1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57   if (unsigned BitWidth = Ty->getScalarSizeInBits())
58     return BitWidth;
59 
60   return DL.getPointerTypeSizeInBits(Ty);
61 }
62 
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69   const DataLayout &DL;
70   AssumptionCache *AC;
71   const Instruction *CxtI;
72   const DominatorTree *DT;
73 
74   /// Set of assumptions that should be excluded from further queries.
75   /// This is because of the potential for mutual recursion to cause
76   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77   /// classic case of this is assume(x = y), which will attempt to determine
78   /// bits in x from bits in y, which will attempt to determine bits in y from
79   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82   /// on.
83   std::array<const Value*, MaxDepth> Excluded;
84   unsigned NumExcluded;
85 
86   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87         const DominatorTree *DT)
88       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89 
90   Query(const Query &Q, const Value *NewExcl)
91       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92     Excluded = Q.Excluded;
93     Excluded[NumExcluded++] = NewExcl;
94     assert(NumExcluded <= Excluded.size());
95   }
96 
97   bool isExcluded(const Value *Value) const {
98     if (NumExcluded == 0)
99       return false;
100     auto End = Excluded.begin() + NumExcluded;
101     return std::find(Excluded.begin(), End, Value) != End;
102   }
103 };
104 } // end anonymous namespace
105 
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109   // If we've been provided with a context instruction, then use that (provided
110   // it has been inserted).
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   // If the value is really an already-inserted instruction, then use that.
115   CxtI = dyn_cast<Instruction>(V);
116   if (CxtI && CxtI->getParent())
117     return CxtI;
118 
119   return nullptr;
120 }
121 
122 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
123                              unsigned Depth, const Query &Q);
124 
125 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
126                             const DataLayout &DL, unsigned Depth,
127                             AssumptionCache *AC, const Instruction *CxtI,
128                             const DominatorTree *DT) {
129   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130                      Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132 
133 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134                                AssumptionCache *AC, const Instruction *CxtI,
135                                const DominatorTree *DT) {
136   assert(LHS->getType() == RHS->getType() &&
137          "LHS and RHS should have the same type");
138   assert(LHS->getType()->isIntOrIntVectorTy() &&
139          "LHS and RHS should be integers");
140   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146 }
147 
148 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
149                            unsigned Depth, const Query &Q);
150 
151 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
152                           const DataLayout &DL, unsigned Depth,
153                           AssumptionCache *AC, const Instruction *CxtI,
154                           const DominatorTree *DT) {
155   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156                    Query(DL, AC, safeCxtI(V, CxtI), DT));
157 }
158 
159 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
160                                    const Query &Q);
161 
162 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
163                                   unsigned Depth, AssumptionCache *AC,
164                                   const Instruction *CxtI,
165                                   const DominatorTree *DT) {
166   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
167                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
168 }
169 
170 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
171 
172 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173                           AssumptionCache *AC, const Instruction *CxtI,
174                           const DominatorTree *DT) {
175   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
176 }
177 
178 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179                               AssumptionCache *AC, const Instruction *CxtI,
180                               const DominatorTree *DT) {
181   bool NonNegative, Negative;
182   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183   return NonNegative;
184 }
185 
186 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187                            AssumptionCache *AC, const Instruction *CxtI,
188                            const DominatorTree *DT) {
189   if (auto *CI = dyn_cast<ConstantInt>(V))
190     return CI->getValue().isStrictlyPositive();
191 
192   // TODO: We'd doing two recursive queries here.  We should factor this such
193   // that only a single query is needed.
194   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196 }
197 
198 bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199                            AssumptionCache *AC, const Instruction *CxtI,
200                            const DominatorTree *DT) {
201   bool NonNegative, Negative;
202   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203   return Negative;
204 }
205 
206 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
207 
208 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209                           AssumptionCache *AC, const Instruction *CxtI,
210                           const DominatorTree *DT) {
211   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
213                                          DT));
214 }
215 
216 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217                               const Query &Q);
218 
219 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220                              unsigned Depth, AssumptionCache *AC,
221                              const Instruction *CxtI, const DominatorTree *DT) {
222   return ::MaskedValueIsZero(V, Mask, Depth,
223                              Query(DL, AC, safeCxtI(V, CxtI), DT));
224 }
225 
226 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
227 
228 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229                                   unsigned Depth, AssumptionCache *AC,
230                                   const Instruction *CxtI,
231                                   const DominatorTree *DT) {
232   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
233 }
234 
235 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236                                    APInt &KnownZero, APInt &KnownOne,
237                                    APInt &KnownZero2, APInt &KnownOne2,
238                                    unsigned Depth, const Query &Q) {
239   if (!Add) {
240     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241       // We know that the top bits of C-X are clear if X contains less bits
242       // than C (i.e. no wrap-around can happen).  For example, 20-X is
243       // positive if we can prove that X is >= 0 and < 16.
244       if (!CLHS->getValue().isNegative()) {
245         unsigned BitWidth = KnownZero.getBitWidth();
246         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247         // NLZ can't be BitWidth with no sign bit
248         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
249         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
250 
251         // If all of the MaskV bits are known to be zero, then we know the
252         // output top bits are zero, because we now know that the output is
253         // from [0-C].
254         if ((KnownZero2 & MaskV) == MaskV) {
255           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256           // Top bits known zero.
257           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258         }
259       }
260     }
261   }
262 
263   unsigned BitWidth = KnownZero.getBitWidth();
264 
265   // If an initial sequence of bits in the result is not needed, the
266   // corresponding bits in the operands are not needed.
267   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
268   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
270 
271   // Carry in a 1 for a subtract, rather than a 0.
272   APInt CarryIn(BitWidth, 0);
273   if (!Add) {
274     // Sum = LHS + ~RHS + 1
275     std::swap(KnownZero2, KnownOne2);
276     CarryIn.setBit(0);
277   }
278 
279   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281 
282   // Compute known bits of the carry.
283   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285 
286   // Compute set of known bits (where all three relevant bits are known).
287   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288   APInt RHSKnown = KnownZero2 | KnownOne2;
289   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290   APInt Known = LHSKnown & RHSKnown & CarryKnown;
291 
292   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293          "known bits of sum differ");
294 
295   // Compute known bits of the result.
296   KnownZero = ~PossibleSumOne & Known;
297   KnownOne = PossibleSumOne & Known;
298 
299   // Are we still trying to solve for the sign bit?
300   if (!Known.isNegative()) {
301     if (NSW) {
302       // Adding two non-negative numbers, or subtracting a negative number from
303       // a non-negative one, can't wrap into negative.
304       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305         KnownZero |= APInt::getSignBit(BitWidth);
306       // Adding two negative numbers, or subtracting a non-negative number from
307       // a negative one, can't wrap into non-negative.
308       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309         KnownOne |= APInt::getSignBit(BitWidth);
310     }
311   }
312 }
313 
314 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315                                 APInt &KnownZero, APInt &KnownOne,
316                                 APInt &KnownZero2, APInt &KnownOne2,
317                                 unsigned Depth, const Query &Q) {
318   unsigned BitWidth = KnownZero.getBitWidth();
319   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
321 
322   bool isKnownNegative = false;
323   bool isKnownNonNegative = false;
324   // If the multiplication is known not to overflow, compute the sign bit.
325   if (NSW) {
326     if (Op0 == Op1) {
327       // The product of a number with itself is non-negative.
328       isKnownNonNegative = true;
329     } else {
330       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332       bool isKnownNegativeOp1 = KnownOne.isNegative();
333       bool isKnownNegativeOp0 = KnownOne2.isNegative();
334       // The product of two numbers with the same sign is non-negative.
335       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337       // The product of a negative number and a non-negative number is either
338       // negative or zero.
339       if (!isKnownNonNegative)
340         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
341                            isKnownNonZero(Op0, Depth, Q)) ||
342                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
343                            isKnownNonZero(Op1, Depth, Q));
344     }
345   }
346 
347   // If low bits are zero in either operand, output low known-0 bits.
348   // Also compute a conservative estimate for high known-0 bits.
349   // More trickiness is possible, but this is sufficient for the
350   // interesting case of alignment computation.
351   KnownOne.clearAllBits();
352   unsigned TrailZ = KnownZero.countTrailingOnes() +
353                     KnownZero2.countTrailingOnes();
354   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
355                              KnownZero2.countLeadingOnes(),
356                              BitWidth) - BitWidth;
357 
358   TrailZ = std::min(TrailZ, BitWidth);
359   LeadZ = std::min(LeadZ, BitWidth);
360   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361               APInt::getHighBitsSet(BitWidth, LeadZ);
362 
363   // Only make use of no-wrap flags if we failed to compute the sign bit
364   // directly.  This matters if the multiplication always overflows, in
365   // which case we prefer to follow the result of the direct computation,
366   // though as the program is invoking undefined behaviour we can choose
367   // whatever we like here.
368   if (isKnownNonNegative && !KnownOne.isNegative())
369     KnownZero.setBit(BitWidth - 1);
370   else if (isKnownNegative && !KnownZero.isNegative())
371     KnownOne.setBit(BitWidth - 1);
372 }
373 
374 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
375                                              APInt &KnownZero,
376                                              APInt &KnownOne) {
377   unsigned BitWidth = KnownZero.getBitWidth();
378   unsigned NumRanges = Ranges.getNumOperands() / 2;
379   assert(NumRanges >= 1);
380 
381   KnownZero.setAllBits();
382   KnownOne.setAllBits();
383 
384   for (unsigned i = 0; i < NumRanges; ++i) {
385     ConstantInt *Lower =
386         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387     ConstantInt *Upper =
388         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
389     ConstantRange Range(Lower->getValue(), Upper->getValue());
390 
391     // The first CommonPrefixBits of all values in Range are equal.
392     unsigned CommonPrefixBits =
393         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394 
395     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396     KnownOne &= Range.getUnsignedMax() & Mask;
397     KnownZero &= ~Range.getUnsignedMax() & Mask;
398   }
399 }
400 
401 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402   SmallVector<const Value *, 16> WorkSet(1, I);
403   SmallPtrSet<const Value *, 32> Visited;
404   SmallPtrSet<const Value *, 16> EphValues;
405 
406   // The instruction defining an assumption's condition itself is always
407   // considered ephemeral to that assumption (even if it has other
408   // non-ephemeral users). See r246696's test case for an example.
409   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410     return true;
411 
412   while (!WorkSet.empty()) {
413     const Value *V = WorkSet.pop_back_val();
414     if (!Visited.insert(V).second)
415       continue;
416 
417     // If all uses of this value are ephemeral, then so is this value.
418     if (std::all_of(V->user_begin(), V->user_end(),
419                     [&](const User *U) { return EphValues.count(U); })) {
420       if (V == E)
421         return true;
422 
423       EphValues.insert(V);
424       if (const User *U = dyn_cast<User>(V))
425         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426              J != JE; ++J) {
427           if (isSafeToSpeculativelyExecute(*J))
428             WorkSet.push_back(*J);
429         }
430     }
431   }
432 
433   return false;
434 }
435 
436 // Is this an intrinsic that cannot be speculated but also cannot trap?
437 static bool isAssumeLikeIntrinsic(const Instruction *I) {
438   if (const CallInst *CI = dyn_cast<CallInst>(I))
439     if (Function *F = CI->getCalledFunction())
440       switch (F->getIntrinsicID()) {
441       default: break;
442       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443       case Intrinsic::assume:
444       case Intrinsic::dbg_declare:
445       case Intrinsic::dbg_value:
446       case Intrinsic::invariant_start:
447       case Intrinsic::invariant_end:
448       case Intrinsic::lifetime_start:
449       case Intrinsic::lifetime_end:
450       case Intrinsic::objectsize:
451       case Intrinsic::ptr_annotation:
452       case Intrinsic::var_annotation:
453         return true;
454       }
455 
456   return false;
457 }
458 
459 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460                                     const DominatorTree *DT) {
461   Instruction *Inv = cast<Instruction>(V);
462 
463   // There are two restrictions on the use of an assume:
464   //  1. The assume must dominate the context (or the control flow must
465   //     reach the assume whenever it reaches the context).
466   //  2. The context must not be in the assume's set of ephemeral values
467   //     (otherwise we will use the assume to prove that the condition
468   //     feeding the assume is trivially true, thus causing the removal of
469   //     the assume).
470 
471   if (DT) {
472     if (DT->dominates(Inv, CxtI)) {
473       return true;
474     } else if (Inv->getParent() == CxtI->getParent()) {
475       // The context comes first, but they're both in the same block. Make sure
476       // there is nothing in between that might interrupt the control flow.
477       for (BasicBlock::const_iterator I =
478              std::next(BasicBlock::const_iterator(CxtI)),
479                                       IE(Inv); I != IE; ++I)
480         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
481           return false;
482 
483       return !isEphemeralValueOf(Inv, CxtI);
484     }
485 
486     return false;
487   }
488 
489   // When we don't have a DT, we do a limited search...
490   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
491     return true;
492   } else if (Inv->getParent() == CxtI->getParent()) {
493     // Search forward from the assume until we reach the context (or the end
494     // of the block); the common case is that the assume will come first.
495     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496          IE = Inv->getParent()->end(); I != IE; ++I)
497       if (&*I == CxtI)
498         return true;
499 
500     // The context must come first...
501     for (BasicBlock::const_iterator I =
502            std::next(BasicBlock::const_iterator(CxtI)),
503                                     IE(Inv); I != IE; ++I)
504       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
505         return false;
506 
507     return !isEphemeralValueOf(Inv, CxtI);
508   }
509 
510   return false;
511 }
512 
513 bool llvm::isValidAssumeForContext(const Instruction *I,
514                                    const Instruction *CxtI,
515                                    const DominatorTree *DT) {
516   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
517 }
518 
519 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
520                                        APInt &KnownOne, unsigned Depth,
521                                        const Query &Q) {
522   // Use of assumptions is context-sensitive. If we don't have a context, we
523   // cannot use them!
524   if (!Q.AC || !Q.CxtI)
525     return;
526 
527   unsigned BitWidth = KnownZero.getBitWidth();
528 
529   for (auto &AssumeVH : Q.AC->assumptions()) {
530     if (!AssumeVH)
531       continue;
532     CallInst *I = cast<CallInst>(AssumeVH);
533     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
534            "Got assumption for the wrong function!");
535     if (Q.isExcluded(I))
536       continue;
537 
538     // Warning: This loop can end up being somewhat performance sensetive.
539     // We're running this loop for once for each value queried resulting in a
540     // runtime of ~O(#assumes * #values).
541 
542     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
543            "must be an assume intrinsic");
544 
545     Value *Arg = I->getArgOperand(0);
546 
547     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548       assert(BitWidth == 1 && "assume operand is not i1?");
549       KnownZero.clearAllBits();
550       KnownOne.setAllBits();
551       return;
552     }
553 
554     // The remaining tests are all recursive, so bail out if we hit the limit.
555     if (Depth == MaxDepth)
556       continue;
557 
558     Value *A, *B;
559     auto m_V = m_CombineOr(m_Specific(V),
560                            m_CombineOr(m_PtrToInt(m_Specific(V)),
561                            m_BitCast(m_Specific(V))));
562 
563     CmpInst::Predicate Pred;
564     ConstantInt *C;
565     // assume(v = a)
566     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
567         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
568       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
569       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
570       KnownZero |= RHSKnownZero;
571       KnownOne  |= RHSKnownOne;
572     // assume(v & b = a)
573     } else if (match(Arg,
574                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
575                Pred == ICmpInst::ICMP_EQ &&
576                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
577       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
578       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
579       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
580       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
581 
582       // For those bits in the mask that are known to be one, we can propagate
583       // known bits from the RHS to V.
