1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57   if (unsigned BitWidth = Ty->getScalarSizeInBits())
58     return BitWidth;
59 
60   return DL.getPointerTypeSizeInBits(Ty);
61 }
62 
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69   const DataLayout &DL;
70   AssumptionCache *AC;
71   const Instruction *CxtI;
72   const DominatorTree *DT;
73 
74   /// Set of assumptions that should be excluded from further queries.
75   /// This is because of the potential for mutual recursion to cause
76   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77   /// classic case of this is assume(x = y), which will attempt to determine
78   /// bits in x from bits in y, which will attempt to determine bits in y from
79   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82   /// on.
83   std::array<const Value*, MaxDepth> Excluded;
84   unsigned NumExcluded;
85 
86   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87         const DominatorTree *DT)
88       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89 
90   Query(const Query &Q, const Value *NewExcl)
91       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92     Excluded = Q.Excluded;
93     Excluded[NumExcluded++] = NewExcl;
94     assert(NumExcluded <= Excluded.size());
95   }
96 
97   bool isExcluded(const Value *Value) const {
98     if (NumExcluded == 0)
99       return false;
100     auto End = Excluded.begin() + NumExcluded;
101     return std::find(Excluded.begin(), End, Value) != End;
102   }
103 };
104 } // end anonymous namespace
105 
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109   // If we've been provided with a context instruction, then use that (provided
110   // it has been inserted).
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   // If the value is really an already-inserted instruction, then use that.
115   CxtI = dyn_cast<Instruction>(V);
116   if (CxtI && CxtI->getParent())
117     return CxtI;
118 
119   return nullptr;
120 }
121 
122 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
123                              unsigned Depth, const Query &Q);
124 
125 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
126                             const DataLayout &DL, unsigned Depth,
127                             AssumptionCache *AC, const Instruction *CxtI,
128                             const DominatorTree *DT) {
129   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130                      Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132 
133 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
134                                const DataLayout &DL,
135                                AssumptionCache *AC, const Instruction *CxtI,
136                                const DominatorTree *DT) {
137   assert(LHS->getType() == RHS->getType() &&
138          "LHS and RHS should have the same type");
139   assert(LHS->getType()->isIntOrIntVectorTy() &&
140          "LHS and RHS should be integers");
141   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
142   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
143   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
144   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
145   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
146   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
147 }
148 
149 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
150                            unsigned Depth, const Query &Q);
151 
152 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
153                           const DataLayout &DL, unsigned Depth,
154                           AssumptionCache *AC, const Instruction *CxtI,
155                           const DominatorTree *DT) {
156   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
157                    Query(DL, AC, safeCxtI(V, CxtI), DT));
158 }
159 
160 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
161                                    const Query &Q);
162 
163 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
164                                   bool OrZero,
165                                   unsigned Depth, AssumptionCache *AC,
166                                   const Instruction *CxtI,
167                                   const DominatorTree *DT) {
168   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
169                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
170 }
171 
172 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
173 
174 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
175                           AssumptionCache *AC, const Instruction *CxtI,
176                           const DominatorTree *DT) {
177   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
178 }
179 
180 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
181                               unsigned Depth,
182                               AssumptionCache *AC, const Instruction *CxtI,
183                               const DominatorTree *DT) {
184   bool NonNegative, Negative;
185   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
186   return NonNegative;
187 }
188 
189 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
190                            AssumptionCache *AC, const Instruction *CxtI,
191                            const DominatorTree *DT) {
192   if (auto *CI = dyn_cast<ConstantInt>(V))
193     return CI->getValue().isStrictlyPositive();
194 
195   // TODO: We'd doing two recursive queries here.  We should factor this such
196   // that only a single query is needed.
197   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
198     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
199 }
200 
201 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
202                            AssumptionCache *AC, const Instruction *CxtI,
203                            const DominatorTree *DT) {
204   bool NonNegative, Negative;
205   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
206   return Negative;
207 }
208 
209 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
210 
211 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
212                            const DataLayout &DL,
213                            AssumptionCache *AC, const Instruction *CxtI,
214                            const DominatorTree *DT) {
215   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
216                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
217                                          DT));
218 }
219 
220 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
221                               const Query &Q);
222 
223 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
224                              const DataLayout &DL,
225                              unsigned Depth, AssumptionCache *AC,
226                              const Instruction *CxtI, const DominatorTree *DT) {
227   return ::MaskedValueIsZero(V, Mask, Depth,
228                              Query(DL, AC, safeCxtI(V, CxtI), DT));
229 }
230 
231 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
232                                    const Query &Q);
233 
234 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
235                                   unsigned Depth, AssumptionCache *AC,
236                                   const Instruction *CxtI,
237                                   const DominatorTree *DT) {
238   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
239 }
240 
241 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
242                                    bool NSW,
243                                    APInt &KnownZero, APInt &KnownOne,
244                                    APInt &KnownZero2, APInt &KnownOne2,
245                                    unsigned Depth, const Query &Q) {
246   if (!Add) {
247     if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
248       // We know that the top bits of C-X are clear if X contains less bits
249       // than C (i.e. no wrap-around can happen).  For example, 20-X is
250       // positive if we can prove that X is >= 0 and < 16.
251       if (!CLHS->getValue().isNegative()) {
252         unsigned BitWidth = KnownZero.getBitWidth();
253         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
254         // NLZ can't be BitWidth with no sign bit
255         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
256         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
257 
258         // If all of the MaskV bits are known to be zero, then we know the
259         // output top bits are zero, because we now know that the output is
260         // from [0-C].
261         if ((KnownZero2 & MaskV) == MaskV) {
262           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
263           // Top bits known zero.
264           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
265         }
266       }
267     }
268   }
269 
270   unsigned BitWidth = KnownZero.getBitWidth();
271 
272   // If an initial sequence of bits in the result is not needed, the
273   // corresponding bits in the operands are not needed.
274   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
275   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
276   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
277 
278   // Carry in a 1 for a subtract, rather than a 0.
279   APInt CarryIn(BitWidth, 0);
280   if (!Add) {
281     // Sum = LHS + ~RHS + 1
282     std::swap(KnownZero2, KnownOne2);
283     CarryIn.setBit(0);
284   }
285 
286   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
287   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
288 
289   // Compute known bits of the carry.
290   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
291   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
292 
293   // Compute set of known bits (where all three relevant bits are known).
294   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
295   APInt RHSKnown = KnownZero2 | KnownOne2;
296   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
297   APInt Known = LHSKnown & RHSKnown & CarryKnown;
298 
299   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
300          "known bits of sum differ");
301 
302   // Compute known bits of the result.
303   KnownZero = ~PossibleSumOne & Known;
304   KnownOne = PossibleSumOne & Known;
305 
306   // Are we still trying to solve for the sign bit?
307   if (!Known.isNegative()) {
308     if (NSW) {
309       // Adding two non-negative numbers, or subtracting a negative number from
310       // a non-negative one, can't wrap into negative.
311       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
312         KnownZero |= APInt::getSignBit(BitWidth);
313       // Adding two negative numbers, or subtracting a non-negative number from
314       // a negative one, can't wrap into non-negative.
315       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
316         KnownOne |= APInt::getSignBit(BitWidth);
317     }
318   }
319 }
320 
321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
322                                 APInt &KnownZero, APInt &KnownOne,
323                                 APInt &KnownZero2, APInt &KnownOne2,
324                                 unsigned Depth, const Query &Q) {
325   unsigned BitWidth = KnownZero.getBitWidth();
326   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
327   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
328 
329   bool isKnownNegative = false;
330   bool isKnownNonNegative = false;
331   // If the multiplication is known not to overflow, compute the sign bit.
332   if (NSW) {
333     if (Op0 == Op1) {
334       // The product of a number with itself is non-negative.
335       isKnownNonNegative = true;
336     } else {
337       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
338       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
339       bool isKnownNegativeOp1 = KnownOne.isNegative();
340       bool isKnownNegativeOp0 = KnownOne2.isNegative();
341       // The product of two numbers with the same sign is non-negative.
342       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
343         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
344       // The product of a negative number and a non-negative number is either
345       // negative or zero.
346       if (!isKnownNonNegative)
347         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
348                            isKnownNonZero(Op0, Depth, Q)) ||
349                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
350                            isKnownNonZero(Op1, Depth, Q));
351     }
352   }
353 
354   // If low bits are zero in either operand, output low known-0 bits.
355   // Also compute a conservative estimate for high known-0 bits.
356   // More trickiness is possible, but this is sufficient for the
357   // interesting case of alignment computation.
358   KnownOne.clearAllBits();
359   unsigned TrailZ = KnownZero.countTrailingOnes() +
360                     KnownZero2.countTrailingOnes();
361   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
362                              KnownZero2.countLeadingOnes(),
363                              BitWidth) - BitWidth;
364 
365   TrailZ = std::min(TrailZ, BitWidth);
366   LeadZ = std::min(LeadZ, BitWidth);
367   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
368               APInt::getHighBitsSet(BitWidth, LeadZ);
369 
370   // Only make use of no-wrap flags if we failed to compute the sign bit
371   // directly.  This matters if the multiplication always overflows, in
372   // which case we prefer to follow the result of the direct computation,
373   // though as the program is invoking undefined behaviour we can choose
374   // whatever we like here.
375   if (isKnownNonNegative && !KnownOne.isNegative())
376     KnownZero.setBit(BitWidth - 1);
377   else if (isKnownNegative && !KnownZero.isNegative())
378     KnownOne.setBit(BitWidth - 1);
379 }
380 
381 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
382                                              APInt &KnownZero,
383                                              APInt &KnownOne) {
384   unsigned BitWidth = KnownZero.getBitWidth();
385   unsigned NumRanges = Ranges.getNumOperands() / 2;
386   assert(NumRanges >= 1);
387 
388   KnownZero.setAllBits();
389   KnownOne.setAllBits();
390 
391   for (unsigned i = 0; i < NumRanges; ++i) {
392     ConstantInt *Lower =
393         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
394     ConstantInt *Upper =
395         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
396     ConstantRange Range(Lower->getValue(), Upper->getValue());
397 
398     // The first CommonPrefixBits of all values in Range are equal.
399     unsigned CommonPrefixBits =
400         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
401 
402     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
403     KnownOne &= Range.getUnsignedMax() & Mask;
404     KnownZero &= ~Range.getUnsignedMax() & Mask;
405   }
406 }
407 
408 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
409   SmallVector<const Value *, 16> WorkSet(1, I);
410   SmallPtrSet<const Value *, 32> Visited;
411   SmallPtrSet<const Value *, 16> EphValues;
412 
413   // The instruction defining an assumption's condition itself is always
414   // considered ephemeral to that assumption (even if it has other
415   // non-ephemeral users). See r246696's test case for an example.
416   if (is_contained(I->operands(), E))
417     return true;
418 
419   while (!WorkSet.empty()) {
420     const Value *V = WorkSet.pop_back_val();
421     if (!Visited.insert(V).second)
422       continue;
423 
424     // If all uses of this value are ephemeral, then so is this value.
425     if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
426       if (V == E)
427         return true;
428 
429       EphValues.insert(V);
430       if (const User *U = dyn_cast<User>(V))
431         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
432              J != JE; ++J) {
433           if (isSafeToSpeculativelyExecute(*J))
434             WorkSet.push_back(*J);
435         }
436     }
437   }
438 
439   return false;
440 }
441 
442 // Is this an intrinsic that cannot be speculated but also cannot trap?
443 static bool isAssumeLikeIntrinsic(const Instruction *I) {
444   if (const CallInst *CI = dyn_cast<CallInst>(I))
445     if (Function *F = CI->getCalledFunction())
446       switch (F->getIntrinsicID()) {
447       default: break;
448       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
449       case Intrinsic::assume:
450       case Intrinsic::dbg_declare:
451       case Intrinsic::dbg_value:
452       case Intrinsic::invariant_start:
453       case Intrinsic::invariant_end:
454       case Intrinsic::lifetime_start:
455       case Intrinsic::lifetime_end:
456       case Intrinsic::objectsize:
457       case Intrinsic::ptr_annotation:
458       case Intrinsic::var_annotation:
459         return true;
460       }
461 
462   return false;
463 }
464 
465 bool llvm::isValidAssumeForContext(const Instruction *Inv,
466                                    const Instruction *CxtI,
467                                    const DominatorTree *DT) {
468 
469   // There are two restrictions on the use of an assume:
470   //  1. The assume must dominate the context (or the control flow must
471   //     reach the assume whenever it reaches the context).
472   //  2. The context must not be in the assume's set of ephemeral values
473   //     (otherwise we will use the assume to prove that the condition
474   //     feeding the assume is trivially true, thus causing the removal of
475   //     the assume).
476 
477   if (DT) {
478     if (DT->dominates(Inv, CxtI))
479       return true;
480   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
481     // We don't have a DT, but this trivially dominates.
482     return true;
483   }
484 
485   // With or without a DT, the only remaining case we will check is if the
486   // instructions are in the same BB.  Give up if that is not the case.
487   if (Inv->getParent() != CxtI->getParent())
488     return false;
489 
490   // If we have a dom tree, then we now know that the assume doens't dominate
491   // the other instruction.  If we don't have a dom tree then we can check if
492   // the assume is first in the BB.
493   if (!DT) {
494     // Search forward from the assume until we reach the context (or the end
495     // of the block); the common case is that the assume will come first.
496     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
497          IE = Inv->getParent()->end(); I != IE; ++I)
498       if (&*I == CxtI)
499         return true;
500   }
501 
502   // The context comes first, but they're both in the same block. Make sure
503   // there is nothing in between that might interrupt the control flow.
504   for (BasicBlock::const_iterator I =
505          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
506        I != IE; ++I)
507     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
508       return false;
509 
510   return !isEphemeralValueOf(Inv, CxtI);
511 }
512 
513 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
514                                        APInt &KnownOne, unsigned Depth,
515                                        const Query &Q) {
516   // Use of assumptions is context-sensitive. If we don't have a context, we
517   // cannot use them!
518   if (!Q.AC || !Q.CxtI)
519     return;
520 
521   unsigned BitWidth = KnownZero.getBitWidth();
522 
523   for (auto &AssumeVH : Q.AC->assumptions()) {
524     if (!AssumeVH)
525       continue;
526     CallInst *I = cast<CallInst>(AssumeVH);
527     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
528            "Got assumption for the wrong function!");
529     if (Q.isExcluded(I))
530       continue;
531 
532     // Warning: This loop can end up being somewhat performance sensetive.
533     // We're running this loop for once for each value queried resulting in a
534     // runtime of ~O(#assumes * #values).
535 
536     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
537            "must be an assume intrinsic");
538 
539     Value *Arg = I->getArgOperand(0);
540 
541     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
542       assert(BitWidth == 1 && "assume operand is not i1?");
543       KnownZero.clearAllBits();
544       KnownOne.setAllBits();
545       return;
546     }
547 
548     // The remaining tests are all recursive, so bail out if we hit the limit.
549     if (Depth == MaxDepth)
550       continue;
551 
552     Value *A, *B;
553     auto m_V = m_CombineOr(m_Specific(V),
554                            m_CombineOr(m_PtrToInt(m_Specific(V)),
555                            m_BitCast(m_Specific(V))));
556 
557     CmpInst::Predicate Pred;
558     ConstantInt *C;
559     // assume(v = a)
560     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
561         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
562       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
563       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
564       KnownZero |= RHSKnownZero;
565       KnownOne  |= RHSKnownOne;
566     // assume(v & b = a)
567     } else if (match(Arg,
568                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
569                Pred == ICmpInst::ICMP_EQ &&
570                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
571       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
572       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
573       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
574       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
575 
576       // For those bits in the mask that are known to be one, we can propagate
577       // known bits from the RHS to V.
578       KnownZero |= RHSKnownZero & MaskKnownOne;
579       KnownOne  |= RHSKnownOne  & MaskKnownOne;
580     // assume(~(v & b) = a)
581     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
582                                    m_Value(A))) &&
583                Pred == ICmpInst::ICMP_EQ &&
584                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
585       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
586       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
587       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
588       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
589 
590       // For those bits in the mask that are known to be one, we can propagate
591       // inverted known bits from the RHS to V.
