1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 unsigned BitWidth = Known.getBitWidth(); 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 isKnownNonZero(Op0, Depth, Q)) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 443 isKnownNonZero(Op1, Depth, Q)); 444 } 445 } 446 447 assert(!Known.hasConflict() && !Known2.hasConflict()); 448 // Compute a conservative estimate for high known-0 bits. 449 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 450 Known2.countMinLeadingZeros(), 451 BitWidth) - BitWidth; 452 LeadZ = std::min(LeadZ, BitWidth); 453 454 // The result of the bottom bits of an integer multiply can be 455 // inferred by looking at the bottom bits of both operands and 456 // multiplying them together. 457 // We can infer at least the minimum number of known trailing bits 458 // of both operands. Depending on number of trailing zeros, we can 459 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 460 // a and b are divisible by m and n respectively. 461 // We then calculate how many of those bits are inferrable and set 462 // the output. For example, the i8 mul: 463 // a = XXXX1100 (12) 464 // b = XXXX1110 (14) 465 // We know the bottom 3 bits are zero since the first can be divided by 466 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 467 // Applying the multiplication to the trimmed arguments gets: 468 // XX11 (3) 469 // X111 (7) 470 // ------- 471 // XX11 472 // XX11 473 // XX11 474 // XX11 475 // ------- 476 // XXXXX01 477 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 478 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 479 // The proof for this can be described as: 480 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 481 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 482 // umin(countTrailingZeros(C2), C6) + 483 // umin(C5 - umin(countTrailingZeros(C1), C5), 484 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 485 // %aa = shl i8 %a, C5 486 // %bb = shl i8 %b, C6 487 // %aaa = or i8 %aa, C1 488 // %bbb = or i8 %bb, C2 489 // %mul = mul i8 %aaa, %bbb 490 // %mask = and i8 %mul, C7 491 // => 492 // %mask = i8 ((C1*C2)&C7) 493 // Where C5, C6 describe the known bits of %a, %b 494 // C1, C2 describe the known bottom bits of %a, %b. 495 // C7 describes the mask of the known bits of the result. 496 APInt Bottom0 = Known.One; 497 APInt Bottom1 = Known2.One; 498 499 // How many times we'd be able to divide each argument by 2 (shr by 1). 500 // This gives us the number of trailing zeros on the multiplication result. 501 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 502 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 503 unsigned TrailZero0 = Known.countMinTrailingZeros(); 504 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 505 unsigned TrailZ = TrailZero0 + TrailZero1; 506 507 // Figure out the fewest known-bits operand. 508 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 509 TrailBitsKnown1 - TrailZero1); 510 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 511 512 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 513 Bottom1.getLoBits(TrailBitsKnown1); 514 515 Known.resetAll(); 516 Known.Zero.setHighBits(LeadZ); 517 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 518 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 519 520 // Only make use of no-wrap flags if we failed to compute the sign bit 521 // directly. This matters if the multiplication always overflows, in 522 // which case we prefer to follow the result of the direct computation, 523 // though as the program is invoking undefined behaviour we can choose 524 // whatever we like here. 525 if (isKnownNonNegative && !Known.isNegative()) 526 Known.makeNonNegative(); 527 else if (isKnownNegative && !Known.isNonNegative()) 528 Known.makeNegative(); 529 } 530 531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 532 KnownBits &Known) { 533 unsigned BitWidth = Known.getBitWidth(); 534 unsigned NumRanges = Ranges.getNumOperands() / 2; 535 assert(NumRanges >= 1); 536 537 Known.Zero.setAllBits(); 538 Known.One.setAllBits(); 539 540 for (unsigned i = 0; i < NumRanges; ++i) { 541 ConstantInt *Lower = 542 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 543 ConstantInt *Upper = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 545 ConstantRange Range(Lower->getValue(), Upper->getValue()); 546 547 // The first CommonPrefixBits of all values in Range are equal. 548 unsigned CommonPrefixBits = 549 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 550 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 551 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 552 Known.One &= UnsignedMax & Mask; 553 Known.Zero &= ~UnsignedMax & Mask; 554 } 555 } 556 557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 558 SmallVector<const Value *, 16> WorkSet(1, I); 559 SmallPtrSet<const Value *, 32> Visited; 560 SmallPtrSet<const Value *, 16> EphValues; 561 562 // The instruction defining an assumption's condition itself is always 563 // considered ephemeral to that assumption (even if it has other 564 // non-ephemeral users). See r246696's test case for an example. 565 if (is_contained(I->operands(), E)) 566 return true; 567 568 while (!WorkSet.empty()) { 569 const Value *V = WorkSet.pop_back_val(); 570 if (!Visited.insert(V).second) 571 continue; 572 573 // If all uses of this value are ephemeral, then so is this value. 574 if (llvm::all_of(V->users(), [&](const User *U) { 575 return EphValues.count(U); 576 })) { 577 if (V == E) 578 return true; 579 580 if (V == I || isSafeToSpeculativelyExecute(V)) { 581 EphValues.insert(V); 582 if (const User *U = dyn_cast<User>(V)) 583 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 584 J != JE; ++J) 585 WorkSet.push_back(*J); 586 } 587 } 588 } 589 590 return false; 591 } 592 593 // Is this an intrinsic that cannot be speculated but also cannot trap? 594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 595 if (const CallInst *CI = dyn_cast<CallInst>(I)) 596 if (Function *F = CI->getCalledFunction()) 597 switch (F->getIntrinsicID()) { 598 default: break; 599 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 600 case Intrinsic::assume: 601 case Intrinsic::sideeffect: 602 case Intrinsic::dbg_declare: 603 case Intrinsic::dbg_value: 604 case Intrinsic::dbg_label: 605 case Intrinsic::invariant_start: 606 case Intrinsic::invariant_end: 607 case Intrinsic::lifetime_start: 608 case Intrinsic::lifetime_end: 609 case Intrinsic::objectsize: 610 case Intrinsic::ptr_annotation: 611 case Intrinsic::var_annotation: 612 return true; 613 } 614 615 return false; 616 } 617 618 bool llvm::isValidAssumeForContext(const Instruction *Inv, 619 const Instruction *CxtI, 620 const DominatorTree *DT) { 621 // There are two restrictions on the use of an assume: 622 // 1. The assume must dominate the context (or the control flow must 623 // reach the assume whenever it reaches the context). 624 // 2. The context must not be in the assume's set of ephemeral values 625 // (otherwise we will use the assume to prove that the condition 626 // feeding the assume is trivially true, thus causing the removal of 627 // the assume). 628 629 if (Inv->getParent() == CxtI->getParent()) { 630 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 631 // in the BB. 632 if (Inv->comesBefore(CxtI)) 633 return true; 634 635 // Don't let an assume affect itself - this would cause the problems 636 // `isEphemeralValueOf` is trying to prevent, and it would also make 637 // the loop below go out of bounds. 638 if (Inv == CxtI) 639 return false; 640 641 // The context comes first, but they're both in the same block. 642 // Make sure there is nothing in between that might interrupt 643 // the control flow, not even CxtI itself. 644 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 645 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 646 return false; 647 648 return !isEphemeralValueOf(Inv, CxtI); 649 } 650 651 // Inv and CxtI are in different blocks. 652 if (DT) { 653 if (DT->dominates(Inv, CxtI)) 654 return true; 655 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 656 // We don't have a DT, but this trivially dominates. 657 return true; 658 } 659 660 return false; 661 } 662 663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 664 // Use of assumptions is context-sensitive. If we don't have a context, we 665 // cannot use them! 666 if (!Q.AC || !Q.CxtI) 667 return false; 668 669 // Note that the patterns below need to be kept in sync with the code 670 // in AssumptionCache::updateAffectedValues. 671 672 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 673 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 674 675 Value *RHS; 676 CmpInst::Predicate Pred; 677 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 678 return false; 679 // assume(v u> y) -> assume(v != 0) 680 if (Pred == ICmpInst::ICMP_UGT) 681 return true; 682 683 // assume(v != 0) 684 // We special-case this one to ensure that we handle `assume(v != null)`. 685 if (Pred == ICmpInst::ICMP_NE) 686 return match(RHS, m_Zero()); 687 688 // All other predicates - rely on generic ConstantRange handling. 689 ConstantInt *CI; 690 if (!match(RHS, m_ConstantInt(CI))) 691 return false; 692 ConstantRange RHSRange(CI->getValue()); 693 ConstantRange TrueValues = 694 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 695 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 696 }; 697 698 if (Q.CxtI && V->getType()->isPointerTy()) { 699 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 700 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 701 V->getType()->getPointerAddressSpace())) 702 AttrKinds.push_back(Attribute::Dereferenceable); 703 704 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 705 return true; 706 } 707 708 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 709 if (!AssumeVH) 710 continue; 711 CallInst *I = cast<CallInst>(AssumeVH); 712 assert(I->getFunction() == Q.CxtI->getFunction() && 713 "Got assumption for the wrong function!"); 714 if (Q.isExcluded(I)) 715 continue; 716 717 // Warning: This loop can end up being somewhat performance sensitive. 718 // We're running this loop for once for each value queried resulting in a 719 // runtime of ~O(#assumes * #values). 720 721 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 722 "must be an assume intrinsic"); 723 724 Value *Arg = I->getArgOperand(0); 725 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 726 if (!Cmp) 727 continue; 728 729 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 730 return true; 731 } 732 733 return false; 734 } 735 736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 737 unsigned Depth, const Query &Q) { 738 // Use of assumptions is context-sensitive. If we don't have a context, we 739 // cannot use them! 740 if (!Q.AC || !Q.CxtI) 741 return; 742 743 unsigned BitWidth = Known.getBitWidth(); 744 745 // Note that the patterns below need to be kept in sync with the code 746 // in AssumptionCache::updateAffectedValues. 747 748 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 749 if (!AssumeVH) 750 continue; 751 CallInst *I = cast<CallInst>(AssumeVH); 752 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 753 "Got assumption for the wrong function!"); 754 if (Q.isExcluded(I)) 755 continue; 756 757 // Warning: This loop can end up being somewhat performance sensitive. 758 // We're running this loop for once for each value queried resulting in a 759 // runtime of ~O(#assumes * #values). 760 761 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 762 "must be an assume intrinsic"); 763 764 Value *Arg = I->getArgOperand(0); 765 766 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllOnes(); 769 return; 770 } 771 if (match(Arg, m_Not(m_Specific(V))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 assert(BitWidth == 1 && "assume operand is not i1?"); 774 Known.setAllZero(); 775 return; 776 } 777 778 // The remaining tests are all recursive, so bail out if we hit the limit. 779 if (Depth == MaxAnalysisRecursionDepth) 780 continue; 781 782 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 783 if (!Cmp) 784 continue; 785 786 // Note that ptrtoint may change the bitwidth. 787 Value *A, *B; 788 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 789 790 CmpInst::Predicate Pred; 791 uint64_t C; 792 switch (Cmp->getPredicate()) { 793 default: 794 break; 795 case ICmpInst::ICMP_EQ: 796 // assume(v = a) 797 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 Known.Zero |= RHSKnown.Zero; 802 Known.One |= RHSKnown.One; 803 // assume(v & b = a) 804 } else if (match(Cmp, 805 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown = 808 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 KnownBits MaskKnown = 810 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 812 // For those bits in the mask that are known to be one, we can propagate 813 // known bits from the RHS to V. 814 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 815 Known.One |= RHSKnown.One & MaskKnown.One; 816 // assume(~(v & b) = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 KnownBits MaskKnown = 823 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 825 // For those bits in the mask that are known to be one, we can propagate 826 // inverted known bits from the RHS to V. 827 Known.Zero |= RHSKnown.One & MaskKnown.One; 828 Known.One |= RHSKnown.Zero & MaskKnown.One; 829 // assume(v | b = a) 830 } else if (match(Cmp, 831 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 KnownBits BKnown = 836 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 838 // For those bits in B that are known to be zero, we can propagate known 839 // bits from the RHS to V. 840 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 841 Known.One |= RHSKnown.One & BKnown.Zero; 842 // assume(~(v | b) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 KnownBits BKnown = 849 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 851 // For those bits in B that are known to be zero, we can propagate 852 // inverted known bits from the RHS to V. 853 Known.Zero |= RHSKnown.One & BKnown.Zero; 854 Known.One |= RHSKnown.Zero & BKnown.Zero; 855 // assume(v ^ b = a) 856 } else if (match(Cmp, 857 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 861 KnownBits BKnown = 862 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 864 // For those bits in B that are known to be zero, we can propagate known 865 // bits from the RHS to V. For those bits in B that are known to be one, 866 // we can propagate inverted known bits from the RHS to V. 867 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 868 Known.One |= RHSKnown.One & BKnown.Zero; 869 Known.Zero |= RHSKnown.One & BKnown.One; 870 Known.One |= RHSKnown.Zero & BKnown.One; 871 // assume(~(v ^ b) = a) 872 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 873 m_Value(A))) && 874 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 875 KnownBits RHSKnown = 876 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 877 KnownBits BKnown = 878 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 880 // For those bits in B that are known to be zero, we can propagate 881 // inverted known bits from the RHS to V. For those bits in B that are 882 // known to be one, we can propagate known bits from the RHS to V. 883 Known.Zero |= RHSKnown.One & BKnown.Zero; 884 Known.One |= RHSKnown.Zero & BKnown.Zero; 885 Known.Zero |= RHSKnown.Zero & BKnown.One; 886 Known.One |= RHSKnown.One & BKnown.One; 887 // assume(v << c = a) 888 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 889 m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 891 KnownBits RHSKnown = 892 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 893 894 // For those bits in RHS that are known, we can propagate them to known 895 // bits in V shifted to the right by C. 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.Zero |= RHSKnown.Zero; 898 RHSKnown.One.lshrInPlace(C); 899 Known.One |= RHSKnown.One; 900 // assume(~(v << c) = a) 901 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 902 m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 904 KnownBits RHSKnown = 905 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 906 // For those bits in RHS that are known, we can propagate them inverted 907 // to known bits in V shifted to the right by C. 908 RHSKnown.One.lshrInPlace(C); 909 Known.Zero |= RHSKnown.One; 910 RHSKnown.Zero.lshrInPlace(C); 911 Known.One |= RHSKnown.Zero; 912 // assume(v >> c = a) 913 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 914 m_Value(A))) && 915 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 916 KnownBits RHSKnown = 917 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 918 // For those bits in RHS that are known, we can propagate them to known 919 // bits in V shifted to the right by C. 920 Known.Zero |= RHSKnown.Zero << C; 921 Known.One |= RHSKnown.One << C; 922 // assume(~(v >> c) = a) 923 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 924 m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 // For those bits in RHS that are known, we can propagate them inverted 929 // to known bits in V shifted to the right by C. 930 Known.Zero |= RHSKnown.One << C; 931 Known.One |= RHSKnown.Zero << C; 932 } 933 break; 934 case ICmpInst::ICMP_SGE: 935 // assume(v >=_s c) where c is non-negative 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown = 939 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 940 941 if (RHSKnown.isNonNegative()) { 942 // We know that the sign bit is zero. 943 Known.makeNonNegative(); 944 } 945 } 946 break; 947 case ICmpInst::ICMP_SGT: 948 // assume(v >_s c) where c is at least -1. 