExt, Depth+1); 3077 case Instruction::Shl: 3078 case Instruction::Mul: { 3079 Value *Op0 = I->getOperand(0); 3080 Value *Op1 = I->getOperand(1); 3081 3082 if (I->getOpcode() == Instruction::Shl) { 3083 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3084 if (!Op1CI) return false; 3085 // Turn Op0 << Op1 into Op0 * 2^Op1 3086 APInt Op1Int = Op1CI->getValue(); 3087 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3088 APInt API(Op1Int.getBitWidth(), 0); 3089 API.setBit(BitToSet); 3090 Op1 = ConstantInt::get(V->getContext(), API); 3091 } 3092 3093 Value *Mul0 = nullptr; 3094 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3095 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3096 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3097 if (Op1C->getType()->getPrimitiveSizeInBits() < 3098 MulC->getType()->getPrimitiveSizeInBits()) 3099 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3100 if (Op1C->getType()->getPrimitiveSizeInBits() > 3101 MulC->getType()->getPrimitiveSizeInBits()) 3102 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3103 3104 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3105 Multiple = ConstantExpr::getMul(MulC, Op1C); 3106 return true; 3107 } 3108 3109 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3110 if (Mul0CI->getValue() == 1) { 3111 // V == Base * Op1, so return Op1 3112 Multiple = Op1; 3113 return true; 3114 } 3115 } 3116 3117 Value *Mul1 = nullptr; 3118 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3119 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3120 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3121 if (Op0C->getType()->getPrimitiveSizeInBits() < 3122 MulC->getType()->getPrimitiveSizeInBits()) 3123 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3124 if (Op0C->getType()->getPrimitiveSizeInBits() > 3125 MulC->getType()->getPrimitiveSizeInBits()) 3126 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3127 3128 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3129 Multiple = ConstantExpr::getMul(MulC, Op0C); 3130 return true; 3131 } 3132 3133 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3134 if (Mul1CI->getValue() == 1) { 3135 // V == Base * Op0, so return Op0 3136 Multiple = Op0; 3137 return true; 3138 } 3139 } 3140 } 3141 } 3142 3143 // We could not determine if V is a multiple of Base. 3144 return false; 3145 } 3146 3147 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3148 const TargetLibraryInfo *TLI) { 3149 const Function *F = CB.getCalledFunction(); 3150 if (!F) 3151 return Intrinsic::not_intrinsic; 3152 3153 if (F->isIntrinsic()) 3154 return F->getIntrinsicID(); 3155 3156 // We are going to infer semantics of a library function based on mapping it 3157 // to an LLVM intrinsic. Check that the library function is available from 3158 // this callbase and in this environment. 3159 LibFunc Func; 3160 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3161 !CB.onlyReadsMemory()) 3162 return Intrinsic::not_intrinsic; 3163 3164 switch (Func) { 3165 default: 3166 break; 3167 case LibFunc_sin: 3168 case LibFunc_sinf: 3169 case LibFunc_sinl: 3170 return Intrinsic::sin; 3171 case LibFunc_cos: 3172 case LibFunc_cosf: 3173 case LibFunc_cosl: 3174 return Intrinsic::cos; 3175 case LibFunc_exp: 3176 case LibFunc_expf: 3177 case LibFunc_expl: 3178 return Intrinsic::exp; 3179 case LibFunc_exp2: 3180 case LibFunc_exp2f: 3181 case LibFunc_exp2l: 3182 return Intrinsic::exp2; 3183 case LibFunc_log: 3184 case LibFunc_logf: 3185 case LibFunc_logl: 3186 return Intrinsic::log; 3187 case LibFunc_log10: 3188 case LibFunc_log10f: 3189 case LibFunc_log10l: 3190 return Intrinsic::log10; 3191 case LibFunc_log2: 3192 case LibFunc_log2f: 3193 case LibFunc_log2l: 3194 return Intrinsic::log2; 3195 case LibFunc_fabs: 3196 case LibFunc_fabsf: 3197 case LibFunc_fabsl: 3198 return Intrinsic::fabs; 3199 case LibFunc_fmin: 3200 case LibFunc_fminf: 3201 case LibFunc_fminl: 3202 return Intrinsic::minnum; 3203 case LibFunc_fmax: 3204 case LibFunc_fmaxf: 3205 case LibFunc_fmaxl: 3206 return Intrinsic::maxnum; 3207 case LibFunc_copysign: 3208 case LibFunc_copysignf: 3209 case LibFunc_copysignl: 3210 return Intrinsic::copysign; 3211 case LibFunc_floor: 3212 case LibFunc_floorf: 3213 case LibFunc_floorl: 3214 return Intrinsic::floor; 3215 case LibFunc_ceil: 3216 case LibFunc_ceilf: 3217 case LibFunc_ceill: 3218 return Intrinsic::ceil; 3219 case LibFunc_trunc: 3220 case LibFunc_truncf: 3221 case LibFunc_truncl: 3222 return Intrinsic::trunc; 3223 case LibFunc_rint: 3224 case LibFunc_rintf: 3225 case LibFunc_rintl: 3226 return Intrinsic::rint; 3227 case LibFunc_nearbyint: 3228 case LibFunc_nearbyintf: 3229 case LibFunc_nearbyintl: 3230 return Intrinsic::nearbyint; 3231 case LibFunc_round: 3232 case LibFunc_roundf: 3233 case LibFunc_roundl: 3234 return Intrinsic::round; 3235 case LibFunc_roundeven: 3236 case LibFunc_roundevenf: 3237 case LibFunc_roundevenl: 3238 return Intrinsic::roundeven; 3239 case LibFunc_pow: 3240 case LibFunc_powf: 3241 case LibFunc_powl: 3242 return Intrinsic::pow; 3243 case LibFunc_sqrt: 3244 case LibFunc_sqrtf: 3245 case LibFunc_sqrtl: 3246 return Intrinsic::sqrt; 3247 } 3248 3249 return Intrinsic::not_intrinsic; 3250 } 3251 3252 /// Return true if we can prove that the specified FP value is never equal to 3253 /// -0.0. 3254 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3255 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3256 /// the same as +0.0 in floating-point ops. 3257 /// 3258 /// NOTE: this function will need to be revisited when we support non-default 3259 /// rounding modes! 3260 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3261 unsigned Depth) { 3262 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3263 return !CFP->getValueAPF().isNegZero(); 3264 3265 if (Depth == MaxAnalysisRecursionDepth) 3266 return false; 3267 3268 auto *Op = dyn_cast<Operator>(V); 3269 if (!Op) 3270 return false; 3271 3272 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3273 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3274 return true; 3275 3276 // sitofp and uitofp turn into +0.0 for zero. 3277 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3278 return true; 3279 3280 if (auto *Call = dyn_cast<CallInst>(Op)) { 3281 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3282 switch (IID) { 3283 default: 3284 break; 3285 // sqrt(-0.0) = -0.0, no other negative results are possible. 3286 case Intrinsic::sqrt: 3287 case Intrinsic::canonicalize: 3288 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3289 // fabs(x) != -0.0 3290 case Intrinsic::fabs: 3291 return true; 3292 } 3293 } 3294 3295 return false; 3296 } 3297 3298 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3299 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3300 /// bit despite comparing equal. 3301 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3302 const TargetLibraryInfo *TLI, 3303 bool SignBitOnly, 3304 unsigned Depth) { 3305 // TODO: This function does not do the right thing when SignBitOnly is true 3306 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3307 // which flips the sign bits of NaNs. See 3308 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3309 3310 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3311 return !CFP->getValueAPF().isNegative() || 3312 (!SignBitOnly && CFP->getValueAPF().isZero()); 3313 } 3314 3315 // Handle vector of constants. 3316 if (auto *CV = dyn_cast<Constant>(V)) { 3317 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3318 unsigned NumElts = CVFVTy->getNumElements(); 3319 for (unsigned i = 0; i != NumElts; ++i) { 3320 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3321 if (!CFP) 3322 return false; 3323 if (CFP->getValueAPF().isNegative() && 3324 (SignBitOnly || !CFP->getValueAPF().isZero())) 3325 return false; 3326 } 3327 3328 // All non-negative ConstantFPs. 3329 return true; 3330 } 3331 } 3332 3333 if (Depth == MaxAnalysisRecursionDepth) 3334 return false; 3335 3336 const Operator *I = dyn_cast<Operator>(V); 3337 if (!I) 3338 return false; 3339 3340 switch (I->getOpcode()) { 3341 default: 3342 break; 3343 // Unsigned integers are always nonnegative. 3344 case Instruction::UIToFP: 3345 return true; 3346 case Instruction::FMul: 3347 case Instruction::FDiv: 3348 // X * X is always non-negative or a NaN. 3349 // X / X is always exactly 1.0 or a NaN. 3350 if (I->getOperand(0) == I->getOperand(1) && 3351 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3352 return true; 3353 3354 LLVM_FALLTHROUGH; 3355 case Instruction::FAdd: 3356 case Instruction::FRem: 3357 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3358 Depth + 1) && 3359 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3360 Depth + 1); 3361 case Instruction::Select: 3362 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3363 Depth + 1) && 3364 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3365 Depth + 1); 3366 case Instruction::FPExt: 3367 case Instruction::FPTrunc: 3368 // Widening/narrowing never change sign. 3369 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3370 Depth + 1); 3371 case Instruction::ExtractElement: 3372 // Look through extract element. At the moment we keep this simple and skip 3373 // tracking the specific element. But at least we might find information 3374 // valid for all elements of the vector. 3375 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3376 Depth + 1); 3377 case Instruction::Call: 3378 const auto *CI = cast<CallInst>(I); 3379 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3380 switch (IID) { 3381 default: 3382 break; 3383 case Intrinsic::maxnum: { 3384 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3385 auto isPositiveNum = [&](Value *V) { 3386 if (SignBitOnly) { 3387 // With SignBitOnly, this is tricky because the result of 3388 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3389 // a constant strictly greater than 0.0. 3390 const APFloat *C; 3391 return match(V, m_APFloat(C)) && 3392 *C > APFloat::getZero(C->getSemantics()); 3393 } 3394 3395 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3396 // maxnum can't be ordered-less-than-zero. 3397 return isKnownNeverNaN(V, TLI) && 3398 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3399 }; 3400 3401 // TODO: This could be improved. We could also check that neither operand 3402 // has its sign bit set (and at least 1 is not-NAN?). 3403 return isPositiveNum(V0) || isPositiveNum(V1); 3404 } 3405 3406 case Intrinsic::maximum: 3407 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3408 Depth + 1) || 3409 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3410 Depth + 1); 3411 case Intrinsic::minnum: 3412 case Intrinsic::minimum: 3413 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3414 Depth + 1) && 3415 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3416 Depth + 1); 3417 case Intrinsic::exp: 3418 case Intrinsic::exp2: 3419 case Intrinsic::fabs: 3420 return true; 3421 3422 case Intrinsic::sqrt: 3423 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3424 if (!SignBitOnly) 3425 return true; 3426 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3427 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3428 3429 case Intrinsic::powi: 3430 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3431 // powi(x,n) is non-negative if n is even. 3432 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3433 return true; 3434 } 3435 // TODO: This is not correct. Given that exp is an integer, here are the 3436 // ways that pow can return a negative value: 3437 // 3438 // pow(x, exp) --> negative if exp is odd and x is negative. 3439 // pow(-0, exp) --> -inf if exp is negative odd. 3440 // pow(-0, exp) --> -0 if exp is positive odd. 3441 // pow(-inf, exp) --> -0 if exp is negative odd. 3442 // pow(-inf, exp) --> -inf if exp is positive odd. 3443 // 3444 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3445 // but we must return false if x == -0. Unfortunately we do not currently 3446 // have a way of expressing this constraint. See details in 3447 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3448 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3449 Depth + 1); 3450 3451 case Intrinsic::fma: 3452 case Intrinsic::fmuladd: 3453 // x*x+y is non-negative if y is non-negative. 3454 return I->getOperand(0) == I->getOperand(1) && 3455 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3456 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3457 Depth + 1); 3458 } 3459 break; 3460 } 3461 return false; 3462 } 3463 3464 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3465 const TargetLibraryInfo *TLI) { 3466 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3467 } 3468 3469 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3470 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3471 } 3472 3473 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3474 unsigned Depth) { 3475 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3476 3477 // If we're told that infinities won't happen, assume they won't. 3478 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3479 if (FPMathOp->hasNoInfs()) 3480 return true; 3481 3482 // Handle scalar constants. 3483 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3484 return !CFP->isInfinity(); 3485 3486 if (Depth == MaxAnalysisRecursionDepth) 3487 return false; 3488 3489 if (auto *Inst = dyn_cast<Instruction>(V)) { 3490 switch (Inst->getOpcode()) { 3491 case Instruction::Select: { 3492 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3493 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3494 } 3495 case Instruction::UIToFP: 3496 // If the input type fits into the floating type the result is finite. 3497 return ilogb(APFloat::getLargest( 3498 Inst->getType()->getScalarType()->getFltSemantics())) >= 3499 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3500 default: 3501 break; 3502 } 3503 } 3504 3505 // try to handle fixed width vector constants 3506 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3507 if (VFVTy && isa<Constant>(V)) { 3508 // For vectors, verify that each element is not infinity. 3509 unsigned NumElts = VFVTy->getNumElements(); 3510 for (unsigned i = 0; i != NumElts; ++i) { 3511 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3512 if (!Elt) 3513 return false; 3514 if (isa<UndefValue>(Elt)) 3515 continue; 3516 auto *CElt = dyn_cast<ConstantFP>(Elt); 3517 if (!CElt || CElt->isInfinity()) 3518 return false; 3519 } 3520 // All elements were confirmed non-infinity or undefined. 3521 return true; 3522 } 3523 3524 // was not able to prove that V never contains infinity 3525 return false; 3526 } 3527 3528 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3529 unsigned Depth) { 3530 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3531 3532 // If we're told that NaNs won't happen, assume they won't. 3533 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3534 if (FPMathOp->hasNoNaNs()) 3535 return true; 3536 3537 // Handle scalar constants. 