1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/Statepoint.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include <algorithm>
43 #include <array>
44 #include <cstring>
45 using namespace llvm;
46 using namespace llvm::PatternMatch;
47 
48 const unsigned MaxDepth = 6;
49 
50 // Controls the number of uses of the value searched for possible
51 // dominating comparisons.
52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
53                                               cl::Hidden, cl::init(20));
54 
55 // This optimization is known to cause performance regressions is some cases,
56 // keep it under a temporary flag for now.
57 static cl::opt<bool>
58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
59                               cl::Hidden, cl::init(true));
60 
61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
62 /// 0). For vector types, returns the element type's bitwidth.
63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
64   if (unsigned BitWidth = Ty->getScalarSizeInBits())
65     return BitWidth;
66 
67   return DL.getPointerTypeSizeInBits(Ty);
68 }
69 
70 namespace {
71 // Simplifying using an assume can only be done in a particular control-flow
72 // context (the context instruction provides that context). If an assume and
73 // the context instruction are not in the same block then the DT helps in
74 // figuring out if we can use it.
75 struct Query {
76   const DataLayout &DL;
77   AssumptionCache *AC;
78   const Instruction *CxtI;
79   const DominatorTree *DT;
80   // Unlike the other analyses, this may be a nullptr because not all clients
81   // provide it currently.
82   OptimizationRemarkEmitter *ORE;
83 
84   /// Set of assumptions that should be excluded from further queries.
85   /// This is because of the potential for mutual recursion to cause
86   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
87   /// classic case of this is assume(x = y), which will attempt to determine
88   /// bits in x from bits in y, which will attempt to determine bits in y from
89   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
90   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
91   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
92   /// on.
93   std::array<const Value *, MaxDepth> Excluded;
94   unsigned NumExcluded;
95 
96   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
97         const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
98       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
99 
100   Query(const Query &Q, const Value *NewExcl)
101       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
102         NumExcluded(Q.NumExcluded) {
103     Excluded = Q.Excluded;
104     Excluded[NumExcluded++] = NewExcl;
105     assert(NumExcluded <= Excluded.size());
106   }
107 
108   bool isExcluded(const Value *Value) const {
109     if (NumExcluded == 0)
110       return false;
111     auto End = Excluded.begin() + NumExcluded;
112     return std::find(Excluded.begin(), End, Value) != End;
113   }
114 };
115 } // end anonymous namespace
116 
117 // Given the provided Value and, potentially, a context instruction, return
118 // the preferred context instruction (if any).
119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
120   // If we've been provided with a context instruction, then use that (provided
121   // it has been inserted).
122   if (CxtI && CxtI->getParent())
123     return CxtI;
124 
125   // If the value is really an already-inserted instruction, then use that.
126   CxtI = dyn_cast<Instruction>(V);
127   if (CxtI && CxtI->getParent())
128     return CxtI;
129 
130   return nullptr;
131 }
132 
133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
134                              unsigned Depth, const Query &Q);
135 
136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
137                             const DataLayout &DL, unsigned Depth,
138                             AssumptionCache *AC, const Instruction *CxtI,
139                             const DominatorTree *DT,
140                             OptimizationRemarkEmitter *ORE) {
141   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
142                      Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
143 }
144 
145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
146                                const DataLayout &DL,
147                                AssumptionCache *AC, const Instruction *CxtI,
148                                const DominatorTree *DT) {
149   assert(LHS->getType() == RHS->getType() &&
150          "LHS and RHS should have the same type");
151   assert(LHS->getType()->isIntOrIntVectorTy() &&
152          "LHS and RHS should be integers");
153   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
154   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
155   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
156   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
157   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
158   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
159 }
160 
161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
162                            unsigned Depth, const Query &Q);
163 
164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
165                           const DataLayout &DL, unsigned Depth,
166                           AssumptionCache *AC, const Instruction *CxtI,
167                           const DominatorTree *DT) {
168   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
169                    Query(DL, AC, safeCxtI(V, CxtI), DT));
170 }
171 
172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
173                                    const Query &Q);
174 
175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
176                                   bool OrZero,
177                                   unsigned Depth, AssumptionCache *AC,
178                                   const Instruction *CxtI,
179                                   const DominatorTree *DT) {
180   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
181                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
182 }
183 
184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
185 
186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
187                           AssumptionCache *AC, const Instruction *CxtI,
188                           const DominatorTree *DT) {
189   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
190 }
191 
192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
193                               unsigned Depth,
194                               AssumptionCache *AC, const Instruction *CxtI,
195                               const DominatorTree *DT) {
196   bool NonNegative, Negative;
197   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
198   return NonNegative;
199 }
200 
201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
202                            AssumptionCache *AC, const Instruction *CxtI,
203                            const DominatorTree *DT) {
204   if (auto *CI = dyn_cast<ConstantInt>(V))
205     return CI->getValue().isStrictlyPositive();
206 
207   // TODO: We'd doing two recursive queries here.  We should factor this such
208   // that only a single query is needed.
209   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
210     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
211 }
212 
213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
214                            AssumptionCache *AC, const Instruction *CxtI,
215                            const DominatorTree *DT) {
216   bool NonNegative, Negative;
217   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
218   return Negative;
219 }
220 
221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
222 
223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
224                            const DataLayout &DL,
225                            AssumptionCache *AC, const Instruction *CxtI,
226                            const DominatorTree *DT) {
227   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
228                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
229                                          DT));
230 }
231 
232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
233                               const Query &Q);
234 
235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
236                              const DataLayout &DL,
237                              unsigned Depth, AssumptionCache *AC,
238                              const Instruction *CxtI, const DominatorTree *DT) {
239   return ::MaskedValueIsZero(V, Mask, Depth,
240                              Query(DL, AC, safeCxtI(V, CxtI), DT));
241 }
242 
243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
244                                    const Query &Q);
245 
246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
247                                   unsigned Depth, AssumptionCache *AC,
248                                   const Instruction *CxtI,
249                                   const DominatorTree *DT) {
250   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
251 }
252 
253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
254                                    bool NSW,
255                                    APInt &KnownZero, APInt &KnownOne,
256                                    APInt &KnownZero2, APInt &KnownOne2,
257                                    unsigned Depth, const Query &Q) {
258   if (!Add) {
259     if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
260       // We know that the top bits of C-X are clear if X contains less bits
261       // than C (i.e. no wrap-around can happen).  For example, 20-X is
262       // positive if we can prove that X is >= 0 and < 16.
263       if (!CLHS->getValue().isNegative()) {
264         unsigned BitWidth = KnownZero.getBitWidth();
265         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
266         // NLZ can't be BitWidth with no sign bit
267         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
268         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
269 
270         // If all of the MaskV bits are known to be zero, then we know the
271         // output top bits are zero, because we now know that the output is
272         // from [0-C].
273         if ((KnownZero2 & MaskV) == MaskV) {
274           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
275           // Top bits known zero.
276           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
277         }
278       }
279     }
280   }
281 
282   unsigned BitWidth = KnownZero.getBitWidth();
283 
284   // If an initial sequence of bits in the result is not needed, the
285   // corresponding bits in the operands are not needed.
286   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
287   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
288   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
289 
290   // Carry in a 1 for a subtract, rather than a 0.
291   APInt CarryIn(BitWidth, 0);
292   if (!Add) {
293     // Sum = LHS + ~RHS + 1
294     std::swap(KnownZero2, KnownOne2);
295     CarryIn.setBit(0);
296   }
297 
298   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
299   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
300 
301   // Compute known bits of the carry.
302   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
303   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
304 
305   // Compute set of known bits (where all three relevant bits are known).
306   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
307   APInt RHSKnown = KnownZero2 | KnownOne2;
308   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
309   APInt Known = LHSKnown & RHSKnown & CarryKnown;
310 
311   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
312          "known bits of sum differ");
313 
314   // Compute known bits of the result.
315   KnownZero = ~PossibleSumOne & Known;
316   KnownOne = PossibleSumOne & Known;
317 
318   // Are we still trying to solve for the sign bit?
319   if (!Known.isNegative()) {
320     if (NSW) {
321       // Adding two non-negative numbers, or subtracting a negative number from
322       // a non-negative one, can't wrap into negative.
323       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
324         KnownZero |= APInt::getSignBit(BitWidth);
325       // Adding two negative numbers, or subtracting a non-negative number from
326       // a negative one, can't wrap into non-negative.
327       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
328         KnownOne |= APInt::getSignBit(BitWidth);
329     }
330   }
331 }
332 
333 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
334                                 APInt &KnownZero, APInt &KnownOne,
335                                 APInt &KnownZero2, APInt &KnownOne2,
336                                 unsigned Depth, const Query &Q) {
337   unsigned BitWidth = KnownZero.getBitWidth();
338   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
339   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
340 
341   bool isKnownNegative = false;
342   bool isKnownNonNegative = false;
343   // If the multiplication is known not to overflow, compute the sign bit.
344   if (NSW) {
345     if (Op0 == Op1) {
346       // The product of a number with itself is non-negative.
347       isKnownNonNegative = true;
348     } else {
349       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
350       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
351       bool isKnownNegativeOp1 = KnownOne.isNegative();
352       bool isKnownNegativeOp0 = KnownOne2.isNegative();
353       // The product of two numbers with the same sign is non-negative.
354       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
355         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
356       // The product of a negative number and a non-negative number is either
357       // negative or zero.
358       if (!isKnownNonNegative)
359         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
360                            isKnownNonZero(Op0, Depth, Q)) ||
361                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
362                            isKnownNonZero(Op1, Depth, Q));
363     }
364   }
365 
366   // If low bits are zero in either operand, output low known-0 bits.
367   // Also compute a conservative estimate for high known-0 bits.
368   // More trickiness is possible, but this is sufficient for the
369   // interesting case of alignment computation.
370   KnownOne.clearAllBits();
371   unsigned TrailZ = KnownZero.countTrailingOnes() +
372                     KnownZero2.countTrailingOnes();
373   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
374                              KnownZero2.countLeadingOnes(),
375                              BitWidth) - BitWidth;
376 
377   TrailZ = std::min(TrailZ, BitWidth);
378   LeadZ = std::min(LeadZ, BitWidth);
379   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
380               APInt::getHighBitsSet(BitWidth, LeadZ);
381 
382   // Only make use of no-wrap flags if we failed to compute the sign bit
383   // directly.  This matters if the multiplication always overflows, in
384   // which case we prefer to follow the result of the direct computation,
385   // though as the program is invoking undefined behaviour we can choose
386   // whatever we like here.
387   if (isKnownNonNegative && !KnownOne.isNegative())
388     KnownZero.setBit(BitWidth - 1);
389   else if (isKnownNegative && !KnownZero.isNegative())
390     KnownOne.setBit(BitWidth - 1);
391 }
392 
393 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
394                                              APInt &KnownZero,
395                                              APInt &KnownOne) {
396   unsigned BitWidth = KnownZero.getBitWidth();
397   unsigned NumRanges = Ranges.getNumOperands() / 2;
398   assert(NumRanges >= 1);
399 
400   KnownZero.setAllBits();
401   KnownOne.setAllBits();
402 
403   for (unsigned i = 0; i < NumRanges; ++i) {
404     ConstantInt *Lower =
405         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
406     ConstantInt *Upper =
407         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
408     ConstantRange Range(Lower->getValue(), Upper->getValue());
409 
410     // The first CommonPrefixBits of all values in Range are equal.
411     unsigned CommonPrefixBits =
412         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
413 
414     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
415     KnownOne &= Range.getUnsignedMax() & Mask;
416     KnownZero &= ~Range.getUnsignedMax() & Mask;
417   }
418 }
419 
420 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
421   SmallVector<const Value *, 16> WorkSet(1, I);
422   SmallPtrSet<const Value *, 32> Visited;
423   SmallPtrSet<const Value *, 16> EphValues;
424 
425   // The instruction defining an assumption's condition itself is always
426   // considered ephemeral to that assumption (even if it has other
427   // non-ephemeral users). See r246696's test case for an example.
428   if (is_contained(I->operands(), E))
429     return true;
430 
431   while (!WorkSet.empty()) {
432     const Value *V = WorkSet.pop_back_val();
433     if (!Visited.insert(V).second)
434       continue;
435 
436     // If all uses of this value are ephemeral, then so is this value.
437     if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
438       if (V == E)
439         return true;
440 
441       EphValues.insert(V);
442       if (const User *U = dyn_cast<User>(V))
443         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
444              J != JE; ++J) {
445           if (isSafeToSpeculativelyExecute(*J))
446             WorkSet.push_back(*J);
447         }
448     }
449   }
450 
451   return false;
452 }
453 
454 // Is this an intrinsic that cannot be speculated but also cannot trap?
455 static bool isAssumeLikeIntrinsic(const Instruction *I) {
456   if (const CallInst *CI = dyn_cast<CallInst>(I))
457     if (Function *F = CI->getCalledFunction())
458       switch (F->getIntrinsicID()) {
459       default: break;
460       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
461       case Intrinsic::assume:
462       case Intrinsic::dbg_declare:
463       case Intrinsic::dbg_value:
464       case Intrinsic::invariant_start:
465       case Intrinsic::invariant_end:
466       case Intrinsic::lifetime_start:
467       case Intrinsic::lifetime_end:
468       case Intrinsic::objectsize:
469       case Intrinsic::ptr_annotation:
470       case Intrinsic::var_annotation:
471         return true;
472       }
473 
474   return false;
475 }
476 
477 bool llvm::isValidAssumeForContext(const Instruction *Inv,
478                                    const Instruction *CxtI,
479                                    const DominatorTree *DT) {
480 
481   // There are two restrictions on the use of an assume:
482   //  1. The assume must dominate the context (or the control flow must
483   //     reach the assume whenever it reaches the context).
484   //  2. The context must not be in the assume's set of ephemeral values
485   //     (otherwise we will use the assume to prove that the condition
486   //     feeding the assume is trivially true, thus causing the removal of
487   //     the assume).
488 
489   if (DT) {
490     if (DT->dominates(Inv, CxtI))
491       return true;
492   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
493     // We don't have a DT, but this trivially dominates.
494     return true;
495   }
496 
497   // With or without a DT, the only remaining case we will check is if the
498   // instructions are in the same BB.  Give up if that is not the case.
499   if (Inv->getParent() != CxtI->getParent())
500     return false;
501 
502   // If we have a dom tree, then we now know that the assume doens't dominate
503   // the other instruction.  If we don't have a dom tree then we can check if
504   // the assume is first in the BB.
505   if (!DT) {
506     // Search forward from the assume until we reach the context (or the end
507     // of the block); the common case is that the assume will come first.
508     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
509          IE = Inv->getParent()->end(); I != IE; ++I)
510       if (&*I == CxtI)
511         return true;
512   }
513 
514   // The context comes first, but they're both in the same block. Make sure
515   // there is nothing in between that might interrupt the control flow.
516   for (BasicBlock::const_iterator I =
517          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
518        I != IE; ++I)
519     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
520       return false;
521 
522   return !isEphemeralValueOf(Inv, CxtI);
523 }
524 
525 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
526                                        APInt &KnownOne, unsigned Depth,
527                                        const Query &Q) {
528   // Use of assumptions is context-sensitive. If we don't have a context, we
529   // cannot use them!
530   if (!Q.AC || !Q.CxtI)
531     return;
532 
533   unsigned BitWidth = KnownZero.getBitWidth();
534 
535   // Note that the patterns below need to be kept in sync with the code
536   // in AssumptionCache::updateAffectedValues.
537 
538   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
539     if (!AssumeVH)
540       continue;
541     CallInst *I = cast<CallInst>(AssumeVH);
542     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
543            "Got assumption for the wrong function!");
544     if (Q.isExcluded(I))
545       continue;
546 
547     // Warning: This loop can end up being somewhat performance sensetive.
548     // We're running this loop for once for each value queried resulting in a
549     // runtime of ~O(#assumes * #values).
550 
551     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
552            "must be an assume intrinsic");
553 
554     Value *Arg = I->getArgOperand(0);
555 
556     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
557       assert(BitWidth == 1 && "assume operand is not i1?");
558       KnownZero.clearAllBits();
559       KnownOne.setAllBits();
560       return;
561     }
562     if (match(Arg, m_Not(m_Specific(V))) &&
563         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
564       assert(BitWidth == 1 && "assume operand is not i1?");
565       KnownZero.setAllBits();
566       KnownOne.clearAllBits();
567       return;
568     }
569 
570     // The remaining tests are all recursive, so bail out if we hit the limit.
571     if (Depth == MaxDepth)
572       continue;
573 
574     Value *A, *B;
575     auto m_V = m_CombineOr(m_Specific(V),
576                            m_CombineOr(m_PtrToInt(m_Specific(V)),
577                            m_BitCast(m_Specific(V))));
578 
579     CmpInst::Predicate Pred;
580     ConstantInt *C;
581     // assume(v = a)
582     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
583         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
584       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
585       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
586       KnownZero |= RHSKnownZero;
587       KnownOne  |= RHSKnownOne;
588     // assume(v & b = a)
589     } else if (match(Arg,
590                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
591                Pred == ICmpInst::ICMP_EQ &&
592                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
593       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
594       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
595       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
596       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
597 
598       // For those bits in the mask that are known to be one, we can propagate
599       // known bits from the RHS to V.