949 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 950 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 951 KnownBits RHSKnown = 952 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 953 954 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 955 // We know that the sign bit is zero. 956 Known.makeNonNegative(); 957 } 958 } 959 break; 960 case ICmpInst::ICMP_SLE: 961 // assume(v <=_s c) where c is negative 962 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 963 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 964 KnownBits RHSKnown = 965 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 966 967 if (RHSKnown.isNegative()) { 968 // We know that the sign bit is one. 969 Known.makeNegative(); 970 } 971 } 972 break; 973 case ICmpInst::ICMP_SLT: 974 // assume(v <_s c) where c is non-positive 975 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 976 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 977 KnownBits RHSKnown = 978 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 979 980 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 981 // We know that the sign bit is one. 982 Known.makeNegative(); 983 } 984 } 985 break; 986 case ICmpInst::ICMP_ULE: 987 // assume(v <=_u c) 988 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 989 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 990 KnownBits RHSKnown = 991 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 992 993 // Whatever high bits in c are zero are known to be zero. 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 995 } 996 break; 997 case ICmpInst::ICMP_ULT: 998 // assume(v <_u c) 999 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1000 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1001 KnownBits RHSKnown = 1002 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1003 1004 // If the RHS is known zero, then this assumption must be wrong (nothing 1005 // is unsigned less than zero). Signal a conflict and get out of here. 1006 if (RHSKnown.isZero()) { 1007 Known.Zero.setAllBits(); 1008 Known.One.setAllBits(); 1009 break; 1010 } 1011 1012 // Whatever high bits in c are zero are known to be zero (if c is a power 1013 // of 2, then one more). 1014 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1015 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1016 else 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1018 } 1019 break; 1020 } 1021 } 1022 1023 // If assumptions conflict with each other or previous known bits, then we 1024 // have a logical fallacy. It's possible that the assumption is not reachable, 1025 // so this isn't a real bug. On the other hand, the program may have undefined 1026 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1027 // clear out the known bits, try to warn the user, and hope for the best. 1028 if (Known.Zero.intersects(Known.One)) { 1029 Known.resetAll(); 1030 1031 if (Q.ORE) 1032 Q.ORE->emit([&]() { 1033 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1034 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1035 CxtI) 1036 << "Detected conflicting code assumptions. Program may " 1037 "have undefined behavior, or compiler may have " 1038 "internal error."; 1039 }); 1040 } 1041 } 1042 1043 /// Compute known bits from a shift operator, including those with a 1044 /// non-constant shift amount. Known is the output of this function. Known2 is a 1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1046 /// operator-specific functions that, given the known-zero or known-one bits 1047 /// respectively, and a shift amount, compute the implied known-zero or 1048 /// known-one bits of the shift operator's result respectively for that shift 1049 /// amount. The results from calling KZF and KOF are conservatively combined for 1050 /// all permitted shift amounts. 1051 static void computeKnownBitsFromShiftOperator( 1052 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1053 KnownBits &Known2, unsigned Depth, const Query &Q, 1054 function_ref<APInt(const APInt &, unsigned)> KZF, 1055 function_ref<APInt(const APInt &, unsigned)> KOF) { 1056 unsigned BitWidth = Known.getBitWidth(); 1057 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 if (Known.isConstant()) { 1060 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1061 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1063 Known.Zero = KZF(Known.Zero, ShiftAmt); 1064 Known.One = KOF(Known.One, ShiftAmt); 1065 // If the known bits conflict, this must be an overflowing left shift, so 1066 // the shift result is poison. We can return anything we want. Choose 0 for 1067 // the best folding opportunity. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 1071 return; 1072 } 1073 1074 // If the shift amount could be greater than or equal to the bit-width of the 1075 // LHS, the value could be poison, but bail out because the check below is 1076 // expensive. 1077 // TODO: Should we just carry on? 1078 if (Known.getMaxValue().uge(BitWidth)) { 1079 Known.resetAll(); 1080 return; 1081 } 1082 1083 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1084 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1085 // limit value (which implies all bits are known). 1086 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1087 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1088 1089 // It would be more-clearly correct to use the two temporaries for this 1090 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1091 Known.resetAll(); 1092 1093 // If we know the shifter operand is nonzero, we can sometimes infer more 1094 // known bits. However this is expensive to compute, so be lazy about it and 1095 // only compute it when absolutely necessary. 1096 Optional<bool> ShifterOperandIsNonZero; 1097 1098 // Early exit if we can't constrain any well-defined shift amount. 1099 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1100 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1101 ShifterOperandIsNonZero = 1102 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1103 if (!*ShifterOperandIsNonZero) 1104 return; 1105 } 1106 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1112 // Combine the shifted known input bits only for those shift amounts 1113 // compatible with its known constraints. 1114 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1115 continue; 1116 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1117 continue; 1118 // If we know the shifter is nonzero, we may be able to infer more known 1119 // bits. This check is sunk down as far as possible to avoid the expensive 1120 // call to isKnownNonZero if the cheaper checks above fail. 1121 if (ShiftAmt == 0) { 1122 if (!ShifterOperandIsNonZero.hasValue()) 1123 ShifterOperandIsNonZero = 1124 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1125 if (*ShifterOperandIsNonZero) 1126 continue; 1127 } 1128 1129 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1130 Known.One &= KOF(Known2.One, ShiftAmt); 1131 } 1132 1133 // If the known bits conflict, the result is poison. Return a 0 and hope the 1134 // caller can further optimize that. 1135 if (Known.hasConflict()) 1136 Known.setAllZero(); 1137 } 1138 1139 static void computeKnownBitsFromOperator(const Operator *I, 1140 const APInt &DemandedElts, 1141 KnownBits &Known, unsigned Depth, 1142 const Query &Q) { 1143 unsigned BitWidth = Known.getBitWidth(); 1144 1145 KnownBits Known2(BitWidth); 1146 switch (I->getOpcode()) { 1147 default: break; 1148 case Instruction::Load: 1149 if (MDNode *MD = 1150 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1151 computeKnownBitsFromRangeMetadata(*MD, Known); 1152 break; 1153 case Instruction::And: { 1154 // If either the LHS or the RHS are Zero, the result is zero. 1155 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1157 1158 Known &= Known2; 1159 1160 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1161 // here we handle the more general case of adding any odd number by 1162 // matching the form add(x, add(x, y)) where y is odd. 1163 // TODO: This could be generalized to clearing any bit set in y where the 1164 // following bit is known to be unset in y. 1165 Value *X = nullptr, *Y = nullptr; 1166 if (!Known.Zero[0] && !Known.One[0] && 1167 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1168 Known2.resetAll(); 1169 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1170 if (Known2.countMinTrailingOnes() > 0) 1171 Known.Zero.setBit(0); 1172 } 1173 break; 1174 } 1175 case Instruction::Or: 1176 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1178 1179 Known |= Known2; 1180 break; 1181 case Instruction::Xor: 1182 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1183 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1184 1185 Known ^= Known2; 1186 break; 1187 case Instruction::Mul: { 1188 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1189 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::UDiv: { 1194 // For the purposes of computing leading zeros we can conservatively 1195 // treat a udiv as a logical right shift by the power of 2 known to 1196 // be less than the denominator. 1197 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1198 unsigned LeadZ = Known2.countMinLeadingZeros(); 1199 1200 Known2.resetAll(); 1201 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1202 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1203 if (RHSMaxLeadingZeros != BitWidth) 1204 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1205 1206 Known.Zero.setHighBits(LeadZ); 1207 break; 1208 } 1209 case Instruction::Select: { 1210 const Value *LHS = nullptr, *RHS = nullptr; 1211 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1212 if (SelectPatternResult::isMinOrMax(SPF)) { 1213 computeKnownBits(RHS, Known, Depth + 1, Q); 1214 computeKnownBits(LHS, Known2, Depth + 1, Q); 1215 switch (SPF) { 1216 default: 1217 llvm_unreachable("Unhandled select pattern flavor!"); 1218 case SPF_SMAX: 1219 Known = KnownBits::smax(Known, Known2); 1220 break; 1221 case SPF_SMIN: 1222 Known = KnownBits::smin(Known, Known2); 1223 break; 1224 case SPF_UMAX: 1225 Known = KnownBits::umax(Known, Known2); 1226 break; 1227 case SPF_UMIN: 1228 Known = KnownBits::umin(Known, Known2); 1229 break; 1230 } 1231 break; 1232 } 1233 1234 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1235 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1236 1237 // Only known if known in both the LHS and RHS. 1238 Known.One &= Known2.One; 1239 Known.Zero &= Known2.Zero; 1240 1241 if (SPF == SPF_ABS) { 1242 // RHS from matchSelectPattern returns the negation part of abs pattern. 1243 // If the negate has an NSW flag we can assume the sign bit of the result 1244 // will be 0 because that makes abs(INT_MIN) undefined. 1245 if (match(RHS, m_Neg(m_Specific(LHS))) && 1246 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1247 Known.Zero.setSignBit(); 1248 } 1249 1250 break; 1251 } 1252 case Instruction::FPTrunc: 1253 case Instruction::FPExt: 1254 case Instruction::FPToUI: 1255 case Instruction::FPToSI: 1256 case Instruction::SIToFP: 1257 case Instruction::UIToFP: 1258 break; // Can't work with floating point. 1259 case Instruction::PtrToInt: 1260 case Instruction::IntToPtr: 1261 // Fall through and handle them the same as zext/trunc. 1262 LLVM_FALLTHROUGH; 1263 case Instruction::ZExt: 1264 case Instruction::Trunc: { 1265 Type *SrcTy = I->getOperand(0)->getType(); 1266 1267 unsigned SrcBitWidth; 1268 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1269 // which fall through here. 1270 Type *ScalarTy = SrcTy->getScalarType(); 1271 SrcBitWidth = ScalarTy->isPointerTy() ? 1272 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1273 Q.DL.getTypeSizeInBits(ScalarTy); 1274 1275 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1276 Known = Known.anyextOrTrunc(SrcBitWidth); 1277 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1278 Known = Known.zextOrTrunc(BitWidth); 1279 break; 1280 } 1281 case Instruction::BitCast: { 1282 Type *SrcTy = I->getOperand(0)->getType(); 1283 if (SrcTy->isIntOrPtrTy() && 1284 // TODO: For now, not handling conversions like: 1285 // (bitcast i64 %x to <2 x i32>) 1286 !I->getType()->isVectorTy()) { 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 break; 1289 } 1290 break; 1291 } 1292 case Instruction::SExt: { 1293 // Compute the bits in the result that are not present in the input. 1294 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1295 1296 Known = Known.trunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 // If the sign bit of the input is known set or clear, then we know the 1299 // top bits of the result. 1300 Known = Known.sext(BitWidth); 1301 break; 1302 } 1303 case Instruction::Shl: { 1304 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1305 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1306 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1307 APInt KZResult = KnownZero << ShiftAmt; 1308 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1309 // If this shift has "nsw" keyword, then the result is either a poison 1310 // value or has the same sign bit as the first operand. 1311 if (NSW && KnownZero.isSignBitSet()) 1312 KZResult.setSignBit(); 1313 return KZResult; 1314 }; 1315 1316 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1317 APInt KOResult = KnownOne << ShiftAmt; 1318 if (NSW && KnownOne.isSignBitSet()) 1319 KOResult.setSignBit(); 1320 return KOResult; 1321 }; 1322 1323 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1324 KZF, KOF); 1325 break; 1326 } 1327 case Instruction::LShr: { 1328 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1329 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1330 APInt KZResult = KnownZero.lshr(ShiftAmt); 1331 // High bits known zero. 1332 KZResult.setHighBits(ShiftAmt); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1337 return KnownOne.lshr(ShiftAmt); 1338 }; 1339 1340 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1341 KZF, KOF); 1342 break; 1343 } 1344 case Instruction::AShr: { 1345 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1346 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1347 return KnownZero.ashr(ShiftAmt); 1348 }; 1349 1350 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1351 return KnownOne.ashr(ShiftAmt); 1352 }; 1353 1354 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1355 KZF, KOF); 1356 break; 1357 } 1358 case Instruction::Sub: { 1359 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1360 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1361 DemandedElts, Known, Known2, Depth, Q); 1362 break; 1363 } 1364 case Instruction::Add: { 1365 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1366 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1367 DemandedElts, Known, Known2, Depth, Q); 1368 break; 1369 } 1370 case Instruction::SRem: 1371 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1372 APInt RA = Rem->getValue().abs(); 1373 if (RA.isPowerOf2()) { 1374 APInt LowBits = RA - 1; 1375 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1376 1377 // The low bits of the first operand are unchanged by the srem. 1378 Known.Zero = Known2.Zero & LowBits; 1379 Known.One = Known2.One & LowBits; 1380 1381 // If the first operand is non-negative or has all low bits zero, then 1382 // the upper bits are all zero. 1383 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1384 Known.Zero |= ~LowBits; 1385 1386 // If the first operand is negative and not all low bits are zero, then 1387 // the upper bits are all one. 1388 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1389 Known.One |= ~LowBits; 1390 1391 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1392 break; 1393 } 1394 } 1395 1396 // The sign bit is the LHS's sign bit, except when the result of the 1397 // remainder is zero. 1398 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1399 // If it's known zero, our sign bit is also zero. 1400 if (Known2.isNonNegative()) 1401 Known.makeNonNegative(); 1402 1403 break; 1404 case Instruction::URem: { 1405 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1406 const APInt &RA = Rem->getValue(); 1407 if (RA.isPowerOf2()) { 1408 APInt LowBits = (RA - 1); 1409 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1410 Known.Zero |= ~LowBits; 1411 Known.One &= LowBits; 1412 break; 1413 } 1414 } 1415 1416 // Since the result is less than or equal to either operand, any leading 1417 // zero bits in either operand must also exist in the result. 1418 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1419 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1420 1421 unsigned Leaders = 1422 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1423 Known.resetAll(); 1424 Known.Zero.setHighBits(Leaders); 1425 break; 1426 } 1427 case Instruction::Alloca: 1428 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1429 break; 1430 case Instruction::GetElementPtr: { 1431 // Analyze all of the subscripts of this getelementptr instruction 1432 // to determine if we can prove known low zero bits. 1433 KnownBits LocalKnown(BitWidth); 1434 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1435 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1436 1437 gep_type_iterator GTI = gep_type_begin(I); 1438 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1439 // TrailZ can only become smaller, short-circuit if we hit zero. 1440 if (TrailZ == 0) 1441 break; 1442 1443 Value *Index = I->getOperand(i); 1444 if (StructType *STy = GTI.getStructTypeOrNull()) { 1445 // Handle struct member offset arithmetic. 1446 1447 // Handle case when index is vector zeroinitializer 1448 Constant *CIndex = cast<Constant>(Index); 1449 if (CIndex->isZeroValue()) 1450 continue; 1451 1452 if (CIndex->getType()->isVectorTy()) 1453 Index = CIndex->getSplatValue(); 1454 1455 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1456 const StructLayout *SL = Q.DL.getStructLayout(STy); 1457 uint64_t Offset = SL->getElementOffset(Idx); 1458 TrailZ = std::min<unsigned>(TrailZ, 1459 countTrailingZeros(Offset)); 1460 } else { 1461 // Handle array index arithmetic. 1462 Type *IndexedTy = GTI.getIndexedType(); 1463 if (!IndexedTy->isSized()) { 1464 TrailZ = 0; 1465 break; 1466 } 1467 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1468 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1469 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1470 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1471 TrailZ = std::min(TrailZ, 1472 unsigned(countTrailingZeros(TypeSize) + 1473 LocalKnown.countMinTrailingZeros())); 1474 } 1475 } 1476 1477 Known.Zero.setLowBits(TrailZ); 1478 break; 1479 } 1480 case Instruction::PHI: { 1481 const PHINode *P = cast<PHINode>(I); 1482 // Handle the case of a simple two-predecessor recurrence PHI. 1483 // There's a lot more that could theoretically be done here, but 1484 // this is sufficient to catch some interesting cases. 