3538 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3539 return !CFP->isNaN(); 3540 3541 if (Depth == MaxAnalysisRecursionDepth) 3542 return false; 3543 3544 if (auto *Inst = dyn_cast<Instruction>(V)) { 3545 switch (Inst->getOpcode()) { 3546 case Instruction::FAdd: 3547 case Instruction::FSub: 3548 // Adding positive and negative infinity produces NaN. 3549 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3550 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3551 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3552 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3553 3554 case Instruction::FMul: 3555 // Zero multiplied with infinity produces NaN. 3556 // FIXME: If neither side can be zero fmul never produces NaN. 3557 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3558 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3559 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3560 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3561 3562 case Instruction::FDiv: 3563 case Instruction::FRem: 3564 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3565 return false; 3566 3567 case Instruction::Select: { 3568 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3569 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3570 } 3571 case Instruction::SIToFP: 3572 case Instruction::UIToFP: 3573 return true; 3574 case Instruction::FPTrunc: 3575 case Instruction::FPExt: 3576 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3577 default: 3578 break; 3579 } 3580 } 3581 3582 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3583 switch (II->getIntrinsicID()) { 3584 case Intrinsic::canonicalize: 3585 case Intrinsic::fabs: 3586 case Intrinsic::copysign: 3587 case Intrinsic::exp: 3588 case Intrinsic::exp2: 3589 case Intrinsic::floor: 3590 case Intrinsic::ceil: 3591 case Intrinsic::trunc: 3592 case Intrinsic::rint: 3593 case Intrinsic::nearbyint: 3594 case Intrinsic::round: 3595 case Intrinsic::roundeven: 3596 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3597 case Intrinsic::sqrt: 3598 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3599 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3600 case Intrinsic::minnum: 3601 case Intrinsic::maxnum: 3602 // If either operand is not NaN, the result is not NaN. 3603 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3604 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3605 default: 3606 return false; 3607 } 3608 } 3609 3610 // Try to handle fixed width vector constants 3611 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3612 if (VFVTy && isa<Constant>(V)) { 3613 // For vectors, verify that each element is not NaN. 3614 unsigned NumElts = VFVTy->getNumElements(); 3615 for (unsigned i = 0; i != NumElts; ++i) { 3616 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3617 if (!Elt) 3618 return false; 3619 if (isa<UndefValue>(Elt)) 3620 continue; 3621 auto *CElt = dyn_cast<ConstantFP>(Elt); 3622 if (!CElt || CElt->isNaN()) 3623 return false; 3624 } 3625 // All elements were confirmed not-NaN or undefined. 3626 return true; 3627 } 3628 3629 // Was not able to prove that V never contains NaN 3630 return false; 3631 } 3632 3633 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3634 3635 // All byte-wide stores are splatable, even of arbitrary variables. 3636 if (V->getType()->isIntegerTy(8)) 3637 return V; 3638 3639 LLVMContext &Ctx = V->getContext(); 3640 3641 // Undef don't care. 3642 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3643 if (isa<UndefValue>(V)) 3644 return UndefInt8; 3645 3646 // Return Undef for zero-sized type. 3647 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3648 return UndefInt8; 3649 3650 Constant *C = dyn_cast<Constant>(V); 3651 if (!C) { 3652 // Conceptually, we could handle things like: 3653 // %a = zext i8 %X to i16 3654 // %b = shl i16 %a, 8 3655 // %c = or i16 %a, %b 3656 // but until there is an example that actually needs this, it doesn't seem 3657 // worth worrying about. 3658 return nullptr; 3659 } 3660 3661 // Handle 'null' ConstantArrayZero etc. 3662 if (C->isNullValue()) 3663 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3664 3665 // Constant floating-point values can be handled as integer values if the 3666 // corresponding integer value is "byteable". An important case is 0.0. 3667 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3668 Type *Ty = nullptr; 3669 if (CFP->getType()->isHalfTy()) 3670 Ty = Type::getInt16Ty(Ctx); 3671 else if (CFP->getType()->isFloatTy()) 3672 Ty = Type::getInt32Ty(Ctx); 3673 else if (CFP->getType()->isDoubleTy()) 3674 Ty = Type::getInt64Ty(Ctx); 3675 // Don't handle long double formats, which have strange constraints. 3676 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3677 : nullptr; 3678 } 3679 3680 // We can handle constant integers that are multiple of 8 bits. 3681 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3682 if (CI->getBitWidth() % 8 == 0) { 3683 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3684 if (!CI->getValue().isSplat(8)) 3685 return nullptr; 3686 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3687 } 3688 } 3689 3690 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3691 if (CE->getOpcode() == Instruction::IntToPtr) { 3692 auto PS = DL.getPointerSizeInBits( 3693 cast<PointerType>(CE->getType())->getAddressSpace()); 3694 return isBytewiseValue( 3695 ConstantExpr::getIntegerCast(CE->getOperand(0), 3696 Type::getIntNTy(Ctx, PS), false), 3697 DL); 3698 } 3699 } 3700 3701 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3702 if (LHS == RHS) 3703 return LHS; 3704 if (!LHS || !RHS) 3705 return nullptr; 3706 if (LHS == UndefInt8) 3707 return RHS; 3708 if (RHS == UndefInt8) 3709 return LHS; 3710 return nullptr; 3711 }; 3712 3713 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3714 Value *Val = UndefInt8; 3715 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3716 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3717 return nullptr; 3718 return Val; 3719 } 3720 3721 if (isa<ConstantAggregate>(C)) { 3722 Value *Val = UndefInt8; 3723 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3724 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3725 return nullptr; 3726 return Val; 3727 } 3728 3729 // Don't try to handle the handful of other constants. 3730 return nullptr; 3731 } 3732 3733 // This is the recursive version of BuildSubAggregate. It takes a few different 3734 // arguments. Idxs is the index within the nested struct From that we are 3735 // looking at now (which is of type IndexedType). IdxSkip is the number of 3736 // indices from Idxs that should be left out when inserting into the resulting 3737 // struct. To is the result struct built so far, new insertvalue instructions 3738 // build on that. 3739 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3740 SmallVectorImpl<unsigned> &Idxs, 3741 unsigned IdxSkip, 3742 Instruction *InsertBefore) { 3743 StructType *STy = dyn_cast<StructType>(IndexedType); 3744 if (STy) { 3745 // Save the original To argument so we can modify it 3746 Value *OrigTo = To; 3747 // General case, the type indexed by Idxs is a struct 3748 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3749 // Process each struct element recursively 3750 Idxs.push_back(i); 3751 Value *PrevTo = To; 3752 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3753 InsertBefore); 3754 Idxs.pop_back(); 3755 if (!To) { 3756 // Couldn't find any inserted value for this index? Cleanup 3757 while (PrevTo != OrigTo) { 3758 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3759 PrevTo = Del->getAggregateOperand(); 3760 Del->eraseFromParent(); 3761 } 3762 // Stop processing elements 3763 break; 3764 } 3765 } 3766 // If we successfully found a value for each of our subaggregates 3767 if (To) 3768 return To; 3769 } 3770 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3771 // the struct's elements had a value that was inserted directly. In the latter 3772 // case, perhaps we can't determine each of the subelements individually, but 3773 // we might be able to find the complete struct somewhere. 3774 3775 // Find the value that is at that particular spot 3776 Value *V = FindInsertedValue(From, Idxs); 3777 3778 if (!V) 3779 return nullptr; 3780 3781 // Insert the value in the new (sub) aggregate 3782 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3783 "tmp", InsertBefore); 3784 } 3785 3786 // This helper takes a nested struct and extracts a part of it (which is again a 3787 // struct) into a new value. For example, given the struct: 3788 // { a, { b, { c, d }, e } } 3789 // and the indices "1, 1" this returns 3790 // { c, d }. 3791 // 3792 // It does this by inserting an insertvalue for each element in the resulting 3793 // struct, as opposed to just inserting a single struct. This will only work if 3794 // each of the elements of the substruct are known (ie, inserted into From by an 3795 // insertvalue instruction somewhere). 3796 // 3797 // All inserted insertvalue instructions are inserted before InsertBefore 3798 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3799 Instruction *InsertBefore) { 3800 assert(InsertBefore && "Must have someplace to insert!"); 3801 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3802 idx_range); 3803 Value *To = UndefValue::get(IndexedType); 3804 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3805 unsigned IdxSkip = Idxs.size(); 3806 3807 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3808 } 3809 3810 /// Given an aggregate and a sequence of indices, see if the scalar value 3811 /// indexed is already around as a register, for example if it was inserted 3812 /// directly into the aggregate. 3813 /// 3814 /// If InsertBefore is not null, this function will duplicate (modified) 3815 /// insertvalues when a part of a nested struct is extracted. 3816 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3817 Instruction *InsertBefore) { 3818 // Nothing to index? Just return V then (this is useful at the end of our 3819 // recursion). 3820 if (idx_range.empty()) 3821 return V; 3822 // We have indices, so V should have an indexable type. 3823 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3824 "Not looking at a struct or array?"); 3825 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3826 "Invalid indices for type?"); 3827 3828 if (Constant *C = dyn_cast<Constant>(V)) { 3829 C = C->getAggregateElement(idx_range[0]); 3830 if (!C) return nullptr; 3831 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3832 } 3833 3834 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3835 // Loop the indices for the insertvalue instruction in parallel with the 3836 // requested indices 3837 const unsigned *req_idx = idx_range.begin(); 3838 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3839 i != e; ++i, ++req_idx) { 3840 if (req_idx == idx_range.end()) { 3841 // We can't handle this without inserting insertvalues 3842 if (!InsertBefore) 3843 return nullptr; 3844 3845 // The requested index identifies a part of a nested aggregate. Handle 3846 // this specially. For example, 3847 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3848 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3849 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3850 // This can be changed into 3851 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3852 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3853 // which allows the unused 0,0 element from the nested struct to be 3854 // removed. 3855 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3856 InsertBefore); 3857 } 3858 3859 // This insert value inserts something else than what we are looking for. 3860 // See if the (aggregate) value inserted into has the value we are 3861 // looking for, then. 3862 if (*req_idx != *i) 3863 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3864 InsertBefore); 3865 } 3866 // If we end up here, the indices of the insertvalue match with those 3867 // requested (though possibly only partially). Now we recursively look at 3868 // the inserted value, passing any remaining indices. 3869 return FindInsertedValue(I->getInsertedValueOperand(), 3870 makeArrayRef(req_idx, idx_range.end()), 3871 InsertBefore); 3872 } 3873 3874 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3875 // If we're extracting a value from an aggregate that was extracted from 3876 // something else, we can extract from that something else directly instead. 3877 // However, we will need to chain I's indices with the requested indices. 3878 3879 // Calculate the number of indices required 3880 unsigned size = I->getNumIndices() + idx_range.size(); 3881 // Allocate some space to put the new indices in 3882 SmallVector<unsigned, 5> Idxs; 3883 Idxs.reserve(size); 3884 // Add indices from the extract value instruction 3885 Idxs.append(I->idx_begin(), I->idx_end()); 3886 3887 // Add requested indices 3888 Idxs.append(idx_range.begin(), idx_range.end()); 3889 3890 assert(Idxs.size() == size 3891 && "Number of indices added not correct?"); 3892 3893 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3894 } 3895 // Otherwise, we don't know (such as, extracting from a function return value 3896 // or load instruction) 3897 return nullptr; 3898 } 3899 3900 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3901 unsigned CharSize) { 3902 // Make sure the GEP has exactly three arguments. 3903 if (GEP->getNumOperands() != 3) 3904 return false; 3905 3906 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3907 // CharSize. 3908 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3909 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3910 return false; 3911 3912 // Check to make sure that the first operand of the GEP is an integer and 3913 // has value 0 so that we are sure we're indexing into the initializer. 3914 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3915 if (!FirstIdx || !FirstIdx->isZero()) 3916 return false; 3917 3918 return true; 3919 } 3920 3921 bool llvm::getConstantDataArrayInfo(const Value *V, 3922 ConstantDataArraySlice &Slice, 3923 unsigned ElementSize, uint64_t Offset) { 3924 assert(V); 3925 3926 // Look through bitcast instructions and geps. 3927 V = V->stripPointerCasts(); 3928 3929 // If the value is a GEP instruction or constant expression, treat it as an 3930 // offset. 3931 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3932 // The GEP operator should be based on a pointer to string constant, and is 3933 // indexing into the string constant. 3934 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3935 return false; 3936 3937 // If the second index isn't a ConstantInt, then this is a variable index 3938 // into the array. If this occurs, we can't say anything meaningful about 3939 // the string. 3940 uint64_t StartIdx = 0; 3941 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3942 StartIdx = CI->getZExtValue(); 3943 else 3944 return false; 3945 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3946 StartIdx + Offset); 3947 } 3948 3949 // The GEP instruction, constant or instruction, must reference a global 3950 // variable that is a constant and is initialized. The referenced constant 3951 // initializer is the array that we'll use for optimization. 3952 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3953 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3954 return false; 3955 3956 const ConstantDataArray *Array; 3957 ArrayType *ArrayTy; 3958 if (GV->getInitializer()->isNullValue()) { 3959 Type *GVTy = GV->getValueType(); 3960 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3961 // A zeroinitializer for the array; there is no ConstantDataArray. 3962 Array = nullptr; 3963 } else { 3964 const DataLayout &DL = GV->getParent()->getDataLayout(); 3965 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3966 uint64_t Length = SizeInBytes / (ElementSize / 8); 3967 if (Length <= Offset) 3968 return false; 3969 3970 Slice.Array = nullptr; 3971 Slice.Offset = 0; 3972 Slice.Length = Length - Offset; 3973 return true; 3974 } 3975 } else { 3976 // This must be a ConstantDataArray. 