584       KnownZero |= RHSKnownZero & MaskKnownOne;
585       KnownOne  |= RHSKnownOne  & MaskKnownOne;
586     // assume(~(v & b) = a)
587     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588                                    m_Value(A))) &&
589                Pred == ICmpInst::ICMP_EQ &&
590                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
591       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
592       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
593       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
594       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
595 
596       // For those bits in the mask that are known to be one, we can propagate
597       // inverted known bits from the RHS to V.
598       KnownZero |= RHSKnownOne  & MaskKnownOne;
599       KnownOne  |= RHSKnownZero & MaskKnownOne;
600     // assume(v | b = a)
601     } else if (match(Arg,
602                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
603                Pred == ICmpInst::ICMP_EQ &&
604                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
606       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
607       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
608       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
609 
610       // For those bits in B that are known to be zero, we can propagate known
611       // bits from the RHS to V.
612       KnownZero |= RHSKnownZero & BKnownZero;
613       KnownOne  |= RHSKnownOne  & BKnownZero;
614     // assume(~(v | b) = a)
615     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616                                    m_Value(A))) &&
617                Pred == ICmpInst::ICMP_EQ &&
618                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
619       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
620       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
621       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
622       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
623 
624       // For those bits in B that are known to be zero, we can propagate
625       // inverted known bits from the RHS to V.
626       KnownZero |= RHSKnownOne  & BKnownZero;
627       KnownOne  |= RHSKnownZero & BKnownZero;
628     // assume(v ^ b = a)
629     } else if (match(Arg,
630                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
631                Pred == ICmpInst::ICMP_EQ &&
632                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
633       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
634       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
635       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
636       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
637 
638       // For those bits in B that are known to be zero, we can propagate known
639       // bits from the RHS to V. For those bits in B that are known to be one,
640       // we can propagate inverted known bits from the RHS to V.
641       KnownZero |= RHSKnownZero & BKnownZero;
642       KnownOne  |= RHSKnownOne  & BKnownZero;
643       KnownZero |= RHSKnownOne  & BKnownOne;
644       KnownOne  |= RHSKnownZero & BKnownOne;
645     // assume(~(v ^ b) = a)
646     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647                                    m_Value(A))) &&
648                Pred == ICmpInst::ICMP_EQ &&
649                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
650       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
651       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
652       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
653       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
654 
655       // For those bits in B that are known to be zero, we can propagate
656       // inverted known bits from the RHS to V. For those bits in B that are
657       // known to be one, we can propagate known bits from the RHS to V.
658       KnownZero |= RHSKnownOne  & BKnownZero;
659       KnownOne  |= RHSKnownZero & BKnownZero;
660       KnownZero |= RHSKnownZero & BKnownOne;
661       KnownOne  |= RHSKnownOne  & BKnownOne;
662     // assume(v << c = a)
663     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664                                    m_Value(A))) &&
665                Pred == ICmpInst::ICMP_EQ &&
666                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
668       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
669       // For those bits in RHS that are known, we can propagate them to known
670       // bits in V shifted to the right by C.
671       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
673     // assume(~(v << c) = a)
674     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675                                    m_Value(A))) &&
676                Pred == ICmpInst::ICMP_EQ &&
677                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
678       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
679       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
680       // For those bits in RHS that are known, we can propagate them inverted
681       // to known bits in V shifted to the right by C.
682       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
684     // assume(v >> c = a)
685     } else if (match(Arg,
686                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
687                                                 m_AShr(m_V, m_ConstantInt(C))),
688                               m_Value(A))) &&
689                Pred == ICmpInst::ICMP_EQ &&
690                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
691       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
692       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
693       // For those bits in RHS that are known, we can propagate them to known
694       // bits in V shifted to the right by C.
695       KnownZero |= RHSKnownZero << C->getZExtValue();
696       KnownOne  |= RHSKnownOne  << C->getZExtValue();
697     // assume(~(v >> c) = a)
698     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
699                                              m_LShr(m_V, m_ConstantInt(C)),
700                                              m_AShr(m_V, m_ConstantInt(C)))),
701                                    m_Value(A))) &&
702                Pred == ICmpInst::ICMP_EQ &&
703                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
704       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
705       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
706       // For those bits in RHS that are known, we can propagate them inverted
707       // to known bits in V shifted to the right by C.
708       KnownZero |= RHSKnownOne  << C->getZExtValue();
709       KnownOne  |= RHSKnownZero << C->getZExtValue();
710     // assume(v >=_s c) where c is non-negative
711     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
712                Pred == ICmpInst::ICMP_SGE &&
713                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
714       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
715       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
716 
717       if (RHSKnownZero.isNegative()) {
718         // We know that the sign bit is zero.
719         KnownZero |= APInt::getSignBit(BitWidth);
720       }
721     // assume(v >_s c) where c is at least -1.
722     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
723                Pred == ICmpInst::ICMP_SGT &&
724                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
725       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
726       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
727 
728       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729         // We know that the sign bit is zero.
730         KnownZero |= APInt::getSignBit(BitWidth);
731       }
732     // assume(v <=_s c) where c is negative
733     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
734                Pred == ICmpInst::ICMP_SLE &&
735                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
736       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
737       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
738 
739       if (RHSKnownOne.isNegative()) {
740         // We know that the sign bit is one.
741         KnownOne |= APInt::getSignBit(BitWidth);
742       }
743     // assume(v <_s c) where c is non-positive
744     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
745                Pred == ICmpInst::ICMP_SLT &&
746                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
747       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
748       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
749 
750       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751         // We know that the sign bit is one.
752         KnownOne |= APInt::getSignBit(BitWidth);
753       }
754     // assume(v <=_u c)
755     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
756                Pred == ICmpInst::ICMP_ULE &&
757                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
759       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
760 
761       // Whatever high bits in c are zero are known to be zero.
762       KnownZero |=
763         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764     // assume(v <_u c)
765     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
766                Pred == ICmpInst::ICMP_ULT &&
767                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
770 
771       // Whatever high bits in c are zero are known to be zero (if c is a power
772       // of 2, then one more).
773       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
774         KnownZero |=
775           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776       else
777         KnownZero |=
778           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
779     }
780   }
781 }
782 
783 // Compute known bits from a shift operator, including those with a
784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787 // functors that, given the known-zero or known-one bits respectively, and a
788 // shift amount, compute the implied known-zero or known-one bits of the shift
789 // operator's result respectively for that shift amount. The results from calling
790 // KZF and KOF are conservatively combined for all permitted shift amounts.
791 template <typename KZFunctor, typename KOFunctor>
792 static void computeKnownBitsFromShiftOperator(Operator *I,
793               APInt &KnownZero, APInt &KnownOne,
794               APInt &KnownZero2, APInt &KnownOne2,
795               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
796   unsigned BitWidth = KnownZero.getBitWidth();
797 
798   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800 
801     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
802     KnownZero = KZF(KnownZero, ShiftAmt);
803     KnownOne  = KOF(KnownOne, ShiftAmt);
804     return;
805   }
806 
807   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
808 
809   // Note: We cannot use KnownZero.getLimitedValue() here, because if
810   // BitWidth > 64 and any upper bits are known, we'll end up returning the
811   // limit value (which implies all bits are known).
812   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814 
815   // It would be more-clearly correct to use the two temporaries for this
816   // calculation. Reusing the APInts here to prevent unnecessary allocations.
817   KnownZero.clearAllBits();
818   KnownOne.clearAllBits();
819 
820   // If we know the shifter operand is nonzero, we can sometimes infer more
821   // known bits. However this is expensive to compute, so be lazy about it and
822   // only compute it when absolutely necessary.
823   Optional<bool> ShifterOperandIsNonZero;
824 
825   // Early exit if we can't constrain any well-defined shift amount.
826   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827     ShifterOperandIsNonZero =
828         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
829     if (!*ShifterOperandIsNonZero)
830       return;
831   }
832 
833   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
834 
835   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837     // Combine the shifted known input bits only for those shift amounts
838     // compatible with its known constraints.
839     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840       continue;
841     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842       continue;
843     // If we know the shifter is nonzero, we may be able to infer more known
844     // bits. This check is sunk down as far as possible to avoid the expensive
845     // call to isKnownNonZero if the cheaper checks above fail.
846     if (ShiftAmt == 0) {
847       if (!ShifterOperandIsNonZero.hasValue())
848         ShifterOperandIsNonZero =
849             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
850       if (*ShifterOperandIsNonZero)
851         continue;
852     }
853 
854     KnownZero &= KZF(KnownZero2, ShiftAmt);
855     KnownOne  &= KOF(KnownOne2, ShiftAmt);
856   }
857 
858   // If there are no compatible shift amounts, then we've proven that the shift
859   // amount must be >= the BitWidth, and the result is undefined. We could
860   // return anything we'd like, but we need to make sure the sets of known bits
861   // stay disjoint (it should be better for some other code to actually
862   // propagate the undef than to pick a value here using known bits).
863   if ((KnownZero & KnownOne) != 0) {
864     KnownZero.clearAllBits();
865     KnownOne.clearAllBits();
866   }
867 }
868 
869 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
870                                          APInt &KnownOne, unsigned Depth,
871                                          const Query &Q) {
872   unsigned BitWidth = KnownZero.getBitWidth();
873 
874   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
875   switch (I->getOpcode()) {
876   default: break;
877   case Instruction::Load:
878     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
879       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
880     break;
881   case Instruction::And: {
882     // If either the LHS or the RHS are Zero, the result is zero.
883     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
885 
886     // Output known-1 bits are only known if set in both the LHS & RHS.
887     KnownOne &= KnownOne2;
888     // Output known-0 are known to be clear if zero in either the LHS | RHS.
889     KnownZero |= KnownZero2;
890 
891     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892     // here we handle the more general case of adding any odd number by
893     // matching the form add(x, add(x, y)) where y is odd.
894     // TODO: This could be generalized to clearing any bit set in y where the
895     // following bit is known to be unset in y.
896     Value *Y = nullptr;
897     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898                                       m_Value(Y))) ||
899         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900                                       m_Value(Y)))) {
901       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
902       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
903       if (KnownOne3.countTrailingOnes() > 0)
904         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905     }
906     break;
907   }
908   case Instruction::Or: {
909     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
911 
912     // Output known-0 bits are only known if clear in both the LHS & RHS.
913     KnownZero &= KnownZero2;
914     // Output known-1 are known to be set if set in either the LHS | RHS.
915     KnownOne |= KnownOne2;
916     break;
917   }
918   case Instruction::Xor: {
919     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
921 
922     // Output known-0 bits are known if clear or set in both the LHS & RHS.
923     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924     // Output known-1 are known to be set if set in only one of the LHS, RHS.
925     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926     KnownZero = KnownZeroOut;
927     break;
928   }
929   case Instruction::Mul: {
930     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
931     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
932                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
933     break;
934   }
935   case Instruction::UDiv: {
936     // For the purposes of computing leading zeros we can conservatively
937     // treat a udiv as a logical right shift by the power of 2 known to
938     // be less than the denominator.
939     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
940     unsigned LeadZ = KnownZero2.countLeadingOnes();
941 
942     KnownOne2.clearAllBits();
943     KnownZero2.clearAllBits();
944     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
945     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946     if (RHSUnknownLeadingOnes != BitWidth)
947       LeadZ = std::min(BitWidth,
948                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949 
950     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
951     break;
952   }
953   case Instruction::Select:
954     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
956 
957     // Only known if known in both the LHS and RHS.
958     KnownOne &= KnownOne2;
959     KnownZero &= KnownZero2;
960     break;
961   case Instruction::FPTrunc:
962   case Instruction::FPExt:
963   case Instruction::FPToUI:
964   case Instruction::FPToSI:
965   case Instruction::SIToFP:
966   case Instruction::UIToFP:
967     break; // Can't work with floating point.
968   case Instruction::PtrToInt:
969   case Instruction::IntToPtr:
970   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
971     // FALL THROUGH and handle them the same as zext/trunc.
972   case Instruction::ZExt:
973   case Instruction::Trunc: {
974     Type *SrcTy = I->getOperand(0)->getType();
975 
976     unsigned SrcBitWidth;
977     // Note that we handle pointer operands here because of inttoptr/ptrtoint
978     // which fall through here.
979     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
980 
981     assert(SrcBitWidth && "SrcBitWidth can't be zero");
982     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
984     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
985     KnownZero = KnownZero.zextOrTrunc(BitWidth);
986     KnownOne = KnownOne.zextOrTrunc(BitWidth);
987     // Any top bits are known to be zero.
988     if (BitWidth > SrcBitWidth)
989       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
990     break;
991   }
992   case Instruction::BitCast: {
993     Type *SrcTy = I->getOperand(0)->getType();
994     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
995         // TODO: For now, not handling conversions like:
996         // (bitcast i64 %x to <2 x i32>)
997         !I->getType()->isVectorTy()) {
998       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
999       break;
1000     }
1001     break;
1002   }
1003   case Instruction::SExt: {
1004     // Compute the bits in the result that are not present in the input.
1005     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1006 
1007     KnownZero = KnownZero.trunc(SrcBitWidth);
1008     KnownOne = KnownOne.trunc(SrcBitWidth);
1009     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1010     KnownZero = KnownZero.zext(BitWidth);
1011     KnownOne = KnownOne.zext(BitWidth);
1012 
1013     // If the sign bit of the input is known set or clear, then we know the
1014     // top bits of the result.
1015     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1016       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1017     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1018       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1019     break;
1020   }
1021   case Instruction::Shl: {
1022     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1023     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1024       return (KnownZero << ShiftAmt) |
1025              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1026     };
1027 
1028     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1029       return KnownOne << ShiftAmt;
1030     };
1031 
1032     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1033                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1034                                       KOF);
1035     break;
1036   }
1037   case Instruction::LShr: {
1038     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1039     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1040       return APIntOps::lshr(KnownZero, ShiftAmt) |
1041              // High bits known zero.
1042              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1043     };
1044 
1045     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1046       return APIntOps::lshr(KnownOne, ShiftAmt);
1047     };
1048 
1049     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1050                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1051                                       KOF);
1052     break;
1053   }
1054   case Instruction::AShr: {
1055     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1056     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1057       return APIntOps::ashr(KnownZero, ShiftAmt);
1058     };
1059 
1060     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1061       return APIntOps::ashr(KnownOne, ShiftAmt);
1062     };
1063 
1064     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1065                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1066                                       KOF);
1067     break;
1068   }
1069   case Instruction::Sub: {
1070     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1071     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1072                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1073                            Q);
1074     break;
1075   }
1076   case Instruction::Add: {
1077     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1078     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1079                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1080                            Q);
1081     break;
1082   }
1083   case Instruction::SRem:
1084     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1085       APInt RA = Rem->getValue().abs();
1086       if (RA.isPowerOf2()) {
1087         APInt LowBits = RA - 1;
1088         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1089                          Q);
1090 
1091         // The low bits of the first operand are unchanged by the srem.
1092         KnownZero = KnownZero2 & LowBits;
1093         KnownOne = KnownOne2 & LowBits;
1094 
1095         // If the first operand is non-negative or has all low bits zero, then
1096         // the upper bits are all zero.
1097         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1098           KnownZero |= ~LowBits;
1099 
1100         // If the first operand is negative and not all low bits are zero, then
1101         // the upper bits are all one.
1102         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1103           KnownOne |= ~LowBits;
1104 
1105         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1106       }
1107     }
1108 
1109     // The sign bit is the LHS's sign bit, except when the result of the
1110     // remainder is zero.
1111     if (KnownZero.isNonNegative()) {
1112       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1113       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1114                        Q);
1115       // If it's known zero, our sign bit is also zero.
1116       if (LHSKnownZero.isNegative())
1117         KnownZero.setBit(BitWidth - 1);
1118     }
1119 
1120     break;
1121   case Instruction::URem: {
1122     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1123       const APInt &RA = Rem->getValue();
1124       if (RA.isPowerOf2()) {
1125         APInt LowBits = (RA - 1);
1126         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1127         KnownZero |= ~LowBits;
1128         KnownOne &= LowBits;
1129         break;
1130       }
1131     }
1132 
1133     // Since the result is less than or equal to either operand, any leading
1134     // zero bits in either operand must also exist in the result.
