1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2,
360                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                    bool NSW, const APInt &DemandedElts,
401                                    KnownBits &KnownOut, KnownBits &Known2,
402                                    unsigned Depth, const Query &Q) {
403   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404 
405   // If one operand is unknown and we have no nowrap information,
406   // the result will be unknown independently of the second operand.
407   if (KnownOut.isUnknown() && !NSW)
408     return;
409 
410   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412 }
413 
414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                 const APInt &DemandedElts, KnownBits &Known,
416                                 KnownBits &Known2, unsigned Depth,
417                                 const Query &Q) {
418   unsigned BitWidth = Known.getBitWidth();
419   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
420   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
421 
422   bool isKnownNegative = false;
423   bool isKnownNonNegative = false;
424   // If the multiplication is known not to overflow, compute the sign bit.
425   if (NSW) {
426     if (Op0 == Op1) {
427       // The product of a number with itself is non-negative.
428       isKnownNonNegative = true;
429     } else {
430       bool isKnownNonNegativeOp1 = Known.isNonNegative();
431       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
432       bool isKnownNegativeOp1 = Known.isNegative();
433       bool isKnownNegativeOp0 = Known2.isNegative();
434       // The product of two numbers with the same sign is non-negative.
435       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
436         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
437       // The product of a negative number and a non-negative number is either
438       // negative or zero.
439       if (!isKnownNonNegative)
440         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
441                            isKnownNonZero(Op0, Depth, Q)) ||
442                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
443                            isKnownNonZero(Op1, Depth, Q));
444     }
445   }
446 
447   assert(!Known.hasConflict() && !Known2.hasConflict());
448   // Compute a conservative estimate for high known-0 bits.
449   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
450                              Known2.countMinLeadingZeros(),
451                              BitWidth) - BitWidth;
452   LeadZ = std::min(LeadZ, BitWidth);
453 
454   // The result of the bottom bits of an integer multiply can be
455   // inferred by looking at the bottom bits of both operands and
456   // multiplying them together.
457   // We can infer at least the minimum number of known trailing bits
458   // of both operands. Depending on number of trailing zeros, we can
459   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
460   // a and b are divisible by m and n respectively.
461   // We then calculate how many of those bits are inferrable and set
462   // the output. For example, the i8 mul:
463   //  a = XXXX1100 (12)
464   //  b = XXXX1110 (14)
465   // We know the bottom 3 bits are zero since the first can be divided by
466   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
467   // Applying the multiplication to the trimmed arguments gets:
468   //    XX11 (3)
469   //    X111 (7)
470   // -------
471   //    XX11
472   //   XX11
473   //  XX11
474   // XX11
475   // -------
476   // XXXXX01
477   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
478   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
479   // The proof for this can be described as:
480   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
481   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
482   //                    umin(countTrailingZeros(C2), C6) +
483   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
484   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
485   // %aa = shl i8 %a, C5
486   // %bb = shl i8 %b, C6
487   // %aaa = or i8 %aa, C1
488   // %bbb = or i8 %bb, C2
489   // %mul = mul i8 %aaa, %bbb
490   // %mask = and i8 %mul, C7
491   //   =>
492   // %mask = i8 ((C1*C2)&C7)
493   // Where C5, C6 describe the known bits of %a, %b
494   // C1, C2 describe the known bottom bits of %a, %b.
495   // C7 describes the mask of the known bits of the result.
496   APInt Bottom0 = Known.One;
497   APInt Bottom1 = Known2.One;
498 
499   // How many times we'd be able to divide each argument by 2 (shr by 1).
500   // This gives us the number of trailing zeros on the multiplication result.
501   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
502   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
503   unsigned TrailZero0 = Known.countMinTrailingZeros();
504   unsigned TrailZero1 = Known2.countMinTrailingZeros();
505   unsigned TrailZ = TrailZero0 + TrailZero1;
506 
507   // Figure out the fewest known-bits operand.
508   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
509                                       TrailBitsKnown1 - TrailZero1);
510   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
511 
512   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
513                       Bottom1.getLoBits(TrailBitsKnown1);
514 
515   Known.resetAll();
516   Known.Zero.setHighBits(LeadZ);
517   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
518   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
519 
520   // Only make use of no-wrap flags if we failed to compute the sign bit
521   // directly.  This matters if the multiplication always overflows, in
522   // which case we prefer to follow the result of the direct computation,
523   // though as the program is invoking undefined behaviour we can choose
524   // whatever we like here.
525   if (isKnownNonNegative && !Known.isNegative())
526     Known.makeNonNegative();
527   else if (isKnownNegative && !Known.isNonNegative())
528     Known.makeNegative();
529 }
530 
531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
532                                              KnownBits &Known) {
533   unsigned BitWidth = Known.getBitWidth();
534   unsigned NumRanges = Ranges.getNumOperands() / 2;
535   assert(NumRanges >= 1);
536 
537   Known.Zero.setAllBits();
538   Known.One.setAllBits();
539 
540   for (unsigned i = 0; i < NumRanges; ++i) {
541     ConstantInt *Lower =
542         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
543     ConstantInt *Upper =
544         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
545     ConstantRange Range(Lower->getValue(), Upper->getValue());
546 
547     // The first CommonPrefixBits of all values in Range are equal.
548     unsigned CommonPrefixBits =
549         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
550     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
551     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
552     Known.One &= UnsignedMax & Mask;
553     Known.Zero &= ~UnsignedMax & Mask;
554   }
555 }
556 
557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
558   SmallVector<const Value *, 16> WorkSet(1, I);
559   SmallPtrSet<const Value *, 32> Visited;
560   SmallPtrSet<const Value *, 16> EphValues;
561 
562   // The instruction defining an assumption's condition itself is always
563   // considered ephemeral to that assumption (even if it has other
564   // non-ephemeral users). See r246696's test case for an example.
565   if (is_contained(I->operands(), E))
566     return true;
567 
568   while (!WorkSet.empty()) {
569     const Value *V = WorkSet.pop_back_val();
570     if (!Visited.insert(V).second)
571       continue;
572 
573     // If all uses of this value are ephemeral, then so is this value.
574     if (llvm::all_of(V->users(), [&](const User *U) {
575                                    return EphValues.count(U);
576                                  })) {
577       if (V == E)
578         return true;
579 
580       if (V == I || isSafeToSpeculativelyExecute(V)) {
581        EphValues.insert(V);
582        if (const User *U = dyn_cast<User>(V))
583          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
584               J != JE; ++J)
585            WorkSet.push_back(*J);
586       }
587     }
588   }
589 
590   return false;
591 }
592 
593 // Is this an intrinsic that cannot be speculated but also cannot trap?
594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
595   if (const CallInst *CI = dyn_cast<CallInst>(I))
596     if (Function *F = CI->getCalledFunction())
597       switch (F->getIntrinsicID()) {
598       default: break;
599       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
600       case Intrinsic::assume:
601       case Intrinsic::sideeffect:
602       case Intrinsic::dbg_declare:
603       case Intrinsic::dbg_value:
604       case Intrinsic::dbg_label:
605       case Intrinsic::invariant_start:
606       case Intrinsic::invariant_end:
607       case Intrinsic::lifetime_start:
608       case Intrinsic::lifetime_end:
609       case Intrinsic::objectsize:
610       case Intrinsic::ptr_annotation:
611       case Intrinsic::var_annotation:
612         return true;
613       }
614 
615   return false;
616 }
617 
618 bool llvm::isValidAssumeForContext(const Instruction *Inv,
619                                    const Instruction *CxtI,
620                                    const DominatorTree *DT) {
621   // There are two restrictions on the use of an assume:
622   //  1. The assume must dominate the context (or the control flow must
623   //     reach the assume whenever it reaches the context).
624   //  2. The context must not be in the assume's set of ephemeral values
625   //     (otherwise we will use the assume to prove that the condition
626   //     feeding the assume is trivially true, thus causing the removal of
627   //     the assume).
628 
629   if (Inv->getParent() == CxtI->getParent()) {
630     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
631     // in the BB.
632     if (Inv->comesBefore(CxtI))
633       return true;
634 
635     // Don't let an assume affect itself - this would cause the problems
636     // `isEphemeralValueOf` is trying to prevent, and it would also make
637     // the loop below go out of bounds.
638     if (Inv == CxtI)
639       return false;
640 
641     // The context comes first, but they're both in the same block.
642     // Make sure there is nothing in between that might interrupt
643     // the control flow, not even CxtI itself.
644     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
645       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
646         return false;
647 
648     return !isEphemeralValueOf(Inv, CxtI);
649   }
650 
651   // Inv and CxtI are in different blocks.
652   if (DT) {
653     if (DT->dominates(Inv, CxtI))
654       return true;
655   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
656     // We don't have a DT, but this trivially dominates.
657     return true;
658   }
659 
660   return false;
661 }
662 
663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
664   // Use of assumptions is context-sensitive. If we don't have a context, we
665   // cannot use them!
666   if (!Q.AC || !Q.CxtI)
667     return false;
668 
669   // Note that the patterns below need to be kept in sync with the code
670   // in AssumptionCache::updateAffectedValues.
671 
672   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
673     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
674 
675     Value *RHS;
676     CmpInst::Predicate Pred;
677     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
678       return false;
679     // assume(v u> y) -> assume(v != 0)
680     if (Pred == ICmpInst::ICMP_UGT)
681       return true;
682 
683     // assume(v != 0)
684     // We special-case this one to ensure that we handle `assume(v != null)`.
685     if (Pred == ICmpInst::ICMP_NE)
686       return match(RHS, m_Zero());
687 
688     // All other predicates - rely on generic ConstantRange handling.
689     ConstantInt *CI;
690     if (!match(RHS, m_ConstantInt(CI)))
691       return false;
692     ConstantRange RHSRange(CI->getValue());
693     ConstantRange TrueValues =
694         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
695     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
696   };
697 
698   if (Q.CxtI && V->getType()->isPointerTy()) {
699     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
700     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
701                               V->getType()->getPointerAddressSpace()))
702       AttrKinds.push_back(Attribute::Dereferenceable);
703 
704     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
705       return true;
706   }
707 
708   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
709     if (!AssumeVH)
710       continue;
711     CallInst *I = cast<CallInst>(AssumeVH);
712     assert(I->getFunction() == Q.CxtI->getFunction() &&
713            "Got assumption for the wrong function!");
714     if (Q.isExcluded(I))
715       continue;
716 
717     // Warning: This loop can end up being somewhat performance sensitive.
718     // We're running this loop for once for each value queried resulting in a
719     // runtime of ~O(#assumes * #values).
720 
721     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
722            "must be an assume intrinsic");
723 
724     Value *Arg = I->getArgOperand(0);
725     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
726     if (!Cmp)
727       continue;
728 
729     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
730       return true;
731   }
732 
733   return false;
734 }
735 
736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
737                                        unsigned Depth, const Query &Q) {
738   // Use of assumptions is context-sensitive. If we don't have a context, we
739   // cannot use them!
740   if (!Q.AC || !Q.CxtI)
741     return;
742 
743   unsigned BitWidth = Known.getBitWidth();
744 
745   // Note that the patterns below need to be kept in sync with the code
746   // in AssumptionCache::updateAffectedValues.
747 
748   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
749     if (!AssumeVH)
750       continue;
751     CallInst *I = cast<CallInst>(AssumeVH);
752     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
753            "Got assumption for the wrong function!");
754     if (Q.isExcluded(I))
755       continue;
756 
757     // Warning: This loop can end up being somewhat performance sensitive.
758     // We're running this loop for once for each value queried resulting in a
759     // runtime of ~O(#assumes * #values).
760 
761     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
762            "must be an assume intrinsic");
763 
764     Value *Arg = I->getArgOperand(0);
765 
766     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
767       assert(BitWidth == 1 && "assume operand is not i1?");
768       Known.setAllOnes();
769       return;
770     }
771     if (match(Arg, m_Not(m_Specific(V))) &&
772         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
773       assert(BitWidth == 1 && "assume operand is not i1?");
774       Known.setAllZero();
775       return;
776     }
777 
778     // The remaining tests are all recursive, so bail out if we hit the limit.
779     if (Depth == MaxAnalysisRecursionDepth)
780       continue;
781 
782     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
783     if (!Cmp)
784       continue;
785 
786     // Note that ptrtoint may change the bitwidth.
787     Value *A, *B;
788     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
789 
790     CmpInst::Predicate Pred;
791     uint64_t C;
792     switch (Cmp->getPredicate()) {
793     default:
794       break;
795     case ICmpInst::ICMP_EQ:
796       // assume(v = a)
797       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
798           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
799         KnownBits RHSKnown =
800             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
801         Known.Zero |= RHSKnown.Zero;
802         Known.One  |= RHSKnown.One;
803       // assume(v & b = a)
804       } else if (match(Cmp,
805                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
806                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
807         KnownBits RHSKnown =
808             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
809         KnownBits MaskKnown =
810             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
811 
812         // For those bits in the mask that are known to be one, we can propagate
813         // known bits from the RHS to V.
814         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
815         Known.One  |= RHSKnown.One  & MaskKnown.One;
816       // assume(~(v & b) = a)
817       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
818                                      m_Value(A))) &&
819                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
820         KnownBits RHSKnown =
821             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
822         KnownBits MaskKnown =
823             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
824 
825         // For those bits in the mask that are known to be one, we can propagate
826         // inverted known bits from the RHS to V.
827         Known.Zero |= RHSKnown.One  & MaskKnown.One;
828         Known.One  |= RHSKnown.Zero & MaskKnown.One;
829       // assume(v | b = a)
830       } else if (match(Cmp,
831                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
832                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
833         KnownBits RHSKnown =
834             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
835         KnownBits BKnown =
836             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
837 
838         // For those bits in B that are known to be zero, we can propagate known
839         // bits from the RHS to V.
840         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
841         Known.One  |= RHSKnown.One  & BKnown.Zero;
842       // assume(~(v | b) = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
848         KnownBits BKnown =
849             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
850 
851         // For those bits in B that are known to be zero, we can propagate
852         // inverted known bits from the RHS to V.
853         Known.Zero |= RHSKnown.One  & BKnown.Zero;
854         Known.One  |= RHSKnown.Zero & BKnown.Zero;
855       // assume(v ^ b = a)
856       } else if (match(Cmp,
857                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
861         KnownBits BKnown =
862             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
863 
864         // For those bits in B that are known to be zero, we can propagate known
865         // bits from the RHS to V. For those bits in B that are known to be one,
866         // we can propagate inverted known bits from the RHS to V.
867         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
868         Known.One  |= RHSKnown.One  & BKnown.Zero;
869         Known.Zero |= RHSKnown.One  & BKnown.One;
870         Known.One  |= RHSKnown.Zero & BKnown.One;
871       // assume(~(v ^ b) = a)
872       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
873                                      m_Value(A))) &&
874                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
875         KnownBits RHSKnown =
876             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
877         KnownBits BKnown =
878             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
879 
880         // For those bits in B that are known to be zero, we can propagate
881         // inverted known bits from the RHS to V. For those bits in B that are
882         // known to be one, we can propagate known bits from the RHS to V.
883         Known.Zero |= RHSKnown.One  & BKnown.Zero;
884         Known.One  |= RHSKnown.Zero & BKnown.Zero;
885         Known.Zero |= RHSKnown.Zero & BKnown.One;
886         Known.One  |= RHSKnown.One  & BKnown.One;
887       // assume(v << c = a)
888       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
889                                      m_Value(A))) &&
890                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
891         KnownBits RHSKnown =
892             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
893 
894         // For those bits in RHS that are known, we can propagate them to known
895         // bits in V shifted to the right by C.
896         RHSKnown.Zero.lshrInPlace(C);
897         Known.Zero |= RHSKnown.Zero;
898         RHSKnown.One.lshrInPlace(C);
899         Known.One  |= RHSKnown.One;
900       // assume(~(v << c) = a)
901       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
902                                      m_Value(A))) &&
903                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
904         KnownBits RHSKnown =
905             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
906         // For those bits in RHS that are known, we can propagate them inverted
907         // to known bits in V shifted to the right by C.
908         RHSKnown.One.lshrInPlace(C);
909         Known.Zero |= RHSKnown.One;
910         RHSKnown.Zero.lshrInPlace(C);
911         Known.One  |= RHSKnown.Zero;
912       // assume(v >> c = a)
913       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
914                                      m_Value(A))) &&
915                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
916         KnownBits RHSKnown =
917             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
918         // For those bits in RHS that are known, we can propagate them to known
919         // bits in V shifted to the right by C.
920         Known.Zero |= RHSKnown.Zero << C;
921         Known.One  |= RHSKnown.One  << C;
922       // assume(~(v >> c) = a)
923       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
924                                      m_Value(A))) &&
925                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
926         KnownBits RHSKnown =
927             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
928         // For those bits in RHS that are known, we can propagate them inverted
929         // to known bits in V shifted to the right by C.
930         Known.Zero |= RHSKnown.One  << C;
931         Known.One  |= RHSKnown.Zero << C;
932       }
933       break;
934     case ICmpInst::ICMP_SGE:
935       // assume(v >=_s c) where c is non-negative
936       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
937           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
938         KnownBits RHSKnown =
939             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
940 
941         if (RHSKnown.isNonNegative()) {
942           // We know that the sign bit is zero.
943           Known.makeNonNegative();
944         }
945       }
946       break;
947     case ICmpInst::ICMP_SGT:
948       // assume(v >_s c) where c is at least -1.
949       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
950           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
951         KnownBits RHSKnown =
952             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
953 
954         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
955           // We know that the sign bit is zero.
956           Known.makeNonNegative();
957         }
958       }
959       break;
960     case ICmpInst::ICMP_SLE:
961       // assume(v <=_s c) where c is negative
962       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
963           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
964         KnownBits RHSKnown =
965             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
966 
967         if (RHSKnown.isNegative()) {
968           // We know that the sign bit is one.
969           Known.makeNegative();
970         }
971       }
972       break;
973     case ICmpInst::ICMP_SLT:
974       // assume(v <_s c) where c is non-positive
975       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
976           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
977         KnownBits RHSKnown =
978             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
979 
980         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
981           // We know that the sign bit is one.
982           Known.makeNegative();
983         }
984       }
985       break;
986     case ICmpInst::ICMP_ULE:
987       // assume(v <=_u c)
988       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
989           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
990         KnownBits RHSKnown =
991             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
992 
993         // Whatever high bits in c are zero are known to be zero.
994         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
995       }
996       break;
997     case ICmpInst::ICMP_ULT:
998       // assume(v <_u c)
999       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1000           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1001         KnownBits RHSKnown =
1002             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1003 
1004         // If the RHS is known zero, then this assumption must be wrong (nothing
1005         // is unsigned less than zero). Signal a conflict and get out of here.
1006         if (RHSKnown.isZero()) {
1007           Known.Zero.setAllBits();
1008           Known.One.setAllBits();
1009           break;
1010         }
1011 
1012         // Whatever high bits in c are zero are known to be zero (if c is a power
1013         // of 2, then one more).
1014         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
1015           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
1016         else
1017           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
1018       }
1019       break;
1020     }
1021   }
1022 
1023   // If assumptions conflict with each other or previous known bits, then we
1024   // have a logical fallacy. It's possible that the assumption is not reachable,
1025   // so this isn't a real bug. On the other hand, the program may have undefined
1026   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
1027   // clear out the known bits, try to warn the user, and hope for the best.
1028   if (Known.Zero.intersects(Known.One)) {
1029     Known.resetAll();
1030 
1031     if (Q.ORE)
1032       Q.ORE->emit([&]() {
1033         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
1034         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
1035                                           CxtI)
1036                << "Detected conflicting code assumptions. Program may "
1037                   "have undefined behavior, or compiler may have "
1038                   "internal error.";
1039       });
1040   }
1041 }
1042 
1043 /// Compute known bits from a shift operator, including those with a
1044 /// non-constant shift amount. Known is the output of this function. Known2 is a
1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
1046 /// operator-specific functions that, given the known-zero or known-one bits
1047 /// respectively, and a shift amount, compute the implied known-zero or
1048 /// known-one bits of the shift operator's result respectively for that shift
1049 /// amount. The results from calling KZF and KOF are conservatively combined for
1050 /// all permitted shift amounts.
1051 static void computeKnownBitsFromShiftOperator(
1052     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1053     KnownBits &Known2, unsigned Depth, const Query &Q,
1054     function_ref<APInt(const APInt &, unsigned)> KZF,
1055     function_ref<APInt(const APInt &, unsigned)> KOF) {
1056   unsigned BitWidth = Known.getBitWidth();
1057 
1058   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1059   if (Known.isConstant()) {
1060     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
1061 
1062     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1063     Known.Zero = KZF(Known.Zero, ShiftAmt);
1064     Known.One  = KOF(Known.One, ShiftAmt);
1065     // If the known bits conflict, this must be an overflowing left shift, so
1066     // the shift result is poison. We can return anything we want. Choose 0 for
1067     // the best folding opportunity.
1068     if (Known.hasConflict())
1069       Known.setAllZero();
1070 
1071     return;
1072   }
1073 
1074   // If the shift amount could be greater than or equal to the bit-width of the
1075   // LHS, the value could be poison, but bail out because the check below is
1076   // expensive.
1077   // TODO: Should we just carry on?
1078   if (Known.getMaxValue().uge(BitWidth)) {
1079     Known.resetAll();
1080     return;
1081   }
1082 
1083   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1084   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1085   // limit value (which implies all bits are known).
1086   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1087   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1088 
1089   // It would be more-clearly correct to use the two temporaries for this
1090   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1091   Known.resetAll();
1092 
1093   // If we know the shifter operand is nonzero, we can sometimes infer more
1094   // known bits. However this is expensive to compute, so be lazy about it and
1095   // only compute it when absolutely necessary.
1096   Optional<bool> ShifterOperandIsNonZero;
1097 
1098   // Early exit if we can't constrain any well-defined shift amount.
1099   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1100       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1101     ShifterOperandIsNonZero =
1102         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1103     if (!*ShifterOperandIsNonZero)
1104       return;
1105   }
1106 
1107   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1108 
1109   Known.Zero.setAllBits();
1110   Known.One.setAllBits();
1111   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1112     // Combine the shifted known input bits only for those shift amounts
1113     // compatible with its known constraints.
1114     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1115       continue;
1116     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1117       continue;
1118     // If we know the shifter is nonzero, we may be able to infer more known
1119     // bits. This check is sunk down as far as possible to avoid the expensive
1120     // call to isKnownNonZero if the cheaper checks above fail.
1121     if (ShiftAmt == 0) {
1122       if (!ShifterOperandIsNonZero.hasValue())
1123         ShifterOperandIsNonZero =
1124             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1125       if (*ShifterOperandIsNonZero)
1126         continue;
1127     }
1128 
1129     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1130     Known.One  &= KOF(Known2.One, ShiftAmt);
1131   }
1132 
1133   // If the known bits conflict, the result is poison. Return a 0 and hope the
1134   // caller can further optimize that.
1135   if (Known.hasConflict())
1136     Known.setAllZero();
1137 }
1138 
1139 static void computeKnownBitsFromOperator(const Operator *I,
1140                                          const APInt &DemandedElts,
1141                                          KnownBits &Known, unsigned Depth,
1142                                          const Query &Q) {
1143   unsigned BitWidth = Known.getBitWidth();
1144 
1145   KnownBits Known2(BitWidth);
1146   switch (I->getOpcode()) {
1147   default: break;
1148   case Instruction::Load:
1149     if (MDNode *MD =
1150             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1151       computeKnownBitsFromRangeMetadata(*MD, Known);
1152     break;
1153   case Instruction::And: {
1154     // If either the LHS or the RHS are Zero, the result is zero.
1155     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1156     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1157 
1158     Known &= Known2;
1159 
1160     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1161     // here we handle the more general case of adding any odd number by
1162     // matching the form add(x, add(x, y)) where y is odd.
1163     // TODO: This could be generalized to clearing any bit set in y where the
1164     // following bit is known to be unset in y.