3977 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3978 if (!Array) 3979 return false; 3980 ArrayTy = Array->getType(); 3981 } 3982 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3983 return false; 3984 3985 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3986 if (Offset > NumElts) 3987 return false; 3988 3989 Slice.Array = Array; 3990 Slice.Offset = Offset; 3991 Slice.Length = NumElts - Offset; 3992 return true; 3993 } 3994 3995 /// This function computes the length of a null-terminated C string pointed to 3996 /// by V. If successful, it returns true and returns the string in Str. 3997 /// If unsuccessful, it returns false. 3998 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3999 uint64_t Offset, bool TrimAtNul) { 4000 ConstantDataArraySlice Slice; 4001 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4002 return false; 4003 4004 if (Slice.Array == nullptr) { 4005 if (TrimAtNul) { 4006 Str = StringRef(); 4007 return true; 4008 } 4009 if (Slice.Length == 1) { 4010 Str = StringRef("", 1); 4011 return true; 4012 } 4013 // We cannot instantiate a StringRef as we do not have an appropriate string 4014 // of 0s at hand. 4015 return false; 4016 } 4017 4018 // Start out with the entire array in the StringRef. 4019 Str = Slice.Array->getAsString(); 4020 // Skip over 'offset' bytes. 4021 Str = Str.substr(Slice.Offset); 4022 4023 if (TrimAtNul) { 4024 // Trim off the \0 and anything after it. If the array is not nul 4025 // terminated, we just return the whole end of string. The client may know 4026 // some other way that the string is length-bound. 4027 Str = Str.substr(0, Str.find('\0')); 4028 } 4029 return true; 4030 } 4031 4032 // These next two are very similar to the above, but also look through PHI 4033 // nodes. 4034 // TODO: See if we can integrate these two together. 4035 4036 /// If we can compute the length of the string pointed to by 4037 /// the specified pointer, return 'len+1'. If we can't, return 0. 4038 static uint64_t GetStringLengthH(const Value *V, 4039 SmallPtrSetImpl<const PHINode*> &PHIs, 4040 unsigned CharSize) { 4041 // Look through noop bitcast instructions. 4042 V = V->stripPointerCasts(); 4043 4044 // If this is a PHI node, there are two cases: either we have already seen it 4045 // or we haven't. 4046 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4047 if (!PHIs.insert(PN).second) 4048 return ~0ULL; // already in the set. 4049 4050 // If it was new, see if all the input strings are the same length. 4051 uint64_t LenSoFar = ~0ULL; 4052 for (Value *IncValue : PN->incoming_values()) { 4053 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4054 if (Len == 0) return 0; // Unknown length -> unknown. 4055 4056 if (Len == ~0ULL) continue; 4057 4058 if (Len != LenSoFar && LenSoFar != ~0ULL) 4059 return 0; // Disagree -> unknown. 4060 LenSoFar = Len; 4061 } 4062 4063 // Success, all agree. 4064 return LenSoFar; 4065 } 4066 4067 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4068 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4069 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4070 if (Len1 == 0) return 0; 4071 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4072 if (Len2 == 0) return 0; 4073 if (Len1 == ~0ULL) return Len2; 4074 if (Len2 == ~0ULL) return Len1; 4075 if (Len1 != Len2) return 0; 4076 return Len1; 4077 } 4078 4079 // Otherwise, see if we can read the string. 4080 ConstantDataArraySlice Slice; 4081 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4082 return 0; 4083 4084 if (Slice.Array == nullptr) 4085 return 1; 4086 4087 // Search for nul characters 4088 unsigned NullIndex = 0; 4089 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4090 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4091 break; 4092 } 4093 4094 return NullIndex + 1; 4095 } 4096 4097 /// If we can compute the length of the string pointed to by 4098 /// the specified pointer, return 'len+1'. If we can't, return 0. 4099 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4100 if (!V->getType()->isPointerTy()) 4101 return 0; 4102 4103 SmallPtrSet<const PHINode*, 32> PHIs; 4104 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4105 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4106 // an empty string as a length. 4107 return Len == ~0ULL ? 1 : Len; 4108 } 4109 4110 const Value * 4111 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4112 bool MustPreserveNullness) { 4113 assert(Call && 4114 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4115 if (const Value *RV = Call->getReturnedArgOperand()) 4116 return RV; 4117 // This can be used only as a aliasing property. 4118 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4119 Call, MustPreserveNullness)) 4120 return Call->getArgOperand(0); 4121 return nullptr; 4122 } 4123 4124 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4125 const CallBase *Call, bool MustPreserveNullness) { 4126 switch (Call->getIntrinsicID()) { 4127 case Intrinsic::launder_invariant_group: 4128 case Intrinsic::strip_invariant_group: 4129 case Intrinsic::aarch64_irg: 4130 case Intrinsic::aarch64_tagp: 4131 return true; 4132 case Intrinsic::ptrmask: 4133 return !MustPreserveNullness; 4134 default: 4135 return false; 4136 } 4137 } 4138 4139 /// \p PN defines a loop-variant pointer to an object. Check if the 4140 /// previous iteration of the loop was referring to the same object as \p PN. 4141 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4142 const LoopInfo *LI) { 4143 // Find the loop-defined value. 4144 Loop *L = LI->getLoopFor(PN->getParent()); 4145 if (PN->getNumIncomingValues() != 2) 4146 return true; 4147 4148 // Find the value from previous iteration. 4149 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4150 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4151 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4152 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4153 return true; 4154 4155 // If a new pointer is loaded in the loop, the pointer references a different 4156 // object in every iteration. E.g.: 4157 // for (i) 4158 // int *p = a[i]; 4159 // ... 4160 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4161 if (!L->isLoopInvariant(Load->getPointerOperand())) 4162 return false; 4163 return true; 4164 } 4165 4166 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4167 if (!V->getType()->isPointerTy()) 4168 return V; 4169 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4170 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4171 V = GEP->getPointerOperand(); 4172 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4173 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4174 V = cast<Operator>(V)->getOperand(0); 4175 if (!V->getType()->isPointerTy()) 4176 return V; 4177 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4178 if (GA->isInterposable()) 4179 return V; 4180 V = GA->getAliasee(); 4181 } else { 4182 if (auto *PHI = dyn_cast<PHINode>(V)) { 4183 // Look through single-arg phi nodes created by LCSSA. 4184 if (PHI->getNumIncomingValues() == 1) { 4185 V = PHI->getIncomingValue(0); 4186 continue; 4187 } 4188 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4189 // CaptureTracking can know about special capturing properties of some 4190 // intrinsics like launder.invariant.group, that can't be expressed with 4191 // the attributes, but have properties like returning aliasing pointer. 4192 // Because some analysis may assume that nocaptured pointer is not 4193 // returned from some special intrinsic (because function would have to 4194 // be marked with returns attribute), it is crucial to use this function 4195 // because it should be in sync with CaptureTracking. Not using it may 4196 // cause weird miscompilations where 2 aliasing pointers are assumed to 4197 // noalias. 4198 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4199 V = RP; 4200 continue; 4201 } 4202 } 4203 4204 return V; 4205 } 4206 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4207 } 4208 return V; 4209 } 4210 4211 void llvm::getUnderlyingObjects(const Value *V, 4212 SmallVectorImpl<const Value *> &Objects, 4213 LoopInfo *LI, unsigned MaxLookup) { 4214 SmallPtrSet<const Value *, 4> Visited; 4215 SmallVector<const Value *, 4> Worklist; 4216 Worklist.push_back(V); 4217 do { 4218 const Value *P = Worklist.pop_back_val(); 4219 P = getUnderlyingObject(P, MaxLookup); 4220 4221 if (!Visited.insert(P).second) 4222 continue; 4223 4224 if (auto *SI = dyn_cast<SelectInst>(P)) { 4225 Worklist.push_back(SI->getTrueValue()); 4226 Worklist.push_back(SI->getFalseValue()); 4227 continue; 4228 } 4229 4230 if (auto *PN = dyn_cast<PHINode>(P)) { 4231 // If this PHI changes the underlying object in every iteration of the 4232 // loop, don't look through it. Consider: 4233 // int **A; 4234 // for (i) { 4235 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4236 // Curr = A[i]; 4237 // *Prev, *Curr; 4238 // 4239 // Prev is tracking Curr one iteration behind so they refer to different 4240 // underlying objects. 4241 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4242 isSameUnderlyingObjectInLoop(PN, LI)) 4243 for (Value *IncValue : PN->incoming_values()) 4244 Worklist.push_back(IncValue); 4245 continue; 4246 } 4247 4248 Objects.push_back(P); 4249 } while (!Worklist.empty()); 4250 } 4251 4252 /// This is the function that does the work of looking through basic 4253 /// ptrtoint+arithmetic+inttoptr sequences. 4254 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4255 do { 4256 if (const Operator *U = dyn_cast<Operator>(V)) { 4257 // If we find a ptrtoint, we can transfer control back to the 4258 // regular getUnderlyingObjectFromInt. 4259 if (U->getOpcode() == Instruction::PtrToInt) 4260 return U->getOperand(0); 4261 // If we find an add of a constant, a multiplied value, or a phi, it's 4262 // likely that the other operand will lead us to the base 4263 // object. We don't have to worry about the case where the 4264 // object address is somehow being computed by the multiply, 4265 // because our callers only care when the result is an 4266 // identifiable object. 4267 if (U->getOpcode() != Instruction::Add || 4268 (!isa<ConstantInt>(U->getOperand(1)) && 4269 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4270 !isa<PHINode>(U->getOperand(1)))) 4271 return V; 4272 V = U->getOperand(0); 4273 } else { 4274 return V; 4275 } 4276 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4277 } while (true); 4278 } 4279 4280 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4281 /// ptrtoint+arithmetic+inttoptr sequences. 4282 /// It returns false if unidentified object is found in getUnderlyingObjects. 4283 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4284 SmallVectorImpl<Value *> &Objects) { 4285 SmallPtrSet<const Value *, 16> Visited; 4286 SmallVector<const Value *, 4> Working(1, V); 4287 do { 4288 V = Working.pop_back_val(); 4289 4290 SmallVector<const Value *, 4> Objs; 4291 getUnderlyingObjects(V, Objs); 4292 4293 for (const Value *V : Objs) { 4294 if (!Visited.insert(V).second) 4295 continue; 4296 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4297 const Value *O = 4298 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4299 if (O->getType()->isPointerTy()) { 4300 Working.push_back(O); 4301 continue; 4302 } 4303 } 4304 // If getUnderlyingObjects fails to find an identifiable object, 4305 // getUnderlyingObjectsForCodeGen also fails for safety. 4306 if (!isIdentifiedObject(V)) { 4307 Objects.clear(); 4308 return false; 4309 } 4310 Objects.push_back(const_cast<Value *>(V)); 4311 } 4312 } while (!Working.empty()); 4313 return true; 4314 } 4315 4316 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4317 AllocaInst *Result = nullptr; 4318 SmallPtrSet<Value *, 4> Visited; 4319 SmallVector<Value *, 4> Worklist; 4320 4321 auto AddWork = [&](Value *V) { 4322 if (Visited.insert(V).second) 4323 Worklist.push_back(V); 4324 }; 4325 4326 AddWork(V); 4327 do { 4328 V = Worklist.pop_back_val(); 4329 assert(Visited.count(V)); 4330 4331 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4332 if (Result && Result != AI) 4333 return nullptr; 4334 Result = AI; 4335 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4336 AddWork(CI->getOperand(0)); 4337 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4338 for (Value *IncValue : PN->incoming_values()) 4339 AddWork(IncValue); 4340 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4341 AddWork(SI->getTrueValue()); 4342 AddWork(SI->getFalseValue()); 4343 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4344 if (OffsetZero && !GEP->hasAllZeroIndices()) 4345 return nullptr; 4346 AddWork(GEP->getPointerOperand()); 4347 } else { 4348 return nullptr; 4349 } 4350 } while (!Worklist.empty()); 4351 4352 return Result; 4353 } 4354 4355 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4356 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4357 for (const User *U : V->users()) { 4358 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4359 if (!II) 4360 return false; 4361 4362 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4363 continue; 4364 4365 if (AllowDroppable && II->isDroppable()) 4366 continue; 4367 4368 return false; 4369 } 4370 return true; 4371 } 4372 4373 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4374 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4375 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4376 } 4377 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4378 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4379 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4380 } 4381 4382 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4383 if (!LI.isUnordered()) 4384 return true; 4385 const Function &F = *LI.getFunction(); 4386 // Speculative load may create a race that did not exist in the source. 4387 return F.hasFnAttribute(Attribute::SanitizeThread) || 4388 // Speculative load may load data from dirty regions. 4389 F.hasFnAttribute(Attribute::SanitizeAddress) || 4390 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4391 } 4392 4393 4394 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4395 const Instruction *CtxI, 4396 const DominatorTree *DT) { 4397 const Operator *Inst = dyn_cast<Operator>(V); 4398 if (!Inst) 4399 return false; 4400 4401 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4402 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4403 if (C->canTrap()) 4404 return false; 4405 4406 switch (Inst->getOpcode()) { 4407 default: 4408 return true; 4409 case Instruction::UDiv: 4410 case Instruction::URem: { 4411 // x / y is undefined if y == 0. 4412 const APInt *V; 4413 if (match(Inst->getOperand(1), m_APInt(V))) 4414 return *V != 0; 4415 return false; 4416 } 4417 case Instruction::SDiv: 4418 case Instruction::SRem: { 4419 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4420 const APInt *Numerator, *Denominator; 4421 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4422 return false; 4423 // We cannot hoist this division if the denominator is 0. 4424 if (*Denominator == 0) 4425 return false; 4426 // It's safe to hoist if the denominator is not 0 or -1. 4427 if (*Denominator != -1) 4428 return true; 4429 // At this point we know that the denominator is -1. It is safe to hoist as 4430 // long we know that the numerator is not INT_MIN. 4431 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4432 return !Numerator->isMinSignedValue(); 4433 // The numerator *might* be MinSignedValue. 4434 return false; 4435 } 4436 case Instruction::Load: { 4437 const LoadInst *LI = cast<LoadInst>(Inst); 4438 if (mustSuppressSpeculation(*LI)) 4439 return false; 4440 const DataLayout &DL = LI->getModule()->getDataLayout(); 4441 return isDereferenceableAndAlignedPointer( 4442 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4443 DL, CtxI, DT); 4444 } 4445 case Instruction::Call: { 4446 auto *CI = cast<const CallInst>(Inst); 4447 const Function *Callee = CI->getCalledFunction(); 4448 4449 // The called function could have undefined behavior or side-effects, even 4450 // if marked readnone nounwind. 