1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/AssumptionTracker.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/MathExtras.h" 36 #include <cstring> 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 const unsigned MaxDepth = 6; 41 42 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 43 /// 0). For vector types, returns the element type's bitwidth. 44 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 45 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 46 return BitWidth; 47 48 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 49 } 50 51 // Many of these functions have internal versions that take an assumption 52 // exclusion set. This is because of the potential for mutual recursion to 53 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 54 // classic case of this is assume(x = y), which will attempt to determine 55 // bits in x from bits in y, which will attempt to determine bits in y from 56 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 57 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 58 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 59 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 60 61 namespace { 62 // Simplifying using an assume can only be done in a particular control-flow 63 // context (the context instruction provides that context). If an assume and 64 // the context instruction are not in the same block then the DT helps in 65 // figuring out if we can use it. 66 struct Query { 67 ExclInvsSet ExclInvs; 68 AssumptionTracker *AT; 69 const Instruction *CxtI; 70 const DominatorTree *DT; 71 72 Query(AssumptionTracker *AT = nullptr, const Instruction *CxtI = nullptr, 73 const DominatorTree *DT = nullptr) 74 : AT(AT), CxtI(CxtI), DT(DT) {} 75 76 Query(const Query &Q, const Value *NewExcl) 77 : ExclInvs(Q.ExclInvs), AT(Q.AT), CxtI(Q.CxtI), DT(Q.DT) { 78 ExclInvs.insert(NewExcl); 79 } 80 }; 81 } // end anonymous namespace 82 83 // Given the provided Value and, potentially, a context instruction, return 84 // the preferred context instruction (if any). 85 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 86 // If we've been provided with a context instruction, then use that (provided 87 // it has been inserted). 88 if (CxtI && CxtI->getParent()) 89 return CxtI; 90 91 // If the value is really an already-inserted instruction, then use that. 92 CxtI = dyn_cast<Instruction>(V); 93 if (CxtI && CxtI->getParent()) 94 return CxtI; 95 96 return nullptr; 97 } 98 99 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 100 const DataLayout *TD, unsigned Depth, 101 const Query &Q); 102 103 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 104 const DataLayout *TD, unsigned Depth, 105 AssumptionTracker *AT, const Instruction *CxtI, 106 const DominatorTree *DT) { 107 ::computeKnownBits(V, KnownZero, KnownOne, TD, Depth, 108 Query(AT, safeCxtI(V, CxtI), DT)); 109 } 110 111 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 112 const DataLayout *TD, unsigned Depth, 113 const Query &Q); 114 115 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 116 const DataLayout *TD, unsigned Depth, 117 AssumptionTracker *AT, const Instruction *CxtI, 118 const DominatorTree *DT) { 119 ::ComputeSignBit(V, KnownZero, KnownOne, TD, Depth, 120 Query(AT, safeCxtI(V, CxtI), DT)); 121 } 122 123 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 124 const Query &Q); 125 126 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 127 AssumptionTracker *AT, 128 const Instruction *CxtI, 129 const DominatorTree *DT) { 130 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 131 Query(AT, safeCxtI(V, CxtI), DT)); 132 } 133 134 static bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 135 const Query &Q); 136 137 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 138 AssumptionTracker *AT, const Instruction *CxtI, 139 const DominatorTree *DT) { 140 return ::isKnownNonZero(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT)); 141 } 142 143 static bool MaskedValueIsZero(Value *V, const APInt &Mask, 144 const DataLayout *TD, unsigned Depth, 145 const Query &Q); 146 147 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 148 const DataLayout *TD, unsigned Depth, 149 AssumptionTracker *AT, const Instruction *CxtI, 150 const DominatorTree *DT) { 151 return ::MaskedValueIsZero(V, Mask, TD, Depth, 152 Query(AT, safeCxtI(V, CxtI), DT)); 153 } 154 155 static unsigned ComputeNumSignBits(Value *V, const DataLayout *TD, 156 unsigned Depth, const Query &Q); 157 158 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 159 unsigned Depth, AssumptionTracker *AT, 160 const Instruction *CxtI, 161 const DominatorTree *DT) { 162 return ::ComputeNumSignBits(V, TD, Depth, Query(AT, safeCxtI(V, CxtI), DT)); 163 } 164 165 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 166 APInt &KnownZero, APInt &KnownOne, 167 APInt &KnownZero2, APInt &KnownOne2, 168 const DataLayout *TD, unsigned Depth, 169 const Query &Q) { 170 if (!Add) { 171 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 172 // We know that the top bits of C-X are clear if X contains less bits 173 // than C (i.e. no wrap-around can happen). For example, 20-X is 174 // positive if we can prove that X is >= 0 and < 16. 175 if (!CLHS->getValue().isNegative()) { 176 unsigned BitWidth = KnownZero.getBitWidth(); 177 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 178 // NLZ can't be BitWidth with no sign bit 179 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 180 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q); 181 182 // If all of the MaskV bits are known to be zero, then we know the 183 // output top bits are zero, because we now know that the output is 184 // from [0-C]. 185 if ((KnownZero2 & MaskV) == MaskV) { 186 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 187 // Top bits known zero. 188 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 189 } 190 } 191 } 192 } 193 194 unsigned BitWidth = KnownZero.getBitWidth(); 195 196 // If an initial sequence of bits in the result is not needed, the 197 // corresponding bits in the operands are not needed. 198 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 199 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1, Q); 200 computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1, Q); 201 202 // Carry in a 1 for a subtract, rather than a 0. 203 APInt CarryIn(BitWidth, 0); 204 if (!Add) { 205 // Sum = LHS + ~RHS + 1 206 std::swap(KnownZero2, KnownOne2); 207 CarryIn.setBit(0); 208 } 209 210 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 211 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 212 213 // Compute known bits of the carry. 214 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 215 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 216 217 // Compute set of known bits (where all three relevant bits are known). 218 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 219 APInt RHSKnown = KnownZero2 | KnownOne2; 220 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 221 APInt Known = LHSKnown & RHSKnown & CarryKnown; 222 223 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 224 "known bits of sum differ"); 225 226 // Compute known bits of the result. 227 KnownZero = ~PossibleSumOne & Known; 228 KnownOne = PossibleSumOne & Known; 229 230 // Are we still trying to solve for the sign bit? 231 if (!Known.isNegative()) { 232 if (NSW) { 233 // Adding two non-negative numbers, or subtracting a negative number from 234 // a non-negative one, can't wrap into negative. 235 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 236 KnownZero |= APInt::getSignBit(BitWidth); 237 // Adding two negative numbers, or subtracting a non-negative number from 238 // a negative one, can't wrap into non-negative. 239 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 240 KnownOne |= APInt::getSignBit(BitWidth); 241 } 242 } 243 } 244 245 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 246 APInt &KnownZero, APInt &KnownOne, 247 APInt &KnownZero2, APInt &KnownOne2, 248 const DataLayout *TD, unsigned Depth, 249 const Query &Q) { 250 unsigned BitWidth = KnownZero.getBitWidth(); 251 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1, Q); 252 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1, Q); 253 254 bool isKnownNegative = false; 255 bool isKnownNonNegative = false; 256 // If the multiplication is known not to overflow, compute the sign bit. 257 if (NSW) { 258 if (Op0 == Op1) { 259 // The product of a number with itself is non-negative. 260 isKnownNonNegative = true; 261 } else { 262 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 263 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 264 bool isKnownNegativeOp1 = KnownOne.isNegative(); 265 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 266 // The product of two numbers with the same sign is non-negative. 267 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 268 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 269 // The product of a negative number and a non-negative number is either 270 // negative or zero. 271 if (!isKnownNonNegative) 272 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 273 isKnownNonZero(Op0, TD, Depth, Q)) || 274 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 275 isKnownNonZero(Op1, TD, Depth, Q)); 276 } 277 } 278 279 // If low bits are zero in either operand, output low known-0 bits. 280 // Also compute a conserative estimate for high known-0 bits. 281 // More trickiness is possible, but this is sufficient for the 282 // interesting case of alignment computation. 283 KnownOne.clearAllBits(); 284 unsigned TrailZ = KnownZero.countTrailingOnes() + 285 KnownZero2.countTrailingOnes(); 286 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 287 KnownZero2.countLeadingOnes(), 288 BitWidth) - BitWidth; 289 290 TrailZ = std::min(TrailZ, BitWidth); 291 LeadZ = std::min(LeadZ, BitWidth); 292 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 293 APInt::getHighBitsSet(BitWidth, LeadZ); 294 295 // Only make use of no-wrap flags if we failed to compute the sign bit 296 // directly. This matters if the multiplication always overflows, in 297 // which case we prefer to follow the result of the direct computation, 298 // though as the program is invoking undefined behaviour we can choose 299 // whatever we like here. 300 if (isKnownNonNegative && !KnownOne.isNegative()) 301 KnownZero.setBit(BitWidth - 1); 302 else if (isKnownNegative && !KnownZero.isNegative()) 303 KnownOne.setBit(BitWidth - 1); 304 } 305 306 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 307 APInt &KnownZero) { 308 unsigned BitWidth = KnownZero.getBitWidth(); 309 unsigned NumRanges = Ranges.getNumOperands() / 2; 310 assert(NumRanges >= 1); 311 312 // Use the high end of the ranges to find leading zeros. 313 unsigned MinLeadingZeros = BitWidth; 314 for (unsigned i = 0; i < NumRanges; ++i) { 315 ConstantInt *Lower = 316 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 317 ConstantInt *Upper = 318 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 319 ConstantRange Range(Lower->getValue(), Upper->getValue()); 320 if (Range.isWrappedSet()) 321 MinLeadingZeros = 0; // -1 has no zeros 322 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 323 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 324 } 325 326 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 327 } 328 329 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 330 SmallVector<const Value *, 16> WorkSet(1, I); 331 SmallPtrSet<const Value *, 32> Visited; 332 SmallPtrSet<const Value *, 16> EphValues; 333 334 while (!WorkSet.empty()) { 335 const Value *V = WorkSet.pop_back_val(); 336 if (!Visited.insert(V).second) 337 continue; 338 339 // If all uses of this value are ephemeral, then so is this value. 