1165     Value *X = nullptr, *Y = nullptr;
1166     if (!Known.Zero[0] && !Known.One[0] &&
1167         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1168       Known2.resetAll();
1169       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1170       if (Known2.countMinTrailingOnes() > 0)
1171         Known.Zero.setBit(0);
1172     }
1173     break;
1174   }
1175   case Instruction::Or:
1176     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1178 
1179     Known |= Known2;
1180     break;
1181   case Instruction::Xor:
1182     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1183     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1184 
1185     Known ^= Known2;
1186     break;
1187   case Instruction::Mul: {
1188     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1189     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1190                         Known, Known2, Depth, Q);
1191     break;
1192   }
1193   case Instruction::UDiv: {
1194     // For the purposes of computing leading zeros we can conservatively
1195     // treat a udiv as a logical right shift by the power of 2 known to
1196     // be less than the denominator.
1197     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1198     unsigned LeadZ = Known2.countMinLeadingZeros();
1199 
1200     Known2.resetAll();
1201     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1202     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1203     if (RHSMaxLeadingZeros != BitWidth)
1204       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1205 
1206     Known.Zero.setHighBits(LeadZ);
1207     break;
1208   }
1209   case Instruction::Select: {
1210     const Value *LHS = nullptr, *RHS = nullptr;
1211     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1212     if (SelectPatternResult::isMinOrMax(SPF)) {
1213       computeKnownBits(RHS, Known, Depth + 1, Q);
1214       computeKnownBits(LHS, Known2, Depth + 1, Q);
1215       switch (SPF) {
1216       default:
1217         llvm_unreachable("Unhandled select pattern flavor!");
1218       case SPF_SMAX:
1219         Known = KnownBits::smax(Known, Known2);
1220         break;
1221       case SPF_SMIN:
1222         Known = KnownBits::smin(Known, Known2);
1223         break;
1224       case SPF_UMAX:
1225         Known = KnownBits::umax(Known, Known2);
1226         break;
1227       case SPF_UMIN:
1228         Known = KnownBits::umin(Known, Known2);
1229         break;
1230       }
1231       break;
1232     }
1233 
1234     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1235     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1236 
1237     // Only known if known in both the LHS and RHS.
1238     Known.One &= Known2.One;
1239     Known.Zero &= Known2.Zero;
1240 
1241     if (SPF == SPF_ABS) {
1242       // RHS from matchSelectPattern returns the negation part of abs pattern.
1243       // If the negate has an NSW flag we can assume the sign bit of the result
1244       // will be 0 because that makes abs(INT_MIN) undefined.
1245       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1246           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1247         Known.Zero.setSignBit();
1248     }
1249 
1250     break;
1251   }
1252   case Instruction::FPTrunc:
1253   case Instruction::FPExt:
1254   case Instruction::FPToUI:
1255   case Instruction::FPToSI:
1256   case Instruction::SIToFP:
1257   case Instruction::UIToFP:
1258     break; // Can't work with floating point.
1259   case Instruction::PtrToInt:
1260   case Instruction::IntToPtr:
1261     // Fall through and handle them the same as zext/trunc.
1262     LLVM_FALLTHROUGH;
1263   case Instruction::ZExt:
1264   case Instruction::Trunc: {
1265     Type *SrcTy = I->getOperand(0)->getType();
1266 
1267     unsigned SrcBitWidth;
1268     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1269     // which fall through here.
1270     Type *ScalarTy = SrcTy->getScalarType();
1271     SrcBitWidth = ScalarTy->isPointerTy() ?
1272       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1273       Q.DL.getTypeSizeInBits(ScalarTy);
1274 
1275     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1276     Known = Known.anyextOrTrunc(SrcBitWidth);
1277     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1278     Known = Known.zextOrTrunc(BitWidth);
1279     break;
1280   }
1281   case Instruction::BitCast: {
1282     Type *SrcTy = I->getOperand(0)->getType();
1283     if (SrcTy->isIntOrPtrTy() &&
1284         // TODO: For now, not handling conversions like:
1285         // (bitcast i64 %x to <2 x i32>)
1286         !I->getType()->isVectorTy()) {
1287       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1288       break;
1289     }
1290     break;
1291   }
1292   case Instruction::SExt: {
1293     // Compute the bits in the result that are not present in the input.
1294     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1295 
1296     Known = Known.trunc(SrcBitWidth);
1297     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1298     // If the sign bit of the input is known set or clear, then we know the
1299     // top bits of the result.
1300     Known = Known.sext(BitWidth);
1301     break;
1302   }
1303   case Instruction::Shl: {
1304     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1305     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1306     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1307       APInt KZResult = KnownZero << ShiftAmt;
1308       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1309       // If this shift has "nsw" keyword, then the result is either a poison
1310       // value or has the same sign bit as the first operand.
1311       if (NSW && KnownZero.isSignBitSet())
1312         KZResult.setSignBit();
1313       return KZResult;
1314     };
1315 
1316     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1317       APInt KOResult = KnownOne << ShiftAmt;
1318       if (NSW && KnownOne.isSignBitSet())
1319         KOResult.setSignBit();
1320       return KOResult;
1321     };
1322 
1323     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1324                                       KZF, KOF);
1325     break;
1326   }
1327   case Instruction::LShr: {
1328     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1329     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1330       APInt KZResult = KnownZero.lshr(ShiftAmt);
1331       // High bits known zero.
1332       KZResult.setHighBits(ShiftAmt);
1333       return KZResult;
1334     };
1335 
1336     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1337       return KnownOne.lshr(ShiftAmt);
1338     };
1339 
1340     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1341                                       KZF, KOF);
1342     break;
1343   }
1344   case Instruction::AShr: {
1345     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1346     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1347       return KnownZero.ashr(ShiftAmt);
1348     };
1349 
1350     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1351       return KnownOne.ashr(ShiftAmt);
1352     };
1353 
1354     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1355                                       KZF, KOF);
1356     break;
1357   }
1358   case Instruction::Sub: {
1359     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1360     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1361                            DemandedElts, Known, Known2, Depth, Q);
1362     break;
1363   }
1364   case Instruction::Add: {
1365     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1366     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1367                            DemandedElts, Known, Known2, Depth, Q);
1368     break;
1369   }
1370   case Instruction::SRem:
1371     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1372       APInt RA = Rem->getValue().abs();
1373       if (RA.isPowerOf2()) {
1374         APInt LowBits = RA - 1;
1375         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1376 
1377         // The low bits of the first operand are unchanged by the srem.
1378         Known.Zero = Known2.Zero & LowBits;
1379         Known.One = Known2.One & LowBits;
1380 
1381         // If the first operand is non-negative or has all low bits zero, then
1382         // the upper bits are all zero.
1383         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1384           Known.Zero |= ~LowBits;
1385 
1386         // If the first operand is negative and not all low bits are zero, then
1387         // the upper bits are all one.
1388         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1389           Known.One |= ~LowBits;
1390 
1391         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1392         break;
1393       }
1394     }
1395 
1396     // The sign bit is the LHS's sign bit, except when the result of the
1397     // remainder is zero.
1398     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1399     // If it's known zero, our sign bit is also zero.
1400     if (Known2.isNonNegative())
1401       Known.makeNonNegative();
1402 
1403     break;
1404   case Instruction::URem: {
1405     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1406       const APInt &RA = Rem->getValue();
1407       if (RA.isPowerOf2()) {
1408         APInt LowBits = (RA - 1);
1409         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1410         Known.Zero |= ~LowBits;
1411         Known.One &= LowBits;
1412         break;
1413       }
1414     }
1415 
1416     // Since the result is less than or equal to either operand, any leading
1417     // zero bits in either operand must also exist in the result.
1418     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1419     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1420 
1421     unsigned Leaders =
1422         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1423     Known.resetAll();
1424     Known.Zero.setHighBits(Leaders);
1425     break;
1426   }
1427   case Instruction::Alloca:
1428     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1429     break;
1430   case Instruction::GetElementPtr: {
1431     // Analyze all of the subscripts of this getelementptr instruction
1432     // to determine if we can prove known low zero bits.
1433     KnownBits LocalKnown(BitWidth);
1434     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1435     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1436 
1437     gep_type_iterator GTI = gep_type_begin(I);
1438     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1439       // TrailZ can only become smaller, short-circuit if we hit zero.
1440       if (TrailZ == 0)
1441         break;
1442 
1443       Value *Index = I->getOperand(i);
1444       if (StructType *STy = GTI.getStructTypeOrNull()) {
1445         // Handle struct member offset arithmetic.
1446 
1447         // Handle case when index is vector zeroinitializer
1448         Constant *CIndex = cast<Constant>(Index);
1449         if (CIndex->isZeroValue())
1450           continue;
1451 
1452         if (CIndex->getType()->isVectorTy())
1453           Index = CIndex->getSplatValue();
1454 
1455         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1456         const StructLayout *SL = Q.DL.getStructLayout(STy);
1457         uint64_t Offset = SL->getElementOffset(Idx);
1458         TrailZ = std::min<unsigned>(TrailZ,
1459                                     countTrailingZeros(Offset));
1460       } else {
1461         // Handle array index arithmetic.
1462         Type *IndexedTy = GTI.getIndexedType();
1463         if (!IndexedTy->isSized()) {
1464           TrailZ = 0;
1465           break;
1466         }
1467         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1468         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1469         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1470         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1471         TrailZ = std::min(TrailZ,
1472                           unsigned(countTrailingZeros(TypeSize) +
1473                                    LocalKnown.countMinTrailingZeros()));
1474       }
1475     }
1476 
1477     Known.Zero.setLowBits(TrailZ);
1478     break;
1479   }
1480   case Instruction::PHI: {
1481     const PHINode *P = cast<PHINode>(I);
1482     // Handle the case of a simple two-predecessor recurrence PHI.
1483     // There's a lot more that could theoretically be done here, but
1484     // this is sufficient to catch some interesting cases.
1485     if (P->getNumIncomingValues() == 2) {
1486       for (unsigned i = 0; i != 2; ++i) {
1487         Value *L = P->getIncomingValue(i);
1488         Value *R = P->getIncomingValue(!i);
1489         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1490         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1491         Operator *LU = dyn_cast<Operator>(L);
1492         if (!LU)
1493           continue;
1494         unsigned Opcode = LU->getOpcode();
1495         // Check for operations that have the property that if
1496         // both their operands have low zero bits, the result
1497         // will have low zero bits.
1498         if (Opcode == Instruction::Add ||
1499             Opcode == Instruction::Sub ||
1500             Opcode == Instruction::And ||
1501             Opcode == Instruction::Or ||
1502             Opcode == Instruction::Mul) {
1503           Value *LL = LU->getOperand(0);
1504           Value *LR = LU->getOperand(1);
1505           // Find a recurrence.
1506           if (LL == I)
1507             L = LR;
1508           else if (LR == I)
1509             L = LL;
1510           else
1511             continue; // Check for recurrence with L and R flipped.
1512 
1513           // Change the context instruction to the "edge" that flows into the
1514           // phi. This is important because that is where the value is actually
1515           // "evaluated" even though it is used later somewhere else. (see also
1516           // D69571).
1517           Query RecQ = Q;
1518 
1519           // Ok, we have a PHI of the form L op= R. Check for low
1520           // zero bits.
1521           RecQ.CxtI = RInst;
1522           computeKnownBits(R, Known2, Depth + 1, RecQ);
1523 
1524           // We need to take the minimum number of known bits
1525           KnownBits Known3(BitWidth);
1526           RecQ.CxtI = LInst;
1527           computeKnownBits(L, Known3, Depth + 1, RecQ);
1528 
1529           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1530                                          Known3.countMinTrailingZeros()));
1531 
1532           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1533           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1534             // If initial value of recurrence is nonnegative, and we are adding
1535             // a nonnegative number with nsw, the result can only be nonnegative
1536             // or poison value regardless of the number of times we execute the
1537             // add in phi recurrence. If initial value is negative and we are
1538             // adding a negative number with nsw, the result can only be
1539             // negative or poison value. Similar arguments apply to sub and mul.
1540             //
1541             // (add non-negative, non-negative) --> non-negative
1542             // (add negative, negative) --> negative
1543             if (Opcode == Instruction::Add) {
1544               if (Known2.isNonNegative() && Known3.isNonNegative())
1545                 Known.makeNonNegative();
1546               else if (Known2.isNegative() && Known3.isNegative())
1547                 Known.makeNegative();
1548             }
1549 
1550             // (sub nsw non-negative, negative) --> non-negative
1551             // (sub nsw negative, non-negative) --> negative
1552             else if (Opcode == Instruction::Sub && LL == I) {
1553               if (Known2.isNonNegative() && Known3.isNegative())
1554                 Known.makeNonNegative();
1555               else if (Known2.isNegative() && Known3.isNonNegative())
1556                 Known.makeNegative();
1557             }
1558 
1559             // (mul nsw non-negative, non-negative) --> non-negative
1560             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1561                      Known3.isNonNegative())
1562               Known.makeNonNegative();
1563           }
1564 
1565           break;
1566         }
1567       }
1568     }
1569 
1570     // Unreachable blocks may have zero-operand PHI nodes.
1571     if (P->getNumIncomingValues() == 0)
1572       break;
1573 
1574     // Otherwise take the unions of the known bit sets of the operands,
1575     // taking conservative care to avoid excessive recursion.
1576     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1577       // Skip if every incoming value references to ourself.
1578       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1579         break;
1580 
1581       Known.Zero.setAllBits();
1582       Known.One.setAllBits();
1583       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1584         Value *IncValue = P->getIncomingValue(u);
1585         // Skip direct self references.
1586         if (IncValue == P) continue;
1587 
1588         // Change the context instruction to the "edge" that flows into the
1589         // phi. This is important because that is where the value is actually
1590         // "evaluated" even though it is used later somewhere else. (see also
1591         // D69571).
1592         Query RecQ = Q;
1593         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1594 
1595         Known2 = KnownBits(BitWidth);
1596         // Recurse, but cap the recursion to one level, because we don't
1597         // want to waste time spinning around in loops.
1598         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1599         Known.Zero &= Known2.Zero;
1600         Known.One &= Known2.One;
1601         // If all bits have been ruled out, there's no need to check
1602         // more operands.
1603         if (!Known.Zero && !Known.One)
1604           break;
1605       }
1606     }
1607     break;
1608   }
1609   case Instruction::Call:
1610   case Instruction::Invoke:
1611     // If range metadata is attached to this call, set known bits from that,
1612     // and then intersect with known bits based on other properties of the
1613     // function.
1614     if (MDNode *MD =
1615             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1616       computeKnownBitsFromRangeMetadata(*MD, Known);
1617     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1618       computeKnownBits(RV, Known2, Depth + 1, Q);
1619       Known.Zero |= Known2.Zero;
1620       Known.One |= Known2.One;
1621     }
1622     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1623       switch (II->getIntrinsicID()) {
1624       default: break;
1625       case Intrinsic::abs:
1626         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1627 
1628         // If the source's MSB is zero then we know the rest of the bits.
1629         if (Known2.isNonNegative()) {
1630           Known.Zero |= Known2.Zero;
1631           Known.One |= Known2.One;
1632           break;
1633         }
1634 
1635         // Absolute value preserves trailing zero count.
1636         Known.Zero.setLowBits(Known2.Zero.countTrailingOnes());
1637 
1638         // If this call is undefined for INT_MIN, the result is positive. We
1639         // also know it can't be INT_MIN if there is a set bit that isn't the
1640         // sign bit.
1641         Known2.One.clearSignBit();
1642         if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue())
1643           Known.Zero.setSignBit();
1644         // FIXME: Handle known negative input?
1645         // FIXME: Calculate the negated Known bits and combine them?
1646         break;
1647       case Intrinsic::bitreverse:
1648         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1649         Known.Zero |= Known2.Zero.reverseBits();
1650         Known.One |= Known2.One.reverseBits();
1651         break;
1652       case Intrinsic::bswap:
1653         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1654         Known.Zero |= Known2.Zero.byteSwap();
1655         Known.One |= Known2.One.byteSwap();
1656         break;
1657       case Intrinsic::ctlz: {
1658         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1659         // If we have a known 1, its position is our upper bound.
1660         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1661         // If this call is undefined for 0, the result will be less than 2^n.
1662         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1663           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1664         unsigned LowBits = Log2_32(PossibleLZ)+1;
1665         Known.Zero.setBitsFrom(LowBits);
1666         break;
1667       }
1668       case Intrinsic::cttz: {
1669         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1670         // If we have a known 1, its position is our upper bound.
1671         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1672         // If this call is undefined for 0, the result will be less than 2^n.
1673         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1674           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1675         unsigned LowBits = Log2_32(PossibleTZ)+1;
1676         Known.Zero.setBitsFrom(LowBits);
1677         break;
1678       }
1679       case Intrinsic::ctpop: {
1680         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1681         // We can bound the space the count needs.  Also, bits known to be zero
1682         // can't contribute to the population.
1683         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1684         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1685         Known.Zero.setBitsFrom(LowBits);
1686         // TODO: we could bound KnownOne using the lower bound on the number
1687         // of bits which might be set provided by popcnt KnownOne2.
1688         break;
1689       }
1690       case Intrinsic::fshr:
1691       case Intrinsic::fshl: {
1692         const APInt *SA;
1693         if (!match(I->getOperand(2), m_APInt(SA)))
1694           break;
1695 
1696         // Normalize to funnel shift left.
1697         uint64_t ShiftAmt = SA->urem(BitWidth);
1698         if (II->getIntrinsicID() == Intrinsic::fshr)
1699           ShiftAmt = BitWidth - ShiftAmt;
1700 
1701         KnownBits Known3(BitWidth);
1702         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1703         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1704 
1705         Known.Zero =
1706             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1707         Known.One =
1708             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1709         break;
1710       }
1711       case Intrinsic::uadd_sat:
1712       case Intrinsic::usub_sat: {
1713         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1714         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1715         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1716 
1717         // Add: Leading ones of either operand are preserved.
1718         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1719         // as leading zeros in the result.
1720         unsigned LeadingKnown;
1721         if (IsAdd)
1722           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1723                                   Known2.countMinLeadingOnes());
1724         else
1725           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1726                                   Known2.countMinLeadingOnes());
1727 
1728         Known = KnownBits::computeForAddSub(
1729             IsAdd, /* NSW */ false, Known, Known2);
1730 
1731         // We select between the operation result and all-ones/zero
1732         // respectively, so we can preserve known ones/zeros.
1733         if (IsAdd) {
1734           Known.One.setHighBits(LeadingKnown);
1735           Known.Zero.clearAllBits();
1736         } else {
1737           Known.Zero.setHighBits(LeadingKnown);
1738           Known.One.clearAllBits();
1739         }
1740         break;
1741       }
1742       case Intrinsic::x86_sse42_crc32_64_64:
1743         Known.Zero.setBitsFrom(32);
1744         break;
1745       }
1746     }
1747     break;
1748   case Instruction::ShuffleVector: {
1749     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1750     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1751     if (!Shuf) {
1752       Known.resetAll();
1753       return;
1754     }
1755     // For undef elements, we don't know anything about the common state of
1756     // the shuffle result.
1757     APInt DemandedLHS, DemandedRHS;
1758     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1759       Known.resetAll();
1760       return;
1761     }
1762     Known.One.setAllBits();
1763     Known.Zero.setAllBits();
1764     if (!!DemandedLHS) {
1765       const Value *LHS = Shuf->getOperand(0);
1766       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1767       // If we don't know any bits, early out.
1768       if (Known.isUnknown())
1769         break;
1770     }
1771     if (!!DemandedRHS) {
1772       const Value *RHS = Shuf->getOperand(1);
1773       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1774       Known.One &= Known2.One;
1775       Known.Zero &= Known2.Zero;
1776     }
1777     break;
1778   }
1779   case Instruction::InsertElement: {
1780     const Value *Vec = I->getOperand(0);
1781     const Value *Elt = I->getOperand(1);
1782     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1783     // Early out if the index is non-constant or out-of-range.
1784     unsigned NumElts = DemandedElts.getBitWidth();
1785     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1786       Known.resetAll();
1787       return;
1788     }
1789     Known.One.setAllBits();
1790     Known.Zero.setAllBits();
1791     unsigned EltIdx = CIdx->getZExtValue();
1792     // Do we demand the inserted element?
1793     if (DemandedElts[EltIdx]) {
1794       computeKnownBits(Elt, Known, Depth + 1, Q);
1795       // If we don't know any bits, early out.
1796       if (Known.isUnknown())
1797         break;
1798     }
1799     // We don't need the base vector element that has been inserted.
1800     APInt DemandedVecElts = DemandedElts;
1801     DemandedVecElts.clearBit(EltIdx);
1802     if (!!DemandedVecElts) {
1803       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1804       Known.One &= Known2.One;
1805       Known.Zero &= Known2.Zero;
1806     }
1807     break;
1808   }
1809   case Instruction::ExtractElement: {
1810     // Look through extract element. If the index is non-constant or
1811     // out-of-range demand all elements, otherwise just the extracted element.
1812     const Value *Vec = I->getOperand(0);
1813     const Value *Idx = I->getOperand(1);
1814     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1815     if (isa<ScalableVectorType>(Vec->getType())) {
1816       // FIXME: there's probably *something* we can do with scalable vectors
1817       Known.resetAll();
1818       break;
1819     }
1820     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1821     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1822     if (CIdx && CIdx->getValue().ult(NumElts))
1823       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1824     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1825     break;
1826   }
1827   case Instruction::ExtractValue:
1828     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1829       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1830       if (EVI->getNumIndices() != 1) break;
1831       if (EVI->getIndices()[0] == 0) {
1832         switch (II->getIntrinsicID()) {
1833         default: break;
1834         case Intrinsic::uadd_with_overflow:
1835         case Intrinsic::sadd_with_overflow:
1836           computeKnownBitsAddSub(true, II->getArgOperand(0),
1837                                  II->getArgOperand(1), false, DemandedElts,
1838                                  Known, Known2, Depth, Q);
1839           break;
1840         case Intrinsic::usub_with_overflow:
1841         case Intrinsic::ssub_with_overflow:
1842           computeKnownBitsAddSub(false, II->getArgOperand(0),
1843                                  II->getArgOperand(1), false, DemandedElts,
1844                                  Known, Known2, Depth, Q);
1845           break;
1846         case Intrinsic::umul_with_overflow:
1847         case Intrinsic::smul_with_overflow:
1848           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1849                               DemandedElts, Known, Known2, Depth, Q);
1850           break;
1851         }
1852       }
1853     }
1854     break;
1855   }
1856 }
1857 
1858 /// Determine which bits of V are known to be either zero or one and return
1859 /// them.
1860 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1861                            unsigned Depth, const Query &Q) {
1862   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1863   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1864   return Known;
1865 }
1866 
1867 /// Determine which bits of V are known to be either zero or one and return
1868 /// them.
1869 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1870   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1871   computeKnownBits(V, Known, Depth, Q);
1872   return Known;
1873 }
1874 
1875 /// Determine which bits of V are known to be either zero or one and return
1876 /// them in the Known bit set.
1877 ///
1878 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1879 /// we cannot optimize based on the assumption that it is zero without changing
1880 /// it to be an explicit zero.  If we don't change it to zero, other code could
1881 /// optimized based on the contradictory assumption that it is non-zero.
1882 /// Because instcombine aggressively folds operations with undef args anyway,
1883 /// this won't lose us code quality.
1884 ///
1885 /// This function is defined on values with integer type, values with pointer
1886 /// type, and vectors of integers.  In the case
1887 /// where V is a vector, known zero, and known one values are the
1888 /// same width as the vector element, and the bit is set only if it is true
1889 /// for all of the demanded elements in the vector specified by DemandedElts.
1890 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1891                       KnownBits &Known, unsigned Depth, const Query &Q) {
1892   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1893     // No demanded elts or V is a scalable vector, better to assume we don't
1894     // know anything.
