1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 55 /// 0). For vector types, returns the element type's bitwidth. 56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 57 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 58 return BitWidth; 59 60 return DL.getPointerTypeSizeInBits(Ty); 61 } 62 63 namespace { 64 // Simplifying using an assume can only be done in a particular control-flow 65 // context (the context instruction provides that context). If an assume and 66 // the context instruction are not in the same block then the DT helps in 67 // figuring out if we can use it. 68 struct Query { 69 const DataLayout &DL; 70 AssumptionCache *AC; 71 const Instruction *CxtI; 72 const DominatorTree *DT; 73 74 /// Set of assumptions that should be excluded from further queries. 75 /// This is because of the potential for mutual recursion to cause 76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 77 /// classic case of this is assume(x = y), which will attempt to determine 78 /// bits in x from bits in y, which will attempt to determine bits in y from 79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 82 /// on. 83 std::array<const Value*, MaxDepth> Excluded; 84 unsigned NumExcluded; 85 86 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 87 const DominatorTree *DT) 88 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 89 90 Query(const Query &Q, const Value *NewExcl) 91 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 92 Excluded = Q.Excluded; 93 Excluded[NumExcluded++] = NewExcl; 94 assert(NumExcluded <= Excluded.size()); 95 } 96 97 bool isExcluded(const Value *Value) const { 98 if (NumExcluded == 0) 99 return false; 100 auto End = Excluded.begin() + NumExcluded; 101 return std::find(Excluded.begin(), End, Value) != End; 102 } 103 }; 104 } // end anonymous namespace 105 106 // Given the provided Value and, potentially, a context instruction, return 107 // the preferred context instruction (if any). 108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 109 // If we've been provided with a context instruction, then use that (provided 110 // it has been inserted). 111 if (CxtI && CxtI->getParent()) 112 return CxtI; 113 114 // If the value is really an already-inserted instruction, then use that. 115 CxtI = dyn_cast<Instruction>(V); 116 if (CxtI && CxtI->getParent()) 117 return CxtI; 118 119 return nullptr; 120 } 121 122 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 123 unsigned Depth, const Query &Q); 124 125 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 126 const DataLayout &DL, unsigned Depth, 127 AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT) { 129 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 130 Query(DL, AC, safeCxtI(V, CxtI), DT)); 131 } 132 133 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 134 const DataLayout &DL, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 assert(LHS->getType() == RHS->getType() && 138 "LHS and RHS should have the same type"); 139 assert(LHS->getType()->isIntOrIntVectorTy() && 140 "LHS and RHS should be integers"); 141 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 142 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 143 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 144 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 145 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 146 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 147 } 148 149 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 150 unsigned Depth, const Query &Q); 151 152 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 153 const DataLayout &DL, unsigned Depth, 154 AssumptionCache *AC, const Instruction *CxtI, 155 const DominatorTree *DT) { 156 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 157 Query(DL, AC, safeCxtI(V, CxtI), DT)); 158 } 159 160 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 161 const Query &Q); 162 163 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 164 bool OrZero, 165 unsigned Depth, AssumptionCache *AC, 166 const Instruction *CxtI, 167 const DominatorTree *DT) { 168 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 173 174 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 175 AssumptionCache *AC, const Instruction *CxtI, 176 const DominatorTree *DT) { 177 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 178 } 179 180 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 181 unsigned Depth, 182 AssumptionCache *AC, const Instruction *CxtI, 183 const DominatorTree *DT) { 184 bool NonNegative, Negative; 185 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 186 return NonNegative; 187 } 188 189 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 190 AssumptionCache *AC, const Instruction *CxtI, 191 const DominatorTree *DT) { 192 if (auto *CI = dyn_cast<ConstantInt>(V)) 193 return CI->getValue().isStrictlyPositive(); 194 195 // TODO: We'd doing two recursive queries here. We should factor this such 196 // that only a single query is needed. 197 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 198 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 199 } 200 201 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 bool NonNegative, Negative; 205 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 206 return Negative; 207 } 208 209 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 210 211 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 212 const DataLayout &DL, 213 AssumptionCache *AC, const Instruction *CxtI, 214 const DominatorTree *DT) { 215 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 216 safeCxtI(V1, safeCxtI(V2, CxtI)), 217 DT)); 218 } 219 220 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 221 const Query &Q); 222 223 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 224 const DataLayout &DL, 225 unsigned Depth, AssumptionCache *AC, 226 const Instruction *CxtI, const DominatorTree *DT) { 227 return ::MaskedValueIsZero(V, Mask, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT)); 229 } 230 231 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 232 const Query &Q); 233 234 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 242 bool NSW, 243 APInt &KnownZero, APInt &KnownOne, 244 APInt &KnownZero2, APInt &KnownOne2, 245 unsigned Depth, const Query &Q) { 246 if (!Add) { 247 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 248 // We know that the top bits of C-X are clear if X contains less bits 249 // than C (i.e. no wrap-around can happen). For example, 20-X is 250 // positive if we can prove that X is >= 0 and < 16. 251 if (!CLHS->getValue().isNegative()) { 252 unsigned BitWidth = KnownZero.getBitWidth(); 253 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 254 // NLZ can't be BitWidth with no sign bit 255 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 256 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 257 258 // If all of the MaskV bits are known to be zero, then we know the 259 // output top bits are zero, because we now know that the output is 260 // from [0-C]. 261 if ((KnownZero2 & MaskV) == MaskV) { 262 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 263 // Top bits known zero. 264 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 265 } 266 } 267 } 268 } 269 270 unsigned BitWidth = KnownZero.getBitWidth(); 271 272 // If an initial sequence of bits in the result is not needed, the 273 // corresponding bits in the operands are not needed. 274 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 275 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 276 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 277 278 // Carry in a 1 for a subtract, rather than a 0. 279 APInt CarryIn(BitWidth, 0); 280 if (!Add) { 281 // Sum = LHS + ~RHS + 1 282 std::swap(KnownZero2, KnownOne2); 283 CarryIn.setBit(0); 284 } 285 286 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 287 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 288 289 // Compute known bits of the carry. 290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 292 293 // Compute set of known bits (where all three relevant bits are known). 294 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 295 APInt RHSKnown = KnownZero2 | KnownOne2; 296 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 297 APInt Known = LHSKnown & RHSKnown & CarryKnown; 298 299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 300 "known bits of sum differ"); 301 302 // Compute known bits of the result. 303 KnownZero = ~PossibleSumOne & Known; 304 KnownOne = PossibleSumOne & Known; 305 306 // Are we still trying to solve for the sign bit? 307 if (!Known.isNegative()) { 308 if (NSW) { 309 // Adding two non-negative numbers, or subtracting a negative number from 310 // a non-negative one, can't wrap into negative. 311 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 312 KnownZero |= APInt::getSignBit(BitWidth); 313 // Adding two negative numbers, or subtracting a non-negative number from 314 // a negative one, can't wrap into non-negative. 315 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 316 KnownOne |= APInt::getSignBit(BitWidth); 317 } 318 } 319 } 320 321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 322 APInt &KnownZero, APInt &KnownOne, 323 APInt &KnownZero2, APInt &KnownOne2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = KnownZero.getBitWidth(); 326 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 327 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 338 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 339 bool isKnownNegativeOp1 = KnownOne.isNegative(); 340 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 // If low bits are zero in either operand, output low known-0 bits. 355 // Also compute a conservative estimate for high known-0 bits. 356 // More trickiness is possible, but this is sufficient for the 357 // interesting case of alignment computation. 358 KnownOne.clearAllBits(); 359 unsigned TrailZ = KnownZero.countTrailingOnes() + 360 KnownZero2.countTrailingOnes(); 361 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 362 KnownZero2.countLeadingOnes(), 363 BitWidth) - BitWidth; 364 365 TrailZ = std::min(TrailZ, BitWidth); 366 LeadZ = std::min(LeadZ, BitWidth); 367 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 368 APInt::getHighBitsSet(BitWidth, LeadZ); 369 370 // Only make use of no-wrap flags if we failed to compute the sign bit 371 // directly. This matters if the multiplication always overflows, in 372 // which case we prefer to follow the result of the direct computation, 373 // though as the program is invoking undefined behaviour we can choose 374 // whatever we like here. 375 if (isKnownNonNegative && !KnownOne.isNegative()) 376 KnownZero.setBit(BitWidth - 1); 377 else if (isKnownNegative && !KnownZero.isNegative()) 378 KnownOne.setBit(BitWidth - 1); 379 } 380 381 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 382 APInt &KnownZero, 383 APInt &KnownOne) { 384 unsigned BitWidth = KnownZero.getBitWidth(); 385 unsigned NumRanges = Ranges.getNumOperands() / 2; 386 assert(NumRanges >= 1); 387 388 KnownZero.setAllBits(); 389 KnownOne.setAllBits(); 390 391 for (unsigned i = 0; i < NumRanges; ++i) { 392 ConstantInt *Lower = 393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 394 ConstantInt *Upper = 395 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 396 ConstantRange Range(Lower->getValue(), Upper->getValue()); 397 398 // The first CommonPrefixBits of all values in Range are equal. 399 unsigned CommonPrefixBits = 400 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 401 402 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 403 KnownOne &= Range.getUnsignedMax() & Mask; 404 KnownZero &= ~Range.getUnsignedMax() & Mask; 405 } 406 } 407 408 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 409 SmallVector<const Value *, 16> WorkSet(1, I); 410 SmallPtrSet<const Value *, 32> Visited; 411 SmallPtrSet<const Value *, 16> EphValues; 412 413 // The instruction defining an assumption's condition itself is always 414 // considered ephemeral to that assumption (even if it has other 415 // non-ephemeral users). See r246696's test case for an example. 416 if (is_contained(I->operands(), E)) 417 return true; 418 419 while (!WorkSet.empty()) { 420 const Value *V = WorkSet.pop_back_val(); 421 if (!Visited.insert(V).second) 422 continue; 423 424 // If all uses of this value are ephemeral, then so is this value. 425 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 426 if (V == E) 427 return true; 428 429 EphValues.insert(V); 430 if (const User *U = dyn_cast<User>(V)) 431 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 432 J != JE; ++J) { 433 if (isSafeToSpeculativelyExecute(*J)) 434 WorkSet.push_back(*J); 435 } 436 } 437 } 438 439 return false; 440 } 441 442 // Is this an intrinsic that cannot be speculated but also cannot trap? 443 static bool isAssumeLikeIntrinsic(const Instruction *I) { 444 if (const CallInst *CI = dyn_cast<CallInst>(I)) 445 if (Function *F = CI->getCalledFunction()) 446 switch (F->getIntrinsicID()) { 447 default: break; 448 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 449 case Intrinsic::assume: 450 case Intrinsic::dbg_declare: 451 case Intrinsic::dbg_value: 452 case Intrinsic::invariant_start: 453 case Intrinsic::invariant_end: 454 case Intrinsic::lifetime_start: 455 case Intrinsic::lifetime_end: 456 case Intrinsic::objectsize: 457 case Intrinsic::ptr_annotation: 458 case Intrinsic::var_annotation: 459 return true; 460 } 461 462 return false; 463 } 464 465 bool llvm::isValidAssumeForContext(const Instruction *Inv, 466 const Instruction *CxtI, 467 const DominatorTree *DT) { 468 469 // There are two restrictions on the use of an assume: 470 // 1. The assume must dominate the context (or the control flow must 471 // reach the assume whenever it reaches the context). 472 // 2. The context must not be in the assume's set of ephemeral values 473 // (otherwise we will use the assume to prove that the condition 474 // feeding the assume is trivially true, thus causing the removal of 475 // the assume). 476 477 if (DT) { 478 if (DT->dominates(Inv, CxtI)) 479 return true; 480 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 481 // We don't have a DT, but this trivially dominates. 482 return true; 483 } 484 485 // With or without a DT, the only remaining case we will check is if the 486 // instructions are in the same BB. Give up if that is not the case. 487 if (Inv->getParent() != CxtI->getParent()) 488 return false; 489 490 // If we have a dom tree, then we now know that the assume doens't dominate 491 // the other instruction. If we don't have a dom tree then we can check if 492 // the assume is first in the BB. 493 if (!DT) { 494 // Search forward from the assume until we reach the context (or the end 495 // of the block); the common case is that the assume will come first. 496 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 497 IE = Inv->getParent()->end(); I != IE; ++I) 498 if (&*I == CxtI) 499 return true; 500 } 501 502 // The context comes first, but they're both in the same block. Make sure 503 // there is nothing in between that might interrupt the control flow. 504 for (BasicBlock::const_iterator I = 505 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 506 I != IE; ++I) 507 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 508 return false; 509 510 return !isEphemeralValueOf(Inv, CxtI); 511 } 512 513 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 514 APInt &KnownOne, unsigned Depth, 515 const Query &Q) { 516 // Use of assumptions is context-sensitive. If we don't have a context, we 517 // cannot use them! 518 if (!Q.AC || !Q.CxtI) 519 return; 520 521 unsigned BitWidth = KnownZero.getBitWidth(); 522 523 for (auto &AssumeVH : Q.AC->assumptions()) { 524 if (!AssumeVH) 525 continue; 526 CallInst *I = cast<CallInst>(AssumeVH); 527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 528 "Got assumption for the wrong function!"); 529 if (Q.isExcluded(I)) 530 continue; 531 532 // Warning: This loop can end up being somewhat performance sensetive. 533 // We're running this loop for once for each value queried resulting in a 534 // runtime of ~O(#assumes * #values). 535 536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 537 "must be an assume intrinsic"); 538 539 Value *Arg = I->getArgOperand(0); 540 541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 542 assert(BitWidth == 1 && "assume operand is not i1?"); 543 KnownZero.clearAllBits(); 544 KnownOne.setAllBits(); 545 return; 546 } 547 548 // The remaining tests are all recursive, so bail out if we hit the limit. 