340 bool FoundNEUse = false; 341 for (const User *I : V->users()) 342 if (!EphValues.count(I)) { 343 FoundNEUse = true; 344 break; 345 } 346 347 if (!FoundNEUse) { 348 if (V == E) 349 return true; 350 351 EphValues.insert(V); 352 if (const User *U = dyn_cast<User>(V)) 353 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 354 J != JE; ++J) { 355 if (isSafeToSpeculativelyExecute(*J)) 356 WorkSet.push_back(*J); 357 } 358 } 359 } 360 361 return false; 362 } 363 364 // Is this an intrinsic that cannot be speculated but also cannot trap? 365 static bool isAssumeLikeIntrinsic(const Instruction *I) { 366 if (const CallInst *CI = dyn_cast<CallInst>(I)) 367 if (Function *F = CI->getCalledFunction()) 368 switch (F->getIntrinsicID()) { 369 default: break; 370 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 371 case Intrinsic::assume: 372 case Intrinsic::dbg_declare: 373 case Intrinsic::dbg_value: 374 case Intrinsic::invariant_start: 375 case Intrinsic::invariant_end: 376 case Intrinsic::lifetime_start: 377 case Intrinsic::lifetime_end: 378 case Intrinsic::objectsize: 379 case Intrinsic::ptr_annotation: 380 case Intrinsic::var_annotation: 381 return true; 382 } 383 384 return false; 385 } 386 387 static bool isValidAssumeForContext(Value *V, const Query &Q, 388 const DataLayout *DL) { 389 Instruction *Inv = cast<Instruction>(V); 390 391 // There are two restrictions on the use of an assume: 392 // 1. The assume must dominate the context (or the control flow must 393 // reach the assume whenever it reaches the context). 394 // 2. The context must not be in the assume's set of ephemeral values 395 // (otherwise we will use the assume to prove that the condition 396 // feeding the assume is trivially true, thus causing the removal of 397 // the assume). 398 399 if (Q.DT) { 400 if (Q.DT->dominates(Inv, Q.CxtI)) { 401 return true; 402 } else if (Inv->getParent() == Q.CxtI->getParent()) { 403 // The context comes first, but they're both in the same block. Make sure 404 // there is nothing in between that might interrupt the control flow. 405 for (BasicBlock::const_iterator I = 406 std::next(BasicBlock::const_iterator(Q.CxtI)), 407 IE(Inv); I != IE; ++I) 408 if (!isSafeToSpeculativelyExecute(I, DL) && 409 !isAssumeLikeIntrinsic(I)) 410 return false; 411 412 return !isEphemeralValueOf(Inv, Q.CxtI); 413 } 414 415 return false; 416 } 417 418 // When we don't have a DT, we do a limited search... 419 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 420 return true; 421 } else if (Inv->getParent() == Q.CxtI->getParent()) { 422 // Search forward from the assume until we reach the context (or the end 423 // of the block); the common case is that the assume will come first. 424 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 425 IE = Inv->getParent()->end(); I != IE; ++I) 426 if (I == Q.CxtI) 427 return true; 428 429 // The context must come first... 430 for (BasicBlock::const_iterator I = 431 std::next(BasicBlock::const_iterator(Q.CxtI)), 432 IE(Inv); I != IE; ++I) 433 if (!isSafeToSpeculativelyExecute(I, DL) && 434 !isAssumeLikeIntrinsic(I)) 435 return false; 436 437 return !isEphemeralValueOf(Inv, Q.CxtI); 438 } 439 440 return false; 441 } 442 443 bool llvm::isValidAssumeForContext(const Instruction *I, 444 const Instruction *CxtI, 445 const DataLayout *DL, 446 const DominatorTree *DT) { 447 return ::isValidAssumeForContext(const_cast<Instruction*>(I), 448 Query(nullptr, CxtI, DT), DL); 449 } 450 451 template<typename LHS, typename RHS> 452 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 453 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 454 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 455 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 456 } 457 458 template<typename LHS, typename RHS> 459 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 460 BinaryOp_match<RHS, LHS, Instruction::And>> 461 m_c_And(const LHS &L, const RHS &R) { 462 return m_CombineOr(m_And(L, R), m_And(R, L)); 463 } 464 465 template<typename LHS, typename RHS> 466 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 467 BinaryOp_match<RHS, LHS, Instruction::Or>> 468 m_c_Or(const LHS &L, const RHS &R) { 469 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 470 } 471 472 template<typename LHS, typename RHS> 473 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 474 BinaryOp_match<RHS, LHS, Instruction::Xor>> 475 m_c_Xor(const LHS &L, const RHS &R) { 476 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 477 } 478 479 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 480 APInt &KnownOne, 481 const DataLayout *DL, 482 unsigned Depth, const Query &Q) { 483 // Use of assumptions is context-sensitive. If we don't have a context, we 484 // cannot use them! 485 if (!Q.AT || !Q.CxtI) 486 return; 487 488 unsigned BitWidth = KnownZero.getBitWidth(); 489 490 Function *F = const_cast<Function*>(Q.CxtI->getParent()->getParent()); 491 for (auto &CI : Q.AT->assumptions(F)) { 492 CallInst *I = CI; 493 if (Q.ExclInvs.count(I)) 494 continue; 495 496 // Warning: This loop can end up being somewhat performance sensetive. 497 // We're running this loop for once for each value queried resulting in a 498 // runtime of ~O(#assumes * #values). 499 500 assert(isa<IntrinsicInst>(I) && 501 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume && 502 "must be an assume intrinsic"); 503 504 Value *Arg = I->getArgOperand(0); 505 506 if (Arg == V && 507 isValidAssumeForContext(I, Q, DL)) { 508 assert(BitWidth == 1 && "assume operand is not i1?"); 509 KnownZero.clearAllBits(); 510 KnownOne.setAllBits(); 511 return; 512 } 513 514 // The remaining tests are all recursive, so bail out if we hit the limit. 515 if (Depth == MaxDepth) 516 continue; 517 518 Value *A, *B; 519 auto m_V = m_CombineOr(m_Specific(V), 520 m_CombineOr(m_PtrToInt(m_Specific(V)), 521 m_BitCast(m_Specific(V)))); 522 523 CmpInst::Predicate Pred; 524 ConstantInt *C; 525 // assume(v = a) 526 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 527 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 528 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 529 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 530 KnownZero |= RHSKnownZero; 531 KnownOne |= RHSKnownOne; 532 // assume(v & b = a) 533 } else if (match(Arg, m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), 534 m_Value(A))) && 535 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 536 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 537 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 538 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 539 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 540 541 // For those bits in the mask that are known to be one, we can propagate 542 // known bits from the RHS to V. 543 KnownZero |= RHSKnownZero & MaskKnownOne; 544 KnownOne |= RHSKnownOne & MaskKnownOne; 545 // assume(~(v & b) = a) 546 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 547 m_Value(A))) && 548 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 549 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 550 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 551 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 552 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 553 554 // For those bits in the mask that are known to be one, we can propagate 555 // inverted known bits from the RHS to V. 556 KnownZero |= RHSKnownOne & MaskKnownOne; 557 KnownOne |= RHSKnownZero & MaskKnownOne; 558 // assume(v | b = a) 559 } else if (match(Arg, m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), 560 m_Value(A))) && 561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 564 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 565 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 566 567 // For those bits in B that are known to be zero, we can propagate known 568 // bits from the RHS to V. 569 KnownZero |= RHSKnownZero & BKnownZero; 570 KnownOne |= RHSKnownOne & BKnownZero; 571 // assume(~(v | b) = a) 572 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 573 m_Value(A))) && 574 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 575 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 576 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 577 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 578 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 579 580 // For those bits in B that are known to be zero, we can propagate 581 // inverted known bits from the RHS to V. 582 KnownZero |= RHSKnownOne & BKnownZero; 583 KnownOne |= RHSKnownZero & BKnownZero; 584 // assume(v ^ b = a) 585 } else if (match(Arg, m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), 586 m_Value(A))) && 587 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 588 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 589 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 590 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 591 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 592 593 // For those bits in B that are known to be zero, we can propagate known 594 // bits from the RHS to V. For those bits in B that are known to be one, 595 // we can propagate inverted known bits from the RHS to V. 596 KnownZero |= RHSKnownZero & BKnownZero; 597 KnownOne |= RHSKnownOne & BKnownZero; 598 KnownZero |= RHSKnownOne & BKnownOne; 599 KnownOne |= RHSKnownZero & BKnownOne; 600 // assume(~(v ^ b) = a) 601 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 602 m_Value(A))) && 603 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 604 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 605 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 606 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 607 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 608 609 // For those bits in B that are known to be zero, we can propagate 610 // inverted known bits from the RHS to V. For those bits in B that are 611 // known to be one, we can propagate known bits from the RHS to V. 612 KnownZero |= RHSKnownOne & BKnownZero; 613 KnownOne |= RHSKnownZero & BKnownZero; 614 KnownZero |= RHSKnownZero & BKnownOne; 615 KnownOne |= RHSKnownOne & BKnownOne; 616 // assume(v << c = a) 617 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 618 m_Value(A))) && 619 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 620 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 621 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 622 // For those bits in RHS that are known, we can propagate them to known 623 // bits in V shifted to the right by C. 624 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 625 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 626 // assume(~(v << c) = a) 627 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 628 m_Value(A))) && 629 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 630 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 631 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 632 // For those bits in RHS that are known, we can propagate them inverted 633 // to known bits in V shifted to the right by C. 634 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 635 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 636 // assume(v >> c = a) 637 } else if (match(Arg, 638 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 639 m_AShr(m_V, 640 m_ConstantInt(C))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 645 // For those bits in RHS that are known, we can propagate them to known 646 // bits in V shifted to the right by C. 647 KnownZero |= RHSKnownZero << C->getZExtValue(); 648 KnownOne |= RHSKnownOne << C->getZExtValue(); 649 // assume(~(v >> c) = a) 650 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 651 m_LShr(m_V, m_ConstantInt(C)), 652 m_AShr(m_V, m_ConstantInt(C)))), 653 m_Value(A))) && 654 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q, DL)) { 655 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 656 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 657 // For those bits in RHS that are known, we can propagate them inverted 658 // to known bits in V shifted to the right by C. 659 KnownZero |= RHSKnownOne << C->getZExtValue(); 660 KnownOne |= RHSKnownZero << C->getZExtValue(); 661 // assume(v >=_s c) where c is non-negative 662 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 663 Pred == ICmpInst::ICMP_SGE && 664 isValidAssumeForContext(I, Q, DL)) { 665 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 666 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 667 668 if (RHSKnownZero.isNegative()) { 669 // We know that the sign bit is zero. 670 KnownZero |= APInt::getSignBit(BitWidth); 671 } 672 // assume(v >_s c) where c is at least -1. 