1895     Known.resetAll();
1896     return;
1897   }
1898 
1899   assert(V && "No Value?");
1900   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1901 
1902 #ifndef NDEBUG
1903   Type *Ty = V->getType();
1904   unsigned BitWidth = Known.getBitWidth();
1905 
1906   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1907          "Not integer or pointer type!");
1908 
1909   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1910     assert(
1911         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1912         "DemandedElt width should equal the fixed vector number of elements");
1913   } else {
1914     assert(DemandedElts == APInt(1, 1) &&
1915            "DemandedElt width should be 1 for scalars");
1916   }
1917 
1918   Type *ScalarTy = Ty->getScalarType();
1919   if (ScalarTy->isPointerTy()) {
1920     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1921            "V and Known should have same BitWidth");
1922   } else {
1923     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1924            "V and Known should have same BitWidth");
1925   }
1926 #endif
1927 
1928   const APInt *C;
1929   if (match(V, m_APInt(C))) {
1930     // We know all of the bits for a scalar constant or a splat vector constant!
1931     Known.One = *C;
1932     Known.Zero = ~Known.One;
1933     return;
1934   }
1935   // Null and aggregate-zero are all-zeros.
1936   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1937     Known.setAllZero();
1938     return;
1939   }
1940   // Handle a constant vector by taking the intersection of the known bits of
1941   // each element.
1942   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1943     // We know that CDV must be a vector of integers. Take the intersection of
1944     // each element.
1945     Known.Zero.setAllBits(); Known.One.setAllBits();
1946     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1947       if (!DemandedElts[i])
1948         continue;
1949       APInt Elt = CDV->getElementAsAPInt(i);
1950       Known.Zero &= ~Elt;
1951       Known.One &= Elt;
1952     }
1953     return;
1954   }
1955 
1956   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1957     // We know that CV must be a vector of integers. Take the intersection of
1958     // each element.
1959     Known.Zero.setAllBits(); Known.One.setAllBits();
1960     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1961       if (!DemandedElts[i])
1962         continue;
1963       Constant *Element = CV->getAggregateElement(i);
1964       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1965       if (!ElementCI) {
1966         Known.resetAll();
1967         return;
1968       }
1969       const APInt &Elt = ElementCI->getValue();
1970       Known.Zero &= ~Elt;
1971       Known.One &= Elt;
1972     }
1973     return;
1974   }
1975 
1976   // Start out not knowing anything.
1977   Known.resetAll();
1978 
1979   // We can't imply anything about undefs.
1980   if (isa<UndefValue>(V))
1981     return;
1982 
1983   // There's no point in looking through other users of ConstantData for
1984   // assumptions.  Confirm that we've handled them all.
1985   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1986 
1987   // All recursive calls that increase depth must come after this.
1988   if (Depth == MaxAnalysisRecursionDepth)
1989     return;
1990 
1991   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1992   // the bits of its aliasee.
1993   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1994     if (!GA->isInterposable())
1995       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1996     return;
1997   }
1998 
1999   if (const Operator *I = dyn_cast<Operator>(V))
2000     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2001 
2002   // Aligned pointers have trailing zeros - refine Known.Zero set
2003   if (isa<PointerType>(V->getType())) {
2004     Align Alignment = V->getPointerAlignment(Q.DL);
2005     Known.Zero.setLowBits(countTrailingZeros(Alignment.value()));
2006   }
2007 
2008   // computeKnownBitsFromAssume strictly refines Known.
2009   // Therefore, we run them after computeKnownBitsFromOperator.
2010 
2011   // Check whether a nearby assume intrinsic can determine some known bits.
2012   computeKnownBitsFromAssume(V, Known, Depth, Q);
2013 
2014   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2015 }
2016 
2017 /// Return true if the given value is known to have exactly one
2018 /// bit set when defined. For vectors return true if every element is known to
2019 /// be a power of two when defined. Supports values with integer or pointer
2020 /// types and vectors of integers.
2021 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2022                             const Query &Q) {
2023   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2024 
2025   // Attempt to match against constants.
2026   if (OrZero && match(V, m_Power2OrZero()))
2027       return true;
2028   if (match(V, m_Power2()))
2029       return true;
2030 
2031   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2032   // it is shifted off the end then the result is undefined.
2033   if (match(V, m_Shl(m_One(), m_Value())))
2034     return true;
2035 
2036   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2037   // the bottom.  If it is shifted off the bottom then the result is undefined.
2038   if (match(V, m_LShr(m_SignMask(), m_Value())))
2039     return true;
2040 
2041   // The remaining tests are all recursive, so bail out if we hit the limit.
2042   if (Depth++ == MaxAnalysisRecursionDepth)
2043     return false;
2044 
2045   Value *X = nullptr, *Y = nullptr;
2046   // A shift left or a logical shift right of a power of two is a power of two
2047   // or zero.
2048   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2049                  match(V, m_LShr(m_Value(X), m_Value()))))
2050     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2051 
2052   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2053     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2054 
2055   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2056     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2057            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2058 
2059   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2060     // A power of two and'd with anything is a power of two or zero.
2061     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2062         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2063       return true;
2064     // X & (-X) is always a power of two or zero.
2065     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2066       return true;
2067     return false;
2068   }
2069 
2070   // Adding a power-of-two or zero to the same power-of-two or zero yields
2071   // either the original power-of-two, a larger power-of-two or zero.
2072   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2073     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2074     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2075         Q.IIQ.hasNoSignedWrap(VOBO)) {
2076       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2077           match(X, m_And(m_Value(), m_Specific(Y))))
2078         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2079           return true;
2080       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2081           match(Y, m_And(m_Value(), m_Specific(X))))
2082         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2083           return true;
2084 
2085       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2086       KnownBits LHSBits(BitWidth);
2087       computeKnownBits(X, LHSBits, Depth, Q);
2088 
2089       KnownBits RHSBits(BitWidth);
2090       computeKnownBits(Y, RHSBits, Depth, Q);
2091       // If i8 V is a power of two or zero:
2092       //  ZeroBits: 1 1 1 0 1 1 1 1
2093       // ~ZeroBits: 0 0 0 1 0 0 0 0
2094       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2095         // If OrZero isn't set, we cannot give back a zero result.
2096         // Make sure either the LHS or RHS has a bit set.
2097         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2098           return true;
2099     }
2100   }
2101 
2102   // An exact divide or right shift can only shift off zero bits, so the result
2103   // is a power of two only if the first operand is a power of two and not
2104   // copying a sign bit (sdiv int_min, 2).
2105   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2106       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2107     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2108                                   Depth, Q);
2109   }
2110 
2111   return false;
2112 }
2113 
2114 /// Test whether a GEP's result is known to be non-null.
2115 ///
2116 /// Uses properties inherent in a GEP to try to determine whether it is known
2117 /// to be non-null.
2118 ///
2119 /// Currently this routine does not support vector GEPs.
2120 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2121                               const Query &Q) {
2122   const Function *F = nullptr;
2123   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2124     F = I->getFunction();
2125 
2126   if (!GEP->isInBounds() ||
2127       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2128     return false;
2129 
2130   // FIXME: Support vector-GEPs.
2131   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2132 
2133   // If the base pointer is non-null, we cannot walk to a null address with an
2134   // inbounds GEP in address space zero.
2135   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2136     return true;
2137 
2138   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2139   // If so, then the GEP cannot produce a null pointer, as doing so would
2140   // inherently violate the inbounds contract within address space zero.
2141   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2142        GTI != GTE; ++GTI) {
2143     // Struct types are easy -- they must always be indexed by a constant.
2144     if (StructType *STy = GTI.getStructTypeOrNull()) {
2145       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2146       unsigned ElementIdx = OpC->getZExtValue();
2147       const StructLayout *SL = Q.DL.getStructLayout(STy);
2148       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2149       if (ElementOffset > 0)
2150         return true;
2151       continue;
2152     }
2153 
2154     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2155     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2156       continue;
2157 
2158     // Fast path the constant operand case both for efficiency and so we don't
2159     // increment Depth when just zipping down an all-constant GEP.
2160     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2161       if (!OpC->isZero())
2162         return true;
2163       continue;
2164     }
2165 
2166     // We post-increment Depth here because while isKnownNonZero increments it
2167     // as well, when we pop back up that increment won't persist. We don't want
2168     // to recurse 10k times just because we have 10k GEP operands. We don't
2169     // bail completely out because we want to handle constant GEPs regardless
2170     // of depth.
2171     if (Depth++ >= MaxAnalysisRecursionDepth)
2172       continue;
2173 
2174     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2175       return true;
2176   }
2177 
2178   return false;
2179 }
2180 
2181 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2182                                                   const Instruction *CtxI,
2183                                                   const DominatorTree *DT) {
2184   if (isa<Constant>(V))
2185     return false;
2186 
2187   if (!CtxI || !DT)
2188     return false;
2189 
2190   unsigned NumUsesExplored = 0;
2191   for (auto *U : V->users()) {
2192     // Avoid massive lists
2193     if (NumUsesExplored >= DomConditionsMaxUses)
2194       break;
2195     NumUsesExplored++;
2196 
2197     // If the value is used as an argument to a call or invoke, then argument
2198     // attributes may provide an answer about null-ness.
2199     if (const auto *CB = dyn_cast<CallBase>(U))
2200       if (auto *CalledFunc = CB->getCalledFunction())
2201         for (const Argument &Arg : CalledFunc->args())
2202           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2203               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2204             return true;
2205 
2206     // If the value is used as a load/store, then the pointer must be non null.
2207     if (V == getLoadStorePointerOperand(U)) {
2208       const Instruction *I = cast<Instruction>(U);
2209       if (!NullPointerIsDefined(I->getFunction(),
2210                                 V->getType()->getPointerAddressSpace()) &&
2211           DT->dominates(I, CtxI))
2212         return true;
2213     }
2214 
2215     // Consider only compare instructions uniquely controlling a branch
2216     CmpInst::Predicate Pred;
2217     if (!match(const_cast<User *>(U),
2218                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2219         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2220       continue;
2221 
2222     SmallVector<const User *, 4> WorkList;
2223     SmallPtrSet<const User *, 4> Visited;
2224     for (auto *CmpU : U->users()) {
2225       assert(WorkList.empty() && "Should be!");
2226       if (Visited.insert(CmpU).second)
2227         WorkList.push_back(CmpU);
2228 
2229       while (!WorkList.empty()) {
2230         auto *Curr = WorkList.pop_back_val();
2231 
2232         // If a user is an AND, add all its users to the work list. We only
2233         // propagate "pred != null" condition through AND because it is only
2234         // correct to assume that all conditions of AND are met in true branch.
2235         // TODO: Support similar logic of OR and EQ predicate?
2236         if (Pred == ICmpInst::ICMP_NE)
2237           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2238             if (BO->getOpcode() == Instruction::And) {
2239               for (auto *BOU : BO->users())
2240                 if (Visited.insert(BOU).second)
2241                   WorkList.push_back(BOU);
2242               continue;
2243             }
2244 
2245         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2246           assert(BI->isConditional() && "uses a comparison!");
2247 
2248           BasicBlock *NonNullSuccessor =
2249               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2250           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2251           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2252             return true;
2253         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2254                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2255           return true;
2256         }
2257       }
2258     }
2259   }
2260 
2261   return false;
2262 }
2263 
2264 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2265 /// ensure that the value it's attached to is never Value?  'RangeType' is
2266 /// is the type of the value described by the range.
2267 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2268   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2269   assert(NumRanges >= 1);
2270   for (unsigned i = 0; i < NumRanges; ++i) {
2271     ConstantInt *Lower =
2272         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2273     ConstantInt *Upper =
2274         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2275     ConstantRange Range(Lower->getValue(), Upper->getValue());
2276     if (Range.contains(Value))
2277       return false;
2278   }
2279   return true;
2280 }
2281 
2282 /// Return true if the given value is known to be non-zero when defined. For
2283 /// vectors, return true if every demanded element is known to be non-zero when
2284 /// defined. For pointers, if the context instruction and dominator tree are
2285 /// specified, perform context-sensitive analysis and return true if the
2286 /// pointer couldn't possibly be null at the specified instruction.
2287 /// Supports values with integer or pointer type and vectors of integers.
2288 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2289                     const Query &Q) {
2290   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2291   // vector
2292   if (isa<ScalableVectorType>(V->getType()))
2293     return false;
2294 
2295   if (auto *C = dyn_cast<Constant>(V)) {
2296     if (C->isNullValue())
2297       return false;
2298     if (isa<ConstantInt>(C))
2299       // Must be non-zero due to null test above.
2300       return true;
2301 
2302     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2303       // See the comment for IntToPtr/PtrToInt instructions below.
2304       if (CE->getOpcode() == Instruction::IntToPtr ||
2305           CE->getOpcode() == Instruction::PtrToInt)
2306         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2307             Q.DL.getTypeSizeInBits(CE->getType()))
2308           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2309     }
2310 
2311     // For constant vectors, check that all elements are undefined or known
2312     // non-zero to determine that the whole vector is known non-zero.
2313     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2314       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2315         if (!DemandedElts[i])
2316           continue;
2317         Constant *Elt = C->getAggregateElement(i);
2318         if (!Elt || Elt->isNullValue())
2319           return false;
2320         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2321           return false;
2322       }
2323       return true;
2324     }
2325 
2326     // A global variable in address space 0 is non null unless extern weak
2327     // or an absolute symbol reference. Other address spaces may have null as a
2328     // valid address for a global, so we can't assume anything.
2329     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2330       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2331           GV->getType()->getAddressSpace() == 0)
2332         return true;
2333     } else
2334       return false;
2335   }
2336 
2337   if (auto *I = dyn_cast<Instruction>(V)) {
2338     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2339       // If the possible ranges don't contain zero, then the value is
2340       // definitely non-zero.
2341       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2342         const APInt ZeroValue(Ty->getBitWidth(), 0);
2343         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2344           return true;
2345       }
2346     }
2347   }
2348 
2349   if (isKnownNonZeroFromAssume(V, Q))
2350     return true;
2351 
2352   // Some of the tests below are recursive, so bail out if we hit the limit.
2353   if (Depth++ >= MaxAnalysisRecursionDepth)
2354     return false;
2355 
2356   // Check for pointer simplifications.
2357 
2358   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2359     // Alloca never returns null, malloc might.
2360     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2361       return true;
2362 
2363     // A byval, inalloca may not be null in a non-default addres space. A
2364     // nonnull argument is assumed never 0.
2365     if (const Argument *A = dyn_cast<Argument>(V)) {
2366       if (((A->hasPassPointeeByValueCopyAttr() &&
2367             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2368            A->hasNonNullAttr()))
2369         return true;
2370     }
2371 
2372     // A Load tagged with nonnull metadata is never null.
2373     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2374       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2375         return true;
2376 
2377     if (const auto *Call = dyn_cast<CallBase>(V)) {
2378       if (Call->isReturnNonNull())
2379         return true;
2380       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2381         return isKnownNonZero(RP, Depth, Q);
2382     }
2383   }
2384 
2385   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2386     return true;
2387 
2388   // Check for recursive pointer simplifications.
2389   if (V->getType()->isPointerTy()) {
2390     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2391     // do not alter the value, or at least not the nullness property of the
2392     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2393     //
2394     // Note that we have to take special care to avoid looking through
2395     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2396     // as casts that can alter the value, e.g., AddrSpaceCasts.
2397     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2398       return isGEPKnownNonNull(GEP, Depth, Q);
2399 
2400     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2401       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2402 
2403     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2404       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2405           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2406         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2407   }
2408 
2409   // Similar to int2ptr above, we can look through ptr2int here if the cast
2410   // is a no-op or an extend and not a truncate.
2411   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2412     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2413         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2414       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2415 
2416   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2417 
2418   // X | Y != 0 if X != 0 or Y != 0.
2419   Value *X = nullptr, *Y = nullptr;
2420   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2421     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2422            isKnownNonZero(Y, DemandedElts, Depth, Q);
2423 
2424   // ext X != 0 if X != 0.
2425   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2426     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2427 
2428   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2429   // if the lowest bit is shifted off the end.
2430   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2431     // shl nuw can't remove any non-zero bits.
2432     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2433     if (Q.IIQ.hasNoUnsignedWrap(BO))
2434       return isKnownNonZero(X, Depth, Q);
2435 
2436     KnownBits Known(BitWidth);
2437     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2438     if (Known.One[0])
2439       return true;
2440   }
2441   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2442   // defined if the sign bit is shifted off the end.
2443   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2444     // shr exact can only shift out zero bits.
2445     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2446     if (BO->isExact())
2447       return isKnownNonZero(X, Depth, Q);
2448 
2449     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2450     if (Known.isNegative())
2451       return true;
2452 
2453     // If the shifter operand is a constant, and all of the bits shifted
2454     // out are known to be zero, and X is known non-zero then at least one
2455     // non-zero bit must remain.
2456     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2457       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2458       // Is there a known one in the portion not shifted out?
2459       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2460         return true;
2461       // Are all the bits to be shifted out known zero?
2462       if (Known.countMinTrailingZeros() >= ShiftVal)
2463         return isKnownNonZero(X, DemandedElts, Depth, Q);
2464     }
2465   }
2466   // div exact can only produce a zero if the dividend is zero.
2467   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2468     return isKnownNonZero(X, DemandedElts, Depth, Q);
2469   }
2470   // X + Y.
2471   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2472     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2473     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2474 
2475     // If X and Y are both non-negative (as signed values) then their sum is not
2476     // zero unless both X and Y are zero.
2477     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2478       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2479           isKnownNonZero(Y, DemandedElts, Depth, Q))
2480         return true;
2481 
2482     // If X and Y are both negative (as signed values) then their sum is not
2483     // zero unless both X and Y equal INT_MIN.
2484     if (XKnown.isNegative() && YKnown.isNegative()) {
2485       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2486       // The sign bit of X is set.  If some other bit is set then X is not equal
2487       // to INT_MIN.
2488       if (XKnown.One.intersects(Mask))
2489         return true;
2490       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2491       // to INT_MIN.
2492       if (YKnown.One.intersects(Mask))
2493         return true;
2494     }
2495 
2496     // The sum of a non-negative number and a power of two is not zero.
2497     if (XKnown.isNonNegative() &&
2498         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2499       return true;
2500     if (YKnown.isNonNegative() &&
2501         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2502       return true;
2503   }
2504   // X * Y.
2505   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2506     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2507     // If X and Y are non-zero then so is X * Y as long as the multiplication
2508     // does not overflow.
2509     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2510         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2511         isKnownNonZero(Y, DemandedElts, Depth, Q))
2512       return true;
2513   }
2514   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2515   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2516     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2517         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2518       return true;
2519   }
2520   // PHI
2521   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2522     // Try and detect a recurrence that monotonically increases from a
2523     // starting value, as these are common as induction variables.
2524     if (PN->getNumIncomingValues() == 2) {
2525       Value *Start = PN->getIncomingValue(0);
2526       Value *Induction = PN->getIncomingValue(1);
2527       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2528         std::swap(Start, Induction);
2529       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2530         if (!C->isZero() && !C->isNegative()) {
2531           ConstantInt *X;
2532           if (Q.IIQ.UseInstrInfo &&
2533               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2534                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2535               !X->isNegative())
2536             return true;
2537         }
2538       }
2539     }
2540     // Check if all incoming values are non-zero constant.
2541     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2542       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2543     });
2544     if (AllNonZeroConstants)
2545       return true;
2546   }
2547   // ExtractElement
2548   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2549     const Value *Vec = EEI->getVectorOperand();
2550     const Value *Idx = EEI->getIndexOperand();
2551     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2552     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2553       unsigned NumElts = VecTy->getNumElements();
2554       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2555       if (CIdx && CIdx->getValue().ult(NumElts))
2556         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2557       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2558     }
2559   }
2560 
2561   KnownBits Known(BitWidth);
2562   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2563   return Known.One != 0;
2564 }
2565 
2566 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2567   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2568   // vector
2569   if (isa<ScalableVectorType>(V->getType()))
2570     return false;
2571 
2572   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2573   APInt DemandedElts =
2574       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2575   return isKnownNonZero(V, DemandedElts, Depth, Q);
2576 }
2577 
2578 /// Return true if V2 == V1 + X, where X is known non-zero.
2579 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2580   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2581   if (!BO || BO->getOpcode() != Instruction::Add)
2582     return false;
2583   Value *Op = nullptr;
2584   if (V2 == BO->getOperand(0))
2585     Op = BO->getOperand(1);
2586   else if (V2 == BO->getOperand(1))
2587     Op = BO->getOperand(0);
2588   else
2589     return false;
2590   return isKnownNonZero(Op, 0, Q);
2591 }
2592 
2593 /// Return true if it is known that V1 != V2.
2594 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2595   if (V1 == V2)
2596     return false;
2597   if (V1->getType() != V2->getType())
2598     // We can't look through casts yet.
2599     return false;
2600   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2601     return true;
2602 
2603   if (V1->getType()->isIntOrIntVectorTy()) {
2604     // Are any known bits in V1 contradictory to known bits in V2? If V1
2605     // has a known zero where V2 has a known one, they must not be equal.
2606     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2607     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2608 
2609     if (Known1.Zero.intersects(Known2.One) ||
2610         Known2.Zero.intersects(Known1.One))
2611       return true;
2612   }
2613   return false;
2614 }
2615 
2616 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2617 /// simplify operations downstream. Mask is known to be zero for bits that V
2618 /// cannot have.
2619 ///
2620 /// This function is defined on values with integer type, values with pointer
2621 /// type, and vectors of integers.  In the case
2622 /// where V is a vector, the mask, known zero, and known one values are the
2623 /// same width as the vector element, and the bit is set only if it is true
2624 /// for all of the elements in the vector.
2625 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2626                        const Query &Q) {
2627   KnownBits Known(Mask.getBitWidth());
2628   computeKnownBits(V, Known, Depth, Q);
2629   return Mask.isSubsetOf(Known.Zero);
2630 }
2631 
2632 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2633 // Returns the input and lower/upper bounds.
2634 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2635                                 const APInt *&CLow, const APInt *&CHigh) {
2636   assert(isa<Operator>(Select) &&
2637          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2638          "Input should be a Select!");
2639 
2640   const Value *LHS = nullptr, *RHS = nullptr;
2641   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2642   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2643     return false;
2644 
2645   if (!match(RHS, m_APInt(CLow)))
2646     return false;
2647 
2648   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2649   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2650   if (getInverseMinMaxFlavor(SPF) != SPF2)
2651     return false;
2652 
2653   if (!match(RHS2, m_APInt(CHigh)))
2654     return false;
2655 
2656   if (SPF == SPF_SMIN)
2657     std::swap(CLow, CHigh);
2658 
2659   In = LHS2;
2660   return CLow->sle(*CHigh);
2661 }
2662 
2663 /// For vector constants, loop over the elements and find the constant with the
2664 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2665 /// or if any element was not analyzed; otherwise, return the count for the
2666 /// element with the minimum number of sign bits.
2667 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2668                                                  const APInt &DemandedElts,
2669                                                  unsigned TyBits) {
2670   const auto *CV = dyn_cast<Constant>(V);
2671   if (!CV || !isa<FixedVectorType>(CV->getType()))
2672     return 0;
2673 
2674   unsigned MinSignBits = TyBits;
2675   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2676   for (unsigned i = 0; i != NumElts; ++i) {
2677     if (!DemandedElts[i])
2678       continue;
2679     // If we find a non-ConstantInt, bail out.
2680     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2681     if (!Elt)
2682       return 0;
2683 
2684     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2685   }
2686 
2687   return MinSignBits;
2688 }
2689 
2690 static unsigned ComputeNumSignBitsImpl(const Value *V,
2691                                        const APInt &DemandedElts,
2692                                        unsigned Depth, const Query &Q);
2693 
2694 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2695                                    unsigned Depth, const Query &Q) {
2696   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2697   assert(Result > 0 && "At least one sign bit needs to be present!");
2698   return Result;
2699 }
2700 
2701 /// Return the number of times the sign bit of the register is replicated into
2702 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2703 /// (itself), but other cases can give us information. For example, immediately
2704 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2705 /// other, so we return 3. For vectors, return the number of sign bits for the
2706 /// vector element with the minimum number of known sign bits of the demanded
2707 /// elements in the vector specified by DemandedElts.