549 if (Depth == MaxDepth) 550 continue; 551 552 Value *A, *B; 553 auto m_V = m_CombineOr(m_Specific(V), 554 m_CombineOr(m_PtrToInt(m_Specific(V)), 555 m_BitCast(m_Specific(V)))); 556 557 CmpInst::Predicate Pred; 558 ConstantInt *C; 559 // assume(v = a) 560 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 564 KnownZero |= RHSKnownZero; 565 KnownOne |= RHSKnownOne; 566 // assume(v & b = a) 567 } else if (match(Arg, 568 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 569 Pred == ICmpInst::ICMP_EQ && 570 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 573 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 574 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 575 576 // For those bits in the mask that are known to be one, we can propagate 577 // known bits from the RHS to V. 578 KnownZero |= RHSKnownZero & MaskKnownOne; 579 KnownOne |= RHSKnownOne & MaskKnownOne; 580 // assume(~(v & b) = a) 581 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 582 m_Value(A))) && 583 Pred == ICmpInst::ICMP_EQ && 584 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 585 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 586 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 587 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 588 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 589 590 // For those bits in the mask that are known to be one, we can propagate 591 // inverted known bits from the RHS to V. 592 KnownZero |= RHSKnownOne & MaskKnownOne; 593 KnownOne |= RHSKnownZero & MaskKnownOne; 594 // assume(v | b = a) 595 } else if (match(Arg, 596 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 597 Pred == ICmpInst::ICMP_EQ && 598 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 599 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 600 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 601 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 602 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 603 604 // For those bits in B that are known to be zero, we can propagate known 605 // bits from the RHS to V. 606 KnownZero |= RHSKnownZero & BKnownZero; 607 KnownOne |= RHSKnownOne & BKnownZero; 608 // assume(~(v | b) = a) 609 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 610 m_Value(A))) && 611 Pred == ICmpInst::ICMP_EQ && 612 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 613 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 614 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 615 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 616 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 617 618 // For those bits in B that are known to be zero, we can propagate 619 // inverted known bits from the RHS to V. 620 KnownZero |= RHSKnownOne & BKnownZero; 621 KnownOne |= RHSKnownZero & BKnownZero; 622 // assume(v ^ b = a) 623 } else if (match(Arg, 624 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 625 Pred == ICmpInst::ICMP_EQ && 626 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 627 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 628 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 629 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 630 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 631 632 // For those bits in B that are known to be zero, we can propagate known 633 // bits from the RHS to V. For those bits in B that are known to be one, 634 // we can propagate inverted known bits from the RHS to V. 635 KnownZero |= RHSKnownZero & BKnownZero; 636 KnownOne |= RHSKnownOne & BKnownZero; 637 KnownZero |= RHSKnownOne & BKnownOne; 638 KnownOne |= RHSKnownZero & BKnownOne; 639 // assume(~(v ^ b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 646 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 647 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 648 649 // For those bits in B that are known to be zero, we can propagate 650 // inverted known bits from the RHS to V. For those bits in B that are 651 // known to be one, we can propagate known bits from the RHS to V. 652 KnownZero |= RHSKnownOne & BKnownZero; 653 KnownOne |= RHSKnownZero & BKnownZero; 654 KnownZero |= RHSKnownZero & BKnownOne; 655 KnownOne |= RHSKnownOne & BKnownOne; 656 // assume(v << c = a) 657 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 658 m_Value(A))) && 659 Pred == ICmpInst::ICMP_EQ && 660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 661 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 662 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 663 // For those bits in RHS that are known, we can propagate them to known 664 // bits in V shifted to the right by C. 665 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 666 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 667 // assume(~(v << c) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 673 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 674 // For those bits in RHS that are known, we can propagate them inverted 675 // to known bits in V shifted to the right by C. 676 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 677 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 678 // assume(v >> c = a) 679 } else if (match(Arg, 680 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 681 m_AShr(m_V, m_ConstantInt(C))), 682 m_Value(A))) && 683 Pred == ICmpInst::ICMP_EQ && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 686 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 687 // For those bits in RHS that are known, we can propagate them to known 688 // bits in V shifted to the right by C. 689 KnownZero |= RHSKnownZero << C->getZExtValue(); 690 KnownOne |= RHSKnownOne << C->getZExtValue(); 691 // assume(~(v >> c) = a) 692 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 693 m_LShr(m_V, m_ConstantInt(C)), 694 m_AShr(m_V, m_ConstantInt(C)))), 695 m_Value(A))) && 696 Pred == ICmpInst::ICMP_EQ && 697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 700 // For those bits in RHS that are known, we can propagate them inverted 701 // to known bits in V shifted to the right by C. 702 KnownZero |= RHSKnownOne << C->getZExtValue(); 703 KnownOne |= RHSKnownZero << C->getZExtValue(); 704 // assume(v >=_s c) where c is non-negative 705 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 706 Pred == ICmpInst::ICMP_SGE && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 709 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 710 711 if (RHSKnownZero.isNegative()) { 712 // We know that the sign bit is zero. 713 KnownZero |= APInt::getSignBit(BitWidth); 714 } 715 // assume(v >_s c) where c is at least -1. 716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 717 Pred == ICmpInst::ICMP_SGT && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 721 722 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 723 // We know that the sign bit is zero. 724 KnownZero |= APInt::getSignBit(BitWidth); 725 } 726 // assume(v <=_s c) where c is negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SLE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 732 733 if (RHSKnownOne.isNegative()) { 734 // We know that the sign bit is one. 735 KnownOne |= APInt::getSignBit(BitWidth); 736 } 737 // assume(v <_s c) where c is non-positive 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SLT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 743 744 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 745 // We know that the sign bit is one. 746 KnownOne |= APInt::getSignBit(BitWidth); 747 } 748 // assume(v <=_u c) 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_ULE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 754 755 // Whatever high bits in c are zero are known to be zero. 756 KnownZero |= 757 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 758 // assume(v <_u c) 759 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 760 Pred == ICmpInst::ICMP_ULT && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 763 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 764 765 // Whatever high bits in c are zero are known to be zero (if c is a power 766 // of 2, then one more). 767 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 768 KnownZero |= 769 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 770 else 771 KnownZero |= 772 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 773 } 774 } 775 } 776 777 // Compute known bits from a shift operator, including those with a 778 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 779 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 780 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 781 // functors that, given the known-zero or known-one bits respectively, and a 782 // shift amount, compute the implied known-zero or known-one bits of the shift 783 // operator's result respectively for that shift amount. The results from calling 784 // KZF and KOF are conservatively combined for all permitted shift amounts. 785 static void computeKnownBitsFromShiftOperator( 786 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 787 APInt &KnownOne2, unsigned Depth, const Query &Q, 788 function_ref<APInt(const APInt &, unsigned)> KZF, 789 function_ref<APInt(const APInt &, unsigned)> KOF) { 790 unsigned BitWidth = KnownZero.getBitWidth(); 791 792 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 793 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 794 795 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 796 KnownZero = KZF(KnownZero, ShiftAmt); 797 KnownOne = KOF(KnownOne, ShiftAmt); 798 // If there is conflict between KnownZero and KnownOne, this must be an 799 // overflowing left shift, so the shift result is undefined. Clear KnownZero 800 // and KnownOne bits so that other code could propagate this undef. 801 if ((KnownZero & KnownOne) != 0) { 802 KnownZero.clearAllBits(); 803 KnownOne.clearAllBits(); 804 } 805 806 return; 807 } 808 809 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 810 811 // Note: We cannot use KnownZero.getLimitedValue() here, because if 812 // BitWidth > 64 and any upper bits are known, we'll end up returning the 813 // limit value (which implies all bits are known). 814 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 815 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 816 817 // It would be more-clearly correct to use the two temporaries for this 818 // calculation. Reusing the APInts here to prevent unnecessary allocations. 819 KnownZero.clearAllBits(); 820 KnownOne.clearAllBits(); 821 822 // If we know the shifter operand is nonzero, we can sometimes infer more 823 // known bits. However this is expensive to compute, so be lazy about it and 824 // only compute it when absolutely necessary. 825 Optional<bool> ShifterOperandIsNonZero; 826 827 // Early exit if we can't constrain any well-defined shift amount. 828 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 829 ShifterOperandIsNonZero = 830 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 831 if (!*ShifterOperandIsNonZero) 832 return; 833 } 834 835 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 836 837 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 838 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 839 // Combine the shifted known input bits only for those shift amounts 840 // compatible with its known constraints. 841 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 842 continue; 843 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 844 continue; 845 // If we know the shifter is nonzero, we may be able to infer more known 846 // bits. This check is sunk down as far as possible to avoid the expensive 847 // call to isKnownNonZero if the cheaper checks above fail. 848 if (ShiftAmt == 0) { 849 if (!ShifterOperandIsNonZero.hasValue()) 850 ShifterOperandIsNonZero = 851 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 852 if (*ShifterOperandIsNonZero) 853 continue; 854 } 855 856 KnownZero &= KZF(KnownZero2, ShiftAmt); 857 KnownOne &= KOF(KnownOne2, ShiftAmt); 858 } 859 860 // If there are no compatible shift amounts, then we've proven that the shift 861 // amount must be >= the BitWidth, and the result is undefined. We could 862 // return anything we'd like, but we need to make sure the sets of known bits 863 // stay disjoint (it should be better for some other code to actually 864 // propagate the undef than to pick a value here using known bits). 865 if ((KnownZero & KnownOne) != 0) { 866 KnownZero.clearAllBits(); 867 KnownOne.clearAllBits(); 868 } 869 } 870 871 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 872 APInt &KnownOne, unsigned Depth, 873 const Query &Q) { 874 unsigned BitWidth = KnownZero.getBitWidth(); 875 876 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 877 switch (I->getOpcode()) { 878 default: break; 879 case Instruction::Load: 880 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 881 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 882 break; 883 case Instruction::And: { 884 // If either the LHS or the RHS are Zero, the result is zero. 885 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 886 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 887 888 // Output known-1 bits are only known if set in both the LHS & RHS. 889 KnownOne &= KnownOne2; 890 // Output known-0 are known to be clear if zero in either the LHS | RHS. 891 KnownZero |= KnownZero2; 892 893 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 894 // here we handle the more general case of adding any odd number by 895 // matching the form add(x, add(x, y)) where y is odd. 896 // TODO: This could be generalized to clearing any bit set in y where the 897 // following bit is known to be unset in y. 898 Value *Y = nullptr; 899 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 900 m_Value(Y))) || 901 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 902 m_Value(Y)))) { 903 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 904 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 905 if (KnownOne3.countTrailingOnes() > 0) 906 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 907 } 908 break; 909 } 910 case Instruction::Or: { 911 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 912 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 913 914 // Output known-0 bits are only known if clear in both the LHS & RHS. 915 KnownZero &= KnownZero2; 916 // Output known-1 are known to be set if set in either the LHS | RHS. 917 KnownOne |= KnownOne2; 918 break; 919 } 920 case Instruction::Xor: { 921 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 922 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 923 924 // Output known-0 bits are known if clear or set in both the LHS & RHS. 925 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 926 // Output known-1 are known to be set if set in only one of the LHS, RHS. 927 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 928 KnownZero = KnownZeroOut; 929 break; 930 } 931 case Instruction::Mul: { 932 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 933 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 934 KnownOne, KnownZero2, KnownOne2, Depth, Q); 935 break; 936 } 937 case Instruction::UDiv: { 938 // For the purposes of computing leading zeros we can conservatively 939 // treat a udiv as a logical right shift by the power of 2 known to 940 // be less than the denominator. 941 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 942 unsigned LeadZ = KnownZero2.countLeadingOnes(); 943 944 KnownOne2.clearAllBits(); 945 KnownZero2.clearAllBits(); 946 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 947 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 948 if (RHSUnknownLeadingOnes != BitWidth) 949 LeadZ = std::min(BitWidth, 950 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 951 952 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 953 break; 954 } 955 case Instruction::Select: { 956 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 957 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 958 959 const Value *LHS; 960 const Value *RHS; 961 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 962 if (SelectPatternResult::isMinOrMax(SPF)) { 963 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 964 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 965 } else { 966 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 967 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 968 } 969 970 unsigned MaxHighOnes = 0; 971 unsigned MaxHighZeros = 0; 972 if (SPF == SPF_SMAX) { 973 // If both sides are negative, the result is negative. 974 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 975 // We can derive a lower bound on the result by taking the max of the 976 // leading one bits. 977 MaxHighOnes = 978 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 979 // If either side is non-negative, the result is non-negative. 980 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 981 MaxHighZeros = 1; 982 } else if (SPF == SPF_SMIN) { 983 // If both sides are non-negative, the result is non-negative. 984 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 985 // We can derive an upper bound on the result by taking the max of the 986 // leading zero bits. 987 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 988 KnownZero2.countLeadingOnes()); 989 // If either side is negative, the result is negative. 990 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 991 MaxHighOnes = 1; 992 } else if (SPF == SPF_UMAX) { 993 // We can derive a lower bound on the result by taking the max of the 994 // leading one bits. 995 MaxHighOnes = 996 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 997 } else if (SPF == SPF_UMIN) { 998 // We can derive an upper bound on the result by taking the max of the 999 // leading zero bits. 1000 MaxHighZeros = 1001 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1002 } 1003 1004 // Only known if known in both the LHS and RHS. 1005 KnownOne &= KnownOne2; 1006 KnownZero &= KnownZero2; 1007 if (MaxHighOnes > 0) 1008 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1009 if (MaxHighZeros > 0) 1010 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1011 break; 1012 } 1013 case Instruction::FPTrunc: 1014 case Instruction::FPExt: 1015 case Instruction::FPToUI: 1016 case Instruction::FPToSI: 1017 case Instruction::SIToFP: 1018 case Instruction::UIToFP: 1019 break; // Can't work with floating point. 1020 case Instruction::PtrToInt: 1021 case Instruction::IntToPtr: 1022 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1023 // Fall through and handle them the same as zext/trunc. 1024 LLVM_FALLTHROUGH; 1025 case Instruction::ZExt: 1026 case Instruction::Trunc: { 1027 Type *SrcTy = I->getOperand(0)->getType(); 1028 1029 unsigned SrcBitWidth; 1030 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1031 // which fall through here. 1032 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1033 1034 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1035 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1036 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1037 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1038 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1039 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1040 // Any top bits are known to be zero. 1041 if (BitWidth > SrcBitWidth) 1042 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1043 break; 1044 } 1045 case Instruction::BitCast: { 1046 Type *SrcTy = I->getOperand(0)->getType(); 1047 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1048 // TODO: For now, not handling conversions like: 1049 // (bitcast i64 %x to <2 x i32>) 1050 !I->getType()->isVectorTy()) { 1051 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1052 break; 1053 } 1054 break; 1055 } 1056 case Instruction::SExt: { 1057 // Compute the bits in the result that are not present in the input. 1058 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1059 1060 KnownZero = KnownZero.trunc(SrcBitWidth); 1061 KnownOne = KnownOne.trunc(SrcBitWidth); 1062 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1063 KnownZero = KnownZero.zext(BitWidth); 1064 KnownOne = KnownOne.zext(BitWidth); 1065 1066 // If the sign bit of the input is known set or clear, then we know the 1067 // top bits of the result. 1068 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1069 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1070 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1071 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1072 break; 1073 } 1074 case Instruction::Shl: { 1075 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1076 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1077 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1078 APInt KZResult = 1079 (KnownZero << ShiftAmt) | 1080 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1081 // If this shift has "nsw" keyword, then the result is either a poison 1082 // value or has the same sign bit as the first operand. 