673 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 674 Pred == ICmpInst::ICMP_SGT && 675 isValidAssumeForContext(I, Q, DL)) { 676 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 677 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 678 679 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 680 // We know that the sign bit is zero. 681 KnownZero |= APInt::getSignBit(BitWidth); 682 } 683 // assume(v <=_s c) where c is negative 684 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 685 Pred == ICmpInst::ICMP_SLE && 686 isValidAssumeForContext(I, Q, DL)) { 687 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 688 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 689 690 if (RHSKnownOne.isNegative()) { 691 // We know that the sign bit is one. 692 KnownOne |= APInt::getSignBit(BitWidth); 693 } 694 // assume(v <_s c) where c is non-positive 695 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 696 Pred == ICmpInst::ICMP_SLT && 697 isValidAssumeForContext(I, Q, DL)) { 698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 700 701 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 702 // We know that the sign bit is one. 703 KnownOne |= APInt::getSignBit(BitWidth); 704 } 705 // assume(v <=_u c) 706 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 707 Pred == ICmpInst::ICMP_ULE && 708 isValidAssumeForContext(I, Q, DL)) { 709 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 710 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 711 712 // Whatever high bits in c are zero are known to be zero. 713 KnownZero |= 714 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 715 // assume(v <_u c) 716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 717 Pred == ICmpInst::ICMP_ULT && 718 isValidAssumeForContext(I, Q, DL)) { 719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 721 722 // Whatever high bits in c are zero are known to be zero (if c is a power 723 // of 2, then one more). 724 if (isKnownToBeAPowerOfTwo(A, false, Depth+1, Query(Q, I))) 725 KnownZero |= 726 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 727 else 728 KnownZero |= 729 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 730 } 731 } 732 } 733 734 /// Determine which bits of V are known to be either zero or one and return 735 /// them in the KnownZero/KnownOne bit sets. 736 /// 737 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 738 /// we cannot optimize based on the assumption that it is zero without changing 739 /// it to be an explicit zero. If we don't change it to zero, other code could 740 /// optimized based on the contradictory assumption that it is non-zero. 741 /// Because instcombine aggressively folds operations with undef args anyway, 742 /// this won't lose us code quality. 743 /// 744 /// This function is defined on values with integer type, values with pointer 745 /// type (but only if TD is non-null), and vectors of integers. In the case 746 /// where V is a vector, known zero, and known one values are the 747 /// same width as the vector element, and the bit is set only if it is true 748 /// for all of the elements in the vector. 749 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 750 const DataLayout *TD, unsigned Depth, 751 const Query &Q) { 752 assert(V && "No Value?"); 753 assert(Depth <= MaxDepth && "Limit Search Depth"); 754 unsigned BitWidth = KnownZero.getBitWidth(); 755 756 assert((V->getType()->isIntOrIntVectorTy() || 757 V->getType()->getScalarType()->isPointerTy()) && 758 "Not integer or pointer type!"); 759 assert((!TD || 760 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 761 (!V->getType()->isIntOrIntVectorTy() || 762 V->getType()->getScalarSizeInBits() == BitWidth) && 763 KnownZero.getBitWidth() == BitWidth && 764 KnownOne.getBitWidth() == BitWidth && 765 "V, KnownOne and KnownZero should have same BitWidth"); 766 767 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 768 // We know all of the bits for a constant! 769 KnownOne = CI->getValue(); 770 KnownZero = ~KnownOne; 771 return; 772 } 773 // Null and aggregate-zero are all-zeros. 774 if (isa<ConstantPointerNull>(V) || 775 isa<ConstantAggregateZero>(V)) { 776 KnownOne.clearAllBits(); 777 KnownZero = APInt::getAllOnesValue(BitWidth); 778 return; 779 } 780 // Handle a constant vector by taking the intersection of the known bits of 781 // each element. There is no real need to handle ConstantVector here, because 782 // we don't handle undef in any particularly useful way. 783 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 784 // We know that CDS must be a vector of integers. Take the intersection of 785 // each element. 786 KnownZero.setAllBits(); KnownOne.setAllBits(); 787 APInt Elt(KnownZero.getBitWidth(), 0); 788 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 789 Elt = CDS->getElementAsInteger(i); 790 KnownZero &= ~Elt; 791 KnownOne &= Elt; 792 } 793 return; 794 } 795 796 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 797 // the bits of its aliasee. 798 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 799 if (GA->mayBeOverridden()) { 800 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 801 } else { 802 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1, Q); 803 } 804 return; 805 } 806 807 // The address of an aligned GlobalValue has trailing zeros. 808 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 809 unsigned Align = GV->getAlignment(); 810 if (Align == 0 && TD) { 811 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 812 Type *ObjectType = GVar->getType()->getElementType(); 813 if (ObjectType->isSized()) { 814 // If the object is defined in the current Module, we'll be giving 815 // it the preferred alignment. Otherwise, we have to assume that it 816 // may only have the minimum ABI alignment. 817 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 818 Align = TD->getPreferredAlignment(GVar); 819 else 820 Align = TD->getABITypeAlignment(ObjectType); 821 } 822 } 823 } 824 if (Align > 0) 825 KnownZero = APInt::getLowBitsSet(BitWidth, 826 countTrailingZeros(Align)); 827 else 828 KnownZero.clearAllBits(); 829 KnownOne.clearAllBits(); 830 return; 831 } 832 833 if (Argument *A = dyn_cast<Argument>(V)) { 834 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 835 836 if (!Align && TD && A->hasStructRetAttr()) { 837 // An sret parameter has at least the ABI alignment of the return type. 838 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 839 if (EltTy->isSized()) 840 Align = TD->getABITypeAlignment(EltTy); 841 } 842 843 if (Align) 844 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 845 846 // Don't give up yet... there might be an assumption that provides more 847 // information... 848 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q); 849 return; 850 } 851 852 // Start out not knowing anything. 853 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 854 855 if (Depth == MaxDepth) 856 return; // Limit search depth. 857 858 // Check whether a nearby assume intrinsic can determine some known bits. 859 computeKnownBitsFromAssume(V, KnownZero, KnownOne, TD, Depth, Q); 860 861 Operator *I = dyn_cast<Operator>(V); 862 if (!I) return; 863 864 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 865 switch (I->getOpcode()) { 866 default: break; 867 case Instruction::Load: 868 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 869 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 870 break; 871 case Instruction::And: { 872 // If either the LHS or the RHS are Zero, the result is zero. 873 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 874 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 875 876 // Output known-1 bits are only known if set in both the LHS & RHS. 877 KnownOne &= KnownOne2; 878 // Output known-0 are known to be clear if zero in either the LHS | RHS. 879 KnownZero |= KnownZero2; 880 break; 881 } 882 case Instruction::Or: { 883 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 884 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 885 886 // Output known-0 bits are only known if clear in both the LHS & RHS. 887 KnownZero &= KnownZero2; 888 // Output known-1 are known to be set if set in either the LHS | RHS. 889 KnownOne |= KnownOne2; 890 break; 891 } 892 case Instruction::Xor: { 893 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 894 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 895 896 // Output known-0 bits are known if clear or set in both the LHS & RHS. 897 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 898 // Output known-1 are known to be set if set in only one of the LHS, RHS. 899 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 900 KnownZero = KnownZeroOut; 901 break; 902 } 903 case Instruction::Mul: { 904 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 905 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, 906 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 907 Depth, Q); 908 break; 909 } 910 case Instruction::UDiv: { 911 // For the purposes of computing leading zeros we can conservatively 912 // treat a udiv as a logical right shift by the power of 2 known to 913 // be less than the denominator. 914 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1, Q); 915 unsigned LeadZ = KnownZero2.countLeadingOnes(); 916 917 KnownOne2.clearAllBits(); 918 KnownZero2.clearAllBits(); 919 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 920 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 921 if (RHSUnknownLeadingOnes != BitWidth) 922 LeadZ = std::min(BitWidth, 923 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 924 925 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 926 break; 927 } 928 case Instruction::Select: 929 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1, Q); 930 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 931 932 // Only known if known in both the LHS and RHS. 933 KnownOne &= KnownOne2; 934 KnownZero &= KnownZero2; 935 break; 936 case Instruction::FPTrunc: 937 case Instruction::FPExt: 938 case Instruction::FPToUI: 939 case Instruction::FPToSI: 940 case Instruction::SIToFP: 941 case Instruction::UIToFP: 942 break; // Can't work with floating point. 943 case Instruction::PtrToInt: 944 case Instruction::IntToPtr: 945 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 946 // We can't handle these if we don't know the pointer size. 947 if (!TD) break; 948 // FALL THROUGH and handle them the same as zext/trunc. 949 case Instruction::ZExt: 950 case Instruction::Trunc: { 951 Type *SrcTy = I->getOperand(0)->getType(); 952 953 unsigned SrcBitWidth; 954 // Note that we handle pointer operands here because of inttoptr/ptrtoint 955 // which fall through here. 956 if(TD) { 957 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 958 } else { 959 SrcBitWidth = SrcTy->getScalarSizeInBits(); 960 if (!SrcBitWidth) break; 961 } 962 963 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 964 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 965 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 966 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 967 KnownZero = KnownZero.zextOrTrunc(BitWidth); 968 KnownOne = KnownOne.zextOrTrunc(BitWidth); 969 // Any top bits are known to be zero. 970 if (BitWidth > SrcBitWidth) 971 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 972 break; 973 } 974 case Instruction::BitCast: { 975 Type *SrcTy = I->getOperand(0)->getType(); 976 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 977 // TODO: For now, not handling conversions like: 978 // (bitcast i64 %x to <2 x i32>) 979 !I->getType()->isVectorTy()) { 980 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 981 break; 982 } 983 break; 984 } 985 case Instruction::SExt: { 986 // Compute the bits in the result that are not present in the input. 987 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 988 989 KnownZero = KnownZero.trunc(SrcBitWidth); 990 KnownOne = KnownOne.trunc(SrcBitWidth); 991 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 992 KnownZero = KnownZero.zext(BitWidth); 993 KnownOne = KnownOne.zext(BitWidth); 994 995 // If the sign bit of the input is known set or clear, then we know the 996 // top bits of the result. 