4451 return Callee && Callee->isSpeculatable(); 4452 } 4453 case Instruction::VAArg: 4454 case Instruction::Alloca: 4455 case Instruction::Invoke: 4456 case Instruction::CallBr: 4457 case Instruction::PHI: 4458 case Instruction::Store: 4459 case Instruction::Ret: 4460 case Instruction::Br: 4461 case Instruction::IndirectBr: 4462 case Instruction::Switch: 4463 case Instruction::Unreachable: 4464 case Instruction::Fence: 4465 case Instruction::AtomicRMW: 4466 case Instruction::AtomicCmpXchg: 4467 case Instruction::LandingPad: 4468 case Instruction::Resume: 4469 case Instruction::CatchSwitch: 4470 case Instruction::CatchPad: 4471 case Instruction::CatchRet: 4472 case Instruction::CleanupPad: 4473 case Instruction::CleanupRet: 4474 return false; // Misc instructions which have effects 4475 } 4476 } 4477 4478 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4479 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4480 } 4481 4482 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4483 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4484 switch (OR) { 4485 case ConstantRange::OverflowResult::MayOverflow: 4486 return OverflowResult::MayOverflow; 4487 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4488 return OverflowResult::AlwaysOverflowsLow; 4489 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4490 return OverflowResult::AlwaysOverflowsHigh; 4491 case ConstantRange::OverflowResult::NeverOverflows: 4492 return OverflowResult::NeverOverflows; 4493 } 4494 llvm_unreachable("Unknown OverflowResult"); 4495 } 4496 4497 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4498 static ConstantRange computeConstantRangeIncludingKnownBits( 4499 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4500 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4501 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4502 KnownBits Known = computeKnownBits( 4503 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4504 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4505 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4506 ConstantRange::PreferredRangeType RangeType = 4507 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4508 return CR1.intersectWith(CR2, RangeType); 4509 } 4510 4511 OverflowResult llvm::computeOverflowForUnsignedMul( 4512 const Value *LHS, const Value *RHS, const DataLayout &DL, 4513 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4514 bool UseInstrInfo) { 4515 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4516 nullptr, UseInstrInfo); 4517 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4518 nullptr, UseInstrInfo); 4519 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4520 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4521 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4522 } 4523 4524 OverflowResult 4525 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4526 const DataLayout &DL, AssumptionCache *AC, 4527 const Instruction *CxtI, 4528 const DominatorTree *DT, bool UseInstrInfo) { 4529 // Multiplying n * m significant bits yields a result of n + m significant 4530 // bits. If the total number of significant bits does not exceed the 4531 // result bit width (minus 1), there is no overflow. 4532 // This means if we have enough leading sign bits in the operands 4533 // we can guarantee that the result does not overflow. 4534 // Ref: "Hacker's Delight" by Henry Warren 4535 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4536 4537 // Note that underestimating the number of sign bits gives a more 4538 // conservative answer. 4539 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4540 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4541 4542 // First handle the easy case: if we have enough sign bits there's 4543 // definitely no overflow. 4544 if (SignBits > BitWidth + 1) 4545 return OverflowResult::NeverOverflows; 4546 4547 // There are two ambiguous cases where there can be no overflow: 4548 // SignBits == BitWidth + 1 and 4549 // SignBits == BitWidth 4550 // The second case is difficult to check, therefore we only handle the 4551 // first case. 4552 if (SignBits == BitWidth + 1) { 4553 // It overflows only when both arguments are negative and the true 4554 // product is exactly the minimum negative number. 4555 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4556 // For simplicity we just check if at least one side is not negative. 4557 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4558 nullptr, UseInstrInfo); 4559 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4560 nullptr, UseInstrInfo); 4561 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4562 return OverflowResult::NeverOverflows; 4563 } 4564 return OverflowResult::MayOverflow; 4565 } 4566 4567 OverflowResult llvm::computeOverflowForUnsignedAdd( 4568 const Value *LHS, const Value *RHS, const DataLayout &DL, 4569 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4570 bool UseInstrInfo) { 4571 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4572 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4573 nullptr, UseInstrInfo); 4574 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4575 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4576 nullptr, UseInstrInfo); 4577 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4578 } 4579 4580 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4581 const Value *RHS, 4582 const AddOperator *Add, 4583 const DataLayout &DL, 4584 AssumptionCache *AC, 4585 const Instruction *CxtI, 4586 const DominatorTree *DT) { 4587 if (Add && Add->hasNoSignedWrap()) { 4588 return OverflowResult::NeverOverflows; 4589 } 4590 4591 // If LHS and RHS each have at least two sign bits, the addition will look 4592 // like 4593 // 4594 // XX..... + 4595 // YY..... 4596 // 4597 // If the carry into the most significant position is 0, X and Y can't both 4598 // be 1 and therefore the carry out of the addition is also 0. 4599 // 4600 // If the carry into the most significant position is 1, X and Y can't both 4601 // be 0 and therefore the carry out of the addition is also 1. 4602 // 4603 // Since the carry into the most significant position is always equal to 4604 // the carry out of the addition, there is no signed overflow. 4605 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4606 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4607 return OverflowResult::NeverOverflows; 4608 4609 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4610 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4611 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4612 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4613 OverflowResult OR = 4614 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4615 if (OR != OverflowResult::MayOverflow) 4616 return OR; 4617 4618 // The remaining code needs Add to be available. Early returns if not so. 4619 if (!Add) 4620 return OverflowResult::MayOverflow; 4621 4622 // If the sign of Add is the same as at least one of the operands, this add 4623 // CANNOT overflow. If this can be determined from the known bits of the 4624 // operands the above signedAddMayOverflow() check will have already done so. 4625 // The only other way to improve on the known bits is from an assumption, so 4626 // call computeKnownBitsFromAssume() directly. 4627 bool LHSOrRHSKnownNonNegative = 4628 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4629 bool LHSOrRHSKnownNegative = 4630 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4631 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4632 KnownBits AddKnown(LHSRange.getBitWidth()); 4633 computeKnownBitsFromAssume( 4634 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4635 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4636 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4637 return OverflowResult::NeverOverflows; 4638 } 4639 4640 return OverflowResult::MayOverflow; 4641 } 4642 4643 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4644 const Value *RHS, 4645 const DataLayout &DL, 4646 AssumptionCache *AC, 4647 const Instruction *CxtI, 4648 const DominatorTree *DT) { 4649 // Checking for conditions implied by dominating conditions may be expensive. 4650 // Limit it to usub_with_overflow calls for now. 4651 if (match(CxtI, 4652 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4653 if (auto C = 4654 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4655 if (*C) 4656 return OverflowResult::NeverOverflows; 4657 return OverflowResult::AlwaysOverflowsLow; 4658 } 4659 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4660 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4661 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4662 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4663 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4664 } 4665 4666 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4667 const Value *RHS, 4668 const DataLayout &DL, 4669 AssumptionCache *AC, 4670 const Instruction *CxtI, 4671 const DominatorTree *DT) { 4672 // If LHS and RHS each have at least two sign bits, the subtraction 4673 // cannot overflow. 4674 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4675 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4676 return OverflowResult::NeverOverflows; 4677 4678 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4679 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4680 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4681 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4682 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4683 } 4684 4685 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4686 const DominatorTree &DT) { 4687 SmallVector<const BranchInst *, 2> GuardingBranches; 4688 SmallVector<const ExtractValueInst *, 2> Results; 4689 4690 for (const User *U : WO->users()) { 4691 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4692 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4693 4694 if (EVI->getIndices()[0] == 0) 4695 Results.push_back(EVI); 4696 else { 4697 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4698 4699 for (const auto *U : EVI->users()) 4700 if (const auto *B = dyn_cast<BranchInst>(U)) { 4701 assert(B->isConditional() && "How else is it using an i1?"); 4702 GuardingBranches.push_back(B); 4703 } 4704 } 4705 } else { 4706 // We are using the aggregate directly in a way we don't want to analyze 4707 // here (storing it to a global, say). 4708 return false; 4709 } 4710 } 4711 4712 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4713 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4714 if (!NoWrapEdge.isSingleEdge()) 4715 return false; 4716 4717 // Check if all users of the add are provably no-wrap. 4718 for (const auto *Result : Results) { 4719 // If the extractvalue itself is not executed on overflow, the we don't 4720 // need to check each use separately, since domination is transitive. 4721 if (DT.dominates(NoWrapEdge, Result->getParent())) 4722 continue; 4723 4724 for (auto &RU : Result->uses()) 4725 if (!DT.dominates(NoWrapEdge, RU)) 4726 return false; 4727 } 4728 4729 return true; 4730 }; 4731 4732 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4733 } 4734 4735 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4736 // See whether I has flags that may create poison 4737 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4738 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4739 return true; 4740 } 4741 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4742 if (ExactOp->isExact()) 4743 return true; 4744 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4745 auto FMF = FP->getFastMathFlags(); 4746 if (FMF.noNaNs() || FMF.noInfs()) 4747 return true; 4748 } 4749 4750 unsigned Opcode = Op->getOpcode(); 4751 4752 // Check whether opcode is a poison/undef-generating operation 4753 switch (Opcode) { 4754 case Instruction::Shl: 4755 case Instruction::AShr: 4756 case Instruction::LShr: { 4757 // Shifts return poison if shiftwidth is larger than the bitwidth. 4758 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4759 SmallVector<Constant *, 4> ShiftAmounts; 4760 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4761 unsigned NumElts = FVTy->getNumElements(); 4762 for (unsigned i = 0; i < NumElts; ++i) 4763 ShiftAmounts.push_back(C->getAggregateElement(i)); 4764 } else if (isa<ScalableVectorType>(C->getType())) 4765 return true; // Can't tell, just return true to be safe 4766 else 4767 ShiftAmounts.push_back(C); 4768 4769 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4770 auto *CI = dyn_cast<ConstantInt>(C); 4771 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4772 }); 4773 return !Safe; 4774 } 4775 return true; 4776 } 4777 case Instruction::FPToSI: 4778 case Instruction::FPToUI: 4779 // fptosi/ui yields poison if the resulting value does not fit in the 4780 // destination type. 4781 return true; 4782 case Instruction::Call: 4783 case Instruction::CallBr: 4784 case Instruction::Invoke: { 4785 const auto *CB = cast<CallBase>(Op); 4786 return !CB->hasRetAttr(Attribute::NoUndef); 4787 } 4788 case Instruction::InsertElement: 4789 case Instruction::ExtractElement: { 4790 // If index exceeds the length of the vector, it returns poison 4791 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4792 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4793 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4794 if (!Idx || 4795 Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue()) 4796 return true; 4797 return false; 4798 } 4799 case Instruction::ShuffleVector: { 4800 // shufflevector may return undef. 4801 if (PoisonOnly) 4802 return false; 4803 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4804 ? cast<ConstantExpr>(Op)->getShuffleMask() 4805 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4806 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4807 } 4808 case Instruction::FNeg: 4809 case Instruction::PHI: 4810 case Instruction::Select: 4811 case Instruction::URem: 4812 case Instruction::SRem: 4813 case Instruction::ExtractValue: 4814 case Instruction::InsertValue: 4815 case Instruction::Freeze: 4816 case Instruction::ICmp: 4817 case Instruction::FCmp: 4818 return false; 4819 case Instruction::GetElementPtr: { 4820 const auto *GEP = cast<GEPOperator>(Op); 4821 return GEP->isInBounds(); 4822 } 4823 default: { 4824 const auto *CE = dyn_cast<ConstantExpr>(Op); 4825 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4826 return false; 4827 else if (Instruction::isBinaryOp(Opcode)) 4828 return false; 4829 // Be conservative and return true. 4830 return true; 4831 } 4832 } 4833 } 4834 4835 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4836 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4837 } 4838 4839 bool llvm::canCreatePoison(const Operator *Op) { 4840 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4841 } 4842 4843 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4844 const Instruction *CtxI, 4845 const DominatorTree *DT, 4846 unsigned Depth) { 4847 if (Depth >= MaxAnalysisRecursionDepth) 4848 return false; 4849 4850 if (const auto *A = dyn_cast<Argument>(V)) { 4851 if (A->hasAttribute(Attribute::NoUndef)) 4852 return true; 4853 } 4854 4855 if (auto *C = dyn_cast<Constant>(V)) { 4856 if (isa<UndefValue>(C)) 4857 return false; 4858 4859 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4860 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4861 return true; 4862 4863 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4864 return !C->containsConstantExpression() && !C->containsUndefElement(); 4865 } 4866 4867 // Strip cast operations from a pointer value. 