2708 static unsigned ComputeNumSignBitsImpl(const Value *V,
2709                                        const APInt &DemandedElts,
2710                                        unsigned Depth, const Query &Q) {
2711   Type *Ty = V->getType();
2712 
2713   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2714   // vector
2715   if (isa<ScalableVectorType>(Ty))
2716     return 1;
2717 
2718 #ifndef NDEBUG
2719   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2720 
2721   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2722     assert(
2723         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2724         "DemandedElt width should equal the fixed vector number of elements");
2725   } else {
2726     assert(DemandedElts == APInt(1, 1) &&
2727            "DemandedElt width should be 1 for scalars");
2728   }
2729 #endif
2730 
2731   // We return the minimum number of sign bits that are guaranteed to be present
2732   // in V, so for undef we have to conservatively return 1.  We don't have the
2733   // same behavior for poison though -- that's a FIXME today.
2734 
2735   Type *ScalarTy = Ty->getScalarType();
2736   unsigned TyBits = ScalarTy->isPointerTy() ?
2737     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2738     Q.DL.getTypeSizeInBits(ScalarTy);
2739 
2740   unsigned Tmp, Tmp2;
2741   unsigned FirstAnswer = 1;
2742 
2743   // Note that ConstantInt is handled by the general computeKnownBits case
2744   // below.
2745 
2746   if (Depth == MaxAnalysisRecursionDepth)
2747     return 1;
2748 
2749   if (auto *U = dyn_cast<Operator>(V)) {
2750     switch (Operator::getOpcode(V)) {
2751     default: break;
2752     case Instruction::SExt:
2753       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2754       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2755 
2756     case Instruction::SDiv: {
2757       const APInt *Denominator;
2758       // sdiv X, C -> adds log(C) sign bits.
2759       if (match(U->getOperand(1), m_APInt(Denominator))) {
2760 
2761         // Ignore non-positive denominator.
2762         if (!Denominator->isStrictlyPositive())
2763           break;
2764 
2765         // Calculate the incoming numerator bits.
2766         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2767 
2768         // Add floor(log(C)) bits to the numerator bits.
2769         return std::min(TyBits, NumBits + Denominator->logBase2());
2770       }
2771       break;
2772     }
2773 
2774     case Instruction::SRem: {
2775       const APInt *Denominator;
2776       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2777       // positive constant.  This let us put a lower bound on the number of sign
2778       // bits.
2779       if (match(U->getOperand(1), m_APInt(Denominator))) {
2780 
2781         // Ignore non-positive denominator.
2782         if (!Denominator->isStrictlyPositive())
2783           break;
2784 
2785         // Calculate the incoming numerator bits. SRem by a positive constant
2786         // can't lower the number of sign bits.
2787         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2788 
2789         // Calculate the leading sign bit constraints by examining the
2790         // denominator.  Given that the denominator is positive, there are two
2791         // cases:
2792         //
2793         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2794         //     (1 << ceilLogBase2(C)).
2795         //
2796         //  2. the numerator is negative. Then the result range is (-C,0] and
2797         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2798         //
2799         // Thus a lower bound on the number of sign bits is `TyBits -
2800         // ceilLogBase2(C)`.
2801 
2802         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2803         return std::max(NumrBits, ResBits);
2804       }
2805       break;
2806     }
2807 
2808     case Instruction::AShr: {
2809       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2810       // ashr X, C   -> adds C sign bits.  Vectors too.
2811       const APInt *ShAmt;
2812       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2813         if (ShAmt->uge(TyBits))
2814           break; // Bad shift.
2815         unsigned ShAmtLimited = ShAmt->getZExtValue();
2816         Tmp += ShAmtLimited;
2817         if (Tmp > TyBits) Tmp = TyBits;
2818       }
2819       return Tmp;
2820     }
2821     case Instruction::Shl: {
2822       const APInt *ShAmt;
2823       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2824         // shl destroys sign bits.
2825         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2826         if (ShAmt->uge(TyBits) ||   // Bad shift.
2827             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2828         Tmp2 = ShAmt->getZExtValue();
2829         return Tmp - Tmp2;
2830       }
2831       break;
2832     }
2833     case Instruction::And:
2834     case Instruction::Or:
2835     case Instruction::Xor: // NOT is handled here.
2836       // Logical binary ops preserve the number of sign bits at the worst.
2837       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2838       if (Tmp != 1) {
2839         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2840         FirstAnswer = std::min(Tmp, Tmp2);
2841         // We computed what we know about the sign bits as our first
2842         // answer. Now proceed to the generic code that uses
2843         // computeKnownBits, and pick whichever answer is better.
2844       }
2845       break;
2846 
2847     case Instruction::Select: {
2848       // If we have a clamp pattern, we know that the number of sign bits will
2849       // be the minimum of the clamp min/max range.
2850       const Value *X;
2851       const APInt *CLow, *CHigh;
2852       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2853         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2854 
2855       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2856       if (Tmp == 1) break;
2857       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2858       return std::min(Tmp, Tmp2);
2859     }
2860 
2861     case Instruction::Add:
2862       // Add can have at most one carry bit.  Thus we know that the output
2863       // is, at worst, one more bit than the inputs.
2864       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2865       if (Tmp == 1) break;
2866 
2867       // Special case decrementing a value (ADD X, -1):
2868       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2869         if (CRHS->isAllOnesValue()) {
2870           KnownBits Known(TyBits);
2871           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2872 
2873           // If the input is known to be 0 or 1, the output is 0/-1, which is
2874           // all sign bits set.
2875           if ((Known.Zero | 1).isAllOnesValue())
2876             return TyBits;
2877 
2878           // If we are subtracting one from a positive number, there is no carry
2879           // out of the result.
2880           if (Known.isNonNegative())
2881             return Tmp;
2882         }
2883 
2884       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2885       if (Tmp2 == 1) break;
2886       return std::min(Tmp, Tmp2) - 1;
2887 
2888     case Instruction::Sub:
2889       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2890       if (Tmp2 == 1) break;
2891 
2892       // Handle NEG.
2893       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2894         if (CLHS->isNullValue()) {
2895           KnownBits Known(TyBits);
2896           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2897           // If the input is known to be 0 or 1, the output is 0/-1, which is
2898           // all sign bits set.
2899           if ((Known.Zero | 1).isAllOnesValue())
2900             return TyBits;
2901 
2902           // If the input is known to be positive (the sign bit is known clear),
2903           // the output of the NEG has the same number of sign bits as the
2904           // input.
2905           if (Known.isNonNegative())
2906             return Tmp2;
2907 
2908           // Otherwise, we treat this like a SUB.
2909         }
2910 
2911       // Sub can have at most one carry bit.  Thus we know that the output
2912       // is, at worst, one more bit than the inputs.
2913       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2914       if (Tmp == 1) break;
2915       return std::min(Tmp, Tmp2) - 1;
2916 
2917     case Instruction::Mul: {
2918       // The output of the Mul can be at most twice the valid bits in the
2919       // inputs.
2920       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2921       if (SignBitsOp0 == 1) break;
2922       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2923       if (SignBitsOp1 == 1) break;
2924       unsigned OutValidBits =
2925           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2926       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2927     }
2928 
2929     case Instruction::PHI: {
2930       const PHINode *PN = cast<PHINode>(U);
2931       unsigned NumIncomingValues = PN->getNumIncomingValues();
2932       // Don't analyze large in-degree PHIs.
2933       if (NumIncomingValues > 4) break;
2934       // Unreachable blocks may have zero-operand PHI nodes.
2935       if (NumIncomingValues == 0) break;
2936 
2937       // Take the minimum of all incoming values.  This can't infinitely loop
2938       // because of our depth threshold.
2939       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2940       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2941         if (Tmp == 1) return Tmp;
2942         Tmp = std::min(
2943             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2944       }
2945       return Tmp;
2946     }
2947 
2948     case Instruction::Trunc:
2949       // FIXME: it's tricky to do anything useful for this, but it is an
2950       // important case for targets like X86.
2951       break;
2952 
2953     case Instruction::ExtractElement:
2954       // Look through extract element. At the moment we keep this simple and
2955       // skip tracking the specific element. But at least we might find
2956       // information valid for all elements of the vector (for example if vector
2957       // is sign extended, shifted, etc).
2958       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2959 
2960     case Instruction::ShuffleVector: {
2961       // Collect the minimum number of sign bits that are shared by every vector
2962       // element referenced by the shuffle.
2963       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2964       if (!Shuf) {
2965         // FIXME: Add support for shufflevector constant expressions.
2966         return 1;
2967       }
2968       APInt DemandedLHS, DemandedRHS;
2969       // For undef elements, we don't know anything about the common state of
2970       // the shuffle result.
2971       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
2972         return 1;
2973       Tmp = std::numeric_limits<unsigned>::max();
2974       if (!!DemandedLHS) {
2975         const Value *LHS = Shuf->getOperand(0);
2976         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
2977       }
2978       // If we don't know anything, early out and try computeKnownBits
2979       // fall-back.
2980       if (Tmp == 1)
2981         break;
2982       if (!!DemandedRHS) {
2983         const Value *RHS = Shuf->getOperand(1);
2984         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
2985         Tmp = std::min(Tmp, Tmp2);
2986       }
2987       // If we don't know anything, early out and try computeKnownBits
2988       // fall-back.
2989       if (Tmp == 1)
2990         break;
2991       assert(Tmp <= Ty->getScalarSizeInBits() &&
2992              "Failed to determine minimum sign bits");
2993       return Tmp;
2994     }
2995     case Instruction::Call: {
2996       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
2997         switch (II->getIntrinsicID()) {
2998         default: break;
2999         case Intrinsic::abs:
3000           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3001           if (Tmp == 1) break;
3002 
3003           // Absolute value reduces number of sign bits by at most 1.
3004           return Tmp - 1;
3005         }
3006       }
3007     }
3008     }
3009   }
3010 
3011   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3012   // use this information.
3013 
3014   // If we can examine all elements of a vector constant successfully, we're
3015   // done (we can't do any better than that). If not, keep trying.
3016   if (unsigned VecSignBits =
3017           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3018     return VecSignBits;
3019 
3020   KnownBits Known(TyBits);
3021   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3022 
3023   // If we know that the sign bit is either zero or one, determine the number of
3024   // identical bits in the top of the input value.
3025   return std::max(FirstAnswer, Known.countMinSignBits());
3026 }
3027 
3028 /// This function computes the integer multiple of Base that equals V.
3029 /// If successful, it returns true and returns the multiple in
3030 /// Multiple. If unsuccessful, it returns false. It looks
3031 /// through SExt instructions only if LookThroughSExt is true.
3032 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3033                            bool LookThroughSExt, unsigned Depth) {
3034   assert(V && "No Value?");
3035   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3036   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3037 
3038   Type *T = V->getType();
3039 
3040   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3041 
3042   if (Base == 0)
3043     return false;
3044 
3045   if (Base == 1) {
3046     Multiple = V;
3047     return true;
3048   }
3049 
3050   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3051   Constant *BaseVal = ConstantInt::get(T, Base);
3052   if (CO && CO == BaseVal) {
3053     // Multiple is 1.
3054     Multiple = ConstantInt::get(T, 1);
3055     return true;
3056   }
3057 
3058   if (CI && CI->getZExtValue() % Base == 0) {
3059     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3060     return true;
3061   }
3062 
3063   if (Depth == MaxAnalysisRecursionDepth) return false;
3064 
3065   Operator *I = dyn_cast<Operator>(V);
3066   if (!I) return false;
3067 
3068   switch (I->getOpcode()) {
3069   default: break;
3070   case Instruction::SExt:
3071     if (!LookThroughSExt) return false;
3072     // otherwise fall through to ZExt
3073     LLVM_FALLTHROUGH;
3074   case Instruction::ZExt:
3075     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3076                            LookThroughSExt, Depth+1);
3077   case Instruction::Shl:
3078   case Instruction::Mul: {
3079     Value *Op0 = I->getOperand(0);
3080     Value *Op1 = I->getOperand(1);
3081 
3082     if (I->getOpcode() == Instruction::Shl) {
3083       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3084       if (!Op1CI) return false;
3085       // Turn Op0 << Op1 into Op0 * 2^Op1
3086       APInt Op1Int = Op1CI->getValue();
3087       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3088       APInt API(Op1Int.getBitWidth(), 0);
3089       API.setBit(BitToSet);
3090       Op1 = ConstantInt::get(V->getContext(), API);
3091     }
3092 
3093     Value *Mul0 = nullptr;
3094     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3095       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3096         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3097           if (Op1C->getType()->getPrimitiveSizeInBits() <
3098               MulC->getType()->getPrimitiveSizeInBits())
3099             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3100           if (Op1C->getType()->getPrimitiveSizeInBits() >
3101               MulC->getType()->getPrimitiveSizeInBits())
3102             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3103 
3104           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3105           Multiple = ConstantExpr::getMul(MulC, Op1C);
3106           return true;
3107         }
3108 
3109       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3110         if (Mul0CI->getValue() == 1) {
3111           // V == Base * Op1, so return Op1
3112           Multiple = Op1;
3113           return true;
3114         }
3115     }
3116 
3117     Value *Mul1 = nullptr;
3118     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3119       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3120         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3121           if (Op0C->getType()->getPrimitiveSizeInBits() <
3122               MulC->getType()->getPrimitiveSizeInBits())
3123             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3124           if (Op0C->getType()->getPrimitiveSizeInBits() >
3125               MulC->getType()->getPrimitiveSizeInBits())
3126             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3127 
3128           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3129           Multiple = ConstantExpr::getMul(MulC, Op0C);
3130           return true;
3131         }
3132 
3133       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3134         if (Mul1CI->getValue() == 1) {
3135           // V == Base * Op0, so return Op0
3136           Multiple = Op0;
3137           return true;
3138         }
3139     }
3140   }
3141   }
3142 
3143   // We could not determine if V is a multiple of Base.
3144   return false;
3145 }
3146 
3147 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3148                                             const TargetLibraryInfo *TLI) {
3149   const Function *F = CB.getCalledFunction();
3150   if (!F)
3151     return Intrinsic::not_intrinsic;
3152 
3153   if (F->isIntrinsic())
3154     return F->getIntrinsicID();
3155 
3156   // We are going to infer semantics of a library function based on mapping it
3157   // to an LLVM intrinsic. Check that the library function is available from
3158   // this callbase and in this environment.
3159   LibFunc Func;
3160   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3161       !CB.onlyReadsMemory())
3162     return Intrinsic::not_intrinsic;
3163 
3164   switch (Func) {
3165   default:
3166     break;
3167   case LibFunc_sin:
3168   case LibFunc_sinf:
3169   case LibFunc_sinl:
3170     return Intrinsic::sin;
3171   case LibFunc_cos:
3172   case LibFunc_cosf:
3173   case LibFunc_cosl:
3174     return Intrinsic::cos;
3175   case LibFunc_exp:
3176   case LibFunc_expf:
3177   case LibFunc_expl:
3178     return Intrinsic::exp;
3179   case LibFunc_exp2:
3180   case LibFunc_exp2f:
3181   case LibFunc_exp2l:
3182     return Intrinsic::exp2;
3183   case LibFunc_log:
3184   case LibFunc_logf:
3185   case LibFunc_logl:
3186     return Intrinsic::log;
3187   case LibFunc_log10:
3188   case LibFunc_log10f:
3189   case LibFunc_log10l:
3190     return Intrinsic::log10;
3191   case LibFunc_log2:
3192   case LibFunc_log2f:
3193   case LibFunc_log2l:
3194     return Intrinsic::log2;
3195   case LibFunc_fabs:
3196   case LibFunc_fabsf:
3197   case LibFunc_fabsl:
3198     return Intrinsic::fabs;
3199   case LibFunc_fmin:
3200   case LibFunc_fminf:
3201   case LibFunc_fminl:
3202     return Intrinsic::minnum;
3203   case LibFunc_fmax:
3204   case LibFunc_fmaxf:
3205   case LibFunc_fmaxl:
3206     return Intrinsic::maxnum;
3207   case LibFunc_copysign:
3208   case LibFunc_copysignf:
3209   case LibFunc_copysignl:
3210     return Intrinsic::copysign;
3211   case LibFunc_floor:
3212   case LibFunc_floorf:
3213   case LibFunc_floorl:
3214     return Intrinsic::floor;
3215   case LibFunc_ceil:
3216   case LibFunc_ceilf:
3217   case LibFunc_ceill:
3218     return Intrinsic::ceil;
3219   case LibFunc_trunc:
3220   case LibFunc_truncf:
3221   case LibFunc_truncl:
3222     return Intrinsic::trunc;
3223   case LibFunc_rint:
3224   case LibFunc_rintf:
3225   case LibFunc_rintl:
3226     return Intrinsic::rint;
3227   case LibFunc_nearbyint:
3228   case LibFunc_nearbyintf:
3229   case LibFunc_nearbyintl:
3230     return Intrinsic::nearbyint;
3231   case LibFunc_round:
3232   case LibFunc_roundf:
3233   case LibFunc_roundl:
3234     return Intrinsic::round;
3235   case LibFunc_roundeven:
3236   case LibFunc_roundevenf:
3237   case LibFunc_roundevenl:
3238     return Intrinsic::roundeven;
3239   case LibFunc_pow:
3240   case LibFunc_powf:
3241   case LibFunc_powl:
3242     return Intrinsic::pow;
3243   case LibFunc_sqrt:
3244   case LibFunc_sqrtf:
3245   case LibFunc_sqrtl:
3246     return Intrinsic::sqrt;
3247   }
3248 
3249   return Intrinsic::not_intrinsic;
3250 }
3251 
3252 /// Return true if we can prove that the specified FP value is never equal to
3253 /// -0.0.
3254 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3255 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3256 ///       the same as +0.0 in floating-point ops.
3257 ///
3258 /// NOTE: this function will need to be revisited when we support non-default
3259 /// rounding modes!
3260 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3261                                 unsigned Depth) {
3262   if (auto *CFP = dyn_cast<ConstantFP>(V))
3263     return !CFP->getValueAPF().isNegZero();
3264 
3265   if (Depth == MaxAnalysisRecursionDepth)
3266     return false;
3267 
3268   auto *Op = dyn_cast<Operator>(V);
3269   if (!Op)
3270     return false;
3271 
3272   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3273   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3274     return true;
3275 
3276   // sitofp and uitofp turn into +0.0 for zero.
3277   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3278     return true;
3279 
3280   if (auto *Call = dyn_cast<CallInst>(Op)) {
3281     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3282     switch (IID) {
3283     default:
3284       break;
3285     // sqrt(-0.0) = -0.0, no other negative results are possible.
3286     case Intrinsic::sqrt:
3287     case Intrinsic::canonicalize:
3288       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3289     // fabs(x) != -0.0
3290     case Intrinsic::fabs:
3291       return true;
3292     }
3293   }
3294 
3295   return false;
3296 }
3297 
3298 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3299 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3300 /// bit despite comparing equal.
3301 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3302                                             const TargetLibraryInfo *TLI,
3303                                             bool SignBitOnly,
3304                                             unsigned Depth) {
3305   // TODO: This function does not do the right thing when SignBitOnly is true
3306   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3307   // which flips the sign bits of NaNs.  See
3308   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3309 
3310   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3311     return !CFP->getValueAPF().isNegative() ||
3312            (!SignBitOnly && CFP->getValueAPF().isZero());
3313   }
3314 
3315   // Handle vector of constants.
3316   if (auto *CV = dyn_cast<Constant>(V)) {
3317     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3318       unsigned NumElts = CVFVTy->getNumElements();
3319       for (unsigned i = 0; i != NumElts; ++i) {
3320         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3321         if (!CFP)
3322           return false;
3323         if (CFP->getValueAPF().isNegative() &&
3324             (SignBitOnly || !CFP->getValueAPF().isZero()))
3325           return false;
3326       }
3327 
3328       // All non-negative ConstantFPs.
3329       return true;
3330     }
3331   }
3332 
3333   if (Depth == MaxAnalysisRecursionDepth)
3334     return false;
3335 
3336   const Operator *I = dyn_cast<Operator>(V);
3337   if (!I)
3338     return false;
3339 
3340   switch (I->getOpcode()) {
3341   default:
3342     break;
3343   // Unsigned integers are always nonnegative.
3344   case Instruction::UIToFP:
3345     return true;
3346   case Instruction::FMul:
3347   case Instruction::FDiv:
3348     // X * X is always non-negative or a NaN.
3349     // X / X is always exactly 1.0 or a NaN.
3350     if (I->getOperand(0) == I->getOperand(1) &&
3351         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3352       return true;
3353 
3354     LLVM_FALLTHROUGH;
3355   case Instruction::FAdd:
3356   case Instruction::FRem:
3357     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3358                                            Depth + 1) &&
3359            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3360                                            Depth + 1);
3361   case Instruction::Select:
3362     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3363                                            Depth + 1) &&
3364            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3365                                            Depth + 1);
3366   case Instruction::FPExt:
3367   case Instruction::FPTrunc:
3368     // Widening/narrowing never change sign.
3369     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3370                                            Depth + 1);
3371   case Instruction::ExtractElement:
3372     // Look through extract element. At the moment we keep this simple and skip
3373     // tracking the specific element. But at least we might find information
3374     // valid for all elements of the vector.
3375     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3376                                            Depth + 1);
3377   case Instruction::Call:
3378     const auto *CI = cast<CallInst>(I);
3379     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3380     switch (IID) {
3381     default:
3382       break;
3383     case Intrinsic::maxnum: {
3384       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3385       auto isPositiveNum = [&](Value *V) {
3386         if (SignBitOnly) {
3387           // With SignBitOnly, this is tricky because the result of
3388           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3389           // a constant strictly greater than 0.0.
3390           const APFloat *C;
3391           return match(V, m_APFloat(C)) &&
3392                  *C > APFloat::getZero(C->getSemantics());
3393         }
3394 
3395         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3396         // maxnum can't be ordered-less-than-zero.
3397         return isKnownNeverNaN(V, TLI) &&
3398                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3399       };
3400 
3401       // TODO: This could be improved. We could also check that neither operand
3402       //       has its sign bit set (and at least 1 is not-NAN?).
3403       return isPositiveNum(V0) || isPositiveNum(V1);
3404     }
3405 
3406     case Intrinsic::maximum:
3407       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3408                                              Depth + 1) ||
3409              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3410                                              Depth + 1);
3411     case Intrinsic::minnum:
3412     case Intrinsic::minimum:
3413       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3414                                              Depth + 1) &&
3415              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3416                                              Depth + 1);
3417     case Intrinsic::exp:
3418     case Intrinsic::exp2:
3419     case Intrinsic::fabs:
3420       return true;
3421 
3422     case Intrinsic::sqrt:
3423       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3424       if (!SignBitOnly)
3425         return true;
3426       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3427                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3428 
3429     case Intrinsic::powi:
3430       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3431         // powi(x,n) is non-negative if n is even.
3432         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3433           return true;
3434       }
3435       // TODO: This is not correct.  Given that exp is an integer, here are the
3436       // ways that pow can return a negative value:
3437       //
3438       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3439       //   pow(-0, exp)   --> -inf if exp is negative odd.
3440       //   pow(-0, exp)   --> -0 if exp is positive odd.
3441       //   pow(-inf, exp) --> -0 if exp is negative odd.
3442       //   pow(-inf, exp) --> -inf if exp is positive odd.
3443       //
3444       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3445       // but we must return false if x == -0.  Unfortunately we do not currently
3446       // have a way of expressing this constraint.  See details in
3447       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3448       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3449                                              Depth + 1);
3450 
3451     case Intrinsic::fma:
3452     case Intrinsic::fmuladd:
3453       // x*x+y is non-negative if y is non-negative.
3454       return I->getOperand(0) == I->getOperand(1) &&
3455              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3456              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3457                                              Depth + 1);
3458     }
3459     break;
3460   }
3461   return false;
3462 }
3463 
3464 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3465                                        const TargetLibraryInfo *TLI) {
3466   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3467 }
3468 
3469 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3470   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3471 }
3472 
3473 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3474                                 unsigned Depth) {
3475   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3476 
3477   // If we're told that infinities won't happen, assume they won't.
3478   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3479     if (FPMathOp->hasNoInfs())
3480       return true;
3481 
3482   // Handle scalar constants.