600       KnownZero |= RHSKnownZero & MaskKnownOne;
601       KnownOne  |= RHSKnownOne  & MaskKnownOne;
602     // assume(~(v & b) = a)
603     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
604                                    m_Value(A))) &&
605                Pred == ICmpInst::ICMP_EQ &&
606                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
607       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
608       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
609       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
610       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
611 
612       // For those bits in the mask that are known to be one, we can propagate
613       // inverted known bits from the RHS to V.
614       KnownZero |= RHSKnownOne  & MaskKnownOne;
615       KnownOne  |= RHSKnownZero & MaskKnownOne;
616     // assume(v | b = a)
617     } else if (match(Arg,
618                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
619                Pred == ICmpInst::ICMP_EQ &&
620                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
621       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
622       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
623       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
624       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
625 
626       // For those bits in B that are known to be zero, we can propagate known
627       // bits from the RHS to V.
628       KnownZero |= RHSKnownZero & BKnownZero;
629       KnownOne  |= RHSKnownOne  & BKnownZero;
630     // assume(~(v | b) = a)
631     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
632                                    m_Value(A))) &&
633                Pred == ICmpInst::ICMP_EQ &&
634                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
635       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
636       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
637       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
638       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
639 
640       // For those bits in B that are known to be zero, we can propagate
641       // inverted known bits from the RHS to V.
642       KnownZero |= RHSKnownOne  & BKnownZero;
643       KnownOne  |= RHSKnownZero & BKnownZero;
644     // assume(v ^ b = a)
645     } else if (match(Arg,
646                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
647                Pred == ICmpInst::ICMP_EQ &&
648                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
649       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
650       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
651       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
652       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
653 
654       // For those bits in B that are known to be zero, we can propagate known
655       // bits from the RHS to V. For those bits in B that are known to be one,
656       // we can propagate inverted known bits from the RHS to V.
657       KnownZero |= RHSKnownZero & BKnownZero;
658       KnownOne  |= RHSKnownOne  & BKnownZero;
659       KnownZero |= RHSKnownOne  & BKnownOne;
660       KnownOne  |= RHSKnownZero & BKnownOne;
661     // assume(~(v ^ b) = a)
662     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
663                                    m_Value(A))) &&
664                Pred == ICmpInst::ICMP_EQ &&
665                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
666       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
667       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
668       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
669       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
670 
671       // For those bits in B that are known to be zero, we can propagate
672       // inverted known bits from the RHS to V. For those bits in B that are
673       // known to be one, we can propagate known bits from the RHS to V.
674       KnownZero |= RHSKnownOne  & BKnownZero;
675       KnownOne  |= RHSKnownZero & BKnownZero;
676       KnownZero |= RHSKnownZero & BKnownOne;
677       KnownOne  |= RHSKnownOne  & BKnownOne;
678     // assume(v << c = a)
679     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
680                                    m_Value(A))) &&
681                Pred == ICmpInst::ICMP_EQ &&
682                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
683       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
684       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
685       // For those bits in RHS that are known, we can propagate them to known
686       // bits in V shifted to the right by C.
687       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
688       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
689     // assume(~(v << c) = a)
690     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
691                                    m_Value(A))) &&
692                Pred == ICmpInst::ICMP_EQ &&
693                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
694       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
695       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
696       // For those bits in RHS that are known, we can propagate them inverted
697       // to known bits in V shifted to the right by C.
698       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
699       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
700     // assume(v >> c = a)
701     } else if (match(Arg,
702                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
703                                                 m_AShr(m_V, m_ConstantInt(C))),
704                               m_Value(A))) &&
705                Pred == ICmpInst::ICMP_EQ &&
706                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
707       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
708       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
709       // For those bits in RHS that are known, we can propagate them to known
710       // bits in V shifted to the right by C.
711       KnownZero |= RHSKnownZero << C->getZExtValue();
712       KnownOne  |= RHSKnownOne  << C->getZExtValue();
713     // assume(~(v >> c) = a)
714     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
715                                              m_LShr(m_V, m_ConstantInt(C)),
716                                              m_AShr(m_V, m_ConstantInt(C)))),
717                                    m_Value(A))) &&
718                Pred == ICmpInst::ICMP_EQ &&
719                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
720       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
721       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
722       // For those bits in RHS that are known, we can propagate them inverted
723       // to known bits in V shifted to the right by C.
724       KnownZero |= RHSKnownOne  << C->getZExtValue();
725       KnownOne  |= RHSKnownZero << C->getZExtValue();
726     // assume(v >=_s c) where c is non-negative
727     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
728                Pred == ICmpInst::ICMP_SGE &&
729                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
730       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
731       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
732 
733       if (RHSKnownZero.isNegative()) {
734         // We know that the sign bit is zero.
735         KnownZero |= APInt::getSignBit(BitWidth);
736       }
737     // assume(v >_s c) where c is at least -1.
738     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
739                Pred == ICmpInst::ICMP_SGT &&
740                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
741       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
742       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
743 
744       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
745         // We know that the sign bit is zero.
746         KnownZero |= APInt::getSignBit(BitWidth);
747       }
748     // assume(v <=_s c) where c is negative
749     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
750                Pred == ICmpInst::ICMP_SLE &&
751                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
752       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
753       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
754 
755       if (RHSKnownOne.isNegative()) {
756         // We know that the sign bit is one.
757         KnownOne |= APInt::getSignBit(BitWidth);
758       }
759     // assume(v <_s c) where c is non-positive
760     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
761                Pred == ICmpInst::ICMP_SLT &&
762                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
763       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
764       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
765 
766       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
767         // We know that the sign bit is one.
768         KnownOne |= APInt::getSignBit(BitWidth);
769       }
770     // assume(v <=_u c)
771     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
772                Pred == ICmpInst::ICMP_ULE &&
773                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
774       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
775       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
776 
777       // Whatever high bits in c are zero are known to be zero.
778       KnownZero |=
779         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
780     // assume(v <_u c)
781     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
782                Pred == ICmpInst::ICMP_ULT &&
783                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
784       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
785       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
786 
787       // Whatever high bits in c are zero are known to be zero (if c is a power
788       // of 2, then one more).
789       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
790         KnownZero |=
791           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
792       else
793         KnownZero |=
794           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
795     }
796   }
797 
798   // If assumptions conflict with each other or previous known bits, then we
799   // have a logical fallacy. It's possible that the assumption is not reachable,
800   // so this isn't a real bug. On the other hand, the program may have undefined
801   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
802   // clear out the known bits, try to warn the user, and hope for the best.
803   if ((KnownZero & KnownOne) != 0) {
804     KnownZero.clearAllBits();
805     KnownOne.clearAllBits();
806 
807     if (Q.ORE) {
808       auto *CxtI = const_cast<Instruction *>(Q.CxtI);
809       OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
810       Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
811                          "have undefined behavior, or compiler may have "
812                          "internal error.");
813     }
814   }
815 }
816 
817 // Compute known bits from a shift operator, including those with a
818 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
819 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
820 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
821 // functors that, given the known-zero or known-one bits respectively, and a
822 // shift amount, compute the implied known-zero or known-one bits of the shift
823 // operator's result respectively for that shift amount. The results from calling
824 // KZF and KOF are conservatively combined for all permitted shift amounts.
825 static void computeKnownBitsFromShiftOperator(
826     const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
827     APInt &KnownOne2, unsigned Depth, const Query &Q,
828     function_ref<APInt(const APInt &, unsigned)> KZF,
829     function_ref<APInt(const APInt &, unsigned)> KOF) {
830   unsigned BitWidth = KnownZero.getBitWidth();
831 
832   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
833     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
834 
835     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
836     KnownZero = KZF(KnownZero, ShiftAmt);
837     KnownOne  = KOF(KnownOne, ShiftAmt);
838     // If there is conflict between KnownZero and KnownOne, this must be an
839     // overflowing left shift, so the shift result is undefined. Clear KnownZero
840     // and KnownOne bits so that other code could propagate this undef.
841     if ((KnownZero & KnownOne) != 0) {
842       KnownZero.clearAllBits();
843       KnownOne.clearAllBits();
844     }
845 
846     return;
847   }
848 
849   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
850 
851   // Note: We cannot use KnownZero.getLimitedValue() here, because if
852   // BitWidth > 64 and any upper bits are known, we'll end up returning the
853   // limit value (which implies all bits are known).
854   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
855   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
856 
857   // It would be more-clearly correct to use the two temporaries for this
858   // calculation. Reusing the APInts here to prevent unnecessary allocations.
859   KnownZero.clearAllBits();
860   KnownOne.clearAllBits();
861 
862   // If we know the shifter operand is nonzero, we can sometimes infer more
863   // known bits. However this is expensive to compute, so be lazy about it and
864   // only compute it when absolutely necessary.
865   Optional<bool> ShifterOperandIsNonZero;
866 
867   // Early exit if we can't constrain any well-defined shift amount.
868   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
869     ShifterOperandIsNonZero =
870         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
871     if (!*ShifterOperandIsNonZero)
872       return;
873   }
874 
875   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
876 
877   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
878   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
879     // Combine the shifted known input bits only for those shift amounts
880     // compatible with its known constraints.
881     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
882       continue;
883     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
884       continue;
885     // If we know the shifter is nonzero, we may be able to infer more known
886     // bits. This check is sunk down as far as possible to avoid the expensive
887     // call to isKnownNonZero if the cheaper checks above fail.
888     if (ShiftAmt == 0) {
889       if (!ShifterOperandIsNonZero.hasValue())
890         ShifterOperandIsNonZero =
891             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
892       if (*ShifterOperandIsNonZero)
893         continue;
894     }
895 
896     KnownZero &= KZF(KnownZero2, ShiftAmt);
897     KnownOne  &= KOF(KnownOne2, ShiftAmt);
898   }
899 
900   // If there are no compatible shift amounts, then we've proven that the shift
901   // amount must be >= the BitWidth, and the result is undefined. We could
902   // return anything we'd like, but we need to make sure the sets of known bits
903   // stay disjoint (it should be better for some other code to actually
904   // propagate the undef than to pick a value here using known bits).
905   if ((KnownZero & KnownOne) != 0) {
906     KnownZero.clearAllBits();
907     KnownOne.clearAllBits();
908   }
909 }
910 
911 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
912                                          APInt &KnownOne, unsigned Depth,
913                                          const Query &Q) {
914   unsigned BitWidth = KnownZero.getBitWidth();
915 
916   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
917   switch (I->getOpcode()) {
918   default: break;
919   case Instruction::Load:
920     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
921       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
922     break;
923   case Instruction::And: {
924     // If either the LHS or the RHS are Zero, the result is zero.
925     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
926     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
927 
928     // Output known-1 bits are only known if set in both the LHS & RHS.
929     KnownOne &= KnownOne2;
930     // Output known-0 are known to be clear if zero in either the LHS | RHS.
931     KnownZero |= KnownZero2;
932 
933     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
934     // here we handle the more general case of adding any odd number by
935     // matching the form add(x, add(x, y)) where y is odd.
936     // TODO: This could be generalized to clearing any bit set in y where the
937     // following bit is known to be unset in y.
938     Value *Y = nullptr;
939     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
940                                       m_Value(Y))) ||
941         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
942                                       m_Value(Y)))) {
943       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
944       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
945       if (KnownOne3.countTrailingOnes() > 0)
946         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
947     }
948     break;
949   }
950   case Instruction::Or: {
951     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
952     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
953 
954     // Output known-0 bits are only known if clear in both the LHS & RHS.
955     KnownZero &= KnownZero2;
956     // Output known-1 are known to be set if set in either the LHS | RHS.
957     KnownOne |= KnownOne2;
958     break;
959   }
960   case Instruction::Xor: {
961     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
962     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
963 
964     // Output known-0 bits are known if clear or set in both the LHS & RHS.
965     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
966     // Output known-1 are known to be set if set in only one of the LHS, RHS.
967     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
968     KnownZero = KnownZeroOut;
969     break;
970   }
971   case Instruction::Mul: {
972     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
973     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
974                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
975     break;
976   }
977   case Instruction::UDiv: {
978     // For the purposes of computing leading zeros we can conservatively
979     // treat a udiv as a logical right shift by the power of 2 known to
980     // be less than the denominator.
981     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
982     unsigned LeadZ = KnownZero2.countLeadingOnes();
983 
984     KnownOne2.clearAllBits();
985     KnownZero2.clearAllBits();
986     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
987     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
988     if (RHSUnknownLeadingOnes != BitWidth)
989       LeadZ = std::min(BitWidth,
990                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
991 
992     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
993     break;
994   }
995   case Instruction::Select: {
996     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
997     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
998 
999     const Value *LHS;
1000     const Value *RHS;
1001     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1002     if (SelectPatternResult::isMinOrMax(SPF)) {
1003       computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
1004       computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
1005     } else {
1006       computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1007       computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1008     }
1009 
1010     unsigned MaxHighOnes = 0;
1011     unsigned MaxHighZeros = 0;
1012     if (SPF == SPF_SMAX) {
1013       // If both sides are negative, the result is negative.
1014       if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
1015         // We can derive a lower bound on the result by taking the max of the
1016         // leading one bits.
1017         MaxHighOnes =
1018             std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1019       // If either side is non-negative, the result is non-negative.
1020       else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
1021         MaxHighZeros = 1;
1022     } else if (SPF == SPF_SMIN) {
1023       // If both sides are non-negative, the result is non-negative.
1024       if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
1025         // We can derive an upper bound on the result by taking the max of the
1026         // leading zero bits.
1027         MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1028                                 KnownZero2.countLeadingOnes());
1029       // If either side is negative, the result is negative.
1030       else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
1031         MaxHighOnes = 1;
1032     } else if (SPF == SPF_UMAX) {
1033       // We can derive a lower bound on the result by taking the max of the
1034       // leading one bits.
1035       MaxHighOnes =
1036           std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1037     } else if (SPF == SPF_UMIN) {
1038       // We can derive an upper bound on the result by taking the max of the
1039       // leading zero bits.
1040       MaxHighZeros =
1041           std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1042     }
1043 
1044     // Only known if known in both the LHS and RHS.
1045     KnownOne &= KnownOne2;
1046     KnownZero &= KnownZero2;
1047     if (MaxHighOnes > 0)
1048       KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1049     if (MaxHighZeros > 0)
1050       KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
1051     break;
1052   }
1053   case Instruction::FPTrunc:
1054   case Instruction::FPExt:
1055   case Instruction::FPToUI:
1056   case Instruction::FPToSI:
1057   case Instruction::SIToFP:
1058   case Instruction::UIToFP:
1059     break; // Can't work with floating point.
1060   case Instruction::PtrToInt:
1061   case Instruction::IntToPtr:
1062     // Fall through and handle them the same as zext/trunc.
1063     LLVM_FALLTHROUGH;
1064   case Instruction::ZExt:
1065   case Instruction::Trunc: {
1066     Type *SrcTy = I->getOperand(0)->getType();
1067 
1068     unsigned SrcBitWidth;
1069     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1070     // which fall through here.
1071     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1072 
1073     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1074     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1075     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1076     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1077     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1078     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1079     // Any top bits are known to be zero.
1080     if (BitWidth > SrcBitWidth)
1081       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1082     break;
1083   }
1084   case Instruction::BitCast: {
1085     Type *SrcTy = I->getOperand(0)->getType();
1086     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
1087         // TODO: For now, not handling conversions like:
1088         // (bitcast i64 %x to <2 x i32>)
1089         !I->getType()->isVectorTy()) {
1090       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1091       break;
1092     }
1093     break;
1094   }
1095   case Instruction::SExt: {
1096     // Compute the bits in the result that are not present in the input.
1097     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1098 
1099     KnownZero = KnownZero.trunc(SrcBitWidth);
1100     KnownOne = KnownOne.trunc(SrcBitWidth);
1101     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1102     KnownZero = KnownZero.zext(BitWidth);
1103     KnownOne = KnownOne.zext(BitWidth);
1104 
1105     // If the sign bit of the input is known set or clear, then we know the
1106     // top bits of the result.
1107     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1108       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1109     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1110       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1111     break;
1112   }
1113   case Instruction::Shl: {
1114     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1115     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1116     auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1117       APInt KZResult =
1118           (KnownZero << ShiftAmt) |
1119           APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1120       // If this shift has "nsw" keyword, then the result is either a poison
1121       // value or has the same sign bit as the first operand.
1122       if (NSW && KnownZero.isNegative())
1123         KZResult.setBit(BitWidth - 1);
1124       return KZResult;
1125     };
1126 
1127     auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1128       APInt KOResult = KnownOne << ShiftAmt;
1129       if (NSW && KnownOne.isNegative())
1130         KOResult.setBit(BitWidth - 1);
1131       return KOResult;
1132     };
1133 
1134     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1135                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1136                                       KOF);
1137     break;
1138   }
1139   case Instruction::LShr: {
1140     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1141     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1142       return APIntOps::lshr(KnownZero, ShiftAmt) |
1143              // High bits known zero.
1144              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1145     };
1146 
1147     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1148       return APIntOps::lshr(KnownOne, ShiftAmt);
1149     };
1150 
1151     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1152                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1153                                       KOF);
1154     break;
1155   }
1156   case Instruction::AShr: {
1157     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1158     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1159       return APIntOps::ashr(KnownZero, ShiftAmt);
1160     };
1161 
1162     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1163       return APIntOps::ashr(KnownOne, ShiftAmt);
1164     };
1165 
1166     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1167                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1168                                       KOF);
1169     break;
1170   }
1171   case Instruction::Sub: {
1172     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1173     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1174                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1175                            Q);
1176     break;
1177   }
1178   case Instruction::Add: {
1179     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1180     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1181                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1182                            Q);
1183     break;
1184   }
1185   case Instruction::SRem:
1186     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1187       APInt RA = Rem->getValue().abs();
1188       if (RA.isPowerOf2()) {
1189         APInt LowBits = RA - 1;
1190         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1191                          Q);
1192 
1193         // The low bits of the first operand are unchanged by the srem.