4868 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4869 // inbounds with zero offset. To guarantee that the result isn't poison, the 4870 // stripped pointer is checked as it has to be pointing into an allocated 4871 // object or be null `null` to ensure `inbounds` getelement pointers with a 4872 // zero offset could not produce poison. 4873 // It can strip off addrspacecast that do not change bit representation as 4874 // well. We believe that such addrspacecast is equivalent to no-op. 4875 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4876 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4877 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4878 return true; 4879 4880 auto OpCheck = [&](const Value *V) { 4881 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4882 }; 4883 4884 if (auto *Opr = dyn_cast<Operator>(V)) { 4885 // If the value is a freeze instruction, then it can never 4886 // be undef or poison. 4887 if (isa<FreezeInst>(V)) 4888 return true; 4889 4890 if (const auto *CB = dyn_cast<CallBase>(V)) { 4891 if (CB->hasRetAttr(Attribute::NoUndef)) 4892 return true; 4893 } 4894 4895 if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4896 return true; 4897 } 4898 4899 if (auto *I = dyn_cast<Instruction>(V)) { 4900 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4901 // Note: once we have an agreement that poison is a value-wise concept, 4902 // we can remove the isIntegerTy(1) constraint. 4903 return true; 4904 } 4905 4906 // CxtI may be null or a cloned instruction. 4907 if (!CtxI || !CtxI->getParent() || !DT) 4908 return false; 4909 4910 auto *DNode = DT->getNode(CtxI->getParent()); 4911 if (!DNode) 4912 // Unreachable block 4913 return false; 4914 4915 // If V is used as a branch condition before reaching CtxI, V cannot be 4916 // undef or poison. 4917 // br V, BB1, BB2 4918 // BB1: 4919 // CtxI ; V cannot be undef or poison here 4920 auto *Dominator = DNode->getIDom(); 4921 while (Dominator) { 4922 auto *TI = Dominator->getBlock()->getTerminator(); 4923 4924 if (auto BI = dyn_cast<BranchInst>(TI)) { 4925 if (BI->isConditional() && BI->getCondition() == V) 4926 return true; 4927 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4928 if (SI->getCondition() == V) 4929 return true; 4930 } 4931 4932 Dominator = Dominator->getIDom(); 4933 } 4934 4935 return false; 4936 } 4937 4938 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4939 const DataLayout &DL, 4940 AssumptionCache *AC, 4941 const Instruction *CxtI, 4942 const DominatorTree *DT) { 4943 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4944 Add, DL, AC, CxtI, DT); 4945 } 4946 4947 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4948 const Value *RHS, 4949 const DataLayout &DL, 4950 AssumptionCache *AC, 4951 const Instruction *CxtI, 4952 const DominatorTree *DT) { 4953 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4954 } 4955 4956 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4957 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4958 // of time because it's possible for another thread to interfere with it for an 4959 // arbitrary length of time, but programs aren't allowed to rely on that. 4960 4961 // If there is no successor, then execution can't transfer to it. 4962 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4963 return !CRI->unwindsToCaller(); 4964 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4965 return !CatchSwitch->unwindsToCaller(); 4966 if (isa<ResumeInst>(I)) 4967 return false; 4968 if (isa<ReturnInst>(I)) 4969 return false; 4970 if (isa<UnreachableInst>(I)) 4971 return false; 4972 4973 // Calls can throw, or contain an infinite loop, or kill the process. 4974 if (const auto *CB = dyn_cast<CallBase>(I)) { 4975 // Call sites that throw have implicit non-local control flow. 4976 if (!CB->doesNotThrow()) 4977 return false; 4978 4979 // A function which doens't throw and has "willreturn" attribute will 4980 // always return. 4981 if (CB->hasFnAttr(Attribute::WillReturn)) 4982 return true; 4983 4984 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4985 // etc. and thus not return. However, LLVM already assumes that 4986 // 4987 // - Thread exiting actions are modeled as writes to memory invisible to 4988 // the program. 4989 // 4990 // - Loops that don't have side effects (side effects are volatile/atomic 4991 // stores and IO) always terminate (see http://llvm.org/PR965). 4992 // Furthermore IO itself is also modeled as writes to memory invisible to 4993 // the program. 4994 // 4995 // We rely on those assumptions here, and use the memory effects of the call 4996 // target as a proxy for checking that it always returns. 4997 4998 // FIXME: This isn't aggressive enough; a call which only writes to a global 4999 // is guaranteed to return. 5000 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5001 } 5002 5003 // Other instructions return normally. 5004 return true; 5005 } 5006 5007 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5008 // TODO: This is slightly conservative for invoke instruction since exiting 5009 // via an exception *is* normal control for them. 5010 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5011 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5012 return false; 5013 return true; 5014 } 5015 5016 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5017 const Loop *L) { 5018 // The loop header is guaranteed to be executed for every iteration. 5019 // 5020 // FIXME: Relax this constraint to cover all basic blocks that are 5021 // guaranteed to be executed at every iteration. 5022 if (I->getParent() != L->getHeader()) return false; 5023 5024 for (const Instruction &LI : *L->getHeader()) { 5025 if (&LI == I) return true; 5026 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5027 } 5028 llvm_unreachable("Instruction not contained in its own parent basic block."); 5029 } 5030 5031 bool llvm::propagatesPoison(const Instruction *I) { 5032 switch (I->getOpcode()) { 5033 case Instruction::Freeze: 5034 case Instruction::Select: 5035 case Instruction::PHI: 5036 case Instruction::Call: 5037 case Instruction::Invoke: 5038 return false; 5039 case Instruction::ICmp: 5040 case Instruction::FCmp: 5041 case Instruction::GetElementPtr: 5042 return true; 5043 default: 5044 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5045 return true; 5046 5047 // Be conservative and return false. 5048 return false; 5049 } 5050 } 5051 5052 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5053 SmallPtrSetImpl<const Value *> &Operands) { 5054 switch (I->getOpcode()) { 5055 case Instruction::Store: 5056 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5057 break; 5058 5059 case Instruction::Load: 5060 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5061 break; 5062 5063 case Instruction::AtomicCmpXchg: 5064 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5065 break; 5066 5067 case Instruction::AtomicRMW: 5068 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5069 break; 5070 5071 case Instruction::UDiv: 5072 case Instruction::SDiv: 5073 case Instruction::URem: 5074 case Instruction::SRem: 5075 Operands.insert(I->getOperand(1)); 5076 break; 5077 5078 case Instruction::Call: 5079 case Instruction::Invoke: { 5080 const CallBase *CB = cast<CallBase>(I); 5081 if (CB->isIndirectCall()) 5082 Operands.insert(CB->getCalledOperand()); 5083 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5084 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5085 Operands.insert(CB->getArgOperand(i)); 5086 } 5087 break; 5088 } 5089 5090 default: 5091 break; 5092 } 5093 } 5094 5095 bool llvm::mustTriggerUB(const Instruction *I, 5096 const SmallSet<const Value *, 16>& KnownPoison) { 5097 SmallPtrSet<const Value *, 4> NonPoisonOps; 5098 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5099 5100 for (const auto *V : NonPoisonOps) 5101 if (KnownPoison.count(V)) 5102 return true; 5103 5104 return false; 5105 } 5106 5107 5108 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 5109 // We currently only look for uses of poison values within the same basic 5110 // block, as that makes it easier to guarantee that the uses will be 5111 // executed given that PoisonI is executed. 5112 // 5113 // FIXME: Expand this to consider uses beyond the same basic block. To do 5114 // this, look out for the distinction between post-dominance and strong 5115 // post-dominance. 5116 const BasicBlock *BB = PoisonI->getParent(); 5117 5118 // Set of instructions that we have proved will yield poison if PoisonI 5119 // does. 5120 SmallSet<const Value *, 16> YieldsPoison; 5121 SmallSet<const BasicBlock *, 4> Visited; 5122 YieldsPoison.insert(PoisonI); 5123 Visited.insert(PoisonI->getParent()); 5124 5125 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 5126 5127 unsigned Iter = 0; 5128 while (Iter++ < MaxAnalysisRecursionDepth) { 5129 for (auto &I : make_range(Begin, End)) { 5130 if (&I != PoisonI) { 5131 if (mustTriggerUB(&I, YieldsPoison)) 5132 return true; 5133 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5134 return false; 5135 } 5136 5137 // Mark poison that propagates from I through uses of I. 5138 if (YieldsPoison.count(&I)) { 5139 for (const User *User : I.users()) { 5140 const Instruction *UserI = cast<Instruction>(User); 5141 if (propagatesPoison(UserI)) 5142 YieldsPoison.insert(User); 5143 } 5144 } 5145 } 5146 5147 if (auto *NextBB = BB->getSingleSuccessor()) { 5148 if (Visited.insert(NextBB).second) { 5149 BB = NextBB; 5150 Begin = BB->getFirstNonPHI()->getIterator(); 5151 End = BB->end(); 5152 continue; 5153 } 5154 } 5155 5156 break; 5157 } 5158 return false; 5159 } 5160 5161 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5162 if (FMF.noNaNs()) 5163 return true; 5164 5165 if (auto *C = dyn_cast<ConstantFP>(V)) 5166 return !C->isNaN(); 5167 5168 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5169 if (!C->getElementType()->isFloatingPointTy()) 5170 return false; 5171 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5172 if (C->getElementAsAPFloat(I).isNaN()) 5173 return false; 5174 } 5175 return true; 5176 } 5177 5178 if (isa<ConstantAggregateZero>(V)) 5179 return true; 5180 5181 return false; 5182 } 5183 5184 static bool isKnownNonZero(const Value *V) { 5185 if (auto *C = dyn_cast<ConstantFP>(V)) 5186 return !C->isZero(); 5187 5188 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5189 if (!C->getElementType()->isFloatingPointTy()) 5190 return false; 5191 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5192 if (C->getElementAsAPFloat(I).isZero()) 5193 return false; 5194 } 5195 return true; 5196 } 5197 5198 return false; 5199 } 5200 5201 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5202 /// Given non-min/max outer cmp/select from the clamp pattern this 5203 /// function recognizes if it can be substitued by a "canonical" min/max 5204 /// pattern. 5205 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5206 Value *CmpLHS, Value *CmpRHS, 5207 Value *TrueVal, Value *FalseVal, 5208 Value *&LHS, Value *&RHS) { 5209 // Try to match 5210 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5211 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5212 // and return description of the outer Max/Min. 5213 5214 // First, check if select has inverse order: 5215 if (CmpRHS == FalseVal) { 5216 std::swap(TrueVal, FalseVal); 5217 Pred = CmpInst::getInversePredicate(Pred); 5218 } 5219 5220 // Assume success now. If there's no match, callers should not use these anyway. 5221 LHS = TrueVal; 5222 RHS = FalseVal; 5223 5224 const APFloat *FC1; 5225 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5226 return {SPF_UNKNOWN, SPNB_NA, false}; 5227 5228 const APFloat *FC2; 5229 switch (Pred) { 5230 case CmpInst::FCMP_OLT: 5231 case CmpInst::FCMP_OLE: 5232 case CmpInst::FCMP_ULT: 5233 case CmpInst::FCMP_ULE: 5234 if (match(FalseVal, 5235 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5236 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5237 *FC1 < *FC2) 5238 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5239 break; 5240 case CmpInst::FCMP_OGT: 5241 case CmpInst::FCMP_OGE: 5242 case CmpInst::FCMP_UGT: 5243 case CmpInst::FCMP_UGE: 5244 if (match(FalseVal, 5245 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5246 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5247 *FC1 > *FC2) 5248 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5249 break; 5250 default: 5251 break; 5252 } 5253 5254 return {SPF_UNKNOWN, SPNB_NA, false}; 5255 } 5256 5257 /// Recognize variations of: 5258 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5259 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5260 Value *CmpLHS, Value *CmpRHS, 5261 Value *TrueVal, Value *FalseVal) { 5262 // Swap the select operands and predicate to match the patterns below. 5263 if (CmpRHS != TrueVal) { 5264 Pred = ICmpInst::getSwappedPredicate(Pred); 5265 std::swap(TrueVal, FalseVal); 5266 } 5267 const APInt *C1; 5268 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5269 const APInt *C2; 5270 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5271 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5272 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5273 return {SPF_SMAX, SPNB_NA, false}; 5274 5275 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5276 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5277 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5278 return {SPF_SMIN, SPNB_NA, false}; 5279 5280 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5281 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5282 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5283 return {SPF_UMAX, SPNB_NA, false}; 5284 5285 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5286 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5287 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5288 return {SPF_UMIN, SPNB_NA, false}; 5289 } 5290 return {SPF_UNKNOWN, SPNB_NA, false}; 5291 } 5292 5293 /// Recognize variations of: 5294 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5295 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5296 Value *CmpLHS, Value *CmpRHS, 5297 Value *TVal, Value *FVal, 5298 unsigned Depth) { 5299 // TODO: Allow FP min/max with nnan/nsz. 5300 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5301 5302 Value *A = nullptr, *B = nullptr; 5303 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5304 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5305 return {SPF_UNKNOWN, SPNB_NA, false}; 5306 5307 Value *C = nullptr, *D = nullptr; 5308 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5309 if (L.Flavor != R.Flavor) 5310 return {SPF_UNKNOWN, SPNB_NA, false}; 5311 5312 // We have something like: x Pred y ? min(a, b) : min(c, d). 5313 // Try to match the compare to the min/max operations of the select operands. 5314 // First, make sure we have the right compare predicate. 