592       KnownZero |= RHSKnownOne  & MaskKnownOne;
593       KnownOne  |= RHSKnownZero & MaskKnownOne;
594     // assume(v | b = a)
595     } else if (match(Arg,
596                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
597                Pred == ICmpInst::ICMP_EQ &&
598                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
599       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
600       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
601       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
602       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
603 
604       // For those bits in B that are known to be zero, we can propagate known
605       // bits from the RHS to V.
606       KnownZero |= RHSKnownZero & BKnownZero;
607       KnownOne  |= RHSKnownOne  & BKnownZero;
608     // assume(~(v | b) = a)
609     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
610                                    m_Value(A))) &&
611                Pred == ICmpInst::ICMP_EQ &&
612                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
613       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
614       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
615       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
616       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
617 
618       // For those bits in B that are known to be zero, we can propagate
619       // inverted known bits from the RHS to V.
620       KnownZero |= RHSKnownOne  & BKnownZero;
621       KnownOne  |= RHSKnownZero & BKnownZero;
622     // assume(v ^ b = a)
623     } else if (match(Arg,
624                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
625                Pred == ICmpInst::ICMP_EQ &&
626                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
627       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
628       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
629       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
630       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
631 
632       // For those bits in B that are known to be zero, we can propagate known
633       // bits from the RHS to V. For those bits in B that are known to be one,
634       // we can propagate inverted known bits from the RHS to V.
635       KnownZero |= RHSKnownZero & BKnownZero;
636       KnownOne  |= RHSKnownOne  & BKnownZero;
637       KnownZero |= RHSKnownOne  & BKnownOne;
638       KnownOne  |= RHSKnownZero & BKnownOne;
639     // assume(~(v ^ b) = a)
640     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
641                                    m_Value(A))) &&
642                Pred == ICmpInst::ICMP_EQ &&
643                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
644       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
645       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
646       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
647       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
648 
649       // For those bits in B that are known to be zero, we can propagate
650       // inverted known bits from the RHS to V. For those bits in B that are
651       // known to be one, we can propagate known bits from the RHS to V.
652       KnownZero |= RHSKnownOne  & BKnownZero;
653       KnownOne  |= RHSKnownZero & BKnownZero;
654       KnownZero |= RHSKnownZero & BKnownOne;
655       KnownOne  |= RHSKnownOne  & BKnownOne;
656     // assume(v << c = a)
657     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
658                                    m_Value(A))) &&
659                Pred == ICmpInst::ICMP_EQ &&
660                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
661       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
662       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
663       // For those bits in RHS that are known, we can propagate them to known
664       // bits in V shifted to the right by C.
665       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
666       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
667     // assume(~(v << c) = a)
668     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
669                                    m_Value(A))) &&
670                Pred == ICmpInst::ICMP_EQ &&
671                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
672       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
673       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
674       // For those bits in RHS that are known, we can propagate them inverted
675       // to known bits in V shifted to the right by C.
676       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
677       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
678     // assume(v >> c = a)
679     } else if (match(Arg,
680                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
681                                                 m_AShr(m_V, m_ConstantInt(C))),
682                               m_Value(A))) &&
683                Pred == ICmpInst::ICMP_EQ &&
684                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
685       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
686       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
687       // For those bits in RHS that are known, we can propagate them to known
688       // bits in V shifted to the right by C.
689       KnownZero |= RHSKnownZero << C->getZExtValue();
690       KnownOne  |= RHSKnownOne  << C->getZExtValue();
691     // assume(~(v >> c) = a)
692     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
693                                              m_LShr(m_V, m_ConstantInt(C)),
694                                              m_AShr(m_V, m_ConstantInt(C)))),
695                                    m_Value(A))) &&
696                Pred == ICmpInst::ICMP_EQ &&
697                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
698       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
699       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
700       // For those bits in RHS that are known, we can propagate them inverted
701       // to known bits in V shifted to the right by C.
702       KnownZero |= RHSKnownOne  << C->getZExtValue();
703       KnownOne  |= RHSKnownZero << C->getZExtValue();
704     // assume(v >=_s c) where c is non-negative
705     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
706                Pred == ICmpInst::ICMP_SGE &&
707                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
708       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
709       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
710 
711       if (RHSKnownZero.isNegative()) {
712         // We know that the sign bit is zero.
713         KnownZero |= APInt::getSignBit(BitWidth);
714       }
715     // assume(v >_s c) where c is at least -1.
716     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
717                Pred == ICmpInst::ICMP_SGT &&
718                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
719       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
720       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
721 
722       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
723         // We know that the sign bit is zero.
724         KnownZero |= APInt::getSignBit(BitWidth);
725       }
726     // assume(v <=_s c) where c is negative
727     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
728                Pred == ICmpInst::ICMP_SLE &&
729                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
730       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
731       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
732 
733       if (RHSKnownOne.isNegative()) {
734         // We know that the sign bit is one.
735         KnownOne |= APInt::getSignBit(BitWidth);
736       }
737     // assume(v <_s c) where c is non-positive
738     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
739                Pred == ICmpInst::ICMP_SLT &&
740                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
741       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
742       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
743 
744       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
745         // We know that the sign bit is one.
746         KnownOne |= APInt::getSignBit(BitWidth);
747       }
748     // assume(v <=_u c)
749     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
750                Pred == ICmpInst::ICMP_ULE &&
751                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
752       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
753       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
754 
755       // Whatever high bits in c are zero are known to be zero.
756       KnownZero |=
757         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
758     // assume(v <_u c)
759     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
760                Pred == ICmpInst::ICMP_ULT &&
761                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
762       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
763       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
764 
765       // Whatever high bits in c are zero are known to be zero (if c is a power
766       // of 2, then one more).
767       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
768         KnownZero |=
769           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
770       else
771         KnownZero |=
772           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
773     }
774   }
775 }
776 
777 // Compute known bits from a shift operator, including those with a
778 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
779 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
780 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
781 // functors that, given the known-zero or known-one bits respectively, and a
782 // shift amount, compute the implied known-zero or known-one bits of the shift
783 // operator's result respectively for that shift amount. The results from calling
784 // KZF and KOF are conservatively combined for all permitted shift amounts.
785 static void computeKnownBitsFromShiftOperator(
786     const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
787     APInt &KnownOne2, unsigned Depth, const Query &Q,
788     function_ref<APInt(const APInt &, unsigned)> KZF,
789     function_ref<APInt(const APInt &, unsigned)> KOF) {
790   unsigned BitWidth = KnownZero.getBitWidth();
791 
792   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
793     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
794 
795     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
796     KnownZero = KZF(KnownZero, ShiftAmt);
797     KnownOne  = KOF(KnownOne, ShiftAmt);
798     // If there is conflict between KnownZero and KnownOne, this must be an
799     // overflowing left shift, so the shift result is undefined. Clear KnownZero
800     // and KnownOne bits so that other code could propagate this undef.
801     if ((KnownZero & KnownOne) != 0) {
802       KnownZero.clearAllBits();
803       KnownOne.clearAllBits();
804     }
805 
806     return;
807   }
808 
809   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
810 
811   // Note: We cannot use KnownZero.getLimitedValue() here, because if
812   // BitWidth > 64 and any upper bits are known, we'll end up returning the
813   // limit value (which implies all bits are known).
814   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
815   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
816 
817   // It would be more-clearly correct to use the two temporaries for this
818   // calculation. Reusing the APInts here to prevent unnecessary allocations.
819   KnownZero.clearAllBits();
820   KnownOne.clearAllBits();
821 
822   // If we know the shifter operand is nonzero, we can sometimes infer more
823   // known bits. However this is expensive to compute, so be lazy about it and
824   // only compute it when absolutely necessary.
825   Optional<bool> ShifterOperandIsNonZero;
826 
827   // Early exit if we can't constrain any well-defined shift amount.
828   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
829     ShifterOperandIsNonZero =
830         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
831     if (!*ShifterOperandIsNonZero)
832       return;
833   }
834 
835   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
836 
837   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
838   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
839     // Combine the shifted known input bits only for those shift amounts
840     // compatible with its known constraints.
841     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
842       continue;
843     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
844       continue;
845     // If we know the shifter is nonzero, we may be able to infer more known
846     // bits. This check is sunk down as far as possible to avoid the expensive
847     // call to isKnownNonZero if the cheaper checks above fail.
848     if (ShiftAmt == 0) {
849       if (!ShifterOperandIsNonZero.hasValue())
850         ShifterOperandIsNonZero =
851             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
852       if (*ShifterOperandIsNonZero)
853         continue;
854     }
855 
856     KnownZero &= KZF(KnownZero2, ShiftAmt);
857     KnownOne  &= KOF(KnownOne2, ShiftAmt);
858   }
859 
860   // If there are no compatible shift amounts, then we've proven that the shift
861   // amount must be >= the BitWidth, and the result is undefined. We could
862   // return anything we'd like, but we need to make sure the sets of known bits
863   // stay disjoint (it should be better for some other code to actually
864   // propagate the undef than to pick a value here using known bits).
865   if ((KnownZero & KnownOne) != 0) {
866     KnownZero.clearAllBits();
867     KnownOne.clearAllBits();
868   }
869 }
870 
871 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
872                                          APInt &KnownOne, unsigned Depth,
873                                          const Query &Q) {
874   unsigned BitWidth = KnownZero.getBitWidth();
875 
876   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
877   switch (I->getOpcode()) {
878   default: break;
879   case Instruction::Load:
880     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
881       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
882     break;
883   case Instruction::And: {
884     // If either the LHS or the RHS are Zero, the result is zero.
885     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
886     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
887 
888     // Output known-1 bits are only known if set in both the LHS & RHS.
889     KnownOne &= KnownOne2;
890     // Output known-0 are known to be clear if zero in either the LHS | RHS.
891     KnownZero |= KnownZero2;
892 
893     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
894     // here we handle the more general case of adding any odd number by
895     // matching the form add(x, add(x, y)) where y is odd.
896     // TODO: This could be generalized to clearing any bit set in y where the
897     // following bit is known to be unset in y.
898     Value *Y = nullptr;
899     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
900                                       m_Value(Y))) ||
901         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
902                                       m_Value(Y)))) {
903       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
904       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
905       if (KnownOne3.countTrailingOnes() > 0)
906         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
907     }
908     break;
909   }
910   case Instruction::Or: {
911     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
912     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
913 
914     // Output known-0 bits are only known if clear in both the LHS & RHS.
915     KnownZero &= KnownZero2;
916     // Output known-1 are known to be set if set in either the LHS | RHS.
917     KnownOne |= KnownOne2;
918     break;
919   }
920   case Instruction::Xor: {
921     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
922     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
923 
924     // Output known-0 bits are known if clear or set in both the LHS & RHS.
925     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
926     // Output known-1 are known to be set if set in only one of the LHS, RHS.
927     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
928     KnownZero = KnownZeroOut;
929     break;
930   }
931   case Instruction::Mul: {
932     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
933     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
934                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
935     break;
936   }
937   case Instruction::UDiv: {
938     // For the purposes of computing leading zeros we can conservatively
939     // treat a udiv as a logical right shift by the power of 2 known to
940     // be less than the denominator.
941     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
942     unsigned LeadZ = KnownZero2.countLeadingOnes();
943 
944     KnownOne2.clearAllBits();
945     KnownZero2.clearAllBits();
946     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
947     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
948     if (RHSUnknownLeadingOnes != BitWidth)
949       LeadZ = std::min(BitWidth,
950                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
951 
952     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
953     break;
954   }
955   case Instruction::Select: {
956     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
957     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
958 
959     const Value *LHS;
960     const Value *RHS;
961     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
962     if (SelectPatternResult::isMinOrMax(SPF)) {
963       computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
964       computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
965     } else {
966       computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
967       computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
968     }
969 
970     unsigned MaxHighOnes = 0;
971     unsigned MaxHighZeros = 0;
972     if (SPF == SPF_SMAX) {
973       // If both sides are negative, the result is negative.
974       if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
975         // We can derive a lower bound on the result by taking the max of the
976         // leading one bits.
977         MaxHighOnes =
978             std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
979       // If either side is non-negative, the result is non-negative.
980       else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
981         MaxHighZeros = 1;
982     } else if (SPF == SPF_SMIN) {
983       // If both sides are non-negative, the result is non-negative.
984       if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
985         // We can derive an upper bound on the result by taking the max of the
986         // leading zero bits.
987         MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
988                                 KnownZero2.countLeadingOnes());
989       // If either side is negative, the result is negative.
990       else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
991         MaxHighOnes = 1;
992     } else if (SPF == SPF_UMAX) {
993       // We can derive a lower bound on the result by taking the max of the
994       // leading one bits.
995       MaxHighOnes =
996           std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
997     } else if (SPF == SPF_UMIN) {
998       // We can derive an upper bound on the result by taking the max of the
999       // leading zero bits.
1000       MaxHighZeros =
1001           std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1002     }
1003 
1004     // Only known if known in both the LHS and RHS.
1005     KnownOne &= KnownOne2;
1006     KnownZero &= KnownZero2;
1007     if (MaxHighOnes > 0)
1008       KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1009     if (MaxHighZeros > 0)
1010       KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
1011     break;
1012   }
1013   case Instruction::FPTrunc:
1014   case Instruction::FPExt:
1015   case Instruction::FPToUI:
1016   case Instruction::FPToSI:
1017   case Instruction::SIToFP:
1018   case Instruction::UIToFP:
1019     break; // Can't work with floating point.
1020   case Instruction::PtrToInt:
1021   case Instruction::IntToPtr:
1022   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
1023     // Fall through and handle them the same as zext/trunc.
1024     LLVM_FALLTHROUGH;
1025   case Instruction::ZExt:
1026   case Instruction::Trunc: {
1027     Type *SrcTy = I->getOperand(0)->getType();
1028 
1029     unsigned SrcBitWidth;
1030     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1031     // which fall through here.
1032     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1033 
1034     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1035     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1036     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1037     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1038     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1039     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1040     // Any top bits are known to be zero.
1041     if (BitWidth > SrcBitWidth)
1042       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1043     break;
1044   }
1045   case Instruction::BitCast: {
1046     Type *SrcTy = I->getOperand(0)->getType();
1047     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
1048         // TODO: For now, not handling conversions like:
1049         // (bitcast i64 %x to <2 x i32>)
1050         !I->getType()->isVectorTy()) {
1051       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1052       break;
1053     }
1054     break;
1055   }
1056   case Instruction::SExt: {
1057     // Compute the bits in the result that are not present in the input.
1058     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1059 
1060     KnownZero = KnownZero.trunc(SrcBitWidth);
1061     KnownOne = KnownOne.trunc(SrcBitWidth);
1062     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1063     KnownZero = KnownZero.zext(BitWidth);
1064     KnownOne = KnownOne.zext(BitWidth);
1065 
1066     // If the sign bit of the input is known set or clear, then we know the
1067     // top bits of the result.
1068     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1069       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1070     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1071       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1072     break;
1073   }
1074   case Instruction::Shl: {
1075     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1076     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1077     auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1078       APInt KZResult =
1079           (KnownZero << ShiftAmt) |
1080           APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1081       // If this shift has "nsw" keyword, then the result is either a poison
1082       // value or has the same sign bit as the first operand.
1083       if (NSW && KnownZero.isNegative())
1084         KZResult.setBit(BitWidth - 1);
1085       return KZResult;
1086     };
1087 
1088     auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1089       APInt KOResult = KnownOne << ShiftAmt;
1090       if (NSW && KnownOne.isNegative())
1091         KOResult.setBit(BitWidth - 1);
1092       return KOResult;
1093     };
1094 
1095     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1096                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1097                                       KOF);
1098     break;
1099   }
1100   case Instruction::LShr: {
1101     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1102     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1103       return APIntOps::lshr(KnownZero, ShiftAmt) |
1104              // High bits known zero.
1105              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1106     };
1107 
1108     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1109       return APIntOps::lshr(KnownOne, ShiftAmt);
1110     };
1111 
1112     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1113                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1114                                       KOF);
1115     break;
1116   }
1117   case Instruction::AShr: {
1118     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1119     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1120       return APIntOps::ashr(KnownZero, ShiftAmt);
1121     };
1122 
1123     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1124       return APIntOps::ashr(KnownOne, ShiftAmt);
1125     };
1126 
1127     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1128                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1129                                       KOF);
1130     break;
1131   }
1132   case Instruction::Sub: {
1133     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1134     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1135                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1136                            Q);
1137     break;
1138   }
1139   case Instruction::Add: {
1140     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1141     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1142                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1143                            Q);
1144     break;
1145   }
1146   case Instruction::SRem:
1147     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1148       APInt RA = Rem->getValue().abs();
1149       if (RA.isPowerOf2()) {
1150         APInt LowBits = RA - 1;
1151         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1152                          Q);
1153 
1154         // The low bits of the first operand are unchanged by the srem.