1194         KnownZero = KnownZero2 & LowBits;
1195         KnownOne = KnownOne2 & LowBits;
1196 
1197         // If the first operand is non-negative or has all low bits zero, then
1198         // the upper bits are all zero.
1199         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1200           KnownZero |= ~LowBits;
1201 
1202         // If the first operand is negative and not all low bits are zero, then
1203         // the upper bits are all one.
1204         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1205           KnownOne |= ~LowBits;
1206 
1207         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1208       }
1209     }
1210 
1211     // The sign bit is the LHS's sign bit, except when the result of the
1212     // remainder is zero.
1213     if (KnownZero.isNonNegative()) {
1214       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1215       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1216                        Q);
1217       // If it's known zero, our sign bit is also zero.
1218       if (LHSKnownZero.isNegative())
1219         KnownZero.setBit(BitWidth - 1);
1220     }
1221 
1222     break;
1223   case Instruction::URem: {
1224     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1225       const APInt &RA = Rem->getValue();
1226       if (RA.isPowerOf2()) {
1227         APInt LowBits = (RA - 1);
1228         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1229         KnownZero |= ~LowBits;
1230         KnownOne &= LowBits;
1231         break;
1232       }
1233     }
1234 
1235     // Since the result is less than or equal to either operand, any leading
1236     // zero bits in either operand must also exist in the result.
1237     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1238     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1239 
1240     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1241                                 KnownZero2.countLeadingOnes());
1242     KnownOne.clearAllBits();
1243     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1244     break;
1245   }
1246 
1247   case Instruction::Alloca: {
1248     const AllocaInst *AI = cast<AllocaInst>(I);
1249     unsigned Align = AI->getAlignment();
1250     if (Align == 0)
1251       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1252 
1253     if (Align > 0)
1254       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1255     break;
1256   }
1257   case Instruction::GetElementPtr: {
1258     // Analyze all of the subscripts of this getelementptr instruction
1259     // to determine if we can prove known low zero bits.
1260     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1261     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1262                      Q);
1263     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1264 
1265     gep_type_iterator GTI = gep_type_begin(I);
1266     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1267       Value *Index = I->getOperand(i);
1268       if (StructType *STy = GTI.getStructTypeOrNull()) {
1269         // Handle struct member offset arithmetic.
1270 
1271         // Handle case when index is vector zeroinitializer
1272         Constant *CIndex = cast<Constant>(Index);
1273         if (CIndex->isZeroValue())
1274           continue;
1275 
1276         if (CIndex->getType()->isVectorTy())
1277           Index = CIndex->getSplatValue();
1278 
1279         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1280         const StructLayout *SL = Q.DL.getStructLayout(STy);
1281         uint64_t Offset = SL->getElementOffset(Idx);
1282         TrailZ = std::min<unsigned>(TrailZ,
1283                                     countTrailingZeros(Offset));
1284       } else {
1285         // Handle array index arithmetic.
1286         Type *IndexedTy = GTI.getIndexedType();
1287         if (!IndexedTy->isSized()) {
1288           TrailZ = 0;
1289           break;
1290         }
1291         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1292         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1293         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1294         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1295         TrailZ = std::min(TrailZ,
1296                           unsigned(countTrailingZeros(TypeSize) +
1297                                    LocalKnownZero.countTrailingOnes()));
1298       }
1299     }
1300 
1301     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1302     break;
1303   }
1304   case Instruction::PHI: {
1305     const PHINode *P = cast<PHINode>(I);
1306     // Handle the case of a simple two-predecessor recurrence PHI.
1307     // There's a lot more that could theoretically be done here, but
1308     // this is sufficient to catch some interesting cases.
1309     if (P->getNumIncomingValues() == 2) {
1310       for (unsigned i = 0; i != 2; ++i) {
1311         Value *L = P->getIncomingValue(i);
1312         Value *R = P->getIncomingValue(!i);
1313         Operator *LU = dyn_cast<Operator>(L);
1314         if (!LU)
1315           continue;
1316         unsigned Opcode = LU->getOpcode();
1317         // Check for operations that have the property that if
1318         // both their operands have low zero bits, the result
1319         // will have low zero bits.
1320         if (Opcode == Instruction::Add ||
1321             Opcode == Instruction::Sub ||
1322             Opcode == Instruction::And ||
1323             Opcode == Instruction::Or ||
1324             Opcode == Instruction::Mul) {
1325           Value *LL = LU->getOperand(0);
1326           Value *LR = LU->getOperand(1);
1327           // Find a recurrence.
1328           if (LL == I)
1329             L = LR;
1330           else if (LR == I)
1331             L = LL;
1332           else
1333             break;
1334           // Ok, we have a PHI of the form L op= R. Check for low
1335           // zero bits.
1336           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1337 
1338           // We need to take the minimum number of known bits
1339           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1340           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1341 
1342           KnownZero = APInt::getLowBitsSet(
1343               BitWidth, std::min(KnownZero2.countTrailingOnes(),
1344                                  KnownZero3.countTrailingOnes()));
1345 
1346           if (DontImproveNonNegativePhiBits)
1347             break;
1348 
1349           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1350           if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1351             // If initial value of recurrence is nonnegative, and we are adding
1352             // a nonnegative number with nsw, the result can only be nonnegative
1353             // or poison value regardless of the number of times we execute the
1354             // add in phi recurrence. If initial value is negative and we are
1355             // adding a negative number with nsw, the result can only be
1356             // negative or poison value. Similar arguments apply to sub and mul.
1357             //
1358             // (add non-negative, non-negative) --> non-negative
1359             // (add negative, negative) --> negative
1360             if (Opcode == Instruction::Add) {
1361               if (KnownZero2.isNegative() && KnownZero3.isNegative())
1362                 KnownZero.setBit(BitWidth - 1);
1363               else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1364                 KnownOne.setBit(BitWidth - 1);
1365             }
1366 
1367             // (sub nsw non-negative, negative) --> non-negative
1368             // (sub nsw negative, non-negative) --> negative
1369             else if (Opcode == Instruction::Sub && LL == I) {
1370               if (KnownZero2.isNegative() && KnownOne3.isNegative())
1371                 KnownZero.setBit(BitWidth - 1);
1372               else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1373                 KnownOne.setBit(BitWidth - 1);
1374             }
1375 
1376             // (mul nsw non-negative, non-negative) --> non-negative
1377             else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1378                      KnownZero3.isNegative())
1379               KnownZero.setBit(BitWidth - 1);
1380           }
1381 
1382           break;
1383         }
1384       }
1385     }
1386 
1387     // Unreachable blocks may have zero-operand PHI nodes.
1388     if (P->getNumIncomingValues() == 0)
1389       break;
1390 
1391     // Otherwise take the unions of the known bit sets of the operands,
1392     // taking conservative care to avoid excessive recursion.
1393     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1394       // Skip if every incoming value references to ourself.
1395       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1396         break;
1397 
1398       KnownZero = APInt::getAllOnesValue(BitWidth);
1399       KnownOne = APInt::getAllOnesValue(BitWidth);
1400       for (Value *IncValue : P->incoming_values()) {
1401         // Skip direct self references.
1402         if (IncValue == P) continue;
1403 
1404         KnownZero2 = APInt(BitWidth, 0);
1405         KnownOne2 = APInt(BitWidth, 0);
1406         // Recurse, but cap the recursion to one level, because we don't
1407         // want to waste time spinning around in loops.
1408         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1409         KnownZero &= KnownZero2;
1410         KnownOne &= KnownOne2;
1411         // If all bits have been ruled out, there's no need to check
1412         // more operands.
1413         if (!KnownZero && !KnownOne)
1414           break;
1415       }
1416     }
1417     break;
1418   }
1419   case Instruction::Call:
1420   case Instruction::Invoke:
1421     // If range metadata is attached to this call, set known bits from that,
1422     // and then intersect with known bits based on other properties of the
1423     // function.
1424     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1425       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1426     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1427       computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1428       KnownZero |= KnownZero2;
1429       KnownOne |= KnownOne2;
1430     }
1431     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1432       switch (II->getIntrinsicID()) {
1433       default: break;
1434       case Intrinsic::bitreverse:
1435         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1436         KnownZero = KnownZero2.reverseBits();
1437         KnownOne = KnownOne2.reverseBits();
1438         break;
1439       case Intrinsic::bswap:
1440         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1441         KnownZero |= KnownZero2.byteSwap();
1442         KnownOne |= KnownOne2.byteSwap();
1443         break;
1444       case Intrinsic::ctlz:
1445       case Intrinsic::cttz: {
1446         unsigned LowBits = Log2_32(BitWidth)+1;
1447         // If this call is undefined for 0, the result will be less than 2^n.
1448         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1449           LowBits -= 1;
1450         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1451         break;
1452       }
1453       case Intrinsic::ctpop: {
1454         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1455         // We can bound the space the count needs.  Also, bits known to be zero
1456         // can't contribute to the population.
1457         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1458         unsigned LeadingZeros =
1459           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1460         assert(LeadingZeros <= BitWidth);
1461         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1462         KnownOne &= ~KnownZero;
1463         // TODO: we could bound KnownOne using the lower bound on the number
1464         // of bits which might be set provided by popcnt KnownOne2.
1465         break;
1466       }
1467       case Intrinsic::x86_sse42_crc32_64_64:
1468         KnownZero |= APInt::getHighBitsSet(64, 32);
1469         break;
1470       }
1471     }
1472     break;
1473   case Instruction::ExtractElement:
1474     // Look through extract element. At the moment we keep this simple and skip
1475     // tracking the specific element. But at least we might find information
1476     // valid for all elements of the vector (for example if vector is sign
1477     // extended, shifted, etc).
1478     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1479     break;
1480   case Instruction::ExtractValue:
1481     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1482       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1483       if (EVI->getNumIndices() != 1) break;
1484       if (EVI->getIndices()[0] == 0) {
1485         switch (II->getIntrinsicID()) {
1486         default: break;
1487         case Intrinsic::uadd_with_overflow:
1488         case Intrinsic::sadd_with_overflow:
1489           computeKnownBitsAddSub(true, II->getArgOperand(0),
1490                                  II->getArgOperand(1), false, KnownZero,
1491                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1492           break;
1493         case Intrinsic::usub_with_overflow:
1494         case Intrinsic::ssub_with_overflow:
1495           computeKnownBitsAddSub(false, II->getArgOperand(0),
1496                                  II->getArgOperand(1), false, KnownZero,
1497                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1498           break;
1499         case Intrinsic::umul_with_overflow:
1500         case Intrinsic::smul_with_overflow:
1501           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1502                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1503                               Q);
1504           break;
1505         }
1506       }
1507     }
1508   }
1509 }
1510 
1511 /// Determine which bits of V are known to be either zero or one and return
1512 /// them in the KnownZero/KnownOne bit sets.
1513 ///
1514 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1515 /// we cannot optimize based on the assumption that it is zero without changing
1516 /// it to be an explicit zero.  If we don't change it to zero, other code could
1517 /// optimized based on the contradictory assumption that it is non-zero.
1518 /// Because instcombine aggressively folds operations with undef args anyway,
1519 /// this won't lose us code quality.
1520 ///
1521 /// This function is defined on values with integer type, values with pointer
1522 /// type, and vectors of integers.  In the case
1523 /// where V is a vector, known zero, and known one values are the
1524 /// same width as the vector element, and the bit is set only if it is true
1525 /// for all of the elements in the vector.
1526 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
1527                       unsigned Depth, const Query &Q) {
1528   assert(V && "No Value?");
1529   assert(Depth <= MaxDepth && "Limit Search Depth");
1530   unsigned BitWidth = KnownZero.getBitWidth();
1531 
1532   assert((V->getType()->isIntOrIntVectorTy() ||
1533           V->getType()->getScalarType()->isPointerTy()) &&
1534          "Not integer or pointer type!");
1535   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1536          (!V->getType()->isIntOrIntVectorTy() ||
1537           V->getType()->getScalarSizeInBits() == BitWidth) &&
1538          KnownZero.getBitWidth() == BitWidth &&
1539          KnownOne.getBitWidth() == BitWidth &&
1540          "V, KnownOne and KnownZero should have same BitWidth");
1541 
1542   const APInt *C;
1543   if (match(V, m_APInt(C))) {
1544     // We know all of the bits for a scalar constant or a splat vector constant!
1545     KnownOne = *C;
1546     KnownZero = ~KnownOne;
1547     return;
1548   }
1549   // Null and aggregate-zero are all-zeros.
1550   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1551     KnownOne.clearAllBits();
1552     KnownZero = APInt::getAllOnesValue(BitWidth);
1553     return;
1554   }
1555   // Handle a constant vector by taking the intersection of the known bits of
1556   // each element.
1557   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1558     // We know that CDS must be a vector of integers. Take the intersection of
1559     // each element.
1560     KnownZero.setAllBits(); KnownOne.setAllBits();
1561     APInt Elt(KnownZero.getBitWidth(), 0);
1562     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1563       Elt = CDS->getElementAsInteger(i);
1564       KnownZero &= ~Elt;
1565       KnownOne &= Elt;
1566     }
1567     return;
1568   }
1569 
1570   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1571     // We know that CV must be a vector of integers. Take the intersection of
1572     // each element.
1573     KnownZero.setAllBits(); KnownOne.setAllBits();
1574     APInt Elt(KnownZero.getBitWidth(), 0);
1575     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1576       Constant *Element = CV->getAggregateElement(i);
1577       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1578       if (!ElementCI) {
1579         KnownZero.clearAllBits();
1580         KnownOne.clearAllBits();
1581         return;
1582       }
1583       Elt = ElementCI->getValue();
1584       KnownZero &= ~Elt;
1585       KnownOne &= Elt;
1586     }
1587     return;
1588   }
1589 
1590   // Start out not knowing anything.
1591   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1592 
1593   // We can't imply anything about undefs.
1594   if (isa<UndefValue>(V))
1595     return;
1596 
1597   // There's no point in looking through other users of ConstantData for
1598   // assumptions.  Confirm that we've handled them all.
1599   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1600 
1601   // Limit search depth.
1602   // All recursive calls that increase depth must come after this.
1603   if (Depth == MaxDepth)
1604     return;
1605 
1606   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1607   // the bits of its aliasee.
1608   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1609     if (!GA->isInterposable())
1610       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1611     return;
1612   }
1613 
1614   if (const Operator *I = dyn_cast<Operator>(V))
1615     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1616 
1617   // Aligned pointers have trailing zeros - refine KnownZero set
1618   if (V->getType()->isPointerTy()) {
1619     unsigned Align = V->getPointerAlignment(Q.DL);
1620     if (Align)
1621       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1622   }
1623 
1624   // computeKnownBitsFromAssume strictly refines KnownZero and
1625   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1626 
1627   // Check whether a nearby assume intrinsic can determine some known bits.
1628   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1629 
1630   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1631 }
1632 
1633 /// Determine whether the sign bit is known to be zero or one.
1634 /// Convenience wrapper around computeKnownBits.
1635 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
1636                     unsigned Depth, const Query &Q) {
1637   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1638   if (!BitWidth) {
1639     KnownZero = false;
1640     KnownOne = false;
1641     return;
1642   }
1643   APInt ZeroBits(BitWidth, 0);
1644   APInt OneBits(BitWidth, 0);
1645   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1646   KnownOne = OneBits[BitWidth - 1];
1647   KnownZero = ZeroBits[BitWidth - 1];
1648 }
1649 
1650 /// Return true if the given value is known to have exactly one
1651 /// bit set when defined. For vectors return true if every element is known to
1652 /// be a power of two when defined. Supports values with integer or pointer
1653 /// types and vectors of integers.
1654 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1655                             const Query &Q) {
1656   if (const Constant *C = dyn_cast<Constant>(V)) {
1657     if (C->isNullValue())
1658       return OrZero;
1659 
1660     const APInt *ConstIntOrConstSplatInt;
1661     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1662       return ConstIntOrConstSplatInt->isPowerOf2();
1663   }
1664 
1665   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1666   // it is shifted off the end then the result is undefined.
1667   if (match(V, m_Shl(m_One(), m_Value())))
1668     return true;
1669 
1670   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1671   // bottom.  If it is shifted off the bottom then the result is undefined.
1672   if (match(V, m_LShr(m_SignBit(), m_Value())))
1673     return true;
1674 
1675   // The remaining tests are all recursive, so bail out if we hit the limit.
1676   if (Depth++ == MaxDepth)
1677     return false;
1678 
1679   Value *X = nullptr, *Y = nullptr;
1680   // A shift left or a logical shift right of a power of two is a power of two
1681   // or zero.
1682   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1683                  match(V, m_LShr(m_Value(X), m_Value()))))
1684     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1685 
1686   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1687     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1688 
1689   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1690     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1691            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1692 
1693   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1694     // A power of two and'd with anything is a power of two or zero.
1695     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1696         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1697       return true;
1698     // X & (-X) is always a power of two or zero.