1135     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1136     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1137 
1138     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1139                                 KnownZero2.countLeadingOnes());
1140     KnownOne.clearAllBits();
1141     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1142     break;
1143   }
1144 
1145   case Instruction::Alloca: {
1146     AllocaInst *AI = cast<AllocaInst>(I);
1147     unsigned Align = AI->getAlignment();
1148     if (Align == 0)
1149       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1150 
1151     if (Align > 0)
1152       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1153     break;
1154   }
1155   case Instruction::GetElementPtr: {
1156     // Analyze all of the subscripts of this getelementptr instruction
1157     // to determine if we can prove known low zero bits.
1158     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1159     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1160                      Q);
1161     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1162 
1163     gep_type_iterator GTI = gep_type_begin(I);
1164     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1165       Value *Index = I->getOperand(i);
1166       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1167         // Handle struct member offset arithmetic.
1168 
1169         // Handle case when index is vector zeroinitializer
1170         Constant *CIndex = cast<Constant>(Index);
1171         if (CIndex->isZeroValue())
1172           continue;
1173 
1174         if (CIndex->getType()->isVectorTy())
1175           Index = CIndex->getSplatValue();
1176 
1177         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1178         const StructLayout *SL = Q.DL.getStructLayout(STy);
1179         uint64_t Offset = SL->getElementOffset(Idx);
1180         TrailZ = std::min<unsigned>(TrailZ,
1181                                     countTrailingZeros(Offset));
1182       } else {
1183         // Handle array index arithmetic.
1184         Type *IndexedTy = GTI.getIndexedType();
1185         if (!IndexedTy->isSized()) {
1186           TrailZ = 0;
1187           break;
1188         }
1189         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1190         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1191         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1192         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1193         TrailZ = std::min(TrailZ,
1194                           unsigned(countTrailingZeros(TypeSize) +
1195                                    LocalKnownZero.countTrailingOnes()));
1196       }
1197     }
1198 
1199     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1200     break;
1201   }
1202   case Instruction::PHI: {
1203     PHINode *P = cast<PHINode>(I);
1204     // Handle the case of a simple two-predecessor recurrence PHI.
1205     // There's a lot more that could theoretically be done here, but
1206     // this is sufficient to catch some interesting cases.
1207     if (P->getNumIncomingValues() == 2) {
1208       for (unsigned i = 0; i != 2; ++i) {
1209         Value *L = P->getIncomingValue(i);
1210         Value *R = P->getIncomingValue(!i);
1211         Operator *LU = dyn_cast<Operator>(L);
1212         if (!LU)
1213           continue;
1214         unsigned Opcode = LU->getOpcode();
1215         // Check for operations that have the property that if
1216         // both their operands have low zero bits, the result
1217         // will have low zero bits.
1218         if (Opcode == Instruction::Add ||
1219             Opcode == Instruction::Sub ||
1220             Opcode == Instruction::And ||
1221             Opcode == Instruction::Or ||
1222             Opcode == Instruction::Mul) {
1223           Value *LL = LU->getOperand(0);
1224           Value *LR = LU->getOperand(1);
1225           // Find a recurrence.
1226           if (LL == I)
1227             L = LR;
1228           else if (LR == I)
1229             L = LL;
1230           else
1231             break;
1232           // Ok, we have a PHI of the form L op= R. Check for low
1233           // zero bits.
1234           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1235 
1236           // We need to take the minimum number of known bits
1237           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1238           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1239 
1240           KnownZero = APInt::getLowBitsSet(BitWidth,
1241                                            std::min(KnownZero2.countTrailingOnes(),
1242                                                     KnownZero3.countTrailingOnes()));
1243           break;
1244         }
1245       }
1246     }
1247 
1248     // Unreachable blocks may have zero-operand PHI nodes.
1249     if (P->getNumIncomingValues() == 0)
1250       break;
1251 
1252     // Otherwise take the unions of the known bit sets of the operands,
1253     // taking conservative care to avoid excessive recursion.
1254     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1255       // Skip if every incoming value references to ourself.
1256       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1257         break;
1258 
1259       KnownZero = APInt::getAllOnesValue(BitWidth);
1260       KnownOne = APInt::getAllOnesValue(BitWidth);
1261       for (Value *IncValue : P->incoming_values()) {
1262         // Skip direct self references.
1263         if (IncValue == P) continue;
1264 
1265         KnownZero2 = APInt(BitWidth, 0);
1266         KnownOne2 = APInt(BitWidth, 0);
1267         // Recurse, but cap the recursion to one level, because we don't
1268         // want to waste time spinning around in loops.
1269         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1270         KnownZero &= KnownZero2;
1271         KnownOne &= KnownOne2;
1272         // If all bits have been ruled out, there's no need to check
1273         // more operands.
1274         if (!KnownZero && !KnownOne)
1275           break;
1276       }
1277     }
1278     break;
1279   }
1280   case Instruction::Call:
1281   case Instruction::Invoke:
1282     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1283       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1284     // If a range metadata is attached to this IntrinsicInst, intersect the
1285     // explicit range specified by the metadata and the implicit range of
1286     // the intrinsic.
1287     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1288       switch (II->getIntrinsicID()) {
1289       default: break;
1290       case Intrinsic::bswap:
1291         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1292         KnownZero |= KnownZero2.byteSwap();
1293         KnownOne |= KnownOne2.byteSwap();
1294         break;
1295       case Intrinsic::ctlz:
1296       case Intrinsic::cttz: {
1297         unsigned LowBits = Log2_32(BitWidth)+1;
1298         // If this call is undefined for 0, the result will be less than 2^n.
1299         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1300           LowBits -= 1;
1301         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1302         break;
1303       }
1304       case Intrinsic::ctpop: {
1305         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1306         // We can bound the space the count needs.  Also, bits known to be zero
1307         // can't contribute to the population.
1308         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1309         unsigned LeadingZeros =
1310           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1311         assert(LeadingZeros <= BitWidth);
1312         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1313         KnownOne &= ~KnownZero;
1314         // TODO: we could bound KnownOne using the lower bound on the number
1315         // of bits which might be set provided by popcnt KnownOne2.
1316         break;
1317       }
1318       case Intrinsic::x86_sse42_crc32_64_64:
1319         KnownZero |= APInt::getHighBitsSet(64, 32);
1320         break;
1321       }
1322     }
1323     break;
1324   case Instruction::ExtractValue:
1325     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1326       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1327       if (EVI->getNumIndices() != 1) break;
1328       if (EVI->getIndices()[0] == 0) {
1329         switch (II->getIntrinsicID()) {
1330         default: break;
1331         case Intrinsic::uadd_with_overflow:
1332         case Intrinsic::sadd_with_overflow:
1333           computeKnownBitsAddSub(true, II->getArgOperand(0),
1334                                  II->getArgOperand(1), false, KnownZero,
1335                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1336           break;
1337         case Intrinsic::usub_with_overflow:
1338         case Intrinsic::ssub_with_overflow:
1339           computeKnownBitsAddSub(false, II->getArgOperand(0),
1340                                  II->getArgOperand(1), false, KnownZero,
1341                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1342           break;
1343         case Intrinsic::umul_with_overflow:
1344         case Intrinsic::smul_with_overflow:
1345           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1346                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1347                               Q);
1348           break;
1349         }
1350       }
1351     }
1352   }
1353 }
1354 
1355 /// Determine which bits of V are known to be either zero or one and return
1356 /// them in the KnownZero/KnownOne bit sets.
1357 ///
1358 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1359 /// we cannot optimize based on the assumption that it is zero without changing
1360 /// it to be an explicit zero.  If we don't change it to zero, other code could
1361 /// optimized based on the contradictory assumption that it is non-zero.
1362 /// Because instcombine aggressively folds operations with undef args anyway,
1363 /// this won't lose us code quality.
1364 ///
1365 /// This function is defined on values with integer type, values with pointer
1366 /// type, and vectors of integers.  In the case
1367 /// where V is a vector, known zero, and known one values are the
1368 /// same width as the vector element, and the bit is set only if it is true
1369 /// for all of the elements in the vector.
1370 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1371                       unsigned Depth, const Query &Q) {
1372   assert(V && "No Value?");
1373   assert(Depth <= MaxDepth && "Limit Search Depth");
1374   unsigned BitWidth = KnownZero.getBitWidth();
1375 
1376   assert((V->getType()->isIntOrIntVectorTy() ||
1377           V->getType()->getScalarType()->isPointerTy()) &&
1378          "Not integer or pointer type!");
1379   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1380          (!V->getType()->isIntOrIntVectorTy() ||
1381           V->getType()->getScalarSizeInBits() == BitWidth) &&
1382          KnownZero.getBitWidth() == BitWidth &&
1383          KnownOne.getBitWidth() == BitWidth &&
1384          "V, KnownOne and KnownZero should have same BitWidth");
1385 
1386   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1387     // We know all of the bits for a constant!
1388     KnownOne = CI->getValue();
1389     KnownZero = ~KnownOne;
1390     return;
1391   }
1392   // Null and aggregate-zero are all-zeros.
1393   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1394     KnownOne.clearAllBits();
1395     KnownZero = APInt::getAllOnesValue(BitWidth);
1396     return;
1397   }
1398   // Handle a constant vector by taking the intersection of the known bits of
1399   // each element.
1400   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1401     // We know that CDS must be a vector of integers. Take the intersection of
1402     // each element.
1403     KnownZero.setAllBits(); KnownOne.setAllBits();
1404     APInt Elt(KnownZero.getBitWidth(), 0);
1405     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1406       Elt = CDS->getElementAsInteger(i);
1407       KnownZero &= ~Elt;
1408       KnownOne &= Elt;
1409     }
1410     return;
1411   }
1412 
1413   if (auto *CV = dyn_cast<ConstantVector>(V)) {
1414     // We know that CV must be a vector of integers. Take the intersection of
1415     // each element.
1416     KnownZero.setAllBits(); KnownOne.setAllBits();
1417     APInt Elt(KnownZero.getBitWidth(), 0);
1418     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1419       Constant *Element = CV->getAggregateElement(i);
1420       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1421       if (!ElementCI) {
1422         KnownZero.clearAllBits();
1423         KnownOne.clearAllBits();
1424         return;
1425       }
1426       Elt = ElementCI->getValue();
1427       KnownZero &= ~Elt;
1428       KnownOne &= Elt;
1429     }
1430     return;
1431   }
1432 
1433   // Start out not knowing anything.
1434   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1435 
1436   // Limit search depth.
1437   // All recursive calls that increase depth must come after this.
1438   if (Depth == MaxDepth)
1439     return;
1440 
1441   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1442   // the bits of its aliasee.
1443   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1444     if (!GA->isInterposable())
1445       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1446     return;
1447   }
1448 
1449   if (Operator *I = dyn_cast<Operator>(V))
1450     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1451 
1452   // Aligned pointers have trailing zeros - refine KnownZero set
1453   if (V->getType()->isPointerTy()) {
1454     unsigned Align = V->getPointerAlignment(Q.DL);
1455     if (Align)
1456       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1457   }
1458 
1459   // computeKnownBitsFromAssume strictly refines KnownZero and
1460   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1461 
1462   // Check whether a nearby assume intrinsic can determine some known bits.
1463   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1464 
1465   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1466 }
1467 
1468 /// Determine whether the sign bit is known to be zero or one.
1469 /// Convenience wrapper around computeKnownBits.
1470 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1471                     unsigned Depth, const Query &Q) {
1472   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1473   if (!BitWidth) {
1474     KnownZero = false;
1475     KnownOne = false;
1476     return;
1477   }
1478   APInt ZeroBits(BitWidth, 0);
1479   APInt OneBits(BitWidth, 0);
1480   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1481   KnownOne = OneBits[BitWidth - 1];
1482   KnownZero = ZeroBits[BitWidth - 1];
1483 }
1484 
1485 /// Return true if the given value is known to have exactly one
1486 /// bit set when defined. For vectors return true if every element is known to
1487 /// be a power of two when defined. Supports values with integer or pointer
1488 /// types and vectors of integers.
1489 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1490                             const Query &Q) {
1491   if (Constant *C = dyn_cast<Constant>(V)) {
1492     if (C->isNullValue())
1493       return OrZero;
1494 
1495     const APInt *ConstIntOrConstSplatInt;
1496     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1497       return ConstIntOrConstSplatInt->isPowerOf2();
1498   }
1499 
1500   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1501   // it is shifted off the end then the result is undefined.
1502   if (match(V, m_Shl(m_One(), m_Value())))
1503     return true;
1504 
1505   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1506   // bottom.  If it is shifted off the bottom then the result is undefined.
1507   if (match(V, m_LShr(m_SignBit(), m_Value())))
1508     return true;
1509 
1510   // The remaining tests are all recursive, so bail out if we hit the limit.
1511   if (Depth++ == MaxDepth)
1512     return false;
1513 
1514   Value *X = nullptr, *Y = nullptr;
1515   // A shift left or a logical shift right of a power of two is a power of two
1516   // or zero.
1517   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1518                  match(V, m_LShr(m_Value(X), m_Value()))))
1519     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1520 
1521   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1522     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1523 
1524   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1525     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1526            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1527 
1528   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1529     // A power of two and'd with anything is a power of two or zero.
1530     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1531         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1532       return true;
1533     // X & (-X) is always a power of two or zero.
1534     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1535       return true;
1536     return false;
1537   }
1538 
1539   // Adding a power-of-two or zero to the same power-of-two or zero yields
1540   // either the original power-of-two, a larger power-of-two or zero.
1541   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1542     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1543     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1544       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1545           match(X, m_And(m_Value(), m_Specific(Y))))
1546         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1547           return true;
1548       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1549           match(Y, m_And(m_Value(), m_Specific(X))))
1550         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1551           return true;
1552 
1553       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1554       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1555       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1556 
1557       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1558       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1559       // If i8 V is a power of two or zero:
1560       //  ZeroBits: 1 1 1 0 1 1 1 1
1561       // ~ZeroBits: 0 0 0 1 0 0 0 0
1562       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1563         // If OrZero isn't set, we cannot give back a zero result.
1564         // Make sure either the LHS or RHS has a bit set.
1565         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1566           return true;
1567     }
1568   }
1569 
1570   // An exact divide or right shift can only shift off zero bits, so the result
1571   // is a power of two only if the first operand is a power of two and not
1572   // copying a sign bit (sdiv int_min, 2).
1573   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1574       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1575     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1576                                   Depth, Q);
1577   }
1578 
1579   return false;
1580 }
1581 
1582 /// \brief Test whether a GEP's result is known to be non-null.
1583 ///
1584 /// Uses properties inherent in a GEP to try to determine whether it is known
1585 /// to be non-null.
1586 ///
1587 /// Currently this routine does not support vector GEPs.
1588 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1589                               const Query &Q) {
1590   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1591     return false;
1592 
1593   // FIXME: Support vector-GEPs.
1594   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1595 
1596   // If the base pointer is non-null, we cannot walk to a null address with an
1597   // inbounds GEP in address space zero.
1598   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1599     return true;
1600 
1601   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1602   // If so, then the GEP cannot produce a null pointer, as doing so would
1603   // inherently violate the inbounds contract within address space zero.
1604   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1605        GTI != GTE; ++GTI) {
1606     // Struct types are easy -- they must always be indexed by a constant.
1607     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1608       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1609       unsigned ElementIdx = OpC->getZExtValue();
1610       const StructLayout *SL = Q.DL.getStructLayout(STy);
1611       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1612       if (ElementOffset > 0)
1613         return true;
1614       continue;
1615     }
1616 
1617     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1618     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1619       continue;
1620 
1621     // Fast path the constant operand case both for efficiency and so we don't
1622     // increment Depth when just zipping down an all-constant GEP.