997 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 998 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 999 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1000 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1001 break; 1002 } 1003 case Instruction::Shl: 1004 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1005 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1006 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1007 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1008 KnownZero <<= ShiftAmt; 1009 KnownOne <<= ShiftAmt; 1010 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1011 } 1012 break; 1013 case Instruction::LShr: 1014 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1015 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1016 // Compute the new bits that are at the top now. 1017 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1018 1019 // Unsigned shift right. 1020 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1021 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1022 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1023 // high bits known zero. 1024 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1025 } 1026 break; 1027 case Instruction::AShr: 1028 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1029 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1030 // Compute the new bits that are at the top now. 1031 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1032 1033 // Signed shift right. 1034 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1035 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1036 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1037 1038 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1039 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1040 KnownZero |= HighBits; 1041 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1042 KnownOne |= HighBits; 1043 } 1044 break; 1045 case Instruction::Sub: { 1046 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1047 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1048 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 1049 Depth, Q); 1050 break; 1051 } 1052 case Instruction::Add: { 1053 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1054 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1055 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 1056 Depth, Q); 1057 break; 1058 } 1059 case Instruction::SRem: 1060 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1061 APInt RA = Rem->getValue().abs(); 1062 if (RA.isPowerOf2()) { 1063 APInt LowBits = RA - 1; 1064 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, 1065 Depth+1, Q); 1066 1067 // The low bits of the first operand are unchanged by the srem. 1068 KnownZero = KnownZero2 & LowBits; 1069 KnownOne = KnownOne2 & LowBits; 1070 1071 // If the first operand is non-negative or has all low bits zero, then 1072 // the upper bits are all zero. 1073 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1074 KnownZero |= ~LowBits; 1075 1076 // If the first operand is negative and not all low bits are zero, then 1077 // the upper bits are all one. 1078 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1079 KnownOne |= ~LowBits; 1080 1081 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1082 } 1083 } 1084 1085 // The sign bit is the LHS's sign bit, except when the result of the 1086 // remainder is zero. 1087 if (KnownZero.isNonNegative()) { 1088 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1089 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 1090 Depth+1, Q); 1091 // If it's known zero, our sign bit is also zero. 1092 if (LHSKnownZero.isNegative()) 1093 KnownZero.setBit(BitWidth - 1); 1094 } 1095 1096 break; 1097 case Instruction::URem: { 1098 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1099 APInt RA = Rem->getValue(); 1100 if (RA.isPowerOf2()) { 1101 APInt LowBits = (RA - 1); 1102 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, 1103 Depth+1, Q); 1104 KnownZero |= ~LowBits; 1105 KnownOne &= LowBits; 1106 break; 1107 } 1108 } 1109 1110 // Since the result is less than or equal to either operand, any leading 1111 // zero bits in either operand must also exist in the result. 1112 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1113 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1, Q); 1114 1115 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1116 KnownZero2.countLeadingOnes()); 1117 KnownOne.clearAllBits(); 1118 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1119 break; 1120 } 1121 1122 case Instruction::Alloca: { 1123 AllocaInst *AI = cast<AllocaInst>(V); 1124 unsigned Align = AI->getAlignment(); 1125 if (Align == 0 && TD) 1126 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 1127 1128 if (Align > 0) 1129 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1130 break; 1131 } 1132 case Instruction::GetElementPtr: { 1133 // Analyze all of the subscripts of this getelementptr instruction 1134 // to determine if we can prove known low zero bits. 1135 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1136 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 1137 Depth+1, Q); 1138 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1139 1140 gep_type_iterator GTI = gep_type_begin(I); 1141 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1142 Value *Index = I->getOperand(i); 1143 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1144 // Handle struct member offset arithmetic. 1145 if (!TD) { 1146 TrailZ = 0; 1147 break; 1148 } 1149 1150 // Handle case when index is vector zeroinitializer 1151 Constant *CIndex = cast<Constant>(Index); 1152 if (CIndex->isZeroValue()) 1153 continue; 1154 1155 if (CIndex->getType()->isVectorTy()) 1156 Index = CIndex->getSplatValue(); 1157 1158 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1159 const StructLayout *SL = TD->getStructLayout(STy); 1160 uint64_t Offset = SL->getElementOffset(Idx); 1161 TrailZ = std::min<unsigned>(TrailZ, 1162 countTrailingZeros(Offset)); 1163 } else { 1164 // Handle array index arithmetic. 1165 Type *IndexedTy = GTI.getIndexedType(); 1166 if (!IndexedTy->isSized()) { 1167 TrailZ = 0; 1168 break; 1169 } 1170 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1171 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 1172 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1173 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1, Q); 1174 TrailZ = std::min(TrailZ, 1175 unsigned(countTrailingZeros(TypeSize) + 1176 LocalKnownZero.countTrailingOnes())); 1177 } 1178 } 1179 1180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1181 break; 1182 } 1183 case Instruction::PHI: { 1184 PHINode *P = cast<PHINode>(I); 1185 // Handle the case of a simple two-predecessor recurrence PHI. 1186 // There's a lot more that could theoretically be done here, but 1187 // this is sufficient to catch some interesting cases. 1188 if (P->getNumIncomingValues() == 2) { 1189 for (unsigned i = 0; i != 2; ++i) { 1190 Value *L = P->getIncomingValue(i); 1191 Value *R = P->getIncomingValue(!i); 1192 Operator *LU = dyn_cast<Operator>(L); 1193 if (!LU) 1194 continue; 1195 unsigned Opcode = LU->getOpcode(); 1196 // Check for operations that have the property that if 1197 // both their operands have low zero bits, the result 1198 // will have low zero bits. 1199 if (Opcode == Instruction::Add || 1200 Opcode == Instruction::Sub || 1201 Opcode == Instruction::And || 1202 Opcode == Instruction::Or || 1203 Opcode == Instruction::Mul) { 1204 Value *LL = LU->getOperand(0); 1205 Value *LR = LU->getOperand(1); 1206 // Find a recurrence. 1207 if (LL == I) 1208 L = LR; 1209 else if (LR == I) 1210 L = LL; 1211 else 1212 break; 1213 // Ok, we have a PHI of the form L op= R. Check for low 1214 // zero bits. 1215 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1, Q); 1216 1217 // We need to take the minimum number of known bits 1218 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1219 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1, Q); 1220 1221 KnownZero = APInt::getLowBitsSet(BitWidth, 1222 std::min(KnownZero2.countTrailingOnes(), 1223 KnownZero3.countTrailingOnes())); 1224 break; 1225 } 1226 } 1227 } 1228 1229 // Unreachable blocks may have zero-operand PHI nodes. 1230 if (P->getNumIncomingValues() == 0) 1231 break; 1232 1233 // Otherwise take the unions of the known bit sets of the operands, 1234 // taking conservative care to avoid excessive recursion. 1235 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1236 // Skip if every incoming value references to ourself. 1237 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1238 break; 1239 1240 KnownZero = APInt::getAllOnesValue(BitWidth); 1241 KnownOne = APInt::getAllOnesValue(BitWidth); 1242 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 1243 // Skip direct self references. 1244 if (P->getIncomingValue(i) == P) continue; 1245 1246 KnownZero2 = APInt(BitWidth, 0); 1247 KnownOne2 = APInt(BitWidth, 0); 1248 // Recurse, but cap the recursion to one level, because we don't 1249 // want to waste time spinning around in loops. 1250 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 1251 MaxDepth-1, Q); 1252 KnownZero &= KnownZero2; 1253 KnownOne &= KnownOne2; 1254 // If all bits have been ruled out, there's no need to check 1255 // more operands. 1256 if (!KnownZero && !KnownOne) 1257 break; 1258 } 1259 } 1260 break; 1261 } 1262 case Instruction::Call: 1263 case Instruction::Invoke: 1264 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1265 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1266 // If a range metadata is attached to this IntrinsicInst, intersect the 1267 // explicit range specified by the metadata and the implicit range of 1268 // the intrinsic. 1269 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1270 switch (II->getIntrinsicID()) { 1271 default: break; 1272 case Intrinsic::ctlz: 1273 case Intrinsic::cttz: { 1274 unsigned LowBits = Log2_32(BitWidth)+1; 1275 // If this call is undefined for 0, the result will be less than 2^n. 1276 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1277 LowBits -= 1; 1278 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1279 break; 1280 } 1281 case Intrinsic::ctpop: { 1282 unsigned LowBits = Log2_32(BitWidth)+1; 1283 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1284 break; 1285 } 1286 case Intrinsic::x86_sse42_crc32_64_64: 1287 KnownZero |= APInt::getHighBitsSet(64, 32); 1288 break; 1289 } 1290 } 1291 break; 1292 case Instruction::ExtractValue: 1293 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1294 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1295 if (EVI->getNumIndices() != 1) break; 1296 if (EVI->getIndices()[0] == 0) { 1297 switch (II->getIntrinsicID()) { 1298 default: break; 1299 case Intrinsic::uadd_with_overflow: 1300 case Intrinsic::sadd_with_overflow: 1301 computeKnownBitsAddSub(true, II->getArgOperand(0), 1302 II->getArgOperand(1), false, KnownZero, 1303 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q); 1304 break; 1305 case Intrinsic::usub_with_overflow: 1306 case Intrinsic::ssub_with_overflow: 1307 computeKnownBitsAddSub(false, II->getArgOperand(0), 1308 II->getArgOperand(1), false, KnownZero, 1309 KnownOne, KnownZero2, KnownOne2, TD, Depth, Q); 1310 break; 1311 case Intrinsic::umul_with_overflow: 1312 case Intrinsic::smul_with_overflow: 1313 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), 1314 false, KnownZero, KnownOne, 1315 KnownZero2, KnownOne2, TD, Depth, Q); 1316 break; 1317 } 1318 } 1319 } 1320 } 1321 1322 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1323 } 1324 1325 /// Determine whether the sign bit is known to be zero or one. 1326 /// Convenience wrapper around computeKnownBits. 1327 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1328 const DataLayout *TD, unsigned Depth, 1329 const Query &Q) { 1330 unsigned BitWidth = getBitWidth(V->getType(), TD); 1331 if (!BitWidth) { 1332 KnownZero = false; 1333 KnownOne = false; 1334 return; 1335 } 1336 APInt ZeroBits(BitWidth, 0); 1337 APInt OneBits(BitWidth, 0); 1338 computeKnownBits(V, ZeroBits, OneBits, TD, Depth, Q); 1339 KnownOne = OneBits[BitWidth - 1]; 1340 KnownZero = ZeroBits[BitWidth - 1]; 1341 } 1342 1343 /// Return true if the given value is known to have exactly one 1344 /// bit set when defined. For vectors return true if every element is known to 1345 /// be a power of two when defined. Supports values with integer or pointer 1346 /// types and vectors of integers. 