1699     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1700       return true;
1701     return false;
1702   }
1703 
1704   // Adding a power-of-two or zero to the same power-of-two or zero yields
1705   // either the original power-of-two, a larger power-of-two or zero.
1706   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1707     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1708     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1709       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1710           match(X, m_And(m_Value(), m_Specific(Y))))
1711         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1712           return true;
1713       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1714           match(Y, m_And(m_Value(), m_Specific(X))))
1715         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1716           return true;
1717 
1718       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1719       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1720       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1721 
1722       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1723       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1724       // If i8 V is a power of two or zero:
1725       //  ZeroBits: 1 1 1 0 1 1 1 1
1726       // ~ZeroBits: 0 0 0 1 0 0 0 0
1727       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1728         // If OrZero isn't set, we cannot give back a zero result.
1729         // Make sure either the LHS or RHS has a bit set.
1730         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1731           return true;
1732     }
1733   }
1734 
1735   // An exact divide or right shift can only shift off zero bits, so the result
1736   // is a power of two only if the first operand is a power of two and not
1737   // copying a sign bit (sdiv int_min, 2).
1738   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1739       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1740     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1741                                   Depth, Q);
1742   }
1743 
1744   return false;
1745 }
1746 
1747 /// \brief Test whether a GEP's result is known to be non-null.
1748 ///
1749 /// Uses properties inherent in a GEP to try to determine whether it is known
1750 /// to be non-null.
1751 ///
1752 /// Currently this routine does not support vector GEPs.
1753 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1754                               const Query &Q) {
1755   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1756     return false;
1757 
1758   // FIXME: Support vector-GEPs.
1759   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1760 
1761   // If the base pointer is non-null, we cannot walk to a null address with an
1762   // inbounds GEP in address space zero.
1763   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1764     return true;
1765 
1766   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1767   // If so, then the GEP cannot produce a null pointer, as doing so would
1768   // inherently violate the inbounds contract within address space zero.
1769   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1770        GTI != GTE; ++GTI) {
1771     // Struct types are easy -- they must always be indexed by a constant.
1772     if (StructType *STy = GTI.getStructTypeOrNull()) {
1773       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1774       unsigned ElementIdx = OpC->getZExtValue();
1775       const StructLayout *SL = Q.DL.getStructLayout(STy);
1776       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1777       if (ElementOffset > 0)
1778         return true;
1779       continue;
1780     }
1781 
1782     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1783     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1784       continue;
1785 
1786     // Fast path the constant operand case both for efficiency and so we don't
1787     // increment Depth when just zipping down an all-constant GEP.
1788     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1789       if (!OpC->isZero())
1790         return true;
1791       continue;
1792     }
1793 
1794     // We post-increment Depth here because while isKnownNonZero increments it
1795     // as well, when we pop back up that increment won't persist. We don't want
1796     // to recurse 10k times just because we have 10k GEP operands. We don't
1797     // bail completely out because we want to handle constant GEPs regardless
1798     // of depth.
1799     if (Depth++ >= MaxDepth)
1800       continue;
1801 
1802     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1803       return true;
1804   }
1805 
1806   return false;
1807 }
1808 
1809 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1810 /// ensure that the value it's attached to is never Value?  'RangeType' is
1811 /// is the type of the value described by the range.
1812 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1813   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1814   assert(NumRanges >= 1);
1815   for (unsigned i = 0; i < NumRanges; ++i) {
1816     ConstantInt *Lower =
1817         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1818     ConstantInt *Upper =
1819         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1820     ConstantRange Range(Lower->getValue(), Upper->getValue());
1821     if (Range.contains(Value))
1822       return false;
1823   }
1824   return true;
1825 }
1826 
1827 /// Return true if the given value is known to be non-zero when defined. For
1828 /// vectors, return true if every element is known to be non-zero when
1829 /// defined. For pointers, if the context instruction and dominator tree are
1830 /// specified, perform context-sensitive analysis and return true if the
1831 /// pointer couldn't possibly be null at the specified instruction.
1832 /// Supports values with integer or pointer type and vectors of integers.
1833 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1834   if (auto *C = dyn_cast<Constant>(V)) {
1835     if (C->isNullValue())
1836       return false;
1837     if (isa<ConstantInt>(C))
1838       // Must be non-zero due to null test above.
1839       return true;
1840 
1841     // For constant vectors, check that all elements are undefined or known
1842     // non-zero to determine that the whole vector is known non-zero.
1843     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1844       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1845         Constant *Elt = C->getAggregateElement(i);
1846         if (!Elt || Elt->isNullValue())
1847           return false;
1848         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1849           return false;
1850       }
1851       return true;
1852     }
1853 
1854     return false;
1855   }
1856 
1857   if (auto *I = dyn_cast<Instruction>(V)) {
1858     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1859       // If the possible ranges don't contain zero, then the value is
1860       // definitely non-zero.
1861       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1862         const APInt ZeroValue(Ty->getBitWidth(), 0);
1863         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1864           return true;
1865       }
1866     }
1867   }
1868 
1869   // The remaining tests are all recursive, so bail out if we hit the limit.
1870   if (Depth++ >= MaxDepth)
1871     return false;
1872 
1873   // Check for pointer simplifications.
1874   if (V->getType()->isPointerTy()) {
1875     if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
1876       return true;
1877     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1878       if (isGEPKnownNonNull(GEP, Depth, Q))
1879         return true;
1880   }
1881 
1882   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1883 
1884   // X | Y != 0 if X != 0 or Y != 0.
1885   Value *X = nullptr, *Y = nullptr;
1886   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1887     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1888 
1889   // ext X != 0 if X != 0.
1890   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1891     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1892 
1893   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1894   // if the lowest bit is shifted off the end.
1895   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1896     // shl nuw can't remove any non-zero bits.
1897     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1898     if (BO->hasNoUnsignedWrap())
1899       return isKnownNonZero(X, Depth, Q);
1900 
1901     APInt KnownZero(BitWidth, 0);
1902     APInt KnownOne(BitWidth, 0);
1903     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1904     if (KnownOne[0])
1905       return true;
1906   }
1907   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1908   // defined if the sign bit is shifted off the end.
1909   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1910     // shr exact can only shift out zero bits.
1911     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1912     if (BO->isExact())
1913       return isKnownNonZero(X, Depth, Q);
1914 
1915     bool XKnownNonNegative, XKnownNegative;
1916     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1917     if (XKnownNegative)
1918       return true;
1919 
1920     // If the shifter operand is a constant, and all of the bits shifted
1921     // out are known to be zero, and X is known non-zero then at least one
1922     // non-zero bit must remain.
1923     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1924       APInt KnownZero(BitWidth, 0);
1925       APInt KnownOne(BitWidth, 0);
1926       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1927 
1928       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1929       // Is there a known one in the portion not shifted out?
1930       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1931         return true;
1932       // Are all the bits to be shifted out known zero?
1933       if (KnownZero.countTrailingOnes() >= ShiftVal)
1934         return isKnownNonZero(X, Depth, Q);
1935     }
1936   }
1937   // div exact can only produce a zero if the dividend is zero.
1938   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1939     return isKnownNonZero(X, Depth, Q);
1940   }
1941   // X + Y.
1942   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1943     bool XKnownNonNegative, XKnownNegative;
1944     bool YKnownNonNegative, YKnownNegative;
1945     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1946     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1947 
1948     // If X and Y are both non-negative (as signed values) then their sum is not
1949     // zero unless both X and Y are zero.
1950     if (XKnownNonNegative && YKnownNonNegative)
1951       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1952         return true;
1953 
1954     // If X and Y are both negative (as signed values) then their sum is not
1955     // zero unless both X and Y equal INT_MIN.
1956     if (BitWidth && XKnownNegative && YKnownNegative) {
1957       APInt KnownZero(BitWidth, 0);
1958       APInt KnownOne(BitWidth, 0);
1959       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1960       // The sign bit of X is set.  If some other bit is set then X is not equal
1961       // to INT_MIN.
1962       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1963       if ((KnownOne & Mask) != 0)
1964         return true;
1965       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1966       // to INT_MIN.
1967       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1968       if ((KnownOne & Mask) != 0)
1969         return true;
1970     }
1971 
1972     // The sum of a non-negative number and a power of two is not zero.
1973     if (XKnownNonNegative &&
1974         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1975       return true;
1976     if (YKnownNonNegative &&
1977         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1978       return true;
1979   }
1980   // X * Y.
1981   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1982     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1983     // If X and Y are non-zero then so is X * Y as long as the multiplication
1984     // does not overflow.
1985     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1986         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1987       return true;
1988   }
1989   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1990   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
1991     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1992         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1993       return true;
1994   }
1995   // PHI
1996   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
1997     // Try and detect a recurrence that monotonically increases from a
1998     // starting value, as these are common as induction variables.
1999     if (PN->getNumIncomingValues() == 2) {
2000       Value *Start = PN->getIncomingValue(0);
2001       Value *Induction = PN->getIncomingValue(1);
2002       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2003         std::swap(Start, Induction);
2004       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2005         if (!C->isZero() && !C->isNegative()) {
2006           ConstantInt *X;
2007           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2008                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2009               !X->isNegative())
2010             return true;
2011         }
2012       }
2013     }
2014     // Check if all incoming values are non-zero constant.
2015     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
2016       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
2017     });
2018     if (AllNonZeroConstants)
2019       return true;
2020   }
2021 
2022   if (!BitWidth) return false;
2023   APInt KnownZero(BitWidth, 0);
2024   APInt KnownOne(BitWidth, 0);
2025   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2026   return KnownOne != 0;
2027 }
2028 
2029 /// Return true if V2 == V1 + X, where X is known non-zero.
2030 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2031   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2032   if (!BO || BO->getOpcode() != Instruction::Add)
2033     return false;
2034   Value *Op = nullptr;
2035   if (V2 == BO->getOperand(0))
2036     Op = BO->getOperand(1);
2037   else if (V2 == BO->getOperand(1))
2038     Op = BO->getOperand(0);
2039   else
2040     return false;
2041   return isKnownNonZero(Op, 0, Q);
2042 }
2043 
2044 /// Return true if it is known that V1 != V2.
2045 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2046   if (V1->getType()->isVectorTy() || V1 == V2)
2047     return false;
2048   if (V1->getType() != V2->getType())
2049     // We can't look through casts yet.
2050     return false;
2051   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2052     return true;
2053 
2054   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2055     // Are any known bits in V1 contradictory to known bits in V2? If V1
2056     // has a known zero where V2 has a known one, they must not be equal.
2057     auto BitWidth = Ty->getBitWidth();
2058     APInt KnownZero1(BitWidth, 0);
2059     APInt KnownOne1(BitWidth, 0);
2060     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
2061     APInt KnownZero2(BitWidth, 0);
2062     APInt KnownOne2(BitWidth, 0);
2063     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
2064 
2065     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2066     if (OppositeBits.getBoolValue())
2067       return true;
2068   }
2069   return false;
2070 }
2071 
2072 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2073 /// simplify operations downstream. Mask is known to be zero for bits that V
2074 /// cannot have.
2075 ///
2076 /// This function is defined on values with integer type, values with pointer
2077 /// type, and vectors of integers.  In the case
2078 /// where V is a vector, the mask, known zero, and known one values are the
2079 /// same width as the vector element, and the bit is set only if it is true
2080 /// for all of the elements in the vector.
2081 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2082                        const Query &Q) {
2083   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2084   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2085   return (KnownZero & Mask) == Mask;
2086 }
2087 
2088 /// For vector constants, loop over the elements and find the constant with the
2089 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2090 /// or if any element was not analyzed; otherwise, return the count for the
2091 /// element with the minimum number of sign bits.
2092 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2093                                                  unsigned TyBits) {
2094   const auto *CV = dyn_cast<Constant>(V);
2095   if (!CV || !CV->getType()->isVectorTy())
2096     return 0;
2097 
2098   unsigned MinSignBits = TyBits;
2099   unsigned NumElts = CV->getType()->getVectorNumElements();
2100   for (unsigned i = 0; i != NumElts; ++i) {
2101     // If we find a non-ConstantInt, bail out.
2102     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2103     if (!Elt)
2104       return 0;
2105 
2106     // If the sign bit is 1, flip the bits, so we always count leading zeros.
2107     APInt EltVal = Elt->getValue();
2108     if (EltVal.isNegative())
2109       EltVal = ~EltVal;
2110     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2111   }
2112 
2113   return MinSignBits;
2114 }
2115 
2116 /// Return the number of times the sign bit of the register is replicated into
2117 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2118 /// (itself), but other cases can give us information. For example, immediately
2119 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2120 /// other, so we return 3. For vectors, return the number of sign bits for the
2121 /// vector element with the mininum number of known sign bits.
2122 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
2123   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2124   unsigned Tmp, Tmp2;
2125   unsigned FirstAnswer = 1;
2126 
2127   // Note that ConstantInt is handled by the general computeKnownBits case
2128   // below.
2129 
2130   if (Depth == MaxDepth)
2131     return 1;  // Limit search depth.
2132 
2133   const Operator *U = dyn_cast<Operator>(V);
2134   switch (Operator::getOpcode(V)) {
2135   default: break;
2136   case Instruction::SExt:
2137     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2138     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2139 
2140   case Instruction::SDiv: {
2141     const APInt *Denominator;
2142     // sdiv X, C -> adds log(C) sign bits.
2143     if (match(U->getOperand(1), m_APInt(Denominator))) {
2144 
2145       // Ignore non-positive denominator.
2146       if (!Denominator->isStrictlyPositive())
2147         break;
2148 
2149       // Calculate the incoming numerator bits.
2150       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2151 
2152       // Add floor(log(C)) bits to the numerator bits.
2153       return std::min(TyBits, NumBits + Denominator->logBase2());
2154     }
2155     break;
2156   }
2157 
2158   case Instruction::SRem: {
2159     const APInt *Denominator;
2160     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2161     // positive constant.  This let us put a lower bound on the number of sign
2162     // bits.
2163     if (match(U->getOperand(1), m_APInt(Denominator))) {
2164 
2165       // Ignore non-positive denominator.
2166       if (!Denominator->isStrictlyPositive())
2167         break;
2168 
2169       // Calculate the incoming numerator bits. SRem by a positive constant
2170       // can't lower the number of sign bits.
2171       unsigned NumrBits =
2172           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2173 
2174       // Calculate the leading sign bit constraints by examining the
2175       // denominator.  Given that the denominator is positive, there are two
2176       // cases:
2177       //
2178       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2179       //     (1 << ceilLogBase2(C)).
2180       //
2181       //  2. the numerator is negative.  Then the result range is (-C,0] and
2182       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2183       //
2184       // Thus a lower bound on the number of sign bits is `TyBits -
2185       // ceilLogBase2(C)`.
2186 
2187       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2188       return std::max(NumrBits, ResBits);
2189     }
2190     break;
2191   }
2192 
2193   case Instruction::AShr: {
2194     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2195     // ashr X, C   -> adds C sign bits.  Vectors too.
2196     const APInt *ShAmt;
2197     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2198       Tmp += ShAmt->getZExtValue();
2199       if (Tmp > TyBits) Tmp = TyBits;
2200     }
2201     return Tmp;
2202   }
2203   case Instruction::Shl: {
2204     const APInt *ShAmt;
2205     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2206       // shl destroys sign bits.
2207       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2208       Tmp2 = ShAmt->getZExtValue();
2209       if (Tmp2 >= TyBits ||      // Bad shift.
2210           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2211       return Tmp - Tmp2;
2212     }
2213     break;
2214   }
2215   case Instruction::And:
2216   case Instruction::Or:
2217   case Instruction::Xor:    // NOT is handled here.
2218     // Logical binary ops preserve the number of sign bits at the worst.
2219     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2220     if (Tmp != 1) {
2221       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2222       FirstAnswer = std::min(Tmp, Tmp2);
2223       // We computed what we know about the sign bits as our first
2224       // answer. Now proceed to the generic code that uses
2225       // computeKnownBits, and pick whichever answer is better.
2226     }
2227     break;
2228 
2229   case Instruction::Select:
2230     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2231     if (Tmp == 1) return 1;  // Early out.
2232     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2233     return std::min(Tmp, Tmp2);
2234 
2235   case Instruction::Add:
2236     // Add can have at most one carry bit.  Thus we know that the output
2237     // is, at worst, one more bit than the inputs.
2238     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2239     if (Tmp == 1) return 1;  // Early out.
2240 
2241     // Special case decrementing a value (ADD X, -1):
2242     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2243       if (CRHS->isAllOnesValue()) {
2244         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2245         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2246 
2247         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2248         // sign bits set.
2249         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2250           return TyBits;
2251 
2252         // If we are subtracting one from a positive number, there is no carry
2253         // out of the result.
2254         if (KnownZero.isNegative())
2255           return Tmp;
2256       }
2257 
2258     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2259     if (Tmp2 == 1) return 1;
2260     return std::min(Tmp, Tmp2)-1;
2261 
2262   case Instruction::Sub:
2263     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2264     if (Tmp2 == 1) return 1;
2265 
2266     // Handle NEG.
2267     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2268       if (CLHS->isNullValue()) {
2269         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2270         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2271         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2272         // sign bits set.
2273         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2274           return TyBits;
2275 
2276         // If the input is known to be positive (the sign bit is known clear),
2277         // the output of the NEG has the same number of sign bits as the input.
2278         if (KnownZero.isNegative())
2279           return Tmp2;
2280 
2281         // Otherwise, we treat this like a SUB.