1083 if (NSW && KnownZero.isNegative()) 1084 KZResult.setBit(BitWidth - 1); 1085 return KZResult; 1086 }; 1087 1088 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1089 APInt KOResult = KnownOne << ShiftAmt; 1090 if (NSW && KnownOne.isNegative()) 1091 KOResult.setBit(BitWidth - 1); 1092 return KOResult; 1093 }; 1094 1095 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1096 KnownZero2, KnownOne2, Depth, Q, KZF, 1097 KOF); 1098 break; 1099 } 1100 case Instruction::LShr: { 1101 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1102 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1103 return APIntOps::lshr(KnownZero, ShiftAmt) | 1104 // High bits known zero. 1105 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1106 }; 1107 1108 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1109 return APIntOps::lshr(KnownOne, ShiftAmt); 1110 }; 1111 1112 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1113 KnownZero2, KnownOne2, Depth, Q, KZF, 1114 KOF); 1115 break; 1116 } 1117 case Instruction::AShr: { 1118 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1119 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1120 return APIntOps::ashr(KnownZero, ShiftAmt); 1121 }; 1122 1123 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1124 return APIntOps::ashr(KnownOne, ShiftAmt); 1125 }; 1126 1127 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1128 KnownZero2, KnownOne2, Depth, Q, KZF, 1129 KOF); 1130 break; 1131 } 1132 case Instruction::Sub: { 1133 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1134 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1135 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1136 Q); 1137 break; 1138 } 1139 case Instruction::Add: { 1140 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1141 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1142 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1143 Q); 1144 break; 1145 } 1146 case Instruction::SRem: 1147 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1148 APInt RA = Rem->getValue().abs(); 1149 if (RA.isPowerOf2()) { 1150 APInt LowBits = RA - 1; 1151 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1152 Q); 1153 1154 // The low bits of the first operand are unchanged by the srem. 1155 KnownZero = KnownZero2 & LowBits; 1156 KnownOne = KnownOne2 & LowBits; 1157 1158 // If the first operand is non-negative or has all low bits zero, then 1159 // the upper bits are all zero. 1160 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1161 KnownZero |= ~LowBits; 1162 1163 // If the first operand is negative and not all low bits are zero, then 1164 // the upper bits are all one. 1165 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1166 KnownOne |= ~LowBits; 1167 1168 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1169 } 1170 } 1171 1172 // The sign bit is the LHS's sign bit, except when the result of the 1173 // remainder is zero. 1174 if (KnownZero.isNonNegative()) { 1175 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1176 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1177 Q); 1178 // If it's known zero, our sign bit is also zero. 1179 if (LHSKnownZero.isNegative()) 1180 KnownZero.setBit(BitWidth - 1); 1181 } 1182 1183 break; 1184 case Instruction::URem: { 1185 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1186 const APInt &RA = Rem->getValue(); 1187 if (RA.isPowerOf2()) { 1188 APInt LowBits = (RA - 1); 1189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1190 KnownZero |= ~LowBits; 1191 KnownOne &= LowBits; 1192 break; 1193 } 1194 } 1195 1196 // Since the result is less than or equal to either operand, any leading 1197 // zero bits in either operand must also exist in the result. 1198 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1199 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1200 1201 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1202 KnownZero2.countLeadingOnes()); 1203 KnownOne.clearAllBits(); 1204 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1205 break; 1206 } 1207 1208 case Instruction::Alloca: { 1209 const AllocaInst *AI = cast<AllocaInst>(I); 1210 unsigned Align = AI->getAlignment(); 1211 if (Align == 0) 1212 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1213 1214 if (Align > 0) 1215 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1216 break; 1217 } 1218 case Instruction::GetElementPtr: { 1219 // Analyze all of the subscripts of this getelementptr instruction 1220 // to determine if we can prove known low zero bits. 1221 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1222 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1223 Q); 1224 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1225 1226 gep_type_iterator GTI = gep_type_begin(I); 1227 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1228 Value *Index = I->getOperand(i); 1229 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1230 // Handle struct member offset arithmetic. 1231 1232 // Handle case when index is vector zeroinitializer 1233 Constant *CIndex = cast<Constant>(Index); 1234 if (CIndex->isZeroValue()) 1235 continue; 1236 1237 if (CIndex->getType()->isVectorTy()) 1238 Index = CIndex->getSplatValue(); 1239 1240 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1241 const StructLayout *SL = Q.DL.getStructLayout(STy); 1242 uint64_t Offset = SL->getElementOffset(Idx); 1243 TrailZ = std::min<unsigned>(TrailZ, 1244 countTrailingZeros(Offset)); 1245 } else { 1246 // Handle array index arithmetic. 1247 Type *IndexedTy = GTI.getIndexedType(); 1248 if (!IndexedTy->isSized()) { 1249 TrailZ = 0; 1250 break; 1251 } 1252 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1253 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1254 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1255 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1256 TrailZ = std::min(TrailZ, 1257 unsigned(countTrailingZeros(TypeSize) + 1258 LocalKnownZero.countTrailingOnes())); 1259 } 1260 } 1261 1262 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1263 break; 1264 } 1265 case Instruction::PHI: { 1266 const PHINode *P = cast<PHINode>(I); 1267 // Handle the case of a simple two-predecessor recurrence PHI. 1268 // There's a lot more that could theoretically be done here, but 1269 // this is sufficient to catch some interesting cases. 1270 if (P->getNumIncomingValues() == 2) { 1271 for (unsigned i = 0; i != 2; ++i) { 1272 Value *L = P->getIncomingValue(i); 1273 Value *R = P->getIncomingValue(!i); 1274 Operator *LU = dyn_cast<Operator>(L); 1275 if (!LU) 1276 continue; 1277 unsigned Opcode = LU->getOpcode(); 1278 // Check for operations that have the property that if 1279 // both their operands have low zero bits, the result 1280 // will have low zero bits. 1281 if (Opcode == Instruction::Add || 1282 Opcode == Instruction::Sub || 1283 Opcode == Instruction::And || 1284 Opcode == Instruction::Or || 1285 Opcode == Instruction::Mul) { 1286 Value *LL = LU->getOperand(0); 1287 Value *LR = LU->getOperand(1); 1288 // Find a recurrence. 1289 if (LL == I) 1290 L = LR; 1291 else if (LR == I) 1292 L = LL; 1293 else 1294 break; 1295 // Ok, we have a PHI of the form L op= R. Check for low 1296 // zero bits. 1297 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1298 1299 // We need to take the minimum number of known bits 1300 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1301 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1302 1303 KnownZero = APInt::getLowBitsSet(BitWidth, 1304 std::min(KnownZero2.countTrailingOnes(), 1305 KnownZero3.countTrailingOnes())); 1306 break; 1307 } 1308 } 1309 } 1310 1311 // Unreachable blocks may have zero-operand PHI nodes. 1312 if (P->getNumIncomingValues() == 0) 1313 break; 1314 1315 // Otherwise take the unions of the known bit sets of the operands, 1316 // taking conservative care to avoid excessive recursion. 1317 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1318 // Skip if every incoming value references to ourself. 1319 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1320 break; 1321 1322 KnownZero = APInt::getAllOnesValue(BitWidth); 1323 KnownOne = APInt::getAllOnesValue(BitWidth); 1324 for (Value *IncValue : P->incoming_values()) { 1325 // Skip direct self references. 1326 if (IncValue == P) continue; 1327 1328 KnownZero2 = APInt(BitWidth, 0); 1329 KnownOne2 = APInt(BitWidth, 0); 1330 // Recurse, but cap the recursion to one level, because we don't 1331 // want to waste time spinning around in loops. 1332 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1333 KnownZero &= KnownZero2; 1334 KnownOne &= KnownOne2; 1335 // If all bits have been ruled out, there's no need to check 1336 // more operands. 1337 if (!KnownZero && !KnownOne) 1338 break; 1339 } 1340 } 1341 break; 1342 } 1343 case Instruction::Call: 1344 case Instruction::Invoke: 1345 // If range metadata is attached to this call, set known bits from that, 1346 // and then intersect with known bits based on other properties of the 1347 // function. 1348 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1349 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1350 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1351 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1352 KnownZero |= KnownZero2; 1353 KnownOne |= KnownOne2; 1354 } 1355 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1356 switch (II->getIntrinsicID()) { 1357 default: break; 1358 case Intrinsic::bswap: 1359 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1360 KnownZero |= KnownZero2.byteSwap(); 1361 KnownOne |= KnownOne2.byteSwap(); 1362 break; 1363 case Intrinsic::ctlz: 1364 case Intrinsic::cttz: { 1365 unsigned LowBits = Log2_32(BitWidth)+1; 1366 // If this call is undefined for 0, the result will be less than 2^n. 1367 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1368 LowBits -= 1; 1369 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1370 break; 1371 } 1372 case Intrinsic::ctpop: { 1373 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1374 // We can bound the space the count needs. Also, bits known to be zero 1375 // can't contribute to the population. 1376 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1377 unsigned LeadingZeros = 1378 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1379 assert(LeadingZeros <= BitWidth); 1380 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1381 KnownOne &= ~KnownZero; 1382 // TODO: we could bound KnownOne using the lower bound on the number 1383 // of bits which might be set provided by popcnt KnownOne2. 1384 break; 1385 } 1386 case Intrinsic::x86_sse42_crc32_64_64: 1387 KnownZero |= APInt::getHighBitsSet(64, 32); 1388 break; 1389 } 1390 } 1391 break; 1392 case Instruction::ExtractValue: 1393 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1394 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1395 if (EVI->getNumIndices() != 1) break; 1396 if (EVI->getIndices()[0] == 0) { 1397 switch (II->getIntrinsicID()) { 1398 default: break; 1399 case Intrinsic::uadd_with_overflow: 1400 case Intrinsic::sadd_with_overflow: 1401 computeKnownBitsAddSub(true, II->getArgOperand(0), 1402 II->getArgOperand(1), false, KnownZero, 1403 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1404 break; 1405 case Intrinsic::usub_with_overflow: 1406 case Intrinsic::ssub_with_overflow: 1407 computeKnownBitsAddSub(false, II->getArgOperand(0), 1408 II->getArgOperand(1), false, KnownZero, 1409 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1410 break; 1411 case Intrinsic::umul_with_overflow: 1412 case Intrinsic::smul_with_overflow: 1413 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1414 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1415 Q); 1416 break; 1417 } 1418 } 1419 } 1420 } 1421 } 1422 1423 /// Determine which bits of V are known to be either zero or one and return 1424 /// them in the KnownZero/KnownOne bit sets. 1425 /// 1426 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1427 /// we cannot optimize based on the assumption that it is zero without changing 1428 /// it to be an explicit zero. If we don't change it to zero, other code could 1429 /// optimized based on the contradictory assumption that it is non-zero. 1430 /// Because instcombine aggressively folds operations with undef args anyway, 1431 /// this won't lose us code quality. 1432 /// 1433 /// This function is defined on values with integer type, values with pointer 1434 /// type, and vectors of integers. In the case 1435 /// where V is a vector, known zero, and known one values are the 1436 /// same width as the vector element, and the bit is set only if it is true 1437 /// for all of the elements in the vector. 1438 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1439 unsigned Depth, const Query &Q) { 1440 assert(V && "No Value?"); 1441 assert(Depth <= MaxDepth && "Limit Search Depth"); 1442 unsigned BitWidth = KnownZero.getBitWidth(); 1443 1444 assert((V->getType()->isIntOrIntVectorTy() || 1445 V->getType()->getScalarType()->isPointerTy()) && 1446 "Not integer or pointer type!"); 1447 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1448 (!V->getType()->isIntOrIntVectorTy() || 1449 V->getType()->getScalarSizeInBits() == BitWidth) && 1450 KnownZero.getBitWidth() == BitWidth && 1451 KnownOne.getBitWidth() == BitWidth && 1452 "V, KnownOne and KnownZero should have same BitWidth"); 1453 1454 const APInt *C; 1455 if (match(V, m_APInt(C))) { 1456 // We know all of the bits for a scalar constant or a splat vector constant! 1457 KnownOne = *C; 1458 KnownZero = ~KnownOne; 1459 return; 1460 } 1461 // Null and aggregate-zero are all-zeros. 1462 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1463 KnownOne.clearAllBits(); 1464 KnownZero = APInt::getAllOnesValue(BitWidth); 1465 return; 1466 } 1467 // Handle a constant vector by taking the intersection of the known bits of 1468 // each element. 1469 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1470 // We know that CDS must be a vector of integers. Take the intersection of 1471 // each element. 1472 KnownZero.setAllBits(); KnownOne.setAllBits(); 1473 APInt Elt(KnownZero.getBitWidth(), 0); 1474 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1475 Elt = CDS->getElementAsInteger(i); 1476 KnownZero &= ~Elt; 1477 KnownOne &= Elt; 1478 } 1479 return; 1480 } 1481 1482 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1483 // We know that CV must be a vector of integers. Take the intersection of 1484 // each element. 1485 KnownZero.setAllBits(); KnownOne.setAllBits(); 1486 APInt Elt(KnownZero.getBitWidth(), 0); 1487 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1488 Constant *Element = CV->getAggregateElement(i); 1489 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1490 if (!ElementCI) { 1491 KnownZero.clearAllBits(); 1492 KnownOne.clearAllBits(); 1493 return; 1494 } 1495 Elt = ElementCI->getValue(); 1496 KnownZero &= ~Elt; 1497 KnownOne &= Elt; 1498 } 1499 return; 1500 } 1501 1502 // Start out not knowing anything. 1503 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1504 1505 // We can't imply anything about undefs. 1506 if (isa<UndefValue>(V)) 1507 return; 1508 1509 // There's no point in looking through other users of ConstantData for 1510 // assumptions. Confirm that we've handled them all. 1511 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1512 1513 // Limit search depth. 1514 // All recursive calls that increase depth must come after this. 1515 if (Depth == MaxDepth) 1516 return; 1517 1518 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1519 // the bits of its aliasee. 1520 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1521 if (!GA->isInterposable()) 1522 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1523 return; 1524 } 1525 1526 if (const Operator *I = dyn_cast<Operator>(V)) 1527 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1528 1529 // Aligned pointers have trailing zeros - refine KnownZero set 1530 if (V->getType()->isPointerTy()) { 1531 unsigned Align = V->getPointerAlignment(Q.DL); 1532 if (Align) 1533 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1534 } 1535 1536 // computeKnownBitsFromAssume strictly refines KnownZero and 1537 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1538 1539 // Check whether a nearby assume intrinsic can determine some known bits. 1540 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1541 1542 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1543 } 1544 1545 /// Determine whether the sign bit is known to be zero or one. 1546 /// Convenience wrapper around computeKnownBits. 1547 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1548 unsigned Depth, const Query &Q) { 1549 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1550 if (!BitWidth) { 1551 KnownZero = false; 1552 KnownOne = false; 1553 return; 1554 } 1555 APInt ZeroBits(BitWidth, 0); 1556 APInt OneBits(BitWidth, 0); 1557 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1558 KnownOne = OneBits[BitWidth - 1]; 1559 KnownZero = ZeroBits[BitWidth - 1]; 1560 } 1561 1562 /// Return true if the given value is known to have exactly one 1563 /// bit set when defined. For vectors return true if every element is known to 1564 /// be a power of two when defined. Supports values with integer or pointer 1565 /// types and vectors of integers. 1566 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1567 const Query &Q) { 1568 if (const Constant *C = dyn_cast<Constant>(V)) { 1569 if (C->isNullValue()) 1570 return OrZero; 1571 1572 const APInt *ConstIntOrConstSplatInt; 1573 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1574 return ConstIntOrConstSplatInt->isPowerOf2(); 1575 } 1576 1577 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1578 // it is shifted off the end then the result is undefined. 1579 if (match(V, m_Shl(m_One(), m_Value()))) 1580 return true; 1581 1582 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1583 // bottom. If it is shifted off the bottom then the result is undefined. 1584 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1585 return true; 1586 1587 // The remaining tests are all recursive, so bail out if we hit the limit. 