1485 if (P->getNumIncomingValues() == 2) { 1486 for (unsigned i = 0; i != 2; ++i) { 1487 Value *L = P->getIncomingValue(i); 1488 Value *R = P->getIncomingValue(!i); 1489 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1490 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1491 Operator *LU = dyn_cast<Operator>(L); 1492 if (!LU) 1493 continue; 1494 unsigned Opcode = LU->getOpcode(); 1495 // Check for operations that have the property that if 1496 // both their operands have low zero bits, the result 1497 // will have low zero bits. 1498 if (Opcode == Instruction::Add || 1499 Opcode == Instruction::Sub || 1500 Opcode == Instruction::And || 1501 Opcode == Instruction::Or || 1502 Opcode == Instruction::Mul) { 1503 Value *LL = LU->getOperand(0); 1504 Value *LR = LU->getOperand(1); 1505 // Find a recurrence. 1506 if (LL == I) 1507 L = LR; 1508 else if (LR == I) 1509 L = LL; 1510 else 1511 continue; // Check for recurrence with L and R flipped. 1512 1513 // Change the context instruction to the "edge" that flows into the 1514 // phi. This is important because that is where the value is actually 1515 // "evaluated" even though it is used later somewhere else. (see also 1516 // D69571). 1517 Query RecQ = Q; 1518 1519 // Ok, we have a PHI of the form L op= R. Check for low 1520 // zero bits. 1521 RecQ.CxtI = RInst; 1522 computeKnownBits(R, Known2, Depth + 1, RecQ); 1523 1524 // We need to take the minimum number of known bits 1525 KnownBits Known3(BitWidth); 1526 RecQ.CxtI = LInst; 1527 computeKnownBits(L, Known3, Depth + 1, RecQ); 1528 1529 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1530 Known3.countMinTrailingZeros())); 1531 1532 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1533 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1534 // If initial value of recurrence is nonnegative, and we are adding 1535 // a nonnegative number with nsw, the result can only be nonnegative 1536 // or poison value regardless of the number of times we execute the 1537 // add in phi recurrence. If initial value is negative and we are 1538 // adding a negative number with nsw, the result can only be 1539 // negative or poison value. Similar arguments apply to sub and mul. 1540 // 1541 // (add non-negative, non-negative) --> non-negative 1542 // (add negative, negative) --> negative 1543 if (Opcode == Instruction::Add) { 1544 if (Known2.isNonNegative() && Known3.isNonNegative()) 1545 Known.makeNonNegative(); 1546 else if (Known2.isNegative() && Known3.isNegative()) 1547 Known.makeNegative(); 1548 } 1549 1550 // (sub nsw non-negative, negative) --> non-negative 1551 // (sub nsw negative, non-negative) --> negative 1552 else if (Opcode == Instruction::Sub && LL == I) { 1553 if (Known2.isNonNegative() && Known3.isNegative()) 1554 Known.makeNonNegative(); 1555 else if (Known2.isNegative() && Known3.isNonNegative()) 1556 Known.makeNegative(); 1557 } 1558 1559 // (mul nsw non-negative, non-negative) --> non-negative 1560 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1561 Known3.isNonNegative()) 1562 Known.makeNonNegative(); 1563 } 1564 1565 break; 1566 } 1567 } 1568 } 1569 1570 // Unreachable blocks may have zero-operand PHI nodes. 1571 if (P->getNumIncomingValues() == 0) 1572 break; 1573 1574 // Otherwise take the unions of the known bit sets of the operands, 1575 // taking conservative care to avoid excessive recursion. 1576 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1577 // Skip if every incoming value references to ourself. 1578 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1579 break; 1580 1581 Known.Zero.setAllBits(); 1582 Known.One.setAllBits(); 1583 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1584 Value *IncValue = P->getIncomingValue(u); 1585 // Skip direct self references. 1586 if (IncValue == P) continue; 1587 1588 // Change the context instruction to the "edge" that flows into the 1589 // phi. This is important because that is where the value is actually 1590 // "evaluated" even though it is used later somewhere else. (see also 1591 // D69571). 1592 Query RecQ = Q; 1593 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1594 1595 Known2 = KnownBits(BitWidth); 1596 // Recurse, but cap the recursion to one level, because we don't 1597 // want to waste time spinning around in loops. 1598 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1599 Known.Zero &= Known2.Zero; 1600 Known.One &= Known2.One; 1601 // If all bits have been ruled out, there's no need to check 1602 // more operands. 1603 if (!Known.Zero && !Known.One) 1604 break; 1605 } 1606 } 1607 break; 1608 } 1609 case Instruction::Call: 1610 case Instruction::Invoke: 1611 // If range metadata is attached to this call, set known bits from that, 1612 // and then intersect with known bits based on other properties of the 1613 // function. 1614 if (MDNode *MD = 1615 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1616 computeKnownBitsFromRangeMetadata(*MD, Known); 1617 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1618 computeKnownBits(RV, Known2, Depth + 1, Q); 1619 Known.Zero |= Known2.Zero; 1620 Known.One |= Known2.One; 1621 } 1622 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1623 switch (II->getIntrinsicID()) { 1624 default: break; 1625 case Intrinsic::abs: 1626 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1627 1628 // If the source's MSB is zero then we know the rest of the bits. 1629 if (Known2.isNonNegative()) { 1630 Known.Zero |= Known2.Zero; 1631 Known.One |= Known2.One; 1632 break; 1633 } 1634 1635 // Absolute value preserves trailing zero count. 1636 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1637 1638 // If this call is undefined for INT_MIN, the result is positive. We 1639 // also know it can't be INT_MIN if there is a set bit that isn't the 1640 // sign bit. 1641 Known2.One.clearSignBit(); 1642 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1643 Known.Zero.setSignBit(); 1644 // FIXME: Handle known negative input? 1645 // FIXME: Calculate the negated Known bits and combine them? 1646 break; 1647 case Intrinsic::bitreverse: 1648 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1649 Known.Zero |= Known2.Zero.reverseBits(); 1650 Known.One |= Known2.One.reverseBits(); 1651 break; 1652 case Intrinsic::bswap: 1653 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1654 Known.Zero |= Known2.Zero.byteSwap(); 1655 Known.One |= Known2.One.byteSwap(); 1656 break; 1657 case Intrinsic::ctlz: { 1658 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1659 // If we have a known 1, its position is our upper bound. 1660 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1661 // If this call is undefined for 0, the result will be less than 2^n. 1662 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1663 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1664 unsigned LowBits = Log2_32(PossibleLZ)+1; 1665 Known.Zero.setBitsFrom(LowBits); 1666 break; 1667 } 1668 case Intrinsic::cttz: { 1669 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1670 // If we have a known 1, its position is our upper bound. 1671 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1672 // If this call is undefined for 0, the result will be less than 2^n. 1673 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1674 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1675 unsigned LowBits = Log2_32(PossibleTZ)+1; 1676 Known.Zero.setBitsFrom(LowBits); 1677 break; 1678 } 1679 case Intrinsic::ctpop: { 1680 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1681 // We can bound the space the count needs. Also, bits known to be zero 1682 // can't contribute to the population. 1683 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1684 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1685 Known.Zero.setBitsFrom(LowBits); 1686 // TODO: we could bound KnownOne using the lower bound on the number 1687 // of bits which might be set provided by popcnt KnownOne2. 1688 break; 1689 } 1690 case Intrinsic::fshr: 1691 case Intrinsic::fshl: { 1692 const APInt *SA; 1693 if (!match(I->getOperand(2), m_APInt(SA))) 1694 break; 1695 1696 // Normalize to funnel shift left. 1697 uint64_t ShiftAmt = SA->urem(BitWidth); 1698 if (II->getIntrinsicID() == Intrinsic::fshr) 1699 ShiftAmt = BitWidth - ShiftAmt; 1700 1701 KnownBits Known3(BitWidth); 1702 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1703 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1704 1705 Known.Zero = 1706 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1707 Known.One = 1708 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1709 break; 1710 } 1711 case Intrinsic::uadd_sat: 1712 case Intrinsic::usub_sat: { 1713 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1714 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1715 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1716 1717 // Add: Leading ones of either operand are preserved. 1718 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1719 // as leading zeros in the result. 1720 unsigned LeadingKnown; 1721 if (IsAdd) 1722 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1723 Known2.countMinLeadingOnes()); 1724 else 1725 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1726 Known2.countMinLeadingOnes()); 1727 1728 Known = KnownBits::computeForAddSub( 1729 IsAdd, /* NSW */ false, Known, Known2); 1730 1731 // We select between the operation result and all-ones/zero 1732 // respectively, so we can preserve known ones/zeros. 1733 if (IsAdd) { 1734 Known.One.setHighBits(LeadingKnown); 1735 Known.Zero.clearAllBits(); 1736 } else { 1737 Known.Zero.setHighBits(LeadingKnown); 1738 Known.One.clearAllBits(); 1739 } 1740 break; 1741 } 1742 case Intrinsic::umin: 1743 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1744 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1745 Known = KnownBits::umin(Known, Known2); 1746 break; 1747 case Intrinsic::umax: 1748 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1749 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1750 Known = KnownBits::umax(Known, Known2); 1751 break; 1752 case Intrinsic::smin: 1753 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1754 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1755 Known = KnownBits::smin(Known, Known2); 1756 break; 1757 case Intrinsic::smax: 1758 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1759 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1760 Known = KnownBits::smax(Known, Known2); 1761 break; 1762 case Intrinsic::x86_sse42_crc32_64_64: 1763 Known.Zero.setBitsFrom(32); 1764 break; 1765 } 1766 } 1767 break; 1768 case Instruction::ShuffleVector: { 1769 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1770 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1771 if (!Shuf) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 // For undef elements, we don't know anything about the common state of 1776 // the shuffle result. 1777 APInt DemandedLHS, DemandedRHS; 1778 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1779 Known.resetAll(); 1780 return; 1781 } 1782 Known.One.setAllBits(); 1783 Known.Zero.setAllBits(); 1784 if (!!DemandedLHS) { 1785 const Value *LHS = Shuf->getOperand(0); 1786 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1787 // If we don't know any bits, early out. 1788 if (Known.isUnknown()) 1789 break; 1790 } 1791 if (!!DemandedRHS) { 1792 const Value *RHS = Shuf->getOperand(1); 1793 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1794 Known.One &= Known2.One; 1795 Known.Zero &= Known2.Zero; 1796 } 1797 break; 1798 } 1799 case Instruction::InsertElement: { 1800 const Value *Vec = I->getOperand(0); 1801 const Value *Elt = I->getOperand(1); 1802 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1803 // Early out if the index is non-constant or out-of-range. 1804 unsigned NumElts = DemandedElts.getBitWidth(); 1805 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1806 Known.resetAll(); 1807 return; 1808 } 1809 Known.One.setAllBits(); 1810 Known.Zero.setAllBits(); 1811 unsigned EltIdx = CIdx->getZExtValue(); 1812 // Do we demand the inserted element? 1813 if (DemandedElts[EltIdx]) { 1814 computeKnownBits(Elt, Known, Depth + 1, Q); 1815 // If we don't know any bits, early out. 1816 if (Known.isUnknown()) 1817 break; 1818 } 1819 // We don't need the base vector element that has been inserted. 1820 APInt DemandedVecElts = DemandedElts; 1821 DemandedVecElts.clearBit(EltIdx); 1822 if (!!DemandedVecElts) { 1823 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1824 Known.One &= Known2.One; 1825 Known.Zero &= Known2.Zero; 1826 } 1827 break; 1828 } 1829 case Instruction::ExtractElement: { 1830 // Look through extract element. If the index is non-constant or 1831 // out-of-range demand all elements, otherwise just the extracted element. 1832 const Value *Vec = I->getOperand(0); 1833 const Value *Idx = I->getOperand(1); 1834 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1835 if (isa<ScalableVectorType>(Vec->getType())) { 1836 // FIXME: there's probably *something* we can do with scalable vectors 1837 Known.resetAll(); 1838 break; 1839 } 1840 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1841 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1842 if (CIdx && CIdx->getValue().ult(NumElts)) 1843 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1844 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1845 break; 1846 } 1847 case Instruction::ExtractValue: 1848 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1849 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1850 if (EVI->getNumIndices() != 1) break; 1851 if (EVI->getIndices()[0] == 0) { 1852 switch (II->getIntrinsicID()) { 1853 default: break; 1854 case Intrinsic::uadd_with_overflow: 1855 case Intrinsic::sadd_with_overflow: 1856 computeKnownBitsAddSub(true, II->getArgOperand(0), 1857 II->getArgOperand(1), false, DemandedElts, 1858 Known, Known2, Depth, Q); 1859 break; 1860 case Intrinsic::usub_with_overflow: 1861 case Intrinsic::ssub_with_overflow: 1862 computeKnownBitsAddSub(false, II->getArgOperand(0), 1863 II->getArgOperand(1), false, DemandedElts, 1864 Known, Known2, Depth, Q); 1865 break; 1866 case Intrinsic::umul_with_overflow: 1867 case Intrinsic::smul_with_overflow: 1868 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1869 DemandedElts, Known, Known2, Depth, Q); 1870 break; 1871 } 1872 } 1873 } 1874 break; 1875 case Instruction::Freeze: 1876 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.CxtI, Q.DT, Depth + 1)) 1877 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1878 break; 1879 } 1880 } 1881 1882 /// Determine which bits of V are known to be either zero or one and return 1883 /// them. 1884 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1885 unsigned Depth, const Query &Q) { 1886 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1887 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1888 return Known; 1889 } 1890 1891 /// Determine which bits of V are known to be either zero or one and return 1892 /// them. 1893 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1894 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1895 computeKnownBits(V, Known, Depth, Q); 1896 return Known; 1897 } 1898 1899 /// Determine which bits of V are known to be either zero or one and return 1900 /// them in the Known bit set. 1901 /// 1902 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1903 /// we cannot optimize based on the assumption that it is zero without changing 1904 /// it to be an explicit zero. If we don't change it to zero, other code could 1905 /// optimized based on the contradictory assumption that it is non-zero. 1906 /// Because instcombine aggressively folds operations with undef args anyway, 1907 /// this won't lose us code quality. 1908 /// 1909 /// This function is defined on values with integer type, values with pointer 1910 /// type, and vectors of integers. In the case 1911 /// where V is a vector, known zero, and known one values are the 1912 /// same width as the vector element, and the bit is set only if it is true 1913 /// for all of the demanded elements in the vector specified by DemandedElts. 1914 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1915 KnownBits &Known, unsigned Depth, const Query &Q) { 1916 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1917 // No demanded elts or V is a scalable vector, better to assume we don't 1918 // know anything. 1919 Known.resetAll(); 1920 return; 1921 } 1922 1923 assert(V && "No Value?"); 1924 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1925 1926 #ifndef NDEBUG 1927 Type *Ty = V->getType(); 1928 unsigned BitWidth = Known.getBitWidth(); 1929 1930 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1931 "Not integer or pointer type!"); 1932 1933 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1934 assert( 1935 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1936 "DemandedElt width should equal the fixed vector number of elements"); 1937 } else { 1938 assert(DemandedElts == APInt(1, 1) && 1939 "DemandedElt width should be 1 for scalars"); 1940 } 1941 1942 Type *ScalarTy = Ty->getScalarType(); 1943 if (ScalarTy->isPointerTy()) { 1944 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1945 "V and Known should have same BitWidth"); 1946 } else { 1947 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1948 "V and Known should have same BitWidth"); 1949 } 1950 #endif 1951 1952 const APInt *C; 1953 if (match(V, m_APInt(C))) { 1954 // We know all of the bits for a scalar constant or a splat vector constant! 1955 Known.One = *C; 1956 Known.Zero = ~Known.One; 1957 return; 1958 } 1959 // Null and aggregate-zero are all-zeros. 