5315 switch (L.Flavor) { 5316 case SPF_SMIN: 5317 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5318 Pred = ICmpInst::getSwappedPredicate(Pred); 5319 std::swap(CmpLHS, CmpRHS); 5320 } 5321 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5322 break; 5323 return {SPF_UNKNOWN, SPNB_NA, false}; 5324 case SPF_SMAX: 5325 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5326 Pred = ICmpInst::getSwappedPredicate(Pred); 5327 std::swap(CmpLHS, CmpRHS); 5328 } 5329 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5330 break; 5331 return {SPF_UNKNOWN, SPNB_NA, false}; 5332 case SPF_UMIN: 5333 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5334 Pred = ICmpInst::getSwappedPredicate(Pred); 5335 std::swap(CmpLHS, CmpRHS); 5336 } 5337 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5338 break; 5339 return {SPF_UNKNOWN, SPNB_NA, false}; 5340 case SPF_UMAX: 5341 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5342 Pred = ICmpInst::getSwappedPredicate(Pred); 5343 std::swap(CmpLHS, CmpRHS); 5344 } 5345 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5346 break; 5347 return {SPF_UNKNOWN, SPNB_NA, false}; 5348 default: 5349 return {SPF_UNKNOWN, SPNB_NA, false}; 5350 } 5351 5352 // If there is a common operand in the already matched min/max and the other 5353 // min/max operands match the compare operands (either directly or inverted), 5354 // then this is min/max of the same flavor. 5355 5356 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5357 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5358 if (D == B) { 5359 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5360 match(A, m_Not(m_Specific(CmpRHS))))) 5361 return {L.Flavor, SPNB_NA, false}; 5362 } 5363 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5364 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5365 if (C == B) { 5366 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5367 match(A, m_Not(m_Specific(CmpRHS))))) 5368 return {L.Flavor, SPNB_NA, false}; 5369 } 5370 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5371 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5372 if (D == A) { 5373 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5374 match(B, m_Not(m_Specific(CmpRHS))))) 5375 return {L.Flavor, SPNB_NA, false}; 5376 } 5377 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5378 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5379 if (C == A) { 5380 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5381 match(B, m_Not(m_Specific(CmpRHS))))) 5382 return {L.Flavor, SPNB_NA, false}; 5383 } 5384 5385 return {SPF_UNKNOWN, SPNB_NA, false}; 5386 } 5387 5388 /// If the input value is the result of a 'not' op, constant integer, or vector 5389 /// splat of a constant integer, return the bitwise-not source value. 5390 /// TODO: This could be extended to handle non-splat vector integer constants. 5391 static Value *getNotValue(Value *V) { 5392 Value *NotV; 5393 if (match(V, m_Not(m_Value(NotV)))) 5394 return NotV; 5395 5396 const APInt *C; 5397 if (match(V, m_APInt(C))) 5398 return ConstantInt::get(V->getType(), ~(*C)); 5399 5400 return nullptr; 5401 } 5402 5403 /// Match non-obvious integer minimum and maximum sequences. 5404 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5405 Value *CmpLHS, Value *CmpRHS, 5406 Value *TrueVal, Value *FalseVal, 5407 Value *&LHS, Value *&RHS, 5408 unsigned Depth) { 5409 // Assume success. If there's no match, callers should not use these anyway. 5410 LHS = TrueVal; 5411 RHS = FalseVal; 5412 5413 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5414 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5415 return SPR; 5416 5417 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5418 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5419 return SPR; 5420 5421 // Look through 'not' ops to find disguised min/max. 5422 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5423 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5424 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5425 switch (Pred) { 5426 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5427 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5428 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5429 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5430 default: break; 5431 } 5432 } 5433 5434 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5435 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5436 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5437 switch (Pred) { 5438 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5439 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5440 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5441 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5442 default: break; 5443 } 5444 } 5445 5446 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5447 return {SPF_UNKNOWN, SPNB_NA, false}; 5448 5449 // Z = X -nsw Y 5450 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5451 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5452 if (match(TrueVal, m_Zero()) && 5453 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5454 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5455 5456 // Z = X -nsw Y 5457 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5458 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5459 if (match(FalseVal, m_Zero()) && 5460 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5461 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5462 5463 const APInt *C1; 5464 if (!match(CmpRHS, m_APInt(C1))) 5465 return {SPF_UNKNOWN, SPNB_NA, false}; 5466 5467 // An unsigned min/max can be written with a signed compare. 5468 const APInt *C2; 5469 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5470 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5471 // Is the sign bit set? 5472 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5473 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5474 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5475 C2->isMaxSignedValue()) 5476 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5477 5478 // Is the sign bit clear? 5479 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5480 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5481 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5482 C2->isMinSignedValue()) 5483 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5484 } 5485 5486 return {SPF_UNKNOWN, SPNB_NA, false}; 5487 } 5488 5489 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5490 assert(X && Y && "Invalid operand"); 5491 5492 // X = sub (0, Y) || X = sub nsw (0, Y) 5493 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5494 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5495 return true; 5496 5497 // Y = sub (0, X) || Y = sub nsw (0, X) 5498 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5499 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5500 return true; 5501 5502 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5503 Value *A, *B; 5504 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5505 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5506 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5507 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5508 } 5509 5510 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5511 FastMathFlags FMF, 5512 Value *CmpLHS, Value *CmpRHS, 5513 Value *TrueVal, Value *FalseVal, 5514 Value *&LHS, Value *&RHS, 5515 unsigned Depth) { 5516 if (CmpInst::isFPPredicate(Pred)) { 5517 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5518 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5519 // purpose of identifying min/max. Disregard vector constants with undefined 5520 // elements because those can not be back-propagated for analysis. 5521 Value *OutputZeroVal = nullptr; 5522 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5523 !cast<Constant>(TrueVal)->containsUndefElement()) 5524 OutputZeroVal = TrueVal; 5525 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5526 !cast<Constant>(FalseVal)->containsUndefElement()) 5527 OutputZeroVal = FalseVal; 5528 5529 if (OutputZeroVal) { 5530 if (match(CmpLHS, m_AnyZeroFP())) 5531 CmpLHS = OutputZeroVal; 5532 if (match(CmpRHS, m_AnyZeroFP())) 5533 CmpRHS = OutputZeroVal; 5534 } 5535 } 5536 5537 LHS = CmpLHS; 5538 RHS = CmpRHS; 5539 5540 // Signed zero may return inconsistent results between implementations. 5541 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5542 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5543 // Therefore, we behave conservatively and only proceed if at least one of the 5544 // operands is known to not be zero or if we don't care about signed zero. 5545 switch (Pred) { 5546 default: break; 5547 // FIXME: Include OGT/OLT/UGT/ULT. 5548 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5549 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5550 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5551 !isKnownNonZero(CmpRHS)) 5552 return {SPF_UNKNOWN, SPNB_NA, false}; 5553 } 5554 5555 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5556 bool Ordered = false; 5557 5558 // When given one NaN and one non-NaN input: 5559 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5560 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5561 // ordered comparison fails), which could be NaN or non-NaN. 5562 // so here we discover exactly what NaN behavior is required/accepted. 5563 if (CmpInst::isFPPredicate(Pred)) { 5564 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5565 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5566 5567 if (LHSSafe && RHSSafe) { 5568 // Both operands are known non-NaN. 5569 NaNBehavior = SPNB_RETURNS_ANY; 5570 } else if (CmpInst::isOrdered(Pred)) { 5571 // An ordered comparison will return false when given a NaN, so it 5572 // returns the RHS. 5573 Ordered = true; 5574 if (LHSSafe) 5575 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5576 NaNBehavior = SPNB_RETURNS_NAN; 5577 else if (RHSSafe) 5578 NaNBehavior = SPNB_RETURNS_OTHER; 5579 else 5580 // Completely unsafe. 5581 return {SPF_UNKNOWN, SPNB_NA, false}; 5582 } else { 5583 Ordered = false; 5584 // An unordered comparison will return true when given a NaN, so it 5585 // returns the LHS. 5586 if (LHSSafe) 5587 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5588 NaNBehavior = SPNB_RETURNS_OTHER; 5589 else if (RHSSafe) 5590 NaNBehavior = SPNB_RETURNS_NAN; 5591 else 5592 // Completely unsafe. 5593 return {SPF_UNKNOWN, SPNB_NA, false}; 5594 } 5595 } 5596 5597 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5598 std::swap(CmpLHS, CmpRHS); 5599 Pred = CmpInst::getSwappedPredicate(Pred); 5600 if (NaNBehavior == SPNB_RETURNS_NAN) 5601 NaNBehavior = SPNB_RETURNS_OTHER; 5602 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5603 NaNBehavior = SPNB_RETURNS_NAN; 5604 Ordered = !Ordered; 5605 } 5606 5607 // ([if]cmp X, Y) ? X : Y 5608 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5609 switch (Pred) { 5610 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5611 case ICmpInst::ICMP_UGT: 5612 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5613 case ICmpInst::ICMP_SGT: 5614 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5615 case ICmpInst::ICMP_ULT: 5616 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5617 case ICmpInst::ICMP_SLT: 5618 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5619 case FCmpInst::FCMP_UGT: 5620 case FCmpInst::FCMP_UGE: 5621 case FCmpInst::FCMP_OGT: 5622 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5623 case FCmpInst::FCMP_ULT: 5624 case FCmpInst::FCMP_ULE: 5625 case FCmpInst::FCMP_OLT: 5626 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5627 } 5628 } 5629 5630 if (isKnownNegation(TrueVal, FalseVal)) { 5631 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5632 // match against either LHS or sext(LHS). 5633 auto MaybeSExtCmpLHS = 5634 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5635 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5636 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5637 if (match(TrueVal, MaybeSExtCmpLHS)) { 5638 // Set the return values. If the compare uses the negated value (-X >s 0), 5639 // swap the return values because the negated value is always 'RHS'. 5640 LHS = TrueVal; 5641 RHS = FalseVal; 5642 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5643 std::swap(LHS, RHS); 5644 5645 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5646 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5647 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5648 return {SPF_ABS, SPNB_NA, false}; 5649 5650 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5651 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5652 return {SPF_ABS, SPNB_NA, false}; 5653 5654 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5655 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5656 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5657 return {SPF_NABS, SPNB_NA, false}; 5658 } 5659 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5660 // Set the return values. If the compare uses the negated value (-X >s 0), 5661 // swap the return values because the negated value is always 'RHS'. 5662 LHS = FalseVal; 5663 RHS = TrueVal; 5664 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5665 std::swap(LHS, RHS); 5666 5667 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5668 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5669 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5670 return {SPF_NABS, SPNB_NA, false}; 5671 5672 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5673 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5674 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5675 return {SPF_ABS, SPNB_NA, false}; 5676 } 5677 } 5678 5679 if (CmpInst::isIntPredicate(Pred)) 5680 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5681 5682 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5683 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5684 // semantics than minNum. Be conservative in such case. 5685 if (NaNBehavior != SPNB_RETURNS_ANY || 5686 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5687 !isKnownNonZero(CmpRHS))) 5688 return {SPF_UNKNOWN, SPNB_NA, false}; 5689 5690 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5691 } 5692 5693 /// Helps to match a select pattern in case of a type mismatch. 5694 /// 5695 /// The function processes the case when type of true and false values of a 5696 /// select instruction differs from type of the cmp instruction operands because 5697 /// of a cast instruction. The function checks if it is legal to move the cast 5698 /// operation after "select". If yes, it returns the new second value of 5699 /// "select" (with the assumption that cast is moved): 5700 /// 1. As operand of cast instruction when both values of "select" are same cast 5701 /// instructions. 5702 /// 2. As restored constant (by applying reverse cast operation) when the first 5703 /// value of the "select" is a cast operation and the second value is a 5704 /// constant. 5705 /// NOTE: We return only the new second value because the first value could be 5706 /// accessed as operand of cast instruction. 5707 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5708 Instruction::CastOps *CastOp) { 5709 auto *Cast1 = dyn_cast<CastInst>(V1); 5710 if (!Cast1) 5711 return nullptr; 5712 5713 *CastOp = Cast1->getOpcode(); 5714 Type *SrcTy = Cast1->getSrcTy(); 5715 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5716 // If V1 and V2 are both the same cast from the same type, look through V1. 