1588 if (Depth++ == MaxDepth) 1589 return false; 1590 1591 Value *X = nullptr, *Y = nullptr; 1592 // A shift left or a logical shift right of a power of two is a power of two 1593 // or zero. 1594 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1595 match(V, m_LShr(m_Value(X), m_Value())))) 1596 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1597 1598 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1599 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1600 1601 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1602 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1603 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1604 1605 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1606 // A power of two and'd with anything is a power of two or zero. 1607 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1608 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1609 return true; 1610 // X & (-X) is always a power of two or zero. 1611 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1612 return true; 1613 return false; 1614 } 1615 1616 // Adding a power-of-two or zero to the same power-of-two or zero yields 1617 // either the original power-of-two, a larger power-of-two or zero. 1618 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1619 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1620 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1621 if (match(X, m_And(m_Specific(Y), m_Value())) || 1622 match(X, m_And(m_Value(), m_Specific(Y)))) 1623 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1624 return true; 1625 if (match(Y, m_And(m_Specific(X), m_Value())) || 1626 match(Y, m_And(m_Value(), m_Specific(X)))) 1627 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1628 return true; 1629 1630 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1631 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1632 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1633 1634 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1635 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1636 // If i8 V is a power of two or zero: 1637 // ZeroBits: 1 1 1 0 1 1 1 1 1638 // ~ZeroBits: 0 0 0 1 0 0 0 0 1639 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1640 // If OrZero isn't set, we cannot give back a zero result. 1641 // Make sure either the LHS or RHS has a bit set. 1642 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1643 return true; 1644 } 1645 } 1646 1647 // An exact divide or right shift can only shift off zero bits, so the result 1648 // is a power of two only if the first operand is a power of two and not 1649 // copying a sign bit (sdiv int_min, 2). 1650 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1651 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1652 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1653 Depth, Q); 1654 } 1655 1656 return false; 1657 } 1658 1659 /// \brief Test whether a GEP's result is known to be non-null. 1660 /// 1661 /// Uses properties inherent in a GEP to try to determine whether it is known 1662 /// to be non-null. 1663 /// 1664 /// Currently this routine does not support vector GEPs. 1665 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1666 const Query &Q) { 1667 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1668 return false; 1669 1670 // FIXME: Support vector-GEPs. 1671 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1672 1673 // If the base pointer is non-null, we cannot walk to a null address with an 1674 // inbounds GEP in address space zero. 1675 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1676 return true; 1677 1678 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1679 // If so, then the GEP cannot produce a null pointer, as doing so would 1680 // inherently violate the inbounds contract within address space zero. 1681 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1682 GTI != GTE; ++GTI) { 1683 // Struct types are easy -- they must always be indexed by a constant. 1684 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1685 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1686 unsigned ElementIdx = OpC->getZExtValue(); 1687 const StructLayout *SL = Q.DL.getStructLayout(STy); 1688 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1689 if (ElementOffset > 0) 1690 return true; 1691 continue; 1692 } 1693 1694 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1695 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1696 continue; 1697 1698 // Fast path the constant operand case both for efficiency and so we don't 1699 // increment Depth when just zipping down an all-constant GEP. 1700 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1701 if (!OpC->isZero()) 1702 return true; 1703 continue; 1704 } 1705 1706 // We post-increment Depth here because while isKnownNonZero increments it 1707 // as well, when we pop back up that increment won't persist. We don't want 1708 // to recurse 10k times just because we have 10k GEP operands. We don't 1709 // bail completely out because we want to handle constant GEPs regardless 1710 // of depth. 1711 if (Depth++ >= MaxDepth) 1712 continue; 1713 1714 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1715 return true; 1716 } 1717 1718 return false; 1719 } 1720 1721 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1722 /// ensure that the value it's attached to is never Value? 'RangeType' is 1723 /// is the type of the value described by the range. 1724 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1725 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1726 assert(NumRanges >= 1); 1727 for (unsigned i = 0; i < NumRanges; ++i) { 1728 ConstantInt *Lower = 1729 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1730 ConstantInt *Upper = 1731 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1732 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1733 if (Range.contains(Value)) 1734 return false; 1735 } 1736 return true; 1737 } 1738 1739 /// Return true if the given value is known to be non-zero when defined. 1740 /// For vectors return true if every element is known to be non-zero when 1741 /// defined. Supports values with integer or pointer type and vectors of 1742 /// integers. 1743 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1744 if (auto *C = dyn_cast<Constant>(V)) { 1745 if (C->isNullValue()) 1746 return false; 1747 if (isa<ConstantInt>(C)) 1748 // Must be non-zero due to null test above. 1749 return true; 1750 1751 // For constant vectors, check that all elements are undefined or known 1752 // non-zero to determine that the whole vector is known non-zero. 1753 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1754 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1755 Constant *Elt = C->getAggregateElement(i); 1756 if (!Elt || Elt->isNullValue()) 1757 return false; 1758 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1759 return false; 1760 } 1761 return true; 1762 } 1763 1764 return false; 1765 } 1766 1767 if (auto *I = dyn_cast<Instruction>(V)) { 1768 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1769 // If the possible ranges don't contain zero, then the value is 1770 // definitely non-zero. 1771 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1772 const APInt ZeroValue(Ty->getBitWidth(), 0); 1773 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1774 return true; 1775 } 1776 } 1777 } 1778 1779 // The remaining tests are all recursive, so bail out if we hit the limit. 1780 if (Depth++ >= MaxDepth) 1781 return false; 1782 1783 // Check for pointer simplifications. 1784 if (V->getType()->isPointerTy()) { 1785 if (isKnownNonNull(V)) 1786 return true; 1787 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1788 if (isGEPKnownNonNull(GEP, Depth, Q)) 1789 return true; 1790 } 1791 1792 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1793 1794 // X | Y != 0 if X != 0 or Y != 0. 1795 Value *X = nullptr, *Y = nullptr; 1796 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1797 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1798 1799 // ext X != 0 if X != 0. 1800 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1801 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1802 1803 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1804 // if the lowest bit is shifted off the end. 1805 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1806 // shl nuw can't remove any non-zero bits. 1807 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1808 if (BO->hasNoUnsignedWrap()) 1809 return isKnownNonZero(X, Depth, Q); 1810 1811 APInt KnownZero(BitWidth, 0); 1812 APInt KnownOne(BitWidth, 0); 1813 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1814 if (KnownOne[0]) 1815 return true; 1816 } 1817 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1818 // defined if the sign bit is shifted off the end. 1819 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1820 // shr exact can only shift out zero bits. 1821 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1822 if (BO->isExact()) 1823 return isKnownNonZero(X, Depth, Q); 1824 1825 bool XKnownNonNegative, XKnownNegative; 1826 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1827 if (XKnownNegative) 1828 return true; 1829 1830 // If the shifter operand is a constant, and all of the bits shifted 1831 // out are known to be zero, and X is known non-zero then at least one 1832 // non-zero bit must remain. 1833 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1834 APInt KnownZero(BitWidth, 0); 1835 APInt KnownOne(BitWidth, 0); 1836 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1837 1838 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1839 // Is there a known one in the portion not shifted out? 1840 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1841 return true; 1842 // Are all the bits to be shifted out known zero? 1843 if (KnownZero.countTrailingOnes() >= ShiftVal) 1844 return isKnownNonZero(X, Depth, Q); 1845 } 1846 } 1847 // div exact can only produce a zero if the dividend is zero. 1848 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1849 return isKnownNonZero(X, Depth, Q); 1850 } 1851 // X + Y. 1852 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1853 bool XKnownNonNegative, XKnownNegative; 1854 bool YKnownNonNegative, YKnownNegative; 1855 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1856 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1857 1858 // If X and Y are both non-negative (as signed values) then their sum is not 1859 // zero unless both X and Y are zero. 1860 if (XKnownNonNegative && YKnownNonNegative) 1861 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1862 return true; 1863 1864 // If X and Y are both negative (as signed values) then their sum is not 1865 // zero unless both X and Y equal INT_MIN. 1866 if (BitWidth && XKnownNegative && YKnownNegative) { 1867 APInt KnownZero(BitWidth, 0); 1868 APInt KnownOne(BitWidth, 0); 1869 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1870 // The sign bit of X is set. If some other bit is set then X is not equal 1871 // to INT_MIN. 1872 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1873 if ((KnownOne & Mask) != 0) 1874 return true; 1875 // The sign bit of Y is set. If some other bit is set then Y is not equal 1876 // to INT_MIN. 1877 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1878 if ((KnownOne & Mask) != 0) 1879 return true; 1880 } 1881 1882 // The sum of a non-negative number and a power of two is not zero. 1883 if (XKnownNonNegative && 1884 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1885 return true; 1886 if (YKnownNonNegative && 1887 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1888 return true; 1889 } 1890 // X * Y. 1891 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1892 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1893 // If X and Y are non-zero then so is X * Y as long as the multiplication 1894 // does not overflow. 1895 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1896 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1897 return true; 1898 } 1899 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1900 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1901 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1902 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1903 return true; 1904 } 1905 // PHI 1906 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1907 // Try and detect a recurrence that monotonically increases from a 1908 // starting value, as these are common as induction variables. 1909 if (PN->getNumIncomingValues() == 2) { 1910 Value *Start = PN->getIncomingValue(0); 1911 Value *Induction = PN->getIncomingValue(1); 1912 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1913 std::swap(Start, Induction); 1914 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1915 if (!C->isZero() && !C->isNegative()) { 1916 ConstantInt *X; 1917 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1918 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1919 !X->isNegative()) 1920 return true; 1921 } 1922 } 1923 } 1924 // Check if all incoming values are non-zero constant. 1925 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1926 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1927 }); 1928 if (AllNonZeroConstants) 1929 return true; 1930 } 1931 1932 if (!BitWidth) return false; 1933 APInt KnownZero(BitWidth, 0); 1934 APInt KnownOne(BitWidth, 0); 1935 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1936 return KnownOne != 0; 1937 } 1938 1939 /// Return true if V2 == V1 + X, where X is known non-zero. 1940 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1941 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1942 if (!BO || BO->getOpcode() != Instruction::Add) 1943 return false; 1944 Value *Op = nullptr; 1945 if (V2 == BO->getOperand(0)) 1946 Op = BO->getOperand(1); 1947 else if (V2 == BO->getOperand(1)) 1948 Op = BO->getOperand(0); 1949 else 1950 return false; 1951 return isKnownNonZero(Op, 0, Q); 1952 } 1953 1954 /// Return true if it is known that V1 != V2. 1955 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1956 if (V1->getType()->isVectorTy() || V1 == V2) 1957 return false; 1958 if (V1->getType() != V2->getType()) 1959 // We can't look through casts yet. 1960 return false; 1961 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1962 return true; 1963 1964 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1965 // Are any known bits in V1 contradictory to known bits in V2? If V1 1966 // has a known zero where V2 has a known one, they must not be equal. 1967 auto BitWidth = Ty->getBitWidth(); 1968 APInt KnownZero1(BitWidth, 0); 1969 APInt KnownOne1(BitWidth, 0); 1970 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1971 APInt KnownZero2(BitWidth, 0); 1972 APInt KnownOne2(BitWidth, 0); 1973 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1974 1975 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1976 if (OppositeBits.getBoolValue()) 1977 return true; 1978 } 1979 return false; 1980 } 1981 1982 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1983 /// simplify operations downstream. Mask is known to be zero for bits that V 1984 /// cannot have. 1985 /// 1986 /// This function is defined on values with integer type, values with pointer 1987 /// type, and vectors of integers. In the case 1988 /// where V is a vector, the mask, known zero, and known one values are the 1989 /// same width as the vector element, and the bit is set only if it is true 1990 /// for all of the elements in the vector. 1991 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 1992 const Query &Q) { 1993 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1994 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1995 return (KnownZero & Mask) == Mask; 1996 } 1997 1998 /// For vector constants, loop over the elements and find the constant with the 1999 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2000 /// or if any element was not analyzed; otherwise, return the count for the 2001 /// element with the minimum number of sign bits. 2002 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2003 unsigned TyBits) { 2004 const auto *CV = dyn_cast<Constant>(V); 2005 if (!CV || !CV->getType()->isVectorTy()) 2006 return 0; 2007 2008 unsigned MinSignBits = TyBits; 2009 unsigned NumElts = CV->getType()->getVectorNumElements(); 2010 for (unsigned i = 0; i != NumElts; ++i) { 2011 // If we find a non-ConstantInt, bail out. 2012 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2013 if (!Elt) 2014 return 0; 2015 2016 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2017 APInt EltVal = Elt->getValue(); 2018 if (EltVal.isNegative()) 2019 EltVal = ~EltVal; 2020 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2021 } 2022 2023 return MinSignBits; 2024 } 2025 2026 /// Return the number of times the sign bit of the register is replicated into 2027 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2028 /// (itself), but other cases can give us information. For example, immediately 2029 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2030 /// other, so we return 3. For vectors, return the number of sign bits for the 2031 /// vector element with the mininum number of known sign bits. 2032 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2033 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2034 unsigned Tmp, Tmp2; 2035 unsigned FirstAnswer = 1; 2036 2037 // Note that ConstantInt is handled by the general computeKnownBits case 2038 // below. 2039 2040 if (Depth == 6) 2041 return 1; // Limit search depth. 2042 2043 const Operator *U = dyn_cast<Operator>(V); 2044 switch (Operator::getOpcode(V)) { 2045 default: break; 2046 case Instruction::SExt: 2047 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2048 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2049 2050 case Instruction::SDiv: { 2051 const APInt *Denominator; 2052 // sdiv X, C -> adds log(C) sign bits. 2053 if (match(U->getOperand(1), m_APInt(Denominator))) { 2054 2055 // Ignore non-positive denominator. 2056 if (!Denominator->isStrictlyPositive()) 2057 break; 2058 2059 // Calculate the incoming numerator bits. 2060 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2061 2062 // Add floor(log(C)) bits to the numerator bits. 2063 return std::min(TyBits, NumBits + Denominator->logBase2()); 2064 } 2065 break; 2066 } 2067 2068 case Instruction::SRem: { 2069 const APInt *Denominator; 2070 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2071 // positive constant. This let us put a lower bound on the number of sign 2072 // bits. 2073 if (match(U->getOperand(1), m_APInt(Denominator))) { 2074 2075 // Ignore non-positive denominator. 2076 if (!Denominator->isStrictlyPositive()) 2077 break; 2078 2079 // Calculate the incoming numerator bits. SRem by a positive constant 2080 // can't lower the number of sign bits. 2081 unsigned NumrBits = 2082 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2083 2084 // Calculate the leading sign bit constraints by examining the 2085 // denominator. Given that the denominator is positive, there are two 2086 // cases: 2087 // 2088 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2089 // (1 << ceilLogBase2(C)). 2090 // 2091 // 2. the numerator is negative. Then the result range is (-C,0] and 2092 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2093 // 2094 // Thus a lower bound on the number of sign bits is `TyBits - 2095 // ceilLogBase2(C)`. 2096 2097 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2098 return std::max(NumrBits, ResBits); 2099 } 2100 break; 2101 } 2102 2103 case Instruction::AShr: { 2104 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2105 // ashr X, C -> adds C sign bits. Vectors too. 2106 const APInt *ShAmt; 2107 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2108 Tmp += ShAmt->getZExtValue(); 2109 if (Tmp > TyBits) Tmp = TyBits; 2110 } 2111 return Tmp; 2112 } 2113 case Instruction::Shl: { 2114 const APInt *ShAmt; 2115 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2116 // shl destroys sign bits. 2117 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2118 Tmp2 = ShAmt->getZExtValue(); 2119 if (Tmp2 >= TyBits || // Bad shift. 