1623     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1624       if (!OpC->isZero())
1625         return true;
1626       continue;
1627     }
1628 
1629     // We post-increment Depth here because while isKnownNonZero increments it
1630     // as well, when we pop back up that increment won't persist. We don't want
1631     // to recurse 10k times just because we have 10k GEP operands. We don't
1632     // bail completely out because we want to handle constant GEPs regardless
1633     // of depth.
1634     if (Depth++ >= MaxDepth)
1635       continue;
1636 
1637     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1638       return true;
1639   }
1640 
1641   return false;
1642 }
1643 
1644 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1645 /// ensure that the value it's attached to is never Value?  'RangeType' is
1646 /// is the type of the value described by the range.
1647 static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
1648   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1649   assert(NumRanges >= 1);
1650   for (unsigned i = 0; i < NumRanges; ++i) {
1651     ConstantInt *Lower =
1652         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1653     ConstantInt *Upper =
1654         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1655     ConstantRange Range(Lower->getValue(), Upper->getValue());
1656     if (Range.contains(Value))
1657       return false;
1658   }
1659   return true;
1660 }
1661 
1662 /// Return true if the given value is known to be non-zero when defined.
1663 /// For vectors return true if every element is known to be non-zero when
1664 /// defined. Supports values with integer or pointer type and vectors of
1665 /// integers.
1666 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1667   if (auto *C = dyn_cast<Constant>(V)) {
1668     if (C->isNullValue())
1669       return false;
1670     if (isa<ConstantInt>(C))
1671       // Must be non-zero due to null test above.
1672       return true;
1673 
1674     // For constant vectors, check that all elements are undefined or known
1675     // non-zero to determine that the whole vector is known non-zero.
1676     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1677       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1678         Constant *Elt = C->getAggregateElement(i);
1679         if (!Elt || Elt->isNullValue())
1680           return false;
1681         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1682           return false;
1683       }
1684       return true;
1685     }
1686 
1687     return false;
1688   }
1689 
1690   if (auto *I = dyn_cast<Instruction>(V)) {
1691     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1692       // If the possible ranges don't contain zero, then the value is
1693       // definitely non-zero.
1694       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1695         const APInt ZeroValue(Ty->getBitWidth(), 0);
1696         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1697           return true;
1698       }
1699     }
1700   }
1701 
1702   // The remaining tests are all recursive, so bail out if we hit the limit.
1703   if (Depth++ >= MaxDepth)
1704     return false;
1705 
1706   // Check for pointer simplifications.
1707   if (V->getType()->isPointerTy()) {
1708     if (isKnownNonNull(V))
1709       return true;
1710     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1711       if (isGEPKnownNonNull(GEP, Depth, Q))
1712         return true;
1713   }
1714 
1715   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1716 
1717   // X | Y != 0 if X != 0 or Y != 0.
1718   Value *X = nullptr, *Y = nullptr;
1719   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1720     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1721 
1722   // ext X != 0 if X != 0.
1723   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1724     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1725 
1726   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1727   // if the lowest bit is shifted off the end.
1728   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1729     // shl nuw can't remove any non-zero bits.
1730     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1731     if (BO->hasNoUnsignedWrap())
1732       return isKnownNonZero(X, Depth, Q);
1733 
1734     APInt KnownZero(BitWidth, 0);
1735     APInt KnownOne(BitWidth, 0);
1736     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1737     if (KnownOne[0])
1738       return true;
1739   }
1740   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1741   // defined if the sign bit is shifted off the end.
1742   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1743     // shr exact can only shift out zero bits.
1744     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1745     if (BO->isExact())
1746       return isKnownNonZero(X, Depth, Q);
1747 
1748     bool XKnownNonNegative, XKnownNegative;
1749     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1750     if (XKnownNegative)
1751       return true;
1752 
1753     // If the shifter operand is a constant, and all of the bits shifted
1754     // out are known to be zero, and X is known non-zero then at least one
1755     // non-zero bit must remain.
1756     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1757       APInt KnownZero(BitWidth, 0);
1758       APInt KnownOne(BitWidth, 0);
1759       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1760 
1761       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1762       // Is there a known one in the portion not shifted out?
1763       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1764         return true;
1765       // Are all the bits to be shifted out known zero?
1766       if (KnownZero.countTrailingOnes() >= ShiftVal)
1767         return isKnownNonZero(X, Depth, Q);
1768     }
1769   }
1770   // div exact can only produce a zero if the dividend is zero.
1771   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1772     return isKnownNonZero(X, Depth, Q);
1773   }
1774   // X + Y.
1775   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1776     bool XKnownNonNegative, XKnownNegative;
1777     bool YKnownNonNegative, YKnownNegative;
1778     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1779     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1780 
1781     // If X and Y are both non-negative (as signed values) then their sum is not
1782     // zero unless both X and Y are zero.
1783     if (XKnownNonNegative && YKnownNonNegative)
1784       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1785         return true;
1786 
1787     // If X and Y are both negative (as signed values) then their sum is not
1788     // zero unless both X and Y equal INT_MIN.
1789     if (BitWidth && XKnownNegative && YKnownNegative) {
1790       APInt KnownZero(BitWidth, 0);
1791       APInt KnownOne(BitWidth, 0);
1792       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1793       // The sign bit of X is set.  If some other bit is set then X is not equal
1794       // to INT_MIN.
1795       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1796       if ((KnownOne & Mask) != 0)
1797         return true;
1798       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1799       // to INT_MIN.
1800       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1801       if ((KnownOne & Mask) != 0)
1802         return true;
1803     }
1804 
1805     // The sum of a non-negative number and a power of two is not zero.
1806     if (XKnownNonNegative &&
1807         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1808       return true;
1809     if (YKnownNonNegative &&
1810         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1811       return true;
1812   }
1813   // X * Y.
1814   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1815     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1816     // If X and Y are non-zero then so is X * Y as long as the multiplication
1817     // does not overflow.
1818     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1819         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1820       return true;
1821   }
1822   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1823   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1824     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1825         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1826       return true;
1827   }
1828   // PHI
1829   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1830     // Try and detect a recurrence that monotonically increases from a
1831     // starting value, as these are common as induction variables.
1832     if (PN->getNumIncomingValues() == 2) {
1833       Value *Start = PN->getIncomingValue(0);
1834       Value *Induction = PN->getIncomingValue(1);
1835       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1836         std::swap(Start, Induction);
1837       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1838         if (!C->isZero() && !C->isNegative()) {
1839           ConstantInt *X;
1840           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1841                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1842               !X->isNegative())
1843             return true;
1844         }
1845       }
1846     }
1847     // Check if all incoming values are non-zero constant.
1848     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1849       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1850     });
1851     if (AllNonZeroConstants)
1852       return true;
1853   }
1854 
1855   if (!BitWidth) return false;
1856   APInt KnownZero(BitWidth, 0);
1857   APInt KnownOne(BitWidth, 0);
1858   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1859   return KnownOne != 0;
1860 }
1861 
1862 /// Return true if V2 == V1 + X, where X is known non-zero.
1863 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
1864   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1865   if (!BO || BO->getOpcode() != Instruction::Add)
1866     return false;
1867   Value *Op = nullptr;
1868   if (V2 == BO->getOperand(0))
1869     Op = BO->getOperand(1);
1870   else if (V2 == BO->getOperand(1))
1871     Op = BO->getOperand(0);
1872   else
1873     return false;
1874   return isKnownNonZero(Op, 0, Q);
1875 }
1876 
1877 /// Return true if it is known that V1 != V2.
1878 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
1879   if (V1->getType()->isVectorTy() || V1 == V2)
1880     return false;
1881   if (V1->getType() != V2->getType())
1882     // We can't look through casts yet.
1883     return false;
1884   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1885     return true;
1886 
1887   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1888     // Are any known bits in V1 contradictory to known bits in V2? If V1
1889     // has a known zero where V2 has a known one, they must not be equal.
1890     auto BitWidth = Ty->getBitWidth();
1891     APInt KnownZero1(BitWidth, 0);
1892     APInt KnownOne1(BitWidth, 0);
1893     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1894     APInt KnownZero2(BitWidth, 0);
1895     APInt KnownOne2(BitWidth, 0);
1896     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1897 
1898     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1899     if (OppositeBits.getBoolValue())
1900       return true;
1901   }
1902   return false;
1903 }
1904 
1905 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1906 /// simplify operations downstream. Mask is known to be zero for bits that V
1907 /// cannot have.
1908 ///
1909 /// This function is defined on values with integer type, values with pointer
1910 /// type, and vectors of integers.  In the case
1911 /// where V is a vector, the mask, known zero, and known one values are the
1912 /// same width as the vector element, and the bit is set only if it is true
1913 /// for all of the elements in the vector.
1914 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1915                        const Query &Q) {
1916   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1917   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1918   return (KnownZero & Mask) == Mask;
1919 }
1920 
1921 /// For vector constants, loop over the elements and find the constant with the
1922 /// minimum number of sign bits. Return 0 if the value is not a vector constant
1923 /// or if any element was not analyzed; otherwise, return the count for the
1924 /// element with the minimum number of sign bits.
1925 static unsigned computeNumSignBitsVectorConstant(Value *V, unsigned TyBits) {
1926   auto *CV = dyn_cast<Constant>(V);
1927   if (!CV || !CV->getType()->isVectorTy())
1928     return 0;
1929 
1930   unsigned MinSignBits = TyBits;
1931   unsigned NumElts = CV->getType()->getVectorNumElements();
1932   for (unsigned i = 0; i != NumElts; ++i) {
1933     // If we find a non-ConstantInt, bail out.
1934     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
1935     if (!Elt)
1936       return 0;
1937 
1938     // If the sign bit is 1, flip the bits, so we always count leading zeros.
1939     APInt EltVal = Elt->getValue();
1940     if (EltVal.isNegative())
1941       EltVal = ~EltVal;
1942     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
1943   }
1944 
1945   return MinSignBits;
1946 }
1947 
1948 /// Return the number of times the sign bit of the register is replicated into
1949 /// the other bits. We know that at least 1 bit is always equal to the sign bit
1950 /// (itself), but other cases can give us information. For example, immediately
1951 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1952 /// other, so we return 3. For vectors, return the number of sign bits for the
1953 /// vector element with the mininum number of known sign bits.
1954 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1955   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
1956   unsigned Tmp, Tmp2;
1957   unsigned FirstAnswer = 1;
1958 
1959   // Note that ConstantInt is handled by the general computeKnownBits case
1960   // below.
1961 
1962   if (Depth == 6)
1963     return 1;  // Limit search depth.
1964 
1965   Operator *U = dyn_cast<Operator>(V);
1966   switch (Operator::getOpcode(V)) {
1967   default: break;
1968   case Instruction::SExt:
1969     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1970     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
1971 
1972   case Instruction::SDiv: {
1973     const APInt *Denominator;
1974     // sdiv X, C -> adds log(C) sign bits.
1975     if (match(U->getOperand(1), m_APInt(Denominator))) {
1976 
1977       // Ignore non-positive denominator.
1978       if (!Denominator->isStrictlyPositive())
1979         break;
1980 
1981       // Calculate the incoming numerator bits.
1982       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1983 
1984       // Add floor(log(C)) bits to the numerator bits.
1985       return std::min(TyBits, NumBits + Denominator->logBase2());
1986     }
1987     break;
1988   }
1989 
1990   case Instruction::SRem: {
1991     const APInt *Denominator;
1992     // srem X, C -> we know that the result is within [-C+1,C) when C is a
1993     // positive constant.  This let us put a lower bound on the number of sign
1994     // bits.
1995     if (match(U->getOperand(1), m_APInt(Denominator))) {
1996 
1997       // Ignore non-positive denominator.
1998       if (!Denominator->isStrictlyPositive())
1999         break;
2000 
2001       // Calculate the incoming numerator bits. SRem by a positive constant
2002       // can't lower the number of sign bits.
2003       unsigned NumrBits =
2004           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2005 
2006       // Calculate the leading sign bit constraints by examining the
2007       // denominator.  Given that the denominator is positive, there are two
2008       // cases:
2009       //
2010       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2011       //     (1 << ceilLogBase2(C)).
2012       //
2013       //  2. the numerator is negative.  Then the result range is (-C,0] and
2014       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2015       //
2016       // Thus a lower bound on the number of sign bits is `TyBits -
2017       // ceilLogBase2(C)`.
2018 
2019       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2020       return std::max(NumrBits, ResBits);
2021     }
2022     break;
2023   }
2024 
2025   case Instruction::AShr: {
2026     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2027     // ashr X, C   -> adds C sign bits.  Vectors too.
2028     const APInt *ShAmt;
2029     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2030       Tmp += ShAmt->getZExtValue();
2031       if (Tmp > TyBits) Tmp = TyBits;
2032     }
2033     return Tmp;
2034   }
2035   case Instruction::Shl: {
2036     const APInt *ShAmt;
2037     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2038       // shl destroys sign bits.
2039       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2040       Tmp2 = ShAmt->getZExtValue();
2041       if (Tmp2 >= TyBits ||      // Bad shift.
2042           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2043       return Tmp - Tmp2;
2044     }
2045     break;
2046   }
2047   case Instruction::And:
2048   case Instruction::Or:
2049   case Instruction::Xor:    // NOT is handled here.
2050     // Logical binary ops preserve the number of sign bits at the worst.
2051     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2052     if (Tmp != 1) {
2053       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2054       FirstAnswer = std::min(Tmp, Tmp2);
2055       // We computed what we know about the sign bits as our first
2056       // answer. Now proceed to the generic code that uses
2057       // computeKnownBits, and pick whichever answer is better.
2058     }
2059     break;
2060 
2061   case Instruction::Select:
2062     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2063     if (Tmp == 1) return 1;  // Early out.
2064     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2065     return std::min(Tmp, Tmp2);
2066 
2067   case Instruction::Add:
2068     // Add can have at most one carry bit.  Thus we know that the output
2069     // is, at worst, one more bit than the inputs.
2070     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2071     if (Tmp == 1) return 1;  // Early out.
2072 
2073     // Special case decrementing a value (ADD X, -1):
2074     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2075       if (CRHS->isAllOnesValue()) {
2076         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2077         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2078 
2079         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2080         // sign bits set.
2081         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2082           return TyBits;
2083 
2084         // If we are subtracting one from a positive number, there is no carry
2085         // out of the result.
2086         if (KnownZero.isNegative())
2087           return Tmp;
2088       }
2089 
2090     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2091     if (Tmp2 == 1) return 1;
2092     return std::min(Tmp, Tmp2)-1;
2093 
2094   case Instruction::Sub:
2095     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2096     if (Tmp2 == 1) return 1;
2097 
2098     // Handle NEG.
2099     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2100       if (CLHS->isNullValue()) {
2101         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2102         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2103         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2104         // sign bits set.
2105         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2106           return TyBits;
2107 
2108         // If the input is known to be positive (the sign bit is known clear),
2109         // the output of the NEG has the same number of sign bits as the input.
2110         if (KnownZero.isNegative())
2111           return Tmp2;
2112 
2113         // Otherwise, we treat this like a SUB.
2114       }
2115 
2116     // Sub can have at most one carry bit.  Thus we know that the output
2117     // is, at worst, one more bit than the inputs.
2118     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2119     if (Tmp == 1) return 1;  // Early out.
2120     return std::min(Tmp, Tmp2)-1;
2121 
2122   case Instruction::PHI: {
2123     PHINode *PN = cast<PHINode>(U);
2124     unsigned NumIncomingValues = PN->getNumIncomingValues();
2125     // Don't analyze large in-degree PHIs.
2126     if (NumIncomingValues > 4) break;
2127     // Unreachable blocks may have zero-operand PHI nodes.
2128     if (NumIncomingValues == 0) break;
2129 
2130     // Take the minimum of all incoming values.  This can't infinitely loop
2131     // because of our depth threshold.