1960 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1961 Known.setAllZero(); 1962 return; 1963 } 1964 // Handle a constant vector by taking the intersection of the known bits of 1965 // each element. 1966 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1967 // We know that CDV must be a vector of integers. Take the intersection of 1968 // each element. 1969 Known.Zero.setAllBits(); Known.One.setAllBits(); 1970 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1971 if (!DemandedElts[i]) 1972 continue; 1973 APInt Elt = CDV->getElementAsAPInt(i); 1974 Known.Zero &= ~Elt; 1975 Known.One &= Elt; 1976 } 1977 return; 1978 } 1979 1980 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1981 // We know that CV must be a vector of integers. Take the intersection of 1982 // each element. 1983 Known.Zero.setAllBits(); Known.One.setAllBits(); 1984 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1985 if (!DemandedElts[i]) 1986 continue; 1987 Constant *Element = CV->getAggregateElement(i); 1988 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1989 if (!ElementCI) { 1990 Known.resetAll(); 1991 return; 1992 } 1993 const APInt &Elt = ElementCI->getValue(); 1994 Known.Zero &= ~Elt; 1995 Known.One &= Elt; 1996 } 1997 return; 1998 } 1999 2000 // Start out not knowing anything. 2001 Known.resetAll(); 2002 2003 // We can't imply anything about undefs. 2004 if (isa<UndefValue>(V)) 2005 return; 2006 2007 // There's no point in looking through other users of ConstantData for 2008 // assumptions. Confirm that we've handled them all. 2009 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2010 2011 // All recursive calls that increase depth must come after this. 2012 if (Depth == MaxAnalysisRecursionDepth) 2013 return; 2014 2015 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2016 // the bits of its aliasee. 2017 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2018 if (!GA->isInterposable()) 2019 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2020 return; 2021 } 2022 2023 if (const Operator *I = dyn_cast<Operator>(V)) 2024 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2025 2026 // Aligned pointers have trailing zeros - refine Known.Zero set 2027 if (isa<PointerType>(V->getType())) { 2028 Align Alignment = V->getPointerAlignment(Q.DL); 2029 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2030 } 2031 2032 // computeKnownBitsFromAssume strictly refines Known. 2033 // Therefore, we run them after computeKnownBitsFromOperator. 2034 2035 // Check whether a nearby assume intrinsic can determine some known bits. 2036 computeKnownBitsFromAssume(V, Known, Depth, Q); 2037 2038 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2039 } 2040 2041 /// Return true if the given value is known to have exactly one 2042 /// bit set when defined. For vectors return true if every element is known to 2043 /// be a power of two when defined. Supports values with integer or pointer 2044 /// types and vectors of integers. 2045 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2046 const Query &Q) { 2047 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2048 2049 // Attempt to match against constants. 2050 if (OrZero && match(V, m_Power2OrZero())) 2051 return true; 2052 if (match(V, m_Power2())) 2053 return true; 2054 2055 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2056 // it is shifted off the end then the result is undefined. 2057 if (match(V, m_Shl(m_One(), m_Value()))) 2058 return true; 2059 2060 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2061 // the bottom. If it is shifted off the bottom then the result is undefined. 2062 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2063 return true; 2064 2065 // The remaining tests are all recursive, so bail out if we hit the limit. 2066 if (Depth++ == MaxAnalysisRecursionDepth) 2067 return false; 2068 2069 Value *X = nullptr, *Y = nullptr; 2070 // A shift left or a logical shift right of a power of two is a power of two 2071 // or zero. 2072 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2073 match(V, m_LShr(m_Value(X), m_Value())))) 2074 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2075 2076 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2077 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2078 2079 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2080 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2081 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2082 2083 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2084 // A power of two and'd with anything is a power of two or zero. 2085 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2086 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2087 return true; 2088 // X & (-X) is always a power of two or zero. 2089 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2090 return true; 2091 return false; 2092 } 2093 2094 // Adding a power-of-two or zero to the same power-of-two or zero yields 2095 // either the original power-of-two, a larger power-of-two or zero. 2096 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2097 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2098 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2099 Q.IIQ.hasNoSignedWrap(VOBO)) { 2100 if (match(X, m_And(m_Specific(Y), m_Value())) || 2101 match(X, m_And(m_Value(), m_Specific(Y)))) 2102 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2103 return true; 2104 if (match(Y, m_And(m_Specific(X), m_Value())) || 2105 match(Y, m_And(m_Value(), m_Specific(X)))) 2106 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2107 return true; 2108 2109 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2110 KnownBits LHSBits(BitWidth); 2111 computeKnownBits(X, LHSBits, Depth, Q); 2112 2113 KnownBits RHSBits(BitWidth); 2114 computeKnownBits(Y, RHSBits, Depth, Q); 2115 // If i8 V is a power of two or zero: 2116 // ZeroBits: 1 1 1 0 1 1 1 1 2117 // ~ZeroBits: 0 0 0 1 0 0 0 0 2118 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2119 // If OrZero isn't set, we cannot give back a zero result. 2120 // Make sure either the LHS or RHS has a bit set. 2121 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2122 return true; 2123 } 2124 } 2125 2126 // An exact divide or right shift can only shift off zero bits, so the result 2127 // is a power of two only if the first operand is a power of two and not 2128 // copying a sign bit (sdiv int_min, 2). 2129 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2130 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2131 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2132 Depth, Q); 2133 } 2134 2135 return false; 2136 } 2137 2138 /// Test whether a GEP's result is known to be non-null. 2139 /// 2140 /// Uses properties inherent in a GEP to try to determine whether it is known 2141 /// to be non-null. 2142 /// 2143 /// Currently this routine does not support vector GEPs. 2144 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2145 const Query &Q) { 2146 const Function *F = nullptr; 2147 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2148 F = I->getFunction(); 2149 2150 if (!GEP->isInBounds() || 2151 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2152 return false; 2153 2154 // FIXME: Support vector-GEPs. 2155 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2156 2157 // If the base pointer is non-null, we cannot walk to a null address with an 2158 // inbounds GEP in address space zero. 2159 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2160 return true; 2161 2162 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2163 // If so, then the GEP cannot produce a null pointer, as doing so would 2164 // inherently violate the inbounds contract within address space zero. 2165 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2166 GTI != GTE; ++GTI) { 2167 // Struct types are easy -- they must always be indexed by a constant. 2168 if (StructType *STy = GTI.getStructTypeOrNull()) { 2169 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2170 unsigned ElementIdx = OpC->getZExtValue(); 2171 const StructLayout *SL = Q.DL.getStructLayout(STy); 2172 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2173 if (ElementOffset > 0) 2174 return true; 2175 continue; 2176 } 2177 2178 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2179 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2180 continue; 2181 2182 // Fast path the constant operand case both for efficiency and so we don't 2183 // increment Depth when just zipping down an all-constant GEP. 2184 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2185 if (!OpC->isZero()) 2186 return true; 2187 continue; 2188 } 2189 2190 // We post-increment Depth here because while isKnownNonZero increments it 2191 // as well, when we pop back up that increment won't persist. We don't want 2192 // to recurse 10k times just because we have 10k GEP operands. We don't 2193 // bail completely out because we want to handle constant GEPs regardless 2194 // of depth. 2195 if (Depth++ >= MaxAnalysisRecursionDepth) 2196 continue; 2197 2198 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2199 return true; 2200 } 2201 2202 return false; 2203 } 2204 2205 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2206 const Instruction *CtxI, 2207 const DominatorTree *DT) { 2208 if (isa<Constant>(V)) 2209 return false; 2210 2211 if (!CtxI || !DT) 2212 return false; 2213 2214 unsigned NumUsesExplored = 0; 2215 for (auto *U : V->users()) { 2216 // Avoid massive lists 2217 if (NumUsesExplored >= DomConditionsMaxUses) 2218 break; 2219 NumUsesExplored++; 2220 2221 // If the value is used as an argument to a call or invoke, then argument 2222 // attributes may provide an answer about null-ness. 2223 if (const auto *CB = dyn_cast<CallBase>(U)) 2224 if (auto *CalledFunc = CB->getCalledFunction()) 2225 for (const Argument &Arg : CalledFunc->args()) 2226 if (CB->getArgOperand(Arg.getArgNo()) == V && 2227 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2228 return true; 2229 2230 // If the value is used as a load/store, then the pointer must be non null. 2231 if (V == getLoadStorePointerOperand(U)) { 2232 const Instruction *I = cast<Instruction>(U); 2233 if (!NullPointerIsDefined(I->getFunction(), 2234 V->getType()->getPointerAddressSpace()) && 2235 DT->dominates(I, CtxI)) 2236 return true; 2237 } 2238 2239 // Consider only compare instructions uniquely controlling a branch 2240 CmpInst::Predicate Pred; 2241 if (!match(const_cast<User *>(U), 2242 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2243 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2244 continue; 2245 2246 SmallVector<const User *, 4> WorkList; 2247 SmallPtrSet<const User *, 4> Visited; 2248 for (auto *CmpU : U->users()) { 2249 assert(WorkList.empty() && "Should be!"); 2250 if (Visited.insert(CmpU).second) 2251 WorkList.push_back(CmpU); 2252 2253 while (!WorkList.empty()) { 2254 auto *Curr = WorkList.pop_back_val(); 2255 2256 // If a user is an AND, add all its users to the work list. We only 2257 // propagate "pred != null" condition through AND because it is only 2258 // correct to assume that all conditions of AND are met in true branch. 2259 // TODO: Support similar logic of OR and EQ predicate? 2260 if (Pred == ICmpInst::ICMP_NE) 2261 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2262 if (BO->getOpcode() == Instruction::And) { 2263 for (auto *BOU : BO->users()) 2264 if (Visited.insert(BOU).second) 2265 WorkList.push_back(BOU); 2266 continue; 2267 } 2268 2269 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2270 assert(BI->isConditional() && "uses a comparison!"); 2271 2272 BasicBlock *NonNullSuccessor = 2273 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2274 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2275 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2276 return true; 2277 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2278 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2279 return true; 2280 } 2281 } 2282 } 2283 } 2284 2285 return false; 2286 } 2287 2288 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2289 /// ensure that the value it's attached to is never Value? 'RangeType' is 2290 /// is the type of the value described by the range. 2291 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2292 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2293 assert(NumRanges >= 1); 2294 for (unsigned i = 0; i < NumRanges; ++i) { 2295 ConstantInt *Lower = 2296 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2297 ConstantInt *Upper = 2298 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2299 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2300 if (Range.contains(Value)) 2301 return false; 2302 } 2303 return true; 2304 } 2305 2306 /// Return true if the given value is known to be non-zero when defined. For 2307 /// vectors, return true if every demanded element is known to be non-zero when 2308 /// defined. For pointers, if the context instruction and dominator tree are 2309 /// specified, perform context-sensitive analysis and return true if the 2310 /// pointer couldn't possibly be null at the specified instruction. 2311 /// Supports values with integer or pointer type and vectors of integers. 2312 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2313 const Query &Q) { 2314 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2315 // vector 2316 if (isa<ScalableVectorType>(V->getType())) 2317 return false; 2318 2319 if (auto *C = dyn_cast<Constant>(V)) { 2320 if (C->isNullValue()) 2321 return false; 2322 if (isa<ConstantInt>(C)) 2323 // Must be non-zero due to null test above. 2324 return true; 2325 2326 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2327 // See the comment for IntToPtr/PtrToInt instructions below. 2328 if (CE->getOpcode() == Instruction::IntToPtr || 2329 CE->getOpcode() == Instruction::PtrToInt) 2330 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2331 Q.DL.getTypeSizeInBits(CE->getType())) 2332 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2333 } 2334 2335 // For constant vectors, check that all elements are undefined or known 2336 // non-zero to determine that the whole vector is known non-zero. 2337 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2338 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2339 if (!DemandedElts[i]) 2340 continue; 2341 Constant *Elt = C->getAggregateElement(i); 2342 if (!Elt || Elt->isNullValue()) 2343 return false; 2344 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2345 return false; 2346 } 2347 return true; 2348 } 2349 2350 // A global variable in address space 0 is non null unless extern weak 2351 // or an absolute symbol reference. Other address spaces may have null as a 2352 // valid address for a global, so we can't assume anything. 2353 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2354 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2355 GV->getType()->getAddressSpace() == 0) 2356 return true; 2357 } else 2358 return false; 2359 } 2360 2361 if (auto *I = dyn_cast<Instruction>(V)) { 2362 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2363 // If the possible ranges don't contain zero, then the value is 2364 // definitely non-zero. 2365 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2366 const APInt ZeroValue(Ty->getBitWidth(), 0); 2367 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2368 return true; 2369 } 2370 } 2371 } 2372 2373 if (isKnownNonZeroFromAssume(V, Q)) 2374 return true; 2375 2376 // Some of the tests below are recursive, so bail out if we hit the limit. 2377 if (Depth++ >= MaxAnalysisRecursionDepth) 2378 return false; 2379 2380 // Check for pointer simplifications. 2381 2382 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2383 // Alloca never returns null, malloc might. 2384 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2385 return true; 2386 2387 // A byval, inalloca may not be null in a non-default addres space. A 2388 // nonnull argument is assumed never 0. 2389 if (const Argument *A = dyn_cast<Argument>(V)) { 2390 if (((A->hasPassPointeeByValueCopyAttr() && 2391 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2392 A->hasNonNullAttr())) 2393 return true; 2394 } 2395 2396 // A Load tagged with nonnull metadata is never null. 2397 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2398 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2399 return true; 2400 2401 if (const auto *Call = dyn_cast<CallBase>(V)) { 2402 if (Call->isReturnNonNull()) 2403 return true; 2404 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2405 return isKnownNonZero(RP, Depth, Q); 2406 } 2407 } 2408 2409 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2410 return true; 2411 2412 // Check for recursive pointer simplifications. 2413 if (V->getType()->isPointerTy()) { 2414 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2415 // do not alter the value, or at least not the nullness property of the 2416 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2417 // 2418 // Note that we have to take special care to avoid looking through 2419 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2420 // as casts that can alter the value, e.g., AddrSpaceCasts. 2421 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2422 return isGEPKnownNonNull(GEP, Depth, Q); 2423 2424 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2425 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2426 2427 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2428 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2429 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2430 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2431 } 2432 2433 // Similar to int2ptr above, we can look through ptr2int here if the cast 2434 // is a no-op or an extend and not a truncate. 2435 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2436 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2437 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2438 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2439 2440 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2441 2442 // X | Y != 0 if X != 0 or Y != 0. 