2120 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2121 return Tmp - Tmp2; 2122 } 2123 break; 2124 } 2125 case Instruction::And: 2126 case Instruction::Or: 2127 case Instruction::Xor: // NOT is handled here. 2128 // Logical binary ops preserve the number of sign bits at the worst. 2129 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2130 if (Tmp != 1) { 2131 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2132 FirstAnswer = std::min(Tmp, Tmp2); 2133 // We computed what we know about the sign bits as our first 2134 // answer. Now proceed to the generic code that uses 2135 // computeKnownBits, and pick whichever answer is better. 2136 } 2137 break; 2138 2139 case Instruction::Select: 2140 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2141 if (Tmp == 1) return 1; // Early out. 2142 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2143 return std::min(Tmp, Tmp2); 2144 2145 case Instruction::Add: 2146 // Add can have at most one carry bit. Thus we know that the output 2147 // is, at worst, one more bit than the inputs. 2148 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2149 if (Tmp == 1) return 1; // Early out. 2150 2151 // Special case decrementing a value (ADD X, -1): 2152 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2153 if (CRHS->isAllOnesValue()) { 2154 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2155 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2156 2157 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2158 // sign bits set. 2159 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2160 return TyBits; 2161 2162 // If we are subtracting one from a positive number, there is no carry 2163 // out of the result. 2164 if (KnownZero.isNegative()) 2165 return Tmp; 2166 } 2167 2168 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2169 if (Tmp2 == 1) return 1; 2170 return std::min(Tmp, Tmp2)-1; 2171 2172 case Instruction::Sub: 2173 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2174 if (Tmp2 == 1) return 1; 2175 2176 // Handle NEG. 2177 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2178 if (CLHS->isNullValue()) { 2179 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2180 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2181 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2182 // sign bits set. 2183 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2184 return TyBits; 2185 2186 // If the input is known to be positive (the sign bit is known clear), 2187 // the output of the NEG has the same number of sign bits as the input. 2188 if (KnownZero.isNegative()) 2189 return Tmp2; 2190 2191 // Otherwise, we treat this like a SUB. 2192 } 2193 2194 // Sub can have at most one carry bit. Thus we know that the output 2195 // is, at worst, one more bit than the inputs. 2196 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2197 if (Tmp == 1) return 1; // Early out. 2198 return std::min(Tmp, Tmp2)-1; 2199 2200 case Instruction::PHI: { 2201 const PHINode *PN = cast<PHINode>(U); 2202 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2203 // Don't analyze large in-degree PHIs. 2204 if (NumIncomingValues > 4) break; 2205 // Unreachable blocks may have zero-operand PHI nodes. 2206 if (NumIncomingValues == 0) break; 2207 2208 // Take the minimum of all incoming values. This can't infinitely loop 2209 // because of our depth threshold. 2210 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2211 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2212 if (Tmp == 1) return Tmp; 2213 Tmp = std::min( 2214 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2215 } 2216 return Tmp; 2217 } 2218 2219 case Instruction::Trunc: 2220 // FIXME: it's tricky to do anything useful for this, but it is an important 2221 // case for targets like X86. 2222 break; 2223 } 2224 2225 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2226 // use this information. 2227 2228 // If we can examine all elements of a vector constant successfully, we're 2229 // done (we can't do any better than that). If not, keep trying. 2230 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2231 return VecSignBits; 2232 2233 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2234 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2235 2236 // If we know that the sign bit is either zero or one, determine the number of 2237 // identical bits in the top of the input value. 2238 if (KnownZero.isNegative()) 2239 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2240 2241 if (KnownOne.isNegative()) 2242 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2243 2244 // computeKnownBits gave us no extra information about the top bits. 2245 return FirstAnswer; 2246 } 2247 2248 /// This function computes the integer multiple of Base that equals V. 2249 /// If successful, it returns true and returns the multiple in 2250 /// Multiple. If unsuccessful, it returns false. It looks 2251 /// through SExt instructions only if LookThroughSExt is true. 2252 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2253 bool LookThroughSExt, unsigned Depth) { 2254 const unsigned MaxDepth = 6; 2255 2256 assert(V && "No Value?"); 2257 assert(Depth <= MaxDepth && "Limit Search Depth"); 2258 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2259 2260 Type *T = V->getType(); 2261 2262 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2263 2264 if (Base == 0) 2265 return false; 2266 2267 if (Base == 1) { 2268 Multiple = V; 2269 return true; 2270 } 2271 2272 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2273 Constant *BaseVal = ConstantInt::get(T, Base); 2274 if (CO && CO == BaseVal) { 2275 // Multiple is 1. 2276 Multiple = ConstantInt::get(T, 1); 2277 return true; 2278 } 2279 2280 if (CI && CI->getZExtValue() % Base == 0) { 2281 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2282 return true; 2283 } 2284 2285 if (Depth == MaxDepth) return false; // Limit search depth. 2286 2287 Operator *I = dyn_cast<Operator>(V); 2288 if (!I) return false; 2289 2290 switch (I->getOpcode()) { 2291 default: break; 2292 case Instruction::SExt: 2293 if (!LookThroughSExt) return false; 2294 // otherwise fall through to ZExt 2295 case Instruction::ZExt: 2296 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2297 LookThroughSExt, Depth+1); 2298 case Instruction::Shl: 2299 case Instruction::Mul: { 2300 Value *Op0 = I->getOperand(0); 2301 Value *Op1 = I->getOperand(1); 2302 2303 if (I->getOpcode() == Instruction::Shl) { 2304 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2305 if (!Op1CI) return false; 2306 // Turn Op0 << Op1 into Op0 * 2^Op1 2307 APInt Op1Int = Op1CI->getValue(); 2308 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2309 APInt API(Op1Int.getBitWidth(), 0); 2310 API.setBit(BitToSet); 2311 Op1 = ConstantInt::get(V->getContext(), API); 2312 } 2313 2314 Value *Mul0 = nullptr; 2315 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2316 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2317 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2318 if (Op1C->getType()->getPrimitiveSizeInBits() < 2319 MulC->getType()->getPrimitiveSizeInBits()) 2320 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2321 if (Op1C->getType()->getPrimitiveSizeInBits() > 2322 MulC->getType()->getPrimitiveSizeInBits()) 2323 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2324 2325 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2326 Multiple = ConstantExpr::getMul(MulC, Op1C); 2327 return true; 2328 } 2329 2330 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2331 if (Mul0CI->getValue() == 1) { 2332 // V == Base * Op1, so return Op1 2333 Multiple = Op1; 2334 return true; 2335 } 2336 } 2337 2338 Value *Mul1 = nullptr; 2339 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2340 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2341 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2342 if (Op0C->getType()->getPrimitiveSizeInBits() < 2343 MulC->getType()->getPrimitiveSizeInBits()) 2344 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2345 if (Op0C->getType()->getPrimitiveSizeInBits() > 2346 MulC->getType()->getPrimitiveSizeInBits()) 2347 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2348 2349 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2350 Multiple = ConstantExpr::getMul(MulC, Op0C); 2351 return true; 2352 } 2353 2354 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2355 if (Mul1CI->getValue() == 1) { 2356 // V == Base * Op0, so return Op0 2357 Multiple = Op0; 2358 return true; 2359 } 2360 } 2361 } 2362 } 2363 2364 // We could not determine if V is a multiple of Base. 2365 return false; 2366 } 2367 2368 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2369 const TargetLibraryInfo *TLI) { 2370 const Function *F = ICS.getCalledFunction(); 2371 if (!F) 2372 return Intrinsic::not_intrinsic; 2373 2374 if (F->isIntrinsic()) 2375 return F->getIntrinsicID(); 2376 2377 if (!TLI) 2378 return Intrinsic::not_intrinsic; 2379 2380 LibFunc::Func Func; 2381 // We're going to make assumptions on the semantics of the functions, check 2382 // that the target knows that it's available in this environment and it does 2383 // not have local linkage. 2384 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2385 return Intrinsic::not_intrinsic; 2386 2387 if (!ICS.onlyReadsMemory()) 2388 return Intrinsic::not_intrinsic; 2389 2390 // Otherwise check if we have a call to a function that can be turned into a 2391 // vector intrinsic. 2392 switch (Func) { 2393 default: 2394 break; 2395 case LibFunc::sin: 2396 case LibFunc::sinf: 2397 case LibFunc::sinl: 2398 return Intrinsic::sin; 2399 case LibFunc::cos: 2400 case LibFunc::cosf: 2401 case LibFunc::cosl: 2402 return Intrinsic::cos; 2403 case LibFunc::exp: 2404 case LibFunc::expf: 2405 case LibFunc::expl: 2406 return Intrinsic::exp; 2407 case LibFunc::exp2: 2408 case LibFunc::exp2f: 2409 case LibFunc::exp2l: 2410 return Intrinsic::exp2; 2411 case LibFunc::log: 2412 case LibFunc::logf: 2413 case LibFunc::logl: 2414 return Intrinsic::log; 2415 case LibFunc::log10: 2416 case LibFunc::log10f: 2417 case LibFunc::log10l: 2418 return Intrinsic::log10; 2419 case LibFunc::log2: 2420 case LibFunc::log2f: 2421 case LibFunc::log2l: 2422 return Intrinsic::log2; 2423 case LibFunc::fabs: 2424 case LibFunc::fabsf: 2425 case LibFunc::fabsl: 2426 return Intrinsic::fabs; 2427 case LibFunc::fmin: 2428 case LibFunc::fminf: 2429 case LibFunc::fminl: 2430 return Intrinsic::minnum; 2431 case LibFunc::fmax: 2432 case LibFunc::fmaxf: 2433 case LibFunc::fmaxl: 2434 return Intrinsic::maxnum; 2435 case LibFunc::copysign: 2436 case LibFunc::copysignf: 2437 case LibFunc::copysignl: 2438 return Intrinsic::copysign; 2439 case LibFunc::floor: 2440 case LibFunc::floorf: 2441 case LibFunc::floorl: 2442 return Intrinsic::floor; 2443 case LibFunc::ceil: 2444 case LibFunc::ceilf: 2445 case LibFunc::ceill: 2446 return Intrinsic::ceil; 2447 case LibFunc::trunc: 2448 case LibFunc::truncf: 2449 case LibFunc::truncl: 2450 return Intrinsic::trunc; 2451 case LibFunc::rint: 2452 case LibFunc::rintf: 2453 case LibFunc::rintl: 2454 return Intrinsic::rint; 2455 case LibFunc::nearbyint: 2456 case LibFunc::nearbyintf: 2457 case LibFunc::nearbyintl: 2458 return Intrinsic::nearbyint; 2459 case LibFunc::round: 2460 case LibFunc::roundf: 2461 case LibFunc::roundl: 2462 return Intrinsic::round; 2463 case LibFunc::pow: 2464 case LibFunc::powf: 2465 case LibFunc::powl: 2466 return Intrinsic::pow; 2467 case LibFunc::sqrt: 2468 case LibFunc::sqrtf: 2469 case LibFunc::sqrtl: 2470 if (ICS->hasNoNaNs()) 2471 return Intrinsic::sqrt; 2472 return Intrinsic::not_intrinsic; 2473 } 2474 2475 return Intrinsic::not_intrinsic; 2476 } 2477 2478 /// Return true if we can prove that the specified FP value is never equal to 2479 /// -0.0. 2480 /// 2481 /// NOTE: this function will need to be revisited when we support non-default 2482 /// rounding modes! 2483 /// 2484 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2485 unsigned Depth) { 2486 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2487 return !CFP->getValueAPF().isNegZero(); 2488 2489 // FIXME: Magic number! At the least, this should be given a name because it's 2490 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2491 // expose it as a parameter, so it can be used for testing / experimenting. 2492 if (Depth == 6) 2493 return false; // Limit search depth. 2494 2495 const Operator *I = dyn_cast<Operator>(V); 2496 if (!I) return false; 2497 2498 // Check if the nsz fast-math flag is set 2499 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2500 if (FPO->hasNoSignedZeros()) 2501 return true; 2502 2503 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2504 if (I->getOpcode() == Instruction::FAdd) 2505 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2506 if (CFP->isNullValue()) 2507 return true; 2508 2509 // sitofp and uitofp turn into +0.0 for zero. 2510 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2511 return true; 2512 2513 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2514 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2515 switch (IID) { 2516 default: 2517 break; 2518 // sqrt(-0.0) = -0.0, no other negative results are possible. 2519 case Intrinsic::sqrt: 2520 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2521 // fabs(x) != -0.0 2522 case Intrinsic::fabs: 2523 return true; 2524 } 2525 } 2526 2527 return false; 2528 } 2529 2530 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2531 const TargetLibraryInfo *TLI, 2532 unsigned Depth) { 2533 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2534 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2535 2536 // FIXME: Magic number! At the least, this should be given a name because it's 2537 // used similarly in CannotBeNegativeZero(). A better fix may be to 2538 // expose it as a parameter, so it can be used for testing / experimenting. 2539 if (Depth == 6) 2540 return false; // Limit search depth. 2541 2542 const Operator *I = dyn_cast<Operator>(V); 2543 if (!I) return false; 2544 2545 switch (I->getOpcode()) { 2546 default: break; 2547 // Unsigned integers are always nonnegative. 2548 case Instruction::UIToFP: 2549 return true; 2550 case Instruction::FMul: 2551 // x*x is always non-negative or a NaN. 2552 if (I->getOperand(0) == I->getOperand(1)) 2553 return true; 2554 LLVM_FALLTHROUGH; 2555 case Instruction::FAdd: 2556 case Instruction::FDiv: 2557 case Instruction::FRem: 2558 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2559 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2560 case Instruction::Select: 2561 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && 2562 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2563 case Instruction::FPExt: 2564 case Instruction::FPTrunc: 2565 // Widening/narrowing never change sign. 2566 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2567 case Instruction::Call: 2568 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2569 switch (IID) { 2570 default: 2571 break; 2572 case Intrinsic::maxnum: 2573 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || 2574 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2575 case Intrinsic::minnum: 2576 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2577 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2578 case Intrinsic::exp: 2579 case Intrinsic::exp2: 2580 case Intrinsic::fabs: 2581 case Intrinsic::sqrt: 2582 return true; 2583 case Intrinsic::powi: 2584 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2585 // powi(x,n) is non-negative if n is even. 2586 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2587 return true; 2588 } 2589 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2590 case Intrinsic::fma: 2591 case Intrinsic::fmuladd: 2592 // x*x+y is non-negative if y is non-negative. 2593 return I->getOperand(0) == I->getOperand(1) && 2594 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2595 } 2596 break; 2597 } 2598 return false; 2599 } 2600 2601 /// If the specified value can be set by repeating the same byte in memory, 2602 /// return the i8 value that it is represented with. This is 2603 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2604 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2605 /// byte store (e.g. i16 0x1234), return null. 2606 Value *llvm::isBytewiseValue(Value *V) { 2607 // All byte-wide stores are splatable, even of arbitrary variables. 2608 if (V->getType()->isIntegerTy(8)) return V; 2609 2610 // Handle 'null' ConstantArrayZero etc. 2611 if (Constant *C = dyn_cast<Constant>(V)) 2612 if (C->isNullValue()) 2613 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2614 2615 // Constant float and double values can be handled as integer values if the 2616 // corresponding integer value is "byteable". An important case is 0.0. 2617 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2618 if (CFP->getType()->isFloatTy()) 2619 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2620 if (CFP->getType()->isDoubleTy()) 2621 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2622 // Don't handle long double formats, which have strange constraints. 2623 } 2624 2625 // We can handle constant integers that are multiple of 8 bits. 2626 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2627 if (CI->getBitWidth() % 8 == 0) { 2628 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2629 2630 if (!CI->getValue().isSplat(8)) 2631 return nullptr; 2632 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2633 } 2634 } 2635 2636 // A ConstantDataArray/Vector is splatable if all its members are equal and 2637 // also splatable. 2638 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2639 Value *Elt = CA->getElementAsConstant(0); 2640 Value *Val = isBytewiseValue(Elt); 2641 if (!Val) 2642 return nullptr; 2643 2644 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2645 if (CA->getElementAsConstant(I) != Elt) 2646 return nullptr; 2647 2648 return Val; 2649 } 2650 2651 // Conceptually, we could handle things like: 2652 // %a = zext i8 %X to i16 2653 // %b = shl i16 %a, 8 2654 // %c = or i16 %a, %b 2655 // but until there is an example that actually needs this, it doesn't seem 2656 // worth worrying about. 