1155         KnownZero = KnownZero2 & LowBits;
1156         KnownOne = KnownOne2 & LowBits;
1157 
1158         // If the first operand is non-negative or has all low bits zero, then
1159         // the upper bits are all zero.
1160         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1161           KnownZero |= ~LowBits;
1162 
1163         // If the first operand is negative and not all low bits are zero, then
1164         // the upper bits are all one.
1165         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1166           KnownOne |= ~LowBits;
1167 
1168         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1169       }
1170     }
1171 
1172     // The sign bit is the LHS's sign bit, except when the result of the
1173     // remainder is zero.
1174     if (KnownZero.isNonNegative()) {
1175       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1176       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1177                        Q);
1178       // If it's known zero, our sign bit is also zero.
1179       if (LHSKnownZero.isNegative())
1180         KnownZero.setBit(BitWidth - 1);
1181     }
1182 
1183     break;
1184   case Instruction::URem: {
1185     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1186       const APInt &RA = Rem->getValue();
1187       if (RA.isPowerOf2()) {
1188         APInt LowBits = (RA - 1);
1189         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1190         KnownZero |= ~LowBits;
1191         KnownOne &= LowBits;
1192         break;
1193       }
1194     }
1195 
1196     // Since the result is less than or equal to either operand, any leading
1197     // zero bits in either operand must also exist in the result.
1198     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1199     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1200 
1201     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1202                                 KnownZero2.countLeadingOnes());
1203     KnownOne.clearAllBits();
1204     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1205     break;
1206   }
1207 
1208   case Instruction::Alloca: {
1209     const AllocaInst *AI = cast<AllocaInst>(I);
1210     unsigned Align = AI->getAlignment();
1211     if (Align == 0)
1212       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1213 
1214     if (Align > 0)
1215       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1216     break;
1217   }
1218   case Instruction::GetElementPtr: {
1219     // Analyze all of the subscripts of this getelementptr instruction
1220     // to determine if we can prove known low zero bits.
1221     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1222     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1223                      Q);
1224     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1225 
1226     gep_type_iterator GTI = gep_type_begin(I);
1227     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1228       Value *Index = I->getOperand(i);
1229       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1230         // Handle struct member offset arithmetic.
1231 
1232         // Handle case when index is vector zeroinitializer
1233         Constant *CIndex = cast<Constant>(Index);
1234         if (CIndex->isZeroValue())
1235           continue;
1236 
1237         if (CIndex->getType()->isVectorTy())
1238           Index = CIndex->getSplatValue();
1239 
1240         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1241         const StructLayout *SL = Q.DL.getStructLayout(STy);
1242         uint64_t Offset = SL->getElementOffset(Idx);
1243         TrailZ = std::min<unsigned>(TrailZ,
1244                                     countTrailingZeros(Offset));
1245       } else {
1246         // Handle array index arithmetic.
1247         Type *IndexedTy = GTI.getIndexedType();
1248         if (!IndexedTy->isSized()) {
1249           TrailZ = 0;
1250           break;
1251         }
1252         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1253         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1254         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1255         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1256         TrailZ = std::min(TrailZ,
1257                           unsigned(countTrailingZeros(TypeSize) +
1258                                    LocalKnownZero.countTrailingOnes()));
1259       }
1260     }
1261 
1262     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1263     break;
1264   }
1265   case Instruction::PHI: {
1266     const PHINode *P = cast<PHINode>(I);
1267     // Handle the case of a simple two-predecessor recurrence PHI.
1268     // There's a lot more that could theoretically be done here, but
1269     // this is sufficient to catch some interesting cases.
1270     if (P->getNumIncomingValues() == 2) {
1271       for (unsigned i = 0; i != 2; ++i) {
1272         Value *L = P->getIncomingValue(i);
1273         Value *R = P->getIncomingValue(!i);
1274         Operator *LU = dyn_cast<Operator>(L);
1275         if (!LU)
1276           continue;
1277         unsigned Opcode = LU->getOpcode();
1278         // Check for operations that have the property that if
1279         // both their operands have low zero bits, the result
1280         // will have low zero bits.
1281         if (Opcode == Instruction::Add ||
1282             Opcode == Instruction::Sub ||
1283             Opcode == Instruction::And ||
1284             Opcode == Instruction::Or ||
1285             Opcode == Instruction::Mul) {
1286           Value *LL = LU->getOperand(0);
1287           Value *LR = LU->getOperand(1);
1288           // Find a recurrence.
1289           if (LL == I)
1290             L = LR;
1291           else if (LR == I)
1292             L = LL;
1293           else
1294             break;
1295           // Ok, we have a PHI of the form L op= R. Check for low
1296           // zero bits.
1297           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1298 
1299           // We need to take the minimum number of known bits
1300           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1301           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1302 
1303           KnownZero = APInt::getLowBitsSet(BitWidth,
1304                                            std::min(KnownZero2.countTrailingOnes(),
1305                                                     KnownZero3.countTrailingOnes()));
1306           break;
1307         }
1308       }
1309     }
1310 
1311     // Unreachable blocks may have zero-operand PHI nodes.
1312     if (P->getNumIncomingValues() == 0)
1313       break;
1314 
1315     // Otherwise take the unions of the known bit sets of the operands,
1316     // taking conservative care to avoid excessive recursion.
1317     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1318       // Skip if every incoming value references to ourself.
1319       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1320         break;
1321 
1322       KnownZero = APInt::getAllOnesValue(BitWidth);
1323       KnownOne = APInt::getAllOnesValue(BitWidth);
1324       for (Value *IncValue : P->incoming_values()) {
1325         // Skip direct self references.
1326         if (IncValue == P) continue;
1327 
1328         KnownZero2 = APInt(BitWidth, 0);
1329         KnownOne2 = APInt(BitWidth, 0);
1330         // Recurse, but cap the recursion to one level, because we don't
1331         // want to waste time spinning around in loops.
1332         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1333         KnownZero &= KnownZero2;
1334         KnownOne &= KnownOne2;
1335         // If all bits have been ruled out, there's no need to check
1336         // more operands.
1337         if (!KnownZero && !KnownOne)
1338           break;
1339       }
1340     }
1341     break;
1342   }
1343   case Instruction::Call:
1344   case Instruction::Invoke:
1345     // If range metadata is attached to this call, set known bits from that,
1346     // and then intersect with known bits based on other properties of the
1347     // function.
1348     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1349       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1350     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1351       computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1352       KnownZero |= KnownZero2;
1353       KnownOne |= KnownOne2;
1354     }
1355     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1356       switch (II->getIntrinsicID()) {
1357       default: break;
1358       case Intrinsic::bswap:
1359         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1360         KnownZero |= KnownZero2.byteSwap();
1361         KnownOne |= KnownOne2.byteSwap();
1362         break;
1363       case Intrinsic::ctlz:
1364       case Intrinsic::cttz: {
1365         unsigned LowBits = Log2_32(BitWidth)+1;
1366         // If this call is undefined for 0, the result will be less than 2^n.
1367         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1368           LowBits -= 1;
1369         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1370         break;
1371       }
1372       case Intrinsic::ctpop: {
1373         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1374         // We can bound the space the count needs.  Also, bits known to be zero
1375         // can't contribute to the population.
1376         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1377         unsigned LeadingZeros =
1378           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1379         assert(LeadingZeros <= BitWidth);
1380         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1381         KnownOne &= ~KnownZero;
1382         // TODO: we could bound KnownOne using the lower bound on the number
1383         // of bits which might be set provided by popcnt KnownOne2.
1384         break;
1385       }
1386       case Intrinsic::x86_sse42_crc32_64_64:
1387         KnownZero |= APInt::getHighBitsSet(64, 32);
1388         break;
1389       }
1390     }
1391     break;
1392   case Instruction::ExtractValue:
1393     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1394       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1395       if (EVI->getNumIndices() != 1) break;
1396       if (EVI->getIndices()[0] == 0) {
1397         switch (II->getIntrinsicID()) {
1398         default: break;
1399         case Intrinsic::uadd_with_overflow:
1400         case Intrinsic::sadd_with_overflow:
1401           computeKnownBitsAddSub(true, II->getArgOperand(0),
1402                                  II->getArgOperand(1), false, KnownZero,
1403                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1404           break;
1405         case Intrinsic::usub_with_overflow:
1406         case Intrinsic::ssub_with_overflow:
1407           computeKnownBitsAddSub(false, II->getArgOperand(0),
1408                                  II->getArgOperand(1), false, KnownZero,
1409                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1410           break;
1411         case Intrinsic::umul_with_overflow:
1412         case Intrinsic::smul_with_overflow:
1413           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1414                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1415                               Q);
1416           break;
1417         }
1418       }
1419     }
1420   }
1421 }
1422 
1423 /// Determine which bits of V are known to be either zero or one and return
1424 /// them in the KnownZero/KnownOne bit sets.
1425 ///
1426 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1427 /// we cannot optimize based on the assumption that it is zero without changing
1428 /// it to be an explicit zero.  If we don't change it to zero, other code could
1429 /// optimized based on the contradictory assumption that it is non-zero.
1430 /// Because instcombine aggressively folds operations with undef args anyway,
1431 /// this won't lose us code quality.
1432 ///
1433 /// This function is defined on values with integer type, values with pointer
1434 /// type, and vectors of integers.  In the case
1435 /// where V is a vector, known zero, and known one values are the
1436 /// same width as the vector element, and the bit is set only if it is true
1437 /// for all of the elements in the vector.
1438 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
1439                       unsigned Depth, const Query &Q) {
1440   assert(V && "No Value?");
1441   assert(Depth <= MaxDepth && "Limit Search Depth");
1442   unsigned BitWidth = KnownZero.getBitWidth();
1443 
1444   assert((V->getType()->isIntOrIntVectorTy() ||
1445           V->getType()->getScalarType()->isPointerTy()) &&
1446          "Not integer or pointer type!");
1447   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1448          (!V->getType()->isIntOrIntVectorTy() ||
1449           V->getType()->getScalarSizeInBits() == BitWidth) &&
1450          KnownZero.getBitWidth() == BitWidth &&
1451          KnownOne.getBitWidth() == BitWidth &&
1452          "V, KnownOne and KnownZero should have same BitWidth");
1453 
1454   const APInt *C;
1455   if (match(V, m_APInt(C))) {
1456     // We know all of the bits for a scalar constant or a splat vector constant!
1457     KnownOne = *C;
1458     KnownZero = ~KnownOne;
1459     return;
1460   }
1461   // Null and aggregate-zero are all-zeros.
1462   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1463     KnownOne.clearAllBits();
1464     KnownZero = APInt::getAllOnesValue(BitWidth);
1465     return;
1466   }
1467   // Handle a constant vector by taking the intersection of the known bits of
1468   // each element.
1469   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1470     // We know that CDS must be a vector of integers. Take the intersection of
1471     // each element.
1472     KnownZero.setAllBits(); KnownOne.setAllBits();
1473     APInt Elt(KnownZero.getBitWidth(), 0);
1474     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1475       Elt = CDS->getElementAsInteger(i);
1476       KnownZero &= ~Elt;
1477       KnownOne &= Elt;
1478     }
1479     return;
1480   }
1481 
1482   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1483     // We know that CV must be a vector of integers. Take the intersection of
1484     // each element.
1485     KnownZero.setAllBits(); KnownOne.setAllBits();
1486     APInt Elt(KnownZero.getBitWidth(), 0);
1487     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1488       Constant *Element = CV->getAggregateElement(i);
1489       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1490       if (!ElementCI) {
1491         KnownZero.clearAllBits();
1492         KnownOne.clearAllBits();
1493         return;
1494       }
1495       Elt = ElementCI->getValue();
1496       KnownZero &= ~Elt;
1497       KnownOne &= Elt;
1498     }
1499     return;
1500   }
1501 
1502   // Start out not knowing anything.
1503   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1504 
1505   // We can't imply anything about undefs.
1506   if (isa<UndefValue>(V))
1507     return;
1508 
1509   // There's no point in looking through other users of ConstantData for
1510   // assumptions.  Confirm that we've handled them all.
1511   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1512 
1513   // Limit search depth.
1514   // All recursive calls that increase depth must come after this.
1515   if (Depth == MaxDepth)
1516     return;
1517 
1518   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1519   // the bits of its aliasee.
1520   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1521     if (!GA->isInterposable())
1522       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1523     return;
1524   }
1525 
1526   if (const Operator *I = dyn_cast<Operator>(V))
1527     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1528 
1529   // Aligned pointers have trailing zeros - refine KnownZero set
1530   if (V->getType()->isPointerTy()) {
1531     unsigned Align = V->getPointerAlignment(Q.DL);
1532     if (Align)
1533       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1534   }
1535 
1536   // computeKnownBitsFromAssume strictly refines KnownZero and
1537   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1538 
1539   // Check whether a nearby assume intrinsic can determine some known bits.
1540   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1541 
1542   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1543 }
1544 
1545 /// Determine whether the sign bit is known to be zero or one.
1546 /// Convenience wrapper around computeKnownBits.
1547 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
1548                     unsigned Depth, const Query &Q) {
1549   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1550   if (!BitWidth) {
1551     KnownZero = false;
1552     KnownOne = false;
1553     return;
1554   }
1555   APInt ZeroBits(BitWidth, 0);
1556   APInt OneBits(BitWidth, 0);
1557   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1558   KnownOne = OneBits[BitWidth - 1];
1559   KnownZero = ZeroBits[BitWidth - 1];
1560 }
1561 
1562 /// Return true if the given value is known to have exactly one
1563 /// bit set when defined. For vectors return true if every element is known to
1564 /// be a power of two when defined. Supports values with integer or pointer
1565 /// types and vectors of integers.
1566 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1567                             const Query &Q) {
1568   if (const Constant *C = dyn_cast<Constant>(V)) {
1569     if (C->isNullValue())
1570       return OrZero;
1571 
1572     const APInt *ConstIntOrConstSplatInt;
1573     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1574       return ConstIntOrConstSplatInt->isPowerOf2();
1575   }
1576 
1577   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1578   // it is shifted off the end then the result is undefined.
1579   if (match(V, m_Shl(m_One(), m_Value())))
1580     return true;
1581 
1582   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1583   // bottom.  If it is shifted off the bottom then the result is undefined.
1584   if (match(V, m_LShr(m_SignBit(), m_Value())))
1585     return true;
1586 
1587   // The remaining tests are all recursive, so bail out if we hit the limit.
1588   if (Depth++ == MaxDepth)
1589     return false;
1590 
1591   Value *X = nullptr, *Y = nullptr;
1592   // A shift left or a logical shift right of a power of two is a power of two
1593   // or zero.
1594   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1595                  match(V, m_LShr(m_Value(X), m_Value()))))
1596     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1597 
1598   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1599     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1600 
1601   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1602     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1603            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1604 
1605   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1606     // A power of two and'd with anything is a power of two or zero.
1607     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1608         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1609       return true;
1610     // X & (-X) is always a power of two or zero.
1611     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1612       return true;
1613     return false;
1614   }
1615 
1616   // Adding a power-of-two or zero to the same power-of-two or zero yields
1617   // either the original power-of-two, a larger power-of-two or zero.
1618   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1619     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1620     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1621       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1622           match(X, m_And(m_Value(), m_Specific(Y))))
1623         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1624           return true;
1625       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1626           match(Y, m_And(m_Value(), m_Specific(X))))
1627         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1628           return true;
1629 
1630       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1631       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1632       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1633 
1634       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1635       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1636       // If i8 V is a power of two or zero:
1637       //  ZeroBits: 1 1 1 0 1 1 1 1
1638       // ~ZeroBits: 0 0 0 1 0 0 0 0
1639       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1640         // If OrZero isn't set, we cannot give back a zero result.
1641         // Make sure either the LHS or RHS has a bit set.