2282       }
2283 
2284     // Sub can have at most one carry bit.  Thus we know that the output
2285     // is, at worst, one more bit than the inputs.
2286     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2287     if (Tmp == 1) return 1;  // Early out.
2288     return std::min(Tmp, Tmp2)-1;
2289 
2290   case Instruction::PHI: {
2291     const PHINode *PN = cast<PHINode>(U);
2292     unsigned NumIncomingValues = PN->getNumIncomingValues();
2293     // Don't analyze large in-degree PHIs.
2294     if (NumIncomingValues > 4) break;
2295     // Unreachable blocks may have zero-operand PHI nodes.
2296     if (NumIncomingValues == 0) break;
2297 
2298     // Take the minimum of all incoming values.  This can't infinitely loop
2299     // because of our depth threshold.
2300     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2301     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2302       if (Tmp == 1) return Tmp;
2303       Tmp = std::min(
2304           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2305     }
2306     return Tmp;
2307   }
2308 
2309   case Instruction::Trunc:
2310     // FIXME: it's tricky to do anything useful for this, but it is an important
2311     // case for targets like X86.
2312     break;
2313 
2314   case Instruction::ExtractElement:
2315     // Look through extract element. At the moment we keep this simple and skip
2316     // tracking the specific element. But at least we might find information
2317     // valid for all elements of the vector (for example if vector is sign
2318     // extended, shifted, etc).
2319     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2320   }
2321 
2322   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2323   // use this information.
2324 
2325   // If we can examine all elements of a vector constant successfully, we're
2326   // done (we can't do any better than that). If not, keep trying.
2327   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2328     return VecSignBits;
2329 
2330   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2331   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2332 
2333   // If we know that the sign bit is either zero or one, determine the number of
2334   // identical bits in the top of the input value.
2335   if (KnownZero.isNegative())
2336     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2337 
2338   if (KnownOne.isNegative())
2339     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2340 
2341   // computeKnownBits gave us no extra information about the top bits.
2342   return FirstAnswer;
2343 }
2344 
2345 /// This function computes the integer multiple of Base that equals V.
2346 /// If successful, it returns true and returns the multiple in
2347 /// Multiple. If unsuccessful, it returns false. It looks
2348 /// through SExt instructions only if LookThroughSExt is true.
2349 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2350                            bool LookThroughSExt, unsigned Depth) {
2351   const unsigned MaxDepth = 6;
2352 
2353   assert(V && "No Value?");
2354   assert(Depth <= MaxDepth && "Limit Search Depth");
2355   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2356 
2357   Type *T = V->getType();
2358 
2359   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2360 
2361   if (Base == 0)
2362     return false;
2363 
2364   if (Base == 1) {
2365     Multiple = V;
2366     return true;
2367   }
2368 
2369   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2370   Constant *BaseVal = ConstantInt::get(T, Base);
2371   if (CO && CO == BaseVal) {
2372     // Multiple is 1.
2373     Multiple = ConstantInt::get(T, 1);
2374     return true;
2375   }
2376 
2377   if (CI && CI->getZExtValue() % Base == 0) {
2378     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2379     return true;
2380   }
2381 
2382   if (Depth == MaxDepth) return false;  // Limit search depth.
2383 
2384   Operator *I = dyn_cast<Operator>(V);
2385   if (!I) return false;
2386 
2387   switch (I->getOpcode()) {
2388   default: break;
2389   case Instruction::SExt:
2390     if (!LookThroughSExt) return false;
2391     // otherwise fall through to ZExt
2392   case Instruction::ZExt:
2393     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2394                            LookThroughSExt, Depth+1);
2395   case Instruction::Shl:
2396   case Instruction::Mul: {
2397     Value *Op0 = I->getOperand(0);
2398     Value *Op1 = I->getOperand(1);
2399 
2400     if (I->getOpcode() == Instruction::Shl) {
2401       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2402       if (!Op1CI) return false;
2403       // Turn Op0 << Op1 into Op0 * 2^Op1
2404       APInt Op1Int = Op1CI->getValue();
2405       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2406       APInt API(Op1Int.getBitWidth(), 0);
2407       API.setBit(BitToSet);
2408       Op1 = ConstantInt::get(V->getContext(), API);
2409     }
2410 
2411     Value *Mul0 = nullptr;
2412     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2413       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2414         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2415           if (Op1C->getType()->getPrimitiveSizeInBits() <
2416               MulC->getType()->getPrimitiveSizeInBits())
2417             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2418           if (Op1C->getType()->getPrimitiveSizeInBits() >
2419               MulC->getType()->getPrimitiveSizeInBits())
2420             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2421 
2422           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2423           Multiple = ConstantExpr::getMul(MulC, Op1C);
2424           return true;
2425         }
2426 
2427       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2428         if (Mul0CI->getValue() == 1) {
2429           // V == Base * Op1, so return Op1
2430           Multiple = Op1;
2431           return true;
2432         }
2433     }
2434 
2435     Value *Mul1 = nullptr;
2436     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2437       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2438         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2439           if (Op0C->getType()->getPrimitiveSizeInBits() <
2440               MulC->getType()->getPrimitiveSizeInBits())
2441             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2442           if (Op0C->getType()->getPrimitiveSizeInBits() >
2443               MulC->getType()->getPrimitiveSizeInBits())
2444             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2445 
2446           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2447           Multiple = ConstantExpr::getMul(MulC, Op0C);
2448           return true;
2449         }
2450 
2451       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2452         if (Mul1CI->getValue() == 1) {
2453           // V == Base * Op0, so return Op0
2454           Multiple = Op0;
2455           return true;
2456         }
2457     }
2458   }
2459   }
2460 
2461   // We could not determine if V is a multiple of Base.
2462   return false;
2463 }
2464 
2465 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2466                                             const TargetLibraryInfo *TLI) {
2467   const Function *F = ICS.getCalledFunction();
2468   if (!F)
2469     return Intrinsic::not_intrinsic;
2470 
2471   if (F->isIntrinsic())
2472     return F->getIntrinsicID();
2473 
2474   if (!TLI)
2475     return Intrinsic::not_intrinsic;
2476 
2477   LibFunc Func;
2478   // We're going to make assumptions on the semantics of the functions, check
2479   // that the target knows that it's available in this environment and it does
2480   // not have local linkage.
2481   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2482     return Intrinsic::not_intrinsic;
2483 
2484   if (!ICS.onlyReadsMemory())
2485     return Intrinsic::not_intrinsic;
2486 
2487   // Otherwise check if we have a call to a function that can be turned into a
2488   // vector intrinsic.
2489   switch (Func) {
2490   default:
2491     break;
2492   case LibFunc_sin:
2493   case LibFunc_sinf:
2494   case LibFunc_sinl:
2495     return Intrinsic::sin;
2496   case LibFunc_cos:
2497   case LibFunc_cosf:
2498   case LibFunc_cosl:
2499     return Intrinsic::cos;
2500   case LibFunc_exp:
2501   case LibFunc_expf:
2502   case LibFunc_expl:
2503     return Intrinsic::exp;
2504   case LibFunc_exp2:
2505   case LibFunc_exp2f:
2506   case LibFunc_exp2l:
2507     return Intrinsic::exp2;
2508   case LibFunc_log:
2509   case LibFunc_logf:
2510   case LibFunc_logl:
2511     return Intrinsic::log;
2512   case LibFunc_log10:
2513   case LibFunc_log10f:
2514   case LibFunc_log10l:
2515     return Intrinsic::log10;
2516   case LibFunc_log2:
2517   case LibFunc_log2f:
2518   case LibFunc_log2l:
2519     return Intrinsic::log2;
2520   case LibFunc_fabs:
2521   case LibFunc_fabsf:
2522   case LibFunc_fabsl:
2523     return Intrinsic::fabs;
2524   case LibFunc_fmin:
2525   case LibFunc_fminf:
2526   case LibFunc_fminl:
2527     return Intrinsic::minnum;
2528   case LibFunc_fmax:
2529   case LibFunc_fmaxf:
2530   case LibFunc_fmaxl:
2531     return Intrinsic::maxnum;
2532   case LibFunc_copysign:
2533   case LibFunc_copysignf:
2534   case LibFunc_copysignl:
2535     return Intrinsic::copysign;
2536   case LibFunc_floor:
2537   case LibFunc_floorf:
2538   case LibFunc_floorl:
2539     return Intrinsic::floor;
2540   case LibFunc_ceil:
2541   case LibFunc_ceilf:
2542   case LibFunc_ceill:
2543     return Intrinsic::ceil;
2544   case LibFunc_trunc:
2545   case LibFunc_truncf:
2546   case LibFunc_truncl:
2547     return Intrinsic::trunc;
2548   case LibFunc_rint:
2549   case LibFunc_rintf:
2550   case LibFunc_rintl:
2551     return Intrinsic::rint;
2552   case LibFunc_nearbyint:
2553   case LibFunc_nearbyintf:
2554   case LibFunc_nearbyintl:
2555     return Intrinsic::nearbyint;
2556   case LibFunc_round:
2557   case LibFunc_roundf:
2558   case LibFunc_roundl:
2559     return Intrinsic::round;
2560   case LibFunc_pow:
2561   case LibFunc_powf:
2562   case LibFunc_powl:
2563     return Intrinsic::pow;
2564   case LibFunc_sqrt:
2565   case LibFunc_sqrtf:
2566   case LibFunc_sqrtl:
2567     if (ICS->hasNoNaNs())
2568       return Intrinsic::sqrt;
2569     return Intrinsic::not_intrinsic;
2570   }
2571 
2572   return Intrinsic::not_intrinsic;
2573 }
2574 
2575 /// Return true if we can prove that the specified FP value is never equal to
2576 /// -0.0.
2577 ///
2578 /// NOTE: this function will need to be revisited when we support non-default
2579 /// rounding modes!
2580 ///
2581 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2582                                 unsigned Depth) {
2583   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2584     return !CFP->getValueAPF().isNegZero();
2585 
2586   if (Depth == MaxDepth)
2587     return false;  // Limit search depth.
2588 
2589   const Operator *I = dyn_cast<Operator>(V);
2590   if (!I) return false;
2591 
2592   // Check if the nsz fast-math flag is set
2593   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2594     if (FPO->hasNoSignedZeros())
2595       return true;
2596 
2597   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2598   if (I->getOpcode() == Instruction::FAdd)
2599     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2600       if (CFP->isNullValue())
2601         return true;
2602 
2603   // sitofp and uitofp turn into +0.0 for zero.
2604   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2605     return true;
2606 
2607   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2608     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2609     switch (IID) {
2610     default:
2611       break;
2612     // sqrt(-0.0) = -0.0, no other negative results are possible.
2613     case Intrinsic::sqrt:
2614       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2615     // fabs(x) != -0.0
2616     case Intrinsic::fabs:
2617       return true;
2618     }
2619   }
2620 
2621   return false;
2622 }
2623 
2624 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2625 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2626 /// bit despite comparing equal.
2627 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2628                                             const TargetLibraryInfo *TLI,
2629                                             bool SignBitOnly,
2630                                             unsigned Depth) {
2631   // TODO: This function does not do the right thing when SignBitOnly is true
2632   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2633   // which flips the sign bits of NaNs.  See
2634   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2635 
2636   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2637     return !CFP->getValueAPF().isNegative() ||
2638            (!SignBitOnly && CFP->getValueAPF().isZero());
2639   }
2640 
2641   if (Depth == MaxDepth)
2642     return false; // Limit search depth.
2643 
2644   const Operator *I = dyn_cast<Operator>(V);
2645   if (!I)
2646     return false;
2647 
2648   switch (I->getOpcode()) {
2649   default:
2650     break;
2651   // Unsigned integers are always nonnegative.
2652   case Instruction::UIToFP:
2653     return true;
2654   case Instruction::FMul:
2655     // x*x is always non-negative or a NaN.
2656     if (I->getOperand(0) == I->getOperand(1) &&
2657         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2658       return true;
2659 
2660     LLVM_FALLTHROUGH;
2661   case Instruction::FAdd:
2662   case Instruction::FDiv:
2663   case Instruction::FRem:
2664     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2665                                            Depth + 1) &&
2666            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2667                                            Depth + 1);
2668   case Instruction::Select:
2669     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2670                                            Depth + 1) &&
2671            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2672                                            Depth + 1);
2673   case Instruction::FPExt:
2674   case Instruction::FPTrunc:
2675     // Widening/narrowing never change sign.
2676     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2677                                            Depth + 1);
2678   case Instruction::Call:
2679     const auto *CI = cast<CallInst>(I);
2680     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2681     switch (IID) {
2682     default:
2683       break;
2684     case Intrinsic::maxnum:
2685       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2686                                              Depth + 1) ||
2687              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2688                                              Depth + 1);
2689     case Intrinsic::minnum:
2690       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2691                                              Depth + 1) &&
2692              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2693                                              Depth + 1);
2694     case Intrinsic::exp:
2695     case Intrinsic::exp2:
2696     case Intrinsic::fabs:
2697       return true;
2698 
2699     case Intrinsic::sqrt:
2700       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
2701       if (!SignBitOnly)
2702         return true;
2703       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2704                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
2705 
2706     case Intrinsic::powi:
2707       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
2708         // powi(x,n) is non-negative if n is even.
2709         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
2710           return true;
2711       }
2712       // TODO: This is not correct.  Given that exp is an integer, here are the
2713       // ways that pow can return a negative value:
2714       //
2715       //   pow(x, exp)    --> negative if exp is odd and x is negative.
2716       //   pow(-0, exp)   --> -inf if exp is negative odd.
2717       //   pow(-0, exp)   --> -0 if exp is positive odd.
2718       //   pow(-inf, exp) --> -0 if exp is negative odd.
2719       //   pow(-inf, exp) --> -inf if exp is positive odd.
2720       //
2721       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2722       // but we must return false if x == -0.  Unfortunately we do not currently
2723       // have a way of expressing this constraint.  See details in
2724       // https://llvm.org/bugs/show_bug.cgi?id=31702.
2725       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2726                                              Depth + 1);
2727 
2728     case Intrinsic::fma:
2729     case Intrinsic::fmuladd:
2730       // x*x+y is non-negative if y is non-negative.
2731       return I->getOperand(0) == I->getOperand(1) &&
2732              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2733              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2734                                              Depth + 1);
2735     }
2736     break;
2737   }
2738   return false;
2739 }
2740 
2741 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2742                                        const TargetLibraryInfo *TLI) {
2743   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2744 }
2745 
2746 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2747   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2748 }
2749 
2750 /// If the specified value can be set by repeating the same byte in memory,
2751 /// return the i8 value that it is represented with.  This is
2752 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2753 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2754 /// byte store (e.g. i16 0x1234), return null.
2755 Value *llvm::isBytewiseValue(Value *V) {
2756   // All byte-wide stores are splatable, even of arbitrary variables.
2757   if (V->getType()->isIntegerTy(8)) return V;
2758 
2759   // Handle 'null' ConstantArrayZero etc.
2760   if (Constant *C = dyn_cast<Constant>(V))
2761     if (C->isNullValue())
2762       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2763 
2764   // Constant float and double values can be handled as integer values if the
2765   // corresponding integer value is "byteable".  An important case is 0.0.
2766   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2767     if (CFP->getType()->isFloatTy())
2768       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2769     if (CFP->getType()->isDoubleTy())
2770       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2771     // Don't handle long double formats, which have strange constraints.
2772   }
2773 
2774   // We can handle constant integers that are multiple of 8 bits.
2775   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2776     if (CI->getBitWidth() % 8 == 0) {
2777       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2778 
2779       if (!CI->getValue().isSplat(8))
2780         return nullptr;
2781       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2782     }
2783   }
2784 
2785   // A ConstantDataArray/Vector is splatable if all its members are equal and
2786   // also splatable.
2787   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2788     Value *Elt = CA->getElementAsConstant(0);
2789     Value *Val = isBytewiseValue(Elt);
2790     if (!Val)
2791       return nullptr;
2792 
2793     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2794       if (CA->getElementAsConstant(I) != Elt)
2795         return nullptr;
2796 
2797     return Val;
2798   }
2799 
2800   // Conceptually, we could handle things like:
2801   //   %a = zext i8 %X to i16
2802   //   %b = shl i16 %a, 8
2803   //   %c = or i16 %a, %b
2804   // but until there is an example that actually needs this, it doesn't seem
2805   // worth worrying about.
2806   return nullptr;
2807 }
2808 
2809 
2810 // This is the recursive version of BuildSubAggregate. It takes a few different
2811 // arguments. Idxs is the index within the nested struct From that we are
2812 // looking at now (which is of type IndexedType). IdxSkip is the number of
2813 // indices from Idxs that should be left out when inserting into the resulting
2814 // struct. To is the result struct built so far, new insertvalue instructions
2815 // build on that.
2816 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2817                                 SmallVectorImpl<unsigned> &Idxs,
2818                                 unsigned IdxSkip,
2819                                 Instruction *InsertBefore) {
2820   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2821   if (STy) {
2822     // Save the original To argument so we can modify it
2823     Value *OrigTo = To;
2824     // General case, the type indexed by Idxs is a struct
2825     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2826       // Process each struct element recursively
2827       Idxs.push_back(i);
2828       Value *PrevTo = To;
2829       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2830                              InsertBefore);
2831       Idxs.pop_back();
2832       if (!To) {
2833         // Couldn't find any inserted value for this index? Cleanup
2834         while (PrevTo != OrigTo) {
2835           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2836           PrevTo = Del->getAggregateOperand();
2837           Del->eraseFromParent();
2838         }
2839         // Stop processing elements
2840         break;
2841       }
2842     }
2843     // If we successfully found a value for each of our subaggregates
2844     if (To)
2845       return To;
2846   }
2847   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2848   // the struct's elements had a value that was inserted directly. In the latter
2849   // case, perhaps we can't determine each of the subelements individually, but
2850   // we might be able to find the complete struct somewhere.