2657 return nullptr; 2658 } 2659 2660 2661 // This is the recursive version of BuildSubAggregate. It takes a few different 2662 // arguments. Idxs is the index within the nested struct From that we are 2663 // looking at now (which is of type IndexedType). IdxSkip is the number of 2664 // indices from Idxs that should be left out when inserting into the resulting 2665 // struct. To is the result struct built so far, new insertvalue instructions 2666 // build on that. 2667 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2668 SmallVectorImpl<unsigned> &Idxs, 2669 unsigned IdxSkip, 2670 Instruction *InsertBefore) { 2671 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2672 if (STy) { 2673 // Save the original To argument so we can modify it 2674 Value *OrigTo = To; 2675 // General case, the type indexed by Idxs is a struct 2676 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2677 // Process each struct element recursively 2678 Idxs.push_back(i); 2679 Value *PrevTo = To; 2680 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2681 InsertBefore); 2682 Idxs.pop_back(); 2683 if (!To) { 2684 // Couldn't find any inserted value for this index? Cleanup 2685 while (PrevTo != OrigTo) { 2686 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2687 PrevTo = Del->getAggregateOperand(); 2688 Del->eraseFromParent(); 2689 } 2690 // Stop processing elements 2691 break; 2692 } 2693 } 2694 // If we successfully found a value for each of our subaggregates 2695 if (To) 2696 return To; 2697 } 2698 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2699 // the struct's elements had a value that was inserted directly. In the latter 2700 // case, perhaps we can't determine each of the subelements individually, but 2701 // we might be able to find the complete struct somewhere. 2702 2703 // Find the value that is at that particular spot 2704 Value *V = FindInsertedValue(From, Idxs); 2705 2706 if (!V) 2707 return nullptr; 2708 2709 // Insert the value in the new (sub) aggregrate 2710 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2711 "tmp", InsertBefore); 2712 } 2713 2714 // This helper takes a nested struct and extracts a part of it (which is again a 2715 // struct) into a new value. For example, given the struct: 2716 // { a, { b, { c, d }, e } } 2717 // and the indices "1, 1" this returns 2718 // { c, d }. 2719 // 2720 // It does this by inserting an insertvalue for each element in the resulting 2721 // struct, as opposed to just inserting a single struct. This will only work if 2722 // each of the elements of the substruct are known (ie, inserted into From by an 2723 // insertvalue instruction somewhere). 2724 // 2725 // All inserted insertvalue instructions are inserted before InsertBefore 2726 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2727 Instruction *InsertBefore) { 2728 assert(InsertBefore && "Must have someplace to insert!"); 2729 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2730 idx_range); 2731 Value *To = UndefValue::get(IndexedType); 2732 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2733 unsigned IdxSkip = Idxs.size(); 2734 2735 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2736 } 2737 2738 /// Given an aggregrate and an sequence of indices, see if 2739 /// the scalar value indexed is already around as a register, for example if it 2740 /// were inserted directly into the aggregrate. 2741 /// 2742 /// If InsertBefore is not null, this function will duplicate (modified) 2743 /// insertvalues when a part of a nested struct is extracted. 2744 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2745 Instruction *InsertBefore) { 2746 // Nothing to index? Just return V then (this is useful at the end of our 2747 // recursion). 2748 if (idx_range.empty()) 2749 return V; 2750 // We have indices, so V should have an indexable type. 2751 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2752 "Not looking at a struct or array?"); 2753 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2754 "Invalid indices for type?"); 2755 2756 if (Constant *C = dyn_cast<Constant>(V)) { 2757 C = C->getAggregateElement(idx_range[0]); 2758 if (!C) return nullptr; 2759 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2760 } 2761 2762 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2763 // Loop the indices for the insertvalue instruction in parallel with the 2764 // requested indices 2765 const unsigned *req_idx = idx_range.begin(); 2766 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2767 i != e; ++i, ++req_idx) { 2768 if (req_idx == idx_range.end()) { 2769 // We can't handle this without inserting insertvalues 2770 if (!InsertBefore) 2771 return nullptr; 2772 2773 // The requested index identifies a part of a nested aggregate. Handle 2774 // this specially. For example, 2775 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2776 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2777 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2778 // This can be changed into 2779 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2780 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2781 // which allows the unused 0,0 element from the nested struct to be 2782 // removed. 2783 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2784 InsertBefore); 2785 } 2786 2787 // This insert value inserts something else than what we are looking for. 2788 // See if the (aggregate) value inserted into has the value we are 2789 // looking for, then. 2790 if (*req_idx != *i) 2791 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2792 InsertBefore); 2793 } 2794 // If we end up here, the indices of the insertvalue match with those 2795 // requested (though possibly only partially). Now we recursively look at 2796 // the inserted value, passing any remaining indices. 2797 return FindInsertedValue(I->getInsertedValueOperand(), 2798 makeArrayRef(req_idx, idx_range.end()), 2799 InsertBefore); 2800 } 2801 2802 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2803 // If we're extracting a value from an aggregate that was extracted from 2804 // something else, we can extract from that something else directly instead. 2805 // However, we will need to chain I's indices with the requested indices. 2806 2807 // Calculate the number of indices required 2808 unsigned size = I->getNumIndices() + idx_range.size(); 2809 // Allocate some space to put the new indices in 2810 SmallVector<unsigned, 5> Idxs; 2811 Idxs.reserve(size); 2812 // Add indices from the extract value instruction 2813 Idxs.append(I->idx_begin(), I->idx_end()); 2814 2815 // Add requested indices 2816 Idxs.append(idx_range.begin(), idx_range.end()); 2817 2818 assert(Idxs.size() == size 2819 && "Number of indices added not correct?"); 2820 2821 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2822 } 2823 // Otherwise, we don't know (such as, extracting from a function return value 2824 // or load instruction) 2825 return nullptr; 2826 } 2827 2828 /// Analyze the specified pointer to see if it can be expressed as a base 2829 /// pointer plus a constant offset. Return the base and offset to the caller. 2830 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2831 const DataLayout &DL) { 2832 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2833 APInt ByteOffset(BitWidth, 0); 2834 2835 // We walk up the defs but use a visited set to handle unreachable code. In 2836 // that case, we stop after accumulating the cycle once (not that it 2837 // matters). 2838 SmallPtrSet<Value *, 16> Visited; 2839 while (Visited.insert(Ptr).second) { 2840 if (Ptr->getType()->isVectorTy()) 2841 break; 2842 2843 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2844 APInt GEPOffset(BitWidth, 0); 2845 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2846 break; 2847 2848 ByteOffset += GEPOffset; 2849 2850 Ptr = GEP->getPointerOperand(); 2851 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 2852 Ptr = cast<Operator>(Ptr)->getOperand(0); 2853 } else if (AddrSpaceCastInst *ASCI = dyn_cast<AddrSpaceCastInst>(Ptr)) { 2854 Value *SourcePtr = ASCI->getPointerOperand(); 2855 // Don't look through addrspace cast which changes pointer size 2856 if (BitWidth != DL.getPointerTypeSizeInBits(SourcePtr->getType())) 2857 break; 2858 Ptr = SourcePtr; 2859 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2860 if (GA->isInterposable()) 2861 break; 2862 Ptr = GA->getAliasee(); 2863 } else { 2864 break; 2865 } 2866 } 2867 Offset = ByteOffset.getSExtValue(); 2868 return Ptr; 2869 } 2870 2871 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2872 // Make sure the GEP has exactly three arguments. 2873 if (GEP->getNumOperands() != 3) 2874 return false; 2875 2876 // Make sure the index-ee is a pointer to array of i8. 2877 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2878 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2879 return false; 2880 2881 // Check to make sure that the first operand of the GEP is an integer and 2882 // has value 0 so that we are sure we're indexing into the initializer. 2883 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2884 if (!FirstIdx || !FirstIdx->isZero()) 2885 return false; 2886 2887 return true; 2888 } 2889 2890 /// This function computes the length of a null-terminated C string pointed to 2891 /// by V. If successful, it returns true and returns the string in Str. 2892 /// If unsuccessful, it returns false. 2893 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2894 uint64_t Offset, bool TrimAtNul) { 2895 assert(V); 2896 2897 // Look through bitcast instructions and geps. 2898 V = V->stripPointerCasts(); 2899 2900 // If the value is a GEP instruction or constant expression, treat it as an 2901 // offset. 2902 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2903 // The GEP operator should be based on a pointer to string constant, and is 2904 // indexing into the string constant. 2905 if (!isGEPBasedOnPointerToString(GEP)) 2906 return false; 2907 2908 // If the second index isn't a ConstantInt, then this is a variable index 2909 // into the array. If this occurs, we can't say anything meaningful about 2910 // the string. 2911 uint64_t StartIdx = 0; 2912 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2913 StartIdx = CI->getZExtValue(); 2914 else 2915 return false; 2916 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2917 TrimAtNul); 2918 } 2919 2920 // The GEP instruction, constant or instruction, must reference a global 2921 // variable that is a constant and is initialized. The referenced constant 2922 // initializer is the array that we'll use for optimization. 2923 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2924 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2925 return false; 2926 2927 // Handle the all-zeros case. 2928 if (GV->getInitializer()->isNullValue()) { 2929 // This is a degenerate case. The initializer is constant zero so the 2930 // length of the string must be zero. 2931 Str = ""; 2932 return true; 2933 } 2934 2935 // This must be a ConstantDataArray. 2936 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 2937 if (!Array || !Array->isString()) 2938 return false; 2939 2940 // Get the number of elements in the array. 2941 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2942 2943 // Start out with the entire array in the StringRef. 2944 Str = Array->getAsString(); 2945 2946 if (Offset > NumElts) 2947 return false; 2948 2949 // Skip over 'offset' bytes. 2950 Str = Str.substr(Offset); 2951 2952 if (TrimAtNul) { 2953 // Trim off the \0 and anything after it. If the array is not nul 2954 // terminated, we just return the whole end of string. The client may know 2955 // some other way that the string is length-bound. 2956 Str = Str.substr(0, Str.find('\0')); 2957 } 2958 return true; 2959 } 2960 2961 // These next two are very similar to the above, but also look through PHI 2962 // nodes. 2963 // TODO: See if we can integrate these two together. 2964 2965 /// If we can compute the length of the string pointed to by 2966 /// the specified pointer, return 'len+1'. If we can't, return 0. 2967 static uint64_t GetStringLengthH(const Value *V, 2968 SmallPtrSetImpl<const PHINode*> &PHIs) { 2969 // Look through noop bitcast instructions. 2970 V = V->stripPointerCasts(); 2971 2972 // If this is a PHI node, there are two cases: either we have already seen it 2973 // or we haven't. 2974 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2975 if (!PHIs.insert(PN).second) 2976 return ~0ULL; // already in the set. 2977 2978 // If it was new, see if all the input strings are the same length. 2979 uint64_t LenSoFar = ~0ULL; 2980 for (Value *IncValue : PN->incoming_values()) { 2981 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2982 if (Len == 0) return 0; // Unknown length -> unknown. 2983 2984 if (Len == ~0ULL) continue; 2985 2986 if (Len != LenSoFar && LenSoFar != ~0ULL) 2987 return 0; // Disagree -> unknown. 2988 LenSoFar = Len; 2989 } 2990 2991 // Success, all agree. 2992 return LenSoFar; 2993 } 2994 2995 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2996 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2997 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2998 if (Len1 == 0) return 0; 2999 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3000 if (Len2 == 0) return 0; 3001 if (Len1 == ~0ULL) return Len2; 3002 if (Len2 == ~0ULL) return Len1; 3003 if (Len1 != Len2) return 0; 3004 return Len1; 3005 } 3006 3007 // Otherwise, see if we can read the string. 3008 StringRef StrData; 3009 if (!getConstantStringInfo(V, StrData)) 3010 return 0; 3011 3012 return StrData.size()+1; 3013 } 3014 3015 /// If we can compute the length of the string pointed to by 3016 /// the specified pointer, return 'len+1'. If we can't, return 0. 3017 uint64_t llvm::GetStringLength(const Value *V) { 3018 if (!V->getType()->isPointerTy()) return 0; 3019 3020 SmallPtrSet<const PHINode*, 32> PHIs; 3021 uint64_t Len = GetStringLengthH(V, PHIs); 3022 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3023 // an empty string as a length. 3024 return Len == ~0ULL ? 1 : Len; 3025 } 3026 3027 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3028 /// previous iteration of the loop was referring to the same object as \p PN. 3029 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3030 const LoopInfo *LI) { 3031 // Find the loop-defined value. 3032 Loop *L = LI->getLoopFor(PN->getParent()); 3033 if (PN->getNumIncomingValues() != 2) 3034 return true; 3035 3036 // Find the value from previous iteration. 3037 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3038 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3039 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3040 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3041 return true; 3042 3043 // If a new pointer is loaded in the loop, the pointer references a different 3044 // object in every iteration. E.g.: 3045 // for (i) 3046 // int *p = a[i]; 3047 // ... 3048 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3049 if (!L->isLoopInvariant(Load->getPointerOperand())) 3050 return false; 3051 return true; 3052 } 3053 3054 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3055 unsigned MaxLookup) { 3056 if (!V->getType()->isPointerTy()) 3057 return V; 3058 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3059 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3060 V = GEP->getPointerOperand(); 3061 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3062 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3063 V = cast<Operator>(V)->getOperand(0); 3064 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3065 if (GA->isInterposable()) 3066 return V; 3067 V = GA->getAliasee(); 3068 } else { 3069 if (auto CS = CallSite(V)) 3070 if (Value *RV = CS.getReturnedArgOperand()) { 3071 V = RV; 3072 continue; 3073 } 3074 3075 // See if InstructionSimplify knows any relevant tricks. 3076 if (Instruction *I = dyn_cast<Instruction>(V)) 3077 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3078 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3079 V = Simplified; 3080 continue; 3081 } 3082 3083 return V; 3084 } 3085 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3086 } 3087 return V; 3088 } 3089 3090 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3091 const DataLayout &DL, LoopInfo *LI, 3092 unsigned MaxLookup) { 3093 SmallPtrSet<Value *, 4> Visited; 3094 SmallVector<Value *, 4> Worklist; 3095 Worklist.push_back(V); 3096 do { 3097 Value *P = Worklist.pop_back_val(); 3098 P = GetUnderlyingObject(P, DL, MaxLookup); 3099 3100 if (!Visited.insert(P).second) 3101 continue; 3102 3103 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3104 Worklist.push_back(SI->getTrueValue()); 3105 Worklist.push_back(SI->getFalseValue()); 3106 continue; 3107 } 3108 3109 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3110 // If this PHI changes the underlying object in every iteration of the 3111 // loop, don't look through it. Consider: 3112 // int **A; 3113 // for (i) { 3114 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3115 // Curr = A[i]; 3116 // *Prev, *Curr; 3117 // 3118 // Prev is tracking Curr one iteration behind so they refer to different 3119 // underlying objects. 3120 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3121 isSameUnderlyingObjectInLoop(PN, LI)) 3122 for (Value *IncValue : PN->incoming_values()) 3123 Worklist.push_back(IncValue); 3124 continue; 3125 } 3126 3127 Objects.push_back(P); 3128 } while (!Worklist.empty()); 3129 } 3130 3131 /// Return true if the only users of this pointer are lifetime markers. 3132 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3133 for (const User *U : V->users()) { 3134 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3135 if (!II) return false; 3136 3137 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3138 II->getIntrinsicID() != Intrinsic::lifetime_end) 3139 return false; 3140 } 3141 return true; 3142 } 3143 3144 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3145 const Instruction *CtxI, 3146 const DominatorTree *DT) { 3147 const Operator *Inst = dyn_cast<Operator>(V); 3148 if (!Inst) 3149 return false; 3150 3151 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3152 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3153 if (C->canTrap()) 3154 return false; 3155 3156 switch (Inst->getOpcode()) { 3157 default: 3158 return true; 3159 case Instruction::UDiv: 3160 case Instruction::URem: { 3161 // x / y is undefined if y == 0. 3162 const APInt *V; 3163 if (match(Inst->getOperand(1), m_APInt(V))) 3164 return *V != 0; 3165 return false; 3166 } 3167 case Instruction::SDiv: 3168 case Instruction::SRem: { 3169 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3170 const APInt *Numerator, *Denominator; 3171 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3172 return false; 3173 // We cannot hoist this division if the denominator is 0. 3174 if (*Denominator == 0) 3175 return false; 3176 // It's safe to hoist if the denominator is not 0 or -1. 3177 if (*Denominator != -1) 3178 return true; 3179 // At this point we know that the denominator is -1. It is safe to hoist as 3180 // long we know that the numerator is not INT_MIN. 3181 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3182 return !Numerator->isMinSignedValue(); 3183 // The numerator *might* be MinSignedValue. 