1642         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1643           return true;
1644     }
1645   }
1646 
1647   // An exact divide or right shift can only shift off zero bits, so the result
1648   // is a power of two only if the first operand is a power of two and not
1649   // copying a sign bit (sdiv int_min, 2).
1650   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1651       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1652     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1653                                   Depth, Q);
1654   }
1655 
1656   return false;
1657 }
1658 
1659 /// \brief Test whether a GEP's result is known to be non-null.
1660 ///
1661 /// Uses properties inherent in a GEP to try to determine whether it is known
1662 /// to be non-null.
1663 ///
1664 /// Currently this routine does not support vector GEPs.
1665 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1666                               const Query &Q) {
1667   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1668     return false;
1669 
1670   // FIXME: Support vector-GEPs.
1671   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1672 
1673   // If the base pointer is non-null, we cannot walk to a null address with an
1674   // inbounds GEP in address space zero.
1675   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1676     return true;
1677 
1678   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1679   // If so, then the GEP cannot produce a null pointer, as doing so would
1680   // inherently violate the inbounds contract within address space zero.
1681   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1682        GTI != GTE; ++GTI) {
1683     // Struct types are easy -- they must always be indexed by a constant.
1684     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1685       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1686       unsigned ElementIdx = OpC->getZExtValue();
1687       const StructLayout *SL = Q.DL.getStructLayout(STy);
1688       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1689       if (ElementOffset > 0)
1690         return true;
1691       continue;
1692     }
1693 
1694     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1695     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1696       continue;
1697 
1698     // Fast path the constant operand case both for efficiency and so we don't
1699     // increment Depth when just zipping down an all-constant GEP.
1700     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1701       if (!OpC->isZero())
1702         return true;
1703       continue;
1704     }
1705 
1706     // We post-increment Depth here because while isKnownNonZero increments it
1707     // as well, when we pop back up that increment won't persist. We don't want
1708     // to recurse 10k times just because we have 10k GEP operands. We don't
1709     // bail completely out because we want to handle constant GEPs regardless
1710     // of depth.
1711     if (Depth++ >= MaxDepth)
1712       continue;
1713 
1714     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1715       return true;
1716   }
1717 
1718   return false;
1719 }
1720 
1721 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1722 /// ensure that the value it's attached to is never Value?  'RangeType' is
1723 /// is the type of the value described by the range.
1724 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1725   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1726   assert(NumRanges >= 1);
1727   for (unsigned i = 0; i < NumRanges; ++i) {
1728     ConstantInt *Lower =
1729         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1730     ConstantInt *Upper =
1731         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1732     ConstantRange Range(Lower->getValue(), Upper->getValue());
1733     if (Range.contains(Value))
1734       return false;
1735   }
1736   return true;
1737 }
1738 
1739 /// Return true if the given value is known to be non-zero when defined.
1740 /// For vectors return true if every element is known to be non-zero when
1741 /// defined. Supports values with integer or pointer type and vectors of
1742 /// integers.
1743 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1744   if (auto *C = dyn_cast<Constant>(V)) {
1745     if (C->isNullValue())
1746       return false;
1747     if (isa<ConstantInt>(C))
1748       // Must be non-zero due to null test above.
1749       return true;
1750 
1751     // For constant vectors, check that all elements are undefined or known
1752     // non-zero to determine that the whole vector is known non-zero.
1753     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1754       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1755         Constant *Elt = C->getAggregateElement(i);
1756         if (!Elt || Elt->isNullValue())
1757           return false;
1758         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1759           return false;
1760       }
1761       return true;
1762     }
1763 
1764     return false;
1765   }
1766 
1767   if (auto *I = dyn_cast<Instruction>(V)) {
1768     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1769       // If the possible ranges don't contain zero, then the value is
1770       // definitely non-zero.
1771       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1772         const APInt ZeroValue(Ty->getBitWidth(), 0);
1773         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1774           return true;
1775       }
1776     }
1777   }
1778 
1779   // The remaining tests are all recursive, so bail out if we hit the limit.
1780   if (Depth++ >= MaxDepth)
1781     return false;
1782 
1783   // Check for pointer simplifications.
1784   if (V->getType()->isPointerTy()) {
1785     if (isKnownNonNull(V))
1786       return true;
1787     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1788       if (isGEPKnownNonNull(GEP, Depth, Q))
1789         return true;
1790   }
1791 
1792   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1793 
1794   // X | Y != 0 if X != 0 or Y != 0.
1795   Value *X = nullptr, *Y = nullptr;
1796   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1797     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1798 
1799   // ext X != 0 if X != 0.
1800   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1801     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1802 
1803   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1804   // if the lowest bit is shifted off the end.
1805   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1806     // shl nuw can't remove any non-zero bits.
1807     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1808     if (BO->hasNoUnsignedWrap())
1809       return isKnownNonZero(X, Depth, Q);
1810 
1811     APInt KnownZero(BitWidth, 0);
1812     APInt KnownOne(BitWidth, 0);
1813     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1814     if (KnownOne[0])
1815       return true;
1816   }
1817   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1818   // defined if the sign bit is shifted off the end.
1819   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1820     // shr exact can only shift out zero bits.
1821     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1822     if (BO->isExact())
1823       return isKnownNonZero(X, Depth, Q);
1824 
1825     bool XKnownNonNegative, XKnownNegative;
1826     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1827     if (XKnownNegative)
1828       return true;
1829 
1830     // If the shifter operand is a constant, and all of the bits shifted
1831     // out are known to be zero, and X is known non-zero then at least one
1832     // non-zero bit must remain.
1833     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1834       APInt KnownZero(BitWidth, 0);
1835       APInt KnownOne(BitWidth, 0);
1836       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1837 
1838       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1839       // Is there a known one in the portion not shifted out?
1840       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1841         return true;
1842       // Are all the bits to be shifted out known zero?
1843       if (KnownZero.countTrailingOnes() >= ShiftVal)
1844         return isKnownNonZero(X, Depth, Q);
1845     }
1846   }
1847   // div exact can only produce a zero if the dividend is zero.
1848   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1849     return isKnownNonZero(X, Depth, Q);
1850   }
1851   // X + Y.
1852   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1853     bool XKnownNonNegative, XKnownNegative;
1854     bool YKnownNonNegative, YKnownNegative;
1855     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1856     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1857 
1858     // If X and Y are both non-negative (as signed values) then their sum is not
1859     // zero unless both X and Y are zero.
1860     if (XKnownNonNegative && YKnownNonNegative)
1861       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1862         return true;
1863 
1864     // If X and Y are both negative (as signed values) then their sum is not
1865     // zero unless both X and Y equal INT_MIN.
1866     if (BitWidth && XKnownNegative && YKnownNegative) {
1867       APInt KnownZero(BitWidth, 0);
1868       APInt KnownOne(BitWidth, 0);
1869       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1870       // The sign bit of X is set.  If some other bit is set then X is not equal
1871       // to INT_MIN.
1872       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1873       if ((KnownOne & Mask) != 0)
1874         return true;
1875       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1876       // to INT_MIN.
1877       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1878       if ((KnownOne & Mask) != 0)
1879         return true;
1880     }
1881 
1882     // The sum of a non-negative number and a power of two is not zero.
1883     if (XKnownNonNegative &&
1884         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1885       return true;
1886     if (YKnownNonNegative &&
1887         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1888       return true;
1889   }
1890   // X * Y.
1891   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1892     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1893     // If X and Y are non-zero then so is X * Y as long as the multiplication
1894     // does not overflow.
1895     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1896         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1897       return true;
1898   }
1899   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1900   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
1901     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1902         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1903       return true;
1904   }
1905   // PHI
1906   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
1907     // Try and detect a recurrence that monotonically increases from a
1908     // starting value, as these are common as induction variables.
1909     if (PN->getNumIncomingValues() == 2) {
1910       Value *Start = PN->getIncomingValue(0);
1911       Value *Induction = PN->getIncomingValue(1);
1912       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1913         std::swap(Start, Induction);
1914       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1915         if (!C->isZero() && !C->isNegative()) {
1916           ConstantInt *X;
1917           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1918                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1919               !X->isNegative())
1920             return true;
1921         }
1922       }
1923     }
1924     // Check if all incoming values are non-zero constant.
1925     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1926       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1927     });
1928     if (AllNonZeroConstants)
1929       return true;
1930   }
1931 
1932   if (!BitWidth) return false;
1933   APInt KnownZero(BitWidth, 0);
1934   APInt KnownOne(BitWidth, 0);
1935   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1936   return KnownOne != 0;
1937 }
1938 
1939 /// Return true if V2 == V1 + X, where X is known non-zero.
1940 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1941   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1942   if (!BO || BO->getOpcode() != Instruction::Add)
1943     return false;
1944   Value *Op = nullptr;
1945   if (V2 == BO->getOperand(0))
1946     Op = BO->getOperand(1);
1947   else if (V2 == BO->getOperand(1))
1948     Op = BO->getOperand(0);
1949   else
1950     return false;
1951   return isKnownNonZero(Op, 0, Q);
1952 }
1953 
1954 /// Return true if it is known that V1 != V2.
1955 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
1956   if (V1->getType()->isVectorTy() || V1 == V2)
1957     return false;
1958   if (V1->getType() != V2->getType())
1959     // We can't look through casts yet.
1960     return false;
1961   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1962     return true;
1963 
1964   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1965     // Are any known bits in V1 contradictory to known bits in V2? If V1
1966     // has a known zero where V2 has a known one, they must not be equal.
1967     auto BitWidth = Ty->getBitWidth();
1968     APInt KnownZero1(BitWidth, 0);
1969     APInt KnownOne1(BitWidth, 0);
1970     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1971     APInt KnownZero2(BitWidth, 0);
1972     APInt KnownOne2(BitWidth, 0);
1973     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1974 
1975     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1976     if (OppositeBits.getBoolValue())
1977       return true;
1978   }
1979   return false;
1980 }
1981 
1982 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1983 /// simplify operations downstream. Mask is known to be zero for bits that V
1984 /// cannot have.
1985 ///
1986 /// This function is defined on values with integer type, values with pointer
1987 /// type, and vectors of integers.  In the case
1988 /// where V is a vector, the mask, known zero, and known one values are the
1989 /// same width as the vector element, and the bit is set only if it is true
1990 /// for all of the elements in the vector.
1991 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
1992                        const Query &Q) {
1993   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1994   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1995   return (KnownZero & Mask) == Mask;
1996 }
1997 
1998 /// For vector constants, loop over the elements and find the constant with the
1999 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2000 /// or if any element was not analyzed; otherwise, return the count for the
2001 /// element with the minimum number of sign bits.
2002 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2003                                                  unsigned TyBits) {
2004   const auto *CV = dyn_cast<Constant>(V);
2005   if (!CV || !CV->getType()->isVectorTy())
2006     return 0;
2007 
2008   unsigned MinSignBits = TyBits;
2009   unsigned NumElts = CV->getType()->getVectorNumElements();
2010   for (unsigned i = 0; i != NumElts; ++i) {
2011     // If we find a non-ConstantInt, bail out.
2012     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2013     if (!Elt)
2014       return 0;
2015 
2016     // If the sign bit is 1, flip the bits, so we always count leading zeros.
2017     APInt EltVal = Elt->getValue();
2018     if (EltVal.isNegative())
2019       EltVal = ~EltVal;
2020     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2021   }
2022 
2023   return MinSignBits;
2024 }
2025 
2026 /// Return the number of times the sign bit of the register is replicated into
2027 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2028 /// (itself), but other cases can give us information. For example, immediately
2029 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2030 /// other, so we return 3. For vectors, return the number of sign bits for the
2031 /// vector element with the mininum number of known sign bits.
2032 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
2033   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2034   unsigned Tmp, Tmp2;
2035   unsigned FirstAnswer = 1;
2036 
2037   // Note that ConstantInt is handled by the general computeKnownBits case
2038   // below.
2039 
2040   if (Depth == 6)
2041     return 1;  // Limit search depth.
2042 
2043   const Operator *U = dyn_cast<Operator>(V);
2044   switch (Operator::getOpcode(V)) {
2045   default: break;
2046   case Instruction::SExt:
2047     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2048     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2049 
2050   case Instruction::SDiv: {
2051     const APInt *Denominator;
2052     // sdiv X, C -> adds log(C) sign bits.
2053     if (match(U->getOperand(1), m_APInt(Denominator))) {
2054 
2055       // Ignore non-positive denominator.
2056       if (!Denominator->isStrictlyPositive())
2057         break;
2058 
2059       // Calculate the incoming numerator bits.
2060       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2061 
2062       // Add floor(log(C)) bits to the numerator bits.
2063       return std::min(TyBits, NumBits + Denominator->logBase2());
2064     }
2065     break;
2066   }
2067 
2068   case Instruction::SRem: {
2069     const APInt *Denominator;
2070     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2071     // positive constant.  This let us put a lower bound on the number of sign
2072     // bits.
2073     if (match(U->getOperand(1), m_APInt(Denominator))) {
2074 
2075       // Ignore non-positive denominator.
2076       if (!Denominator->isStrictlyPositive())
2077         break;
2078 
2079       // Calculate the incoming numerator bits. SRem by a positive constant
2080       // can't lower the number of sign bits.
2081       unsigned NumrBits =
2082           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2083 
2084       // Calculate the leading sign bit constraints by examining the
2085       // denominator.  Given that the denominator is positive, there are two
2086       // cases:
2087       //
2088       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2089       //     (1 << ceilLogBase2(C)).
2090       //
2091       //  2. the numerator is negative.  Then the result range is (-C,0] and
2092       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2093       //
2094       // Thus a lower bound on the number of sign bits is `TyBits -
2095       // ceilLogBase2(C)`.
2096 
2097       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2098       return std::max(NumrBits, ResBits);
2099     }
2100     break;
2101   }
2102 
2103   case Instruction::AShr: {
2104     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2105     // ashr X, C   -> adds C sign bits.  Vectors too.
2106     const APInt *ShAmt;
2107     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2108       Tmp += ShAmt->getZExtValue();
2109       if (Tmp > TyBits) Tmp = TyBits;
2110     }
2111     return Tmp;
2112   }
2113   case Instruction::Shl: {
2114     const APInt *ShAmt;
2115     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2116       // shl destroys sign bits.
2117       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2118       Tmp2 = ShAmt->getZExtValue();
2119       if (Tmp2 >= TyBits ||      // Bad shift.
2120           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2121       return Tmp - Tmp2;
2122     }
2123     break;
2124   }
2125   case Instruction::And:
2126   case Instruction::Or:
2127   case Instruction::Xor:    // NOT is handled here.
2128     // Logical binary ops preserve the number of sign bits at the worst.
2129     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2130     if (Tmp != 1) {
2131       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2132       FirstAnswer = std::min(Tmp, Tmp2);
2133       // We computed what we know about the sign bits as our first
2134       // answer. Now proceed to the generic code that uses
2135       // computeKnownBits, and pick whichever answer is better.
2136     }
2137     break;
2138 
2139   case Instruction::Select:
2140     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2141     if (Tmp == 1) return 1;  // Early out.
2142     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2143     return std::min(Tmp, Tmp2);
2144 
2145   case Instruction::Add:
2146     // Add can have at most one carry bit.  Thus we know that the output
2147     // is, at worst, one more bit than the inputs.
2148     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2149     if (Tmp == 1) return 1;  // Early out.
2150 
2151     // Special case decrementing a value (ADD X, -1):
2152     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2153       if (CRHS->isAllOnesValue()) {
2154         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2155         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2156 
2157         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2158         // sign bits set.
2159         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2160           return TyBits;
2161 
2162         // If we are subtracting one from a positive number, there is no carry
2163         // out of the result.
2164         if (KnownZero.isNegative())
2165           return Tmp;
2166       }
2167 
2168     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2169     if (Tmp2 == 1) return 1;
2170     return std::min(Tmp, Tmp2)-1;
2171 
2172   case Instruction::Sub:
2173     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2174     if (Tmp2 == 1) return 1;
2175 
2176     // Handle NEG.
2177     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2178       if (CLHS->isNullValue()) {
2179         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2180         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2181         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2182         // sign bits set.
2183         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2184           return TyBits;
2185 
2186         // If the input is known to be positive (the sign bit is known clear),
2187         // the output of the NEG has the same number of sign bits as the input.
2188         if (KnownZero.isNegative())
2189           return Tmp2;
2190 
2191         // Otherwise, we treat this like a SUB.