3483   if (auto *CFP = dyn_cast<ConstantFP>(V))
3484     return !CFP->isInfinity();
3485 
3486   if (Depth == MaxAnalysisRecursionDepth)
3487     return false;
3488 
3489   if (auto *Inst = dyn_cast<Instruction>(V)) {
3490     switch (Inst->getOpcode()) {
3491     case Instruction::Select: {
3492       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3493              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3494     }
3495     case Instruction::UIToFP:
3496       // If the input type fits into the floating type the result is finite.
3497       return ilogb(APFloat::getLargest(
3498                  Inst->getType()->getScalarType()->getFltSemantics())) >=
3499              (int)Inst->getOperand(0)->getType()->getScalarSizeInBits();
3500     default:
3501       break;
3502     }
3503   }
3504 
3505   // try to handle fixed width vector constants
3506   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3507   if (VFVTy && isa<Constant>(V)) {
3508     // For vectors, verify that each element is not infinity.
3509     unsigned NumElts = VFVTy->getNumElements();
3510     for (unsigned i = 0; i != NumElts; ++i) {
3511       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3512       if (!Elt)
3513         return false;
3514       if (isa<UndefValue>(Elt))
3515         continue;
3516       auto *CElt = dyn_cast<ConstantFP>(Elt);
3517       if (!CElt || CElt->isInfinity())
3518         return false;
3519     }
3520     // All elements were confirmed non-infinity or undefined.
3521     return true;
3522   }
3523 
3524   // was not able to prove that V never contains infinity
3525   return false;
3526 }
3527 
3528 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3529                            unsigned Depth) {
3530   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3531 
3532   // If we're told that NaNs won't happen, assume they won't.
3533   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3534     if (FPMathOp->hasNoNaNs())
3535       return true;
3536 
3537   // Handle scalar constants.
3538   if (auto *CFP = dyn_cast<ConstantFP>(V))
3539     return !CFP->isNaN();
3540 
3541   if (Depth == MaxAnalysisRecursionDepth)
3542     return false;
3543 
3544   if (auto *Inst = dyn_cast<Instruction>(V)) {
3545     switch (Inst->getOpcode()) {
3546     case Instruction::FAdd:
3547     case Instruction::FSub:
3548       // Adding positive and negative infinity produces NaN.
3549       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3550              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3551              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3552               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3553 
3554     case Instruction::FMul:
3555       // Zero multiplied with infinity produces NaN.
3556       // FIXME: If neither side can be zero fmul never produces NaN.
3557       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3558              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3559              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3560              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3561 
3562     case Instruction::FDiv:
3563     case Instruction::FRem:
3564       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3565       return false;
3566 
3567     case Instruction::Select: {
3568       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3569              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3570     }
3571     case Instruction::SIToFP:
3572     case Instruction::UIToFP:
3573       return true;
3574     case Instruction::FPTrunc:
3575     case Instruction::FPExt:
3576       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3577     default:
3578       break;
3579     }
3580   }
3581 
3582   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3583     switch (II->getIntrinsicID()) {
3584     case Intrinsic::canonicalize:
3585     case Intrinsic::fabs:
3586     case Intrinsic::copysign:
3587     case Intrinsic::exp:
3588     case Intrinsic::exp2:
3589     case Intrinsic::floor:
3590     case Intrinsic::ceil:
3591     case Intrinsic::trunc:
3592     case Intrinsic::rint:
3593     case Intrinsic::nearbyint:
3594     case Intrinsic::round:
3595     case Intrinsic::roundeven:
3596       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3597     case Intrinsic::sqrt:
3598       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3599              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3600     case Intrinsic::minnum:
3601     case Intrinsic::maxnum:
3602       // If either operand is not NaN, the result is not NaN.
3603       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3604              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3605     default:
3606       return false;
3607     }
3608   }
3609 
3610   // Try to handle fixed width vector constants
3611   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3612   if (VFVTy && isa<Constant>(V)) {
3613     // For vectors, verify that each element is not NaN.
3614     unsigned NumElts = VFVTy->getNumElements();
3615     for (unsigned i = 0; i != NumElts; ++i) {
3616       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3617       if (!Elt)
3618         return false;
3619       if (isa<UndefValue>(Elt))
3620         continue;
3621       auto *CElt = dyn_cast<ConstantFP>(Elt);
3622       if (!CElt || CElt->isNaN())
3623         return false;
3624     }
3625     // All elements were confirmed not-NaN or undefined.
3626     return true;
3627   }
3628 
3629   // Was not able to prove that V never contains NaN
3630   return false;
3631 }
3632 
3633 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3634 
3635   // All byte-wide stores are splatable, even of arbitrary variables.
3636   if (V->getType()->isIntegerTy(8))
3637     return V;
3638 
3639   LLVMContext &Ctx = V->getContext();
3640 
3641   // Undef don't care.
3642   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3643   if (isa<UndefValue>(V))
3644     return UndefInt8;
3645 
3646   // Return Undef for zero-sized type.
3647   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3648     return UndefInt8;
3649 
3650   Constant *C = dyn_cast<Constant>(V);
3651   if (!C) {
3652     // Conceptually, we could handle things like:
3653     //   %a = zext i8 %X to i16
3654     //   %b = shl i16 %a, 8
3655     //   %c = or i16 %a, %b
3656     // but until there is an example that actually needs this, it doesn't seem
3657     // worth worrying about.
3658     return nullptr;
3659   }
3660 
3661   // Handle 'null' ConstantArrayZero etc.
3662   if (C->isNullValue())
3663     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3664 
3665   // Constant floating-point values can be handled as integer values if the
3666   // corresponding integer value is "byteable".  An important case is 0.0.
3667   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3668     Type *Ty = nullptr;
3669     if (CFP->getType()->isHalfTy())
3670       Ty = Type::getInt16Ty(Ctx);
3671     else if (CFP->getType()->isFloatTy())
3672       Ty = Type::getInt32Ty(Ctx);
3673     else if (CFP->getType()->isDoubleTy())
3674       Ty = Type::getInt64Ty(Ctx);
3675     // Don't handle long double formats, which have strange constraints.
3676     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3677               : nullptr;
3678   }
3679 
3680   // We can handle constant integers that are multiple of 8 bits.
3681   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3682     if (CI->getBitWidth() % 8 == 0) {
3683       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3684       if (!CI->getValue().isSplat(8))
3685         return nullptr;
3686       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3687     }
3688   }
3689 
3690   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3691     if (CE->getOpcode() == Instruction::IntToPtr) {
3692       auto PS = DL.getPointerSizeInBits(
3693           cast<PointerType>(CE->getType())->getAddressSpace());
3694       return isBytewiseValue(
3695           ConstantExpr::getIntegerCast(CE->getOperand(0),
3696                                        Type::getIntNTy(Ctx, PS), false),
3697           DL);
3698     }
3699   }
3700 
3701   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3702     if (LHS == RHS)
3703       return LHS;
3704     if (!LHS || !RHS)
3705       return nullptr;
3706     if (LHS == UndefInt8)
3707       return RHS;
3708     if (RHS == UndefInt8)
3709       return LHS;
3710     return nullptr;
3711   };
3712 
3713   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3714     Value *Val = UndefInt8;
3715     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3716       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3717         return nullptr;
3718     return Val;
3719   }
3720 
3721   if (isa<ConstantAggregate>(C)) {
3722     Value *Val = UndefInt8;
3723     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3724       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3725         return nullptr;
3726     return Val;
3727   }
3728 
3729   // Don't try to handle the handful of other constants.
3730   return nullptr;
3731 }
3732 
3733 // This is the recursive version of BuildSubAggregate. It takes a few different
3734 // arguments. Idxs is the index within the nested struct From that we are
3735 // looking at now (which is of type IndexedType). IdxSkip is the number of
3736 // indices from Idxs that should be left out when inserting into the resulting
3737 // struct. To is the result struct built so far, new insertvalue instructions
3738 // build on that.
3739 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3740                                 SmallVectorImpl<unsigned> &Idxs,
3741                                 unsigned IdxSkip,
3742                                 Instruction *InsertBefore) {
3743   StructType *STy = dyn_cast<StructType>(IndexedType);
3744   if (STy) {
3745     // Save the original To argument so we can modify it
3746     Value *OrigTo = To;
3747     // General case, the type indexed by Idxs is a struct
3748     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3749       // Process each struct element recursively
3750       Idxs.push_back(i);
3751       Value *PrevTo = To;
3752       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3753                              InsertBefore);
3754       Idxs.pop_back();
3755       if (!To) {
3756         // Couldn't find any inserted value for this index? Cleanup
3757         while (PrevTo != OrigTo) {
3758           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3759           PrevTo = Del->getAggregateOperand();
3760           Del->eraseFromParent();
3761         }
3762         // Stop processing elements
3763         break;
3764       }
3765     }
3766     // If we successfully found a value for each of our subaggregates
3767     if (To)
3768       return To;
3769   }
3770   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3771   // the struct's elements had a value that was inserted directly. In the latter
3772   // case, perhaps we can't determine each of the subelements individually, but
3773   // we might be able to find the complete struct somewhere.
3774 
3775   // Find the value that is at that particular spot
3776   Value *V = FindInsertedValue(From, Idxs);
3777 
3778   if (!V)
3779     return nullptr;
3780 
3781   // Insert the value in the new (sub) aggregate
3782   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3783                                  "tmp", InsertBefore);
3784 }
3785 
3786 // This helper takes a nested struct and extracts a part of it (which is again a
3787 // struct) into a new value. For example, given the struct:
3788 // { a, { b, { c, d }, e } }
3789 // and the indices "1, 1" this returns
3790 // { c, d }.
3791 //
3792 // It does this by inserting an insertvalue for each element in the resulting
3793 // struct, as opposed to just inserting a single struct. This will only work if
3794 // each of the elements of the substruct are known (ie, inserted into From by an
3795 // insertvalue instruction somewhere).
3796 //
3797 // All inserted insertvalue instructions are inserted before InsertBefore
3798 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3799                                 Instruction *InsertBefore) {
3800   assert(InsertBefore && "Must have someplace to insert!");
3801   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3802                                                              idx_range);
3803   Value *To = UndefValue::get(IndexedType);
3804   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3805   unsigned IdxSkip = Idxs.size();
3806 
3807   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3808 }
3809 
3810 /// Given an aggregate and a sequence of indices, see if the scalar value
3811 /// indexed is already around as a register, for example if it was inserted
3812 /// directly into the aggregate.
3813 ///
3814 /// If InsertBefore is not null, this function will duplicate (modified)
3815 /// insertvalues when a part of a nested struct is extracted.
3816 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3817                                Instruction *InsertBefore) {
3818   // Nothing to index? Just return V then (this is useful at the end of our
3819   // recursion).
3820   if (idx_range.empty())
3821     return V;
3822   // We have indices, so V should have an indexable type.
3823   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3824          "Not looking at a struct or array?");
3825   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3826          "Invalid indices for type?");
3827 
3828   if (Constant *C = dyn_cast<Constant>(V)) {
3829     C = C->getAggregateElement(idx_range[0]);
3830     if (!C) return nullptr;
3831     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3832   }
3833 
3834   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3835     // Loop the indices for the insertvalue instruction in parallel with the
3836     // requested indices
3837     const unsigned *req_idx = idx_range.begin();
3838     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3839          i != e; ++i, ++req_idx) {
3840       if (req_idx == idx_range.end()) {
3841         // We can't handle this without inserting insertvalues
3842         if (!InsertBefore)
3843           return nullptr;
3844 
3845         // The requested index identifies a part of a nested aggregate. Handle
3846         // this specially. For example,
3847         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3848         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3849         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3850         // This can be changed into
3851         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3852         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3853         // which allows the unused 0,0 element from the nested struct to be
3854         // removed.
3855         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3856                                  InsertBefore);
3857       }
3858 
3859       // This insert value inserts something else than what we are looking for.
3860       // See if the (aggregate) value inserted into has the value we are
3861       // looking for, then.
3862       if (*req_idx != *i)
3863         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3864                                  InsertBefore);
3865     }
3866     // If we end up here, the indices of the insertvalue match with those
3867     // requested (though possibly only partially). Now we recursively look at
3868     // the inserted value, passing any remaining indices.
3869     return FindInsertedValue(I->getInsertedValueOperand(),
3870                              makeArrayRef(req_idx, idx_range.end()),
3871                              InsertBefore);
3872   }
3873 
3874   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3875     // If we're extracting a value from an aggregate that was extracted from
3876     // something else, we can extract from that something else directly instead.
3877     // However, we will need to chain I's indices with the requested indices.
3878 
3879     // Calculate the number of indices required
3880     unsigned size = I->getNumIndices() + idx_range.size();
3881     // Allocate some space to put the new indices in
3882     SmallVector<unsigned, 5> Idxs;
3883     Idxs.reserve(size);
3884     // Add indices from the extract value instruction
3885     Idxs.append(I->idx_begin(), I->idx_end());
3886 
3887     // Add requested indices
3888     Idxs.append(idx_range.begin(), idx_range.end());
3889 
3890     assert(Idxs.size() == size
3891            && "Number of indices added not correct?");
3892 
3893     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3894   }
3895   // Otherwise, we don't know (such as, extracting from a function return value
3896   // or load instruction)
3897   return nullptr;
3898 }
3899 
3900 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3901                                        unsigned CharSize) {
3902   // Make sure the GEP has exactly three arguments.
3903   if (GEP->getNumOperands() != 3)
3904     return false;
3905 
3906   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3907   // CharSize.
3908   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3909   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3910     return false;
3911 
3912   // Check to make sure that the first operand of the GEP is an integer and
3913   // has value 0 so that we are sure we're indexing into the initializer.
3914   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3915   if (!FirstIdx || !FirstIdx->isZero())
3916     return false;
3917 
3918   return true;
3919 }
3920 
3921 bool llvm::getConstantDataArrayInfo(const Value *V,
3922                                     ConstantDataArraySlice &Slice,
3923                                     unsigned ElementSize, uint64_t Offset) {
3924   assert(V);
3925 
3926   // Look through bitcast instructions and geps.
3927   V = V->stripPointerCasts();
3928 
3929   // If the value is a GEP instruction or constant expression, treat it as an
3930   // offset.
3931   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3932     // The GEP operator should be based on a pointer to string constant, and is
3933     // indexing into the string constant.
3934     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3935       return false;
3936 
3937     // If the second index isn't a ConstantInt, then this is a variable index
3938     // into the array.  If this occurs, we can't say anything meaningful about
3939     // the string.
3940     uint64_t StartIdx = 0;
3941     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3942       StartIdx = CI->getZExtValue();
3943     else
3944       return false;
3945     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3946                                     StartIdx + Offset);
3947   }
3948 
3949   // The GEP instruction, constant or instruction, must reference a global
3950   // variable that is a constant and is initialized. The referenced constant
3951   // initializer is the array that we'll use for optimization.
3952   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3953   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3954     return false;
3955 
3956   const ConstantDataArray *Array;
3957   ArrayType *ArrayTy;
3958   if (GV->getInitializer()->isNullValue()) {
3959     Type *GVTy = GV->getValueType();
3960     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3961       // A zeroinitializer for the array; there is no ConstantDataArray.
3962       Array = nullptr;
3963     } else {
3964       const DataLayout &DL = GV->getParent()->getDataLayout();
3965       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3966       uint64_t Length = SizeInBytes / (ElementSize / 8);
3967       if (Length <= Offset)
3968         return false;
3969 
3970       Slice.Array = nullptr;
3971       Slice.Offset = 0;
3972       Slice.Length = Length - Offset;
3973       return true;
3974     }
3975   } else {
3976     // This must be a ConstantDataArray.
3977     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3978     if (!Array)
3979       return false;
3980     ArrayTy = Array->getType();
3981   }
3982   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3983     return false;
3984 
3985   uint64_t NumElts = ArrayTy->getArrayNumElements();
3986   if (Offset > NumElts)
3987     return false;
3988 
3989   Slice.Array = Array;
3990   Slice.Offset = Offset;
3991   Slice.Length = NumElts - Offset;
3992   return true;
3993 }
3994 
3995 /// This function computes the length of a null-terminated C string pointed to
3996 /// by V. If successful, it returns true and returns the string in Str.
3997 /// If unsuccessful, it returns false.
3998 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3999                                  uint64_t Offset, bool TrimAtNul) {
4000   ConstantDataArraySlice Slice;
4001   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4002     return false;
4003 
4004   if (Slice.Array == nullptr) {
4005     if (TrimAtNul) {
4006       Str = StringRef();
4007       return true;
4008     }
4009     if (Slice.Length == 1) {
4010       Str = StringRef("", 1);
4011       return true;
4012     }
4013     // We cannot instantiate a StringRef as we do not have an appropriate string
4014     // of 0s at hand.
4015     return false;
4016   }
4017 
4018   // Start out with the entire array in the StringRef.
4019   Str = Slice.Array->getAsString();
4020   // Skip over 'offset' bytes.
4021   Str = Str.substr(Slice.Offset);
4022 
4023   if (TrimAtNul) {
4024     // Trim off the \0 and anything after it.  If the array is not nul
4025     // terminated, we just return the whole end of string.  The client may know
4026     // some other way that the string is length-bound.
4027     Str = Str.substr(0, Str.find('\0'));
4028   }
4029   return true;
4030 }
4031 
4032 // These next two are very similar to the above, but also look through PHI
4033 // nodes.
4034 // TODO: See if we can integrate these two together.
4035 
4036 /// If we can compute the length of the string pointed to by
4037 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4038 static uint64_t GetStringLengthH(const Value *V,
4039                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4040                                  unsigned CharSize) {
4041   // Look through noop bitcast instructions.
4042   V = V->stripPointerCasts();
4043 
4044   // If this is a PHI node, there are two cases: either we have already seen it
4045   // or we haven't.
4046   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4047     if (!PHIs.insert(PN).second)
4048       return ~0ULL;  // already in the set.
4049 
4050     // If it was new, see if all the input strings are the same length.
4051     uint64_t LenSoFar = ~0ULL;
4052     for (Value *IncValue : PN->incoming_values()) {
4053       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4054       if (Len == 0) return 0; // Unknown length -> unknown.
4055 
4056       if (Len == ~0ULL) continue;
4057 
4058       if (Len != LenSoFar && LenSoFar != ~0ULL)
4059         return 0;    // Disagree -> unknown.
4060       LenSoFar = Len;
4061     }
4062 
4063     // Success, all agree.
4064     return LenSoFar;
4065   }
4066 
4067   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4068   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4069     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4070     if (Len1 == 0) return 0;
4071     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4072     if (Len2 == 0) return 0;
4073     if (Len1 == ~0ULL) return Len2;
4074     if (Len2 == ~0ULL) return Len1;
4075     if (Len1 != Len2) return 0;
4076     return Len1;
4077   }
4078 
4079   // Otherwise, see if we can read the string.
4080   ConstantDataArraySlice Slice;
4081   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4082     return 0;
4083 
4084   if (Slice.Array == nullptr)
4085     return 1;
4086 
4087   // Search for nul characters
4088   unsigned NullIndex = 0;
4089   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4090     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4091       break;
4092   }
4093 
4094   return NullIndex + 1;
4095 }
4096 
4097 /// If we can compute the length of the string pointed to by
4098 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4099 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4100   if (!V->getType()->isPointerTy())
4101     return 0;
4102 
4103   SmallPtrSet<const PHINode*, 32> PHIs;
4104   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4105   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4106   // an empty string as a length.
4107   return Len == ~0ULL ? 1 : Len;
4108 }
4109 
4110 const Value *
4111 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4112                                            bool MustPreserveNullness) {
4113   assert(Call &&
4114          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4115   if (const Value *RV = Call->getReturnedArgOperand())
4116     return RV;
4117   // This can be used only as a aliasing property.
4118   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4119           Call, MustPreserveNullness))
4120     return Call->getArgOperand(0);
4121   return nullptr;
4122 }
4123 
4124 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4125     const CallBase *Call, bool MustPreserveNullness) {
4126   switch (Call->getIntrinsicID()) {
4127   case Intrinsic::launder_invariant_group:
4128   case Intrinsic::strip_invariant_group:
4129   case Intrinsic::aarch64_irg:
4130   case Intrinsic::aarch64_tagp:
4131     return true;
4132   case Intrinsic::ptrmask:
4133     return !MustPreserveNullness;
4134   default:
4135     return false;
4136   }
4137 }
4138 
4139 /// \p PN defines a loop-variant pointer to an object.  Check if the
4140 /// previous iteration of the loop was referring to the same object as \p PN.
4141 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4142                                          const LoopInfo *LI) {
4143   // Find the loop-defined value.
4144   Loop *L = LI->getLoopFor(PN->getParent());
4145   if (PN->getNumIncomingValues() != 2)
4146     return true;
4147 
4148   // Find the value from previous iteration.
4149   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4150   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4151     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4152   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4153     return true;
4154 
4155   // If a new pointer is loaded in the loop, the pointer references a different
4156   // object in every iteration.  E.g.:
4157   //    for (i)
4158   //       int *p = a[i];
4159   //       ...
4160   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4161     if (!L->isLoopInvariant(Load->getPointerOperand()))
4162       return false;
4163   return true;
4164 }
4165 
4166 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4167   if (!V->getType()->isPointerTy())
4168     return V;
4169   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4170     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4171       V = GEP->getPointerOperand();
4172     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4173                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4174       V = cast<Operator>(V)->getOperand(0);
4175       if (!V->getType()->isPointerTy())
4176         return V;
4177     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4178       if (GA->isInterposable())
4179         return V;
4180       V = GA->getAliasee();
4181     } else {
4182       if (auto *PHI = dyn_cast<PHINode>(V)) {
4183         // Look through single-arg phi nodes created by LCSSA.
4184         if (PHI->getNumIncomingValues() == 1) {
4185           V = PHI->getIncomingValue(0);
4186           continue;
4187         }
4188       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4189         // CaptureTracking can know about special capturing properties of some
4190         // intrinsics like launder.invariant.group, that can't be expressed with
4191         // the attributes, but have properties like returning aliasing pointer.
4192         // Because some analysis may assume that nocaptured pointer is not
4193         // returned from some special intrinsic (because function would have to
4194         // be marked with returns attribute), it is crucial to use this function
4195         // because it should be in sync with CaptureTracking. Not using it may
4196         // cause weird miscompilations where 2 aliasing pointers are assumed to
4197         // noalias.
4198         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4199           V = RP;
4200           continue;
4201         }
4202       }
4203 
4204       return V;
4205     }
4206     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4207   }
4208   return V;
4209 }
4210 
4211 void llvm::getUnderlyingObjects(const Value *V,
4212                                 SmallVectorImpl<const Value *> &Objects,
4213                                 LoopInfo *LI, unsigned MaxLookup) {
4214   SmallPtrSet<const Value *, 4> Visited;
4215   SmallVector<const Value *, 4> Worklist;
4216   Worklist.push_back(V);
4217   do {
4218     const Value *P = Worklist.pop_back_val();
4219     P = getUnderlyingObject(P, MaxLookup);
4220 
4221     if (!Visited.insert(P).second)
4222       continue;
4223 
4224     if (auto *SI = dyn_cast<SelectInst>(P)) {
4225       Worklist.push_back(SI->getTrueValue());
4226       Worklist.push_back(SI->getFalseValue());
4227       continue;
4228     }
4229 
4230     if (auto *PN = dyn_cast<PHINode>(P)) {
4231       // If this PHI changes the underlying object in every iteration of the
4232       // loop, don't look through it.  Consider:
4233       //   int **A;
4234       //   for (i) {
4235       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4236       //     Curr = A[i];
4237       //     *Prev, *Curr;
4238       //
4239       // Prev is tracking Curr one iteration behind so they refer to different
4240       // underlying objects.
4241       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4242           isSameUnderlyingObjectInLoop(PN, LI))
4243         for (Value *IncValue : PN->incoming_values())
4244           Worklist.push_back(IncValue);
4245       continue;
4246     }
4247 
4248     Objects.push_back(P);
4249   } while (!Worklist.empty());
4250 }
4251 
4252 /// This is the function that does the work of looking through basic
4253 /// ptrtoint+arithmetic+inttoptr sequences.