3184 return false; 3185 } 3186 case Instruction::Load: { 3187 const LoadInst *LI = cast<LoadInst>(Inst); 3188 if (!LI->isUnordered() || 3189 // Speculative load may create a race that did not exist in the source. 3190 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3191 // Speculative load may load data from dirty regions. 3192 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3193 return false; 3194 const DataLayout &DL = LI->getModule()->getDataLayout(); 3195 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3196 LI->getAlignment(), DL, CtxI, DT); 3197 } 3198 case Instruction::Call: { 3199 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3200 switch (II->getIntrinsicID()) { 3201 // These synthetic intrinsics have no side-effects and just mark 3202 // information about their operands. 3203 // FIXME: There are other no-op synthetic instructions that potentially 3204 // should be considered at least *safe* to speculate... 3205 case Intrinsic::dbg_declare: 3206 case Intrinsic::dbg_value: 3207 return true; 3208 3209 case Intrinsic::bswap: 3210 case Intrinsic::ctlz: 3211 case Intrinsic::ctpop: 3212 case Intrinsic::cttz: 3213 case Intrinsic::objectsize: 3214 case Intrinsic::sadd_with_overflow: 3215 case Intrinsic::smul_with_overflow: 3216 case Intrinsic::ssub_with_overflow: 3217 case Intrinsic::uadd_with_overflow: 3218 case Intrinsic::umul_with_overflow: 3219 case Intrinsic::usub_with_overflow: 3220 return true; 3221 // These intrinsics are defined to have the same behavior as libm 3222 // functions except for setting errno. 3223 case Intrinsic::sqrt: 3224 case Intrinsic::fma: 3225 case Intrinsic::fmuladd: 3226 return true; 3227 // These intrinsics are defined to have the same behavior as libm 3228 // functions, and the corresponding libm functions never set errno. 3229 case Intrinsic::trunc: 3230 case Intrinsic::copysign: 3231 case Intrinsic::fabs: 3232 case Intrinsic::minnum: 3233 case Intrinsic::maxnum: 3234 return true; 3235 // These intrinsics are defined to have the same behavior as libm 3236 // functions, which never overflow when operating on the IEEE754 types 3237 // that we support, and never set errno otherwise. 3238 case Intrinsic::ceil: 3239 case Intrinsic::floor: 3240 case Intrinsic::nearbyint: 3241 case Intrinsic::rint: 3242 case Intrinsic::round: 3243 return true; 3244 // TODO: are convert_{from,to}_fp16 safe? 3245 // TODO: can we list target-specific intrinsics here? 3246 default: break; 3247 } 3248 } 3249 return false; // The called function could have undefined behavior or 3250 // side-effects, even if marked readnone nounwind. 3251 } 3252 case Instruction::VAArg: 3253 case Instruction::Alloca: 3254 case Instruction::Invoke: 3255 case Instruction::PHI: 3256 case Instruction::Store: 3257 case Instruction::Ret: 3258 case Instruction::Br: 3259 case Instruction::IndirectBr: 3260 case Instruction::Switch: 3261 case Instruction::Unreachable: 3262 case Instruction::Fence: 3263 case Instruction::AtomicRMW: 3264 case Instruction::AtomicCmpXchg: 3265 case Instruction::LandingPad: 3266 case Instruction::Resume: 3267 case Instruction::CatchSwitch: 3268 case Instruction::CatchPad: 3269 case Instruction::CatchRet: 3270 case Instruction::CleanupPad: 3271 case Instruction::CleanupRet: 3272 return false; // Misc instructions which have effects 3273 } 3274 } 3275 3276 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3277 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3278 } 3279 3280 /// Return true if we know that the specified value is never null. 3281 bool llvm::isKnownNonNull(const Value *V) { 3282 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3283 3284 // Alloca never returns null, malloc might. 3285 if (isa<AllocaInst>(V)) return true; 3286 3287 // A byval, inalloca, or nonnull argument is never null. 3288 if (const Argument *A = dyn_cast<Argument>(V)) 3289 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3290 3291 // A global variable in address space 0 is non null unless extern weak. 3292 // Other address spaces may have null as a valid address for a global, 3293 // so we can't assume anything. 3294 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3295 return !GV->hasExternalWeakLinkage() && 3296 GV->getType()->getAddressSpace() == 0; 3297 3298 // A Load tagged with nonnull metadata is never null. 3299 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3300 return LI->getMetadata(LLVMContext::MD_nonnull); 3301 3302 if (auto CS = ImmutableCallSite(V)) 3303 if (CS.isReturnNonNull()) 3304 return true; 3305 3306 return false; 3307 } 3308 3309 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3310 const Instruction *CtxI, 3311 const DominatorTree *DT) { 3312 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3313 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3314 3315 unsigned NumUsesExplored = 0; 3316 for (auto *U : V->users()) { 3317 // Avoid massive lists 3318 if (NumUsesExplored >= DomConditionsMaxUses) 3319 break; 3320 NumUsesExplored++; 3321 // Consider only compare instructions uniquely controlling a branch 3322 CmpInst::Predicate Pred; 3323 if (!match(const_cast<User *>(U), 3324 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3325 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3326 continue; 3327 3328 for (auto *CmpU : U->users()) { 3329 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3330 assert(BI->isConditional() && "uses a comparison!"); 3331 3332 BasicBlock *NonNullSuccessor = 3333 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3334 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3335 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3336 return true; 3337 } else if (Pred == ICmpInst::ICMP_NE && 3338 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3339 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3340 return true; 3341 } 3342 } 3343 } 3344 3345 return false; 3346 } 3347 3348 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3349 const DominatorTree *DT) { 3350 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3351 return false; 3352 3353 if (isKnownNonNull(V)) 3354 return true; 3355 3356 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3357 } 3358 3359 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3360 const Value *RHS, 3361 const DataLayout &DL, 3362 AssumptionCache *AC, 3363 const Instruction *CxtI, 3364 const DominatorTree *DT) { 3365 // Multiplying n * m significant bits yields a result of n + m significant 3366 // bits. If the total number of significant bits does not exceed the 3367 // result bit width (minus 1), there is no overflow. 3368 // This means if we have enough leading zero bits in the operands 3369 // we can guarantee that the result does not overflow. 3370 // Ref: "Hacker's Delight" by Henry Warren 3371 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3372 APInt LHSKnownZero(BitWidth, 0); 3373 APInt LHSKnownOne(BitWidth, 0); 3374 APInt RHSKnownZero(BitWidth, 0); 3375 APInt RHSKnownOne(BitWidth, 0); 3376 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3377 DT); 3378 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3379 DT); 3380 // Note that underestimating the number of zero bits gives a more 3381 // conservative answer. 3382 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3383 RHSKnownZero.countLeadingOnes(); 3384 // First handle the easy case: if we have enough zero bits there's 3385 // definitely no overflow. 3386 if (ZeroBits >= BitWidth) 3387 return OverflowResult::NeverOverflows; 3388 3389 // Get the largest possible values for each operand. 3390 APInt LHSMax = ~LHSKnownZero; 3391 APInt RHSMax = ~RHSKnownZero; 3392 3393 // We know the multiply operation doesn't overflow if the maximum values for 3394 // each operand will not overflow after we multiply them together. 3395 bool MaxOverflow; 3396 LHSMax.umul_ov(RHSMax, MaxOverflow); 3397 if (!MaxOverflow) 3398 return OverflowResult::NeverOverflows; 3399 3400 // We know it always overflows if multiplying the smallest possible values for 3401 // the operands also results in overflow. 3402 bool MinOverflow; 3403 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3404 if (MinOverflow) 3405 return OverflowResult::AlwaysOverflows; 3406 3407 return OverflowResult::MayOverflow; 3408 } 3409 3410 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3411 const Value *RHS, 3412 const DataLayout &DL, 3413 AssumptionCache *AC, 3414 const Instruction *CxtI, 3415 const DominatorTree *DT) { 3416 bool LHSKnownNonNegative, LHSKnownNegative; 3417 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3418 AC, CxtI, DT); 3419 if (LHSKnownNonNegative || LHSKnownNegative) { 3420 bool RHSKnownNonNegative, RHSKnownNegative; 3421 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3422 AC, CxtI, DT); 3423 3424 if (LHSKnownNegative && RHSKnownNegative) { 3425 // The sign bit is set in both cases: this MUST overflow. 3426 // Create a simple add instruction, and insert it into the struct. 3427 return OverflowResult::AlwaysOverflows; 3428 } 3429 3430 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3431 // The sign bit is clear in both cases: this CANNOT overflow. 3432 // Create a simple add instruction, and insert it into the struct. 3433 return OverflowResult::NeverOverflows; 3434 } 3435 } 3436 3437 return OverflowResult::MayOverflow; 3438 } 3439 3440 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3441 const Value *RHS, 3442 const AddOperator *Add, 3443 const DataLayout &DL, 3444 AssumptionCache *AC, 3445 const Instruction *CxtI, 3446 const DominatorTree *DT) { 3447 if (Add && Add->hasNoSignedWrap()) { 3448 return OverflowResult::NeverOverflows; 3449 } 3450 3451 bool LHSKnownNonNegative, LHSKnownNegative; 3452 bool RHSKnownNonNegative, RHSKnownNegative; 3453 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3454 AC, CxtI, DT); 3455 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3456 AC, CxtI, DT); 3457 3458 if ((LHSKnownNonNegative && RHSKnownNegative) || 3459 (LHSKnownNegative && RHSKnownNonNegative)) { 3460 // The sign bits are opposite: this CANNOT overflow. 3461 return OverflowResult::NeverOverflows; 3462 } 3463 3464 // The remaining code needs Add to be available. Early returns if not so. 3465 if (!Add) 3466 return OverflowResult::MayOverflow; 3467 3468 // If the sign of Add is the same as at least one of the operands, this add 3469 // CANNOT overflow. This is particularly useful when the sum is 3470 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3471 // operands. 3472 bool LHSOrRHSKnownNonNegative = 3473 (LHSKnownNonNegative || RHSKnownNonNegative); 3474 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3475 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3476 bool AddKnownNonNegative, AddKnownNegative; 3477 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3478 /*Depth=*/0, AC, CxtI, DT); 3479 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3480 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3481 return OverflowResult::NeverOverflows; 3482 } 3483 } 3484 3485 return OverflowResult::MayOverflow; 3486 } 3487 3488 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3489 const DominatorTree &DT) { 3490 #ifndef NDEBUG 3491 auto IID = II->getIntrinsicID(); 3492 assert((IID == Intrinsic::sadd_with_overflow || 3493 IID == Intrinsic::uadd_with_overflow || 3494 IID == Intrinsic::ssub_with_overflow || 3495 IID == Intrinsic::usub_with_overflow || 3496 IID == Intrinsic::smul_with_overflow || 3497 IID == Intrinsic::umul_with_overflow) && 3498 "Not an overflow intrinsic!"); 3499 #endif 3500 3501 SmallVector<const BranchInst *, 2> GuardingBranches; 3502 SmallVector<const ExtractValueInst *, 2> Results; 3503 3504 for (const User *U : II->users()) { 3505 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3506 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3507 3508 if (EVI->getIndices()[0] == 0) 3509 Results.push_back(EVI); 3510 else { 3511 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3512 3513 for (const auto *U : EVI->users()) 3514 if (const auto *B = dyn_cast<BranchInst>(U)) { 3515 assert(B->isConditional() && "How else is it using an i1?"); 3516 GuardingBranches.push_back(B); 3517 } 3518 } 3519 } else { 3520 // We are using the aggregate directly in a way we don't want to analyze 3521 // here (storing it to a global, say). 3522 return false; 3523 } 3524 } 3525 3526 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3527 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3528 if (!NoWrapEdge.isSingleEdge()) 3529 return false; 3530 3531 // Check if all users of the add are provably no-wrap. 3532 for (const auto *Result : Results) { 3533 // If the extractvalue itself is not executed on overflow, the we don't 3534 // need to check each use separately, since domination is transitive. 3535 if (DT.dominates(NoWrapEdge, Result->getParent())) 3536 continue; 3537 3538 for (auto &RU : Result->uses()) 3539 if (!DT.dominates(NoWrapEdge, RU)) 3540 return false; 3541 } 3542 3543 return true; 3544 }; 3545 3546 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3547 } 3548 3549 3550 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3551 const DataLayout &DL, 3552 AssumptionCache *AC, 3553 const Instruction *CxtI, 3554 const DominatorTree *DT) { 3555 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3556 Add, DL, AC, CxtI, DT); 3557 } 3558 3559 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3560 const Value *RHS, 3561 const DataLayout &DL, 3562 AssumptionCache *AC, 3563 const Instruction *CxtI, 3564 const DominatorTree *DT) { 3565 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3566 } 3567 3568 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3569 // A memory operation returns normally if it isn't volatile. A volatile 3570 // operation is allowed to trap. 3571 // 3572 // An atomic operation isn't guaranteed to return in a reasonable amount of 3573 // time because it's possible for another thread to interfere with it for an 3574 // arbitrary length of time, but programs aren't allowed to rely on that. 3575 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3576 return !LI->isVolatile(); 3577 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3578 return !SI->isVolatile(); 3579 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3580 return !CXI->isVolatile(); 3581 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3582 return !RMWI->isVolatile(); 3583 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3584 return !MII->isVolatile(); 3585 3586 // If there is no successor, then execution can't transfer to it. 3587 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3588 return !CRI->unwindsToCaller(); 3589 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3590 return !CatchSwitch->unwindsToCaller(); 3591 if (isa<ResumeInst>(I)) 3592 return false; 3593 if (isa<ReturnInst>(I)) 3594 return false; 3595 3596 // Calls can throw, or contain an infinite loop, or kill the process. 3597 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) { 3598 // Calls which don't write to arbitrary memory are safe. 3599 // FIXME: Ignoring infinite loops without any side-effects is too aggressive, 3600 // but it's consistent with other passes. See http://llvm.org/PR965 . 3601 // FIXME: This isn't aggressive enough; a call which only writes to a 3602 // global is guaranteed to return. 3603 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3604 match(I, m_Intrinsic<Intrinsic::assume>()); 3605 } 3606 3607 // Other instructions return normally. 3608 return true; 3609 } 3610 3611 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3612 const Loop *L) { 3613 // The loop header is guaranteed to be executed for every iteration. 3614 // 3615 // FIXME: Relax this constraint to cover all basic blocks that are 3616 // guaranteed to be executed at every iteration. 3617 if (I->getParent() != L->getHeader()) return false; 3618 3619 for (const Instruction &LI : *L->getHeader()) { 3620 if (&LI == I) return true; 3621 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3622 } 3623 llvm_unreachable("Instruction not contained in its own parent basic block."); 3624 } 3625 3626 bool llvm::propagatesFullPoison(const Instruction *I) { 3627 switch (I->getOpcode()) { 3628 case Instruction::Add: 3629 case Instruction::Sub: 3630 case Instruction::Xor: 3631 case Instruction::Trunc: 3632 case Instruction::BitCast: 3633 case Instruction::AddrSpaceCast: 3634 // These operations all propagate poison unconditionally. Note that poison 3635 // is not any particular value, so xor or subtraction of poison with 3636 // itself still yields poison, not zero. 3637 return true; 3638 3639 case Instruction::AShr: 3640 case Instruction::SExt: 3641 // For these operations, one bit of the input is replicated across 3642 // multiple output bits. A replicated poison bit is still poison. 3643 return true; 3644 3645 case Instruction::Shl: { 3646 // Left shift *by* a poison value is poison. The number of 3647 // positions to shift is unsigned, so no negative values are 3648 // possible there. Left shift by zero places preserves poison. So 3649 // it only remains to consider left shift of poison by a positive 3650 // number of places. 3651 // 3652 // A left shift by a positive number of places leaves the lowest order bit 3653 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3654 // make the poison operand violate that flag, yielding a fresh full-poison 3655 // value. 3656 auto *OBO = cast<OverflowingBinaryOperator>(I); 3657 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3658 } 3659 3660 case Instruction::Mul: { 3661 // A multiplication by zero yields a non-poison zero result, so we need to 3662 // rule out zero as an operand. Conservatively, multiplication by a 3663 // non-zero constant is not multiplication by zero. 3664 // 3665 // Multiplication by a non-zero constant can leave some bits 3666 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3667 // order bit unpoisoned. So we need to consider that. 3668 // 3669 // Multiplication by 1 preserves poison. If the multiplication has a 3670 // no-wrap flag, then we can make the poison operand violate that flag 3671 // when multiplied by any integer other than 0 and 1. 3672 auto *OBO = cast<OverflowingBinaryOperator>(I); 3673 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3674 for (Value *V : OBO->operands()) { 3675 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3676 // A ConstantInt cannot yield poison, so we can assume that it is 3677 // the other operand that is poison. 