2851 
2852   // Find the value that is at that particular spot
2853   Value *V = FindInsertedValue(From, Idxs);
2854 
2855   if (!V)
2856     return nullptr;
2857 
2858   // Insert the value in the new (sub) aggregrate
2859   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2860                                        "tmp", InsertBefore);
2861 }
2862 
2863 // This helper takes a nested struct and extracts a part of it (which is again a
2864 // struct) into a new value. For example, given the struct:
2865 // { a, { b, { c, d }, e } }
2866 // and the indices "1, 1" this returns
2867 // { c, d }.
2868 //
2869 // It does this by inserting an insertvalue for each element in the resulting
2870 // struct, as opposed to just inserting a single struct. This will only work if
2871 // each of the elements of the substruct are known (ie, inserted into From by an
2872 // insertvalue instruction somewhere).
2873 //
2874 // All inserted insertvalue instructions are inserted before InsertBefore
2875 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2876                                 Instruction *InsertBefore) {
2877   assert(InsertBefore && "Must have someplace to insert!");
2878   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2879                                                              idx_range);
2880   Value *To = UndefValue::get(IndexedType);
2881   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2882   unsigned IdxSkip = Idxs.size();
2883 
2884   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2885 }
2886 
2887 /// Given an aggregrate and an sequence of indices, see if
2888 /// the scalar value indexed is already around as a register, for example if it
2889 /// were inserted directly into the aggregrate.
2890 ///
2891 /// If InsertBefore is not null, this function will duplicate (modified)
2892 /// insertvalues when a part of a nested struct is extracted.
2893 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2894                                Instruction *InsertBefore) {
2895   // Nothing to index? Just return V then (this is useful at the end of our
2896   // recursion).
2897   if (idx_range.empty())
2898     return V;
2899   // We have indices, so V should have an indexable type.
2900   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2901          "Not looking at a struct or array?");
2902   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2903          "Invalid indices for type?");
2904 
2905   if (Constant *C = dyn_cast<Constant>(V)) {
2906     C = C->getAggregateElement(idx_range[0]);
2907     if (!C) return nullptr;
2908     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2909   }
2910 
2911   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2912     // Loop the indices for the insertvalue instruction in parallel with the
2913     // requested indices
2914     const unsigned *req_idx = idx_range.begin();
2915     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2916          i != e; ++i, ++req_idx) {
2917       if (req_idx == idx_range.end()) {
2918         // We can't handle this without inserting insertvalues
2919         if (!InsertBefore)
2920           return nullptr;
2921 
2922         // The requested index identifies a part of a nested aggregate. Handle
2923         // this specially. For example,
2924         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2925         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2926         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2927         // This can be changed into
2928         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2929         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2930         // which allows the unused 0,0 element from the nested struct to be
2931         // removed.
2932         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2933                                  InsertBefore);
2934       }
2935 
2936       // This insert value inserts something else than what we are looking for.
2937       // See if the (aggregate) value inserted into has the value we are
2938       // looking for, then.
2939       if (*req_idx != *i)
2940         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2941                                  InsertBefore);
2942     }
2943     // If we end up here, the indices of the insertvalue match with those
2944     // requested (though possibly only partially). Now we recursively look at
2945     // the inserted value, passing any remaining indices.
2946     return FindInsertedValue(I->getInsertedValueOperand(),
2947                              makeArrayRef(req_idx, idx_range.end()),
2948                              InsertBefore);
2949   }
2950 
2951   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2952     // If we're extracting a value from an aggregate that was extracted from
2953     // something else, we can extract from that something else directly instead.
2954     // However, we will need to chain I's indices with the requested indices.
2955 
2956     // Calculate the number of indices required
2957     unsigned size = I->getNumIndices() + idx_range.size();
2958     // Allocate some space to put the new indices in
2959     SmallVector<unsigned, 5> Idxs;
2960     Idxs.reserve(size);
2961     // Add indices from the extract value instruction
2962     Idxs.append(I->idx_begin(), I->idx_end());
2963 
2964     // Add requested indices
2965     Idxs.append(idx_range.begin(), idx_range.end());
2966 
2967     assert(Idxs.size() == size
2968            && "Number of indices added not correct?");
2969 
2970     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2971   }
2972   // Otherwise, we don't know (such as, extracting from a function return value
2973   // or load instruction)
2974   return nullptr;
2975 }
2976 
2977 /// Analyze the specified pointer to see if it can be expressed as a base
2978 /// pointer plus a constant offset. Return the base and offset to the caller.
2979 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2980                                               const DataLayout &DL) {
2981   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2982   APInt ByteOffset(BitWidth, 0);
2983 
2984   // We walk up the defs but use a visited set to handle unreachable code. In
2985   // that case, we stop after accumulating the cycle once (not that it
2986   // matters).
2987   SmallPtrSet<Value *, 16> Visited;
2988   while (Visited.insert(Ptr).second) {
2989     if (Ptr->getType()->isVectorTy())
2990       break;
2991 
2992     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2993       // If one of the values we have visited is an addrspacecast, then
2994       // the pointer type of this GEP may be different from the type
2995       // of the Ptr parameter which was passed to this function.  This
2996       // means when we construct GEPOffset, we need to use the size
2997       // of GEP's pointer type rather than the size of the original
2998       // pointer type.
2999       APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
3000       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3001         break;
3002 
3003       ByteOffset += GEPOffset.getSExtValue();
3004 
3005       Ptr = GEP->getPointerOperand();
3006     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3007                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3008       Ptr = cast<Operator>(Ptr)->getOperand(0);
3009     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3010       if (GA->isInterposable())
3011         break;
3012       Ptr = GA->getAliasee();
3013     } else {
3014       break;
3015     }
3016   }
3017   Offset = ByteOffset.getSExtValue();
3018   return Ptr;
3019 }
3020 
3021 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
3022   // Make sure the GEP has exactly three arguments.
3023   if (GEP->getNumOperands() != 3)
3024     return false;
3025 
3026   // Make sure the index-ee is a pointer to array of i8.
3027   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3028   if (!AT || !AT->getElementType()->isIntegerTy(8))
3029     return false;
3030 
3031   // Check to make sure that the first operand of the GEP is an integer and
3032   // has value 0 so that we are sure we're indexing into the initializer.
3033   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3034   if (!FirstIdx || !FirstIdx->isZero())
3035     return false;
3036 
3037   return true;
3038 }
3039 
3040 /// This function computes the length of a null-terminated C string pointed to
3041 /// by V. If successful, it returns true and returns the string in Str.
3042 /// If unsuccessful, it returns false.
3043 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3044                                  uint64_t Offset, bool TrimAtNul) {
3045   assert(V);
3046 
3047   // Look through bitcast instructions and geps.
3048   V = V->stripPointerCasts();
3049 
3050   // If the value is a GEP instruction or constant expression, treat it as an
3051   // offset.
3052   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3053     // The GEP operator should be based on a pointer to string constant, and is
3054     // indexing into the string constant.
3055     if (!isGEPBasedOnPointerToString(GEP))
3056       return false;
3057 
3058     // If the second index isn't a ConstantInt, then this is a variable index
3059     // into the array.  If this occurs, we can't say anything meaningful about
3060     // the string.
3061     uint64_t StartIdx = 0;
3062     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3063       StartIdx = CI->getZExtValue();
3064     else
3065       return false;
3066     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3067                                  TrimAtNul);
3068   }
3069 
3070   // The GEP instruction, constant or instruction, must reference a global
3071   // variable that is a constant and is initialized. The referenced constant
3072   // initializer is the array that we'll use for optimization.
3073   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3074   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3075     return false;
3076 
3077   // Handle the all-zeros case.
3078   if (GV->getInitializer()->isNullValue()) {
3079     // This is a degenerate case. The initializer is constant zero so the
3080     // length of the string must be zero.
3081     Str = "";
3082     return true;
3083   }
3084 
3085   // This must be a ConstantDataArray.
3086   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3087   if (!Array || !Array->isString())
3088     return false;
3089 
3090   // Get the number of elements in the array.
3091   uint64_t NumElts = Array->getType()->getArrayNumElements();
3092 
3093   // Start out with the entire array in the StringRef.
3094   Str = Array->getAsString();
3095 
3096   if (Offset > NumElts)
3097     return false;
3098 
3099   // Skip over 'offset' bytes.
3100   Str = Str.substr(Offset);
3101 
3102   if (TrimAtNul) {
3103     // Trim off the \0 and anything after it.  If the array is not nul
3104     // terminated, we just return the whole end of string.  The client may know
3105     // some other way that the string is length-bound.
3106     Str = Str.substr(0, Str.find('\0'));
3107   }
3108   return true;
3109 }
3110 
3111 // These next two are very similar to the above, but also look through PHI
3112 // nodes.
3113 // TODO: See if we can integrate these two together.
3114 
3115 /// If we can compute the length of the string pointed to by
3116 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3117 static uint64_t GetStringLengthH(const Value *V,
3118                                  SmallPtrSetImpl<const PHINode*> &PHIs) {
3119   // Look through noop bitcast instructions.
3120   V = V->stripPointerCasts();
3121 
3122   // If this is a PHI node, there are two cases: either we have already seen it
3123   // or we haven't.
3124   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3125     if (!PHIs.insert(PN).second)
3126       return ~0ULL;  // already in the set.
3127 
3128     // If it was new, see if all the input strings are the same length.
3129     uint64_t LenSoFar = ~0ULL;
3130     for (Value *IncValue : PN->incoming_values()) {
3131       uint64_t Len = GetStringLengthH(IncValue, PHIs);
3132       if (Len == 0) return 0; // Unknown length -> unknown.
3133 
3134       if (Len == ~0ULL) continue;
3135 
3136       if (Len != LenSoFar && LenSoFar != ~0ULL)
3137         return 0;    // Disagree -> unknown.
3138       LenSoFar = Len;
3139     }
3140 
3141     // Success, all agree.
3142     return LenSoFar;
3143   }
3144 
3145   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3146   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3147     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3148     if (Len1 == 0) return 0;
3149     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3150     if (Len2 == 0) return 0;
3151     if (Len1 == ~0ULL) return Len2;
3152     if (Len2 == ~0ULL) return Len1;
3153     if (Len1 != Len2) return 0;
3154     return Len1;
3155   }
3156 
3157   // Otherwise, see if we can read the string.
3158   StringRef StrData;
3159   if (!getConstantStringInfo(V, StrData))
3160     return 0;
3161 
3162   return StrData.size()+1;
3163 }
3164 
3165 /// If we can compute the length of the string pointed to by
3166 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3167 uint64_t llvm::GetStringLength(const Value *V) {
3168   if (!V->getType()->isPointerTy()) return 0;
3169 
3170   SmallPtrSet<const PHINode*, 32> PHIs;
3171   uint64_t Len = GetStringLengthH(V, PHIs);
3172   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3173   // an empty string as a length.
3174   return Len == ~0ULL ? 1 : Len;
3175 }
3176 
3177 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3178 /// previous iteration of the loop was referring to the same object as \p PN.
3179 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3180                                          const LoopInfo *LI) {
3181   // Find the loop-defined value.
3182   Loop *L = LI->getLoopFor(PN->getParent());
3183   if (PN->getNumIncomingValues() != 2)
3184     return true;
3185 
3186   // Find the value from previous iteration.
3187   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3188   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3189     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3190   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3191     return true;
3192 
3193   // If a new pointer is loaded in the loop, the pointer references a different
3194   // object in every iteration.  E.g.:
3195   //    for (i)
3196   //       int *p = a[i];
3197   //       ...
3198   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3199     if (!L->isLoopInvariant(Load->getPointerOperand()))
3200       return false;
3201   return true;
3202 }
3203 
3204 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3205                                  unsigned MaxLookup) {
3206   if (!V->getType()->isPointerTy())
3207     return V;
3208   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3209     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3210       V = GEP->getPointerOperand();
3211     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3212                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3213       V = cast<Operator>(V)->getOperand(0);
3214     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3215       if (GA->isInterposable())
3216         return V;
3217       V = GA->getAliasee();
3218     } else {
3219       if (auto CS = CallSite(V))
3220         if (Value *RV = CS.getReturnedArgOperand()) {
3221           V = RV;
3222           continue;
3223         }
3224 
3225       // See if InstructionSimplify knows any relevant tricks.
3226       if (Instruction *I = dyn_cast<Instruction>(V))
3227         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3228         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3229           V = Simplified;
3230           continue;
3231         }
3232 
3233       return V;
3234     }
3235     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3236   }
3237   return V;
3238 }
3239 
3240 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3241                                 const DataLayout &DL, LoopInfo *LI,
3242                                 unsigned MaxLookup) {
3243   SmallPtrSet<Value *, 4> Visited;
3244   SmallVector<Value *, 4> Worklist;
3245   Worklist.push_back(V);
3246   do {
3247     Value *P = Worklist.pop_back_val();
3248     P = GetUnderlyingObject(P, DL, MaxLookup);
3249 
3250     if (!Visited.insert(P).second)
3251       continue;
3252 
3253     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3254       Worklist.push_back(SI->getTrueValue());
3255       Worklist.push_back(SI->getFalseValue());
3256       continue;
3257     }
3258 
3259     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3260       // If this PHI changes the underlying object in every iteration of the
3261       // loop, don't look through it.  Consider:
3262       //   int **A;
3263       //   for (i) {
3264       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3265       //     Curr = A[i];
3266       //     *Prev, *Curr;
3267       //
3268       // Prev is tracking Curr one iteration behind so they refer to different
3269       // underlying objects.
3270       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3271           isSameUnderlyingObjectInLoop(PN, LI))
3272         for (Value *IncValue : PN->incoming_values())
3273           Worklist.push_back(IncValue);
3274       continue;
3275     }
3276 
3277     Objects.push_back(P);
3278   } while (!Worklist.empty());
3279 }
3280 
3281 /// Return true if the only users of this pointer are lifetime markers.
3282 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3283   for (const User *U : V->users()) {
3284     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3285     if (!II) return false;
3286 
3287     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3288         II->getIntrinsicID() != Intrinsic::lifetime_end)
3289       return false;
3290   }
3291   return true;
3292 }
3293 
3294 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3295                                         const Instruction *CtxI,
3296                                         const DominatorTree *DT) {
3297   const Operator *Inst = dyn_cast<Operator>(V);
3298   if (!Inst)
3299     return false;
3300 
3301   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3302     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3303       if (C->canTrap())
3304         return false;
3305 
3306   switch (Inst->getOpcode()) {
3307   default:
3308     return true;
3309   case Instruction::UDiv:
3310   case Instruction::URem: {
3311     // x / y is undefined if y == 0.
3312     const APInt *V;
3313     if (match(Inst->getOperand(1), m_APInt(V)))
3314       return *V != 0;
3315     return false;
3316   }
3317   case Instruction::SDiv:
3318   case Instruction::SRem: {
3319     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3320     const APInt *Numerator, *Denominator;
3321     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3322       return false;
3323     // We cannot hoist this division if the denominator is 0.
3324     if (*Denominator == 0)
3325       return false;
3326     // It's safe to hoist if the denominator is not 0 or -1.
3327     if (*Denominator != -1)
3328       return true;
3329     // At this point we know that the denominator is -1.  It is safe to hoist as
3330     // long we know that the numerator is not INT_MIN.
3331     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3332       return !Numerator->isMinSignedValue();
3333     // The numerator *might* be MinSignedValue.
3334     return false;
3335   }
3336   case Instruction::Load: {
3337     const LoadInst *LI = cast<LoadInst>(Inst);
3338     if (!LI->isUnordered() ||
3339         // Speculative load may create a race that did not exist in the source.
3340         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3341         // Speculative load may load data from dirty regions.
3342         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3343       return false;
3344     const DataLayout &DL = LI->getModule()->getDataLayout();
3345     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3346                                               LI->getAlignment(), DL, CtxI, DT);
3347   }
3348   case Instruction::Call: {
3349     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3350       switch (II->getIntrinsicID()) {
3351       // These synthetic intrinsics have no side-effects and just mark
3352       // information about their operands.
3353       // FIXME: There are other no-op synthetic instructions that potentially
3354       // should be considered at least *safe* to speculate...
3355       case Intrinsic::dbg_declare:
3356       case Intrinsic::dbg_value:
3357         return true;
3358 
3359       case Intrinsic::bitreverse:
3360       case Intrinsic::bswap:
3361       case Intrinsic::ctlz:
3362       case Intrinsic::ctpop:
3363       case Intrinsic::cttz:
3364       case Intrinsic::objectsize:
3365       case Intrinsic::sadd_with_overflow:
3366       case Intrinsic::smul_with_overflow:
3367       case Intrinsic::ssub_with_overflow:
3368       case Intrinsic::uadd_with_overflow:
3369       case Intrinsic::umul_with_overflow:
3370       case Intrinsic::usub_with_overflow:
3371         return true;
3372       // These intrinsics are defined to have the same behavior as libm
3373       // functions except for setting errno.