2192       }
2193 
2194     // Sub can have at most one carry bit.  Thus we know that the output
2195     // is, at worst, one more bit than the inputs.
2196     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2197     if (Tmp == 1) return 1;  // Early out.
2198     return std::min(Tmp, Tmp2)-1;
2199 
2200   case Instruction::PHI: {
2201     const PHINode *PN = cast<PHINode>(U);
2202     unsigned NumIncomingValues = PN->getNumIncomingValues();
2203     // Don't analyze large in-degree PHIs.
2204     if (NumIncomingValues > 4) break;
2205     // Unreachable blocks may have zero-operand PHI nodes.
2206     if (NumIncomingValues == 0) break;
2207 
2208     // Take the minimum of all incoming values.  This can't infinitely loop
2209     // because of our depth threshold.
2210     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2211     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2212       if (Tmp == 1) return Tmp;
2213       Tmp = std::min(
2214           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2215     }
2216     return Tmp;
2217   }
2218 
2219   case Instruction::Trunc:
2220     // FIXME: it's tricky to do anything useful for this, but it is an important
2221     // case for targets like X86.
2222     break;
2223   }
2224 
2225   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2226   // use this information.
2227 
2228   // If we can examine all elements of a vector constant successfully, we're
2229   // done (we can't do any better than that). If not, keep trying.
2230   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2231     return VecSignBits;
2232 
2233   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2234   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2235 
2236   // If we know that the sign bit is either zero or one, determine the number of
2237   // identical bits in the top of the input value.
2238   if (KnownZero.isNegative())
2239     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2240 
2241   if (KnownOne.isNegative())
2242     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2243 
2244   // computeKnownBits gave us no extra information about the top bits.
2245   return FirstAnswer;
2246 }
2247 
2248 /// This function computes the integer multiple of Base that equals V.
2249 /// If successful, it returns true and returns the multiple in
2250 /// Multiple. If unsuccessful, it returns false. It looks
2251 /// through SExt instructions only if LookThroughSExt is true.
2252 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2253                            bool LookThroughSExt, unsigned Depth) {
2254   const unsigned MaxDepth = 6;
2255 
2256   assert(V && "No Value?");
2257   assert(Depth <= MaxDepth && "Limit Search Depth");
2258   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2259 
2260   Type *T = V->getType();
2261 
2262   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2263 
2264   if (Base == 0)
2265     return false;
2266 
2267   if (Base == 1) {
2268     Multiple = V;
2269     return true;
2270   }
2271 
2272   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2273   Constant *BaseVal = ConstantInt::get(T, Base);
2274   if (CO && CO == BaseVal) {
2275     // Multiple is 1.
2276     Multiple = ConstantInt::get(T, 1);
2277     return true;
2278   }
2279 
2280   if (CI && CI->getZExtValue() % Base == 0) {
2281     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2282     return true;
2283   }
2284 
2285   if (Depth == MaxDepth) return false;  // Limit search depth.
2286 
2287   Operator *I = dyn_cast<Operator>(V);
2288   if (!I) return false;
2289 
2290   switch (I->getOpcode()) {
2291   default: break;
2292   case Instruction::SExt:
2293     if (!LookThroughSExt) return false;
2294     // otherwise fall through to ZExt
2295   case Instruction::ZExt:
2296     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2297                            LookThroughSExt, Depth+1);
2298   case Instruction::Shl:
2299   case Instruction::Mul: {
2300     Value *Op0 = I->getOperand(0);
2301     Value *Op1 = I->getOperand(1);
2302 
2303     if (I->getOpcode() == Instruction::Shl) {
2304       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2305       if (!Op1CI) return false;
2306       // Turn Op0 << Op1 into Op0 * 2^Op1
2307       APInt Op1Int = Op1CI->getValue();
2308       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2309       APInt API(Op1Int.getBitWidth(), 0);
2310       API.setBit(BitToSet);
2311       Op1 = ConstantInt::get(V->getContext(), API);
2312     }
2313 
2314     Value *Mul0 = nullptr;
2315     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2316       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2317         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2318           if (Op1C->getType()->getPrimitiveSizeInBits() <
2319               MulC->getType()->getPrimitiveSizeInBits())
2320             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2321           if (Op1C->getType()->getPrimitiveSizeInBits() >
2322               MulC->getType()->getPrimitiveSizeInBits())
2323             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2324 
2325           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2326           Multiple = ConstantExpr::getMul(MulC, Op1C);
2327           return true;
2328         }
2329 
2330       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2331         if (Mul0CI->getValue() == 1) {
2332           // V == Base * Op1, so return Op1
2333           Multiple = Op1;
2334           return true;
2335         }
2336     }
2337 
2338     Value *Mul1 = nullptr;
2339     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2340       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2341         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2342           if (Op0C->getType()->getPrimitiveSizeInBits() <
2343               MulC->getType()->getPrimitiveSizeInBits())
2344             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2345           if (Op0C->getType()->getPrimitiveSizeInBits() >
2346               MulC->getType()->getPrimitiveSizeInBits())
2347             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2348 
2349           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2350           Multiple = ConstantExpr::getMul(MulC, Op0C);
2351           return true;
2352         }
2353 
2354       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2355         if (Mul1CI->getValue() == 1) {
2356           // V == Base * Op0, so return Op0
2357           Multiple = Op0;
2358           return true;
2359         }
2360     }
2361   }
2362   }
2363 
2364   // We could not determine if V is a multiple of Base.
2365   return false;
2366 }
2367 
2368 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2369                                             const TargetLibraryInfo *TLI) {
2370   const Function *F = ICS.getCalledFunction();
2371   if (!F)
2372     return Intrinsic::not_intrinsic;
2373 
2374   if (F->isIntrinsic())
2375     return F->getIntrinsicID();
2376 
2377   if (!TLI)
2378     return Intrinsic::not_intrinsic;
2379 
2380   LibFunc::Func Func;
2381   // We're going to make assumptions on the semantics of the functions, check
2382   // that the target knows that it's available in this environment and it does
2383   // not have local linkage.
2384   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2385     return Intrinsic::not_intrinsic;
2386 
2387   if (!ICS.onlyReadsMemory())
2388     return Intrinsic::not_intrinsic;
2389 
2390   // Otherwise check if we have a call to a function that can be turned into a
2391   // vector intrinsic.
2392   switch (Func) {
2393   default:
2394     break;
2395   case LibFunc::sin:
2396   case LibFunc::sinf:
2397   case LibFunc::sinl:
2398     return Intrinsic::sin;
2399   case LibFunc::cos:
2400   case LibFunc::cosf:
2401   case LibFunc::cosl:
2402     return Intrinsic::cos;
2403   case LibFunc::exp:
2404   case LibFunc::expf:
2405   case LibFunc::expl:
2406     return Intrinsic::exp;
2407   case LibFunc::exp2:
2408   case LibFunc::exp2f:
2409   case LibFunc::exp2l:
2410     return Intrinsic::exp2;
2411   case LibFunc::log:
2412   case LibFunc::logf:
2413   case LibFunc::logl:
2414     return Intrinsic::log;
2415   case LibFunc::log10:
2416   case LibFunc::log10f:
2417   case LibFunc::log10l:
2418     return Intrinsic::log10;
2419   case LibFunc::log2:
2420   case LibFunc::log2f:
2421   case LibFunc::log2l:
2422     return Intrinsic::log2;
2423   case LibFunc::fabs:
2424   case LibFunc::fabsf:
2425   case LibFunc::fabsl:
2426     return Intrinsic::fabs;
2427   case LibFunc::fmin:
2428   case LibFunc::fminf:
2429   case LibFunc::fminl:
2430     return Intrinsic::minnum;
2431   case LibFunc::fmax:
2432   case LibFunc::fmaxf:
2433   case LibFunc::fmaxl:
2434     return Intrinsic::maxnum;
2435   case LibFunc::copysign:
2436   case LibFunc::copysignf:
2437   case LibFunc::copysignl:
2438     return Intrinsic::copysign;
2439   case LibFunc::floor:
2440   case LibFunc::floorf:
2441   case LibFunc::floorl:
2442     return Intrinsic::floor;
2443   case LibFunc::ceil:
2444   case LibFunc::ceilf:
2445   case LibFunc::ceill:
2446     return Intrinsic::ceil;
2447   case LibFunc::trunc:
2448   case LibFunc::truncf:
2449   case LibFunc::truncl:
2450     return Intrinsic::trunc;
2451   case LibFunc::rint:
2452   case LibFunc::rintf:
2453   case LibFunc::rintl:
2454     return Intrinsic::rint;
2455   case LibFunc::nearbyint:
2456   case LibFunc::nearbyintf:
2457   case LibFunc::nearbyintl:
2458     return Intrinsic::nearbyint;
2459   case LibFunc::round:
2460   case LibFunc::roundf:
2461   case LibFunc::roundl:
2462     return Intrinsic::round;
2463   case LibFunc::pow:
2464   case LibFunc::powf:
2465   case LibFunc::powl:
2466     return Intrinsic::pow;
2467   case LibFunc::sqrt:
2468   case LibFunc::sqrtf:
2469   case LibFunc::sqrtl:
2470     if (ICS->hasNoNaNs())
2471       return Intrinsic::sqrt;
2472     return Intrinsic::not_intrinsic;
2473   }
2474 
2475   return Intrinsic::not_intrinsic;
2476 }
2477 
2478 /// Return true if we can prove that the specified FP value is never equal to
2479 /// -0.0.
2480 ///
2481 /// NOTE: this function will need to be revisited when we support non-default
2482 /// rounding modes!
2483 ///
2484 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2485                                 unsigned Depth) {
2486   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2487     return !CFP->getValueAPF().isNegZero();
2488 
2489   // FIXME: Magic number! At the least, this should be given a name because it's
2490   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2491   // expose it as a parameter, so it can be used for testing / experimenting.
2492   if (Depth == 6)
2493     return false;  // Limit search depth.
2494 
2495   const Operator *I = dyn_cast<Operator>(V);
2496   if (!I) return false;
2497 
2498   // Check if the nsz fast-math flag is set
2499   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2500     if (FPO->hasNoSignedZeros())
2501       return true;
2502 
2503   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2504   if (I->getOpcode() == Instruction::FAdd)
2505     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2506       if (CFP->isNullValue())
2507         return true;
2508 
2509   // sitofp and uitofp turn into +0.0 for zero.
2510   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2511     return true;
2512 
2513   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2514     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2515     switch (IID) {
2516     default:
2517       break;
2518     // sqrt(-0.0) = -0.0, no other negative results are possible.
2519     case Intrinsic::sqrt:
2520       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2521     // fabs(x) != -0.0
2522     case Intrinsic::fabs:
2523       return true;
2524     }
2525   }
2526 
2527   return false;
2528 }
2529 
2530 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2531                                        const TargetLibraryInfo *TLI,
2532                                        unsigned Depth) {
2533   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2534     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2535 
2536   // FIXME: Magic number! At the least, this should be given a name because it's
2537   // used similarly in CannotBeNegativeZero(). A better fix may be to
2538   // expose it as a parameter, so it can be used for testing / experimenting.
2539   if (Depth == 6)
2540     return false;  // Limit search depth.
2541 
2542   const Operator *I = dyn_cast<Operator>(V);
2543   if (!I) return false;
2544 
2545   switch (I->getOpcode()) {
2546   default: break;
2547   // Unsigned integers are always nonnegative.
2548   case Instruction::UIToFP:
2549     return true;
2550   case Instruction::FMul:
2551     // x*x is always non-negative or a NaN.
2552     if (I->getOperand(0) == I->getOperand(1))
2553       return true;
2554     LLVM_FALLTHROUGH;
2555   case Instruction::FAdd:
2556   case Instruction::FDiv:
2557   case Instruction::FRem:
2558     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2559            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2560   case Instruction::Select:
2561     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2562            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2563   case Instruction::FPExt:
2564   case Instruction::FPTrunc:
2565     // Widening/narrowing never change sign.
2566     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2567   case Instruction::Call:
2568     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2569     switch (IID) {
2570     default:
2571       break;
2572     case Intrinsic::maxnum:
2573       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2574              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2575     case Intrinsic::minnum:
2576       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2577              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2578     case Intrinsic::exp:
2579     case Intrinsic::exp2:
2580     case Intrinsic::fabs:
2581     case Intrinsic::sqrt:
2582       return true;
2583     case Intrinsic::powi:
2584       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2585         // powi(x,n) is non-negative if n is even.
2586         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2587           return true;
2588       }
2589       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2590     case Intrinsic::fma:
2591     case Intrinsic::fmuladd:
2592       // x*x+y is non-negative if y is non-negative.
2593       return I->getOperand(0) == I->getOperand(1) &&
2594              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2595     }
2596     break;
2597   }
2598   return false;
2599 }
2600 
2601 /// If the specified value can be set by repeating the same byte in memory,
2602 /// return the i8 value that it is represented with.  This is
2603 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2604 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2605 /// byte store (e.g. i16 0x1234), return null.
2606 Value *llvm::isBytewiseValue(Value *V) {
2607   // All byte-wide stores are splatable, even of arbitrary variables.
2608   if (V->getType()->isIntegerTy(8)) return V;
2609 
2610   // Handle 'null' ConstantArrayZero etc.
2611   if (Constant *C = dyn_cast<Constant>(V))
2612     if (C->isNullValue())
2613       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2614 
2615   // Constant float and double values can be handled as integer values if the
2616   // corresponding integer value is "byteable".  An important case is 0.0.
2617   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2618     if (CFP->getType()->isFloatTy())
2619       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2620     if (CFP->getType()->isDoubleTy())
2621       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2622     // Don't handle long double formats, which have strange constraints.
2623   }
2624 
2625   // We can handle constant integers that are multiple of 8 bits.
2626   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2627     if (CI->getBitWidth() % 8 == 0) {
2628       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2629 
2630       if (!CI->getValue().isSplat(8))
2631         return nullptr;
2632       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2633     }
2634   }
2635 
2636   // A ConstantDataArray/Vector is splatable if all its members are equal and
2637   // also splatable.
2638   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2639     Value *Elt = CA->getElementAsConstant(0);
2640     Value *Val = isBytewiseValue(Elt);
2641     if (!Val)
2642       return nullptr;
2643 
2644     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2645       if (CA->getElementAsConstant(I) != Elt)
2646         return nullptr;
2647 
2648     return Val;
2649   }
2650 
2651   // Conceptually, we could handle things like:
2652   //   %a = zext i8 %X to i16
2653   //   %b = shl i16 %a, 8
2654   //   %c = or i16 %a, %b
2655   // but until there is an example that actually needs this, it doesn't seem
2656   // worth worrying about.
2657   return nullptr;
2658 }
2659 
2660 
2661 // This is the recursive version of BuildSubAggregate. It takes a few different
2662 // arguments. Idxs is the index within the nested struct From that we are
2663 // looking at now (which is of type IndexedType). IdxSkip is the number of
2664 // indices from Idxs that should be left out when inserting into the resulting
2665 // struct. To is the result struct built so far, new insertvalue instructions
2666 // build on that.
2667 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2668                                 SmallVectorImpl<unsigned> &Idxs,
2669                                 unsigned IdxSkip,
2670                                 Instruction *InsertBefore) {
2671   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2672   if (STy) {
2673     // Save the original To argument so we can modify it
2674     Value *OrigTo = To;
2675     // General case, the type indexed by Idxs is a struct
2676     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2677       // Process each struct element recursively
2678       Idxs.push_back(i);
2679       Value *PrevTo = To;
2680       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2681                              InsertBefore);
2682       Idxs.pop_back();
2683       if (!To) {
2684         // Couldn't find any inserted value for this index? Cleanup
2685         while (PrevTo != OrigTo) {
2686           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2687           PrevTo = Del->getAggregateOperand();
2688           Del->eraseFromParent();
2689         }
2690         // Stop processing elements
2691         break;
2692       }
2693     }
2694     // If we successfully found a value for each of our subaggregates
2695     if (To)
2696       return To;
2697   }
2698   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2699   // the struct's elements had a value that was inserted directly. In the latter
2700   // case, perhaps we can't determine each of the subelements individually, but
2701   // we might be able to find the complete struct somewhere.