5717 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5718 return Cast2->getOperand(0); 5719 return nullptr; 5720 } 5721 5722 auto *C = dyn_cast<Constant>(V2); 5723 if (!C) 5724 return nullptr; 5725 5726 Constant *CastedTo = nullptr; 5727 switch (*CastOp) { 5728 case Instruction::ZExt: 5729 if (CmpI->isUnsigned()) 5730 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5731 break; 5732 case Instruction::SExt: 5733 if (CmpI->isSigned()) 5734 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5735 break; 5736 case Instruction::Trunc: 5737 Constant *CmpConst; 5738 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5739 CmpConst->getType() == SrcTy) { 5740 // Here we have the following case: 5741 // 5742 // %cond = cmp iN %x, CmpConst 5743 // %tr = trunc iN %x to iK 5744 // %narrowsel = select i1 %cond, iK %t, iK C 5745 // 5746 // We can always move trunc after select operation: 5747 // 5748 // %cond = cmp iN %x, CmpConst 5749 // %widesel = select i1 %cond, iN %x, iN CmpConst 5750 // %tr = trunc iN %widesel to iK 5751 // 5752 // Note that C could be extended in any way because we don't care about 5753 // upper bits after truncation. It can't be abs pattern, because it would 5754 // look like: 5755 // 5756 // select i1 %cond, x, -x. 5757 // 5758 // So only min/max pattern could be matched. Such match requires widened C 5759 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5760 // CmpConst == C is checked below. 5761 CastedTo = CmpConst; 5762 } else { 5763 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5764 } 5765 break; 5766 case Instruction::FPTrunc: 5767 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5768 break; 5769 case Instruction::FPExt: 5770 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5771 break; 5772 case Instruction::FPToUI: 5773 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5774 break; 5775 case Instruction::FPToSI: 5776 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5777 break; 5778 case Instruction::UIToFP: 5779 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5780 break; 5781 case Instruction::SIToFP: 5782 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5783 break; 5784 default: 5785 break; 5786 } 5787 5788 if (!CastedTo) 5789 return nullptr; 5790 5791 // Make sure the cast doesn't lose any information. 5792 Constant *CastedBack = 5793 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5794 if (CastedBack != C) 5795 return nullptr; 5796 5797 return CastedTo; 5798 } 5799 5800 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5801 Instruction::CastOps *CastOp, 5802 unsigned Depth) { 5803 if (Depth >= MaxAnalysisRecursionDepth) 5804 return {SPF_UNKNOWN, SPNB_NA, false}; 5805 5806 SelectInst *SI = dyn_cast<SelectInst>(V); 5807 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5808 5809 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5810 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5811 5812 Value *TrueVal = SI->getTrueValue(); 5813 Value *FalseVal = SI->getFalseValue(); 5814 5815 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5816 CastOp, Depth); 5817 } 5818 5819 SelectPatternResult llvm::matchDecomposedSelectPattern( 5820 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5821 Instruction::CastOps *CastOp, unsigned Depth) { 5822 CmpInst::Predicate Pred = CmpI->getPredicate(); 5823 Value *CmpLHS = CmpI->getOperand(0); 5824 Value *CmpRHS = CmpI->getOperand(1); 5825 FastMathFlags FMF; 5826 if (isa<FPMathOperator>(CmpI)) 5827 FMF = CmpI->getFastMathFlags(); 5828 5829 // Bail out early. 5830 if (CmpI->isEquality()) 5831 return {SPF_UNKNOWN, SPNB_NA, false}; 5832 5833 // Deal with type mismatches. 5834 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5835 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5836 // If this is a potential fmin/fmax with a cast to integer, then ignore 5837 // -0.0 because there is no corresponding integer value. 5838 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5839 FMF.setNoSignedZeros(); 5840 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5841 cast<CastInst>(TrueVal)->getOperand(0), C, 5842 LHS, RHS, Depth); 5843 } 5844 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5845 // If this is a potential fmin/fmax with a cast to integer, then ignore 5846 // -0.0 because there is no corresponding integer value. 5847 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5848 FMF.setNoSignedZeros(); 5849 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5850 C, cast<CastInst>(FalseVal)->getOperand(0), 5851 LHS, RHS, Depth); 5852 } 5853 } 5854 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5855 LHS, RHS, Depth); 5856 } 5857 5858 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5859 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5860 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5861 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5862 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5863 if (SPF == SPF_FMINNUM) 5864 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5865 if (SPF == SPF_FMAXNUM) 5866 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5867 llvm_unreachable("unhandled!"); 5868 } 5869 5870 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5871 if (SPF == SPF_SMIN) return SPF_SMAX; 5872 if (SPF == SPF_UMIN) return SPF_UMAX; 5873 if (SPF == SPF_SMAX) return SPF_SMIN; 5874 if (SPF == SPF_UMAX) return SPF_UMIN; 5875 llvm_unreachable("unhandled!"); 5876 } 5877 5878 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5879 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5880 } 5881 5882 /// Return true if "icmp Pred LHS RHS" is always true. 5883 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5884 const Value *RHS, const DataLayout &DL, 5885 unsigned Depth) { 5886 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5887 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5888 return true; 5889 5890 switch (Pred) { 5891 default: 5892 return false; 5893 5894 case CmpInst::ICMP_SLE: { 5895 const APInt *C; 5896 5897 // LHS s<= LHS +_{nsw} C if C >= 0 5898 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5899 return !C->isNegative(); 5900 return false; 5901 } 5902 5903 case CmpInst::ICMP_ULE: { 5904 const APInt *C; 5905 5906 // LHS u<= LHS +_{nuw} C for any C 5907 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5908 return true; 5909 5910 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5911 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5912 const Value *&X, 5913 const APInt *&CA, const APInt *&CB) { 5914 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5915 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5916 return true; 5917 5918 // If X & C == 0 then (X | C) == X +_{nuw} C 5919 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5920 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5921 KnownBits Known(CA->getBitWidth()); 5922 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5923 /*CxtI*/ nullptr, /*DT*/ nullptr); 5924 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5925 return true; 5926 } 5927 5928 return false; 5929 }; 5930 5931 const Value *X; 5932 const APInt *CLHS, *CRHS; 5933 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5934 return CLHS->ule(*CRHS); 5935 5936 return false; 5937 } 5938 } 5939 } 5940 5941 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5942 /// ALHS ARHS" is true. Otherwise, return None. 5943 static Optional<bool> 5944 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5945 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5946 const DataLayout &DL, unsigned Depth) { 5947 switch (Pred) { 5948 default: 5949 return None; 5950 5951 case CmpInst::ICMP_SLT: 5952 case CmpInst::ICMP_SLE: 5953 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5954 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5955 return true; 5956 return None; 5957 5958 case CmpInst::ICMP_ULT: 5959 case CmpInst::ICMP_ULE: 5960 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5961 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5962 return true; 5963 return None; 5964 } 5965 } 5966 5967 /// Return true if the operands of the two compares match. IsSwappedOps is true 5968 /// when the operands match, but are swapped. 5969 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5970 const Value *BLHS, const Value *BRHS, 5971 bool &IsSwappedOps) { 5972 5973 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5974 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5975 return IsMatchingOps || IsSwappedOps; 5976 } 5977 5978 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5979 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5980 /// Otherwise, return None if we can't infer anything. 5981 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5982 CmpInst::Predicate BPred, 5983 bool AreSwappedOps) { 5984 // Canonicalize the predicate as if the operands were not commuted. 5985 if (AreSwappedOps) 5986 BPred = ICmpInst::getSwappedPredicate(BPred); 5987 5988 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5989 return true; 5990 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5991 return false; 5992 5993 return None; 5994 } 5995 5996 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5997 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5998 /// Otherwise, return None if we can't infer anything. 5999 static Optional<bool> 6000 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6001 const ConstantInt *C1, 6002 CmpInst::Predicate BPred, 6003 const ConstantInt *C2) { 6004 ConstantRange DomCR = 6005 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6006 ConstantRange CR = 6007 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6008 ConstantRange Intersection = DomCR.intersectWith(CR); 6009 ConstantRange Difference = DomCR.difference(CR); 6010 if (Intersection.isEmptySet()) 6011 return false; 6012 if (Difference.isEmptySet()) 6013 return true; 6014 return None; 6015 } 6016 6017 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6018 /// false. Otherwise, return None if we can't infer anything. 6019 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6020 CmpInst::Predicate BPred, 6021 const Value *BLHS, const Value *BRHS, 6022 const DataLayout &DL, bool LHSIsTrue, 6023 unsigned Depth) { 6024 Value *ALHS = LHS->getOperand(0); 6025 Value *ARHS = LHS->getOperand(1); 6026 6027 // The rest of the logic assumes the LHS condition is true. If that's not the 6028 // case, invert the predicate to make it so. 6029 CmpInst::Predicate APred = 6030 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6031 6032 // Can we infer anything when the two compares have matching operands? 6033 bool AreSwappedOps; 6034 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6035 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6036 APred, BPred, AreSwappedOps)) 6037 return Implication; 6038 // No amount of additional analysis will infer the second condition, so 6039 // early exit. 6040 return None; 6041 } 6042 6043 // Can we infer anything when the LHS operands match and the RHS operands are 6044 // constants (not necessarily matching)? 6045 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6046 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6047 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6048 return Implication; 6049 // No amount of additional analysis will infer the second condition, so 6050 // early exit. 6051 return None; 6052 } 6053 6054 if (APred == BPred) 6055 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6056 return None; 6057 } 6058 6059 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6060 /// false. Otherwise, return None if we can't infer anything. We expect the 6061 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6062 static Optional<bool> 6063 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6064 const Value *RHSOp0, const Value *RHSOp1, 6065 6066 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6067 // The LHS must be an 'or' or an 'and' instruction. 6068 assert((LHS->getOpcode() == Instruction::And || 6069 LHS->getOpcode() == Instruction::Or) && 6070 "Expected LHS to be 'and' or 'or'."); 6071 6072 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6073 6074 // If the result of an 'or' is false, then we know both legs of the 'or' are 6075 // false. Similarly, if the result of an 'and' is true, then we know both 6076 // legs of the 'and' are true. 6077 Value *ALHS, *ARHS; 6078 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6079 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6080 // FIXME: Make this non-recursion. 6081 if (Optional<bool> Implication = isImpliedCondition( 6082 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6083 return Implication; 6084 if (Optional<bool> Implication = isImpliedCondition( 6085 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6086 return Implication; 6087 return None; 6088 } 6089 return None; 6090 } 6091 6092 Optional<bool> 6093 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6094 const Value *RHSOp0, const Value *RHSOp1, 6095 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6096 // Bail out when we hit the limit. 6097 if (Depth == MaxAnalysisRecursionDepth) 6098 return None; 6099 6100 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6101 // example. 6102 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6103 return None; 6104 6105 Type *OpTy = LHS->getType(); 6106 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6107 6108 // FIXME: Extending the code below to handle vectors. 6109 if (OpTy->isVectorTy()) 6110 return None; 6111 6112 assert(OpTy->isIntegerTy(1) && "implied by above"); 6113 6114 // Both LHS and RHS are icmps. 6115 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6116 if (LHSCmp) 6117 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6118 Depth); 6119 6120 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6121 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6122 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6123 if (LHSBO) { 6124 if ((LHSBO->getOpcode() == Instruction::And || 6125 LHSBO->getOpcode() == Instruction::Or)) 6126 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6127 Depth); 6128 } 6129 return None; 6130 } 6131 6132 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6133 const DataLayout &DL, bool LHSIsTrue, 6134 unsigned Depth) { 6135 // LHS ==> RHS by definition 6136 if (LHS == RHS) 6137 return LHSIsTrue; 6138 6139 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6140 if (RHSCmp) 6141 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6142 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6143 LHSIsTrue, Depth); 6144 return None; 6145 } 6146 6147 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6148 // condition dominating ContextI or nullptr, if no condition is found. 6149 static std::pair<Value *, bool> 6150 getDomPredecessorCondition(const Instruction *ContextI) { 6151 if (!ContextI || !ContextI->getParent()) 6152 return {nullptr, false}; 6153 6154 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6155 // dominator tree (eg, from a SimplifyQuery) instead? 6156 const BasicBlock *ContextBB = ContextI->getParent(); 6157 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6158 if (!PredBB) 6159 return {nullptr, false}; 6160 6161 // We need a conditional branch in the predecessor. 6162 Value *PredCond; 6163 BasicBlock *TrueBB, *FalseBB; 6164 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6165 return {nullptr, false}; 6166 6167 // The branch should get simplified. Don't bother simplifying this condition. 6168 if (TrueBB == FalseBB) 6169 return {nullptr, false}; 6170 6171 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6172 "Predecessor block does not point to successor?"); 6173 6174 // Is this condition implied by the predecessor condition? 