3678 return !CI->isZero(); 3679 } 3680 } 3681 } 3682 return false; 3683 } 3684 3685 case Instruction::ICmp: 3686 // Comparing poison with any value yields poison. This is why, for 3687 // instance, x s< (x +nsw 1) can be folded to true. 3688 return true; 3689 3690 case Instruction::GetElementPtr: 3691 // A GEP implicitly represents a sequence of additions, subtractions, 3692 // truncations, sign extensions and multiplications. The multiplications 3693 // are by the non-zero sizes of some set of types, so we do not have to be 3694 // concerned with multiplication by zero. If the GEP is in-bounds, then 3695 // these operations are implicitly no-signed-wrap so poison is propagated 3696 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3697 return cast<GEPOperator>(I)->isInBounds(); 3698 3699 default: 3700 return false; 3701 } 3702 } 3703 3704 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3705 switch (I->getOpcode()) { 3706 case Instruction::Store: 3707 return cast<StoreInst>(I)->getPointerOperand(); 3708 3709 case Instruction::Load: 3710 return cast<LoadInst>(I)->getPointerOperand(); 3711 3712 case Instruction::AtomicCmpXchg: 3713 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3714 3715 case Instruction::AtomicRMW: 3716 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3717 3718 case Instruction::UDiv: 3719 case Instruction::SDiv: 3720 case Instruction::URem: 3721 case Instruction::SRem: 3722 return I->getOperand(1); 3723 3724 default: 3725 return nullptr; 3726 } 3727 } 3728 3729 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3730 // We currently only look for uses of poison values within the same basic 3731 // block, as that makes it easier to guarantee that the uses will be 3732 // executed given that PoisonI is executed. 3733 // 3734 // FIXME: Expand this to consider uses beyond the same basic block. To do 3735 // this, look out for the distinction between post-dominance and strong 3736 // post-dominance. 3737 const BasicBlock *BB = PoisonI->getParent(); 3738 3739 // Set of instructions that we have proved will yield poison if PoisonI 3740 // does. 3741 SmallSet<const Value *, 16> YieldsPoison; 3742 SmallSet<const BasicBlock *, 4> Visited; 3743 YieldsPoison.insert(PoisonI); 3744 Visited.insert(PoisonI->getParent()); 3745 3746 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3747 3748 unsigned Iter = 0; 3749 while (Iter++ < MaxDepth) { 3750 for (auto &I : make_range(Begin, End)) { 3751 if (&I != PoisonI) { 3752 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3753 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3754 return true; 3755 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3756 return false; 3757 } 3758 3759 // Mark poison that propagates from I through uses of I. 3760 if (YieldsPoison.count(&I)) { 3761 for (const User *User : I.users()) { 3762 const Instruction *UserI = cast<Instruction>(User); 3763 if (propagatesFullPoison(UserI)) 3764 YieldsPoison.insert(User); 3765 } 3766 } 3767 } 3768 3769 if (auto *NextBB = BB->getSingleSuccessor()) { 3770 if (Visited.insert(NextBB).second) { 3771 BB = NextBB; 3772 Begin = BB->getFirstNonPHI()->getIterator(); 3773 End = BB->end(); 3774 continue; 3775 } 3776 } 3777 3778 break; 3779 }; 3780 return false; 3781 } 3782 3783 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3784 if (FMF.noNaNs()) 3785 return true; 3786 3787 if (auto *C = dyn_cast<ConstantFP>(V)) 3788 return !C->isNaN(); 3789 return false; 3790 } 3791 3792 static bool isKnownNonZero(const Value *V) { 3793 if (auto *C = dyn_cast<ConstantFP>(V)) 3794 return !C->isZero(); 3795 return false; 3796 } 3797 3798 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3799 FastMathFlags FMF, 3800 Value *CmpLHS, Value *CmpRHS, 3801 Value *TrueVal, Value *FalseVal, 3802 Value *&LHS, Value *&RHS) { 3803 LHS = CmpLHS; 3804 RHS = CmpRHS; 3805 3806 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3807 // return inconsistent results between implementations. 3808 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3809 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3810 // Therefore we behave conservatively and only proceed if at least one of the 3811 // operands is known to not be zero, or if we don't care about signed zeroes. 3812 switch (Pred) { 3813 default: break; 3814 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3815 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3816 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3817 !isKnownNonZero(CmpRHS)) 3818 return {SPF_UNKNOWN, SPNB_NA, false}; 3819 } 3820 3821 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3822 bool Ordered = false; 3823 3824 // When given one NaN and one non-NaN input: 3825 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3826 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3827 // ordered comparison fails), which could be NaN or non-NaN. 3828 // so here we discover exactly what NaN behavior is required/accepted. 3829 if (CmpInst::isFPPredicate(Pred)) { 3830 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3831 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3832 3833 if (LHSSafe && RHSSafe) { 3834 // Both operands are known non-NaN. 3835 NaNBehavior = SPNB_RETURNS_ANY; 3836 } else if (CmpInst::isOrdered(Pred)) { 3837 // An ordered comparison will return false when given a NaN, so it 3838 // returns the RHS. 3839 Ordered = true; 3840 if (LHSSafe) 3841 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3842 NaNBehavior = SPNB_RETURNS_NAN; 3843 else if (RHSSafe) 3844 NaNBehavior = SPNB_RETURNS_OTHER; 3845 else 3846 // Completely unsafe. 3847 return {SPF_UNKNOWN, SPNB_NA, false}; 3848 } else { 3849 Ordered = false; 3850 // An unordered comparison will return true when given a NaN, so it 3851 // returns the LHS. 3852 if (LHSSafe) 3853 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3854 NaNBehavior = SPNB_RETURNS_OTHER; 3855 else if (RHSSafe) 3856 NaNBehavior = SPNB_RETURNS_NAN; 3857 else 3858 // Completely unsafe. 3859 return {SPF_UNKNOWN, SPNB_NA, false}; 3860 } 3861 } 3862 3863 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3864 std::swap(CmpLHS, CmpRHS); 3865 Pred = CmpInst::getSwappedPredicate(Pred); 3866 if (NaNBehavior == SPNB_RETURNS_NAN) 3867 NaNBehavior = SPNB_RETURNS_OTHER; 3868 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3869 NaNBehavior = SPNB_RETURNS_NAN; 3870 Ordered = !Ordered; 3871 } 3872 3873 // ([if]cmp X, Y) ? X : Y 3874 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3875 switch (Pred) { 3876 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3877 case ICmpInst::ICMP_UGT: 3878 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3879 case ICmpInst::ICMP_SGT: 3880 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3881 case ICmpInst::ICMP_ULT: 3882 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3883 case ICmpInst::ICMP_SLT: 3884 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3885 case FCmpInst::FCMP_UGT: 3886 case FCmpInst::FCMP_UGE: 3887 case FCmpInst::FCMP_OGT: 3888 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3889 case FCmpInst::FCMP_ULT: 3890 case FCmpInst::FCMP_ULE: 3891 case FCmpInst::FCMP_OLT: 3892 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3893 } 3894 } 3895 3896 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3897 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3898 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3899 3900 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3901 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3902 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3903 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3904 } 3905 3906 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3907 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3908 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3909 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3910 } 3911 } 3912 3913 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3914 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3915 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3916 ~C1->getValue() == C2->getValue() && 3917 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3918 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3919 LHS = TrueVal; 3920 RHS = FalseVal; 3921 return {SPF_SMIN, SPNB_NA, false}; 3922 } 3923 } 3924 } 3925 3926 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3927 3928 return {SPF_UNKNOWN, SPNB_NA, false}; 3929 } 3930 3931 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3932 Instruction::CastOps *CastOp) { 3933 CastInst *CI = dyn_cast<CastInst>(V1); 3934 Constant *C = dyn_cast<Constant>(V2); 3935 if (!CI) 3936 return nullptr; 3937 *CastOp = CI->getOpcode(); 3938 3939 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 3940 // If V1 and V2 are both the same cast from the same type, we can look 3941 // through V1. 3942 if (CI2->getOpcode() == CI->getOpcode() && 3943 CI2->getSrcTy() == CI->getSrcTy()) 3944 return CI2->getOperand(0); 3945 return nullptr; 3946 } else if (!C) { 3947 return nullptr; 3948 } 3949 3950 Constant *CastedTo = nullptr; 3951 3952 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3953 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3954 3955 if (isa<SExtInst>(CI) && CmpI->isSigned()) 3956 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 3957 3958 if (isa<TruncInst>(CI)) 3959 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3960 3961 if (isa<FPTruncInst>(CI)) 3962 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3963 3964 if (isa<FPExtInst>(CI)) 3965 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3966 3967 if (isa<FPToUIInst>(CI)) 3968 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3969 3970 if (isa<FPToSIInst>(CI)) 3971 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3972 3973 if (isa<UIToFPInst>(CI)) 3974 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3975 3976 if (isa<SIToFPInst>(CI)) 3977 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3978 3979 if (!CastedTo) 3980 return nullptr; 3981 3982 Constant *CastedBack = 3983 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 3984 // Make sure the cast doesn't lose any information. 3985 if (CastedBack != C) 3986 return nullptr; 3987 3988 return CastedTo; 3989 } 3990 3991 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 3992 Instruction::CastOps *CastOp) { 3993 SelectInst *SI = dyn_cast<SelectInst>(V); 3994 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3995 3996 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3997 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3998 3999 CmpInst::Predicate Pred = CmpI->getPredicate(); 4000 Value *CmpLHS = CmpI->getOperand(0); 4001 Value *CmpRHS = CmpI->getOperand(1); 4002 Value *TrueVal = SI->getTrueValue(); 4003 Value *FalseVal = SI->getFalseValue(); 4004 FastMathFlags FMF; 4005 if (isa<FPMathOperator>(CmpI)) 4006 FMF = CmpI->getFastMathFlags(); 4007 4008 // Bail out early. 4009 if (CmpI->isEquality()) 4010 return {SPF_UNKNOWN, SPNB_NA, false}; 4011 4012 // Deal with type mismatches. 4013 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4014 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4015 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4016 cast<CastInst>(TrueVal)->getOperand(0), C, 4017 LHS, RHS); 4018 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4019 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4020 C, cast<CastInst>(FalseVal)->getOperand(0), 4021 LHS, RHS); 4022 } 4023 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4024 LHS, RHS); 4025 } 4026 4027 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 4028 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4029 assert(NumRanges >= 1 && "Must have at least one range!"); 4030 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4031 4032 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4033 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4034 4035 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4036 4037 for (unsigned i = 1; i < NumRanges; ++i) { 4038 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4039 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4040 4041 // Note: unionWith will potentially create a range that contains values not 4042 // contained in any of the original N ranges. 4043 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4044 } 4045 4046 return CR; 4047 } 4048 4049 /// Return true if "icmp Pred LHS RHS" is always true. 4050 static bool isTruePredicate(CmpInst::Predicate Pred, 4051 const Value *LHS, const Value *RHS, 4052 const DataLayout &DL, unsigned Depth, 4053 AssumptionCache *AC, const Instruction *CxtI, 4054 const DominatorTree *DT) { 4055 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4056 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4057 return true; 4058 4059 switch (Pred) { 4060 default: 4061 return false; 4062 4063 case CmpInst::ICMP_SLE: { 4064 const APInt *C; 4065 4066 // LHS s<= LHS +_{nsw} C if C >= 0 4067 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4068 return !C->isNegative(); 4069 return false; 4070 } 4071 4072 case CmpInst::ICMP_ULE: { 4073 const APInt *C; 4074 4075 // LHS u<= LHS +_{nuw} C for any C 4076 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4077 return true; 4078 4079 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4080 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4081 const Value *&X, 4082 const APInt *&CA, const APInt *&CB) { 4083 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4084 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4085 return true; 4086 4087 // If X & C == 0 then (X | C) == X +_{nuw} C 4088 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4089 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4090 unsigned BitWidth = CA->getBitWidth(); 4091 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4092 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4093 4094 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4095 return true; 4096 } 4097 4098 return false; 4099 }; 4100 4101 const Value *X; 4102 const APInt *CLHS, *CRHS; 4103 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4104 return CLHS->ule(*CRHS); 4105 4106 return false; 4107 } 4108 } 4109 } 4110 4111 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4112 /// ALHS ARHS" is true. Otherwise, return None. 4113 static Optional<bool> 4114 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4115 const Value *ARHS, const Value *BLHS, 4116 const Value *BRHS, const DataLayout &DL, 4117 unsigned Depth, AssumptionCache *AC, 4118 const Instruction *CxtI, const DominatorTree *DT) { 4119 switch (Pred) { 4120 default: 4121 return None; 4122 4123 case CmpInst::ICMP_SLT: 4124 case CmpInst::ICMP_SLE: 4125 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4126 DT) && 4127 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4128 return true; 4129 return None; 4130 4131 case CmpInst::ICMP_ULT: 4132 case CmpInst::ICMP_ULE: 4133 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4134 DT) && 4135 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4136 return true; 4137 return None; 4138 } 4139 } 4140 4141 /// Return true if the operands of the two compares match. IsSwappedOps is true 4142 /// when the operands match, but are swapped. 4143 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4144 const Value *BLHS, const Value *BRHS, 4145 bool &IsSwappedOps) { 4146 4147 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4148 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4149 return IsMatchingOps || IsSwappedOps; 4150 } 4151 4152 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4153 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4154 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4155 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4156 const Value *ALHS, 4157 const Value *ARHS, 4158 CmpInst::Predicate BPred, 4159 const Value *BLHS, 4160 const Value *BRHS, 4161 bool IsSwappedOps) { 4162 // Canonicalize the operands so they're matching. 4163 if (IsSwappedOps) { 4164 std::swap(BLHS, BRHS); 4165 BPred = ICmpInst::getSwappedPredicate(BPred); 4166 } 4167 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4168 return true; 4169 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4170 return false; 4171 4172 return None; 4173 } 4174 4175 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4176 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4177 /// C2" is false. Otherwise, return None if we can't infer anything. 4178 static Optional<bool> 4179 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4180 const ConstantInt *C1, 4181 CmpInst::Predicate BPred, 4182 const Value *BLHS, const ConstantInt *C2) { 4183 assert(ALHS == BLHS && "LHS operands must match."); 4184 ConstantRange DomCR = 4185 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4186 ConstantRange CR = 4187 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4188 ConstantRange Intersection = DomCR.intersectWith(CR); 4189 ConstantRange Difference = DomCR.difference(CR); 4190 if (Intersection.isEmptySet()) 4191 return false; 4192 if (Difference.isEmptySet()) 4193 return true; 4194 return None; 4195 } 4196 4197 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4198 const DataLayout &DL, bool InvertAPred, 4199 unsigned Depth, AssumptionCache *AC, 4200 const Instruction *CxtI, 4201 const DominatorTree *DT) { 4202 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4203 if (LHS->getType() != RHS->getType()) 4204 return None; 4205 4206 Type *OpTy = LHS->getType(); 4207 assert(OpTy->getScalarType()->isIntegerTy(1)); 4208 4209 // LHS ==> RHS by definition 4210 if (!InvertAPred && LHS == RHS) 4211 return true; 4212 4213 if (OpTy->isVectorTy()) 4214 // TODO: extending the code below to handle vectors 4215 return None; 4216 assert(OpTy->isIntegerTy(1) && "implied by above"); 4217 4218 ICmpInst::Predicate APred, BPred; 4219 Value *ALHS, *ARHS; 4220 Value *BLHS, *BRHS; 4221 4222 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4223 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4224 return None; 4225 4226 if (InvertAPred) 4227 APred = CmpInst::getInversePredicate(APred); 4228 4229 // Can we infer anything when the two compares have matching operands? 4230 bool IsSwappedOps; 4231 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4232 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4233 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4234 return Implication; 4235 // No amount of additional analysis will infer the second condition, so 4236 // early exit. 4237 return None; 4238 } 4239 4240 // Can we infer anything when the LHS operands match and the RHS operands are 4241 // constants (not necessarily matching)? 4242 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4243 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4244 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4245 cast<ConstantInt>(BRHS))) 4246 return Implication; 4247 // No amount of additional analysis will infer the second condition, so 4248 // early exit. 4249 return None; 4250 } 4251 4252 if (APred == BPred) 4253 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4254 CxtI, DT); 4255 4256 return None; 4257 } 4258