2443 Value *X = nullptr, *Y = nullptr; 2444 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2445 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2446 isKnownNonZero(Y, DemandedElts, Depth, Q); 2447 2448 // ext X != 0 if X != 0. 2449 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2450 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2451 2452 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2453 // if the lowest bit is shifted off the end. 2454 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2455 // shl nuw can't remove any non-zero bits. 2456 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2457 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2458 return isKnownNonZero(X, Depth, Q); 2459 2460 KnownBits Known(BitWidth); 2461 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2462 if (Known.One[0]) 2463 return true; 2464 } 2465 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2466 // defined if the sign bit is shifted off the end. 2467 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2468 // shr exact can only shift out zero bits. 2469 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2470 if (BO->isExact()) 2471 return isKnownNonZero(X, Depth, Q); 2472 2473 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2474 if (Known.isNegative()) 2475 return true; 2476 2477 // If the shifter operand is a constant, and all of the bits shifted 2478 // out are known to be zero, and X is known non-zero then at least one 2479 // non-zero bit must remain. 2480 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2481 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2482 // Is there a known one in the portion not shifted out? 2483 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2484 return true; 2485 // Are all the bits to be shifted out known zero? 2486 if (Known.countMinTrailingZeros() >= ShiftVal) 2487 return isKnownNonZero(X, DemandedElts, Depth, Q); 2488 } 2489 } 2490 // div exact can only produce a zero if the dividend is zero. 2491 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2492 return isKnownNonZero(X, DemandedElts, Depth, Q); 2493 } 2494 // X + Y. 2495 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2496 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2497 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2498 2499 // If X and Y are both non-negative (as signed values) then their sum is not 2500 // zero unless both X and Y are zero. 2501 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2502 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2503 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2504 return true; 2505 2506 // If X and Y are both negative (as signed values) then their sum is not 2507 // zero unless both X and Y equal INT_MIN. 2508 if (XKnown.isNegative() && YKnown.isNegative()) { 2509 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2510 // The sign bit of X is set. If some other bit is set then X is not equal 2511 // to INT_MIN. 2512 if (XKnown.One.intersects(Mask)) 2513 return true; 2514 // The sign bit of Y is set. If some other bit is set then Y is not equal 2515 // to INT_MIN. 2516 if (YKnown.One.intersects(Mask)) 2517 return true; 2518 } 2519 2520 // The sum of a non-negative number and a power of two is not zero. 2521 if (XKnown.isNonNegative() && 2522 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2523 return true; 2524 if (YKnown.isNonNegative() && 2525 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2526 return true; 2527 } 2528 // X * Y. 2529 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2530 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2531 // If X and Y are non-zero then so is X * Y as long as the multiplication 2532 // does not overflow. 2533 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2534 isKnownNonZero(X, DemandedElts, Depth, Q) && 2535 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2536 return true; 2537 } 2538 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2539 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2540 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2541 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2542 return true; 2543 } 2544 // PHI 2545 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2546 // Try and detect a recurrence that monotonically increases from a 2547 // starting value, as these are common as induction variables. 2548 if (PN->getNumIncomingValues() == 2) { 2549 Value *Start = PN->getIncomingValue(0); 2550 Value *Induction = PN->getIncomingValue(1); 2551 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2552 std::swap(Start, Induction); 2553 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2554 if (!C->isZero() && !C->isNegative()) { 2555 ConstantInt *X; 2556 if (Q.IIQ.UseInstrInfo && 2557 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2558 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2559 !X->isNegative()) 2560 return true; 2561 } 2562 } 2563 } 2564 // Check if all incoming values are non-zero using recursion. 2565 Query RecQ = Q; 2566 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2567 bool AllNonZero = llvm::all_of(PN->operands(), [&](const Use &U) { 2568 if (U.get() == PN) 2569 return true; 2570 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2571 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2572 }); 2573 if (AllNonZero) 2574 return true; 2575 } 2576 // ExtractElement 2577 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2578 const Value *Vec = EEI->getVectorOperand(); 2579 const Value *Idx = EEI->getIndexOperand(); 2580 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2581 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2582 unsigned NumElts = VecTy->getNumElements(); 2583 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2584 if (CIdx && CIdx->getValue().ult(NumElts)) 2585 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2586 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2587 } 2588 } 2589 // Freeze 2590 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2591 auto *Op = FI->getOperand(0); 2592 if (isKnownNonZero(Op, Depth, Q) && 2593 isGuaranteedNotToBePoison(Op, Q.CxtI, Q.DT, Depth)) 2594 return true; 2595 } 2596 2597 KnownBits Known(BitWidth); 2598 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2599 return Known.One != 0; 2600 } 2601 2602 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2603 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2604 // vector 2605 if (isa<ScalableVectorType>(V->getType())) 2606 return false; 2607 2608 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2609 APInt DemandedElts = 2610 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2611 return isKnownNonZero(V, DemandedElts, Depth, Q); 2612 } 2613 2614 /// Return true if V2 == V1 + X, where X is known non-zero. 2615 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2616 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2617 if (!BO || BO->getOpcode() != Instruction::Add) 2618 return false; 2619 Value *Op = nullptr; 2620 if (V2 == BO->getOperand(0)) 2621 Op = BO->getOperand(1); 2622 else if (V2 == BO->getOperand(1)) 2623 Op = BO->getOperand(0); 2624 else 2625 return false; 2626 return isKnownNonZero(Op, 0, Q); 2627 } 2628 2629 /// Return true if it is known that V1 != V2. 2630 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2631 if (V1 == V2) 2632 return false; 2633 if (V1->getType() != V2->getType()) 2634 // We can't look through casts yet. 2635 return false; 2636 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2637 return true; 2638 2639 if (V1->getType()->isIntOrIntVectorTy()) { 2640 // Are any known bits in V1 contradictory to known bits in V2? If V1 2641 // has a known zero where V2 has a known one, they must not be equal. 2642 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2643 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2644 2645 if (Known1.Zero.intersects(Known2.One) || 2646 Known2.Zero.intersects(Known1.One)) 2647 return true; 2648 } 2649 return false; 2650 } 2651 2652 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2653 /// simplify operations downstream. Mask is known to be zero for bits that V 2654 /// cannot have. 2655 /// 2656 /// This function is defined on values with integer type, values with pointer 2657 /// type, and vectors of integers. In the case 2658 /// where V is a vector, the mask, known zero, and known one values are the 2659 /// same width as the vector element, and the bit is set only if it is true 2660 /// for all of the elements in the vector. 2661 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2662 const Query &Q) { 2663 KnownBits Known(Mask.getBitWidth()); 2664 computeKnownBits(V, Known, Depth, Q); 2665 return Mask.isSubsetOf(Known.Zero); 2666 } 2667 2668 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2669 // Returns the input and lower/upper bounds. 2670 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2671 const APInt *&CLow, const APInt *&CHigh) { 2672 assert(isa<Operator>(Select) && 2673 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2674 "Input should be a Select!"); 2675 2676 const Value *LHS = nullptr, *RHS = nullptr; 2677 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2678 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2679 return false; 2680 2681 if (!match(RHS, m_APInt(CLow))) 2682 return false; 2683 2684 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2685 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2686 if (getInverseMinMaxFlavor(SPF) != SPF2) 2687 return false; 2688 2689 if (!match(RHS2, m_APInt(CHigh))) 2690 return false; 2691 2692 if (SPF == SPF_SMIN) 2693 std::swap(CLow, CHigh); 2694 2695 In = LHS2; 2696 return CLow->sle(*CHigh); 2697 } 2698 2699 /// For vector constants, loop over the elements and find the constant with the 2700 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2701 /// or if any element was not analyzed; otherwise, return the count for the 2702 /// element with the minimum number of sign bits. 2703 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2704 const APInt &DemandedElts, 2705 unsigned TyBits) { 2706 const auto *CV = dyn_cast<Constant>(V); 2707 if (!CV || !isa<FixedVectorType>(CV->getType())) 2708 return 0; 2709 2710 unsigned MinSignBits = TyBits; 2711 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2712 for (unsigned i = 0; i != NumElts; ++i) { 2713 if (!DemandedElts[i]) 2714 continue; 2715 // If we find a non-ConstantInt, bail out. 2716 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2717 if (!Elt) 2718 return 0; 2719 2720 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2721 } 2722 2723 return MinSignBits; 2724 } 2725 2726 static unsigned ComputeNumSignBitsImpl(const Value *V, 2727 const APInt &DemandedElts, 2728 unsigned Depth, const Query &Q); 2729 2730 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2731 unsigned Depth, const Query &Q) { 2732 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2733 assert(Result > 0 && "At least one sign bit needs to be present!"); 2734 return Result; 2735 } 2736 2737 /// Return the number of times the sign bit of the register is replicated into 2738 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2739 /// (itself), but other cases can give us information. For example, immediately 2740 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2741 /// other, so we return 3. For vectors, return the number of sign bits for the 2742 /// vector element with the minimum number of known sign bits of the demanded 2743 /// elements in the vector specified by DemandedElts. 2744 static unsigned ComputeNumSignBitsImpl(const Value *V, 2745 const APInt &DemandedElts, 2746 unsigned Depth, const Query &Q) { 2747 Type *Ty = V->getType(); 2748 2749 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2750 // vector 2751 if (isa<ScalableVectorType>(Ty)) 2752 return 1; 2753 2754 #ifndef NDEBUG 2755 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2756 2757 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2758 assert( 2759 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2760 "DemandedElt width should equal the fixed vector number of elements"); 2761 } else { 2762 assert(DemandedElts == APInt(1, 1) && 2763 "DemandedElt width should be 1 for scalars"); 2764 } 2765 #endif 2766 2767 // We return the minimum number of sign bits that are guaranteed to be present 2768 // in V, so for undef we have to conservatively return 1. We don't have the 2769 // same behavior for poison though -- that's a FIXME today. 2770 2771 Type *ScalarTy = Ty->getScalarType(); 2772 unsigned TyBits = ScalarTy->isPointerTy() ? 2773 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2774 Q.DL.getTypeSizeInBits(ScalarTy); 2775 2776 unsigned Tmp, Tmp2; 2777 unsigned FirstAnswer = 1; 2778 2779 // Note that ConstantInt is handled by the general computeKnownBits case 2780 // below. 2781 2782 if (Depth == MaxAnalysisRecursionDepth) 2783 return 1; 2784 2785 if (auto *U = dyn_cast<Operator>(V)) { 2786 switch (Operator::getOpcode(V)) { 2787 default: break; 2788 case Instruction::SExt: 2789 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2790 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2791 2792 case Instruction::SDiv: { 2793 const APInt *Denominator; 2794 // sdiv X, C -> adds log(C) sign bits. 2795 if (match(U->getOperand(1), m_APInt(Denominator))) { 2796 2797 // Ignore non-positive denominator. 2798 if (!Denominator->isStrictlyPositive()) 2799 break; 2800 2801 // Calculate the incoming numerator bits. 2802 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2803 2804 // Add floor(log(C)) bits to the numerator bits. 2805 return std::min(TyBits, NumBits + Denominator->logBase2()); 2806 } 2807 break; 2808 } 2809 2810 case Instruction::SRem: { 2811 const APInt *Denominator; 2812 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2813 // positive constant. This let us put a lower bound on the number of sign 2814 // bits. 2815 if (match(U->getOperand(1), m_APInt(Denominator))) { 2816 2817 // Ignore non-positive denominator. 2818 if (!Denominator->isStrictlyPositive()) 2819 break; 2820 2821 // Calculate the incoming numerator bits. SRem by a positive constant 2822 // can't lower the number of sign bits. 2823 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2824 2825 // Calculate the leading sign bit constraints by examining the 2826 // denominator. Given that the denominator is positive, there are two 2827 // cases: 2828 // 2829 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2830 // (1 << ceilLogBase2(C)). 2831 // 2832 // 2. the numerator is negative. Then the result range is (-C,0] and 2833 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2834 // 2835 // Thus a lower bound on the number of sign bits is `TyBits - 2836 // ceilLogBase2(C)`. 2837 2838 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2839 return std::max(NumrBits, ResBits); 2840 } 2841 break; 2842 } 2843 2844 case Instruction::AShr: { 2845 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2846 // ashr X, C -> adds C sign bits. Vectors too. 2847 const APInt *ShAmt; 2848 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2849 if (ShAmt->uge(TyBits)) 2850 break; // Bad shift. 2851 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2852 Tmp += ShAmtLimited; 2853 if (Tmp > TyBits) Tmp = TyBits; 2854 } 2855 return Tmp; 2856 } 2857 case Instruction::Shl: { 2858 const APInt *ShAmt; 2859 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2860 // shl destroys sign bits. 2861 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2862 if (ShAmt->uge(TyBits) || // Bad shift. 2863 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2864 Tmp2 = ShAmt->getZExtValue(); 2865 return Tmp - Tmp2; 2866 } 2867 break; 2868 } 2869 case Instruction::And: 2870 case Instruction::Or: 2871 case Instruction::Xor: // NOT is handled here. 2872 // Logical binary ops preserve the number of sign bits at the worst. 2873 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2874 if (Tmp != 1) { 2875 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2876 FirstAnswer = std::min(Tmp, Tmp2); 2877 // We computed what we know about the sign bits as our first 2878 // answer. Now proceed to the generic code that uses 2879 // computeKnownBits, and pick whichever answer is better. 2880 } 2881 break; 2882 2883 case Instruction::Select: { 2884 // If we have a clamp pattern, we know that the number of sign bits will 2885 // be the minimum of the clamp min/max range. 2886 const Value *X; 2887 const APInt *CLow, *CHigh; 2888 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2889 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2890 2891 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2892 if (Tmp == 1) break; 2893 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2894 return std::min(Tmp, Tmp2); 2895 } 2896 2897 case Instruction::Add: 2898 // Add can have at most one carry bit. Thus we know that the output 2899 // is, at worst, one more bit than the inputs. 2900 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2901 if (Tmp == 1) break; 2902 2903 // Special case decrementing a value (ADD X, -1): 2904 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2905 if (CRHS->isAllOnesValue()) { 2906 KnownBits Known(TyBits); 2907 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2908 2909 // If the input is known to be 0 or 1, the output is 0/-1, which is 2910 // all sign bits set. 2911 if ((Known.Zero | 1).isAllOnesValue()) 2912 return TyBits; 2913 2914 // If we are subtracting one from a positive number, there is no carry 2915 // out of the result. 