2132     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2133     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2134       if (Tmp == 1) return Tmp;
2135       Tmp = std::min(
2136           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2137     }
2138     return Tmp;
2139   }
2140 
2141   case Instruction::Trunc:
2142     // FIXME: it's tricky to do anything useful for this, but it is an important
2143     // case for targets like X86.
2144     break;
2145   }
2146 
2147   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2148   // use this information.
2149 
2150   // If we can examine all elements of a vector constant successfully, we're
2151   // done (we can't do any better than that). If not, keep trying.
2152   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2153     return VecSignBits;
2154 
2155   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2156   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2157 
2158   // If we know that the sign bit is either zero or one, determine the number of
2159   // identical bits in the top of the input value.
2160   if (KnownZero.isNegative())
2161     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2162 
2163   if (KnownOne.isNegative())
2164     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2165 
2166   // computeKnownBits gave us no extra information about the top bits.
2167   return FirstAnswer;
2168 }
2169 
2170 /// This function computes the integer multiple of Base that equals V.
2171 /// If successful, it returns true and returns the multiple in
2172 /// Multiple. If unsuccessful, it returns false. It looks
2173 /// through SExt instructions only if LookThroughSExt is true.
2174 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2175                            bool LookThroughSExt, unsigned Depth) {
2176   const unsigned MaxDepth = 6;
2177 
2178   assert(V && "No Value?");
2179   assert(Depth <= MaxDepth && "Limit Search Depth");
2180   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2181 
2182   Type *T = V->getType();
2183 
2184   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2185 
2186   if (Base == 0)
2187     return false;
2188 
2189   if (Base == 1) {
2190     Multiple = V;
2191     return true;
2192   }
2193 
2194   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2195   Constant *BaseVal = ConstantInt::get(T, Base);
2196   if (CO && CO == BaseVal) {
2197     // Multiple is 1.
2198     Multiple = ConstantInt::get(T, 1);
2199     return true;
2200   }
2201 
2202   if (CI && CI->getZExtValue() % Base == 0) {
2203     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2204     return true;
2205   }
2206 
2207   if (Depth == MaxDepth) return false;  // Limit search depth.
2208 
2209   Operator *I = dyn_cast<Operator>(V);
2210   if (!I) return false;
2211 
2212   switch (I->getOpcode()) {
2213   default: break;
2214   case Instruction::SExt:
2215     if (!LookThroughSExt) return false;
2216     // otherwise fall through to ZExt
2217   case Instruction::ZExt:
2218     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2219                            LookThroughSExt, Depth+1);
2220   case Instruction::Shl:
2221   case Instruction::Mul: {
2222     Value *Op0 = I->getOperand(0);
2223     Value *Op1 = I->getOperand(1);
2224 
2225     if (I->getOpcode() == Instruction::Shl) {
2226       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2227       if (!Op1CI) return false;
2228       // Turn Op0 << Op1 into Op0 * 2^Op1
2229       APInt Op1Int = Op1CI->getValue();
2230       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2231       APInt API(Op1Int.getBitWidth(), 0);
2232       API.setBit(BitToSet);
2233       Op1 = ConstantInt::get(V->getContext(), API);
2234     }
2235 
2236     Value *Mul0 = nullptr;
2237     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2238       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2239         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2240           if (Op1C->getType()->getPrimitiveSizeInBits() <
2241               MulC->getType()->getPrimitiveSizeInBits())
2242             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2243           if (Op1C->getType()->getPrimitiveSizeInBits() >
2244               MulC->getType()->getPrimitiveSizeInBits())
2245             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2246 
2247           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2248           Multiple = ConstantExpr::getMul(MulC, Op1C);
2249           return true;
2250         }
2251 
2252       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2253         if (Mul0CI->getValue() == 1) {
2254           // V == Base * Op1, so return Op1
2255           Multiple = Op1;
2256           return true;
2257         }
2258     }
2259 
2260     Value *Mul1 = nullptr;
2261     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2262       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2263         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2264           if (Op0C->getType()->getPrimitiveSizeInBits() <
2265               MulC->getType()->getPrimitiveSizeInBits())
2266             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2267           if (Op0C->getType()->getPrimitiveSizeInBits() >
2268               MulC->getType()->getPrimitiveSizeInBits())
2269             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2270 
2271           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2272           Multiple = ConstantExpr::getMul(MulC, Op0C);
2273           return true;
2274         }
2275 
2276       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2277         if (Mul1CI->getValue() == 1) {
2278           // V == Base * Op0, so return Op0
2279           Multiple = Op0;
2280           return true;
2281         }
2282     }
2283   }
2284   }
2285 
2286   // We could not determine if V is a multiple of Base.
2287   return false;
2288 }
2289 
2290 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2291                                             const TargetLibraryInfo *TLI) {
2292   const Function *F = ICS.getCalledFunction();
2293   if (!F)
2294     return Intrinsic::not_intrinsic;
2295 
2296   if (F->isIntrinsic())
2297     return F->getIntrinsicID();
2298 
2299   if (!TLI)
2300     return Intrinsic::not_intrinsic;
2301 
2302   LibFunc::Func Func;
2303   // We're going to make assumptions on the semantics of the functions, check
2304   // that the target knows that it's available in this environment and it does
2305   // not have local linkage.
2306   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2307     return Intrinsic::not_intrinsic;
2308 
2309   if (!ICS.onlyReadsMemory())
2310     return Intrinsic::not_intrinsic;
2311 
2312   // Otherwise check if we have a call to a function that can be turned into a
2313   // vector intrinsic.
2314   switch (Func) {
2315   default:
2316     break;
2317   case LibFunc::sin:
2318   case LibFunc::sinf:
2319   case LibFunc::sinl:
2320     return Intrinsic::sin;
2321   case LibFunc::cos:
2322   case LibFunc::cosf:
2323   case LibFunc::cosl:
2324     return Intrinsic::cos;
2325   case LibFunc::exp:
2326   case LibFunc::expf:
2327   case LibFunc::expl:
2328     return Intrinsic::exp;
2329   case LibFunc::exp2:
2330   case LibFunc::exp2f:
2331   case LibFunc::exp2l:
2332     return Intrinsic::exp2;
2333   case LibFunc::log:
2334   case LibFunc::logf:
2335   case LibFunc::logl:
2336     return Intrinsic::log;
2337   case LibFunc::log10:
2338   case LibFunc::log10f:
2339   case LibFunc::log10l:
2340     return Intrinsic::log10;
2341   case LibFunc::log2:
2342   case LibFunc::log2f:
2343   case LibFunc::log2l:
2344     return Intrinsic::log2;
2345   case LibFunc::fabs:
2346   case LibFunc::fabsf:
2347   case LibFunc::fabsl:
2348     return Intrinsic::fabs;
2349   case LibFunc::fmin:
2350   case LibFunc::fminf:
2351   case LibFunc::fminl:
2352     return Intrinsic::minnum;
2353   case LibFunc::fmax:
2354   case LibFunc::fmaxf:
2355   case LibFunc::fmaxl:
2356     return Intrinsic::maxnum;
2357   case LibFunc::copysign:
2358   case LibFunc::copysignf:
2359   case LibFunc::copysignl:
2360     return Intrinsic::copysign;
2361   case LibFunc::floor:
2362   case LibFunc::floorf:
2363   case LibFunc::floorl:
2364     return Intrinsic::floor;
2365   case LibFunc::ceil:
2366   case LibFunc::ceilf:
2367   case LibFunc::ceill:
2368     return Intrinsic::ceil;
2369   case LibFunc::trunc:
2370   case LibFunc::truncf:
2371   case LibFunc::truncl:
2372     return Intrinsic::trunc;
2373   case LibFunc::rint:
2374   case LibFunc::rintf:
2375   case LibFunc::rintl:
2376     return Intrinsic::rint;
2377   case LibFunc::nearbyint:
2378   case LibFunc::nearbyintf:
2379   case LibFunc::nearbyintl:
2380     return Intrinsic::nearbyint;
2381   case LibFunc::round:
2382   case LibFunc::roundf:
2383   case LibFunc::roundl:
2384     return Intrinsic::round;
2385   case LibFunc::pow:
2386   case LibFunc::powf:
2387   case LibFunc::powl:
2388     return Intrinsic::pow;
2389   case LibFunc::sqrt:
2390   case LibFunc::sqrtf:
2391   case LibFunc::sqrtl:
2392     if (ICS->hasNoNaNs())
2393       return Intrinsic::sqrt;
2394     return Intrinsic::not_intrinsic;
2395   }
2396 
2397   return Intrinsic::not_intrinsic;
2398 }
2399 
2400 /// Return true if we can prove that the specified FP value is never equal to
2401 /// -0.0.
2402 ///
2403 /// NOTE: this function will need to be revisited when we support non-default
2404 /// rounding modes!
2405 ///
2406 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2407                                 unsigned Depth) {
2408   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2409     return !CFP->getValueAPF().isNegZero();
2410 
2411   // FIXME: Magic number! At the least, this should be given a name because it's
2412   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2413   // expose it as a parameter, so it can be used for testing / experimenting.
2414   if (Depth == 6)
2415     return false;  // Limit search depth.
2416 
2417   const Operator *I = dyn_cast<Operator>(V);
2418   if (!I) return false;
2419 
2420   // Check if the nsz fast-math flag is set
2421   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2422     if (FPO->hasNoSignedZeros())
2423       return true;
2424 
2425   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2426   if (I->getOpcode() == Instruction::FAdd)
2427     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2428       if (CFP->isNullValue())
2429         return true;
2430 
2431   // sitofp and uitofp turn into +0.0 for zero.
2432   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2433     return true;
2434 
2435   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2436     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2437     switch (IID) {
2438     default:
2439       break;
2440     // sqrt(-0.0) = -0.0, no other negative results are possible.
2441     case Intrinsic::sqrt:
2442       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2443     // fabs(x) != -0.0
2444     case Intrinsic::fabs:
2445       return true;
2446     }
2447   }
2448 
2449   return false;
2450 }
2451 
2452 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2453                                        const TargetLibraryInfo *TLI,
2454                                        unsigned Depth) {
2455   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2456     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2457 
2458   // FIXME: Magic number! At the least, this should be given a name because it's
2459   // used similarly in CannotBeNegativeZero(). A better fix may be to
2460   // expose it as a parameter, so it can be used for testing / experimenting.
2461   if (Depth == 6)
2462     return false;  // Limit search depth.
2463 
2464   const Operator *I = dyn_cast<Operator>(V);
2465   if (!I) return false;
2466 
2467   switch (I->getOpcode()) {
2468   default: break;
2469   // Unsigned integers are always nonnegative.
2470   case Instruction::UIToFP:
2471     return true;
2472   case Instruction::FMul:
2473     // x*x is always non-negative or a NaN.
2474     if (I->getOperand(0) == I->getOperand(1))
2475       return true;
2476     // Fall through
2477   case Instruction::FAdd:
2478   case Instruction::FDiv:
2479   case Instruction::FRem:
2480     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2481            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2482   case Instruction::Select:
2483     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2484            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2485   case Instruction::FPExt:
2486   case Instruction::FPTrunc:
2487     // Widening/narrowing never change sign.
2488     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2489   case Instruction::Call:
2490     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2491     switch (IID) {
2492     default:
2493       break;
2494     case Intrinsic::maxnum:
2495       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2496              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2497     case Intrinsic::minnum:
2498       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2499              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2500     case Intrinsic::exp:
2501     case Intrinsic::exp2:
2502     case Intrinsic::fabs:
2503     case Intrinsic::sqrt:
2504       return true;
2505     case Intrinsic::powi:
2506       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2507         // powi(x,n) is non-negative if n is even.
2508         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2509           return true;
2510       }
2511       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2512     case Intrinsic::fma:
2513     case Intrinsic::fmuladd:
2514       // x*x+y is non-negative if y is non-negative.
2515       return I->getOperand(0) == I->getOperand(1) &&
2516              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2517     }
2518     break;
2519   }
2520   return false;
2521 }
2522 
2523 /// If the specified value can be set by repeating the same byte in memory,
2524 /// return the i8 value that it is represented with.  This is
2525 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2526 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2527 /// byte store (e.g. i16 0x1234), return null.
2528 Value *llvm::isBytewiseValue(Value *V) {
2529   // All byte-wide stores are splatable, even of arbitrary variables.
2530   if (V->getType()->isIntegerTy(8)) return V;
2531 
2532   // Handle 'null' ConstantArrayZero etc.
2533   if (Constant *C = dyn_cast<Constant>(V))
2534     if (C->isNullValue())
2535       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2536 
2537   // Constant float and double values can be handled as integer values if the
2538   // corresponding integer value is "byteable".  An important case is 0.0.
2539   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2540     if (CFP->getType()->isFloatTy())
2541       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2542     if (CFP->getType()->isDoubleTy())
2543       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2544     // Don't handle long double formats, which have strange constraints.
2545   }
2546 
2547   // We can handle constant integers that are multiple of 8 bits.
2548   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2549     if (CI->getBitWidth() % 8 == 0) {
2550       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2551 
2552       if (!CI->getValue().isSplat(8))
2553         return nullptr;
2554       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2555     }
2556   }
2557 
2558   // A ConstantDataArray/Vector is splatable if all its members are equal and
2559   // also splatable.
2560   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2561     Value *Elt = CA->getElementAsConstant(0);
2562     Value *Val = isBytewiseValue(Elt);
2563     if (!Val)
2564       return nullptr;
2565 
2566     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2567       if (CA->getElementAsConstant(I) != Elt)
2568         return nullptr;
2569 
2570     return Val;
2571   }
2572 
2573   // Conceptually, we could handle things like:
2574   //   %a = zext i8 %X to i16
2575   //   %b = shl i16 %a, 8
2576   //   %c = or i16 %a, %b
2577   // but until there is an example that actually needs this, it doesn't seem
2578   // worth worrying about.
2579   return nullptr;
2580 }
2581 
2582 
2583 // This is the recursive version of BuildSubAggregate. It takes a few different
2584 // arguments. Idxs is the index within the nested struct From that we are
2585 // looking at now (which is of type IndexedType). IdxSkip is the number of
2586 // indices from Idxs that should be left out when inserting into the resulting
2587 // struct. To is the result struct built so far, new insertvalue instructions
2588 // build on that.
2589 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2590                                 SmallVectorImpl<unsigned> &Idxs,
2591                                 unsigned IdxSkip,
2592                                 Instruction *InsertBefore) {
2593   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2594   if (STy) {
2595     // Save the original To argument so we can modify it
2596     Value *OrigTo = To;
2597     // General case, the type indexed by Idxs is a struct
2598     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2599       // Process each struct element recursively
2600       Idxs.push_back(i);
2601       Value *PrevTo = To;
2602       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2603                              InsertBefore);
2604       Idxs.pop_back();
2605       if (!To) {
2606         // Couldn't find any inserted value for this index? Cleanup
2607         while (PrevTo != OrigTo) {
2608           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2609           PrevTo = Del->getAggregateOperand();
2610           Del->eraseFromParent();
2611         }
2612         // Stop processing elements
2613         break;
2614       }
2615     }
2616     // If we successfully found a value for each of our subaggregates
2617     if (To)
2618       return To;
2619   }
2620   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2621   // the struct's elements had a value that was inserted directly. In the latter
2622   // case, perhaps we can't determine each of the subelements individually, but
2623   // we might be able to find the complete struct somewhere.
2624 
2625   // Find the value that is at that particular spot
2626   Value *V = FindInsertedValue(From, Idxs);
2627 
2628   if (!V)
2629     return nullptr;
2630 
2631   // Insert the value in the new (sub) aggregrate
2632   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2633                                        "tmp", InsertBefore);
2634 }
2635 
2636 // This helper takes a nested struct and extracts a part of it (which is again a
2637 // struct) into a new value. For example, given the struct:
2638 // { a, { b, { c, d }, e } }
2639 // and the indices "1, 1" this returns
2640 // { c, d }.