3374       case Intrinsic::sqrt:
3375       case Intrinsic::fma:
3376       case Intrinsic::fmuladd:
3377         return true;
3378       // These intrinsics are defined to have the same behavior as libm
3379       // functions, and the corresponding libm functions never set errno.
3380       case Intrinsic::trunc:
3381       case Intrinsic::copysign:
3382       case Intrinsic::fabs:
3383       case Intrinsic::minnum:
3384       case Intrinsic::maxnum:
3385         return true;
3386       // These intrinsics are defined to have the same behavior as libm
3387       // functions, which never overflow when operating on the IEEE754 types
3388       // that we support, and never set errno otherwise.
3389       case Intrinsic::ceil:
3390       case Intrinsic::floor:
3391       case Intrinsic::nearbyint:
3392       case Intrinsic::rint:
3393       case Intrinsic::round:
3394         return true;
3395       // These intrinsics do not correspond to any libm function, and
3396       // do not set errno.
3397       case Intrinsic::powi:
3398         return true;
3399       // TODO: are convert_{from,to}_fp16 safe?
3400       // TODO: can we list target-specific intrinsics here?
3401       default: break;
3402       }
3403     }
3404     return false; // The called function could have undefined behavior or
3405                   // side-effects, even if marked readnone nounwind.
3406   }
3407   case Instruction::VAArg:
3408   case Instruction::Alloca:
3409   case Instruction::Invoke:
3410   case Instruction::PHI:
3411   case Instruction::Store:
3412   case Instruction::Ret:
3413   case Instruction::Br:
3414   case Instruction::IndirectBr:
3415   case Instruction::Switch:
3416   case Instruction::Unreachable:
3417   case Instruction::Fence:
3418   case Instruction::AtomicRMW:
3419   case Instruction::AtomicCmpXchg:
3420   case Instruction::LandingPad:
3421   case Instruction::Resume:
3422   case Instruction::CatchSwitch:
3423   case Instruction::CatchPad:
3424   case Instruction::CatchRet:
3425   case Instruction::CleanupPad:
3426   case Instruction::CleanupRet:
3427     return false; // Misc instructions which have effects
3428   }
3429 }
3430 
3431 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3432   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3433 }
3434 
3435 /// Return true if we know that the specified value is never null.
3436 bool llvm::isKnownNonNull(const Value *V) {
3437   assert(V->getType()->isPointerTy() && "V must be pointer type");
3438 
3439   // Alloca never returns null, malloc might.
3440   if (isa<AllocaInst>(V)) return true;
3441 
3442   // A byval, inalloca, or nonnull argument is never null.
3443   if (const Argument *A = dyn_cast<Argument>(V))
3444     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3445 
3446   // A global variable in address space 0 is non null unless extern weak
3447   // or an absolute symbol reference. Other address spaces may have null as a
3448   // valid address for a global, so we can't assume anything.
3449   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3450     return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3451            GV->getType()->getAddressSpace() == 0;
3452 
3453   // A Load tagged with nonnull metadata is never null.
3454   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3455     return LI->getMetadata(LLVMContext::MD_nonnull);
3456 
3457   if (auto CS = ImmutableCallSite(V))
3458     if (CS.isReturnNonNull())
3459       return true;
3460 
3461   return false;
3462 }
3463 
3464 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3465                                                   const Instruction *CtxI,
3466                                                   const DominatorTree *DT) {
3467   assert(V->getType()->isPointerTy() && "V must be pointer type");
3468   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
3469   assert(CtxI && "Context instruction required for analysis");
3470   assert(DT && "Dominator tree required for analysis");
3471 
3472   unsigned NumUsesExplored = 0;
3473   for (auto *U : V->users()) {
3474     // Avoid massive lists
3475     if (NumUsesExplored >= DomConditionsMaxUses)
3476       break;
3477     NumUsesExplored++;
3478 
3479     // If the value is used as an argument to a call or invoke, then argument
3480     // attributes may provide an answer about null-ness.
3481     if (auto CS = ImmutableCallSite(U))
3482       if (auto *CalledFunc = CS.getCalledFunction())
3483         for (const Argument &Arg : CalledFunc->args())
3484           if (CS.getArgOperand(Arg.getArgNo()) == V &&
3485               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3486             return true;
3487 
3488     // Consider only compare instructions uniquely controlling a branch
3489     CmpInst::Predicate Pred;
3490     if (!match(const_cast<User *>(U),
3491                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3492         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3493       continue;
3494 
3495     for (auto *CmpU : U->users()) {
3496       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3497         assert(BI->isConditional() && "uses a comparison!");
3498 
3499         BasicBlock *NonNullSuccessor =
3500             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3501         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3502         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3503           return true;
3504       } else if (Pred == ICmpInst::ICMP_NE &&
3505                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3506                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3507         return true;
3508       }
3509     }
3510   }
3511 
3512   return false;
3513 }
3514 
3515 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3516                             const DominatorTree *DT) {
3517   if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3518     return false;
3519 
3520   if (isKnownNonNull(V))
3521     return true;
3522 
3523   if (!CtxI || !DT)
3524     return false;
3525 
3526   return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
3527 }
3528 
3529 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3530                                                    const Value *RHS,
3531                                                    const DataLayout &DL,
3532                                                    AssumptionCache *AC,
3533                                                    const Instruction *CxtI,
3534                                                    const DominatorTree *DT) {
3535   // Multiplying n * m significant bits yields a result of n + m significant
3536   // bits. If the total number of significant bits does not exceed the
3537   // result bit width (minus 1), there is no overflow.
3538   // This means if we have enough leading zero bits in the operands
3539   // we can guarantee that the result does not overflow.
3540   // Ref: "Hacker's Delight" by Henry Warren
3541   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3542   APInt LHSKnownZero(BitWidth, 0);
3543   APInt LHSKnownOne(BitWidth, 0);
3544   APInt RHSKnownZero(BitWidth, 0);
3545   APInt RHSKnownOne(BitWidth, 0);
3546   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3547                    DT);
3548   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3549                    DT);
3550   // Note that underestimating the number of zero bits gives a more
3551   // conservative answer.
3552   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3553                       RHSKnownZero.countLeadingOnes();
3554   // First handle the easy case: if we have enough zero bits there's
3555   // definitely no overflow.
3556   if (ZeroBits >= BitWidth)
3557     return OverflowResult::NeverOverflows;
3558 
3559   // Get the largest possible values for each operand.
3560   APInt LHSMax = ~LHSKnownZero;
3561   APInt RHSMax = ~RHSKnownZero;
3562 
3563   // We know the multiply operation doesn't overflow if the maximum values for
3564   // each operand will not overflow after we multiply them together.
3565   bool MaxOverflow;
3566   LHSMax.umul_ov(RHSMax, MaxOverflow);
3567   if (!MaxOverflow)
3568     return OverflowResult::NeverOverflows;
3569 
3570   // We know it always overflows if multiplying the smallest possible values for
3571   // the operands also results in overflow.
3572   bool MinOverflow;
3573   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3574   if (MinOverflow)
3575     return OverflowResult::AlwaysOverflows;
3576 
3577   return OverflowResult::MayOverflow;
3578 }
3579 
3580 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3581                                                    const Value *RHS,
3582                                                    const DataLayout &DL,
3583                                                    AssumptionCache *AC,
3584                                                    const Instruction *CxtI,
3585                                                    const DominatorTree *DT) {
3586   bool LHSKnownNonNegative, LHSKnownNegative;
3587   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3588                  AC, CxtI, DT);
3589   if (LHSKnownNonNegative || LHSKnownNegative) {
3590     bool RHSKnownNonNegative, RHSKnownNegative;
3591     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3592                    AC, CxtI, DT);
3593 
3594     if (LHSKnownNegative && RHSKnownNegative) {
3595       // The sign bit is set in both cases: this MUST overflow.
3596       // Create a simple add instruction, and insert it into the struct.
3597       return OverflowResult::AlwaysOverflows;
3598     }
3599 
3600     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3601       // The sign bit is clear in both cases: this CANNOT overflow.
3602       // Create a simple add instruction, and insert it into the struct.
3603       return OverflowResult::NeverOverflows;
3604     }
3605   }
3606 
3607   return OverflowResult::MayOverflow;
3608 }
3609 
3610 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3611                                                   const Value *RHS,
3612                                                   const AddOperator *Add,
3613                                                   const DataLayout &DL,
3614                                                   AssumptionCache *AC,
3615                                                   const Instruction *CxtI,
3616                                                   const DominatorTree *DT) {
3617   if (Add && Add->hasNoSignedWrap()) {
3618     return OverflowResult::NeverOverflows;
3619   }
3620 
3621   bool LHSKnownNonNegative, LHSKnownNegative;
3622   bool RHSKnownNonNegative, RHSKnownNegative;
3623   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3624                  AC, CxtI, DT);
3625   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3626                  AC, CxtI, DT);
3627 
3628   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3629       (LHSKnownNegative && RHSKnownNonNegative)) {
3630     // The sign bits are opposite: this CANNOT overflow.
3631     return OverflowResult::NeverOverflows;
3632   }
3633 
3634   // The remaining code needs Add to be available. Early returns if not so.
3635   if (!Add)
3636     return OverflowResult::MayOverflow;
3637 
3638   // If the sign of Add is the same as at least one of the operands, this add
3639   // CANNOT overflow. This is particularly useful when the sum is
3640   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3641   // operands.
3642   bool LHSOrRHSKnownNonNegative =
3643       (LHSKnownNonNegative || RHSKnownNonNegative);
3644   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3645   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3646     bool AddKnownNonNegative, AddKnownNegative;
3647     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3648                    /*Depth=*/0, AC, CxtI, DT);
3649     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3650         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3651       return OverflowResult::NeverOverflows;
3652     }
3653   }
3654 
3655   return OverflowResult::MayOverflow;
3656 }
3657 
3658 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3659                                      const DominatorTree &DT) {
3660 #ifndef NDEBUG
3661   auto IID = II->getIntrinsicID();
3662   assert((IID == Intrinsic::sadd_with_overflow ||
3663           IID == Intrinsic::uadd_with_overflow ||
3664           IID == Intrinsic::ssub_with_overflow ||
3665           IID == Intrinsic::usub_with_overflow ||
3666           IID == Intrinsic::smul_with_overflow ||
3667           IID == Intrinsic::umul_with_overflow) &&
3668          "Not an overflow intrinsic!");
3669 #endif
3670 
3671   SmallVector<const BranchInst *, 2> GuardingBranches;
3672   SmallVector<const ExtractValueInst *, 2> Results;
3673 
3674   for (const User *U : II->users()) {
3675     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3676       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3677 
3678       if (EVI->getIndices()[0] == 0)
3679         Results.push_back(EVI);
3680       else {
3681         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3682 
3683         for (const auto *U : EVI->users())
3684           if (const auto *B = dyn_cast<BranchInst>(U)) {
3685             assert(B->isConditional() && "How else is it using an i1?");
3686             GuardingBranches.push_back(B);
3687           }
3688       }
3689     } else {
3690       // We are using the aggregate directly in a way we don't want to analyze
3691       // here (storing it to a global, say).
3692       return false;
3693     }
3694   }
3695 
3696   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
3697     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3698     if (!NoWrapEdge.isSingleEdge())
3699       return false;
3700 
3701     // Check if all users of the add are provably no-wrap.
3702     for (const auto *Result : Results) {
3703       // If the extractvalue itself is not executed on overflow, the we don't
3704       // need to check each use separately, since domination is transitive.
3705       if (DT.dominates(NoWrapEdge, Result->getParent()))
3706         continue;
3707 
3708       for (auto &RU : Result->uses())
3709         if (!DT.dominates(NoWrapEdge, RU))
3710           return false;
3711     }
3712 
3713     return true;
3714   };
3715 
3716   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3717 }
3718 
3719 
3720 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
3721                                                  const DataLayout &DL,
3722                                                  AssumptionCache *AC,
3723                                                  const Instruction *CxtI,
3724                                                  const DominatorTree *DT) {
3725   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3726                                        Add, DL, AC, CxtI, DT);
3727 }
3728 
3729 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3730                                                  const Value *RHS,
3731                                                  const DataLayout &DL,
3732                                                  AssumptionCache *AC,
3733                                                  const Instruction *CxtI,
3734                                                  const DominatorTree *DT) {
3735   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3736 }
3737 
3738 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3739   // A memory operation returns normally if it isn't volatile. A volatile
3740   // operation is allowed to trap.
3741   //
3742   // An atomic operation isn't guaranteed to return in a reasonable amount of
3743   // time because it's possible for another thread to interfere with it for an
3744   // arbitrary length of time, but programs aren't allowed to rely on that.
3745   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3746     return !LI->isVolatile();
3747   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3748     return !SI->isVolatile();
3749   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3750     return !CXI->isVolatile();
3751   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3752     return !RMWI->isVolatile();
3753   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3754     return !MII->isVolatile();
3755 
3756   // If there is no successor, then execution can't transfer to it.
3757   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3758     return !CRI->unwindsToCaller();
3759   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3760     return !CatchSwitch->unwindsToCaller();
3761   if (isa<ResumeInst>(I))
3762     return false;
3763   if (isa<ReturnInst>(I))
3764     return false;
3765 
3766   // Calls can throw, or contain an infinite loop, or kill the process.
3767   if (auto CS = ImmutableCallSite(I)) {
3768     // Call sites that throw have implicit non-local control flow.
3769     if (!CS.doesNotThrow())
3770       return false;
3771 
3772     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3773     // etc. and thus not return.  However, LLVM already assumes that
3774     //
3775     //  - Thread exiting actions are modeled as writes to memory invisible to
3776     //    the program.
3777     //
3778     //  - Loops that don't have side effects (side effects are volatile/atomic
3779     //    stores and IO) always terminate (see http://llvm.org/PR965).
3780     //    Furthermore IO itself is also modeled as writes to memory invisible to
3781     //    the program.
3782     //
3783     // We rely on those assumptions here, and use the memory effects of the call
3784     // target as a proxy for checking that it always returns.
3785 
3786     // FIXME: This isn't aggressive enough; a call which only writes to a global
3787     // is guaranteed to return.
3788     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3789            match(I, m_Intrinsic<Intrinsic::assume>());
3790   }
3791 
3792   // Other instructions return normally.
3793   return true;
3794 }
3795 
3796 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3797                                                   const Loop *L) {
3798   // The loop header is guaranteed to be executed for every iteration.
3799   //
3800   // FIXME: Relax this constraint to cover all basic blocks that are
3801   // guaranteed to be executed at every iteration.
3802   if (I->getParent() != L->getHeader()) return false;
3803 
3804   for (const Instruction &LI : *L->getHeader()) {
3805     if (&LI == I) return true;
3806     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3807   }
3808   llvm_unreachable("Instruction not contained in its own parent basic block.");
3809 }
3810 
3811 bool llvm::propagatesFullPoison(const Instruction *I) {
3812   switch (I->getOpcode()) {
3813     case Instruction::Add:
3814     case Instruction::Sub:
3815     case Instruction::Xor:
3816     case Instruction::Trunc:
3817     case Instruction::BitCast:
3818     case Instruction::AddrSpaceCast:
3819       // These operations all propagate poison unconditionally. Note that poison
3820       // is not any particular value, so xor or subtraction of poison with
3821       // itself still yields poison, not zero.
3822       return true;
3823 
3824     case Instruction::AShr:
3825     case Instruction::SExt:
3826       // For these operations, one bit of the input is replicated across
3827       // multiple output bits. A replicated poison bit is still poison.
3828       return true;
3829 
3830     case Instruction::Shl: {
3831       // Left shift *by* a poison value is poison. The number of
3832       // positions to shift is unsigned, so no negative values are
3833       // possible there. Left shift by zero places preserves poison. So
3834       // it only remains to consider left shift of poison by a positive
3835       // number of places.
3836       //
3837       // A left shift by a positive number of places leaves the lowest order bit
3838       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3839       // make the poison operand violate that flag, yielding a fresh full-poison
3840       // value.
3841       auto *OBO = cast<OverflowingBinaryOperator>(I);
3842       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3843     }
3844 
3845     case Instruction::Mul: {
3846       // A multiplication by zero yields a non-poison zero result, so we need to
3847       // rule out zero as an operand. Conservatively, multiplication by a
3848       // non-zero constant is not multiplication by zero.
3849       //
3850       // Multiplication by a non-zero constant can leave some bits
3851       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3852       // order bit unpoisoned. So we need to consider that.
3853       //
3854       // Multiplication by 1 preserves poison. If the multiplication has a
3855       // no-wrap flag, then we can make the poison operand violate that flag
3856       // when multiplied by any integer other than 0 and 1.
3857       auto *OBO = cast<OverflowingBinaryOperator>(I);
3858       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3859         for (Value *V : OBO->operands()) {
3860           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3861             // A ConstantInt cannot yield poison, so we can assume that it is
3862             // the other operand that is poison.
3863             return !CI->isZero();
3864           }
3865         }
3866       }
3867       return false;
3868     }
3869 
3870     case Instruction::ICmp:
3871       // Comparing poison with any value yields poison.  This is why, for
3872       // instance, x s< (x +nsw 1) can be folded to true.