1347 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1348 const Query &Q) { 1349 if (Constant *C = dyn_cast<Constant>(V)) { 1350 if (C->isNullValue()) 1351 return OrZero; 1352 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1353 return CI->getValue().isPowerOf2(); 1354 // TODO: Handle vector constants. 1355 } 1356 1357 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1358 // it is shifted off the end then the result is undefined. 1359 if (match(V, m_Shl(m_One(), m_Value()))) 1360 return true; 1361 1362 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1363 // bottom. If it is shifted off the bottom then the result is undefined. 1364 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1365 return true; 1366 1367 // The remaining tests are all recursive, so bail out if we hit the limit. 1368 if (Depth++ == MaxDepth) 1369 return false; 1370 1371 Value *X = nullptr, *Y = nullptr; 1372 // A shift of a power of two is a power of two or zero. 1373 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1374 match(V, m_Shr(m_Value(X), m_Value())))) 1375 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q); 1376 1377 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1378 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1379 1380 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1381 return 1382 isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1383 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1384 1385 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1386 // A power of two and'd with anything is a power of two or zero. 1387 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth, Q) || 1388 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth, Q)) 1389 return true; 1390 // X & (-X) is always a power of two or zero. 1391 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1392 return true; 1393 return false; 1394 } 1395 1396 // Adding a power-of-two or zero to the same power-of-two or zero yields 1397 // either the original power-of-two, a larger power-of-two or zero. 1398 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1399 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1400 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1401 if (match(X, m_And(m_Specific(Y), m_Value())) || 1402 match(X, m_And(m_Value(), m_Specific(Y)))) 1403 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1404 return true; 1405 if (match(Y, m_And(m_Specific(X), m_Value())) || 1406 match(Y, m_And(m_Value(), m_Specific(X)))) 1407 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1408 return true; 1409 1410 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1411 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1412 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth, Q); 1413 1414 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1415 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth, Q); 1416 // If i8 V is a power of two or zero: 1417 // ZeroBits: 1 1 1 0 1 1 1 1 1418 // ~ZeroBits: 0 0 0 1 0 0 0 0 1419 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1420 // If OrZero isn't set, we cannot give back a zero result. 1421 // Make sure either the LHS or RHS has a bit set. 1422 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1423 return true; 1424 } 1425 } 1426 1427 // An exact divide or right shift can only shift off zero bits, so the result 1428 // is a power of two only if the first operand is a power of two and not 1429 // copying a sign bit (sdiv int_min, 2). 1430 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1431 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1432 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1433 Depth, Q); 1434 } 1435 1436 return false; 1437 } 1438 1439 /// \brief Test whether a GEP's result is known to be non-null. 1440 /// 1441 /// Uses properties inherent in a GEP to try to determine whether it is known 1442 /// to be non-null. 1443 /// 1444 /// Currently this routine does not support vector GEPs. 1445 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 1446 unsigned Depth, const Query &Q) { 1447 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1448 return false; 1449 1450 // FIXME: Support vector-GEPs. 1451 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1452 1453 // If the base pointer is non-null, we cannot walk to a null address with an 1454 // inbounds GEP in address space zero. 1455 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1456 return true; 1457 1458 // Past this, if we don't have DataLayout, we can't do much. 1459 if (!DL) 1460 return false; 1461 1462 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1463 // If so, then the GEP cannot produce a null pointer, as doing so would 1464 // inherently violate the inbounds contract within address space zero. 1465 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1466 GTI != GTE; ++GTI) { 1467 // Struct types are easy -- they must always be indexed by a constant. 1468 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1469 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1470 unsigned ElementIdx = OpC->getZExtValue(); 1471 const StructLayout *SL = DL->getStructLayout(STy); 1472 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1473 if (ElementOffset > 0) 1474 return true; 1475 continue; 1476 } 1477 1478 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1479 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 1480 continue; 1481 1482 // Fast path the constant operand case both for efficiency and so we don't 1483 // increment Depth when just zipping down an all-constant GEP. 1484 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1485 if (!OpC->isZero()) 1486 return true; 1487 continue; 1488 } 1489 1490 // We post-increment Depth here because while isKnownNonZero increments it 1491 // as well, when we pop back up that increment won't persist. We don't want 1492 // to recurse 10k times just because we have 10k GEP operands. We don't 1493 // bail completely out because we want to handle constant GEPs regardless 1494 // of depth. 1495 if (Depth++ >= MaxDepth) 1496 continue; 1497 1498 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1499 return true; 1500 } 1501 1502 return false; 1503 } 1504 1505 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1506 /// ensure that the value it's attached to is never Value? 'RangeType' is 1507 /// is the type of the value described by the range. 1508 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1509 const APInt& Value) { 1510 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1511 assert(NumRanges >= 1); 1512 for (unsigned i = 0; i < NumRanges; ++i) { 1513 ConstantInt *Lower = 1514 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1515 ConstantInt *Upper = 1516 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1517 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1518 if (Range.contains(Value)) 1519 return false; 1520 } 1521 return true; 1522 } 1523 1524 /// Return true if the given value is known to be non-zero when defined. 1525 /// For vectors return true if every element is known to be non-zero when 1526 /// defined. Supports values with integer or pointer type and vectors of 1527 /// integers. 1528 bool isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth, 1529 const Query &Q) { 1530 if (Constant *C = dyn_cast<Constant>(V)) { 1531 if (C->isNullValue()) 1532 return false; 1533 if (isa<ConstantInt>(C)) 1534 // Must be non-zero due to null test above. 1535 return true; 1536 // TODO: Handle vectors 1537 return false; 1538 } 1539 1540 if (Instruction* I = dyn_cast<Instruction>(V)) { 1541 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1542 // If the possible ranges don't contain zero, then the value is 1543 // definitely non-zero. 1544 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1545 const APInt ZeroValue(Ty->getBitWidth(), 0); 1546 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1547 return true; 1548 } 1549 } 1550 } 1551 1552 // The remaining tests are all recursive, so bail out if we hit the limit. 1553 if (Depth++ >= MaxDepth) 1554 return false; 1555 1556 // Check for pointer simplifications. 1557 if (V->getType()->isPointerTy()) { 1558 if (isKnownNonNull(V)) 1559 return true; 1560 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1561 if (isGEPKnownNonNull(GEP, TD, Depth, Q)) 1562 return true; 1563 } 1564 1565 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 1566 1567 // X | Y != 0 if X != 0 or Y != 0. 1568 Value *X = nullptr, *Y = nullptr; 1569 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1570 return isKnownNonZero(X, TD, Depth, Q) || 1571 isKnownNonZero(Y, TD, Depth, Q); 1572 1573 // ext X != 0 if X != 0. 1574 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1575 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth, Q); 1576 1577 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1578 // if the lowest bit is shifted off the end. 1579 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1580 // shl nuw can't remove any non-zero bits. 1581 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1582 if (BO->hasNoUnsignedWrap()) 1583 return isKnownNonZero(X, TD, Depth, Q); 1584 1585 APInt KnownZero(BitWidth, 0); 1586 APInt KnownOne(BitWidth, 0); 1587 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q); 1588 if (KnownOne[0]) 1589 return true; 1590 } 1591 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1592 // defined if the sign bit is shifted off the end. 1593 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1594 // shr exact can only shift out zero bits. 1595 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1596 if (BO->isExact()) 1597 return isKnownNonZero(X, TD, Depth, Q); 1598 1599 bool XKnownNonNegative, XKnownNegative; 1600 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q); 1601 if (XKnownNegative) 1602 return true; 1603 } 1604 // div exact can only produce a zero if the dividend is zero. 1605 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1606 return isKnownNonZero(X, TD, Depth, Q); 1607 } 1608 // X + Y. 1609 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1610 bool XKnownNonNegative, XKnownNegative; 1611 bool YKnownNonNegative, YKnownNegative; 1612 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth, Q); 1613 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth, Q); 1614 1615 // If X and Y are both non-negative (as signed values) then their sum is not 1616 // zero unless both X and Y are zero. 1617 if (XKnownNonNegative && YKnownNonNegative) 1618 if (isKnownNonZero(X, TD, Depth, Q) || 1619 isKnownNonZero(Y, TD, Depth, Q)) 1620 return true; 1621 1622 // If X and Y are both negative (as signed values) then their sum is not 1623 // zero unless both X and Y equal INT_MIN. 1624 if (BitWidth && XKnownNegative && YKnownNegative) { 1625 APInt KnownZero(BitWidth, 0); 1626 APInt KnownOne(BitWidth, 0); 1627 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1628 // The sign bit of X is set. If some other bit is set then X is not equal 1629 // to INT_MIN. 1630 computeKnownBits(X, KnownZero, KnownOne, TD, Depth, Q); 1631 if ((KnownOne & Mask) != 0) 1632 return true; 1633 // The sign bit of Y is set. If some other bit is set then Y is not equal 1634 // to INT_MIN. 1635 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth, Q); 1636 if ((KnownOne & Mask) != 0) 1637 return true; 1638 } 1639 1640 // The sum of a non-negative number and a power of two is not zero. 1641 if (XKnownNonNegative && 1642 isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth, Q)) 1643 return true; 1644 if (YKnownNonNegative && 1645 isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth, Q)) 1646 return true; 1647 } 1648 // X * Y. 1649 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1650 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1651 // If X and Y are non-zero then so is X * Y as long as the multiplication 1652 // does not overflow. 