2916 if (Known.isNonNegative()) 2917 return Tmp; 2918 } 2919 2920 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2921 if (Tmp2 == 1) break; 2922 return std::min(Tmp, Tmp2) - 1; 2923 2924 case Instruction::Sub: 2925 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2926 if (Tmp2 == 1) break; 2927 2928 // Handle NEG. 2929 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2930 if (CLHS->isNullValue()) { 2931 KnownBits Known(TyBits); 2932 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2933 // If the input is known to be 0 or 1, the output is 0/-1, which is 2934 // all sign bits set. 2935 if ((Known.Zero | 1).isAllOnesValue()) 2936 return TyBits; 2937 2938 // If the input is known to be positive (the sign bit is known clear), 2939 // the output of the NEG has the same number of sign bits as the 2940 // input. 2941 if (Known.isNonNegative()) 2942 return Tmp2; 2943 2944 // Otherwise, we treat this like a SUB. 2945 } 2946 2947 // Sub can have at most one carry bit. Thus we know that the output 2948 // is, at worst, one more bit than the inputs. 2949 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2950 if (Tmp == 1) break; 2951 return std::min(Tmp, Tmp2) - 1; 2952 2953 case Instruction::Mul: { 2954 // The output of the Mul can be at most twice the valid bits in the 2955 // inputs. 2956 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2957 if (SignBitsOp0 == 1) break; 2958 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2959 if (SignBitsOp1 == 1) break; 2960 unsigned OutValidBits = 2961 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2962 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2963 } 2964 2965 case Instruction::PHI: { 2966 const PHINode *PN = cast<PHINode>(U); 2967 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2968 // Don't analyze large in-degree PHIs. 2969 if (NumIncomingValues > 4) break; 2970 // Unreachable blocks may have zero-operand PHI nodes. 2971 if (NumIncomingValues == 0) break; 2972 2973 // Take the minimum of all incoming values. This can't infinitely loop 2974 // because of our depth threshold. 2975 Query RecQ = Q; 2976 Tmp = TyBits; 2977 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2978 if (Tmp == 1) return Tmp; 2979 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2980 Tmp = std::min( 2981 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2982 } 2983 return Tmp; 2984 } 2985 2986 case Instruction::Trunc: 2987 // FIXME: it's tricky to do anything useful for this, but it is an 2988 // important case for targets like X86. 2989 break; 2990 2991 case Instruction::ExtractElement: 2992 // Look through extract element. At the moment we keep this simple and 2993 // skip tracking the specific element. But at least we might find 2994 // information valid for all elements of the vector (for example if vector 2995 // is sign extended, shifted, etc). 2996 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2997 2998 case Instruction::ShuffleVector: { 2999 // Collect the minimum number of sign bits that are shared by every vector 3000 // element referenced by the shuffle. 3001 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3002 if (!Shuf) { 3003 // FIXME: Add support for shufflevector constant expressions. 3004 return 1; 3005 } 3006 APInt DemandedLHS, DemandedRHS; 3007 // For undef elements, we don't know anything about the common state of 3008 // the shuffle result. 3009 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3010 return 1; 3011 Tmp = std::numeric_limits<unsigned>::max(); 3012 if (!!DemandedLHS) { 3013 const Value *LHS = Shuf->getOperand(0); 3014 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3015 } 3016 // If we don't know anything, early out and try computeKnownBits 3017 // fall-back. 3018 if (Tmp == 1) 3019 break; 3020 if (!!DemandedRHS) { 3021 const Value *RHS = Shuf->getOperand(1); 3022 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3023 Tmp = std::min(Tmp, Tmp2); 3024 } 3025 // If we don't know anything, early out and try computeKnownBits 3026 // fall-back. 3027 if (Tmp == 1) 3028 break; 3029 assert(Tmp <= Ty->getScalarSizeInBits() && 3030 "Failed to determine minimum sign bits"); 3031 return Tmp; 3032 } 3033 case Instruction::Call: { 3034 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3035 switch (II->getIntrinsicID()) { 3036 default: break; 3037 case Intrinsic::abs: 3038 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3039 if (Tmp == 1) break; 3040 3041 // Absolute value reduces number of sign bits by at most 1. 3042 return Tmp - 1; 3043 } 3044 } 3045 } 3046 } 3047 } 3048 3049 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3050 // use this information. 3051 3052 // If we can examine all elements of a vector constant successfully, we're 3053 // done (we can't do any better than that). If not, keep trying. 3054 if (unsigned VecSignBits = 3055 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3056 return VecSignBits; 3057 3058 KnownBits Known(TyBits); 3059 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3060 3061 // If we know that the sign bit is either zero or one, determine the number of 3062 // identical bits in the top of the input value. 3063 return std::max(FirstAnswer, Known.countMinSignBits()); 3064 } 3065 3066 /// This function computes the integer multiple of Base that equals V. 3067 /// If successful, it returns true and returns the multiple in 3068 /// Multiple. If unsuccessful, it returns false. It looks 3069 /// through SExt instructions only if LookThroughSExt is true. 3070 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3071 bool LookThroughSExt, unsigned Depth) { 3072 assert(V && "No Value?"); 3073 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3074 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3075 3076 Type *T = V->getType(); 3077 3078 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3079 3080 if (Base == 0) 3081 return false; 3082 3083 if (Base == 1) { 3084 Multiple = V; 3085 return true; 3086 } 3087 3088 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3089 Constant *BaseVal = ConstantInt::get(T, Base); 3090 if (CO && CO == BaseVal) { 3091 // Multiple is 1. 3092 Multiple = ConstantInt::get(T, 1); 3093 return true; 3094 } 3095 3096 if (CI && CI->getZExtValue() % Base == 0) { 3097 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3098 return true; 3099 } 3100 3101 if (Depth == MaxAnalysisRecursionDepth) return false; 3102 3103 Operator *I = dyn_cast<Operator>(V); 3104 if (!I) return false; 3105 3106 switch (I->getOpcode()) { 3107 default: break; 3108 case Instruction::SExt: 3109 if (!LookThroughSExt) return false; 3110 // otherwise fall through to ZExt 3111 LLVM_FALLTHROUGH; 3112 case Instruction::ZExt: 3113 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3114 LookThroughSExt, Depth+1); 3115 case Instruction::Shl: 3116 case Instruction::Mul: { 3117 Value *Op0 = I->getOperand(0); 3118 Value *Op1 = I->getOperand(1); 3119 3120 if (I->getOpcode() == Instruction::Shl) { 3121 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3122 if (!Op1CI) return false; 3123 // Turn Op0 << Op1 into Op0 * 2^Op1 3124 APInt Op1Int = Op1CI->getValue(); 3125 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3126 APInt API(Op1Int.getBitWidth(), 0); 3127 API.setBit(BitToSet); 3128 Op1 = ConstantInt::get(V->getContext(), API); 3129 } 3130 3131 Value *Mul0 = nullptr; 3132 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3133 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3134 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3135 if (Op1C->getType()->getPrimitiveSizeInBits() < 3136 MulC->getType()->getPrimitiveSizeInBits()) 3137 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3138 if (Op1C->getType()->getPrimitiveSizeInBits() > 3139 MulC->getType()->getPrimitiveSizeInBits()) 3140 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3141 3142 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3143 Multiple = ConstantExpr::getMul(MulC, Op1C); 3144 return true; 3145 } 3146 3147 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3148 if (Mul0CI->getValue() == 1) { 3149 // V == Base * Op1, so return Op1 3150 Multiple = Op1; 3151 return true; 3152 } 3153 } 3154 3155 Value *Mul1 = nullptr; 3156 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3157 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3158 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3159 if (Op0C->getType()->getPrimitiveSizeInBits() < 3160 MulC->getType()->getPrimitiveSizeInBits()) 3161 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3162 if (Op0C->getType()->getPrimitiveSizeInBits() > 3163 MulC->getType()->getPrimitiveSizeInBits()) 3164 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3165 3166 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3167 Multiple = ConstantExpr::getMul(MulC, Op0C); 3168 return true; 3169 } 3170 3171 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3172 if (Mul1CI->getValue() == 1) { 3173 // V == Base * Op0, so return Op0 3174 Multiple = Op0; 3175 return true; 3176 } 3177 } 3178 } 3179 } 3180 3181 // We could not determine if V is a multiple of Base. 3182 return false; 3183 } 3184 3185 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3186 const TargetLibraryInfo *TLI) { 3187 const Function *F = CB.getCalledFunction(); 3188 if (!F) 3189 return Intrinsic::not_intrinsic; 3190 3191 if (F->isIntrinsic()) 3192 return F->getIntrinsicID(); 3193 3194 // We are going to infer semantics of a library function based on mapping it 3195 // to an LLVM intrinsic. Check that the library function is available from 3196 // this callbase and in this environment. 3197 LibFunc Func; 3198 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3199 !CB.onlyReadsMemory()) 3200 return Intrinsic::not_intrinsic; 3201 3202 switch (Func) { 3203 default: 3204 break; 3205 case LibFunc_sin: 3206 case LibFunc_sinf: 3207 case LibFunc_sinl: 3208 return Intrinsic::sin; 3209 case LibFunc_cos: 3210 case LibFunc_cosf: 3211 case LibFunc_cosl: 3212 return Intrinsic::cos; 3213 case LibFunc_exp: 3214 case LibFunc_expf: 3215 case LibFunc_expl: 3216 return Intrinsic::exp; 3217 case LibFunc_exp2: 3218 case LibFunc_exp2f: 3219 case LibFunc_exp2l: 3220 return Intrinsic::exp2; 3221 case LibFunc_log: 3222 case LibFunc_logf: 3223 case LibFunc_logl: 3224 return Intrinsic::log; 3225 case LibFunc_log10: 3226 case LibFunc_log10f: 3227 case LibFunc_log10l: 3228 return Intrinsic::log10; 3229 case LibFunc_log2: 3230 case LibFunc_log2f: 3231 case LibFunc_log2l: 3232 return Intrinsic::log2; 3233 case LibFunc_fabs: 3234 case LibFunc_fabsf: 3235 case LibFunc_fabsl: 3236 return Intrinsic::fabs; 3237 case LibFunc_fmin: 3238 case LibFunc_fminf: 3239 case LibFunc_fminl: 3240 return Intrinsic::minnum; 3241 case LibFunc_fmax: 3242 case LibFunc_fmaxf: 3243 case LibFunc_fmaxl: 3244 return Intrinsic::maxnum; 3245 case LibFunc_copysign: 3246 case LibFunc_copysignf: 3247 case LibFunc_copysignl: 3248 return Intrinsic::copysign; 3249 case LibFunc_floor: 3250 case LibFunc_floorf: 3251 case LibFunc_floorl: 3252 return Intrinsic::floor; 3253 case LibFunc_ceil: 3254 case LibFunc_ceilf: 3255 case LibFunc_ceill: 3256 return Intrinsic::ceil; 3257 case LibFunc_trunc: 3258 case LibFunc_truncf: 3259 case LibFunc_truncl: 3260 return Intrinsic::trunc; 3261 case LibFunc_rint: 3262 case LibFunc_rintf: 3263 case LibFunc_rintl: 3264 return Intrinsic::rint; 3265 case LibFunc_nearbyint: 3266 case LibFunc_nearbyintf: 3267 case LibFunc_nearbyintl: 3268 return Intrinsic::nearbyint; 3269 case LibFunc_round: 3270 case LibFunc_roundf: 3271 case LibFunc_roundl: 3272 return Intrinsic::round; 3273 case LibFunc_roundeven: 3274 case LibFunc_roundevenf: 3275 case LibFunc_roundevenl: 3276 return Intrinsic::roundeven; 3277 case LibFunc_pow: 3278 case LibFunc_powf: 3279 case LibFunc_powl: 3280 return Intrinsic::pow; 3281 case LibFunc_sqrt: 3282 case LibFunc_sqrtf: 3283 case LibFunc_sqrtl: 3284 return Intrinsic::sqrt; 3285 } 3286 3287 return Intrinsic::not_intrinsic; 3288 } 3289 3290 /// Return true if we can prove that the specified FP value is never equal to 3291 /// -0.0. 3292 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3293 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3294 /// the same as +0.0 in floating-point ops. 3295 /// 3296 /// NOTE: this function will need to be revisited when we support non-default 3297 /// rounding modes! 3298 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3299 unsigned Depth) { 3300 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3301 return !CFP->getValueAPF().isNegZero(); 3302 3303 if (Depth == MaxAnalysisRecursionDepth) 3304 return false; 3305 3306 auto *Op = dyn_cast<Operator>(V); 3307 if (!Op) 3308 return false; 3309 3310 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3311 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3312 return true; 3313 3314 // sitofp and uitofp turn into +0.0 for zero. 3315 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3316 return true; 3317 3318 if (auto *Call = dyn_cast<CallInst>(Op)) { 3319 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3320 switch (IID) { 3321 default: 3322 break; 3323 // sqrt(-0.0) = -0.0, no other negative results are possible. 3324 case Intrinsic::sqrt: 3325 case Intrinsic::canonicalize: 3326 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3327 // fabs(x) != -0.0 3328 case Intrinsic::fabs: 3329 return true; 3330 } 3331 } 3332 3333 return false; 3334 } 3335 3336 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3337 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3338 /// bit despite comparing equal. 3339 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3340 const TargetLibraryInfo *TLI, 3341 bool SignBitOnly, 3342 unsigned Depth) { 3343 // TODO: This function does not do the right thing when SignBitOnly is true 3344 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3345 // which flips the sign bits of NaNs. See 3346 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3347 3348 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3349 return !CFP->getValueAPF().isNegative() || 3350 (!SignBitOnly && CFP->getValueAPF().isZero()); 3351 } 3352 3353 // Handle vector of constants. 3354 if (auto *CV = dyn_cast<Constant>(V)) { 3355 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3356 unsigned NumElts = CVFVTy->getNumElements(); 3357 for (unsigned i = 0; i != NumElts; ++i) { 3358 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3359 if (!CFP) 3360 return false; 3361 if (CFP->getValueAPF().isNegative() && 3362 (SignBitOnly || !CFP->getValueAPF().isZero())) 3363 return false; 3364 } 3365 3366 // All non-negative ConstantFPs. 3367 return true; 3368 } 3369 } 3370 3371 if (Depth == MaxAnalysisRecursionDepth) 3372 return false; 3373 3374 const Operator *I = dyn_cast<Operator>(V); 3375 if (!I) 3376 return false; 3377 3378 switch (I->getOpcode()) { 3379 default: 3380 break; 3381 // Unsigned integers are always nonnegative. 3382 case Instruction::UIToFP: 3383 return true; 3384 case Instruction::FMul: 3385 case Instruction::FDiv: 3386 // X * X is always non-negative or a NaN. 3387 // X / X is always exactly 1.0 or a NaN. 3388 if (I->getOperand(0) == I->getOperand(1) && 3389 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3390 return true; 3391 3392 LLVM_FALLTHROUGH; 3393 case Instruction::FAdd: 3394 case Instruction::FRem: 3395 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3396 Depth + 1) && 3397 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3398 Depth + 1); 3399 case Instruction::Select: 3400 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3401 Depth + 1) && 3402 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3403 Depth + 1); 3404 case Instruction::FPExt: 3405 case Instruction::FPTrunc: 3406 // Widening/narrowing never change sign. 3407 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3408 Depth + 1); 3409 case Instruction::ExtractElement: 3410 // Look through extract element. At the moment we keep this simple and skip 3411 // tracking the specific element. But at least we might find information 3412 // valid for all elements of the vector. 3413 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3414 Depth + 1); 3415 case Instruction::Call: 3416 const auto *CI = cast<CallInst>(I); 3417 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3418 switch (IID) { 3419 default: 3420 break; 3421 case Intrinsic::maxnum: { 3422 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3423 auto isPositiveNum = [&](Value *V) { 3424 if (SignBitOnly) { 3425 // With SignBitOnly, this is tricky because the result of 3426 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3427 // a constant strictly greater than 0.0. 3428 const APFloat *C; 3429 return match(V, m_APFloat(C)) && 3430 *C > APFloat::getZero(C->getSemantics()); 3431 } 3432 3433 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3434 // maxnum can't be ordered-less-than-zero. 3435 return isKnownNeverNaN(V, TLI) && 3436 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3437 }; 3438 3439 // TODO: This could be improved. We could also check that neither operand 3440 // has its sign bit set (and at least 1 is not-NAN?). 3441 return isPositiveNum(V0) || isPositiveNum(V1); 3442 } 3443 3444 case Intrinsic::maximum: 3445 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3446 Depth + 1) || 3447 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3448 Depth + 1); 3449 case Intrinsic::minnum: 3450 case Intrinsic::minimum: 3451 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3452 Depth + 1) && 3453 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3454 Depth + 1); 3455 case Intrinsic::exp: 3456 case Intrinsic::exp2: 3457 case Intrinsic::fabs: 3458 return true; 3459 3460 case Intrinsic::sqrt: 3461 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3462 if (!SignBitOnly) 3463 return true; 3464 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3465 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3466 3467 case Intrinsic::powi: 3468 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3469 // powi(x,n) is non-negative if n is even. 3470 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3471 return true; 3472 } 3473 // TODO: This is not correct. Given that exp is an integer, here are the 3474 // ways that pow can return a negative value: 3475 // 3476 // pow(x, exp) --> negative if exp is odd and x is negative. 