2702 
2703   // Find the value that is at that particular spot
2704   Value *V = FindInsertedValue(From, Idxs);
2705 
2706   if (!V)
2707     return nullptr;
2708 
2709   // Insert the value in the new (sub) aggregrate
2710   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2711                                        "tmp", InsertBefore);
2712 }
2713 
2714 // This helper takes a nested struct and extracts a part of it (which is again a
2715 // struct) into a new value. For example, given the struct:
2716 // { a, { b, { c, d }, e } }
2717 // and the indices "1, 1" this returns
2718 // { c, d }.
2719 //
2720 // It does this by inserting an insertvalue for each element in the resulting
2721 // struct, as opposed to just inserting a single struct. This will only work if
2722 // each of the elements of the substruct are known (ie, inserted into From by an
2723 // insertvalue instruction somewhere).
2724 //
2725 // All inserted insertvalue instructions are inserted before InsertBefore
2726 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2727                                 Instruction *InsertBefore) {
2728   assert(InsertBefore && "Must have someplace to insert!");
2729   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2730                                                              idx_range);
2731   Value *To = UndefValue::get(IndexedType);
2732   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2733   unsigned IdxSkip = Idxs.size();
2734 
2735   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2736 }
2737 
2738 /// Given an aggregrate and an sequence of indices, see if
2739 /// the scalar value indexed is already around as a register, for example if it
2740 /// were inserted directly into the aggregrate.
2741 ///
2742 /// If InsertBefore is not null, this function will duplicate (modified)
2743 /// insertvalues when a part of a nested struct is extracted.
2744 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2745                                Instruction *InsertBefore) {
2746   // Nothing to index? Just return V then (this is useful at the end of our
2747   // recursion).
2748   if (idx_range.empty())
2749     return V;
2750   // We have indices, so V should have an indexable type.
2751   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2752          "Not looking at a struct or array?");
2753   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2754          "Invalid indices for type?");
2755 
2756   if (Constant *C = dyn_cast<Constant>(V)) {
2757     C = C->getAggregateElement(idx_range[0]);
2758     if (!C) return nullptr;
2759     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2760   }
2761 
2762   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2763     // Loop the indices for the insertvalue instruction in parallel with the
2764     // requested indices
2765     const unsigned *req_idx = idx_range.begin();
2766     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2767          i != e; ++i, ++req_idx) {
2768       if (req_idx == idx_range.end()) {
2769         // We can't handle this without inserting insertvalues
2770         if (!InsertBefore)
2771           return nullptr;
2772 
2773         // The requested index identifies a part of a nested aggregate. Handle
2774         // this specially. For example,
2775         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2776         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2777         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2778         // This can be changed into
2779         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2780         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2781         // which allows the unused 0,0 element from the nested struct to be
2782         // removed.
2783         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2784                                  InsertBefore);
2785       }
2786 
2787       // This insert value inserts something else than what we are looking for.
2788       // See if the (aggregate) value inserted into has the value we are
2789       // looking for, then.
2790       if (*req_idx != *i)
2791         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2792                                  InsertBefore);
2793     }
2794     // If we end up here, the indices of the insertvalue match with those
2795     // requested (though possibly only partially). Now we recursively look at
2796     // the inserted value, passing any remaining indices.
2797     return FindInsertedValue(I->getInsertedValueOperand(),
2798                              makeArrayRef(req_idx, idx_range.end()),
2799                              InsertBefore);
2800   }
2801 
2802   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2803     // If we're extracting a value from an aggregate that was extracted from
2804     // something else, we can extract from that something else directly instead.
2805     // However, we will need to chain I's indices with the requested indices.
2806 
2807     // Calculate the number of indices required
2808     unsigned size = I->getNumIndices() + idx_range.size();
2809     // Allocate some space to put the new indices in
2810     SmallVector<unsigned, 5> Idxs;
2811     Idxs.reserve(size);
2812     // Add indices from the extract value instruction
2813     Idxs.append(I->idx_begin(), I->idx_end());
2814 
2815     // Add requested indices
2816     Idxs.append(idx_range.begin(), idx_range.end());
2817 
2818     assert(Idxs.size() == size
2819            && "Number of indices added not correct?");
2820 
2821     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2822   }
2823   // Otherwise, we don't know (such as, extracting from a function return value
2824   // or load instruction)
2825   return nullptr;
2826 }
2827 
2828 /// Analyze the specified pointer to see if it can be expressed as a base
2829 /// pointer plus a constant offset. Return the base and offset to the caller.
2830 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2831                                               const DataLayout &DL) {
2832   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2833   APInt ByteOffset(BitWidth, 0);
2834 
2835   // We walk up the defs but use a visited set to handle unreachable code. In
2836   // that case, we stop after accumulating the cycle once (not that it
2837   // matters).
2838   SmallPtrSet<Value *, 16> Visited;
2839   while (Visited.insert(Ptr).second) {
2840     if (Ptr->getType()->isVectorTy())
2841       break;
2842 
2843     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2844       APInt GEPOffset(BitWidth, 0);
2845       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2846         break;
2847 
2848       ByteOffset += GEPOffset;
2849 
2850       Ptr = GEP->getPointerOperand();
2851     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
2852       Ptr = cast<Operator>(Ptr)->getOperand(0);
2853     } else if (AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(Ptr)) {
2854       Value *SourcePtr = ASCI->getPointerOperand();
2855       // Don't look through addrspace cast which changes pointer size
2856       if (BitWidth != DL.getPointerTypeSizeInBits(SourcePtr->getType()))
2857         break;
2858       Ptr = SourcePtr;
2859     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2860       if (GA->isInterposable())
2861         break;
2862       Ptr = GA->getAliasee();
2863     } else {
2864       break;
2865     }
2866   }
2867   Offset = ByteOffset.getSExtValue();
2868   return Ptr;
2869 }
2870 
2871 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2872   // Make sure the GEP has exactly three arguments.
2873   if (GEP->getNumOperands() != 3)
2874     return false;
2875 
2876   // Make sure the index-ee is a pointer to array of i8.
2877   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2878   if (!AT || !AT->getElementType()->isIntegerTy(8))
2879     return false;
2880 
2881   // Check to make sure that the first operand of the GEP is an integer and
2882   // has value 0 so that we are sure we're indexing into the initializer.
2883   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2884   if (!FirstIdx || !FirstIdx->isZero())
2885     return false;
2886 
2887   return true;
2888 }
2889 
2890 /// This function computes the length of a null-terminated C string pointed to
2891 /// by V. If successful, it returns true and returns the string in Str.
2892 /// If unsuccessful, it returns false.
2893 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2894                                  uint64_t Offset, bool TrimAtNul) {
2895   assert(V);
2896 
2897   // Look through bitcast instructions and geps.
2898   V = V->stripPointerCasts();
2899 
2900   // If the value is a GEP instruction or constant expression, treat it as an
2901   // offset.
2902   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2903     // The GEP operator should be based on a pointer to string constant, and is
2904     // indexing into the string constant.
2905     if (!isGEPBasedOnPointerToString(GEP))
2906       return false;
2907 
2908     // If the second index isn't a ConstantInt, then this is a variable index
2909     // into the array.  If this occurs, we can't say anything meaningful about
2910     // the string.
2911     uint64_t StartIdx = 0;
2912     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2913       StartIdx = CI->getZExtValue();
2914     else
2915       return false;
2916     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2917                                  TrimAtNul);
2918   }
2919 
2920   // The GEP instruction, constant or instruction, must reference a global
2921   // variable that is a constant and is initialized. The referenced constant
2922   // initializer is the array that we'll use for optimization.
2923   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2924   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2925     return false;
2926 
2927   // Handle the all-zeros case.
2928   if (GV->getInitializer()->isNullValue()) {
2929     // This is a degenerate case. The initializer is constant zero so the
2930     // length of the string must be zero.
2931     Str = "";
2932     return true;
2933   }
2934 
2935   // This must be a ConstantDataArray.
2936   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
2937   if (!Array || !Array->isString())
2938     return false;
2939 
2940   // Get the number of elements in the array.
2941   uint64_t NumElts = Array->getType()->getArrayNumElements();
2942 
2943   // Start out with the entire array in the StringRef.
2944   Str = Array->getAsString();
2945 
2946   if (Offset > NumElts)
2947     return false;
2948 
2949   // Skip over 'offset' bytes.
2950   Str = Str.substr(Offset);
2951 
2952   if (TrimAtNul) {
2953     // Trim off the \0 and anything after it.  If the array is not nul
2954     // terminated, we just return the whole end of string.  The client may know
2955     // some other way that the string is length-bound.
2956     Str = Str.substr(0, Str.find('\0'));
2957   }
2958   return true;
2959 }
2960 
2961 // These next two are very similar to the above, but also look through PHI
2962 // nodes.
2963 // TODO: See if we can integrate these two together.
2964 
2965 /// If we can compute the length of the string pointed to by
2966 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2967 static uint64_t GetStringLengthH(const Value *V,
2968                                  SmallPtrSetImpl<const PHINode*> &PHIs) {
2969   // Look through noop bitcast instructions.
2970   V = V->stripPointerCasts();
2971 
2972   // If this is a PHI node, there are two cases: either we have already seen it
2973   // or we haven't.
2974   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2975     if (!PHIs.insert(PN).second)
2976       return ~0ULL;  // already in the set.
2977 
2978     // If it was new, see if all the input strings are the same length.
2979     uint64_t LenSoFar = ~0ULL;
2980     for (Value *IncValue : PN->incoming_values()) {
2981       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2982       if (Len == 0) return 0; // Unknown length -> unknown.
2983 
2984       if (Len == ~0ULL) continue;
2985 
2986       if (Len != LenSoFar && LenSoFar != ~0ULL)
2987         return 0;    // Disagree -> unknown.
2988       LenSoFar = Len;
2989     }
2990 
2991     // Success, all agree.
2992     return LenSoFar;
2993   }
2994 
2995   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2996   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2997     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2998     if (Len1 == 0) return 0;
2999     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3000     if (Len2 == 0) return 0;
3001     if (Len1 == ~0ULL) return Len2;
3002     if (Len2 == ~0ULL) return Len1;
3003     if (Len1 != Len2) return 0;
3004     return Len1;
3005   }
3006 
3007   // Otherwise, see if we can read the string.
3008   StringRef StrData;
3009   if (!getConstantStringInfo(V, StrData))
3010     return 0;
3011 
3012   return StrData.size()+1;
3013 }
3014 
3015 /// If we can compute the length of the string pointed to by
3016 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3017 uint64_t llvm::GetStringLength(const Value *V) {
3018   if (!V->getType()->isPointerTy()) return 0;
3019 
3020   SmallPtrSet<const PHINode*, 32> PHIs;
3021   uint64_t Len = GetStringLengthH(V, PHIs);
3022   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3023   // an empty string as a length.
3024   return Len == ~0ULL ? 1 : Len;
3025 }
3026 
3027 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3028 /// previous iteration of the loop was referring to the same object as \p PN.
3029 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3030                                          const LoopInfo *LI) {
3031   // Find the loop-defined value.
3032   Loop *L = LI->getLoopFor(PN->getParent());
3033   if (PN->getNumIncomingValues() != 2)
3034     return true;
3035 
3036   // Find the value from previous iteration.
3037   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3038   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3039     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3040   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3041     return true;
3042 
3043   // If a new pointer is loaded in the loop, the pointer references a different
3044   // object in every iteration.  E.g.:
3045   //    for (i)
3046   //       int *p = a[i];
3047   //       ...
3048   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3049     if (!L->isLoopInvariant(Load->getPointerOperand()))
3050       return false;
3051   return true;
3052 }
3053 
3054 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3055                                  unsigned MaxLookup) {
3056   if (!V->getType()->isPointerTy())
3057     return V;
3058   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3059     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3060       V = GEP->getPointerOperand();
3061     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3062                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3063       V = cast<Operator>(V)->getOperand(0);
3064     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3065       if (GA->isInterposable())
3066         return V;
3067       V = GA->getAliasee();
3068     } else {
3069       if (auto CS = CallSite(V))
3070         if (Value *RV = CS.getReturnedArgOperand()) {
3071           V = RV;
3072           continue;
3073         }
3074 
3075       // See if InstructionSimplify knows any relevant tricks.
3076       if (Instruction *I = dyn_cast<Instruction>(V))
3077         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3078         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3079           V = Simplified;
3080           continue;
3081         }
3082 
3083       return V;
3084     }
3085     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3086   }
3087   return V;
3088 }
3089 
3090 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3091                                 const DataLayout &DL, LoopInfo *LI,
3092                                 unsigned MaxLookup) {
3093   SmallPtrSet<Value *, 4> Visited;
3094   SmallVector<Value *, 4> Worklist;
3095   Worklist.push_back(V);
3096   do {
3097     Value *P = Worklist.pop_back_val();
3098     P = GetUnderlyingObject(P, DL, MaxLookup);
3099 
3100     if (!Visited.insert(P).second)
3101       continue;
3102 
3103     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3104       Worklist.push_back(SI->getTrueValue());
3105       Worklist.push_back(SI->getFalseValue());
3106       continue;
3107     }
3108 
3109     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3110       // If this PHI changes the underlying object in every iteration of the
3111       // loop, don't look through it.  Consider:
3112       //   int **A;
3113       //   for (i) {
3114       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3115       //     Curr = A[i];
3116       //     *Prev, *Curr;
3117       //
3118       // Prev is tracking Curr one iteration behind so they refer to different
3119       // underlying objects.
3120       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3121           isSameUnderlyingObjectInLoop(PN, LI))
3122         for (Value *IncValue : PN->incoming_values())
3123           Worklist.push_back(IncValue);
3124       continue;
3125     }
3126 
3127     Objects.push_back(P);
3128   } while (!Worklist.empty());
3129 }
3130 
3131 /// Return true if the only users of this pointer are lifetime markers.
3132 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3133   for (const User *U : V->users()) {
3134     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3135     if (!II) return false;
3136 
3137     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3138         II->getIntrinsicID() != Intrinsic::lifetime_end)
3139       return false;
3140   }
3141   return true;
3142 }
3143 
3144 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3145                                         const Instruction *CtxI,
3146                                         const DominatorTree *DT) {
3147   const Operator *Inst = dyn_cast<Operator>(V);
3148   if (!Inst)
3149     return false;
3150 
3151   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3152     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3153       if (C->canTrap())
3154         return false;
3155 
3156   switch (Inst->getOpcode()) {
3157   default:
3158     return true;
3159   case Instruction::UDiv:
3160   case Instruction::URem: {
3161     // x / y is undefined if y == 0.
3162     const APInt *V;
3163     if (match(Inst->getOperand(1), m_APInt(V)))
3164       return *V != 0;
3165     return false;
3166   }
3167   case Instruction::SDiv:
3168   case Instruction::SRem: {
3169     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3170     const APInt *Numerator, *Denominator;
3171     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3172       return false;
3173     // We cannot hoist this division if the denominator is 0.
3174     if (*Denominator == 0)
3175       return false;
3176     // It's safe to hoist if the denominator is not 0 or -1.
3177     if (*Denominator != -1)
3178       return true;
3179     // At this point we know that the denominator is -1.  It is safe to hoist as
3180     // long we know that the numerator is not INT_MIN.
3181     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3182       return !Numerator->isMinSignedValue();
3183     // The numerator *might* be MinSignedValue.
3184     return false;
3185   }
3186   case Instruction::Load: {
3187     const LoadInst *LI = cast<LoadInst>(Inst);
3188     if (!LI->isUnordered() ||
3189         // Speculative load may create a race that did not exist in the source.
3190         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3191         // Speculative load may load data from dirty regions.
3192         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3193       return false;
3194     const DataLayout &DL = LI->getModule()->getDataLayout();
3195     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3196                                               LI->getAlignment(), DL, CtxI, DT);
3197   }
3198   case Instruction::Call: {
3199     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3200       switch (II->getIntrinsicID()) {
3201       // These synthetic intrinsics have no side-effects and just mark
3202       // information about their operands.
3203       // FIXME: There are other no-op synthetic instructions that potentially
3204       // should be considered at least *safe* to speculate...