1653 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1654 isKnownNonZero(X, TD, Depth, Q) && 1655 isKnownNonZero(Y, TD, Depth, Q)) 1656 return true; 1657 } 1658 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1659 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1660 if (isKnownNonZero(SI->getTrueValue(), TD, Depth, Q) && 1661 isKnownNonZero(SI->getFalseValue(), TD, Depth, Q)) 1662 return true; 1663 } 1664 1665 if (!BitWidth) return false; 1666 APInt KnownZero(BitWidth, 0); 1667 APInt KnownOne(BitWidth, 0); 1668 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1669 return KnownOne != 0; 1670 } 1671 1672 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1673 /// simplify operations downstream. Mask is known to be zero for bits that V 1674 /// cannot have. 1675 /// 1676 /// This function is defined on values with integer type, values with pointer 1677 /// type (but only if TD is non-null), and vectors of integers. In the case 1678 /// where V is a vector, the mask, known zero, and known one values are the 1679 /// same width as the vector element, and the bit is set only if it is true 1680 /// for all of the elements in the vector. 1681 bool MaskedValueIsZero(Value *V, const APInt &Mask, 1682 const DataLayout *TD, unsigned Depth, 1683 const Query &Q) { 1684 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1685 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1686 return (KnownZero & Mask) == Mask; 1687 } 1688 1689 1690 1691 /// Return the number of times the sign bit of the register is replicated into 1692 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1693 /// (itself), but other cases can give us information. For example, immediately 1694 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1695 /// other, so we return 3. 1696 /// 1697 /// 'Op' must have a scalar integer type. 1698 /// 1699 unsigned ComputeNumSignBits(Value *V, const DataLayout *TD, 1700 unsigned Depth, const Query &Q) { 1701 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1702 "ComputeNumSignBits requires a DataLayout object to operate " 1703 "on non-integer values!"); 1704 Type *Ty = V->getType(); 1705 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1706 Ty->getScalarSizeInBits(); 1707 unsigned Tmp, Tmp2; 1708 unsigned FirstAnswer = 1; 1709 1710 // Note that ConstantInt is handled by the general computeKnownBits case 1711 // below. 1712 1713 if (Depth == 6) 1714 return 1; // Limit search depth. 1715 1716 Operator *U = dyn_cast<Operator>(V); 1717 switch (Operator::getOpcode(V)) { 1718 default: break; 1719 case Instruction::SExt: 1720 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1721 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q) + Tmp; 1722 1723 case Instruction::AShr: { 1724 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1725 // ashr X, C -> adds C sign bits. Vectors too. 1726 const APInt *ShAmt; 1727 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1728 Tmp += ShAmt->getZExtValue(); 1729 if (Tmp > TyBits) Tmp = TyBits; 1730 } 1731 return Tmp; 1732 } 1733 case Instruction::Shl: { 1734 const APInt *ShAmt; 1735 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1736 // shl destroys sign bits. 1737 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1738 Tmp2 = ShAmt->getZExtValue(); 1739 if (Tmp2 >= TyBits || // Bad shift. 1740 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1741 return Tmp - Tmp2; 1742 } 1743 break; 1744 } 1745 case Instruction::And: 1746 case Instruction::Or: 1747 case Instruction::Xor: // NOT is handled here. 1748 // Logical binary ops preserve the number of sign bits at the worst. 1749 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1750 if (Tmp != 1) { 1751 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1752 FirstAnswer = std::min(Tmp, Tmp2); 1753 // We computed what we know about the sign bits as our first 1754 // answer. Now proceed to the generic code that uses 1755 // computeKnownBits, and pick whichever answer is better. 1756 } 1757 break; 1758 1759 case Instruction::Select: 1760 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1761 if (Tmp == 1) return 1; // Early out. 1762 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1, Q); 1763 return std::min(Tmp, Tmp2); 1764 1765 case Instruction::Add: 1766 // Add can have at most one carry bit. Thus we know that the output 1767 // is, at worst, one more bit than the inputs. 1768 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1769 if (Tmp == 1) return 1; // Early out. 1770 1771 // Special case decrementing a value (ADD X, -1): 1772 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1773 if (CRHS->isAllOnesValue()) { 1774 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1775 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1, Q); 1776 1777 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1778 // sign bits set. 1779 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1780 return TyBits; 1781 1782 // If we are subtracting one from a positive number, there is no carry 1783 // out of the result. 1784 if (KnownZero.isNegative()) 1785 return Tmp; 1786 } 1787 1788 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1789 if (Tmp2 == 1) return 1; 1790 return std::min(Tmp, Tmp2)-1; 1791 1792 case Instruction::Sub: 1793 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1, Q); 1794 if (Tmp2 == 1) return 1; 1795 1796 // Handle NEG. 1797 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1798 if (CLHS->isNullValue()) { 1799 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1800 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1, Q); 1801 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1802 // sign bits set. 1803 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1804 return TyBits; 1805 1806 // If the input is known to be positive (the sign bit is known clear), 1807 // the output of the NEG has the same number of sign bits as the input. 1808 if (KnownZero.isNegative()) 1809 return Tmp2; 1810 1811 // Otherwise, we treat this like a SUB. 1812 } 1813 1814 // Sub can have at most one carry bit. Thus we know that the output 1815 // is, at worst, one more bit than the inputs. 1816 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1, Q); 1817 if (Tmp == 1) return 1; // Early out. 1818 return std::min(Tmp, Tmp2)-1; 1819 1820 case Instruction::PHI: { 1821 PHINode *PN = cast<PHINode>(U); 1822 // Don't analyze large in-degree PHIs. 1823 if (PN->getNumIncomingValues() > 4) break; 1824 1825 // Take the minimum of all incoming values. This can't infinitely loop 1826 // because of our depth threshold. 1827 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1, Q); 1828 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1829 if (Tmp == 1) return Tmp; 1830 Tmp = std::min(Tmp, 1831 ComputeNumSignBits(PN->getIncomingValue(i), TD, 1832 Depth+1, Q)); 1833 } 1834 return Tmp; 1835 } 1836 1837 case Instruction::Trunc: 1838 // FIXME: it's tricky to do anything useful for this, but it is an important 1839 // case for targets like X86. 1840 break; 1841 } 1842 1843 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1844 // use this information. 1845 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1846 APInt Mask; 1847 computeKnownBits(V, KnownZero, KnownOne, TD, Depth, Q); 1848 1849 if (KnownZero.isNegative()) { // sign bit is 0 1850 Mask = KnownZero; 1851 } else if (KnownOne.isNegative()) { // sign bit is 1; 1852 Mask = KnownOne; 1853 } else { 1854 // Nothing known. 1855 return FirstAnswer; 1856 } 1857 1858 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1859 // the number of identical bits in the top of the input value. 1860 Mask = ~Mask; 1861 Mask <<= Mask.getBitWidth()-TyBits; 1862 // Return # leading zeros. We use 'min' here in case Val was zero before 1863 // shifting. We don't want to return '64' as for an i32 "0". 1864 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1865 } 1866 1867 /// This function computes the integer multiple of Base that equals V. 1868 /// If successful, it returns true and returns the multiple in 1869 /// Multiple. If unsuccessful, it returns false. It looks 1870 /// through SExt instructions only if LookThroughSExt is true. 1871 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1872 bool LookThroughSExt, unsigned Depth) { 1873 const unsigned MaxDepth = 6; 1874 1875 assert(V && "No Value?"); 1876 assert(Depth <= MaxDepth && "Limit Search Depth"); 1877 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1878 1879 Type *T = V->getType(); 1880 1881 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1882 1883 if (Base == 0) 1884 return false; 1885 1886 if (Base == 1) { 1887 Multiple = V; 1888 return true; 1889 } 1890 1891 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1892 Constant *BaseVal = ConstantInt::get(T, Base); 1893 if (CO && CO == BaseVal) { 1894 // Multiple is 1. 1895 Multiple = ConstantInt::get(T, 1); 1896 return true; 1897 } 1898 1899 if (CI && CI->getZExtValue() % Base == 0) { 1900 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1901 return true; 1902 } 1903 1904 if (Depth == MaxDepth) return false; // Limit search depth. 1905 1906 Operator *I = dyn_cast<Operator>(V); 1907 if (!I) return false; 1908 1909 switch (I->getOpcode()) { 1910 default: break; 1911 case Instruction::SExt: 1912 if (!LookThroughSExt) return false; 1913 // otherwise fall through to ZExt 1914 case Instruction::ZExt: 1915 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1916 LookThroughSExt, Depth+1); 1917 case Instruction::Shl: 1918 case Instruction::Mul: { 1919 Value *Op0 = I->getOperand(0); 1920 Value *Op1 = I->getOperand(1); 1921 1922 if (I->getOpcode() == Instruction::Shl) { 1923 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1924 if (!Op1CI) return false; 1925 // Turn Op0 << Op1 into Op0 * 2^Op1 1926 APInt Op1Int = Op1CI->getValue(); 1927 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1928 APInt API(Op1Int.getBitWidth(), 0); 1929 API.setBit(BitToSet); 1930 Op1 = ConstantInt::get(V->getContext(), API); 1931 } 1932 1933 Value *Mul0 = nullptr; 1934 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1935 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1936 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1937 if (Op1C->getType()->getPrimitiveSizeInBits() < 1938 MulC->getType()->getPrimitiveSizeInBits()) 1939 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1940 if (Op1C->getType()->getPrimitiveSizeInBits() > 1941 MulC->getType()->getPrimitiveSizeInBits()) 1942 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1943 1944 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1945 Multiple = ConstantExpr::getMul(MulC, Op1C); 1946 return true; 1947 } 1948 1949 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1950 if (Mul0CI->getValue() == 1) { 1951 // V == Base * Op1, so return Op1 1952 Multiple = Op1; 1953 return true; 1954 } 1955 } 1956 1957 Value *Mul1 = nullptr; 1958 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1959 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1960 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1961 if (Op0C->getType()->getPrimitiveSizeInBits() < 1962 MulC->getType()->getPrimitiveSizeInBits()) 1963 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1964 if (Op0C->getType()->getPrimitiveSizeInBits() > 1965 MulC->getType()->getPrimitiveSizeInBits()) 1966 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1967 1968 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1969 Multiple = ConstantExpr::getMul(MulC, Op0C); 1970 return true; 1971 } 1972 1973 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1974 if (Mul1CI->getValue() == 1) { 1975 // V == Base * Op0, so return Op0 1976 Multiple = Op0; 1977 return true; 1978 } 1979 } 1980 } 1981 } 1982 1983 // We could not determine if V is a multiple of Base. 1984 return false; 1985 } 1986 1987 /// Return true if we can prove that the specified FP value is never equal to 1988 /// -0.0. 1989 /// 1990 /// NOTE: this function will need to be revisited when we support non-default 1991 /// rounding modes! 1992 /// 1993 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1994 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1995 return !CFP->getValueAPF().isNegZero(); 1996 1997 if (Depth == 6) 1998 return 1; // Limit search depth. 