6175 return {PredCond, TrueBB == ContextBB}; 6176 } 6177 6178 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6179 const Instruction *ContextI, 6180 const DataLayout &DL) { 6181 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6182 auto PredCond = getDomPredecessorCondition(ContextI); 6183 if (PredCond.first) 6184 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6185 return None; 6186 } 6187 6188 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6189 const Value *LHS, const Value *RHS, 6190 const Instruction *ContextI, 6191 const DataLayout &DL) { 6192 auto PredCond = getDomPredecessorCondition(ContextI); 6193 if (PredCond.first) 6194 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6195 PredCond.second); 6196 return None; 6197 } 6198 6199 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6200 APInt &Upper, const InstrInfoQuery &IIQ) { 6201 unsigned Width = Lower.getBitWidth(); 6202 const APInt *C; 6203 switch (BO.getOpcode()) { 6204 case Instruction::Add: 6205 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6206 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6207 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6208 // 'add nuw x, C' produces [C, UINT_MAX]. 6209 Lower = *C; 6210 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6211 if (C->isNegative()) { 6212 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6213 Lower = APInt::getSignedMinValue(Width); 6214 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6215 } else { 6216 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6217 Lower = APInt::getSignedMinValue(Width) + *C; 6218 Upper = APInt::getSignedMaxValue(Width) + 1; 6219 } 6220 } 6221 } 6222 break; 6223 6224 case Instruction::And: 6225 if (match(BO.getOperand(1), m_APInt(C))) 6226 // 'and x, C' produces [0, C]. 6227 Upper = *C + 1; 6228 break; 6229 6230 case Instruction::Or: 6231 if (match(BO.getOperand(1), m_APInt(C))) 6232 // 'or x, C' produces [C, UINT_MAX]. 6233 Lower = *C; 6234 break; 6235 6236 case Instruction::AShr: 6237 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6238 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6239 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6240 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6241 } else if (match(BO.getOperand(0), m_APInt(C))) { 6242 unsigned ShiftAmount = Width - 1; 6243 if (!C->isNullValue() && IIQ.isExact(&BO)) 6244 ShiftAmount = C->countTrailingZeros(); 6245 if (C->isNegative()) { 6246 // 'ashr C, x' produces [C, C >> (Width-1)] 6247 Lower = *C; 6248 Upper = C->ashr(ShiftAmount) + 1; 6249 } else { 6250 // 'ashr C, x' produces [C >> (Width-1), C] 6251 Lower = C->ashr(ShiftAmount); 6252 Upper = *C + 1; 6253 } 6254 } 6255 break; 6256 6257 case Instruction::LShr: 6258 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6259 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6260 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6261 } else if (match(BO.getOperand(0), m_APInt(C))) { 6262 // 'lshr C, x' produces [C >> (Width-1), C]. 6263 unsigned ShiftAmount = Width - 1; 6264 if (!C->isNullValue() && IIQ.isExact(&BO)) 6265 ShiftAmount = C->countTrailingZeros(); 6266 Lower = C->lshr(ShiftAmount); 6267 Upper = *C + 1; 6268 } 6269 break; 6270 6271 case Instruction::Shl: 6272 if (match(BO.getOperand(0), m_APInt(C))) { 6273 if (IIQ.hasNoUnsignedWrap(&BO)) { 6274 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6275 Lower = *C; 6276 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6277 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6278 if (C->isNegative()) { 6279 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6280 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6281 Lower = C->shl(ShiftAmount); 6282 Upper = *C + 1; 6283 } else { 6284 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6285 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6286 Lower = *C; 6287 Upper = C->shl(ShiftAmount) + 1; 6288 } 6289 } 6290 } 6291 break; 6292 6293 case Instruction::SDiv: 6294 if (match(BO.getOperand(1), m_APInt(C))) { 6295 APInt IntMin = APInt::getSignedMinValue(Width); 6296 APInt IntMax = APInt::getSignedMaxValue(Width); 6297 if (C->isAllOnesValue()) { 6298 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6299 // where C != -1 and C != 0 and C != 1 6300 Lower = IntMin + 1; 6301 Upper = IntMax + 1; 6302 } else if (C->countLeadingZeros() < Width - 1) { 6303 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6304 // where C != -1 and C != 0 and C != 1 6305 Lower = IntMin.sdiv(*C); 6306 Upper = IntMax.sdiv(*C); 6307 if (Lower.sgt(Upper)) 6308 std::swap(Lower, Upper); 6309 Upper = Upper + 1; 6310 assert(Upper != Lower && "Upper part of range has wrapped!"); 6311 } 6312 } else if (match(BO.getOperand(0), m_APInt(C))) { 6313 if (C->isMinSignedValue()) { 6314 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6315 Lower = *C; 6316 Upper = Lower.lshr(1) + 1; 6317 } else { 6318 // 'sdiv C, x' produces [-|C|, |C|]. 6319 Upper = C->abs() + 1; 6320 Lower = (-Upper) + 1; 6321 } 6322 } 6323 break; 6324 6325 case Instruction::UDiv: 6326 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6327 // 'udiv x, C' produces [0, UINT_MAX / C]. 6328 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6329 } else if (match(BO.getOperand(0), m_APInt(C))) { 6330 // 'udiv C, x' produces [0, C]. 6331 Upper = *C + 1; 6332 } 6333 break; 6334 6335 case Instruction::SRem: 6336 if (match(BO.getOperand(1), m_APInt(C))) { 6337 // 'srem x, C' produces (-|C|, |C|). 6338 Upper = C->abs(); 6339 Lower = (-Upper) + 1; 6340 } 6341 break; 6342 6343 case Instruction::URem: 6344 if (match(BO.getOperand(1), m_APInt(C))) 6345 // 'urem x, C' produces [0, C). 6346 Upper = *C; 6347 break; 6348 6349 default: 6350 break; 6351 } 6352 } 6353 6354 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6355 APInt &Upper) { 6356 unsigned Width = Lower.getBitWidth(); 6357 const APInt *C; 6358 switch (II.getIntrinsicID()) { 6359 case Intrinsic::uadd_sat: 6360 // uadd.sat(x, C) produces [C, UINT_MAX]. 6361 if (match(II.getOperand(0), m_APInt(C)) || 6362 match(II.getOperand(1), m_APInt(C))) 6363 Lower = *C; 6364 break; 6365 case Intrinsic::sadd_sat: 6366 if (match(II.getOperand(0), m_APInt(C)) || 6367 match(II.getOperand(1), m_APInt(C))) { 6368 if (C->isNegative()) { 6369 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6370 Lower = APInt::getSignedMinValue(Width); 6371 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6372 } else { 6373 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6374 Lower = APInt::getSignedMinValue(Width) + *C; 6375 Upper = APInt::getSignedMaxValue(Width) + 1; 6376 } 6377 } 6378 break; 6379 case Intrinsic::usub_sat: 6380 // usub.sat(C, x) produces [0, C]. 6381 if (match(II.getOperand(0), m_APInt(C))) 6382 Upper = *C + 1; 6383 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6384 else if (match(II.getOperand(1), m_APInt(C))) 6385 Upper = APInt::getMaxValue(Width) - *C + 1; 6386 break; 6387 case Intrinsic::ssub_sat: 6388 if (match(II.getOperand(0), m_APInt(C))) { 6389 if (C->isNegative()) { 6390 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6391 Lower = APInt::getSignedMinValue(Width); 6392 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6393 } else { 6394 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6395 Lower = *C - APInt::getSignedMaxValue(Width); 6396 Upper = APInt::getSignedMaxValue(Width) + 1; 6397 } 6398 } else if (match(II.getOperand(1), m_APInt(C))) { 6399 if (C->isNegative()) { 6400 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6401 Lower = APInt::getSignedMinValue(Width) - *C; 6402 Upper = APInt::getSignedMaxValue(Width) + 1; 6403 } else { 6404 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6405 Lower = APInt::getSignedMinValue(Width); 6406 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6407 } 6408 } 6409 break; 6410 case Intrinsic::umin: 6411 case Intrinsic::umax: 6412 case Intrinsic::smin: 6413 case Intrinsic::smax: 6414 if (!match(II.getOperand(0), m_APInt(C)) && 6415 !match(II.getOperand(1), m_APInt(C))) 6416 break; 6417 6418 switch (II.getIntrinsicID()) { 6419 case Intrinsic::umin: 6420 Upper = *C + 1; 6421 break; 6422 case Intrinsic::umax: 6423 Lower = *C; 6424 break; 6425 case Intrinsic::smin: 6426 Lower = APInt::getSignedMinValue(Width); 6427 Upper = *C + 1; 6428 break; 6429 case Intrinsic::smax: 6430 Lower = *C; 6431 Upper = APInt::getSignedMaxValue(Width) + 1; 6432 break; 6433 default: 6434 llvm_unreachable("Must be min/max intrinsic"); 6435 } 6436 break; 6437 case Intrinsic::abs: 6438 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6439 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6440 if (match(II.getOperand(1), m_One())) 6441 Upper = APInt::getSignedMaxValue(Width) + 1; 6442 else 6443 Upper = APInt::getSignedMinValue(Width) + 1; 6444 break; 6445 default: 6446 break; 6447 } 6448 } 6449 6450 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6451 APInt &Upper, const InstrInfoQuery &IIQ) { 6452 const Value *LHS = nullptr, *RHS = nullptr; 6453 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6454 if (R.Flavor == SPF_UNKNOWN) 6455 return; 6456 6457 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6458 6459 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6460 // If the negation part of the abs (in RHS) has the NSW flag, 6461 // then the result of abs(X) is [0..SIGNED_MAX], 6462 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6463 Lower = APInt::getNullValue(BitWidth); 6464 if (match(RHS, m_Neg(m_Specific(LHS))) && 6465 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6466 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6467 else 6468 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6469 return; 6470 } 6471 6472 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6473 // The result of -abs(X) is <= 0. 6474 Lower = APInt::getSignedMinValue(BitWidth); 6475 Upper = APInt(BitWidth, 1); 6476 return; 6477 } 6478 6479 const APInt *C; 6480 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6481 return; 6482 6483 switch (R.Flavor) { 6484 case SPF_UMIN: 6485 Upper = *C + 1; 6486 break; 6487 case SPF_UMAX: 6488 Lower = *C; 6489 break; 6490 case SPF_SMIN: 6491 Lower = APInt::getSignedMinValue(BitWidth); 6492 Upper = *C + 1; 6493 break; 6494 case SPF_SMAX: 6495 Lower = *C; 6496 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6497 break; 6498 default: 6499 break; 6500 } 6501 } 6502 6503 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6504 AssumptionCache *AC, 6505 const Instruction *CtxI, 6506 unsigned Depth) { 6507 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6508 6509 if (Depth == MaxAnalysisRecursionDepth) 6510 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6511 6512 const APInt *C; 6513 if (match(V, m_APInt(C))) 6514 return ConstantRange(*C); 6515 6516 InstrInfoQuery IIQ(UseInstrInfo); 6517 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6518 APInt Lower = APInt(BitWidth, 0); 6519 APInt Upper = APInt(BitWidth, 0); 6520 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6521 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6522 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6523 setLimitsForIntrinsic(*II, Lower, Upper); 6524 else if (auto *SI = dyn_cast<SelectInst>(V)) 6525 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6526 6527 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6528 6529 if (auto *I = dyn_cast<Instruction>(V)) 6530 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6531 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6532 6533 if (CtxI && AC) { 6534 // Try to restrict the range based on information from assumptions. 6535 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6536 if (!AssumeVH) 6537 continue; 6538 CallInst *I = cast<CallInst>(AssumeVH); 6539 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6540 "Got assumption for the wrong function!"); 6541 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6542 "must be an assume intrinsic"); 6543 6544 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6545 continue; 6546 Value *Arg = I->getArgOperand(0); 6547 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6548 // Currently we just use information from comparisons. 6549 if (!Cmp || Cmp->getOperand(0) != V) 6550 continue; 6551 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6552 AC, I, Depth + 1); 6553 CR = CR.intersectWith( 6554 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6555 } 6556 } 6557 6558 return CR; 6559 } 6560 6561 static Optional<int64_t> 6562 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6563 // Skip over the first indices. 6564 gep_type_iterator GTI = gep_type_begin(GEP); 6565 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6566 /*skip along*/; 6567 6568 // Compute the offset implied by the rest of the indices. 6569 int64_t Offset = 0; 6570 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6571 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6572 if (!OpC) 6573 return None; 6574 if (OpC->isZero()) 6575 continue; // No offset. 6576 6577 // Handle struct indices, which add their field offset to the pointer. 6578 if (StructType *STy = GTI.getStructTypeOrNull()) { 6579 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6580 continue; 6581 } 6582 6583 // Otherwise, we have a sequential type like an array or fixed-length 6584 // vector. Multiply the index by the ElementSize. 6585 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6586 if (Size.isScalable()) 6587 return None; 6588 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6589 } 6590 6591 return Offset; 6592 } 6593 6594 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6595 const DataLayout &DL) { 6596 Ptr1 = Ptr1->stripPointerCasts(); 6597 Ptr2 = Ptr2->stripPointerCasts(); 6598 6599 // Handle the trivial case first. 6600 if (Ptr1 == Ptr2) { 6601 return 0; 6602 } 6603 6604 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6605 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6606 6607 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6608 // as in "P" and "gep P, 1". 6609 // Also do this iteratively to handle the the following case: 6610 // Ptr_t1 = GEP Ptr1, c1 6611 // Ptr_t2 = GEP Ptr_t1, c2 6612 // Ptr2 = GEP Ptr_t2, c3 6613 // where we will return c1+c2+c3. 6614 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6615 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6616 // are the same, and return the difference between offsets. 6617 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6618 const Value *Ptr) -> Optional<int64_t> { 6619 const GEPOperator *GEP_T = GEP; 6620 int64_t OffsetVal = 0; 6621 bool HasSameBase = false; 6622 while (GEP_T) { 6623 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6624 if (!Offset) 6625 return None; 6626 OffsetVal += *Offset; 6627 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6628 if (Op0 == Ptr) { 6629 HasSameBase = true; 6630 break; 6631 } 6632 GEP_T = dyn_cast<GEPOperator>(Op0); 6633 } 6634 if (!HasSameBase) 6635 return None; 6636 return OffsetVal; 6637 }; 6638 6639 if (GEP1) { 6640 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6641 if (Offset) 6642 return -*Offset; 6643 } 6644 if (GEP2) { 6645 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6646 if (Offset) 6647 return Offset; 6648 } 6649 6650 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6651 // base. After that base, they may have some number of common (and 6652 // potentially variable) indices. After that they handle some constant 6653 // offset, which determines their offset from each other. At this point, we 6654 // handle no other case. 6655 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6656 return None; 6657 6658 // Skip any common indices and track the GEP types. 6659 unsigned Idx = 1; 6660 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6661 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6662 break; 6663 6664 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6665 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6666 if (!Offset1 || !Offset2) 6667 return None; 6668 return *Offset2 - *Offset1; 6669 } 6670