3205       case Intrinsic::dbg_declare:
3206       case Intrinsic::dbg_value:
3207         return true;
3208 
3209       case Intrinsic::bswap:
3210       case Intrinsic::ctlz:
3211       case Intrinsic::ctpop:
3212       case Intrinsic::cttz:
3213       case Intrinsic::objectsize:
3214       case Intrinsic::sadd_with_overflow:
3215       case Intrinsic::smul_with_overflow:
3216       case Intrinsic::ssub_with_overflow:
3217       case Intrinsic::uadd_with_overflow:
3218       case Intrinsic::umul_with_overflow:
3219       case Intrinsic::usub_with_overflow:
3220         return true;
3221       // These intrinsics are defined to have the same behavior as libm
3222       // functions except for setting errno.
3223       case Intrinsic::sqrt:
3224       case Intrinsic::fma:
3225       case Intrinsic::fmuladd:
3226         return true;
3227       // These intrinsics are defined to have the same behavior as libm
3228       // functions, and the corresponding libm functions never set errno.
3229       case Intrinsic::trunc:
3230       case Intrinsic::copysign:
3231       case Intrinsic::fabs:
3232       case Intrinsic::minnum:
3233       case Intrinsic::maxnum:
3234         return true;
3235       // These intrinsics are defined to have the same behavior as libm
3236       // functions, which never overflow when operating on the IEEE754 types
3237       // that we support, and never set errno otherwise.
3238       case Intrinsic::ceil:
3239       case Intrinsic::floor:
3240       case Intrinsic::nearbyint:
3241       case Intrinsic::rint:
3242       case Intrinsic::round:
3243         return true;
3244       // TODO: are convert_{from,to}_fp16 safe?
3245       // TODO: can we list target-specific intrinsics here?
3246       default: break;
3247       }
3248     }
3249     return false; // The called function could have undefined behavior or
3250                   // side-effects, even if marked readnone nounwind.
3251   }
3252   case Instruction::VAArg:
3253   case Instruction::Alloca:
3254   case Instruction::Invoke:
3255   case Instruction::PHI:
3256   case Instruction::Store:
3257   case Instruction::Ret:
3258   case Instruction::Br:
3259   case Instruction::IndirectBr:
3260   case Instruction::Switch:
3261   case Instruction::Unreachable:
3262   case Instruction::Fence:
3263   case Instruction::AtomicRMW:
3264   case Instruction::AtomicCmpXchg:
3265   case Instruction::LandingPad:
3266   case Instruction::Resume:
3267   case Instruction::CatchSwitch:
3268   case Instruction::CatchPad:
3269   case Instruction::CatchRet:
3270   case Instruction::CleanupPad:
3271   case Instruction::CleanupRet:
3272     return false; // Misc instructions which have effects
3273   }
3274 }
3275 
3276 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3277   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3278 }
3279 
3280 /// Return true if we know that the specified value is never null.
3281 bool llvm::isKnownNonNull(const Value *V) {
3282   assert(V->getType()->isPointerTy() && "V must be pointer type");
3283 
3284   // Alloca never returns null, malloc might.
3285   if (isa<AllocaInst>(V)) return true;
3286 
3287   // A byval, inalloca, or nonnull argument is never null.
3288   if (const Argument *A = dyn_cast<Argument>(V))
3289     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3290 
3291   // A global variable in address space 0 is non null unless extern weak.
3292   // Other address spaces may have null as a valid address for a global,
3293   // so we can't assume anything.
3294   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3295     return !GV->hasExternalWeakLinkage() &&
3296            GV->getType()->getAddressSpace() == 0;
3297 
3298   // A Load tagged with nonnull metadata is never null.
3299   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3300     return LI->getMetadata(LLVMContext::MD_nonnull);
3301 
3302   if (auto CS = ImmutableCallSite(V))
3303     if (CS.isReturnNonNull())
3304       return true;
3305 
3306   return false;
3307 }
3308 
3309 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3310                                                   const Instruction *CtxI,
3311                                                   const DominatorTree *DT) {
3312   assert(V->getType()->isPointerTy() && "V must be pointer type");
3313   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
3314 
3315   unsigned NumUsesExplored = 0;
3316   for (auto *U : V->users()) {
3317     // Avoid massive lists
3318     if (NumUsesExplored >= DomConditionsMaxUses)
3319       break;
3320     NumUsesExplored++;
3321     // Consider only compare instructions uniquely controlling a branch
3322     CmpInst::Predicate Pred;
3323     if (!match(const_cast<User *>(U),
3324                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3325         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3326       continue;
3327 
3328     for (auto *CmpU : U->users()) {
3329       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3330         assert(BI->isConditional() && "uses a comparison!");
3331 
3332         BasicBlock *NonNullSuccessor =
3333             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3334         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3335         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3336           return true;
3337       } else if (Pred == ICmpInst::ICMP_NE &&
3338                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3339                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3340         return true;
3341       }
3342     }
3343   }
3344 
3345   return false;
3346 }
3347 
3348 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3349                             const DominatorTree *DT) {
3350   if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3351     return false;
3352 
3353   if (isKnownNonNull(V))
3354     return true;
3355 
3356   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3357 }
3358 
3359 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3360                                                    const Value *RHS,
3361                                                    const DataLayout &DL,
3362                                                    AssumptionCache *AC,
3363                                                    const Instruction *CxtI,
3364                                                    const DominatorTree *DT) {
3365   // Multiplying n * m significant bits yields a result of n + m significant
3366   // bits. If the total number of significant bits does not exceed the
3367   // result bit width (minus 1), there is no overflow.
3368   // This means if we have enough leading zero bits in the operands
3369   // we can guarantee that the result does not overflow.
3370   // Ref: "Hacker's Delight" by Henry Warren
3371   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3372   APInt LHSKnownZero(BitWidth, 0);
3373   APInt LHSKnownOne(BitWidth, 0);
3374   APInt RHSKnownZero(BitWidth, 0);
3375   APInt RHSKnownOne(BitWidth, 0);
3376   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3377                    DT);
3378   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3379                    DT);
3380   // Note that underestimating the number of zero bits gives a more
3381   // conservative answer.
3382   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3383                       RHSKnownZero.countLeadingOnes();
3384   // First handle the easy case: if we have enough zero bits there's
3385   // definitely no overflow.
3386   if (ZeroBits >= BitWidth)
3387     return OverflowResult::NeverOverflows;
3388 
3389   // Get the largest possible values for each operand.
3390   APInt LHSMax = ~LHSKnownZero;
3391   APInt RHSMax = ~RHSKnownZero;
3392 
3393   // We know the multiply operation doesn't overflow if the maximum values for
3394   // each operand will not overflow after we multiply them together.
3395   bool MaxOverflow;
3396   LHSMax.umul_ov(RHSMax, MaxOverflow);
3397   if (!MaxOverflow)
3398     return OverflowResult::NeverOverflows;
3399 
3400   // We know it always overflows if multiplying the smallest possible values for
3401   // the operands also results in overflow.
3402   bool MinOverflow;
3403   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3404   if (MinOverflow)
3405     return OverflowResult::AlwaysOverflows;
3406 
3407   return OverflowResult::MayOverflow;
3408 }
3409 
3410 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3411                                                    const Value *RHS,
3412                                                    const DataLayout &DL,
3413                                                    AssumptionCache *AC,
3414                                                    const Instruction *CxtI,
3415                                                    const DominatorTree *DT) {
3416   bool LHSKnownNonNegative, LHSKnownNegative;
3417   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3418                  AC, CxtI, DT);
3419   if (LHSKnownNonNegative || LHSKnownNegative) {
3420     bool RHSKnownNonNegative, RHSKnownNegative;
3421     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3422                    AC, CxtI, DT);
3423 
3424     if (LHSKnownNegative && RHSKnownNegative) {
3425       // The sign bit is set in both cases: this MUST overflow.
3426       // Create a simple add instruction, and insert it into the struct.
3427       return OverflowResult::AlwaysOverflows;
3428     }
3429 
3430     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3431       // The sign bit is clear in both cases: this CANNOT overflow.
3432       // Create a simple add instruction, and insert it into the struct.
3433       return OverflowResult::NeverOverflows;
3434     }
3435   }
3436 
3437   return OverflowResult::MayOverflow;
3438 }
3439 
3440 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3441                                                   const Value *RHS,
3442                                                   const AddOperator *Add,
3443                                                   const DataLayout &DL,
3444                                                   AssumptionCache *AC,
3445                                                   const Instruction *CxtI,
3446                                                   const DominatorTree *DT) {
3447   if (Add && Add->hasNoSignedWrap()) {
3448     return OverflowResult::NeverOverflows;
3449   }
3450 
3451   bool LHSKnownNonNegative, LHSKnownNegative;
3452   bool RHSKnownNonNegative, RHSKnownNegative;
3453   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3454                  AC, CxtI, DT);
3455   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3456                  AC, CxtI, DT);
3457 
3458   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3459       (LHSKnownNegative && RHSKnownNonNegative)) {
3460     // The sign bits are opposite: this CANNOT overflow.
3461     return OverflowResult::NeverOverflows;
3462   }
3463 
3464   // The remaining code needs Add to be available. Early returns if not so.
3465   if (!Add)
3466     return OverflowResult::MayOverflow;
3467 
3468   // If the sign of Add is the same as at least one of the operands, this add
3469   // CANNOT overflow. This is particularly useful when the sum is
3470   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3471   // operands.
3472   bool LHSOrRHSKnownNonNegative =
3473       (LHSKnownNonNegative || RHSKnownNonNegative);
3474   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3475   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3476     bool AddKnownNonNegative, AddKnownNegative;
3477     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3478                    /*Depth=*/0, AC, CxtI, DT);
3479     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3480         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3481       return OverflowResult::NeverOverflows;
3482     }
3483   }
3484 
3485   return OverflowResult::MayOverflow;
3486 }
3487 
3488 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3489                                      const DominatorTree &DT) {
3490 #ifndef NDEBUG
3491   auto IID = II->getIntrinsicID();
3492   assert((IID == Intrinsic::sadd_with_overflow ||
3493           IID == Intrinsic::uadd_with_overflow ||
3494           IID == Intrinsic::ssub_with_overflow ||
3495           IID == Intrinsic::usub_with_overflow ||
3496           IID == Intrinsic::smul_with_overflow ||
3497           IID == Intrinsic::umul_with_overflow) &&
3498          "Not an overflow intrinsic!");
3499 #endif
3500 
3501   SmallVector<const BranchInst *, 2> GuardingBranches;
3502   SmallVector<const ExtractValueInst *, 2> Results;
3503 
3504   for (const User *U : II->users()) {
3505     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3506       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3507 
3508       if (EVI->getIndices()[0] == 0)
3509         Results.push_back(EVI);
3510       else {
3511         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3512 
3513         for (const auto *U : EVI->users())
3514           if (const auto *B = dyn_cast<BranchInst>(U)) {
3515             assert(B->isConditional() && "How else is it using an i1?");
3516             GuardingBranches.push_back(B);
3517           }
3518       }
3519     } else {
3520       // We are using the aggregate directly in a way we don't want to analyze
3521       // here (storing it to a global, say).
3522       return false;
3523     }
3524   }
3525 
3526   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
3527     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3528     if (!NoWrapEdge.isSingleEdge())
3529       return false;
3530 
3531     // Check if all users of the add are provably no-wrap.
3532     for (const auto *Result : Results) {
3533       // If the extractvalue itself is not executed on overflow, the we don't
3534       // need to check each use separately, since domination is transitive.
3535       if (DT.dominates(NoWrapEdge, Result->getParent()))
3536         continue;
3537 
3538       for (auto &RU : Result->uses())
3539         if (!DT.dominates(NoWrapEdge, RU))
3540           return false;
3541     }
3542 
3543     return true;
3544   };
3545 
3546   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3547 }
3548 
3549 
3550 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
3551                                                  const DataLayout &DL,
3552                                                  AssumptionCache *AC,
3553                                                  const Instruction *CxtI,
3554                                                  const DominatorTree *DT) {
3555   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3556                                        Add, DL, AC, CxtI, DT);
3557 }
3558 
3559 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3560                                                  const Value *RHS,
3561                                                  const DataLayout &DL,
3562                                                  AssumptionCache *AC,
3563                                                  const Instruction *CxtI,
3564                                                  const DominatorTree *DT) {
3565   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3566 }
3567 
3568 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3569   // A memory operation returns normally if it isn't volatile. A volatile
3570   // operation is allowed to trap.
3571   //
3572   // An atomic operation isn't guaranteed to return in a reasonable amount of
3573   // time because it's possible for another thread to interfere with it for an
3574   // arbitrary length of time, but programs aren't allowed to rely on that.
3575   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3576     return !LI->isVolatile();
3577   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3578     return !SI->isVolatile();
3579   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3580     return !CXI->isVolatile();
3581   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3582     return !RMWI->isVolatile();
3583   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3584     return !MII->isVolatile();
3585 
3586   // If there is no successor, then execution can't transfer to it.
3587   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3588     return !CRI->unwindsToCaller();
3589   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3590     return !CatchSwitch->unwindsToCaller();
3591   if (isa<ResumeInst>(I))
3592     return false;
3593   if (isa<ReturnInst>(I))
3594     return false;
3595 
3596   // Calls can throw, or contain an infinite loop, or kill the process.
3597   if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3598     // Calls which don't write to arbitrary memory are safe.
3599     // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3600     // but it's consistent with other passes. See http://llvm.org/PR965 .
3601     // FIXME: This isn't aggressive enough; a call which only writes to a
3602     // global is guaranteed to return.
3603     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3604            match(I, m_Intrinsic<Intrinsic::assume>());
3605   }
3606 
3607   // Other instructions return normally.
3608   return true;
3609 }
3610 
3611 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3612                                                   const Loop *L) {
3613   // The loop header is guaranteed to be executed for every iteration.
3614   //
3615   // FIXME: Relax this constraint to cover all basic blocks that are
3616   // guaranteed to be executed at every iteration.
3617   if (I->getParent() != L->getHeader()) return false;
3618 
3619   for (const Instruction &LI : *L->getHeader()) {
3620     if (&LI == I) return true;
3621     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3622   }
3623   llvm_unreachable("Instruction not contained in its own parent basic block.");
3624 }
3625 
3626 bool llvm::propagatesFullPoison(const Instruction *I) {
3627   switch (I->getOpcode()) {
3628     case Instruction::Add:
3629     case Instruction::Sub:
3630     case Instruction::Xor:
3631     case Instruction::Trunc:
3632     case Instruction::BitCast:
3633     case Instruction::AddrSpaceCast:
3634       // These operations all propagate poison unconditionally. Note that poison
3635       // is not any particular value, so xor or subtraction of poison with
3636       // itself still yields poison, not zero.
3637       return true;
3638 
3639     case Instruction::AShr:
3640     case Instruction::SExt:
3641       // For these operations, one bit of the input is replicated across
3642       // multiple output bits. A replicated poison bit is still poison.
3643       return true;
3644 
3645     case Instruction::Shl: {
3646       // Left shift *by* a poison value is poison. The number of
3647       // positions to shift is unsigned, so no negative values are
3648       // possible there. Left shift by zero places preserves poison. So
3649       // it only remains to consider left shift of poison by a positive
3650       // number of places.
3651       //
3652       // A left shift by a positive number of places leaves the lowest order bit
3653       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3654       // make the poison operand violate that flag, yielding a fresh full-poison
3655       // value.
3656       auto *OBO = cast<OverflowingBinaryOperator>(I);
3657       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3658     }
3659 
3660     case Instruction::Mul: {
3661       // A multiplication by zero yields a non-poison zero result, so we need to
3662       // rule out zero as an operand. Conservatively, multiplication by a
3663       // non-zero constant is not multiplication by zero.
3664       //
3665       // Multiplication by a non-zero constant can leave some bits
3666       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3667       // order bit unpoisoned. So we need to consider that.
3668       //
3669       // Multiplication by 1 preserves poison. If the multiplication has a
3670       // no-wrap flag, then we can make the poison operand violate that flag
3671       // when multiplied by any integer other than 0 and 1.
3672       auto *OBO = cast<OverflowingBinaryOperator>(I);
3673       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3674         for (Value *V : OBO->operands()) {
3675           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3676             // A ConstantInt cannot yield poison, so we can assume that it is
3677             // the other operand that is poison.
3678             return !CI->isZero();
3679           }
3680         }
3681       }
3682       return false;
3683     }
3684 
3685     case Instruction::ICmp:
3686       // Comparing poison with any value yields poison.  This is why, for
3687       // instance, x s< (x +nsw 1) can be folded to true.