1999 2000 const Operator *I = dyn_cast<Operator>(V); 2001 if (!I) return false; 2002 2003 // Check if the nsz fast-math flag is set 2004 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2005 if (FPO->hasNoSignedZeros()) 2006 return true; 2007 2008 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2009 if (I->getOpcode() == Instruction::FAdd) 2010 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2011 if (CFP->isNullValue()) 2012 return true; 2013 2014 // sitofp and uitofp turn into +0.0 for zero. 2015 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2016 return true; 2017 2018 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2019 // sqrt(-0.0) = -0.0, no other negative results are possible. 2020 if (II->getIntrinsicID() == Intrinsic::sqrt) 2021 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2022 2023 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2024 if (const Function *F = CI->getCalledFunction()) { 2025 if (F->isDeclaration()) { 2026 // abs(x) != -0.0 2027 if (F->getName() == "abs") return true; 2028 // fabs[lf](x) != -0.0 2029 if (F->getName() == "fabs") return true; 2030 if (F->getName() == "fabsf") return true; 2031 if (F->getName() == "fabsl") return true; 2032 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2033 F->getName() == "sqrtl") 2034 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2035 } 2036 } 2037 2038 return false; 2039 } 2040 2041 /// If the specified value can be set by repeating the same byte in memory, 2042 /// return the i8 value that it is represented with. This is 2043 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2044 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2045 /// byte store (e.g. i16 0x1234), return null. 2046 Value *llvm::isBytewiseValue(Value *V) { 2047 // All byte-wide stores are splatable, even of arbitrary variables. 2048 if (V->getType()->isIntegerTy(8)) return V; 2049 2050 // Handle 'null' ConstantArrayZero etc. 2051 if (Constant *C = dyn_cast<Constant>(V)) 2052 if (C->isNullValue()) 2053 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2054 2055 // Constant float and double values can be handled as integer values if the 2056 // corresponding integer value is "byteable". An important case is 0.0. 2057 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2058 if (CFP->getType()->isFloatTy()) 2059 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2060 if (CFP->getType()->isDoubleTy()) 2061 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2062 // Don't handle long double formats, which have strange constraints. 2063 } 2064 2065 // We can handle constant integers that are power of two in size and a 2066 // multiple of 8 bits. 2067 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2068 unsigned Width = CI->getBitWidth(); 2069 if (isPowerOf2_32(Width) && Width > 8) { 2070 // We can handle this value if the recursive binary decomposition is the 2071 // same at all levels. 2072 APInt Val = CI->getValue(); 2073 APInt Val2; 2074 while (Val.getBitWidth() != 8) { 2075 unsigned NextWidth = Val.getBitWidth()/2; 2076 Val2 = Val.lshr(NextWidth); 2077 Val2 = Val2.trunc(Val.getBitWidth()/2); 2078 Val = Val.trunc(Val.getBitWidth()/2); 2079 2080 // If the top/bottom halves aren't the same, reject it. 2081 if (Val != Val2) 2082 return nullptr; 2083 } 2084 return ConstantInt::get(V->getContext(), Val); 2085 } 2086 } 2087 2088 // A ConstantDataArray/Vector is splatable if all its members are equal and 2089 // also splatable. 2090 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2091 Value *Elt = CA->getElementAsConstant(0); 2092 Value *Val = isBytewiseValue(Elt); 2093 if (!Val) 2094 return nullptr; 2095 2096 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2097 if (CA->getElementAsConstant(I) != Elt) 2098 return nullptr; 2099 2100 return Val; 2101 } 2102 2103 // Conceptually, we could handle things like: 2104 // %a = zext i8 %X to i16 2105 // %b = shl i16 %a, 8 2106 // %c = or i16 %a, %b 2107 // but until there is an example that actually needs this, it doesn't seem 2108 // worth worrying about. 2109 return nullptr; 2110 } 2111 2112 2113 // This is the recursive version of BuildSubAggregate. It takes a few different 2114 // arguments. Idxs is the index within the nested struct From that we are 2115 // looking at now (which is of type IndexedType). IdxSkip is the number of 2116 // indices from Idxs that should be left out when inserting into the resulting 2117 // struct. To is the result struct built so far, new insertvalue instructions 2118 // build on that. 2119 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2120 SmallVectorImpl<unsigned> &Idxs, 2121 unsigned IdxSkip, 2122 Instruction *InsertBefore) { 2123 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2124 if (STy) { 2125 // Save the original To argument so we can modify it 2126 Value *OrigTo = To; 2127 // General case, the type indexed by Idxs is a struct 2128 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2129 // Process each struct element recursively 2130 Idxs.push_back(i); 2131 Value *PrevTo = To; 2132 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2133 InsertBefore); 2134 Idxs.pop_back(); 2135 if (!To) { 2136 // Couldn't find any inserted value for this index? Cleanup 2137 while (PrevTo != OrigTo) { 2138 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2139 PrevTo = Del->getAggregateOperand(); 2140 Del->eraseFromParent(); 2141 } 2142 // Stop processing elements 2143 break; 2144 } 2145 } 2146 // If we successfully found a value for each of our subaggregates 2147 if (To) 2148 return To; 2149 } 2150 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2151 // the struct's elements had a value that was inserted directly. In the latter 2152 // case, perhaps we can't determine each of the subelements individually, but 2153 // we might be able to find the complete struct somewhere. 2154 2155 // Find the value that is at that particular spot 2156 Value *V = FindInsertedValue(From, Idxs); 2157 2158 if (!V) 2159 return nullptr; 2160 2161 // Insert the value in the new (sub) aggregrate 2162 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2163 "tmp", InsertBefore); 2164 } 2165 2166 // This helper takes a nested struct and extracts a part of it (which is again a 2167 // struct) into a new value. For example, given the struct: 2168 // { a, { b, { c, d }, e } } 2169 // and the indices "1, 1" this returns 2170 // { c, d }. 2171 // 2172 // It does this by inserting an insertvalue for each element in the resulting 2173 // struct, as opposed to just inserting a single struct. This will only work if 2174 // each of the elements of the substruct are known (ie, inserted into From by an 2175 // insertvalue instruction somewhere). 2176 // 2177 // All inserted insertvalue instructions are inserted before InsertBefore 2178 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2179 Instruction *InsertBefore) { 2180 assert(InsertBefore && "Must have someplace to insert!"); 2181 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2182 idx_range); 2183 Value *To = UndefValue::get(IndexedType); 2184 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2185 unsigned IdxSkip = Idxs.size(); 2186 2187 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2188 } 2189 2190 /// Given an aggregrate and an sequence of indices, see if 2191 /// the scalar value indexed is already around as a register, for example if it 2192 /// were inserted directly into the aggregrate. 2193 /// 2194 /// If InsertBefore is not null, this function will duplicate (modified) 2195 /// insertvalues when a part of a nested struct is extracted. 2196 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2197 Instruction *InsertBefore) { 2198 // Nothing to index? Just return V then (this is useful at the end of our 2199 // recursion). 2200 if (idx_range.empty()) 2201 return V; 2202 // We have indices, so V should have an indexable type. 2203 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2204 "Not looking at a struct or array?"); 2205 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2206 "Invalid indices for type?"); 2207 2208 if (Constant *C = dyn_cast<Constant>(V)) { 2209 C = C->getAggregateElement(idx_range[0]); 2210 if (!C) return nullptr; 2211 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2212 } 2213 2214 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2215 // Loop the indices for the insertvalue instruction in parallel with the 2216 // requested indices 2217 const unsigned *req_idx = idx_range.begin(); 2218 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2219 i != e; ++i, ++req_idx) { 2220 if (req_idx == idx_range.end()) { 2221 // We can't handle this without inserting insertvalues 2222 if (!InsertBefore) 2223 return nullptr; 2224 2225 // The requested index identifies a part of a nested aggregate. Handle 2226 // this specially. For example, 2227 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2228 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2229 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2230 // This can be changed into 2231 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2232 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2233 // which allows the unused 0,0 element from the nested struct to be 2234 // removed. 2235 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2236 InsertBefore); 2237 } 2238 2239 // This insert value inserts something else than what we are looking for. 2240 // See if the (aggregrate) value inserted into has the value we are 2241 // looking for, then. 2242 if (*req_idx != *i) 2243 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2244 InsertBefore); 2245 } 2246 // If we end up here, the indices of the insertvalue match with those 2247 // requested (though possibly only partially). Now we recursively look at 2248 // the inserted value, passing any remaining indices. 2249 return FindInsertedValue(I->getInsertedValueOperand(), 2250 makeArrayRef(req_idx, idx_range.end()), 2251 InsertBefore); 2252 } 2253 2254 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2255 // If we're extracting a value from an aggregrate that was extracted from 2256 // something else, we can extract from that something else directly instead. 2257 // However, we will need to chain I's indices with the requested indices. 2258 2259 // Calculate the number of indices required 2260 unsigned size = I->getNumIndices() + idx_range.size(); 2261 // Allocate some space to put the new indices in 2262 SmallVector<unsigned, 5> Idxs; 2263 Idxs.reserve(size); 2264 // Add indices from the extract value instruction 2265 Idxs.append(I->idx_begin(), I->idx_end()); 2266 2267 // Add requested indices 2268 Idxs.append(idx_range.begin(), idx_range.end()); 2269 2270 assert(Idxs.size() == size 2271 && "Number of indices added not correct?"); 2272 2273 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2274 } 2275 // Otherwise, we don't know (such as, extracting from a function return value 2276 // or load instruction) 2277 return nullptr; 2278 } 2279 2280 /// Analyze the specified pointer to see if it can be expressed as a base 2281 /// pointer plus a constant offset. Return the base and offset to the caller. 2282 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2283 const DataLayout *DL) { 2284 // Without DataLayout, conservatively assume 64-bit offsets, which is 2285 // the widest we support. 2286 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 2287 APInt ByteOffset(BitWidth, 0); 2288 while (1) { 2289 if (Ptr->getType()->isVectorTy()) 2290 break; 2291 2292 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2293 if (DL) { 2294 APInt GEPOffset(BitWidth, 0); 2295 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 2296 break; 2297 2298 ByteOffset += GEPOffset; 2299 } 2300 2301 Ptr = GEP->getPointerOperand(); 2302 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2303 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2304 Ptr = cast<Operator>(Ptr)->getOperand(0); 2305 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2306 if (GA->mayBeOverridden()) 2307 break; 2308 Ptr = GA->getAliasee(); 2309 } else { 2310 break; 2311 } 2312 } 2313 Offset = ByteOffset.getSExtValue(); 2314 return Ptr; 2315 } 2316 2317 2318 /// This function computes the length of a null-terminated C string pointed to 2319 /// by V. If successful, it returns true and returns the string in Str. 2320 /// If unsuccessful, it returns false. 