3873       return true;
3874 
3875     case Instruction::GetElementPtr:
3876       // A GEP implicitly represents a sequence of additions, subtractions,
3877       // truncations, sign extensions and multiplications. The multiplications
3878       // are by the non-zero sizes of some set of types, so we do not have to be
3879       // concerned with multiplication by zero. If the GEP is in-bounds, then
3880       // these operations are implicitly no-signed-wrap so poison is propagated
3881       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3882       return cast<GEPOperator>(I)->isInBounds();
3883 
3884     default:
3885       return false;
3886   }
3887 }
3888 
3889 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3890   switch (I->getOpcode()) {
3891     case Instruction::Store:
3892       return cast<StoreInst>(I)->getPointerOperand();
3893 
3894     case Instruction::Load:
3895       return cast<LoadInst>(I)->getPointerOperand();
3896 
3897     case Instruction::AtomicCmpXchg:
3898       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3899 
3900     case Instruction::AtomicRMW:
3901       return cast<AtomicRMWInst>(I)->getPointerOperand();
3902 
3903     case Instruction::UDiv:
3904     case Instruction::SDiv:
3905     case Instruction::URem:
3906     case Instruction::SRem:
3907       return I->getOperand(1);
3908 
3909     default:
3910       return nullptr;
3911   }
3912 }
3913 
3914 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3915   // We currently only look for uses of poison values within the same basic
3916   // block, as that makes it easier to guarantee that the uses will be
3917   // executed given that PoisonI is executed.
3918   //
3919   // FIXME: Expand this to consider uses beyond the same basic block. To do
3920   // this, look out for the distinction between post-dominance and strong
3921   // post-dominance.
3922   const BasicBlock *BB = PoisonI->getParent();
3923 
3924   // Set of instructions that we have proved will yield poison if PoisonI
3925   // does.
3926   SmallSet<const Value *, 16> YieldsPoison;
3927   SmallSet<const BasicBlock *, 4> Visited;
3928   YieldsPoison.insert(PoisonI);
3929   Visited.insert(PoisonI->getParent());
3930 
3931   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3932 
3933   unsigned Iter = 0;
3934   while (Iter++ < MaxDepth) {
3935     for (auto &I : make_range(Begin, End)) {
3936       if (&I != PoisonI) {
3937         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3938         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3939           return true;
3940         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3941           return false;
3942       }
3943 
3944       // Mark poison that propagates from I through uses of I.
3945       if (YieldsPoison.count(&I)) {
3946         for (const User *User : I.users()) {
3947           const Instruction *UserI = cast<Instruction>(User);
3948           if (propagatesFullPoison(UserI))
3949             YieldsPoison.insert(User);
3950         }
3951       }
3952     }
3953 
3954     if (auto *NextBB = BB->getSingleSuccessor()) {
3955       if (Visited.insert(NextBB).second) {
3956         BB = NextBB;
3957         Begin = BB->getFirstNonPHI()->getIterator();
3958         End = BB->end();
3959         continue;
3960       }
3961     }
3962 
3963     break;
3964   };
3965   return false;
3966 }
3967 
3968 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
3969   if (FMF.noNaNs())
3970     return true;
3971 
3972   if (auto *C = dyn_cast<ConstantFP>(V))
3973     return !C->isNaN();
3974   return false;
3975 }
3976 
3977 static bool isKnownNonZero(const Value *V) {
3978   if (auto *C = dyn_cast<ConstantFP>(V))
3979     return !C->isZero();
3980   return false;
3981 }
3982 
3983 /// Match non-obvious integer minimum and maximum sequences.
3984 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3985                                        Value *CmpLHS, Value *CmpRHS,
3986                                        Value *TrueVal, Value *FalseVal,
3987                                        Value *&LHS, Value *&RHS) {
3988   // Assume success. If there's no match, callers should not use these anyway.
3989   LHS = TrueVal;
3990   RHS = FalseVal;
3991 
3992   // Recognize variations of:
3993   // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3994   const APInt *C1;
3995   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3996     const APInt *C2;
3997 
3998     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3999     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4000         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4001       return {SPF_SMAX, SPNB_NA, false};
4002 
4003     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4004     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4005         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4006       return {SPF_SMIN, SPNB_NA, false};
4007 
4008     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4009     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4010         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4011       return {SPF_UMAX, SPNB_NA, false};
4012 
4013     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4014     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4015         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4016       return {SPF_UMIN, SPNB_NA, false};
4017   }
4018 
4019   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4020     return {SPF_UNKNOWN, SPNB_NA, false};
4021 
4022   // Z = X -nsw Y
4023   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4024   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4025   if (match(TrueVal, m_Zero()) &&
4026       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4027     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4028 
4029   // Z = X -nsw Y
4030   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4031   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4032   if (match(FalseVal, m_Zero()) &&
4033       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4034     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4035 
4036   if (!match(CmpRHS, m_APInt(C1)))
4037     return {SPF_UNKNOWN, SPNB_NA, false};
4038 
4039   // An unsigned min/max can be written with a signed compare.
4040   const APInt *C2;
4041   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4042       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4043     // Is the sign bit set?
4044     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4045     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4046     if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
4047       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4048 
4049     // Is the sign bit clear?
4050     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4051     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4052     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4053         C2->isMinSignedValue())
4054       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4055   }
4056 
4057   // Look through 'not' ops to find disguised signed min/max.
4058   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4059   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4060   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4061       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4062     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4063 
4064   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4065   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4066   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4067       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4068     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4069 
4070   return {SPF_UNKNOWN, SPNB_NA, false};
4071 }
4072 
4073 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4074                                               FastMathFlags FMF,
4075                                               Value *CmpLHS, Value *CmpRHS,
4076                                               Value *TrueVal, Value *FalseVal,
4077                                               Value *&LHS, Value *&RHS) {
4078   LHS = CmpLHS;
4079   RHS = CmpRHS;
4080 
4081   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
4082   // return inconsistent results between implementations.
4083   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4084   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4085   // Therefore we behave conservatively and only proceed if at least one of the
4086   // operands is known to not be zero, or if we don't care about signed zeroes.
4087   switch (Pred) {
4088   default: break;
4089   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4090   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4091     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4092         !isKnownNonZero(CmpRHS))
4093       return {SPF_UNKNOWN, SPNB_NA, false};
4094   }
4095 
4096   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4097   bool Ordered = false;
4098 
4099   // When given one NaN and one non-NaN input:
4100   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4101   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4102   //     ordered comparison fails), which could be NaN or non-NaN.
4103   // so here we discover exactly what NaN behavior is required/accepted.
4104   if (CmpInst::isFPPredicate(Pred)) {
4105     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4106     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4107 
4108     if (LHSSafe && RHSSafe) {
4109       // Both operands are known non-NaN.
4110       NaNBehavior = SPNB_RETURNS_ANY;
4111     } else if (CmpInst::isOrdered(Pred)) {
4112       // An ordered comparison will return false when given a NaN, so it
4113       // returns the RHS.
4114       Ordered = true;
4115       if (LHSSafe)
4116         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4117         NaNBehavior = SPNB_RETURNS_NAN;
4118       else if (RHSSafe)
4119         NaNBehavior = SPNB_RETURNS_OTHER;
4120       else
4121         // Completely unsafe.
4122         return {SPF_UNKNOWN, SPNB_NA, false};
4123     } else {
4124       Ordered = false;
4125       // An unordered comparison will return true when given a NaN, so it
4126       // returns the LHS.
4127       if (LHSSafe)
4128         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4129         NaNBehavior = SPNB_RETURNS_OTHER;
4130       else if (RHSSafe)
4131         NaNBehavior = SPNB_RETURNS_NAN;
4132       else
4133         // Completely unsafe.
4134         return {SPF_UNKNOWN, SPNB_NA, false};
4135     }
4136   }
4137 
4138   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4139     std::swap(CmpLHS, CmpRHS);
4140     Pred = CmpInst::getSwappedPredicate(Pred);
4141     if (NaNBehavior == SPNB_RETURNS_NAN)
4142       NaNBehavior = SPNB_RETURNS_OTHER;
4143     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4144       NaNBehavior = SPNB_RETURNS_NAN;
4145     Ordered = !Ordered;
4146   }
4147 
4148   // ([if]cmp X, Y) ? X : Y
4149   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4150     switch (Pred) {
4151     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4152     case ICmpInst::ICMP_UGT:
4153     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4154     case ICmpInst::ICMP_SGT:
4155     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4156     case ICmpInst::ICMP_ULT:
4157     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4158     case ICmpInst::ICMP_SLT:
4159     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4160     case FCmpInst::FCMP_UGT:
4161     case FCmpInst::FCMP_UGE:
4162     case FCmpInst::FCMP_OGT:
4163     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4164     case FCmpInst::FCMP_ULT:
4165     case FCmpInst::FCMP_ULE:
4166     case FCmpInst::FCMP_OLT:
4167     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4168     }
4169   }
4170 
4171   const APInt *C1;
4172   if (match(CmpRHS, m_APInt(C1))) {
4173     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4174         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4175 
4176       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4177       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
4178       if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
4179         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
4180       }
4181 
4182       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4183       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
4184       if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
4185         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
4186       }
4187     }
4188   }
4189 
4190   return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4191 }
4192 
4193 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4194                               Instruction::CastOps *CastOp) {
4195   auto *Cast1 = dyn_cast<CastInst>(V1);
4196   if (!Cast1)
4197     return nullptr;
4198 
4199   *CastOp = Cast1->getOpcode();
4200   Type *SrcTy = Cast1->getSrcTy();
4201   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4202     // If V1 and V2 are both the same cast from the same type, look through V1.
4203     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4204       return Cast2->getOperand(0);
4205     return nullptr;
4206   }
4207 
4208   auto *C = dyn_cast<Constant>(V2);
4209   if (!C)
4210     return nullptr;
4211 
4212   Constant *CastedTo = nullptr;
4213   switch (*CastOp) {
4214   case Instruction::ZExt:
4215     if (CmpI->isUnsigned())
4216       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4217     break;
4218   case Instruction::SExt:
4219     if (CmpI->isSigned())
4220       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4221     break;
4222   case Instruction::Trunc:
4223     CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4224     break;
4225   case Instruction::FPTrunc:
4226     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4227     break;
4228   case Instruction::FPExt:
4229     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4230     break;
4231   case Instruction::FPToUI:
4232     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4233     break;
4234   case Instruction::FPToSI:
4235     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4236     break;
4237   case Instruction::UIToFP:
4238     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4239     break;
4240   case Instruction::SIToFP:
4241     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4242     break;
4243   default:
4244     break;
4245   }
4246 
4247   if (!CastedTo)
4248     return nullptr;
4249 
4250   // Make sure the cast doesn't lose any information.
4251   Constant *CastedBack =
4252       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
4253   if (CastedBack != C)
4254     return nullptr;
4255 
4256   return CastedTo;
4257 }
4258 
4259 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4260                                              Instruction::CastOps *CastOp) {
4261   SelectInst *SI = dyn_cast<SelectInst>(V);
4262   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4263 
4264   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4265   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4266 
4267   CmpInst::Predicate Pred = CmpI->getPredicate();
4268   Value *CmpLHS = CmpI->getOperand(0);
4269   Value *CmpRHS = CmpI->getOperand(1);
4270   Value *TrueVal = SI->getTrueValue();
4271   Value *FalseVal = SI->getFalseValue();
4272   FastMathFlags FMF;
4273   if (isa<FPMathOperator>(CmpI))
4274     FMF = CmpI->getFastMathFlags();
4275 
4276   // Bail out early.
4277   if (CmpI->isEquality())
4278     return {SPF_UNKNOWN, SPNB_NA, false};
4279 
4280   // Deal with type mismatches.
4281   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4282     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4283       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4284                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4285                                   LHS, RHS);
4286     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4287       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4288                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4289                                   LHS, RHS);
4290   }
4291   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4292                               LHS, RHS);
4293 }
4294 
4295 /// Return true if "icmp Pred LHS RHS" is always true.
4296 static bool isTruePredicate(CmpInst::Predicate Pred,
4297                             const Value *LHS, const Value *RHS,
4298                             const DataLayout &DL, unsigned Depth,
4299                             AssumptionCache *AC, const Instruction *CxtI,
4300                             const DominatorTree *DT) {
4301   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4302   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4303     return true;
4304 
4305   switch (Pred) {
4306   default:
4307     return false;
4308 
4309   case CmpInst::ICMP_SLE: {
4310     const APInt *C;
4311 
4312     // LHS s<= LHS +_{nsw} C   if C >= 0
4313     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4314       return !C->isNegative();
4315     return false;
4316   }
4317 
4318   case CmpInst::ICMP_ULE: {
4319     const APInt *C;
4320 
4321     // LHS u<= LHS +_{nuw} C   for any C
4322     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4323       return true;
4324 
4325     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4326     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4327                                        const Value *&X,
4328                                        const APInt *&CA, const APInt *&CB) {
4329       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4330           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4331         return true;
4332 
4333       // If X & C == 0 then (X | C) == X +_{nuw} C
4334       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4335           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4336         unsigned BitWidth = CA->getBitWidth();
4337         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4338         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4339 
4340         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4341           return true;
4342       }
4343 
4344       return false;
4345     };
4346 
4347     const Value *X;
4348     const APInt *CLHS, *CRHS;
4349     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4350       return CLHS->ule(*CRHS);
4351 
4352     return false;
4353   }
4354   }
4355 }
4356 
4357 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4358 /// ALHS ARHS" is true.  Otherwise, return None.
4359 static Optional<bool>
4360 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4361                       const Value *ARHS, const Value *BLHS,
4362                       const Value *BRHS, const DataLayout &DL,
4363                       unsigned Depth, AssumptionCache *AC,
4364                       const Instruction *CxtI, const DominatorTree *DT) {
4365   switch (Pred) {
4366   default:
4367     return None;
4368 
4369   case CmpInst::ICMP_SLT:
4370   case CmpInst::ICMP_SLE:
4371     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4372                         DT) &&
4373         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4374       return true;
4375     return None;
4376 
4377   case CmpInst::ICMP_ULT:
4378   case CmpInst::ICMP_ULE:
4379     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4380                         DT) &&
4381         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4382       return true;
4383     return None;
4384   }
4385 }
4386 
4387 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4388 /// when the operands match, but are swapped.
4389 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4390                           const Value *BLHS, const Value *BRHS,
4391                           bool &IsSwappedOps) {
4392 
4393   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4394   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4395   return IsMatchingOps || IsSwappedOps;
4396 }
4397 
4398 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4399 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4400 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4401 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4402                                                     const Value *ALHS,
4403                                                     const Value *ARHS,
4404                                                     CmpInst::Predicate BPred,
4405                                                     const Value *BLHS,
4406                                                     const Value *BRHS,
4407                                                     bool IsSwappedOps) {
4408   // Canonicalize the operands so they're matching.
4409   if (IsSwappedOps) {
4410     std::swap(BLHS, BRHS);
4411     BPred = ICmpInst::getSwappedPredicate(BPred);
4412   }
4413   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4414     return true;
4415   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4416     return false;
4417 
4418   return None;
4419 }
4420 
4421 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4422 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4423 /// C2" is false.  Otherwise, return None if we can't infer anything.
4424 static Optional<bool>
4425 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4426                                  const ConstantInt *C1,
4427                                  CmpInst::Predicate BPred,
4428                                  const Value *BLHS, const ConstantInt *C2) {
4429   assert(ALHS == BLHS && "LHS operands must match.");
4430   ConstantRange DomCR =
4431       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4432   ConstantRange CR =
4433       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4434   ConstantRange Intersection = DomCR.intersectWith(CR);
4435   ConstantRange Difference = DomCR.difference(CR);
4436   if (Intersection.isEmptySet())
4437     return false;
4438   if (Difference.isEmptySet())
4439     return true;
4440   return None;
4441 }
4442 
4443 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
4444                                         const DataLayout &DL, bool InvertAPred,
4445                                         unsigned Depth, AssumptionCache *AC,
4446                                         const Instruction *CxtI,
4447                                         const DominatorTree *DT) {
4448   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4449   if (LHS->getType() != RHS->getType())
4450     return None;
4451 
4452   Type *OpTy = LHS->getType();
4453   assert(OpTy->getScalarType()->isIntegerTy(1));
4454 
4455   // LHS ==> RHS by definition
4456   if (!InvertAPred && LHS == RHS)
4457     return true;
4458 
4459   if (OpTy->isVectorTy())
4460     // TODO: extending the code below to handle vectors
4461     return None;
4462   assert(OpTy->isIntegerTy(1) && "implied by above");
4463 
4464   ICmpInst::Predicate APred, BPred;
4465   Value *ALHS, *ARHS;
4466   Value *BLHS, *BRHS;
4467 
4468   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4469       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4470     return None;
4471 
4472   if (InvertAPred)
4473     APred = CmpInst::getInversePredicate(APred);
4474 
4475   // Can we infer anything when the two compares have matching operands?
4476   bool IsSwappedOps;
4477   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4478     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4479             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4480       return Implication;
4481     // No amount of additional analysis will infer the second condition, so
4482     // early exit.
4483     return None;
4484   }
4485 
4486   // Can we infer anything when the LHS operands match and the RHS operands are
4487   // constants (not necessarily matching)?
4488   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4489     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4490             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4491             cast<ConstantInt>(BRHS)))
4492       return Implication;
4493     // No amount of additional analysis will infer the second condition, so
4494     // early exit.
4495     return None;
4496   }
4497 
4498   if (APred == BPred)
4499     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4500                                  CxtI, DT);
4501 
4502   return None;
4503 }
4504