3688       return true;
3689 
3690     case Instruction::GetElementPtr:
3691       // A GEP implicitly represents a sequence of additions, subtractions,
3692       // truncations, sign extensions and multiplications. The multiplications
3693       // are by the non-zero sizes of some set of types, so we do not have to be
3694       // concerned with multiplication by zero. If the GEP is in-bounds, then
3695       // these operations are implicitly no-signed-wrap so poison is propagated
3696       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3697       return cast<GEPOperator>(I)->isInBounds();
3698 
3699     default:
3700       return false;
3701   }
3702 }
3703 
3704 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3705   switch (I->getOpcode()) {
3706     case Instruction::Store:
3707       return cast<StoreInst>(I)->getPointerOperand();
3708 
3709     case Instruction::Load:
3710       return cast<LoadInst>(I)->getPointerOperand();
3711 
3712     case Instruction::AtomicCmpXchg:
3713       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3714 
3715     case Instruction::AtomicRMW:
3716       return cast<AtomicRMWInst>(I)->getPointerOperand();
3717 
3718     case Instruction::UDiv:
3719     case Instruction::SDiv:
3720     case Instruction::URem:
3721     case Instruction::SRem:
3722       return I->getOperand(1);
3723 
3724     default:
3725       return nullptr;
3726   }
3727 }
3728 
3729 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3730   // We currently only look for uses of poison values within the same basic
3731   // block, as that makes it easier to guarantee that the uses will be
3732   // executed given that PoisonI is executed.
3733   //
3734   // FIXME: Expand this to consider uses beyond the same basic block. To do
3735   // this, look out for the distinction between post-dominance and strong
3736   // post-dominance.
3737   const BasicBlock *BB = PoisonI->getParent();
3738 
3739   // Set of instructions that we have proved will yield poison if PoisonI
3740   // does.
3741   SmallSet<const Value *, 16> YieldsPoison;
3742   SmallSet<const BasicBlock *, 4> Visited;
3743   YieldsPoison.insert(PoisonI);
3744   Visited.insert(PoisonI->getParent());
3745 
3746   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3747 
3748   unsigned Iter = 0;
3749   while (Iter++ < MaxDepth) {
3750     for (auto &I : make_range(Begin, End)) {
3751       if (&I != PoisonI) {
3752         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3753         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3754           return true;
3755         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3756           return false;
3757       }
3758 
3759       // Mark poison that propagates from I through uses of I.
3760       if (YieldsPoison.count(&I)) {
3761         for (const User *User : I.users()) {
3762           const Instruction *UserI = cast<Instruction>(User);
3763           if (propagatesFullPoison(UserI))
3764             YieldsPoison.insert(User);
3765         }
3766       }
3767     }
3768 
3769     if (auto *NextBB = BB->getSingleSuccessor()) {
3770       if (Visited.insert(NextBB).second) {
3771         BB = NextBB;
3772         Begin = BB->getFirstNonPHI()->getIterator();
3773         End = BB->end();
3774         continue;
3775       }
3776     }
3777 
3778     break;
3779   };
3780   return false;
3781 }
3782 
3783 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
3784   if (FMF.noNaNs())
3785     return true;
3786 
3787   if (auto *C = dyn_cast<ConstantFP>(V))
3788     return !C->isNaN();
3789   return false;
3790 }
3791 
3792 static bool isKnownNonZero(const Value *V) {
3793   if (auto *C = dyn_cast<ConstantFP>(V))
3794     return !C->isZero();
3795   return false;
3796 }
3797 
3798 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3799                                               FastMathFlags FMF,
3800                                               Value *CmpLHS, Value *CmpRHS,
3801                                               Value *TrueVal, Value *FalseVal,
3802                                               Value *&LHS, Value *&RHS) {
3803   LHS = CmpLHS;
3804   RHS = CmpRHS;
3805 
3806   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3807   // return inconsistent results between implementations.
3808   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3809   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3810   // Therefore we behave conservatively and only proceed if at least one of the
3811   // operands is known to not be zero, or if we don't care about signed zeroes.
3812   switch (Pred) {
3813   default: break;
3814   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3815   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3816     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3817         !isKnownNonZero(CmpRHS))
3818       return {SPF_UNKNOWN, SPNB_NA, false};
3819   }
3820 
3821   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3822   bool Ordered = false;
3823 
3824   // When given one NaN and one non-NaN input:
3825   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3826   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3827   //     ordered comparison fails), which could be NaN or non-NaN.
3828   // so here we discover exactly what NaN behavior is required/accepted.
3829   if (CmpInst::isFPPredicate(Pred)) {
3830     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3831     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3832 
3833     if (LHSSafe && RHSSafe) {
3834       // Both operands are known non-NaN.
3835       NaNBehavior = SPNB_RETURNS_ANY;
3836     } else if (CmpInst::isOrdered(Pred)) {
3837       // An ordered comparison will return false when given a NaN, so it
3838       // returns the RHS.
3839       Ordered = true;
3840       if (LHSSafe)
3841         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3842         NaNBehavior = SPNB_RETURNS_NAN;
3843       else if (RHSSafe)
3844         NaNBehavior = SPNB_RETURNS_OTHER;
3845       else
3846         // Completely unsafe.
3847         return {SPF_UNKNOWN, SPNB_NA, false};
3848     } else {
3849       Ordered = false;
3850       // An unordered comparison will return true when given a NaN, so it
3851       // returns the LHS.
3852       if (LHSSafe)
3853         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3854         NaNBehavior = SPNB_RETURNS_OTHER;
3855       else if (RHSSafe)
3856         NaNBehavior = SPNB_RETURNS_NAN;
3857       else
3858         // Completely unsafe.
3859         return {SPF_UNKNOWN, SPNB_NA, false};
3860     }
3861   }
3862 
3863   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3864     std::swap(CmpLHS, CmpRHS);
3865     Pred = CmpInst::getSwappedPredicate(Pred);
3866     if (NaNBehavior == SPNB_RETURNS_NAN)
3867       NaNBehavior = SPNB_RETURNS_OTHER;
3868     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3869       NaNBehavior = SPNB_RETURNS_NAN;
3870     Ordered = !Ordered;
3871   }
3872 
3873   // ([if]cmp X, Y) ? X : Y
3874   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3875     switch (Pred) {
3876     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3877     case ICmpInst::ICMP_UGT:
3878     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3879     case ICmpInst::ICMP_SGT:
3880     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3881     case ICmpInst::ICMP_ULT:
3882     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3883     case ICmpInst::ICMP_SLT:
3884     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3885     case FCmpInst::FCMP_UGT:
3886     case FCmpInst::FCMP_UGE:
3887     case FCmpInst::FCMP_OGT:
3888     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3889     case FCmpInst::FCMP_ULT:
3890     case FCmpInst::FCMP_ULE:
3891     case FCmpInst::FCMP_OLT:
3892     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3893     }
3894   }
3895 
3896   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3897     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3898         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3899 
3900       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3901       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3902       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3903         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3904       }
3905 
3906       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3907       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3908       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3909         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3910       }
3911     }
3912 
3913     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3914     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3915       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3916           ~C1->getValue() == C2->getValue() &&
3917           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3918            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3919         LHS = TrueVal;
3920         RHS = FalseVal;
3921         return {SPF_SMIN, SPNB_NA, false};
3922       }
3923     }
3924   }
3925 
3926   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3927 
3928   return {SPF_UNKNOWN, SPNB_NA, false};
3929 }
3930 
3931 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3932                               Instruction::CastOps *CastOp) {
3933   CastInst *CI = dyn_cast<CastInst>(V1);
3934   Constant *C = dyn_cast<Constant>(V2);
3935   if (!CI)
3936     return nullptr;
3937   *CastOp = CI->getOpcode();
3938 
3939   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3940     // If V1 and V2 are both the same cast from the same type, we can look
3941     // through V1.
3942     if (CI2->getOpcode() == CI->getOpcode() &&
3943         CI2->getSrcTy() == CI->getSrcTy())
3944       return CI2->getOperand(0);
3945     return nullptr;
3946   } else if (!C) {
3947     return nullptr;
3948   }
3949 
3950   Constant *CastedTo = nullptr;
3951 
3952   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3953     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3954 
3955   if (isa<SExtInst>(CI) && CmpI->isSigned())
3956     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3957 
3958   if (isa<TruncInst>(CI))
3959     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3960 
3961   if (isa<FPTruncInst>(CI))
3962     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3963 
3964   if (isa<FPExtInst>(CI))
3965     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3966 
3967   if (isa<FPToUIInst>(CI))
3968     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3969 
3970   if (isa<FPToSIInst>(CI))
3971     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3972 
3973   if (isa<UIToFPInst>(CI))
3974     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3975 
3976   if (isa<SIToFPInst>(CI))
3977     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3978 
3979   if (!CastedTo)
3980     return nullptr;
3981 
3982   Constant *CastedBack =
3983       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3984   // Make sure the cast doesn't lose any information.
3985   if (CastedBack != C)
3986     return nullptr;
3987 
3988   return CastedTo;
3989 }
3990 
3991 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
3992                                              Instruction::CastOps *CastOp) {
3993   SelectInst *SI = dyn_cast<SelectInst>(V);
3994   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3995 
3996   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3997   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3998 
3999   CmpInst::Predicate Pred = CmpI->getPredicate();
4000   Value *CmpLHS = CmpI->getOperand(0);
4001   Value *CmpRHS = CmpI->getOperand(1);
4002   Value *TrueVal = SI->getTrueValue();
4003   Value *FalseVal = SI->getFalseValue();
4004   FastMathFlags FMF;
4005   if (isa<FPMathOperator>(CmpI))
4006     FMF = CmpI->getFastMathFlags();
4007 
4008   // Bail out early.
4009   if (CmpI->isEquality())
4010     return {SPF_UNKNOWN, SPNB_NA, false};
4011 
4012   // Deal with type mismatches.
4013   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4014     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4015       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4016                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4017                                   LHS, RHS);
4018     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4019       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4020                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4021                                   LHS, RHS);
4022   }
4023   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4024                               LHS, RHS);
4025 }
4026 
4027 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
4028   const unsigned NumRanges = Ranges.getNumOperands() / 2;
4029   assert(NumRanges >= 1 && "Must have at least one range!");
4030   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4031 
4032   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4033   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4034 
4035   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4036 
4037   for (unsigned i = 1; i < NumRanges; ++i) {
4038     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4039     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4040 
4041     // Note: unionWith will potentially create a range that contains values not
4042     // contained in any of the original N ranges.
4043     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4044   }
4045 
4046   return CR;
4047 }
4048 
4049 /// Return true if "icmp Pred LHS RHS" is always true.
4050 static bool isTruePredicate(CmpInst::Predicate Pred,
4051                             const Value *LHS, const Value *RHS,
4052                             const DataLayout &DL, unsigned Depth,
4053                             AssumptionCache *AC, const Instruction *CxtI,
4054                             const DominatorTree *DT) {
4055   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4056   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4057     return true;
4058 
4059   switch (Pred) {
4060   default:
4061     return false;
4062 
4063   case CmpInst::ICMP_SLE: {
4064     const APInt *C;
4065 
4066     // LHS s<= LHS +_{nsw} C   if C >= 0
4067     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4068       return !C->isNegative();
4069     return false;
4070   }
4071 
4072   case CmpInst::ICMP_ULE: {
4073     const APInt *C;
4074 
4075     // LHS u<= LHS +_{nuw} C   for any C
4076     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4077       return true;
4078 
4079     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4080     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4081                                        const Value *&X,
4082                                        const APInt *&CA, const APInt *&CB) {
4083       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4084           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4085         return true;
4086 
4087       // If X & C == 0 then (X | C) == X +_{nuw} C
4088       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4089           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4090         unsigned BitWidth = CA->getBitWidth();
4091         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4092         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4093 
4094         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4095           return true;
4096       }
4097 
4098       return false;
4099     };
4100 
4101     const Value *X;
4102     const APInt *CLHS, *CRHS;
4103     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4104       return CLHS->ule(*CRHS);
4105 
4106     return false;
4107   }
4108   }
4109 }
4110 
4111 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4112 /// ALHS ARHS" is true.  Otherwise, return None.
4113 static Optional<bool>
4114 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4115                       const Value *ARHS, const Value *BLHS,
4116                       const Value *BRHS, const DataLayout &DL,
4117                       unsigned Depth, AssumptionCache *AC,
4118                       const Instruction *CxtI, const DominatorTree *DT) {
4119   switch (Pred) {
4120   default:
4121     return None;
4122 
4123   case CmpInst::ICMP_SLT:
4124   case CmpInst::ICMP_SLE:
4125     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4126                         DT) &&
4127         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4128       return true;
4129     return None;
4130 
4131   case CmpInst::ICMP_ULT:
4132   case CmpInst::ICMP_ULE:
4133     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4134                         DT) &&
4135         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4136       return true;
4137     return None;
4138   }
4139 }
4140 
4141 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4142 /// when the operands match, but are swapped.
4143 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4144                           const Value *BLHS, const Value *BRHS,
4145                           bool &IsSwappedOps) {
4146 
4147   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4148   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4149   return IsMatchingOps || IsSwappedOps;
4150 }
4151 
4152 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4153 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4154 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4155 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4156                                                     const Value *ALHS,
4157                                                     const Value *ARHS,
4158                                                     CmpInst::Predicate BPred,
4159                                                     const Value *BLHS,
4160                                                     const Value *BRHS,
4161                                                     bool IsSwappedOps) {
4162   // Canonicalize the operands so they're matching.
4163   if (IsSwappedOps) {
4164     std::swap(BLHS, BRHS);
4165     BPred = ICmpInst::getSwappedPredicate(BPred);
4166   }
4167   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4168     return true;
4169   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4170     return false;
4171 
4172   return None;
4173 }
4174 
4175 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4176 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4177 /// C2" is false.  Otherwise, return None if we can't infer anything.
4178 static Optional<bool>
4179 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4180                                  const ConstantInt *C1,
4181                                  CmpInst::Predicate BPred,
4182                                  const Value *BLHS, const ConstantInt *C2) {
4183   assert(ALHS == BLHS && "LHS operands must match.");
4184   ConstantRange DomCR =
4185       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4186   ConstantRange CR =
4187       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4188   ConstantRange Intersection = DomCR.intersectWith(CR);
4189   ConstantRange Difference = DomCR.difference(CR);
4190   if (Intersection.isEmptySet())
4191     return false;
4192   if (Difference.isEmptySet())
4193     return true;
4194   return None;
4195 }
4196 
4197 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
4198                                         const DataLayout &DL, bool InvertAPred,
4199                                         unsigned Depth, AssumptionCache *AC,
4200                                         const Instruction *CxtI,
4201                                         const DominatorTree *DT) {
4202   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4203   if (LHS->getType() != RHS->getType())
4204     return None;
4205 
4206   Type *OpTy = LHS->getType();
4207   assert(OpTy->getScalarType()->isIntegerTy(1));
4208 
4209   // LHS ==> RHS by definition
4210   if (!InvertAPred && LHS == RHS)
4211     return true;
4212 
4213   if (OpTy->isVectorTy())
4214     // TODO: extending the code below to handle vectors
4215     return None;
4216   assert(OpTy->isIntegerTy(1) && "implied by above");
4217 
4218   ICmpInst::Predicate APred, BPred;
4219   Value *ALHS, *ARHS;
4220   Value *BLHS, *BRHS;
4221 
4222   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4223       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4224     return None;
4225 
4226   if (InvertAPred)
4227     APred = CmpInst::getInversePredicate(APred);
4228 
4229   // Can we infer anything when the two compares have matching operands?
4230   bool IsSwappedOps;
4231   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4232     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4233             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4234       return Implication;
4235     // No amount of additional analysis will infer the second condition, so
4236     // early exit.
4237     return None;
4238   }
4239 
4240   // Can we infer anything when the LHS operands match and the RHS operands are
4241   // constants (not necessarily matching)?
4242   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4243     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4244             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4245             cast<ConstantInt>(BRHS)))
4246       return Implication;
4247     // No amount of additional analysis will infer the second condition, so
4248     // early exit.
4249     return None;
4250   }
4251 
4252   if (APred == BPred)
4253     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4254                                  CxtI, DT);
4255 
4256   return None;
4257 }
4258