2641 //
2642 // It does this by inserting an insertvalue for each element in the resulting
2643 // struct, as opposed to just inserting a single struct. This will only work if
2644 // each of the elements of the substruct are known (ie, inserted into From by an
2645 // insertvalue instruction somewhere).
2646 //
2647 // All inserted insertvalue instructions are inserted before InsertBefore
2648 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2649                                 Instruction *InsertBefore) {
2650   assert(InsertBefore && "Must have someplace to insert!");
2651   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2652                                                              idx_range);
2653   Value *To = UndefValue::get(IndexedType);
2654   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2655   unsigned IdxSkip = Idxs.size();
2656 
2657   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2658 }
2659 
2660 /// Given an aggregrate and an sequence of indices, see if
2661 /// the scalar value indexed is already around as a register, for example if it
2662 /// were inserted directly into the aggregrate.
2663 ///
2664 /// If InsertBefore is not null, this function will duplicate (modified)
2665 /// insertvalues when a part of a nested struct is extracted.
2666 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2667                                Instruction *InsertBefore) {
2668   // Nothing to index? Just return V then (this is useful at the end of our
2669   // recursion).
2670   if (idx_range.empty())
2671     return V;
2672   // We have indices, so V should have an indexable type.
2673   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2674          "Not looking at a struct or array?");
2675   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2676          "Invalid indices for type?");
2677 
2678   if (Constant *C = dyn_cast<Constant>(V)) {
2679     C = C->getAggregateElement(idx_range[0]);
2680     if (!C) return nullptr;
2681     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2682   }
2683 
2684   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2685     // Loop the indices for the insertvalue instruction in parallel with the
2686     // requested indices
2687     const unsigned *req_idx = idx_range.begin();
2688     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2689          i != e; ++i, ++req_idx) {
2690       if (req_idx == idx_range.end()) {
2691         // We can't handle this without inserting insertvalues
2692         if (!InsertBefore)
2693           return nullptr;
2694 
2695         // The requested index identifies a part of a nested aggregate. Handle
2696         // this specially. For example,
2697         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2698         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2699         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2700         // This can be changed into
2701         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2702         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2703         // which allows the unused 0,0 element from the nested struct to be
2704         // removed.
2705         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2706                                  InsertBefore);
2707       }
2708 
2709       // This insert value inserts something else than what we are looking for.
2710       // See if the (aggregate) value inserted into has the value we are
2711       // looking for, then.
2712       if (*req_idx != *i)
2713         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2714                                  InsertBefore);
2715     }
2716     // If we end up here, the indices of the insertvalue match with those
2717     // requested (though possibly only partially). Now we recursively look at
2718     // the inserted value, passing any remaining indices.
2719     return FindInsertedValue(I->getInsertedValueOperand(),
2720                              makeArrayRef(req_idx, idx_range.end()),
2721                              InsertBefore);
2722   }
2723 
2724   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2725     // If we're extracting a value from an aggregate that was extracted from
2726     // something else, we can extract from that something else directly instead.
2727     // However, we will need to chain I's indices with the requested indices.
2728 
2729     // Calculate the number of indices required
2730     unsigned size = I->getNumIndices() + idx_range.size();
2731     // Allocate some space to put the new indices in
2732     SmallVector<unsigned, 5> Idxs;
2733     Idxs.reserve(size);
2734     // Add indices from the extract value instruction
2735     Idxs.append(I->idx_begin(), I->idx_end());
2736 
2737     // Add requested indices
2738     Idxs.append(idx_range.begin(), idx_range.end());
2739 
2740     assert(Idxs.size() == size
2741            && "Number of indices added not correct?");
2742 
2743     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2744   }
2745   // Otherwise, we don't know (such as, extracting from a function return value
2746   // or load instruction)
2747   return nullptr;
2748 }
2749 
2750 /// Analyze the specified pointer to see if it can be expressed as a base
2751 /// pointer plus a constant offset. Return the base and offset to the caller.
2752 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2753                                               const DataLayout &DL) {
2754   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2755   APInt ByteOffset(BitWidth, 0);
2756 
2757   // We walk up the defs but use a visited set to handle unreachable code. In
2758   // that case, we stop after accumulating the cycle once (not that it
2759   // matters).
2760   SmallPtrSet<Value *, 16> Visited;
2761   while (Visited.insert(Ptr).second) {
2762     if (Ptr->getType()->isVectorTy())
2763       break;
2764 
2765     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2766       APInt GEPOffset(BitWidth, 0);
2767       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2768         break;
2769 
2770       ByteOffset += GEPOffset;
2771 
2772       Ptr = GEP->getPointerOperand();
2773     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2774                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2775       Ptr = cast<Operator>(Ptr)->getOperand(0);
2776     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2777       if (GA->isInterposable())
2778         break;
2779       Ptr = GA->getAliasee();
2780     } else {
2781       break;
2782     }
2783   }
2784   Offset = ByteOffset.getSExtValue();
2785   return Ptr;
2786 }
2787 
2788 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2789   // Make sure the GEP has exactly three arguments.
2790   if (GEP->getNumOperands() != 3)
2791     return false;
2792 
2793   // Make sure the index-ee is a pointer to array of i8.
2794   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2795   if (!AT || !AT->getElementType()->isIntegerTy(8))
2796     return false;
2797 
2798   // Check to make sure that the first operand of the GEP is an integer and
2799   // has value 0 so that we are sure we're indexing into the initializer.
2800   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2801   if (!FirstIdx || !FirstIdx->isZero())
2802     return false;
2803 
2804   return true;
2805 }
2806 
2807 /// This function computes the length of a null-terminated C string pointed to
2808 /// by V. If successful, it returns true and returns the string in Str.
2809 /// If unsuccessful, it returns false.
2810 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2811                                  uint64_t Offset, bool TrimAtNul) {
2812   assert(V);
2813 
2814   // Look through bitcast instructions and geps.
2815   V = V->stripPointerCasts();
2816 
2817   // If the value is a GEP instruction or constant expression, treat it as an
2818   // offset.
2819   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2820     // The GEP operator should be based on a pointer to string constant, and is
2821     // indexing into the string constant.
2822     if (!isGEPBasedOnPointerToString(GEP))
2823       return false;
2824 
2825     // If the second index isn't a ConstantInt, then this is a variable index
2826     // into the array.  If this occurs, we can't say anything meaningful about
2827     // the string.
2828     uint64_t StartIdx = 0;
2829     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2830       StartIdx = CI->getZExtValue();
2831     else
2832       return false;
2833     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2834                                  TrimAtNul);
2835   }
2836 
2837   // The GEP instruction, constant or instruction, must reference a global
2838   // variable that is a constant and is initialized. The referenced constant
2839   // initializer is the array that we'll use for optimization.
2840   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2841   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2842     return false;
2843 
2844   // Handle the all-zeros case.
2845   if (GV->getInitializer()->isNullValue()) {
2846     // This is a degenerate case. The initializer is constant zero so the
2847     // length of the string must be zero.
2848     Str = "";
2849     return true;
2850   }
2851 
2852   // This must be a ConstantDataArray.
2853   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
2854   if (!Array || !Array->isString())
2855     return false;
2856 
2857   // Get the number of elements in the array.
2858   uint64_t NumElts = Array->getType()->getArrayNumElements();
2859 
2860   // Start out with the entire array in the StringRef.
2861   Str = Array->getAsString();
2862 
2863   if (Offset > NumElts)
2864     return false;
2865 
2866   // Skip over 'offset' bytes.
2867   Str = Str.substr(Offset);
2868 
2869   if (TrimAtNul) {
2870     // Trim off the \0 and anything after it.  If the array is not nul
2871     // terminated, we just return the whole end of string.  The client may know
2872     // some other way that the string is length-bound.
2873     Str = Str.substr(0, Str.find('\0'));
2874   }
2875   return true;
2876 }
2877 
2878 // These next two are very similar to the above, but also look through PHI
2879 // nodes.
2880 // TODO: See if we can integrate these two together.
2881 
2882 /// If we can compute the length of the string pointed to by
2883 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2884 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2885   // Look through noop bitcast instructions.
2886   V = V->stripPointerCasts();
2887 
2888   // If this is a PHI node, there are two cases: either we have already seen it
2889   // or we haven't.
2890   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2891     if (!PHIs.insert(PN).second)
2892       return ~0ULL;  // already in the set.
2893 
2894     // If it was new, see if all the input strings are the same length.
2895     uint64_t LenSoFar = ~0ULL;
2896     for (Value *IncValue : PN->incoming_values()) {
2897       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2898       if (Len == 0) return 0; // Unknown length -> unknown.
2899 
2900       if (Len == ~0ULL) continue;
2901 
2902       if (Len != LenSoFar && LenSoFar != ~0ULL)
2903         return 0;    // Disagree -> unknown.
2904       LenSoFar = Len;
2905     }
2906 
2907     // Success, all agree.
2908     return LenSoFar;
2909   }
2910 
2911   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2912   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2913     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2914     if (Len1 == 0) return 0;
2915     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2916     if (Len2 == 0) return 0;
2917     if (Len1 == ~0ULL) return Len2;
2918     if (Len2 == ~0ULL) return Len1;
2919     if (Len1 != Len2) return 0;
2920     return Len1;
2921   }
2922 
2923   // Otherwise, see if we can read the string.
2924   StringRef StrData;
2925   if (!getConstantStringInfo(V, StrData))
2926     return 0;
2927 
2928   return StrData.size()+1;
2929 }
2930 
2931 /// If we can compute the length of the string pointed to by
2932 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2933 uint64_t llvm::GetStringLength(Value *V) {
2934   if (!V->getType()->isPointerTy()) return 0;
2935 
2936   SmallPtrSet<PHINode*, 32> PHIs;
2937   uint64_t Len = GetStringLengthH(V, PHIs);
2938   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2939   // an empty string as a length.
2940   return Len == ~0ULL ? 1 : Len;
2941 }
2942 
2943 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
2944 /// previous iteration of the loop was referring to the same object as \p PN.
2945 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2946   // Find the loop-defined value.
2947   Loop *L = LI->getLoopFor(PN->getParent());
2948   if (PN->getNumIncomingValues() != 2)
2949     return true;
2950 
2951   // Find the value from previous iteration.
2952   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2953   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2954     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2955   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2956     return true;
2957 
2958   // If a new pointer is loaded in the loop, the pointer references a different
2959   // object in every iteration.  E.g.:
2960   //    for (i)
2961   //       int *p = a[i];
2962   //       ...
2963   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2964     if (!L->isLoopInvariant(Load->getPointerOperand()))
2965       return false;
2966   return true;
2967 }
2968 
2969 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2970                                  unsigned MaxLookup) {
2971   if (!V->getType()->isPointerTy())
2972     return V;
2973   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2974     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2975       V = GEP->getPointerOperand();
2976     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2977                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
2978       V = cast<Operator>(V)->getOperand(0);
2979     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2980       if (GA->isInterposable())
2981         return V;
2982       V = GA->getAliasee();
2983     } else {
2984       // See if InstructionSimplify knows any relevant tricks.
2985       if (Instruction *I = dyn_cast<Instruction>(V))
2986         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
2987         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
2988           V = Simplified;
2989           continue;
2990         }
2991 
2992       return V;
2993     }
2994     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2995   }
2996   return V;
2997 }
2998 
2999 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3000                                 const DataLayout &DL, LoopInfo *LI,
3001                                 unsigned MaxLookup) {
3002   SmallPtrSet<Value *, 4> Visited;
3003   SmallVector<Value *, 4> Worklist;
3004   Worklist.push_back(V);
3005   do {
3006     Value *P = Worklist.pop_back_val();
3007     P = GetUnderlyingObject(P, DL, MaxLookup);
3008 
3009     if (!Visited.insert(P).second)
3010       continue;
3011 
3012     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3013       Worklist.push_back(SI->getTrueValue());
3014       Worklist.push_back(SI->getFalseValue());
3015       continue;
3016     }
3017 
3018     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3019       // If this PHI changes the underlying object in every iteration of the
3020       // loop, don't look through it.  Consider:
3021       //   int **A;
3022       //   for (i) {
3023       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3024       //     Curr = A[i];
3025       //     *Prev, *Curr;
3026       //
3027       // Prev is tracking Curr one iteration behind so they refer to different
3028       // underlying objects.
3029       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3030           isSameUnderlyingObjectInLoop(PN, LI))
3031         for (Value *IncValue : PN->incoming_values())
3032           Worklist.push_back(IncValue);
3033       continue;
3034     }
3035 
3036     Objects.push_back(P);
3037   } while (!Worklist.empty());
3038 }
3039 
3040 /// Return true if the only users of this pointer are lifetime markers.
3041 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3042   for (const User *U : V->users()) {
3043     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3044     if (!II) return false;
3045 
3046     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3047         II->getIntrinsicID() != Intrinsic::lifetime_end)
3048       return false;
3049   }
3050   return true;
3051 }
3052 
3053 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3054                                         const Instruction *CtxI,
3055                                         const DominatorTree *DT,
3056                                         const TargetLibraryInfo *TLI) {
3057   const Operator *Inst = dyn_cast<Operator>(V);
3058   if (!Inst)
3059     return false;
3060 
3061   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3062     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3063       if (C->canTrap())
3064         return false;
3065 
3066   switch (Inst->getOpcode()) {
3067   default:
3068     return true;
3069   case Instruction::UDiv:
3070   case Instruction::URem: {
3071     // x / y is undefined if y == 0.
3072     const APInt *V;
3073     if (match(Inst->getOperand(1), m_APInt(V)))
3074       return *V != 0;
3075     return false;
3076   }
3077   case Instruction::SDiv:
3078   case Instruction::SRem: {
3079     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3080     const APInt *Numerator, *Denominator;
3081     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3082       return false;
3083     // We cannot hoist this division if the denominator is 0.
3084     if (*Denominator == 0)
3085       return false;
3086     // It's safe to hoist if the denominator is not 0 or -1.
3087     if (*Denominator != -1)
3088       return true;
3089     // At this point we know that the denominator is -1.  It is safe to hoist as
3090     // long we know that the numerator is not INT_MIN.
3091     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3092       return !Numerator->isMinSignedValue();
3093     // The numerator *might* be MinSignedValue.
3094     return false;
3095   }
3096   case Instruction::Load: {
3097     const LoadInst *LI = cast<LoadInst>(Inst);
3098     if (!LI->isUnordered() ||
3099         // Speculative load may create a race that did not exist in the source.
3100         LI->getParent()->getParent()->hasFnAttribute(
3101             Attribute::SanitizeThread) ||
3102         // Speculative load may load data from dirty regions.
3103         LI->getParent()->getParent()->hasFnAttribute(
3104             Attribute::SanitizeAddress))
3105       return false;
3106     const DataLayout &DL = LI->getModule()->getDataLayout();
3107     return isDereferenceableAndAlignedPointer(
3108         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3109   }
3110   case Instruction::Call: {
3111     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3112       switch (II->getIntrinsicID()) {
3113       // These synthetic intrinsics have no side-effects and just mark
3114       // information about their operands.
3115       // FIXME: There are other no-op synthetic instructions that potentially
3116       // should be considered at least *safe* to speculate...
3117       case Intrinsic::dbg_declare:
3118       case Intrinsic::dbg_value:
3119         return true;
3120 
3121       case Intrinsic::bswap:
3122       case Intrinsic::ctlz:
3123       case Intrinsic::ctpop:
3124       case Intrinsic::cttz:
3125       case Intrinsic::objectsize:
3126       case Intrinsic::sadd_with_overflow:
3127       case Intrinsic::smul_with_overflow:
3128       case Intrinsic::ssub_with_overflow:
3129       case Intrinsic::uadd_with_overflow:
3130       case Intrinsic::umul_with_overflow:
3131       case Intrinsic::usub_with_overflow:
3132         return true;
3133       // These intrinsics are defined to have the same behavior as libm
3134       // functions except for setting errno.