3477 // pow(-0, exp) --> -inf if exp is negative odd. 3478 // pow(-0, exp) --> -0 if exp is positive odd. 3479 // pow(-inf, exp) --> -0 if exp is negative odd. 3480 // pow(-inf, exp) --> -inf if exp is positive odd. 3481 // 3482 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3483 // but we must return false if x == -0. Unfortunately we do not currently 3484 // have a way of expressing this constraint. See details in 3485 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3486 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3487 Depth + 1); 3488 3489 case Intrinsic::fma: 3490 case Intrinsic::fmuladd: 3491 // x*x+y is non-negative if y is non-negative. 3492 return I->getOperand(0) == I->getOperand(1) && 3493 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3494 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3495 Depth + 1); 3496 } 3497 break; 3498 } 3499 return false; 3500 } 3501 3502 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3503 const TargetLibraryInfo *TLI) { 3504 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3505 } 3506 3507 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3508 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3509 } 3510 3511 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3512 unsigned Depth) { 3513 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3514 3515 // If we're told that infinities won't happen, assume they won't. 3516 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3517 if (FPMathOp->hasNoInfs()) 3518 return true; 3519 3520 // Handle scalar constants. 3521 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3522 return !CFP->isInfinity(); 3523 3524 if (Depth == MaxAnalysisRecursionDepth) 3525 return false; 3526 3527 if (auto *Inst = dyn_cast<Instruction>(V)) { 3528 switch (Inst->getOpcode()) { 3529 case Instruction::Select: { 3530 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3531 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3532 } 3533 case Instruction::SIToFP: 3534 case Instruction::UIToFP: { 3535 // Get width of largest magnitude integer (remove a bit if signed). 3536 // This still works for a signed minimum value because the largest FP 3537 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3538 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3539 if (Inst->getOpcode() == Instruction::SIToFP) 3540 --IntSize; 3541 3542 // If the exponent of the largest finite FP value can hold the largest 3543 // integer, the result of the cast must be finite. 3544 Type *FPTy = Inst->getType()->getScalarType(); 3545 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3546 } 3547 default: 3548 break; 3549 } 3550 } 3551 3552 // try to handle fixed width vector constants 3553 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3554 if (VFVTy && isa<Constant>(V)) { 3555 // For vectors, verify that each element is not infinity. 3556 unsigned NumElts = VFVTy->getNumElements(); 3557 for (unsigned i = 0; i != NumElts; ++i) { 3558 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3559 if (!Elt) 3560 return false; 3561 if (isa<UndefValue>(Elt)) 3562 continue; 3563 auto *CElt = dyn_cast<ConstantFP>(Elt); 3564 if (!CElt || CElt->isInfinity()) 3565 return false; 3566 } 3567 // All elements were confirmed non-infinity or undefined. 3568 return true; 3569 } 3570 3571 // was not able to prove that V never contains infinity 3572 return false; 3573 } 3574 3575 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3576 unsigned Depth) { 3577 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3578 3579 // If we're told that NaNs won't happen, assume they won't. 3580 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3581 if (FPMathOp->hasNoNaNs()) 3582 return true; 3583 3584 // Handle scalar constants. 3585 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3586 return !CFP->isNaN(); 3587 3588 if (Depth == MaxAnalysisRecursionDepth) 3589 return false; 3590 3591 if (auto *Inst = dyn_cast<Instruction>(V)) { 3592 switch (Inst->getOpcode()) { 3593 case Instruction::FAdd: 3594 case Instruction::FSub: 3595 // Adding positive and negative infinity produces NaN. 3596 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3597 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3598 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3599 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3600 3601 case Instruction::FMul: 3602 // Zero multiplied with infinity produces NaN. 3603 // FIXME: If neither side can be zero fmul never produces NaN. 3604 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3605 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3606 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3607 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3608 3609 case Instruction::FDiv: 3610 case Instruction::FRem: 3611 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3612 return false; 3613 3614 case Instruction::Select: { 3615 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3616 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3617 } 3618 case Instruction::SIToFP: 3619 case Instruction::UIToFP: 3620 return true; 3621 case Instruction::FPTrunc: 3622 case Instruction::FPExt: 3623 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3624 default: 3625 break; 3626 } 3627 } 3628 3629 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3630 switch (II->getIntrinsicID()) { 3631 case Intrinsic::canonicalize: 3632 case Intrinsic::fabs: 3633 case Intrinsic::copysign: 3634 case Intrinsic::exp: 3635 case Intrinsic::exp2: 3636 case Intrinsic::floor: 3637 case Intrinsic::ceil: 3638 case Intrinsic::trunc: 3639 case Intrinsic::rint: 3640 case Intrinsic::nearbyint: 3641 case Intrinsic::round: 3642 case Intrinsic::roundeven: 3643 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3644 case Intrinsic::sqrt: 3645 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3646 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3647 case Intrinsic::minnum: 3648 case Intrinsic::maxnum: 3649 // If either operand is not NaN, the result is not NaN. 3650 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3651 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3652 default: 3653 return false; 3654 } 3655 } 3656 3657 // Try to handle fixed width vector constants 3658 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3659 if (VFVTy && isa<Constant>(V)) { 3660 // For vectors, verify that each element is not NaN. 3661 unsigned NumElts = VFVTy->getNumElements(); 3662 for (unsigned i = 0; i != NumElts; ++i) { 3663 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3664 if (!Elt) 3665 return false; 3666 if (isa<UndefValue>(Elt)) 3667 continue; 3668 auto *CElt = dyn_cast<ConstantFP>(Elt); 3669 if (!CElt || CElt->isNaN()) 3670 return false; 3671 } 3672 // All elements were confirmed not-NaN or undefined. 3673 return true; 3674 } 3675 3676 // Was not able to prove that V never contains NaN 3677 return false; 3678 } 3679 3680 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3681 3682 // All byte-wide stores are splatable, even of arbitrary variables. 3683 if (V->getType()->isIntegerTy(8)) 3684 return V; 3685 3686 LLVMContext &Ctx = V->getContext(); 3687 3688 // Undef don't care. 3689 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3690 if (isa<UndefValue>(V)) 3691 return UndefInt8; 3692 3693 // Return Undef for zero-sized type. 3694 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3695 return UndefInt8; 3696 3697 Constant *C = dyn_cast<Constant>(V); 3698 if (!C) { 3699 // Conceptually, we could handle things like: 3700 // %a = zext i8 %X to i16 3701 // %b = shl i16 %a, 8 3702 // %c = or i16 %a, %b 3703 // but until there is an example that actually needs this, it doesn't seem 3704 // worth worrying about. 3705 return nullptr; 3706 } 3707 3708 // Handle 'null' ConstantArrayZero etc. 3709 if (C->isNullValue()) 3710 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3711 3712 // Constant floating-point values can be handled as integer values if the 3713 // corresponding integer value is "byteable". An important case is 0.0. 3714 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3715 Type *Ty = nullptr; 3716 if (CFP->getType()->isHalfTy()) 3717 Ty = Type::getInt16Ty(Ctx); 3718 else if (CFP->getType()->isFloatTy()) 3719 Ty = Type::getInt32Ty(Ctx); 3720 else if (CFP->getType()->isDoubleTy()) 3721 Ty = Type::getInt64Ty(Ctx); 3722 // Don't handle long double formats, which have strange constraints. 3723 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3724 : nullptr; 3725 } 3726 3727 // We can handle constant integers that are multiple of 8 bits. 3728 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3729 if (CI->getBitWidth() % 8 == 0) { 3730 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3731 if (!CI->getValue().isSplat(8)) 3732 return nullptr; 3733 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3734 } 3735 } 3736 3737 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3738 if (CE->getOpcode() == Instruction::IntToPtr) { 3739 auto PS = DL.getPointerSizeInBits( 3740 cast<PointerType>(CE->getType())->getAddressSpace()); 3741 return isBytewiseValue( 3742 ConstantExpr::getIntegerCast(CE->getOperand(0), 3743 Type::getIntNTy(Ctx, PS), false), 3744 DL); 3745 } 3746 } 3747 3748 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3749 if (LHS == RHS) 3750 return LHS; 3751 if (!LHS || !RHS) 3752 return nullptr; 3753 if (LHS == UndefInt8) 3754 return RHS; 3755 if (RHS == UndefInt8) 3756 return LHS; 3757 return nullptr; 3758 }; 3759 3760 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3761 Value *Val = UndefInt8; 3762 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3763 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3764 return nullptr; 3765 return Val; 3766 } 3767 3768 if (isa<ConstantAggregate>(C)) { 3769 Value *Val = UndefInt8; 3770 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3771 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3772 return nullptr; 3773 return Val; 3774 } 3775 3776 // Don't try to handle the handful of other constants. 3777 return nullptr; 3778 } 3779 3780 // This is the recursive version of BuildSubAggregate. It takes a few different 3781 // arguments. Idxs is the index within the nested struct From that we are 3782 // looking at now (which is of type IndexedType). IdxSkip is the number of 3783 // indices from Idxs that should be left out when inserting into the resulting 3784 // struct. To is the result struct built so far, new insertvalue instructions 3785 // build on that. 3786 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3787 SmallVectorImpl<unsigned> &Idxs, 3788 unsigned IdxSkip, 3789 Instruction *InsertBefore) { 3790 StructType *STy = dyn_cast<StructType>(IndexedType); 3791 if (STy) { 3792 // Save the original To argument so we can modify it 3793 Value *OrigTo = To; 3794 // General case, the type indexed by Idxs is a struct 3795 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3796 // Process each struct element recursively 3797 Idxs.push_back(i); 3798 Value *PrevTo = To; 3799 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3800 InsertBefore); 3801 Idxs.pop_back(); 3802 if (!To) { 3803 // Couldn't find any inserted value for this index? Cleanup 3804 while (PrevTo != OrigTo) { 3805 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3806 PrevTo = Del->getAggregateOperand(); 3807 Del->eraseFromParent(); 3808 } 3809 // Stop processing elements 3810 break; 3811 } 3812 } 3813 // If we successfully found a value for each of our subaggregates 3814 if (To) 3815 return To; 3816 } 3817 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3818 // the struct's elements had a value that was inserted directly. In the latter 3819 // case, perhaps we can't determine each of the subelements individually, but 3820 // we might be able to find the complete struct somewhere. 3821 3822 // Find the value that is at that particular spot 3823 Value *V = FindInsertedValue(From, Idxs); 3824 3825 if (!V) 3826 return nullptr; 3827 3828 // Insert the value in the new (sub) aggregate 3829 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3830 "tmp", InsertBefore); 3831 } 3832 3833 // This helper takes a nested struct and extracts a part of it (which is again a 3834 // struct) into a new value. For example, given the struct: 3835 // { a, { b, { c, d }, e } } 3836 // and the indices "1, 1" this returns 3837 // { c, d }. 3838 // 3839 // It does this by inserting an insertvalue for each element in the resulting 3840 // struct, as opposed to just inserting a single struct. This will only work if 3841 // each of the elements of the substruct are known (ie, inserted into From by an 3842 // insertvalue instruction somewhere). 3843 // 3844 // All inserted insertvalue instructions are inserted before InsertBefore 3845 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3846 Instruction *InsertBefore) { 3847 assert(InsertBefore && "Must have someplace to insert!"); 3848 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3849 idx_range); 3850 Value *To = UndefValue::get(IndexedType); 3851 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3852 unsigned IdxSkip = Idxs.size(); 3853 3854 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3855 } 3856 3857 /// Given an aggregate and a sequence of indices, see if the scalar value 3858 /// indexed is already around as a register, for example if it was inserted 3859 /// directly into the aggregate. 3860 /// 3861 /// If InsertBefore is not null, this function will duplicate (modified) 3862 /// insertvalues when a part of a nested struct is extracted. 3863 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3864 Instruction *InsertBefore) { 3865 // Nothing to index? Just return V then (this is useful at the end of our 3866 // recursion). 3867 if (idx_range.empty()) 3868 return V; 3869 // We have indices, so V should have an indexable type. 3870 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3871 "Not looking at a struct or array?"); 3872 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3873 "Invalid indices for type?"); 3874 3875 if (Constant *C = dyn_cast<Constant>(V)) { 3876 C = C->getAggregateElement(idx_range[0]); 3877 if (!C) return nullptr; 3878 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3879 } 3880 3881 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3882 // Loop the indices for the insertvalue instruction in parallel with the 3883 // requested indices 3884 const unsigned *req_idx = idx_range.begin(); 3885 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3886 i != e; ++i, ++req_idx) { 3887 if (req_idx == idx_range.end()) { 3888 // We can't handle this without inserting insertvalues 3889 if (!InsertBefore) 3890 return nullptr; 3891 3892 // The requested index identifies a part of a nested aggregate. Handle 3893 // this specially. For example, 3894 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3895 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3896 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3897 // This can be changed into 3898 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3899 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3900 // which allows the unused 0,0 element from the nested struct to be 3901 // removed. 3902 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3903 InsertBefore); 3904 } 3905 3906 // This insert value inserts something else than what we are looking for. 3907 // See if the (aggregate) value inserted into has the value we are 3908 // looking for, then. 3909 if (*req_idx != *i) 3910 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3911 InsertBefore); 3912 } 3913 // If we end up here, the indices of the insertvalue match with those 3914 // requested (though possibly only partially). Now we recursively look at 3915 // the inserted value, passing any remaining indices. 3916 return FindInsertedValue(I->getInsertedValueOperand(), 3917 makeArrayRef(req_idx, idx_range.end()), 3918 InsertBefore); 3919 } 3920 3921 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3922 // If we're extracting a value from an aggregate that was extracted from 3923 // something else, we can extract from that something else directly instead. 3924 // However, we will need to chain I's indices with the requested indices. 3925 3926 // Calculate the number of indices required 3927 unsigned size = I->getNumIndices() + idx_range.size(); 3928 // Allocate some space to put the new indices in 3929 SmallVector<unsigned, 5> Idxs; 3930 Idxs.reserve(size); 3931 // Add indices from the extract value instruction 3932 Idxs.append(I->idx_begin(), I->idx_end()); 3933 3934 // Add requested indices 3935 Idxs.append(idx_range.begin(), idx_range.end()); 3936 3937 assert(Idxs.size() == size 3938 && "Number of indices added not correct?"); 3939 3940 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3941 } 3942 // Otherwise, we don't know (such as, extracting from a function return value 3943 // or load instruction) 3944 return nullptr; 3945 } 3946 3947 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3948 unsigned CharSize) { 3949 // Make sure the GEP has exactly three arguments. 3950 if (GEP->getNumOperands() != 3) 3951 return false; 3952 3953 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3954 // CharSize. 3955 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3956 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3957 return false; 3958 3959 // Check to make sure that the first operand of the GEP is an integer and 3960 // has value 0 so that we are sure we're indexing into the initializer. 3961 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3962 if (!FirstIdx || !FirstIdx->isZero()) 3963 return false; 3964 3965 return true; 3966 } 3967 3968 bool llvm::getConstantDataArrayInfo(const Value *V, 3969 ConstantDataArraySlice &Slice, 3970 unsigned ElementSize, uint64_t Offset) { 3971 assert(V); 3972 3973 // Look through bitcast instructions and geps. 3974 V = V->stripPointerCasts(); 3975 3976 // If the value is a GEP instruction or constant expression, treat it as an 3977 // offset. 