2321 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2322 uint64_t Offset, bool TrimAtNul) { 2323 assert(V); 2324 2325 // Look through bitcast instructions and geps. 2326 V = V->stripPointerCasts(); 2327 2328 // If the value is a GEP instructionor constant expression, treat it as an 2329 // offset. 2330 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2331 // Make sure the GEP has exactly three arguments. 2332 if (GEP->getNumOperands() != 3) 2333 return false; 2334 2335 // Make sure the index-ee is a pointer to array of i8. 2336 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2337 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2338 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2339 return false; 2340 2341 // Check to make sure that the first operand of the GEP is an integer and 2342 // has value 0 so that we are sure we're indexing into the initializer. 2343 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2344 if (!FirstIdx || !FirstIdx->isZero()) 2345 return false; 2346 2347 // If the second index isn't a ConstantInt, then this is a variable index 2348 // into the array. If this occurs, we can't say anything meaningful about 2349 // the string. 2350 uint64_t StartIdx = 0; 2351 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2352 StartIdx = CI->getZExtValue(); 2353 else 2354 return false; 2355 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 2356 } 2357 2358 // The GEP instruction, constant or instruction, must reference a global 2359 // variable that is a constant and is initialized. The referenced constant 2360 // initializer is the array that we'll use for optimization. 2361 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2362 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2363 return false; 2364 2365 // Handle the all-zeros case 2366 if (GV->getInitializer()->isNullValue()) { 2367 // This is a degenerate case. The initializer is constant zero so the 2368 // length of the string must be zero. 2369 Str = ""; 2370 return true; 2371 } 2372 2373 // Must be a Constant Array 2374 const ConstantDataArray *Array = 2375 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2376 if (!Array || !Array->isString()) 2377 return false; 2378 2379 // Get the number of elements in the array 2380 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2381 2382 // Start out with the entire array in the StringRef. 2383 Str = Array->getAsString(); 2384 2385 if (Offset > NumElts) 2386 return false; 2387 2388 // Skip over 'offset' bytes. 2389 Str = Str.substr(Offset); 2390 2391 if (TrimAtNul) { 2392 // Trim off the \0 and anything after it. If the array is not nul 2393 // terminated, we just return the whole end of string. The client may know 2394 // some other way that the string is length-bound. 2395 Str = Str.substr(0, Str.find('\0')); 2396 } 2397 return true; 2398 } 2399 2400 // These next two are very similar to the above, but also look through PHI 2401 // nodes. 2402 // TODO: See if we can integrate these two together. 2403 2404 /// If we can compute the length of the string pointed to by 2405 /// the specified pointer, return 'len+1'. If we can't, return 0. 2406 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2407 // Look through noop bitcast instructions. 2408 V = V->stripPointerCasts(); 2409 2410 // If this is a PHI node, there are two cases: either we have already seen it 2411 // or we haven't. 2412 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2413 if (!PHIs.insert(PN).second) 2414 return ~0ULL; // already in the set. 2415 2416 // If it was new, see if all the input strings are the same length. 2417 uint64_t LenSoFar = ~0ULL; 2418 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2419 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 2420 if (Len == 0) return 0; // Unknown length -> unknown. 2421 2422 if (Len == ~0ULL) continue; 2423 2424 if (Len != LenSoFar && LenSoFar != ~0ULL) 2425 return 0; // Disagree -> unknown. 2426 LenSoFar = Len; 2427 } 2428 2429 // Success, all agree. 2430 return LenSoFar; 2431 } 2432 2433 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2434 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2435 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2436 if (Len1 == 0) return 0; 2437 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2438 if (Len2 == 0) return 0; 2439 if (Len1 == ~0ULL) return Len2; 2440 if (Len2 == ~0ULL) return Len1; 2441 if (Len1 != Len2) return 0; 2442 return Len1; 2443 } 2444 2445 // Otherwise, see if we can read the string. 2446 StringRef StrData; 2447 if (!getConstantStringInfo(V, StrData)) 2448 return 0; 2449 2450 return StrData.size()+1; 2451 } 2452 2453 /// If we can compute the length of the string pointed to by 2454 /// the specified pointer, return 'len+1'. If we can't, return 0. 2455 uint64_t llvm::GetStringLength(Value *V) { 2456 if (!V->getType()->isPointerTy()) return 0; 2457 2458 SmallPtrSet<PHINode*, 32> PHIs; 2459 uint64_t Len = GetStringLengthH(V, PHIs); 2460 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2461 // an empty string as a length. 2462 return Len == ~0ULL ? 1 : Len; 2463 } 2464 2465 Value * 2466 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 2467 if (!V->getType()->isPointerTy()) 2468 return V; 2469 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2470 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2471 V = GEP->getPointerOperand(); 2472 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2473 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2474 V = cast<Operator>(V)->getOperand(0); 2475 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2476 if (GA->mayBeOverridden()) 2477 return V; 2478 V = GA->getAliasee(); 2479 } else { 2480 // See if InstructionSimplify knows any relevant tricks. 2481 if (Instruction *I = dyn_cast<Instruction>(V)) 2482 // TODO: Acquire a DominatorTree and AssumptionTracker and use them. 2483 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { 2484 V = Simplified; 2485 continue; 2486 } 2487 2488 return V; 2489 } 2490 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2491 } 2492 return V; 2493 } 2494 2495 void 2496 llvm::GetUnderlyingObjects(Value *V, 2497 SmallVectorImpl<Value *> &Objects, 2498 const DataLayout *TD, 2499 unsigned MaxLookup) { 2500 SmallPtrSet<Value *, 4> Visited; 2501 SmallVector<Value *, 4> Worklist; 2502 Worklist.push_back(V); 2503 do { 2504 Value *P = Worklist.pop_back_val(); 2505 P = GetUnderlyingObject(P, TD, MaxLookup); 2506 2507 if (!Visited.insert(P).second) 2508 continue; 2509 2510 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2511 Worklist.push_back(SI->getTrueValue()); 2512 Worklist.push_back(SI->getFalseValue()); 2513 continue; 2514 } 2515 2516 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2517 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2518 Worklist.push_back(PN->getIncomingValue(i)); 2519 continue; 2520 } 2521 2522 Objects.push_back(P); 2523 } while (!Worklist.empty()); 2524 } 2525 2526 /// Return true if the only users of this pointer are lifetime markers. 2527 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2528 for (const User *U : V->users()) { 2529 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2530 if (!II) return false; 2531 2532 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2533 II->getIntrinsicID() != Intrinsic::lifetime_end) 2534 return false; 2535 } 2536 return true; 2537 } 2538 2539 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 2540 const DataLayout *TD) { 2541 const Operator *Inst = dyn_cast<Operator>(V); 2542 if (!Inst) 2543 return false; 2544 2545 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 2546 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 2547 if (C->canTrap()) 2548 return false; 2549 2550 switch (Inst->getOpcode()) { 2551 default: 2552 return true; 2553 case Instruction::UDiv: 2554 case Instruction::URem: { 2555 // x / y is undefined if y == 0. 2556 const APInt *V; 2557 if (match(Inst->getOperand(1), m_APInt(V))) 2558 return *V != 0; 2559 return false; 2560 } 2561 case Instruction::SDiv: 2562 case Instruction::SRem: { 2563 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 2564 const APInt *X, *Y; 2565 if (match(Inst->getOperand(1), m_APInt(Y))) { 2566 if (*Y != 0) { 2567 if (*Y == -1) { 2568 // The numerator can't be MinSignedValue if the denominator is -1. 2569 if (match(Inst->getOperand(0), m_APInt(X))) 2570 return !Y->isMinSignedValue(); 2571 // The numerator *might* be MinSignedValue. 2572 return false; 2573 } 2574 // The denominator is not 0 or -1, it's safe to proceed. 2575 return true; 2576 } 2577 } 2578 return false; 2579 } 2580 case Instruction::Load: { 2581 const LoadInst *LI = cast<LoadInst>(Inst); 2582 if (!LI->isUnordered() || 2583 // Speculative load may create a race that did not exist in the source. 2584 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2585 return false; 2586 return LI->getPointerOperand()->isDereferenceablePointer(TD); 2587 } 2588 case Instruction::Call: { 2589 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2590 switch (II->getIntrinsicID()) { 2591 // These synthetic intrinsics have no side-effects and just mark 2592 // information about their operands. 2593 // FIXME: There are other no-op synthetic instructions that potentially 2594 // should be considered at least *safe* to speculate... 2595 case Intrinsic::dbg_declare: 2596 case Intrinsic::dbg_value: 2597 return true; 2598 2599 case Intrinsic::bswap: 2600 case Intrinsic::ctlz: 2601 case Intrinsic::ctpop: 2602 case Intrinsic::cttz: 2603 case Intrinsic::objectsize: 2604 case Intrinsic::sadd_with_overflow: 2605 case Intrinsic::smul_with_overflow: 2606 case Intrinsic::ssub_with_overflow: 2607 case Intrinsic::uadd_with_overflow: 2608 case Intrinsic::umul_with_overflow: 2609 case Intrinsic::usub_with_overflow: 2610 return true; 2611 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2612 // errno like libm sqrt would. 2613 case Intrinsic::sqrt: 2614 case Intrinsic::fma: 2615 case Intrinsic::fmuladd: 2616 case Intrinsic::fabs: 2617 case Intrinsic::minnum: 2618 case Intrinsic::maxnum: 2619 return true; 2620 // TODO: some fp intrinsics are marked as having the same error handling 2621 // as libm. They're safe to speculate when they won't error. 2622 // TODO: are convert_{from,to}_fp16 safe? 2623 // TODO: can we list target-specific intrinsics here? 2624 default: break; 2625 } 2626 } 2627 return false; // The called function could have undefined behavior or 2628 // side-effects, even if marked readnone nounwind. 2629 } 2630 case Instruction::VAArg: 2631 case Instruction::Alloca: 2632 case Instruction::Invoke: 2633 case Instruction::PHI: 2634 case Instruction::Store: 2635 case Instruction::Ret: 2636 case Instruction::Br: 2637 case Instruction::IndirectBr: 2638 case Instruction::Switch: 2639 case Instruction::Unreachable: 2640 case Instruction::Fence: 2641 case Instruction::LandingPad: 2642 case Instruction::AtomicRMW: 2643 case Instruction::AtomicCmpXchg: 2644 case Instruction::Resume: 2645 return false; // Misc instructions which have effects 2646 } 2647 } 2648 2649 /// Return true if we know that the specified value is never null. 2650 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2651 // Alloca never returns null, malloc might. 2652 if (isa<AllocaInst>(V)) return true; 2653 2654 // A byval, inalloca, or nonnull argument is never null. 2655 if (const Argument *A = dyn_cast<Argument>(V)) 2656 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 2657 2658 // Global values are not null unless extern weak. 2659 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2660 return !GV->hasExternalWeakLinkage(); 2661 2662 // A Load tagged w/nonnull metadata is never null. 2663 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2664 return LI->getMetadata(LLVMContext::MD_nonnull); 2665 2666 if (ImmutableCallSite CS = V) 2667 if (CS.isReturnNonNull()) 2668 return true; 2669 2670 // operator new never returns null. 2671 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2672 return true; 2673 2674 return false; 2675 } 2676