4254 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4255   do {
4256     if (const Operator *U = dyn_cast<Operator>(V)) {
4257       // If we find a ptrtoint, we can transfer control back to the
4258       // regular getUnderlyingObjectFromInt.
4259       if (U->getOpcode() == Instruction::PtrToInt)
4260         return U->getOperand(0);
4261       // If we find an add of a constant, a multiplied value, or a phi, it's
4262       // likely that the other operand will lead us to the base
4263       // object. We don't have to worry about the case where the
4264       // object address is somehow being computed by the multiply,
4265       // because our callers only care when the result is an
4266       // identifiable object.
4267       if (U->getOpcode() != Instruction::Add ||
4268           (!isa<ConstantInt>(U->getOperand(1)) &&
4269            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4270            !isa<PHINode>(U->getOperand(1))))
4271         return V;
4272       V = U->getOperand(0);
4273     } else {
4274       return V;
4275     }
4276     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4277   } while (true);
4278 }
4279 
4280 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4281 /// ptrtoint+arithmetic+inttoptr sequences.
4282 /// It returns false if unidentified object is found in getUnderlyingObjects.
4283 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4284                                           SmallVectorImpl<Value *> &Objects) {
4285   SmallPtrSet<const Value *, 16> Visited;
4286   SmallVector<const Value *, 4> Working(1, V);
4287   do {
4288     V = Working.pop_back_val();
4289 
4290     SmallVector<const Value *, 4> Objs;
4291     getUnderlyingObjects(V, Objs);
4292 
4293     for (const Value *V : Objs) {
4294       if (!Visited.insert(V).second)
4295         continue;
4296       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4297         const Value *O =
4298           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4299         if (O->getType()->isPointerTy()) {
4300           Working.push_back(O);
4301           continue;
4302         }
4303       }
4304       // If getUnderlyingObjects fails to find an identifiable object,
4305       // getUnderlyingObjectsForCodeGen also fails for safety.
4306       if (!isIdentifiedObject(V)) {
4307         Objects.clear();
4308         return false;
4309       }
4310       Objects.push_back(const_cast<Value *>(V));
4311     }
4312   } while (!Working.empty());
4313   return true;
4314 }
4315 
4316 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4317   AllocaInst *Result = nullptr;
4318   SmallPtrSet<Value *, 4> Visited;
4319   SmallVector<Value *, 4> Worklist;
4320 
4321   auto AddWork = [&](Value *V) {
4322     if (Visited.insert(V).second)
4323       Worklist.push_back(V);
4324   };
4325 
4326   AddWork(V);
4327   do {
4328     V = Worklist.pop_back_val();
4329     assert(Visited.count(V));
4330 
4331     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4332       if (Result && Result != AI)
4333         return nullptr;
4334       Result = AI;
4335     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4336       AddWork(CI->getOperand(0));
4337     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4338       for (Value *IncValue : PN->incoming_values())
4339         AddWork(IncValue);
4340     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4341       AddWork(SI->getTrueValue());
4342       AddWork(SI->getFalseValue());
4343     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4344       if (OffsetZero && !GEP->hasAllZeroIndices())
4345         return nullptr;
4346       AddWork(GEP->getPointerOperand());
4347     } else {
4348       return nullptr;
4349     }
4350   } while (!Worklist.empty());
4351 
4352   return Result;
4353 }
4354 
4355 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4356     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4357   for (const User *U : V->users()) {
4358     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4359     if (!II)
4360       return false;
4361 
4362     if (AllowLifetime && II->isLifetimeStartOrEnd())
4363       continue;
4364 
4365     if (AllowDroppable && II->isDroppable())
4366       continue;
4367 
4368     return false;
4369   }
4370   return true;
4371 }
4372 
4373 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4374   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4375       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4376 }
4377 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4378   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4379       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4380 }
4381 
4382 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4383   if (!LI.isUnordered())
4384     return true;
4385   const Function &F = *LI.getFunction();
4386   // Speculative load may create a race that did not exist in the source.
4387   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4388     // Speculative load may load data from dirty regions.
4389     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4390     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4391 }
4392 
4393 
4394 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4395                                         const Instruction *CtxI,
4396                                         const DominatorTree *DT) {
4397   const Operator *Inst = dyn_cast<Operator>(V);
4398   if (!Inst)
4399     return false;
4400 
4401   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4402     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4403       if (C->canTrap())
4404         return false;
4405 
4406   switch (Inst->getOpcode()) {
4407   default:
4408     return true;
4409   case Instruction::UDiv:
4410   case Instruction::URem: {
4411     // x / y is undefined if y == 0.
4412     const APInt *V;
4413     if (match(Inst->getOperand(1), m_APInt(V)))
4414       return *V != 0;
4415     return false;
4416   }
4417   case Instruction::SDiv:
4418   case Instruction::SRem: {
4419     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4420     const APInt *Numerator, *Denominator;
4421     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4422       return false;
4423     // We cannot hoist this division if the denominator is 0.
4424     if (*Denominator == 0)
4425       return false;
4426     // It's safe to hoist if the denominator is not 0 or -1.
4427     if (*Denominator != -1)
4428       return true;
4429     // At this point we know that the denominator is -1.  It is safe to hoist as
4430     // long we know that the numerator is not INT_MIN.
4431     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4432       return !Numerator->isMinSignedValue();
4433     // The numerator *might* be MinSignedValue.
4434     return false;
4435   }
4436   case Instruction::Load: {
4437     const LoadInst *LI = cast<LoadInst>(Inst);
4438     if (mustSuppressSpeculation(*LI))
4439       return false;
4440     const DataLayout &DL = LI->getModule()->getDataLayout();
4441     return isDereferenceableAndAlignedPointer(
4442         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4443         DL, CtxI, DT);
4444   }
4445   case Instruction::Call: {
4446     auto *CI = cast<const CallInst>(Inst);
4447     const Function *Callee = CI->getCalledFunction();
4448 
4449     // The called function could have undefined behavior or side-effects, even
4450     // if marked readnone nounwind.
4451     return Callee && Callee->isSpeculatable();
4452   }
4453   case Instruction::VAArg:
4454   case Instruction::Alloca:
4455   case Instruction::Invoke:
4456   case Instruction::CallBr:
4457   case Instruction::PHI:
4458   case Instruction::Store:
4459   case Instruction::Ret:
4460   case Instruction::Br:
4461   case Instruction::IndirectBr:
4462   case Instruction::Switch:
4463   case Instruction::Unreachable:
4464   case Instruction::Fence:
4465   case Instruction::AtomicRMW:
4466   case Instruction::AtomicCmpXchg:
4467   case Instruction::LandingPad:
4468   case Instruction::Resume:
4469   case Instruction::CatchSwitch:
4470   case Instruction::CatchPad:
4471   case Instruction::CatchRet:
4472   case Instruction::CleanupPad:
4473   case Instruction::CleanupRet:
4474     return false; // Misc instructions which have effects
4475   }
4476 }
4477 
4478 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4479   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4480 }
4481 
4482 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4483 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4484   switch (OR) {
4485     case ConstantRange::OverflowResult::MayOverflow:
4486       return OverflowResult::MayOverflow;
4487     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4488       return OverflowResult::AlwaysOverflowsLow;
4489     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4490       return OverflowResult::AlwaysOverflowsHigh;
4491     case ConstantRange::OverflowResult::NeverOverflows:
4492       return OverflowResult::NeverOverflows;
4493   }
4494   llvm_unreachable("Unknown OverflowResult");
4495 }
4496 
4497 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4498 static ConstantRange computeConstantRangeIncludingKnownBits(
4499     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4500     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4501     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4502   KnownBits Known = computeKnownBits(
4503       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4504   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4505   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4506   ConstantRange::PreferredRangeType RangeType =
4507       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4508   return CR1.intersectWith(CR2, RangeType);
4509 }
4510 
4511 OverflowResult llvm::computeOverflowForUnsignedMul(
4512     const Value *LHS, const Value *RHS, const DataLayout &DL,
4513     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4514     bool UseInstrInfo) {
4515   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4516                                         nullptr, UseInstrInfo);
4517   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4518                                         nullptr, UseInstrInfo);
4519   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4520   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4521   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4522 }
4523 
4524 OverflowResult
4525 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4526                                   const DataLayout &DL, AssumptionCache *AC,
4527                                   const Instruction *CxtI,
4528                                   const DominatorTree *DT, bool UseInstrInfo) {
4529   // Multiplying n * m significant bits yields a result of n + m significant
4530   // bits. If the total number of significant bits does not exceed the
4531   // result bit width (minus 1), there is no overflow.
4532   // This means if we have enough leading sign bits in the operands
4533   // we can guarantee that the result does not overflow.
4534   // Ref: "Hacker's Delight" by Henry Warren
4535   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4536 
4537   // Note that underestimating the number of sign bits gives a more
4538   // conservative answer.
4539   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4540                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4541 
4542   // First handle the easy case: if we have enough sign bits there's
4543   // definitely no overflow.
4544   if (SignBits > BitWidth + 1)
4545     return OverflowResult::NeverOverflows;
4546 
4547   // There are two ambiguous cases where there can be no overflow:
4548   //   SignBits == BitWidth + 1    and
4549   //   SignBits == BitWidth
4550   // The second case is difficult to check, therefore we only handle the
4551   // first case.
4552   if (SignBits == BitWidth + 1) {
4553     // It overflows only when both arguments are negative and the true
4554     // product is exactly the minimum negative number.
4555     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4556     // For simplicity we just check if at least one side is not negative.
4557     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4558                                           nullptr, UseInstrInfo);
4559     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4560                                           nullptr, UseInstrInfo);
4561     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4562       return OverflowResult::NeverOverflows;
4563   }
4564   return OverflowResult::MayOverflow;
4565 }
4566 
4567 OverflowResult llvm::computeOverflowForUnsignedAdd(
4568     const Value *LHS, const Value *RHS, const DataLayout &DL,
4569     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4570     bool UseInstrInfo) {
4571   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4572       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4573       nullptr, UseInstrInfo);
4574   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4575       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4576       nullptr, UseInstrInfo);
4577   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4578 }
4579 
4580 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4581                                                   const Value *RHS,
4582                                                   const AddOperator *Add,
4583                                                   const DataLayout &DL,
4584                                                   AssumptionCache *AC,
4585                                                   const Instruction *CxtI,
4586                                                   const DominatorTree *DT) {
4587   if (Add && Add->hasNoSignedWrap()) {
4588     return OverflowResult::NeverOverflows;
4589   }
4590 
4591   // If LHS and RHS each have at least two sign bits, the addition will look
4592   // like
4593   //
4594   // XX..... +
4595   // YY.....
4596   //
4597   // If the carry into the most significant position is 0, X and Y can't both
4598   // be 1 and therefore the carry out of the addition is also 0.
4599   //
4600   // If the carry into the most significant position is 1, X and Y can't both
4601   // be 0 and therefore the carry out of the addition is also 1.
4602   //
4603   // Since the carry into the most significant position is always equal to
4604   // the carry out of the addition, there is no signed overflow.
4605   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4606       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4607     return OverflowResult::NeverOverflows;
4608 
4609   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4610       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4611   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4612       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4613   OverflowResult OR =
4614       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4615   if (OR != OverflowResult::MayOverflow)
4616     return OR;
4617 
4618   // The remaining code needs Add to be available. Early returns if not so.
4619   if (!Add)
4620     return OverflowResult::MayOverflow;
4621 
4622   // If the sign of Add is the same as at least one of the operands, this add
4623   // CANNOT overflow. If this can be determined from the known bits of the
4624   // operands the above signedAddMayOverflow() check will have already done so.
4625   // The only other way to improve on the known bits is from an assumption, so
4626   // call computeKnownBitsFromAssume() directly.
4627   bool LHSOrRHSKnownNonNegative =
4628       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4629   bool LHSOrRHSKnownNegative =
4630       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4631   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4632     KnownBits AddKnown(LHSRange.getBitWidth());
4633     computeKnownBitsFromAssume(
4634         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4635     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4636         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4637       return OverflowResult::NeverOverflows;
4638   }
4639 
4640   return OverflowResult::MayOverflow;
4641 }
4642 
4643 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4644                                                    const Value *RHS,
4645                                                    const DataLayout &DL,
4646                                                    AssumptionCache *AC,
4647                                                    const Instruction *CxtI,
4648                                                    const DominatorTree *DT) {
4649   // Checking for conditions implied by dominating conditions may be expensive.
4650   // Limit it to usub_with_overflow calls for now.
4651   if (match(CxtI,
4652             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4653     if (auto C =
4654             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4655       if (*C)
4656         return OverflowResult::NeverOverflows;
4657       return OverflowResult::AlwaysOverflowsLow;
4658     }
4659   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4660       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4661   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4662       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4663   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4664 }
4665 
4666 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4667                                                  const Value *RHS,
4668                                                  const DataLayout &DL,
4669                                                  AssumptionCache *AC,
4670                                                  const Instruction *CxtI,
4671                                                  const DominatorTree *DT) {
4672   // If LHS and RHS each have at least two sign bits, the subtraction
4673   // cannot overflow.
4674   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4675       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4676     return OverflowResult::NeverOverflows;
4677 
4678   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4679       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4680   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4681       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4682   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4683 }
4684 
4685 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4686                                      const DominatorTree &DT) {
4687   SmallVector<const BranchInst *, 2> GuardingBranches;
4688   SmallVector<const ExtractValueInst *, 2> Results;
4689 
4690   for (const User *U : WO->users()) {
4691     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4692       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4693 
4694       if (EVI->getIndices()[0] == 0)
4695         Results.push_back(EVI);
4696       else {
4697         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4698 
4699         for (const auto *U : EVI->users())
4700           if (const auto *B = dyn_cast<BranchInst>(U)) {
4701             assert(B->isConditional() && "How else is it using an i1?");
4702             GuardingBranches.push_back(B);
4703           }
4704       }
4705     } else {
4706       // We are using the aggregate directly in a way we don't want to analyze
4707       // here (storing it to a global, say).
4708       return false;
4709     }
4710   }
4711 
4712   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4713     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4714     if (!NoWrapEdge.isSingleEdge())
4715       return false;
4716 
4717     // Check if all users of the add are provably no-wrap.
4718     for (const auto *Result : Results) {
4719       // If the extractvalue itself is not executed on overflow, the we don't
4720       // need to check each use separately, since domination is transitive.
4721       if (DT.dominates(NoWrapEdge, Result->getParent()))
4722         continue;
4723 
4724       for (auto &RU : Result->uses())
4725         if (!DT.dominates(NoWrapEdge, RU))
4726           return false;
4727     }
4728 
4729     return true;
4730   };
4731 
4732   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4733 }
4734 
4735 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4736   // See whether I has flags that may create poison
4737   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4738     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4739       return true;
4740   }
4741   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4742     if (ExactOp->isExact())
4743       return true;
4744   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4745     auto FMF = FP->getFastMathFlags();
4746     if (FMF.noNaNs() || FMF.noInfs())
4747       return true;
4748   }
4749 
4750   unsigned Opcode = Op->getOpcode();
4751 
4752   // Check whether opcode is a poison/undef-generating operation
4753   switch (Opcode) {
4754   case Instruction::Shl:
4755   case Instruction::AShr:
4756   case Instruction::LShr: {
4757     // Shifts return poison if shiftwidth is larger than the bitwidth.
4758     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4759       SmallVector<Constant *, 4> ShiftAmounts;
4760       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4761         unsigned NumElts = FVTy->getNumElements();
4762         for (unsigned i = 0; i < NumElts; ++i)
4763           ShiftAmounts.push_back(C->getAggregateElement(i));
4764       } else if (isa<ScalableVectorType>(C->getType()))
4765         return true; // Can't tell, just return true to be safe
4766       else
4767         ShiftAmounts.push_back(C);
4768 
4769       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4770         auto *CI = dyn_cast<ConstantInt>(C);
4771         return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth();
4772       });
4773       return !Safe;
4774     }
4775     return true;
4776   }
4777   case Instruction::FPToSI:
4778   case Instruction::FPToUI:
4779     // fptosi/ui yields poison if the resulting value does not fit in the
4780     // destination type.
4781     return true;
4782   case Instruction::Call:
4783   case Instruction::CallBr:
4784   case Instruction::Invoke: {
4785     const auto *CB = cast<CallBase>(Op);
4786     return !CB->hasRetAttr(Attribute::NoUndef);
4787   }
4788   case Instruction::InsertElement:
4789   case Instruction::ExtractElement: {
4790     // If index exceeds the length of the vector, it returns poison
4791     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4792     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4793     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4794     if (!Idx ||
4795         Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue())
4796       return true;
4797     return false;
4798   }
4799   case Instruction::ShuffleVector: {
4800     // shufflevector may return undef.
4801     if (PoisonOnly)
4802       return false;
4803     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4804                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4805                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4806     return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; });
4807   }
4808   case Instruction::FNeg:
4809   case Instruction::PHI:
4810   case Instruction::Select:
4811   case Instruction::URem:
4812   case Instruction::SRem:
4813   case Instruction::ExtractValue:
4814   case Instruction::InsertValue:
4815   case Instruction::Freeze:
4816   case Instruction::ICmp:
4817   case Instruction::FCmp:
4818     return false;
4819   case Instruction::GetElementPtr: {
4820     const auto *GEP = cast<GEPOperator>(Op);
4821     return GEP->isInBounds();
4822   }
4823   default: {
4824     const auto *CE = dyn_cast<ConstantExpr>(Op);
4825     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4826       return false;
4827     else if (Instruction::isBinaryOp(Opcode))
4828       return false;
4829     // Be conservative and return true.
4830     return true;
4831   }
4832   }
4833 }
4834 
4835 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4836   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4837 }
4838 
4839 bool llvm::canCreatePoison(const Operator *Op) {
4840   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4841 }
4842 
4843 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V,
4844                                             const Instruction *CtxI,
4845                                             const DominatorTree *DT,
4846                                             unsigned Depth) {
4847   if (Depth >= MaxAnalysisRecursionDepth)
4848     return false;
4849 
4850   if (const auto *A = dyn_cast<Argument>(V)) {
4851     if (A->hasAttribute(Attribute::NoUndef))
4852       return true;
4853   }
4854 
4855   if (auto *C = dyn_cast<Constant>(V)) {
4856     if (isa<UndefValue>(C))
4857       return false;
4858 
4859     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4860         isa<ConstantPointerNull>(C) || isa<Function>(C))
4861       return true;
4862 
4863     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4864       return !C->containsConstantExpression() && !C->containsUndefElement();
4865   }
4866 
4867   // Strip cast operations from a pointer value.
4868   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4869   // inbounds with zero offset. To guarantee that the result isn't poison, the
4870   // stripped pointer is checked as it has to be pointing into an allocated
4871   // object or be null `null` to ensure `inbounds` getelement pointers with a
4872   // zero offset could not produce poison.
4873   // It can strip off addrspacecast that do not change bit representation as
4874   // well. We believe that such addrspacecast is equivalent to no-op.
4875   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4876   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4877       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4878     return true;
4879 
4880   auto OpCheck = [&](const Value *V) {
4881     return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1);
4882   };
4883 
4884   if (auto *Opr = dyn_cast<Operator>(V)) {
4885     // If the value is a freeze instruction, then it can never
4886     // be undef or poison.
4887     if (isa<FreezeInst>(V))
4888       return true;
4889 
4890     if (const auto *CB = dyn_cast<CallBase>(V)) {
4891       if (CB->hasRetAttr(Attribute::NoUndef))
4892         return true;
4893     }
4894 
4895     if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4896       return true;
4897   }
4898 
4899   if (auto *I = dyn_cast<Instruction>(V)) {
4900     if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1))
4901       // Note: once we have an agreement that poison is a value-wise concept,
4902       // we can remove the isIntegerTy(1) constraint.
4903       return true;
4904   }
4905 
4906   // CxtI may be null or a cloned instruction.
4907   if (!CtxI || !CtxI->getParent() || !DT)
4908     return false;
4909 
4910   auto *DNode = DT->getNode(CtxI->getParent());
4911   if (!DNode)
4912     // Unreachable block
4913     return false;
4914 
4915   // If V is used as a branch condition before reaching CtxI, V cannot be
4916   // undef or poison.
4917   //   br V, BB1, BB2
4918   // BB1:
4919   //   CtxI ; V cannot be undef or poison here
4920   auto *Dominator = DNode->getIDom();
4921   while (Dominator) {
4922     auto *TI = Dominator->getBlock()->getTerminator();
4923 
4924     if (auto BI = dyn_cast<BranchInst>(TI)) {
4925       if (BI->isConditional() && BI->getCondition() == V)
4926         return true;
4927     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4928       if (SI->getCondition() == V)
4929         return true;
4930     }
4931 
4932     Dominator = Dominator->getIDom();
4933   }
4934 
4935   return false;
4936 }
4937 
4938 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4939                                                  const DataLayout &DL,
4940                                                  AssumptionCache *AC,
4941                                                  const Instruction *CxtI,
4942                                                  const DominatorTree *DT) {
4943   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4944                                        Add, DL, AC, CxtI, DT);
4945 }
4946 
4947 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4948                                                  const Value *RHS,
4949                                                  const DataLayout &DL,
4950                                                  AssumptionCache *AC,
4951                                                  const Instruction *CxtI,
4952                                                  const DominatorTree *DT) {
4953   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4954 }
4955 
4956 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4957   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4958   // of time because it's possible for another thread to interfere with it for an
4959   // arbitrary length of time, but programs aren't allowed to rely on that.
4960 
4961   // If there is no successor, then execution can't transfer to it.
4962   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4963     return !CRI->unwindsToCaller();
4964   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4965     return !CatchSwitch->unwindsToCaller();
4966   if (isa<ResumeInst>(I))
4967     return false;
4968   if (isa<ReturnInst>(I))
4969     return false;
4970   if (isa<UnreachableInst>(I))
4971     return false;
4972 
4973   // Calls can throw, or contain an infinite loop, or kill the process.
4974   if (const auto *CB = dyn_cast<CallBase>(I)) {
4975     // Call sites that throw have implicit non-local control flow.
4976     if (!CB->doesNotThrow())
4977       return false;
4978 
4979     // A function which doens't throw and has "willreturn" attribute will
4980     // always return.
4981     if (CB->hasFnAttr(Attribute::WillReturn))
4982       return true;
4983 
4984     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4985     // etc. and thus not return.  However, LLVM already assumes that
4986     //
4987     //  - Thread exiting actions are modeled as writes to memory invisible to
4988     //    the program.
4989     //
4990     //  - Loops that don't have side effects (side effects are volatile/atomic
4991     //    stores and IO) always terminate (see http://llvm.org/PR965).
4992     //    Furthermore IO itself is also modeled as writes to memory invisible to
4993     //    the program.
4994     //
4995     // We rely on those assumptions here, and use the memory effects of the call
4996     // target as a proxy for checking that it always returns.
4997 
4998     // FIXME: This isn't aggressive enough; a call which only writes to a global
4999     // is guaranteed to return.
5000     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5001   }
5002 
5003   // Other instructions return normally.
5004   return true;
5005 }
5006 
5007 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5008   // TODO: This is slightly conservative for invoke instruction since exiting
5009   // via an exception *is* normal control for them.
5010   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5011     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5012       return false;
5013   return true;
5014 }
5015 
5016 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5017                                                   const Loop *L) {
5018   // The loop header is guaranteed to be executed for every iteration.
5019   //
5020   // FIXME: Relax this constraint to cover all basic blocks that are
5021   // guaranteed to be executed at every iteration.
5022   if (I->getParent() != L->getHeader()) return false;
5023 
5024   for (const Instruction &LI : *L->getHeader()) {
5025     if (&LI == I) return true;
5026     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5027   }
5028   llvm_unreachable("Instruction not contained in its own parent basic block.");
5029 }
5030 
5031 bool llvm::propagatesPoison(const Instruction *I) {
5032   switch (I->getOpcode()) {
5033   case Instruction::Freeze:
5034   case Instruction::Select:
5035   case Instruction::PHI:
5036   case Instruction::Call:
5037   case Instruction::Invoke:
5038     return false;
5039   case Instruction::ICmp:
5040   case Instruction::FCmp:
5041   case Instruction::GetElementPtr:
5042     return true;
5043   default:
5044     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5045       return true;
5046 
5047     // Be conservative and return false.