3135       case Intrinsic::sqrt:
3136       case Intrinsic::fma:
3137       case Intrinsic::fmuladd:
3138         return true;
3139       // These intrinsics are defined to have the same behavior as libm
3140       // functions, and the corresponding libm functions never set errno.
3141       case Intrinsic::trunc:
3142       case Intrinsic::copysign:
3143       case Intrinsic::fabs:
3144       case Intrinsic::minnum:
3145       case Intrinsic::maxnum:
3146         return true;
3147       // These intrinsics are defined to have the same behavior as libm
3148       // functions, which never overflow when operating on the IEEE754 types
3149       // that we support, and never set errno otherwise.
3150       case Intrinsic::ceil:
3151       case Intrinsic::floor:
3152       case Intrinsic::nearbyint:
3153       case Intrinsic::rint:
3154       case Intrinsic::round:
3155         return true;
3156       // TODO: are convert_{from,to}_fp16 safe?
3157       // TODO: can we list target-specific intrinsics here?
3158       default: break;
3159       }
3160     }
3161     return false; // The called function could have undefined behavior or
3162                   // side-effects, even if marked readnone nounwind.
3163   }
3164   case Instruction::VAArg:
3165   case Instruction::Alloca:
3166   case Instruction::Invoke:
3167   case Instruction::PHI:
3168   case Instruction::Store:
3169   case Instruction::Ret:
3170   case Instruction::Br:
3171   case Instruction::IndirectBr:
3172   case Instruction::Switch:
3173   case Instruction::Unreachable:
3174   case Instruction::Fence:
3175   case Instruction::AtomicRMW:
3176   case Instruction::AtomicCmpXchg:
3177   case Instruction::LandingPad:
3178   case Instruction::Resume:
3179   case Instruction::CatchSwitch:
3180   case Instruction::CatchPad:
3181   case Instruction::CatchRet:
3182   case Instruction::CleanupPad:
3183   case Instruction::CleanupRet:
3184     return false; // Misc instructions which have effects
3185   }
3186 }
3187 
3188 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3189   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3190 }
3191 
3192 /// Return true if we know that the specified value is never null.
3193 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3194   assert(V->getType()->isPointerTy() && "V must be pointer type");
3195 
3196   // Alloca never returns null, malloc might.
3197   if (isa<AllocaInst>(V)) return true;
3198 
3199   // A byval, inalloca, or nonnull argument is never null.
3200   if (const Argument *A = dyn_cast<Argument>(V))
3201     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3202 
3203   // A global variable in address space 0 is non null unless extern weak.
3204   // Other address spaces may have null as a valid address for a global,
3205   // so we can't assume anything.
3206   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3207     return !GV->hasExternalWeakLinkage() &&
3208            GV->getType()->getAddressSpace() == 0;
3209 
3210   // A Load tagged with nonnull metadata is never null.
3211   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3212     return LI->getMetadata(LLVMContext::MD_nonnull);
3213 
3214   if (auto CS = ImmutableCallSite(V))
3215     if (CS.isReturnNonNull())
3216       return true;
3217 
3218   return false;
3219 }
3220 
3221 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3222                                                   const Instruction *CtxI,
3223                                                   const DominatorTree *DT) {
3224   assert(V->getType()->isPointerTy() && "V must be pointer type");
3225 
3226   unsigned NumUsesExplored = 0;
3227   for (auto *U : V->users()) {
3228     // Avoid massive lists
3229     if (NumUsesExplored >= DomConditionsMaxUses)
3230       break;
3231     NumUsesExplored++;
3232     // Consider only compare instructions uniquely controlling a branch
3233     CmpInst::Predicate Pred;
3234     if (!match(const_cast<User *>(U),
3235                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3236         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3237       continue;
3238 
3239     for (auto *CmpU : U->users()) {
3240       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3241         assert(BI->isConditional() && "uses a comparison!");
3242 
3243         BasicBlock *NonNullSuccessor =
3244             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3245         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3246         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3247           return true;
3248       } else if (Pred == ICmpInst::ICMP_NE &&
3249                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3250                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3251         return true;
3252       }
3253     }
3254   }
3255 
3256   return false;
3257 }
3258 
3259 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3260                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3261   if (isKnownNonNull(V, TLI))
3262     return true;
3263 
3264   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3265 }
3266 
3267 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3268                                                    const DataLayout &DL,
3269                                                    AssumptionCache *AC,
3270                                                    const Instruction *CxtI,
3271                                                    const DominatorTree *DT) {
3272   // Multiplying n * m significant bits yields a result of n + m significant
3273   // bits. If the total number of significant bits does not exceed the
3274   // result bit width (minus 1), there is no overflow.
3275   // This means if we have enough leading zero bits in the operands
3276   // we can guarantee that the result does not overflow.
3277   // Ref: "Hacker's Delight" by Henry Warren
3278   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3279   APInt LHSKnownZero(BitWidth, 0);
3280   APInt LHSKnownOne(BitWidth, 0);
3281   APInt RHSKnownZero(BitWidth, 0);
3282   APInt RHSKnownOne(BitWidth, 0);
3283   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3284                    DT);
3285   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3286                    DT);
3287   // Note that underestimating the number of zero bits gives a more
3288   // conservative answer.
3289   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3290                       RHSKnownZero.countLeadingOnes();
3291   // First handle the easy case: if we have enough zero bits there's
3292   // definitely no overflow.
3293   if (ZeroBits >= BitWidth)
3294     return OverflowResult::NeverOverflows;
3295 
3296   // Get the largest possible values for each operand.
3297   APInt LHSMax = ~LHSKnownZero;
3298   APInt RHSMax = ~RHSKnownZero;
3299 
3300   // We know the multiply operation doesn't overflow if the maximum values for
3301   // each operand will not overflow after we multiply them together.
3302   bool MaxOverflow;
3303   LHSMax.umul_ov(RHSMax, MaxOverflow);
3304   if (!MaxOverflow)
3305     return OverflowResult::NeverOverflows;
3306 
3307   // We know it always overflows if multiplying the smallest possible values for
3308   // the operands also results in overflow.
3309   bool MinOverflow;
3310   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3311   if (MinOverflow)
3312     return OverflowResult::AlwaysOverflows;
3313 
3314   return OverflowResult::MayOverflow;
3315 }
3316 
3317 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3318                                                    const DataLayout &DL,
3319                                                    AssumptionCache *AC,
3320                                                    const Instruction *CxtI,
3321                                                    const DominatorTree *DT) {
3322   bool LHSKnownNonNegative, LHSKnownNegative;
3323   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3324                  AC, CxtI, DT);
3325   if (LHSKnownNonNegative || LHSKnownNegative) {
3326     bool RHSKnownNonNegative, RHSKnownNegative;
3327     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3328                    AC, CxtI, DT);
3329 
3330     if (LHSKnownNegative && RHSKnownNegative) {
3331       // The sign bit is set in both cases: this MUST overflow.
3332       // Create a simple add instruction, and insert it into the struct.
3333       return OverflowResult::AlwaysOverflows;
3334     }
3335 
3336     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3337       // The sign bit is clear in both cases: this CANNOT overflow.
3338       // Create a simple add instruction, and insert it into the struct.
3339       return OverflowResult::NeverOverflows;
3340     }
3341   }
3342 
3343   return OverflowResult::MayOverflow;
3344 }
3345 
3346 static OverflowResult computeOverflowForSignedAdd(
3347     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3348     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3349   if (Add && Add->hasNoSignedWrap()) {
3350     return OverflowResult::NeverOverflows;
3351   }
3352 
3353   bool LHSKnownNonNegative, LHSKnownNegative;
3354   bool RHSKnownNonNegative, RHSKnownNegative;
3355   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3356                  AC, CxtI, DT);
3357   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3358                  AC, CxtI, DT);
3359 
3360   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3361       (LHSKnownNegative && RHSKnownNonNegative)) {
3362     // The sign bits are opposite: this CANNOT overflow.
3363     return OverflowResult::NeverOverflows;
3364   }
3365 
3366   // The remaining code needs Add to be available. Early returns if not so.
3367   if (!Add)
3368     return OverflowResult::MayOverflow;
3369 
3370   // If the sign of Add is the same as at least one of the operands, this add
3371   // CANNOT overflow. This is particularly useful when the sum is
3372   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3373   // operands.
3374   bool LHSOrRHSKnownNonNegative =
3375       (LHSKnownNonNegative || RHSKnownNonNegative);
3376   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3377   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3378     bool AddKnownNonNegative, AddKnownNegative;
3379     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3380                    /*Depth=*/0, AC, CxtI, DT);
3381     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3382         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3383       return OverflowResult::NeverOverflows;
3384     }
3385   }
3386 
3387   return OverflowResult::MayOverflow;
3388 }
3389 
3390 bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
3391 #ifndef NDEBUG
3392   auto IID = II->getIntrinsicID();
3393   assert((IID == Intrinsic::sadd_with_overflow ||
3394           IID == Intrinsic::uadd_with_overflow ||
3395           IID == Intrinsic::ssub_with_overflow ||
3396           IID == Intrinsic::usub_with_overflow ||
3397           IID == Intrinsic::smul_with_overflow ||
3398           IID == Intrinsic::umul_with_overflow) &&
3399          "Not an overflow intrinsic!");
3400 #endif
3401 
3402   SmallVector<BranchInst *, 2> GuardingBranches;
3403   SmallVector<ExtractValueInst *, 2> Results;
3404 
3405   for (User *U : II->users()) {
3406     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3407       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3408 
3409       if (EVI->getIndices()[0] == 0)
3410         Results.push_back(EVI);
3411       else {
3412         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3413 
3414         for (auto *U : EVI->users())
3415           if (auto *B = dyn_cast<BranchInst>(U)) {
3416             assert(B->isConditional() && "How else is it using an i1?");
3417             GuardingBranches.push_back(B);
3418           }
3419       }
3420     } else {
3421       // We are using the aggregate directly in a way we don't want to analyze
3422       // here (storing it to a global, say).
3423       return false;
3424     }
3425   }
3426 
3427   auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
3428     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3429     if (!NoWrapEdge.isSingleEdge())
3430       return false;
3431 
3432     // Check if all users of the add are provably no-wrap.
3433     for (auto *Result : Results) {
3434       // If the extractvalue itself is not executed on overflow, the we don't
3435       // need to check each use separately, since domination is transitive.
3436       if (DT.dominates(NoWrapEdge, Result->getParent()))
3437         continue;
3438 
3439       for (auto &RU : Result->uses())
3440         if (!DT.dominates(NoWrapEdge, RU))
3441           return false;
3442     }
3443 
3444     return true;
3445   };
3446 
3447   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3448 }
3449 
3450 
3451 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3452                                                  const DataLayout &DL,
3453                                                  AssumptionCache *AC,
3454                                                  const Instruction *CxtI,
3455                                                  const DominatorTree *DT) {
3456   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3457                                        Add, DL, AC, CxtI, DT);
3458 }
3459 
3460 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3461                                                  const DataLayout &DL,
3462                                                  AssumptionCache *AC,
3463                                                  const Instruction *CxtI,
3464                                                  const DominatorTree *DT) {
3465   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3466 }
3467 
3468 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3469   // A memory operation returns normally if it isn't volatile. A volatile
3470   // operation is allowed to trap.
3471   //
3472   // An atomic operation isn't guaranteed to return in a reasonable amount of
3473   // time because it's possible for another thread to interfere with it for an
3474   // arbitrary length of time, but programs aren't allowed to rely on that.
3475   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3476     return !LI->isVolatile();
3477   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3478     return !SI->isVolatile();
3479   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3480     return !CXI->isVolatile();
3481   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3482     return !RMWI->isVolatile();
3483   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3484     return !MII->isVolatile();
3485 
3486   // If there is no successor, then execution can't transfer to it.
3487   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3488     return !CRI->unwindsToCaller();
3489   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3490     return !CatchSwitch->unwindsToCaller();
3491   if (isa<ResumeInst>(I))
3492     return false;
3493   if (isa<ReturnInst>(I))
3494     return false;
3495 
3496   // Calls can throw, or contain an infinite loop, or kill the process.
3497   if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3498     // Calls which don't write to arbitrary memory are safe.
3499     // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3500     // but it's consistent with other passes. See http://llvm.org/PR965 .
3501     // FIXME: This isn't aggressive enough; a call which only writes to a
3502     // global is guaranteed to return.
3503     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3504            match(I, m_Intrinsic<Intrinsic::assume>());
3505   }
3506 
3507   // Other instructions return normally.
3508   return true;
3509 }
3510 
3511 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3512                                                   const Loop *L) {
3513   // The loop header is guaranteed to be executed for every iteration.
3514   //
3515   // FIXME: Relax this constraint to cover all basic blocks that are
3516   // guaranteed to be executed at every iteration.
3517   if (I->getParent() != L->getHeader()) return false;
3518 
3519   for (const Instruction &LI : *L->getHeader()) {
3520     if (&LI == I) return true;
3521     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3522   }
3523   llvm_unreachable("Instruction not contained in its own parent basic block.");
3524 }
3525 
3526 bool llvm::propagatesFullPoison(const Instruction *I) {
3527   switch (I->getOpcode()) {
3528     case Instruction::Add:
3529     case Instruction::Sub:
3530     case Instruction::Xor:
3531     case Instruction::Trunc:
3532     case Instruction::BitCast:
3533     case Instruction::AddrSpaceCast:
3534       // These operations all propagate poison unconditionally. Note that poison
3535       // is not any particular value, so xor or subtraction of poison with
3536       // itself still yields poison, not zero.
3537       return true;
3538 
3539     case Instruction::AShr:
3540     case Instruction::SExt:
3541       // For these operations, one bit of the input is replicated across
3542       // multiple output bits. A replicated poison bit is still poison.
3543       return true;
3544 
3545     case Instruction::Shl: {
3546       // Left shift *by* a poison value is poison. The number of
3547       // positions to shift is unsigned, so no negative values are
3548       // possible there. Left shift by zero places preserves poison. So
3549       // it only remains to consider left shift of poison by a positive
3550       // number of places.
3551       //
3552       // A left shift by a positive number of places leaves the lowest order bit
3553       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3554       // make the poison operand violate that flag, yielding a fresh full-poison
3555       // value.
3556       auto *OBO = cast<OverflowingBinaryOperator>(I);
3557       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3558     }
3559 
3560     case Instruction::Mul: {
3561       // A multiplication by zero yields a non-poison zero result, so we need to
3562       // rule out zero as an operand. Conservatively, multiplication by a
3563       // non-zero constant is not multiplication by zero.
3564       //
3565       // Multiplication by a non-zero constant can leave some bits
3566       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3567       // order bit unpoisoned. So we need to consider that.
3568       //
3569       // Multiplication by 1 preserves poison. If the multiplication has a
3570       // no-wrap flag, then we can make the poison operand violate that flag
3571       // when multiplied by any integer other than 0 and 1.
3572       auto *OBO = cast<OverflowingBinaryOperator>(I);
3573       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3574         for (Value *V : OBO->operands()) {
3575           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3576             // A ConstantInt cannot yield poison, so we can assume that it is
3577             // the other operand that is poison.
3578             return !CI->isZero();
3579           }
3580         }
3581       }
3582       return false;
3583     }
3584 
3585     case Instruction::ICmp:
3586       // Comparing poison with any value yields poison.  This is why, for
3587       // instance, x s< (x +nsw 1) can be folded to true.
3588       return true;
3589 
3590     case Instruction::GetElementPtr:
3591       // A GEP implicitly represents a sequence of additions, subtractions,
3592       // truncations, sign extensions and multiplications. The multiplications
3593       // are by the non-zero sizes of some set of types, so we do not have to be
3594       // concerned with multiplication by zero. If the GEP is in-bounds, then
3595       // these operations are implicitly no-signed-wrap so poison is propagated
3596       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3597       return cast<GEPOperator>(I)->isInBounds();
3598 
3599     default:
3600       return false;
3601   }
3602 }
3603 
3604 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3605   switch (I->getOpcode()) {
3606     case Instruction::Store:
3607       return cast<StoreInst>(I)->getPointerOperand();
3608 
3609     case Instruction::Load:
3610       return cast<LoadInst>(I)->getPointerOperand();
3611 
3612     case Instruction::AtomicCmpXchg:
3613       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3614 
3615     case Instruction::AtomicRMW:
3616       return cast<AtomicRMWInst>(I)->getPointerOperand();
3617 
3618     case Instruction::UDiv:
3619     case Instruction::SDiv:
3620     case Instruction::URem:
3621     case Instruction::SRem:
3622       return I->getOperand(1);
3623 
3624     default:
3625       return nullptr;
3626   }
3627 }
3628 
3629 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3630   // We currently only look for uses of poison values within the same basic
3631   // block, as that makes it easier to guarantee that the uses will be
3632   // executed given that PoisonI is executed.
3633   //
3634   // FIXME: Expand this to consider uses beyond the same basic block. To do
3635   // this, look out for the distinction between post-dominance and strong
3636   // post-dominance.
3637   const BasicBlock *BB = PoisonI->getParent();
3638 
3639   // Set of instructions that we have proved will yield poison if PoisonI
3640   // does.
3641   SmallSet<const Value *, 16> YieldsPoison;
3642   SmallSet<const BasicBlock *, 4> Visited;
3643   YieldsPoison.insert(PoisonI);
3644   Visited.insert(PoisonI->getParent());
3645 
3646   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3647 
3648   unsigned Iter = 0;
3649   while (Iter++ < MaxDepth) {
3650     for (auto &I : make_range(Begin, End)) {
3651       if (&I != PoisonI) {
3652         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3653         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3654           return true;
3655         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3656           return false;
3657       }
3658 
3659       // Mark poison that propagates from I through uses of I.
3660       if (YieldsPoison.count(&I)) {
3661         for (const User *User : I.users()) {
3662           const Instruction *UserI = cast<Instruction>(User);
3663           if (propagatesFullPoison(UserI))
3664             YieldsPoison.insert(User);
3665         }
3666       }
3667     }
3668 
3669     if (auto *NextBB = BB->getSingleSuccessor()) {
3670       if (Visited.insert(NextBB).second) {
3671         BB = NextBB;
3672         Begin = BB->getFirstNonPHI()->getIterator();
3673         End = BB->end();
3674         continue;
3675       }
3676     }
3677 
3678     break;
3679   };
3680   return false;
3681 }
3682 
3683 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3684   if (FMF.noNaNs())
3685     return true;
3686 
3687   if (auto *C = dyn_cast<ConstantFP>(V))
3688     return !C->isNaN();
3689   return false;
3690 }
3691 
3692 static bool isKnownNonZero(Value *V) {
3693   if (auto *C = dyn_cast<ConstantFP>(V))
3694     return !C->isZero();
3695   return false;
3696 }
3697 
3698 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3699                                               FastMathFlags FMF,
3700                                               Value *CmpLHS, Value *CmpRHS,
3701                                               Value *TrueVal, Value *FalseVal,
3702                                               Value *&LHS, Value *&RHS) {
3703   LHS = CmpLHS;
3704   RHS = CmpRHS;
3705 
3706   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3707   // return inconsistent results between implementations.
3708   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3709   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3710   // Therefore we behave conservatively and only proceed if at least one of the
3711   // operands is known to not be zero, or if we don't care about signed zeroes.
3712   switch (Pred) {
3713   default: break;
3714   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3715   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3716     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3717         !isKnownNonZero(CmpRHS))
3718       return {SPF_UNKNOWN, SPNB_NA, false};
3719   }
3720 
3721   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3722   bool Ordered = false;
3723 
3724   // When given one NaN and one non-NaN input:
3725   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3726   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3727   //     ordered comparison fails), which could be NaN or non-NaN.
3728   // so here we discover exactly what NaN behavior is required/accepted.
3729   if (CmpInst::isFPPredicate(Pred)) {
3730     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3731     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3732 
3733     if (LHSSafe && RHSSafe) {
3734       // Both operands are known non-NaN.
3735       NaNBehavior = SPNB_RETURNS_ANY;
3736     } else if (CmpInst::isOrdered(Pred)) {
3737       // An ordered comparison will return false when given a NaN, so it
3738       // returns the RHS.
3739       Ordered = true;
3740       if (LHSSafe)
3741         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3742         NaNBehavior = SPNB_RETURNS_NAN;
3743       else if (RHSSafe)
3744         NaNBehavior = SPNB_RETURNS_OTHER;
3745       else
3746         // Completely unsafe.
3747         return {SPF_UNKNOWN, SPNB_NA, false};
3748     } else {
3749       Ordered = false;
3750       // An unordered comparison will return true when given a NaN, so it
3751       // returns the LHS.
3752       if (LHSSafe)
3753         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3754         NaNBehavior = SPNB_RETURNS_OTHER;
3755       else if (RHSSafe)
3756         NaNBehavior = SPNB_RETURNS_NAN;
3757       else
3758         // Completely unsafe.
3759         return {SPF_UNKNOWN, SPNB_NA, false};
3760     }
3761   }
3762 
3763   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3764     std::swap(CmpLHS, CmpRHS);
3765     Pred = CmpInst::getSwappedPredicate(Pred);
3766     if (NaNBehavior == SPNB_RETURNS_NAN)
3767       NaNBehavior = SPNB_RETURNS_OTHER;
3768     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3769       NaNBehavior = SPNB_RETURNS_NAN;
3770     Ordered = !Ordered;
3771   }
3772 
3773   // ([if]cmp X, Y) ? X : Y
3774   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3775     switch (Pred) {
3776     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3777     case ICmpInst::ICMP_UGT:
3778     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3779     case ICmpInst::ICMP_SGT:
3780     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3781     case ICmpInst::ICMP_ULT:
3782     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3783     case ICmpInst::ICMP_SLT:
3784     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3785     case FCmpInst::FCMP_UGT:
3786     case FCmpInst::FCMP_UGE:
3787     case FCmpInst::FCMP_OGT:
3788     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3789     case FCmpInst::FCMP_ULT:
3790     case FCmpInst::FCMP_ULE:
3791     case FCmpInst::FCMP_OLT:
3792     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3793     }
3794   }
3795 
3796   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3797     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3798         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3799 
3800       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3801       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3802       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3803         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3804       }
3805 
3806       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3807       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3808       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3809         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3810       }
3811     }
3812 
3813     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3814     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3815       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3816           ~C1->getValue() == C2->getValue() &&
3817           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3818            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3819         LHS = TrueVal;
3820         RHS = FalseVal;
3821         return {SPF_SMIN, SPNB_NA, false};
3822       }
3823     }
3824   }
3825 
3826   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3827 
3828   return {SPF_UNKNOWN, SPNB_NA, false};
3829 }
3830 
3831 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3832                               Instruction::CastOps *CastOp) {
3833   CastInst *CI = dyn_cast<CastInst>(V1);
3834   Constant *C = dyn_cast<Constant>(V2);
3835   if (!CI)
3836     return nullptr;
3837   *CastOp = CI->getOpcode();
3838 
3839   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3840     // If V1 and V2 are both the same cast from the same type, we can look
3841     // through V1.
3842     if (CI2->getOpcode() == CI->getOpcode() &&
3843         CI2->getSrcTy() == CI->getSrcTy())
3844       return CI2->getOperand(0);
3845     return nullptr;
3846   } else if (!C) {
3847     return nullptr;
3848   }
3849 
3850   Constant *CastedTo = nullptr;
3851 
3852   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3853     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3854 
3855   if (isa<SExtInst>(CI) && CmpI->isSigned())
3856     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3857 
3858   if (isa<TruncInst>(CI))
3859     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3860 
3861   if (isa<FPTruncInst>(CI))
3862     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3863 
3864   if (isa<FPExtInst>(CI))
3865     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3866 
3867   if (isa<FPToUIInst>(CI))
3868     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3869 
3870   if (isa<FPToSIInst>(CI))
3871     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3872 
3873   if (isa<UIToFPInst>(CI))
3874     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3875 
3876   if (isa<SIToFPInst>(CI))
3877     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3878 
3879   if (!CastedTo)
3880     return nullptr;
3881 
3882   Constant *CastedBack =
3883       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3884   // Make sure the cast doesn't lose any information.
3885   if (CastedBack != C)
3886     return nullptr;
3887 
3888   return CastedTo;
3889 }
3890 
3891 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
3892                                              Instruction::CastOps *CastOp) {
3893   SelectInst *SI = dyn_cast<SelectInst>(V);
3894   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3895 
3896   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3897   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3898 
3899   CmpInst::Predicate Pred = CmpI->getPredicate();
3900   Value *CmpLHS = CmpI->getOperand(0);
3901   Value *CmpRHS = CmpI->getOperand(1);
3902   Value *TrueVal = SI->getTrueValue();
3903   Value *FalseVal = SI->getFalseValue();
3904   FastMathFlags FMF;
3905   if (isa<FPMathOperator>(CmpI))
3906     FMF = CmpI->getFastMathFlags();
3907 
3908   // Bail out early.
3909   if (CmpI->isEquality())
3910     return {SPF_UNKNOWN, SPNB_NA, false};
3911 
3912   // Deal with type mismatches.
3913   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
3914     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
3915       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3916                                   cast<CastInst>(TrueVal)->getOperand(0), C,
3917                                   LHS, RHS);
3918     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
3919       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3920                                   C, cast<CastInst>(FalseVal)->getOperand(0),
3921                                   LHS, RHS);
3922   }
3923   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
3924                               LHS, RHS);
3925 }
3926 
3927 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3928   const unsigned NumRanges = Ranges.getNumOperands() / 2;
3929   assert(NumRanges >= 1 && "Must have at least one range!");
3930   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3931 
3932   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3933   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3934 
3935   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3936 
3937   for (unsigned i = 1; i < NumRanges; ++i) {
3938     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3939     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3940 
3941     // Note: unionWith will potentially create a range that contains values not
3942     // contained in any of the original N ranges.
3943     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3944   }
3945 
3946   return CR;
3947 }
3948 
3949 /// Return true if "icmp Pred LHS RHS" is always true.
3950 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3951                             const DataLayout &DL, unsigned Depth,
3952                             AssumptionCache *AC, const Instruction *CxtI,
3953                             const DominatorTree *DT) {
3954   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
3955   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3956     return true;
3957 
3958   switch (Pred) {
3959   default:
3960     return false;
3961 
3962   case CmpInst::ICMP_SLE: {
3963     const APInt *C;
3964 
3965     // LHS s<= LHS +_{nsw} C   if C >= 0
3966     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
3967       return !C->isNegative();
3968     return false;
3969   }
3970 
3971   case CmpInst::ICMP_ULE: {
3972     const APInt *C;
3973 
3974     // LHS u<= LHS +_{nuw} C   for any C
3975     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
3976       return true;
3977 
3978     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3979     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3980                                        const APInt *&CA, const APInt *&CB) {
3981       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3982           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3983         return true;
3984 
3985       // If X & C == 0 then (X | C) == X +_{nuw} C
3986       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3987           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3988         unsigned BitWidth = CA->getBitWidth();
3989         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3990         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3991 
3992         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3993           return true;
3994       }
3995 
3996       return false;
3997     };
3998 
3999     Value *X;
4000     const APInt *CLHS, *CRHS;
4001     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4002       return CLHS->ule(*CRHS);
4003 
4004     return false;
4005   }
4006   }
4007 }
4008 
4009 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4010 /// ALHS ARHS" is true.  Otherwise, return None.
4011 static Optional<bool>
4012 isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
4013                       Value *BLHS, Value *BRHS, const DataLayout &DL,
4014                       unsigned Depth, AssumptionCache *AC,
4015                       const Instruction *CxtI, const DominatorTree *DT) {
4016   switch (Pred) {
4017   default:
4018     return None;
4019 
4020   case CmpInst::ICMP_SLT:
4021   case CmpInst::ICMP_SLE:
4022     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4023                         DT) &&
4024         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4025       return true;
4026     return None;
4027 
4028   case CmpInst::ICMP_ULT:
4029   case CmpInst::ICMP_ULE:
4030     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4031                         DT) &&
4032         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4033       return true;
4034     return None;
4035   }
4036 }
4037 
4038 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4039 /// when the operands match, but are swapped.
4040 static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
4041                           bool &IsSwappedOps) {
4042 
4043   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4044   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4045   return IsMatchingOps || IsSwappedOps;
4046 }
4047 
4048 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4049 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4050 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4051 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4052                                                     Value *ALHS, Value *ARHS,
4053                                                     CmpInst::Predicate BPred,
4054                                                     Value *BLHS, Value *BRHS,
4055                                                     bool IsSwappedOps) {
4056   // Canonicalize the operands so they're matching.
4057   if (IsSwappedOps) {
4058     std::swap(BLHS, BRHS);
4059     BPred = ICmpInst::getSwappedPredicate(BPred);
4060   }
4061   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4062     return true;
4063   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4064     return false;
4065 
4066   return None;
4067 }
4068 
4069 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4070 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4071 /// C2" is false.  Otherwise, return None if we can't infer anything.
4072 static Optional<bool>
4073 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
4074                                  ConstantInt *C1, CmpInst::Predicate BPred,
4075                                  Value *BLHS, ConstantInt *C2) {
4076   assert(ALHS == BLHS && "LHS operands must match.");
4077   ConstantRange DomCR =
4078       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4079   ConstantRange CR =
4080       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4081   ConstantRange Intersection = DomCR.intersectWith(CR);
4082   ConstantRange Difference = DomCR.difference(CR);
4083   if (Intersection.isEmptySet())
4084     return false;
4085   if (Difference.isEmptySet())
4086     return true;
4087   return None;
4088 }
4089 
4090 Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
4091                                         const DataLayout &DL, bool InvertAPred,
4092                                         unsigned Depth, AssumptionCache *AC,
4093                                         const Instruction *CxtI,
4094                                         const DominatorTree *DT) {
4095   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4096   if (LHS->getType() != RHS->getType())
4097     return None;
4098 
4099   Type *OpTy = LHS->getType();
4100   assert(OpTy->getScalarType()->isIntegerTy(1));
4101 
4102   // LHS ==> RHS by definition
4103   if (!InvertAPred && LHS == RHS)
4104     return true;
4105 
4106   if (OpTy->isVectorTy())
4107     // TODO: extending the code below to handle vectors
4108     return None;
4109   assert(OpTy->isIntegerTy(1) && "implied by above");
4110 
4111   ICmpInst::Predicate APred, BPred;
4112   Value *ALHS, *ARHS;
4113   Value *BLHS, *BRHS;
4114 
4115   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4116       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4117     return None;
4118 
4119   if (InvertAPred)
4120     APred = CmpInst::getInversePredicate(APred);
4121 
4122   // Can we infer anything when the two compares have matching operands?
4123   bool IsSwappedOps;
4124   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4125     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4126             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4127       return Implication;
4128     // No amount of additional analysis will infer the second condition, so
4129     // early exit.
4130     return None;
4131   }
4132 
4133   // Can we infer anything when the LHS operands match and the RHS operands are
4134   // constants (not necessarily matching)?
4135   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4136     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4137             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4138             cast<ConstantInt>(BRHS)))
4139       return Implication;
4140     // No amount of additional analysis will infer the second condition, so
4141     // early exit.
4142     return None;
4143   }
4144 
4145   if (APred == BPred)
4146     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4147                                  CxtI, DT);
4148 
4149   return None;
4150 }
4151