5048     return false;
5049   }
5050 }
5051 
5052 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5053                                      SmallPtrSetImpl<const Value *> &Operands) {
5054   switch (I->getOpcode()) {
5055     case Instruction::Store:
5056       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5057       break;
5058 
5059     case Instruction::Load:
5060       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5061       break;
5062 
5063     case Instruction::AtomicCmpXchg:
5064       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5065       break;
5066 
5067     case Instruction::AtomicRMW:
5068       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5069       break;
5070 
5071     case Instruction::UDiv:
5072     case Instruction::SDiv:
5073     case Instruction::URem:
5074     case Instruction::SRem:
5075       Operands.insert(I->getOperand(1));
5076       break;
5077 
5078     case Instruction::Call:
5079     case Instruction::Invoke: {
5080       const CallBase *CB = cast<CallBase>(I);
5081       if (CB->isIndirectCall())
5082         Operands.insert(CB->getCalledOperand());
5083       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5084         if (CB->paramHasAttr(i, Attribute::NoUndef))
5085           Operands.insert(CB->getArgOperand(i));
5086       }
5087       break;
5088     }
5089 
5090     default:
5091       break;
5092   }
5093 }
5094 
5095 bool llvm::mustTriggerUB(const Instruction *I,
5096                          const SmallSet<const Value *, 16>& KnownPoison) {
5097   SmallPtrSet<const Value *, 4> NonPoisonOps;
5098   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5099 
5100   for (const auto *V : NonPoisonOps)
5101     if (KnownPoison.count(V))
5102       return true;
5103 
5104   return false;
5105 }
5106 
5107 
5108 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) {
5109   // We currently only look for uses of poison values within the same basic
5110   // block, as that makes it easier to guarantee that the uses will be
5111   // executed given that PoisonI is executed.
5112   //
5113   // FIXME: Expand this to consider uses beyond the same basic block. To do
5114   // this, look out for the distinction between post-dominance and strong
5115   // post-dominance.
5116   const BasicBlock *BB = PoisonI->getParent();
5117 
5118   // Set of instructions that we have proved will yield poison if PoisonI
5119   // does.
5120   SmallSet<const Value *, 16> YieldsPoison;
5121   SmallSet<const BasicBlock *, 4> Visited;
5122   YieldsPoison.insert(PoisonI);
5123   Visited.insert(PoisonI->getParent());
5124 
5125   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
5126 
5127   unsigned Iter = 0;
5128   while (Iter++ < MaxAnalysisRecursionDepth) {
5129     for (auto &I : make_range(Begin, End)) {
5130       if (&I != PoisonI) {
5131         if (mustTriggerUB(&I, YieldsPoison))
5132           return true;
5133         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5134           return false;
5135       }
5136 
5137       // Mark poison that propagates from I through uses of I.
5138       if (YieldsPoison.count(&I)) {
5139         for (const User *User : I.users()) {
5140           const Instruction *UserI = cast<Instruction>(User);
5141           if (propagatesPoison(UserI))
5142             YieldsPoison.insert(User);
5143         }
5144       }
5145     }
5146 
5147     if (auto *NextBB = BB->getSingleSuccessor()) {
5148       if (Visited.insert(NextBB).second) {
5149         BB = NextBB;
5150         Begin = BB->getFirstNonPHI()->getIterator();
5151         End = BB->end();
5152         continue;
5153       }
5154     }
5155 
5156     break;
5157   }
5158   return false;
5159 }
5160 
5161 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5162   if (FMF.noNaNs())
5163     return true;
5164 
5165   if (auto *C = dyn_cast<ConstantFP>(V))
5166     return !C->isNaN();
5167 
5168   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5169     if (!C->getElementType()->isFloatingPointTy())
5170       return false;
5171     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5172       if (C->getElementAsAPFloat(I).isNaN())
5173         return false;
5174     }
5175     return true;
5176   }
5177 
5178   if (isa<ConstantAggregateZero>(V))
5179     return true;
5180 
5181   return false;
5182 }
5183 
5184 static bool isKnownNonZero(const Value *V) {
5185   if (auto *C = dyn_cast<ConstantFP>(V))
5186     return !C->isZero();
5187 
5188   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5189     if (!C->getElementType()->isFloatingPointTy())
5190       return false;
5191     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5192       if (C->getElementAsAPFloat(I).isZero())
5193         return false;
5194     }
5195     return true;
5196   }
5197 
5198   return false;
5199 }
5200 
5201 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5202 /// Given non-min/max outer cmp/select from the clamp pattern this
5203 /// function recognizes if it can be substitued by a "canonical" min/max
5204 /// pattern.
5205 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5206                                                Value *CmpLHS, Value *CmpRHS,
5207                                                Value *TrueVal, Value *FalseVal,
5208                                                Value *&LHS, Value *&RHS) {
5209   // Try to match
5210   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5211   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5212   // and return description of the outer Max/Min.
5213 
5214   // First, check if select has inverse order:
5215   if (CmpRHS == FalseVal) {
5216     std::swap(TrueVal, FalseVal);
5217     Pred = CmpInst::getInversePredicate(Pred);
5218   }
5219 
5220   // Assume success now. If there's no match, callers should not use these anyway.
5221   LHS = TrueVal;
5222   RHS = FalseVal;
5223 
5224   const APFloat *FC1;
5225   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5226     return {SPF_UNKNOWN, SPNB_NA, false};
5227 
5228   const APFloat *FC2;
5229   switch (Pred) {
5230   case CmpInst::FCMP_OLT:
5231   case CmpInst::FCMP_OLE:
5232   case CmpInst::FCMP_ULT:
5233   case CmpInst::FCMP_ULE:
5234     if (match(FalseVal,
5235               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5236                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5237         *FC1 < *FC2)
5238       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5239     break;
5240   case CmpInst::FCMP_OGT:
5241   case CmpInst::FCMP_OGE:
5242   case CmpInst::FCMP_UGT:
5243   case CmpInst::FCMP_UGE:
5244     if (match(FalseVal,
5245               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5246                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5247         *FC1 > *FC2)
5248       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5249     break;
5250   default:
5251     break;
5252   }
5253 
5254   return {SPF_UNKNOWN, SPNB_NA, false};
5255 }
5256 
5257 /// Recognize variations of:
5258 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5259 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5260                                       Value *CmpLHS, Value *CmpRHS,
5261                                       Value *TrueVal, Value *FalseVal) {
5262   // Swap the select operands and predicate to match the patterns below.
5263   if (CmpRHS != TrueVal) {
5264     Pred = ICmpInst::getSwappedPredicate(Pred);
5265     std::swap(TrueVal, FalseVal);
5266   }
5267   const APInt *C1;
5268   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5269     const APInt *C2;
5270     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5271     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5272         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5273       return {SPF_SMAX, SPNB_NA, false};
5274 
5275     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5276     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5277         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5278       return {SPF_SMIN, SPNB_NA, false};
5279 
5280     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5281     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5282         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5283       return {SPF_UMAX, SPNB_NA, false};
5284 
5285     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5286     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5287         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5288       return {SPF_UMIN, SPNB_NA, false};
5289   }
5290   return {SPF_UNKNOWN, SPNB_NA, false};
5291 }
5292 
5293 /// Recognize variations of:
5294 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5295 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5296                                                Value *CmpLHS, Value *CmpRHS,
5297                                                Value *TVal, Value *FVal,
5298                                                unsigned Depth) {
5299   // TODO: Allow FP min/max with nnan/nsz.
5300   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5301 
5302   Value *A = nullptr, *B = nullptr;
5303   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5304   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5305     return {SPF_UNKNOWN, SPNB_NA, false};
5306 
5307   Value *C = nullptr, *D = nullptr;
5308   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5309   if (L.Flavor != R.Flavor)
5310     return {SPF_UNKNOWN, SPNB_NA, false};
5311 
5312   // We have something like: x Pred y ? min(a, b) : min(c, d).
5313   // Try to match the compare to the min/max operations of the select operands.
5314   // First, make sure we have the right compare predicate.
5315   switch (L.Flavor) {
5316   case SPF_SMIN:
5317     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5318       Pred = ICmpInst::getSwappedPredicate(Pred);
5319       std::swap(CmpLHS, CmpRHS);
5320     }
5321     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5322       break;
5323     return {SPF_UNKNOWN, SPNB_NA, false};
5324   case SPF_SMAX:
5325     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5326       Pred = ICmpInst::getSwappedPredicate(Pred);
5327       std::swap(CmpLHS, CmpRHS);
5328     }
5329     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5330       break;
5331     return {SPF_UNKNOWN, SPNB_NA, false};
5332   case SPF_UMIN:
5333     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5334       Pred = ICmpInst::getSwappedPredicate(Pred);
5335       std::swap(CmpLHS, CmpRHS);
5336     }
5337     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5338       break;
5339     return {SPF_UNKNOWN, SPNB_NA, false};
5340   case SPF_UMAX:
5341     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5342       Pred = ICmpInst::getSwappedPredicate(Pred);
5343       std::swap(CmpLHS, CmpRHS);
5344     }
5345     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5346       break;
5347     return {SPF_UNKNOWN, SPNB_NA, false};
5348   default:
5349     return {SPF_UNKNOWN, SPNB_NA, false};
5350   }
5351 
5352   // If there is a common operand in the already matched min/max and the other
5353   // min/max operands match the compare operands (either directly or inverted),
5354   // then this is min/max of the same flavor.
5355 
5356   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5357   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5358   if (D == B) {
5359     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5360                                          match(A, m_Not(m_Specific(CmpRHS)))))
5361       return {L.Flavor, SPNB_NA, false};
5362   }
5363   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5364   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5365   if (C == B) {
5366     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5367                                          match(A, m_Not(m_Specific(CmpRHS)))))
5368       return {L.Flavor, SPNB_NA, false};
5369   }
5370   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5371   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5372   if (D == A) {
5373     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5374                                          match(B, m_Not(m_Specific(CmpRHS)))))
5375       return {L.Flavor, SPNB_NA, false};
5376   }
5377   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5378   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5379   if (C == A) {
5380     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5381                                          match(B, m_Not(m_Specific(CmpRHS)))))
5382       return {L.Flavor, SPNB_NA, false};
5383   }
5384 
5385   return {SPF_UNKNOWN, SPNB_NA, false};
5386 }
5387 
5388 /// If the input value is the result of a 'not' op, constant integer, or vector
5389 /// splat of a constant integer, return the bitwise-not source value.
5390 /// TODO: This could be extended to handle non-splat vector integer constants.
5391 static Value *getNotValue(Value *V) {
5392   Value *NotV;
5393   if (match(V, m_Not(m_Value(NotV))))
5394     return NotV;
5395 
5396   const APInt *C;
5397   if (match(V, m_APInt(C)))
5398     return ConstantInt::get(V->getType(), ~(*C));
5399 
5400   return nullptr;
5401 }
5402 
5403 /// Match non-obvious integer minimum and maximum sequences.
5404 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5405                                        Value *CmpLHS, Value *CmpRHS,
5406                                        Value *TrueVal, Value *FalseVal,
5407                                        Value *&LHS, Value *&RHS,
5408                                        unsigned Depth) {
5409   // Assume success. If there's no match, callers should not use these anyway.
5410   LHS = TrueVal;
5411   RHS = FalseVal;
5412 
5413   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5414   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5415     return SPR;
5416 
5417   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5418   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5419     return SPR;
5420 
5421   // Look through 'not' ops to find disguised min/max.
5422   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5423   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5424   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5425     switch (Pred) {
5426     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5427     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5428     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5429     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5430     default: break;
5431     }
5432   }
5433 
5434   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5435   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5436   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5437     switch (Pred) {
5438     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5439     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5440     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5441     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5442     default: break;
5443     }
5444   }
5445 
5446   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5447     return {SPF_UNKNOWN, SPNB_NA, false};
5448 
5449   // Z = X -nsw Y
5450   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5451   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5452   if (match(TrueVal, m_Zero()) &&
5453       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5454     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5455 
5456   // Z = X -nsw Y
5457   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5458   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5459   if (match(FalseVal, m_Zero()) &&
5460       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5461     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5462 
5463   const APInt *C1;
5464   if (!match(CmpRHS, m_APInt(C1)))
5465     return {SPF_UNKNOWN, SPNB_NA, false};
5466 
5467   // An unsigned min/max can be written with a signed compare.
5468   const APInt *C2;
5469   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5470       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5471     // Is the sign bit set?
5472     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5473     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5474     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5475         C2->isMaxSignedValue())
5476       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5477 
5478     // Is the sign bit clear?
5479     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5480     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5481     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5482         C2->isMinSignedValue())
5483       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5484   }
5485 
5486   return {SPF_UNKNOWN, SPNB_NA, false};
5487 }
5488 
5489 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5490   assert(X && Y && "Invalid operand");
5491 
5492   // X = sub (0, Y) || X = sub nsw (0, Y)
5493   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5494       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5495     return true;
5496 
5497   // Y = sub (0, X) || Y = sub nsw (0, X)
5498   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5499       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5500     return true;
5501 
5502   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5503   Value *A, *B;
5504   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5505                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5506          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5507                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5508 }
5509 
5510 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5511                                               FastMathFlags FMF,
5512                                               Value *CmpLHS, Value *CmpRHS,
5513                                               Value *TrueVal, Value *FalseVal,
5514                                               Value *&LHS, Value *&RHS,
5515                                               unsigned Depth) {
5516   if (CmpInst::isFPPredicate(Pred)) {
5517     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5518     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5519     // purpose of identifying min/max. Disregard vector constants with undefined
5520     // elements because those can not be back-propagated for analysis.
5521     Value *OutputZeroVal = nullptr;
5522     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5523         !cast<Constant>(TrueVal)->containsUndefElement())
5524       OutputZeroVal = TrueVal;
5525     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5526              !cast<Constant>(FalseVal)->containsUndefElement())
5527       OutputZeroVal = FalseVal;
5528 
5529     if (OutputZeroVal) {
5530       if (match(CmpLHS, m_AnyZeroFP()))
5531         CmpLHS = OutputZeroVal;
5532       if (match(CmpRHS, m_AnyZeroFP()))
5533         CmpRHS = OutputZeroVal;
5534     }
5535   }
5536 
5537   LHS = CmpLHS;
5538   RHS = CmpRHS;
5539 
5540   // Signed zero may return inconsistent results between implementations.
5541   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5542   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5543   // Therefore, we behave conservatively and only proceed if at least one of the
5544   // operands is known to not be zero or if we don't care about signed zero.
5545   switch (Pred) {
5546   default: break;
5547   // FIXME: Include OGT/OLT/UGT/ULT.
5548   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5549   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5550     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5551         !isKnownNonZero(CmpRHS))
5552       return {SPF_UNKNOWN, SPNB_NA, false};
5553   }
5554 
5555   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5556   bool Ordered = false;
5557 
5558   // When given one NaN and one non-NaN input:
5559   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5560   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5561   //     ordered comparison fails), which could be NaN or non-NaN.
5562   // so here we discover exactly what NaN behavior is required/accepted.
5563   if (CmpInst::isFPPredicate(Pred)) {
5564     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5565     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5566 
5567     if (LHSSafe && RHSSafe) {
5568       // Both operands are known non-NaN.
5569       NaNBehavior = SPNB_RETURNS_ANY;
5570     } else if (CmpInst::isOrdered(Pred)) {
5571       // An ordered comparison will return false when given a NaN, so it
5572       // returns the RHS.
5573       Ordered = true;
5574       if (LHSSafe)
5575         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5576         NaNBehavior = SPNB_RETURNS_NAN;
5577       else if (RHSSafe)
5578         NaNBehavior = SPNB_RETURNS_OTHER;
5579       else
5580         // Completely unsafe.
5581         return {SPF_UNKNOWN, SPNB_NA, false};
5582     } else {
5583       Ordered = false;
5584       // An unordered comparison will return true when given a NaN, so it
5585       // returns the LHS.
5586       if (LHSSafe)
5587         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5588         NaNBehavior = SPNB_RETURNS_OTHER;
5589       else if (RHSSafe)
5590         NaNBehavior = SPNB_RETURNS_NAN;
5591       else
5592         // Completely unsafe.
5593         return {SPF_UNKNOWN, SPNB_NA, false};
5594     }
5595   }
5596 
5597   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5598     std::swap(CmpLHS, CmpRHS);
5599     Pred = CmpInst::getSwappedPredicate(Pred);
5600     if (NaNBehavior == SPNB_RETURNS_NAN)
5601       NaNBehavior = SPNB_RETURNS_OTHER;
5602     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5603       NaNBehavior = SPNB_RETURNS_NAN;
5604     Ordered = !Ordered;
5605   }
5606 
5607   // ([if]cmp X, Y) ? X : Y
5608   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5609     switch (Pred) {
5610     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5611     case ICmpInst::ICMP_UGT:
5612     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5613     case ICmpInst::ICMP_SGT:
5614     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5615     case ICmpInst::ICMP_ULT:
5616     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5617     case ICmpInst::ICMP_SLT:
5618     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5619     case FCmpInst::FCMP_UGT:
5620     case FCmpInst::FCMP_UGE:
5621     case FCmpInst::FCMP_OGT:
5622     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5623     case FCmpInst::FCMP_ULT:
5624     case FCmpInst::FCMP_ULE:
5625     case FCmpInst::FCMP_OLT:
5626     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5627     }
5628   }
5629 
5630   if (isKnownNegation(TrueVal, FalseVal)) {
5631     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5632     // match against either LHS or sext(LHS).
5633     auto MaybeSExtCmpLHS =
5634         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5635     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5636     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5637     if (match(TrueVal, MaybeSExtCmpLHS)) {
5638       // Set the return values. If the compare uses the negated value (-X >s 0),
5639       // swap the return values because the negated value is always 'RHS'.
5640       LHS = TrueVal;
5641       RHS = FalseVal;
5642       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5643         std::swap(LHS, RHS);
5644 
5645       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5646       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5647       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5648         return {SPF_ABS, SPNB_NA, false};
5649 
5650       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5651       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5652         return {SPF_ABS, SPNB_NA, false};
5653 
5654       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5655       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5656       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5657         return {SPF_NABS, SPNB_NA, false};
5658     }
5659     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5660       // Set the return values. If the compare uses the negated value (-X >s 0),
5661       // swap the return values because the negated value is always 'RHS'.
5662       LHS = FalseVal;
5663       RHS = TrueVal;
5664       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5665         std::swap(LHS, RHS);
5666 
5667       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5668       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5669       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5670         return {SPF_NABS, SPNB_NA, false};
5671 
5672       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5673       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5674       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5675         return {SPF_ABS, SPNB_NA, false};
5676     }
5677   }
5678 
5679   if (CmpInst::isIntPredicate(Pred))
5680     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5681 
5682   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5683   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5684   // semantics than minNum. Be conservative in such case.
5685   if (NaNBehavior != SPNB_RETURNS_ANY ||
5686       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5687        !isKnownNonZero(CmpRHS)))
5688     return {SPF_UNKNOWN, SPNB_NA, false};
5689 
5690   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5691 }
5692 
5693 /// Helps to match a select pattern in case of a type mismatch.
5694 ///
5695 /// The function processes the case when type of true and false values of a
5696 /// select instruction differs from type of the cmp instruction operands because
5697 /// of a cast instruction. The function checks if it is legal to move the cast
5698 /// operation after "select". If yes, it returns the new second value of
5699 /// "select" (with the assumption that cast is moved):
5700 /// 1. As operand of cast instruction when both values of "select" are same cast
5701 /// instructions.
5702 /// 2. As restored constant (by applying reverse cast operation) when the first
5703 /// value of the "select" is a cast operation and the second value is a
5704 /// constant.
5705 /// NOTE: We return only the new second value because the first value could be
5706 /// accessed as operand of cast instruction.
5707 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5708                               Instruction::CastOps *CastOp) {
5709   auto *Cast1 = dyn_cast<CastInst>(V1);
5710   if (!Cast1)
5711     return nullptr;
5712 
5713   *CastOp = Cast1->getOpcode();
5714   Type *SrcTy = Cast1->getSrcTy();
5715   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5716     // If V1 and V2 are both the same cast from the same type, look through V1.
5717     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5718       return Cast2->getOperand(0);
5719     return nullptr;
5720   }
5721 
5722   auto *C = dyn_cast<Constant>(V2);
5723   if (!C)
5724     return nullptr;
5725 
5726   Constant *CastedTo = nullptr;
5727   switch (*CastOp) {
5728   case Instruction::ZExt:
5729     if (CmpI->isUnsigned())
5730       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5731     break;
5732   case Instruction::SExt:
5733     if (CmpI->isSigned())
5734       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5735     break;
5736   case Instruction::Trunc:
5737     Constant *CmpConst;
5738     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5739         CmpConst->getType() == SrcTy) {
5740       // Here we have the following case:
5741       //
5742       //   %cond = cmp iN %x, CmpConst
5743       //   %tr = trunc iN %x to iK
5744       //   %narrowsel = select i1 %cond, iK %t, iK C
5745       //
5746       // We can always move trunc after select operation:
5747       //
5748       //   %cond = cmp iN %x, CmpConst
5749       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5750       //   %tr = trunc iN %widesel to iK
5751       //
5752       // Note that C could be extended in any way because we don't care about
5753       // upper bits after truncation. It can't be abs pattern, because it would
5754       // look like:
5755       //
5756       //   select i1 %cond, x, -x.
5757       //
5758       // So only min/max pattern could be matched. Such match requires widened C
5759       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5760       // CmpConst == C is checked below.
5761       CastedTo = CmpConst;
5762     } else {
5763       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5764     }
5765     break;
5766   case Instruction::FPTrunc:
5767     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5768     break;
5769   case Instruction::FPExt:
5770     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5771     break;
5772   case Instruction::FPToUI:
5773     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5774     break;
5775   case Instruction::FPToSI:
5776     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5777     break;
5778   case Instruction::UIToFP:
5779     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5780     break;
5781   case Instruction::SIToFP:
5782     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5783     break;
5784   default:
5785     break;
5786   }
5787 
5788   if (!CastedTo)
5789     return nullptr;
5790 
5791   // Make sure the cast doesn't lose any information.
5792   Constant *CastedBack =
5793       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5794   if (CastedBack != C)
5795     return nullptr;
5796 
5797   return CastedTo;
5798 }
5799 
5800 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5801                                              Instruction::CastOps *CastOp,
5802                                              unsigned Depth) {
5803   if (Depth >= MaxAnalysisRecursionDepth)
5804     return {SPF_UNKNOWN, SPNB_NA, false};
5805 
5806   SelectInst *SI = dyn_cast<SelectInst>(V);
5807   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5808 
5809   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5810   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5811 
5812   Value *TrueVal = SI->getTrueValue();
5813   Value *FalseVal = SI->getFalseValue();
5814 
5815   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5816                                             CastOp, Depth);
5817 }
5818 
5819 SelectPatternResult llvm::matchDecomposedSelectPattern(
5820     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5821     Instruction::CastOps *CastOp, unsigned Depth) {
5822   CmpInst::Predicate Pred = CmpI->getPredicate();
5823   Value *CmpLHS = CmpI->getOperand(0);
5824   Value *CmpRHS = CmpI->getOperand(1);
5825   FastMathFlags FMF;
5826   if (isa<FPMathOperator>(CmpI))
5827     FMF = CmpI->getFastMathFlags();
5828 
5829   // Bail out early.
5830   if (CmpI->isEquality())
5831     return {SPF_UNKNOWN, SPNB_NA, false};
5832 
5833   // Deal with type mismatches.
5834   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5835     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5836       // If this is a potential fmin/fmax with a cast to integer, then ignore
5837       // -0.0 because there is no corresponding integer value.
5838       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5839         FMF.setNoSignedZeros();
5840       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5841                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5842                                   LHS, RHS, Depth);
5843     }
5844     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5845       // If this is a potential fmin/fmax with a cast to integer, then ignore
5846       // -0.0 because there is no corresponding integer value.
5847       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5848         FMF.setNoSignedZeros();
5849       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5850                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5851                                   LHS, RHS, Depth);
5852     }
5853   }
5854   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5855                               LHS, RHS, Depth);
5856 }
5857 
5858 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5859   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5860   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5861   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5862   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5863   if (SPF == SPF_FMINNUM)
5864     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5865   if (SPF == SPF_FMAXNUM)
5866     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5867   llvm_unreachable("unhandled!");
5868 }
5869 
5870 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5871   if (SPF == SPF_SMIN) return SPF_SMAX;
5872   if (SPF == SPF_UMIN) return SPF_UMAX;
5873   if (SPF == SPF_SMAX) return SPF_SMIN;
5874   if (SPF == SPF_UMAX) return SPF_UMIN;
5875   llvm_unreachable("unhandled!");
5876 }
5877 
5878 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5879   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5880 }
5881 
5882 /// Return true if "icmp Pred LHS RHS" is always true.
5883 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5884                             const Value *RHS, const DataLayout &DL,
5885                             unsigned Depth) {
5886   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5887   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5888     return true;
5889 
5890   switch (Pred) {
5891   default:
5892     return false;
5893 
5894   case CmpInst::ICMP_SLE: {
5895     const APInt *C;
5896 
5897     // LHS s<= LHS +_{nsw} C   if C >= 0
5898     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5899       return !C->isNegative();
5900     return false;
5901   }
5902 
5903   case CmpInst::ICMP_ULE: {
5904     const APInt *C;
5905 
5906     // LHS u<= LHS +_{nuw} C   for any C
5907     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5908       return true;
5909 
5910     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5911     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5912                                        const Value *&X,
5913                                        const APInt *&CA, const APInt *&CB) {
5914       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5915           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5916         return true;
5917 
5918       // If X & C == 0 then (X | C) == X +_{nuw} C
5919       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5920           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5921         KnownBits Known(CA->getBitWidth());
5922         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5923                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5924         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5925           return true;
5926       }
5927 
5928       return false;
5929     };
5930 
5931     const Value *X;
5932     const APInt *CLHS, *CRHS;
5933     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5934       return CLHS->ule(*CRHS);
5935 
5936     return false;
5937   }
5938   }
5939 }
5940 
5941 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5942 /// ALHS ARHS" is true.  Otherwise, return None.
5943 static Optional<bool>
5944 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5945                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5946                       const DataLayout &DL, unsigned Depth) {
5947   switch (Pred) {
5948   default:
5949     return None;
5950 
5951   case CmpInst::ICMP_SLT:
5952   case CmpInst::ICMP_SLE:
5953     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5954         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5955       return true;
5956     return None;
5957 
5958   case CmpInst::ICMP_ULT:
5959   case CmpInst::ICMP_ULE:
5960     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5961         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5962       return true;
5963     return None;
5964   }
5965 }
5966 
5967 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5968 /// when the operands match, but are swapped.
5969 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5970                           const Value *BLHS, const Value *BRHS,
5971                           bool &IsSwappedOps) {
5972 
5973   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5974   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5975   return IsMatchingOps || IsSwappedOps;
5976 }
5977 
5978 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5979 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5980 /// Otherwise, return None if we can't infer anything.
5981 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5982                                                     CmpInst::Predicate BPred,
5983                                                     bool AreSwappedOps) {
5984   // Canonicalize the predicate as if the operands were not commuted.
5985   if (AreSwappedOps)
5986     BPred = ICmpInst::getSwappedPredicate(BPred);
5987 
5988   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5989     return true;
5990   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5991     return false;
5992 
5993   return None;
5994 }
5995 
5996 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5997 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5998 /// Otherwise, return None if we can't infer anything.
5999 static Optional<bool>
6000 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6001                                  const ConstantInt *C1,
6002                                  CmpInst::Predicate BPred,
6003                                  const ConstantInt *C2) {
6004   ConstantRange DomCR =
6005       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6006   ConstantRange CR =
6007       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6008   ConstantRange Intersection = DomCR.intersectWith(CR);
6009   ConstantRange Difference = DomCR.difference(CR);
6010   if (Intersection.isEmptySet())
6011     return false;
6012   if (Difference.isEmptySet())
6013     return true;
6014   return None;
6015 }
6016 
6017 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6018 /// false.  Otherwise, return None if we can't infer anything.
6019 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6020                                          CmpInst::Predicate BPred,
6021                                          const Value *BLHS, const Value *BRHS,
6022                                          const DataLayout &DL, bool LHSIsTrue,
6023                                          unsigned Depth) {
6024   Value *ALHS = LHS->getOperand(0);
6025   Value *ARHS = LHS->getOperand(1);
6026 
6027   // The rest of the logic assumes the LHS condition is true.  If that's not the
6028   // case, invert the predicate to make it so.
6029   CmpInst::Predicate APred =
6030       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6031 
6032   // Can we infer anything when the two compares have matching operands?
6033   bool AreSwappedOps;
6034   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6035     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6036             APred, BPred, AreSwappedOps))
6037       return Implication;
6038     // No amount of additional analysis will infer the second condition, so
6039     // early exit.
6040     return None;
6041   }
6042 
6043   // Can we infer anything when the LHS operands match and the RHS operands are
6044   // constants (not necessarily matching)?
6045   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6046     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6047             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6048       return Implication;
6049     // No amount of additional analysis will infer the second condition, so
6050     // early exit.
6051     return None;
6052   }
6053 
6054   if (APred == BPred)
6055     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6056   return None;
6057 }
6058 
6059 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6060 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6061 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6062 static Optional<bool>
6063 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6064                    const Value *RHSOp0, const Value *RHSOp1,
6065 
6066                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6067   // The LHS must be an 'or' or an 'and' instruction.
6068   assert((LHS->getOpcode() == Instruction::And ||
6069           LHS->getOpcode() == Instruction::Or) &&
6070          "Expected LHS to be 'and' or 'or'.");
6071 
6072   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6073 
6074   // If the result of an 'or' is false, then we know both legs of the 'or' are
6075   // false.  Similarly, if the result of an 'and' is true, then we know both
6076   // legs of the 'and' are true.
6077   Value *ALHS, *ARHS;
6078   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6079       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6080     // FIXME: Make this non-recursion.
6081     if (Optional<bool> Implication = isImpliedCondition(
6082             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6083       return Implication;
6084     if (Optional<bool> Implication = isImpliedCondition(
6085             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6086       return Implication;
6087     return None;
6088   }
6089   return None;
6090 }
6091 
6092 Optional<bool>
6093 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6094                          const Value *RHSOp0, const Value *RHSOp1,
6095                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6096   // Bail out when we hit the limit.
6097   if (Depth == MaxAnalysisRecursionDepth)
6098     return None;
6099 
6100   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6101   // example.
6102   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6103     return None;
6104 
6105   Type *OpTy = LHS->getType();
6106   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6107 
6108   // FIXME: Extending the code below to handle vectors.
6109   if (OpTy->isVectorTy())
6110     return None;
6111 
6112   assert(OpTy->isIntegerTy(1) && "implied by above");
6113 
6114   // Both LHS and RHS are icmps.
6115   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6116   if (LHSCmp)
6117     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6118                               Depth);
6119 
6120   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6121   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6122   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6123   if (LHSBO) {
6124     if ((LHSBO->getOpcode() == Instruction::And ||
6125          LHSBO->getOpcode() == Instruction::Or))
6126       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6127                                 Depth);
6128   }
6129   return None;
6130 }
6131 
6132 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6133                                         const DataLayout &DL, bool LHSIsTrue,
6134                                         unsigned Depth) {
6135   // LHS ==> RHS by definition
6136   if (LHS == RHS)
6137     return LHSIsTrue;
6138 
6139   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6140   if (RHSCmp)
6141     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6142                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6143                               LHSIsTrue, Depth);
6144   return None;
6145 }
6146 
6147 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6148 // condition dominating ContextI or nullptr, if no condition is found.
6149 static std::pair<Value *, bool>
6150 getDomPredecessorCondition(const Instruction *ContextI) {
6151   if (!ContextI || !ContextI->getParent())
6152     return {nullptr, false};
6153 
6154   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6155   // dominator tree (eg, from a SimplifyQuery) instead?
6156   const BasicBlock *ContextBB = ContextI->getParent();
6157   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6158   if (!PredBB)
6159     return {nullptr, false};
6160 
6161   // We need a conditional branch in the predecessor.
6162   Value *PredCond;
6163   BasicBlock *TrueBB, *FalseBB;
6164   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6165     return {nullptr, false};
6166 
6167   // The branch should get simplified. Don't bother simplifying this condition.
6168   if (TrueBB == FalseBB)
6169     return {nullptr, false};
6170 
6171   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6172          "Predecessor block does not point to successor?");
6173 
6174   // Is this condition implied by the predecessor condition?
6175   return {PredCond, TrueBB == ContextBB};
6176 }
6177 
6178 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6179                                              const Instruction *ContextI,
6180                                              const DataLayout &DL) {
6181   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6182   auto PredCond = getDomPredecessorCondition(ContextI);
6183   if (PredCond.first)
6184     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6185   return None;
6186 }
6187 
6188 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6189                                              const Value *LHS, const Value *RHS,
6190                                              const Instruction *ContextI,
6191                                              const DataLayout &DL) {
6192   auto PredCond = getDomPredecessorCondition(ContextI);
6193   if (PredCond.first)
6194     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6195                               PredCond.second);
6196   return None;
6197 }
6198 
6199 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6200                               APInt &Upper, const InstrInfoQuery &IIQ) {
6201   unsigned Width = Lower.getBitWidth();
6202   const APInt *C;
6203   switch (BO.getOpcode()) {
6204   case Instruction::Add:
6205     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6206       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6207       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6208         // 'add nuw x, C' produces [C, UINT_MAX].
6209         Lower = *C;
6210       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6211         if (C->isNegative()) {
6212           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6213           Lower = APInt::getSignedMinValue(Width);
6214           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6215         } else {
6216           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6217           Lower = APInt::getSignedMinValue(Width) + *C;
6218           Upper = APInt::getSignedMaxValue(Width) + 1;
6219         }
6220       }
6221     }
6222     break;
6223 
6224   case Instruction::And:
6225     if (match(BO.getOperand(1), m_APInt(C)))
6226       // 'and x, C' produces [0, C].
6227       Upper = *C + 1;
6228     break;
6229 
6230   case Instruction::Or:
6231     if (match(BO.getOperand(1), m_APInt(C)))
6232       // 'or x, C' produces [C, UINT_MAX].
6233       Lower = *C;
6234     break;
6235 
6236   case Instruction::AShr:
6237     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6238       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6239       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6240       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6241     } else if (match(BO.getOperand(0), m_APInt(C))) {
6242       unsigned ShiftAmount = Width - 1;
6243       if (!C->isNullValue() && IIQ.isExact(&BO))
6244         ShiftAmount = C->countTrailingZeros();
6245       if (C->isNegative()) {
6246         // 'ashr C, x' produces [C, C >> (Width-1)]
6247         Lower = *C;
6248         Upper = C->ashr(ShiftAmount) + 1;
6249       } else {
6250         // 'ashr C, x' produces [C >> (Width-1), C]
6251         Lower = C->ashr(ShiftAmount);
6252         Upper = *C + 1;
6253       }
6254     }
6255     break;
6256 
6257   case Instruction::LShr:
6258     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6259       // 'lshr x, C' produces [0, UINT_MAX >> C].
6260       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6261     } else if (match(BO.getOperand(0), m_APInt(C))) {
6262       // 'lshr C, x' produces [C >> (Width-1), C].
6263       unsigned ShiftAmount = Width - 1;
6264       if (!C->isNullValue() && IIQ.isExact(&BO))
6265         ShiftAmount = C->countTrailingZeros();
6266       Lower = C->lshr(ShiftAmount);
6267       Upper = *C + 1;
6268     }
6269     break;
6270 
6271   case Instruction::Shl:
6272     if (match(BO.getOperand(0), m_APInt(C))) {
6273       if (IIQ.hasNoUnsignedWrap(&BO)) {
6274         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6275         Lower = *C;
6276         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6277       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6278         if (C->isNegative()) {
6279           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6280           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6281           Lower = C->shl(ShiftAmount);
6282           Upper = *C + 1;
6283         } else {
6284           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6285           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6286           Lower = *C;
6287           Upper = C->shl(ShiftAmount) + 1;
6288         }
6289       }
6290     }
6291     break;
6292 
6293   case Instruction::SDiv:
6294     if (match(BO.getOperand(1), m_APInt(C))) {
6295       APInt IntMin = APInt::getSignedMinValue(Width);
6296       APInt IntMax = APInt::getSignedMaxValue(Width);
6297       if (C->isAllOnesValue()) {
6298         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6299         //    where C != -1 and C != 0 and C != 1
6300         Lower = IntMin + 1;
6301         Upper = IntMax + 1;
6302       } else if (C->countLeadingZeros() < Width - 1) {
6303         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6304         //    where C != -1 and C != 0 and C != 1
6305         Lower = IntMin.sdiv(*C);
6306         Upper = IntMax.sdiv(*C);
6307         if (Lower.sgt(Upper))
6308           std::swap(Lower, Upper);
6309         Upper = Upper + 1;
6310         assert(Upper != Lower && "Upper part of range has wrapped!");
6311       }
6312     } else if (match(BO.getOperand(0), m_APInt(C))) {
6313       if (C->isMinSignedValue()) {
6314         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6315         Lower = *C;
6316         Upper = Lower.lshr(1) + 1;
6317       } else {
6318         // 'sdiv C, x' produces [-|C|, |C|].
6319         Upper = C->abs() + 1;
6320         Lower = (-Upper) + 1;
6321       }
6322     }
6323     break;
6324 
6325   case Instruction::UDiv:
6326     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6327       // 'udiv x, C' produces [0, UINT_MAX / C].
6328       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6329     } else if (match(BO.getOperand(0), m_APInt(C))) {
6330       // 'udiv C, x' produces [0, C].
6331       Upper = *C + 1;
6332     }
6333     break;
6334 
6335   case Instruction::SRem:
6336     if (match(BO.getOperand(1), m_APInt(C))) {
6337       // 'srem x, C' produces (-|C|, |C|).
6338       Upper = C->abs();
6339       Lower = (-Upper) + 1;
6340     }
6341     break;
6342 
6343   case Instruction::URem:
6344     if (match(BO.getOperand(1), m_APInt(C)))
6345       // 'urem x, C' produces [0, C).
6346       Upper = *C;
6347     break;
6348 
6349   default:
6350     break;
6351   }
6352 }
6353 
6354 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6355                                   APInt &Upper) {
6356   unsigned Width = Lower.getBitWidth();
6357   const APInt *C;
6358   switch (II.getIntrinsicID()) {
6359   case Intrinsic::uadd_sat:
6360     // uadd.sat(x, C) produces [C, UINT_MAX].
6361     if (match(II.getOperand(0), m_APInt(C)) ||
6362         match(II.getOperand(1), m_APInt(C)))
6363       Lower = *C;
6364     break;
6365   case Intrinsic::sadd_sat:
6366     if (match(II.getOperand(0), m_APInt(C)) ||
6367         match(II.getOperand(1), m_APInt(C))) {
6368       if (C->isNegative()) {
6369         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6370         Lower = APInt::getSignedMinValue(Width);
6371         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6372       } else {
6373         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6374         Lower = APInt::getSignedMinValue(Width) + *C;
6375         Upper = APInt::getSignedMaxValue(Width) + 1;
6376       }
6377     }
6378     break;
6379   case Intrinsic::usub_sat:
6380     // usub.sat(C, x) produces [0, C].
6381     if (match(II.getOperand(0), m_APInt(C)))
6382       Upper = *C + 1;
6383     // usub.sat(x, C) produces [0, UINT_MAX - C].
6384     else if (match(II.getOperand(1), m_APInt(C)))
6385       Upper = APInt::getMaxValue(Width) - *C + 1;
6386     break;
6387   case Intrinsic::ssub_sat:
6388     if (match(II.getOperand(0), m_APInt(C))) {
6389       if (C->isNegative()) {
6390         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6391         Lower = APInt::getSignedMinValue(Width);
6392         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6393       } else {
6394         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6395         Lower = *C - APInt::getSignedMaxValue(Width);
6396         Upper = APInt::getSignedMaxValue(Width) + 1;
6397       }
6398     } else if (match(II.getOperand(1), m_APInt(C))) {
6399       if (C->isNegative()) {
6400         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6401         Lower = APInt::getSignedMinValue(Width) - *C;
6402         Upper = APInt::getSignedMaxValue(Width) + 1;
6403       } else {
6404         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6405         Lower = APInt::getSignedMinValue(Width);
6406         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6407       }
6408     }
6409     break;
6410   case Intrinsic::umin:
6411   case Intrinsic::umax:
6412   case Intrinsic::smin:
6413   case Intrinsic::smax:
6414     if (!match(II.getOperand(0), m_APInt(C)) &&
6415         !match(II.getOperand(1), m_APInt(C)))
6416       break;
6417 
6418     switch (II.getIntrinsicID()) {
6419     case Intrinsic::umin:
6420       Upper = *C + 1;
6421       break;
6422     case Intrinsic::umax:
6423       Lower = *C;
6424       break;
6425     case Intrinsic::smin:
6426       Lower = APInt::getSignedMinValue(Width);
6427       Upper = *C + 1;
6428       break;
6429     case Intrinsic::smax:
6430       Lower = *C;
6431       Upper = APInt::getSignedMaxValue(Width) + 1;
6432       break;
6433     default:
6434       llvm_unreachable("Must be min/max intrinsic");
6435     }
6436     break;
6437   case Intrinsic::abs:
6438     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6439     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6440     if (match(II.getOperand(1), m_One()))
6441       Upper = APInt::getSignedMaxValue(Width) + 1;
6442     else
6443       Upper = APInt::getSignedMinValue(Width) + 1;
6444     break;
6445   default:
6446     break;
6447   }
6448 }
6449 
6450 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6451                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6452   const Value *LHS = nullptr, *RHS = nullptr;
6453   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6454   if (R.Flavor == SPF_UNKNOWN)
6455     return;
6456 
6457   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6458 
6459   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6460     // If the negation part of the abs (in RHS) has the NSW flag,
6461     // then the result of abs(X) is [0..SIGNED_MAX],
6462     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6463     Lower = APInt::getNullValue(BitWidth);
6464     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6465         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6466       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6467     else
6468       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6469     return;
6470   }
6471 
6472   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6473     // The result of -abs(X) is <= 0.
6474     Lower = APInt::getSignedMinValue(BitWidth);
6475     Upper = APInt(BitWidth, 1);
6476     return;
6477   }
6478 
6479   const APInt *C;
6480   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6481     return;
6482 
6483   switch (R.Flavor) {
6484     case SPF_UMIN:
6485       Upper = *C + 1;
6486       break;
6487     case SPF_UMAX:
6488       Lower = *C;
6489       break;
6490     case SPF_SMIN:
6491       Lower = APInt::getSignedMinValue(BitWidth);
6492       Upper = *C + 1;
6493       break;
6494     case SPF_SMAX:
6495       Lower = *C;
6496       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6497       break;
6498     default:
6499       break;
6500   }
6501 }
6502 
6503 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6504                                          AssumptionCache *AC,
6505                                          const Instruction *CtxI,
6506                                          unsigned Depth) {
6507   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6508 
6509   if (Depth == MaxAnalysisRecursionDepth)
6510     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6511 
6512   const APInt *C;
6513   if (match(V, m_APInt(C)))
6514     return ConstantRange(*C);
6515 
6516   InstrInfoQuery IIQ(UseInstrInfo);
6517   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6518   APInt Lower = APInt(BitWidth, 0);
6519   APInt Upper = APInt(BitWidth, 0);
6520   if (auto *BO = dyn_cast<BinaryOperator>(V))
6521     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6522   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6523     setLimitsForIntrinsic(*II, Lower, Upper);
6524   else if (auto *SI = dyn_cast<SelectInst>(V))
6525     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6526 
6527   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6528 
6529   if (auto *I = dyn_cast<Instruction>(V))
6530     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6531       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6532 
6533   if (CtxI && AC) {
6534     // Try to restrict the range based on information from assumptions.
6535     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6536       if (!AssumeVH)
6537         continue;
6538       CallInst *I = cast<CallInst>(AssumeVH);
6539       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6540              "Got assumption for the wrong function!");
6541       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6542              "must be an assume intrinsic");
6543 
6544       if (!isValidAssumeForContext(I, CtxI, nullptr))
6545         continue;
6546       Value *Arg = I->getArgOperand(0);
6547       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6548       // Currently we just use information from comparisons.
6549       if (!Cmp || Cmp->getOperand(0) != V)
6550         continue;
6551       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6552                                                AC, I, Depth + 1);
6553       CR = CR.intersectWith(
6554           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6555     }
6556   }
6557 
6558   return CR;
6559 }
6560 
6561 static Optional<int64_t>
6562 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6563   // Skip over the first indices.
6564   gep_type_iterator GTI = gep_type_begin(GEP);
6565   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6566     /*skip along*/;
6567 
6568   // Compute the offset implied by the rest of the indices.
6569   int64_t Offset = 0;
6570   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6571     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6572     if (!OpC)
6573       return None;
6574     if (OpC->isZero())
6575       continue; // No offset.
6576 
6577     // Handle struct indices, which add their field offset to the pointer.
6578     if (StructType *STy = GTI.getStructTypeOrNull()) {
6579       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6580       continue;
6581     }
6582 
6583     // Otherwise, we have a sequential type like an array or fixed-length
6584     // vector. Multiply the index by the ElementSize.
6585     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6586     if (Size.isScalable())
6587       return None;
6588     Offset += Size.getFixedSize() * OpC->getSExtValue();
6589   }
6590 
6591   return Offset;
6592 }
6593 
6594 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6595                                         const DataLayout &DL) {
6596   Ptr1 = Ptr1->stripPointerCasts();
6597   Ptr2 = Ptr2->stripPointerCasts();
6598 
6599   // Handle the trivial case first.
6600   if (Ptr1 == Ptr2) {
6601     return 0;
6602   }
6603 
6604   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6605   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6606 
6607   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6608   // as in "P" and "gep P, 1".
6609   // Also do this iteratively to handle the the following case:
6610   //   Ptr_t1 = GEP Ptr1, c1
6611   //   Ptr_t2 = GEP Ptr_t1, c2
6612   //   Ptr2 = GEP Ptr_t2, c3
6613   // where we will return c1+c2+c3.
6614   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6615   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6616   // are the same, and return the difference between offsets.
6617   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6618                                  const Value *Ptr) -> Optional<int64_t> {
6619     const GEPOperator *GEP_T = GEP;
6620     int64_t OffsetVal = 0;
6621     bool HasSameBase = false;
6622     while (GEP_T) {
6623       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6624       if (!Offset)
6625         return None;
6626       OffsetVal += *Offset;
6627       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6628       if (Op0 == Ptr) {
6629         HasSameBase = true;
6630         break;
6631       }
6632       GEP_T = dyn_cast<GEPOperator>(Op0);
6633     }
6634     if (!HasSameBase)
6635       return None;
6636     return OffsetVal;
6637   };
6638 
6639   if (GEP1) {
6640     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6641     if (Offset)
6642       return -*Offset;
6643   }
6644   if (GEP2) {
6645     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6646     if (Offset)
6647       return Offset;
6648   }
6649 
6650   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6651   // base.  After that base, they may have some number of common (and
6652   // potentially variable) indices.  After that they handle some constant
6653   // offset, which determines their offset from each other.  At this point, we
6654   // handle no other case.
6655   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6656     return None;
6657 
6658   // Skip any common indices and track the GEP types.
6659   unsigned Idx = 1;
6660   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6661     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6662       break;
6663 
6664   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6665   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6666   if (!Offset1 || !Offset2)
6667     return None;
6668   return *Offset2 - *Offset1;
6669 }
6670