3978 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3979 // The GEP operator should be based on a pointer to string constant, and is 3980 // indexing into the string constant. 3981 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3982 return false; 3983 3984 // If the second index isn't a ConstantInt, then this is a variable index 3985 // into the array. If this occurs, we can't say anything meaningful about 3986 // the string. 3987 uint64_t StartIdx = 0; 3988 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3989 StartIdx = CI->getZExtValue(); 3990 else 3991 return false; 3992 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3993 StartIdx + Offset); 3994 } 3995 3996 // The GEP instruction, constant or instruction, must reference a global 3997 // variable that is a constant and is initialized. The referenced constant 3998 // initializer is the array that we'll use for optimization. 3999 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4000 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4001 return false; 4002 4003 const ConstantDataArray *Array; 4004 ArrayType *ArrayTy; 4005 if (GV->getInitializer()->isNullValue()) { 4006 Type *GVTy = GV->getValueType(); 4007 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4008 // A zeroinitializer for the array; there is no ConstantDataArray. 4009 Array = nullptr; 4010 } else { 4011 const DataLayout &DL = GV->getParent()->getDataLayout(); 4012 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4013 uint64_t Length = SizeInBytes / (ElementSize / 8); 4014 if (Length <= Offset) 4015 return false; 4016 4017 Slice.Array = nullptr; 4018 Slice.Offset = 0; 4019 Slice.Length = Length - Offset; 4020 return true; 4021 } 4022 } else { 4023 // This must be a ConstantDataArray. 4024 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4025 if (!Array) 4026 return false; 4027 ArrayTy = Array->getType(); 4028 } 4029 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4030 return false; 4031 4032 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4033 if (Offset > NumElts) 4034 return false; 4035 4036 Slice.Array = Array; 4037 Slice.Offset = Offset; 4038 Slice.Length = NumElts - Offset; 4039 return true; 4040 } 4041 4042 /// This function computes the length of a null-terminated C string pointed to 4043 /// by V. If successful, it returns true and returns the string in Str. 4044 /// If unsuccessful, it returns false. 4045 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4046 uint64_t Offset, bool TrimAtNul) { 4047 ConstantDataArraySlice Slice; 4048 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4049 return false; 4050 4051 if (Slice.Array == nullptr) { 4052 if (TrimAtNul) { 4053 Str = StringRef(); 4054 return true; 4055 } 4056 if (Slice.Length == 1) { 4057 Str = StringRef("", 1); 4058 return true; 4059 } 4060 // We cannot instantiate a StringRef as we do not have an appropriate string 4061 // of 0s at hand. 4062 return false; 4063 } 4064 4065 // Start out with the entire array in the StringRef. 4066 Str = Slice.Array->getAsString(); 4067 // Skip over 'offset' bytes. 4068 Str = Str.substr(Slice.Offset); 4069 4070 if (TrimAtNul) { 4071 // Trim off the \0 and anything after it. If the array is not nul 4072 // terminated, we just return the whole end of string. The client may know 4073 // some other way that the string is length-bound. 4074 Str = Str.substr(0, Str.find('\0')); 4075 } 4076 return true; 4077 } 4078 4079 // These next two are very similar to the above, but also look through PHI 4080 // nodes. 4081 // TODO: See if we can integrate these two together. 4082 4083 /// If we can compute the length of the string pointed to by 4084 /// the specified pointer, return 'len+1'. If we can't, return 0. 4085 static uint64_t GetStringLengthH(const Value *V, 4086 SmallPtrSetImpl<const PHINode*> &PHIs, 4087 unsigned CharSize) { 4088 // Look through noop bitcast instructions. 4089 V = V->stripPointerCasts(); 4090 4091 // If this is a PHI node, there are two cases: either we have already seen it 4092 // or we haven't. 4093 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4094 if (!PHIs.insert(PN).second) 4095 return ~0ULL; // already in the set. 4096 4097 // If it was new, see if all the input strings are the same length. 4098 uint64_t LenSoFar = ~0ULL; 4099 for (Value *IncValue : PN->incoming_values()) { 4100 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4101 if (Len == 0) return 0; // Unknown length -> unknown. 4102 4103 if (Len == ~0ULL) continue; 4104 4105 if (Len != LenSoFar && LenSoFar != ~0ULL) 4106 return 0; // Disagree -> unknown. 4107 LenSoFar = Len; 4108 } 4109 4110 // Success, all agree. 4111 return LenSoFar; 4112 } 4113 4114 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4115 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4116 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4117 if (Len1 == 0) return 0; 4118 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4119 if (Len2 == 0) return 0; 4120 if (Len1 == ~0ULL) return Len2; 4121 if (Len2 == ~0ULL) return Len1; 4122 if (Len1 != Len2) return 0; 4123 return Len1; 4124 } 4125 4126 // Otherwise, see if we can read the string. 4127 ConstantDataArraySlice Slice; 4128 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4129 return 0; 4130 4131 if (Slice.Array == nullptr) 4132 return 1; 4133 4134 // Search for nul characters 4135 unsigned NullIndex = 0; 4136 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4137 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4138 break; 4139 } 4140 4141 return NullIndex + 1; 4142 } 4143 4144 /// If we can compute the length of the string pointed to by 4145 /// the specified pointer, return 'len+1'. If we can't, return 0. 4146 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4147 if (!V->getType()->isPointerTy()) 4148 return 0; 4149 4150 SmallPtrSet<const PHINode*, 32> PHIs; 4151 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4152 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4153 // an empty string as a length. 4154 return Len == ~0ULL ? 1 : Len; 4155 } 4156 4157 const Value * 4158 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4159 bool MustPreserveNullness) { 4160 assert(Call && 4161 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4162 if (const Value *RV = Call->getReturnedArgOperand()) 4163 return RV; 4164 // This can be used only as a aliasing property. 4165 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4166 Call, MustPreserveNullness)) 4167 return Call->getArgOperand(0); 4168 return nullptr; 4169 } 4170 4171 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4172 const CallBase *Call, bool MustPreserveNullness) { 4173 switch (Call->getIntrinsicID()) { 4174 case Intrinsic::launder_invariant_group: 4175 case Intrinsic::strip_invariant_group: 4176 case Intrinsic::aarch64_irg: 4177 case Intrinsic::aarch64_tagp: 4178 return true; 4179 case Intrinsic::ptrmask: 4180 return !MustPreserveNullness; 4181 default: 4182 return false; 4183 } 4184 } 4185 4186 /// \p PN defines a loop-variant pointer to an object. Check if the 4187 /// previous iteration of the loop was referring to the same object as \p PN. 4188 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4189 const LoopInfo *LI) { 4190 // Find the loop-defined value. 4191 Loop *L = LI->getLoopFor(PN->getParent()); 4192 if (PN->getNumIncomingValues() != 2) 4193 return true; 4194 4195 // Find the value from previous iteration. 4196 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4197 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4198 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4199 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4200 return true; 4201 4202 // If a new pointer is loaded in the loop, the pointer references a different 4203 // object in every iteration. E.g.: 4204 // for (i) 4205 // int *p = a[i]; 4206 // ... 4207 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4208 if (!L->isLoopInvariant(Load->getPointerOperand())) 4209 return false; 4210 return true; 4211 } 4212 4213 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4214 if (!V->getType()->isPointerTy()) 4215 return V; 4216 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4217 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4218 V = GEP->getPointerOperand(); 4219 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4220 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4221 V = cast<Operator>(V)->getOperand(0); 4222 if (!V->getType()->isPointerTy()) 4223 return V; 4224 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4225 if (GA->isInterposable()) 4226 return V; 4227 V = GA->getAliasee(); 4228 } else { 4229 if (auto *PHI = dyn_cast<PHINode>(V)) { 4230 // Look through single-arg phi nodes created by LCSSA. 4231 if (PHI->getNumIncomingValues() == 1) { 4232 V = PHI->getIncomingValue(0); 4233 continue; 4234 } 4235 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4236 // CaptureTracking can know about special capturing properties of some 4237 // intrinsics like launder.invariant.group, that can't be expressed with 4238 // the attributes, but have properties like returning aliasing pointer. 4239 // Because some analysis may assume that nocaptured pointer is not 4240 // returned from some special intrinsic (because function would have to 4241 // be marked with returns attribute), it is crucial to use this function 4242 // because it should be in sync with CaptureTracking. Not using it may 4243 // cause weird miscompilations where 2 aliasing pointers are assumed to 4244 // noalias. 4245 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4246 V = RP; 4247 continue; 4248 } 4249 } 4250 4251 return V; 4252 } 4253 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4254 } 4255 return V; 4256 } 4257 4258 void llvm::getUnderlyingObjects(const Value *V, 4259 SmallVectorImpl<const Value *> &Objects, 4260 LoopInfo *LI, unsigned MaxLookup) { 4261 SmallPtrSet<const Value *, 4> Visited; 4262 SmallVector<const Value *, 4> Worklist; 4263 Worklist.push_back(V); 4264 do { 4265 const Value *P = Worklist.pop_back_val(); 4266 P = getUnderlyingObject(P, MaxLookup); 4267 4268 if (!Visited.insert(P).second) 4269 continue; 4270 4271 if (auto *SI = dyn_cast<SelectInst>(P)) { 4272 Worklist.push_back(SI->getTrueValue()); 4273 Worklist.push_back(SI->getFalseValue()); 4274 continue; 4275 } 4276 4277 if (auto *PN = dyn_cast<PHINode>(P)) { 4278 // If this PHI changes the underlying object in every iteration of the 4279 // loop, don't look through it. Consider: 4280 // int **A; 4281 // for (i) { 4282 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4283 // Curr = A[i]; 4284 // *Prev, *Curr; 4285 // 4286 // Prev is tracking Curr one iteration behind so they refer to different 4287 // underlying objects. 4288 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4289 isSameUnderlyingObjectInLoop(PN, LI)) 4290 for (Value *IncValue : PN->incoming_values()) 4291 Worklist.push_back(IncValue); 4292 continue; 4293 } 4294 4295 Objects.push_back(P); 4296 } while (!Worklist.empty()); 4297 } 4298 4299 /// This is the function that does the work of looking through basic 4300 /// ptrtoint+arithmetic+inttoptr sequences. 4301 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4302 do { 4303 if (const Operator *U = dyn_cast<Operator>(V)) { 4304 // If we find a ptrtoint, we can transfer control back to the 4305 // regular getUnderlyingObjectFromInt. 4306 if (U->getOpcode() == Instruction::PtrToInt) 4307 return U->getOperand(0); 4308 // If we find an add of a constant, a multiplied value, or a phi, it's 4309 // likely that the other operand will lead us to the base 4310 // object. We don't have to worry about the case where the 4311 // object address is somehow being computed by the multiply, 4312 // because our callers only care when the result is an 4313 // identifiable object. 4314 if (U->getOpcode() != Instruction::Add || 4315 (!isa<ConstantInt>(U->getOperand(1)) && 4316 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4317 !isa<PHINode>(U->getOperand(1)))) 4318 return V; 4319 V = U->getOperand(0); 4320 } else { 4321 return V; 4322 } 4323 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4324 } while (true); 4325 } 4326 4327 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4328 /// ptrtoint+arithmetic+inttoptr sequences. 4329 /// It returns false if unidentified object is found in getUnderlyingObjects. 4330 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4331 SmallVectorImpl<Value *> &Objects) { 4332 SmallPtrSet<const Value *, 16> Visited; 4333 SmallVector<const Value *, 4> Working(1, V); 4334 do { 4335 V = Working.pop_back_val(); 4336 4337 SmallVector<const Value *, 4> Objs; 4338 getUnderlyingObjects(V, Objs); 4339 4340 for (const Value *V : Objs) { 4341 if (!Visited.insert(V).second) 4342 continue; 4343 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4344 const Value *O = 4345 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4346 if (O->getType()->isPointerTy()) { 4347 Working.push_back(O); 4348 continue; 4349 } 4350 } 4351 // If getUnderlyingObjects fails to find an identifiable object, 4352 // getUnderlyingObjectsForCodeGen also fails for safety. 4353 if (!isIdentifiedObject(V)) { 4354 Objects.clear(); 4355 return false; 4356 } 4357 Objects.push_back(const_cast<Value *>(V)); 4358 } 4359 } while (!Working.empty()); 4360 return true; 4361 } 4362 4363 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4364 AllocaInst *Result = nullptr; 4365 SmallPtrSet<Value *, 4> Visited; 4366 SmallVector<Value *, 4> Worklist; 4367 4368 auto AddWork = [&](Value *V) { 4369 if (Visited.insert(V).second) 4370 Worklist.push_back(V); 4371 }; 4372 4373 AddWork(V); 4374 do { 4375 V = Worklist.pop_back_val(); 4376 assert(Visited.count(V)); 4377 4378 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4379 if (Result && Result != AI) 4380 return nullptr; 4381 Result = AI; 4382 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4383 AddWork(CI->getOperand(0)); 4384 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4385 for (Value *IncValue : PN->incoming_values()) 4386 AddWork(IncValue); 4387 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4388 AddWork(SI->getTrueValue()); 4389 AddWork(SI->getFalseValue()); 4390 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4391 if (OffsetZero && !GEP->hasAllZeroIndices()) 4392 return nullptr; 4393 AddWork(GEP->getPointerOperand()); 4394 } else { 4395 return nullptr; 4396 } 4397 } while (!Worklist.empty()); 4398 4399 return Result; 4400 } 4401 4402 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4403 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4404 for (const User *U : V->users()) { 4405 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4406 if (!II) 4407 return false; 4408 4409 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4410 continue; 4411 4412 if (AllowDroppable && II->isDroppable()) 4413 continue; 4414 4415 return false; 4416 } 4417 return true; 4418 } 4419 4420 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4421 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4422 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4423 } 4424 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4425 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4426 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4427 } 4428 4429 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4430 if (!LI.isUnordered()) 4431 return true; 4432 const Function &F = *LI.getFunction(); 4433 // Speculative load may create a race that did not exist in the source. 4434 return F.hasFnAttribute(Attribute::SanitizeThread) || 4435 // Speculative load may load data from dirty regions. 4436 F.hasFnAttribute(Attribute::SanitizeAddress) || 4437 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4438 } 4439 4440 4441 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4442 const Instruction *CtxI, 4443 const DominatorTree *DT) { 4444 const Operator *Inst = dyn_cast<Operator>(V); 4445 if (!Inst) 4446 return false; 4447 4448 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4449 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4450 if (C->canTrap()) 4451 return false; 4452 4453 switch (Inst->getOpcode()) { 4454 default: 4455 return true; 4456 case Instruction::UDiv: 4457 case Instruction::URem: { 4458 // x / y is undefined if y == 0. 4459 const APInt *V; 4460 if (match(Inst->getOperand(1), m_APInt(V))) 4461 return *V != 0; 4462 return false; 4463 } 4464 case Instruction::SDiv: 4465 case Instruction::SRem: { 4466 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4467 const APInt *Numerator, *Denominator; 4468 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4469 return false; 4470 // We cannot hoist this division if the denominator is 0. 4471 if (*Denominator == 0) 4472 return false; 4473 // It's safe to hoist if the denominator is not 0 or -1. 4474 if (*Denominator != -1) 4475 return true; 4476 // At this point we know that the denominator is -1. It is safe to hoist as 4477 // long we know that the numerator is not INT_MIN. 4478 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4479 return !Numerator->isMinSignedValue(); 4480 // The numerator *might* be MinSignedValue. 4481 return false; 4482 } 4483 case Instruction::Load: { 4484 const LoadInst *LI = cast<LoadInst>(Inst); 4485 if (mustSuppressSpeculation(*LI)) 4486 return false; 4487 const DataLayout &DL = LI->getModule()->getDataLayout(); 4488 return isDereferenceableAndAlignedPointer( 4489 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4490 DL, CtxI, DT); 4491 } 4492 case Instruction::Call: { 4493 auto *CI = cast<const CallInst>(Inst); 4494 const Function *Callee = CI->getCalledFunction(); 4495 4496 // The called function could have undefined behavior or side-effects, even 4497 // if marked readnone nounwind. 4498 return Callee && Callee->isSpeculatable(); 4499 } 4500 case Instruction::VAArg: 4501 case Instruction::Alloca: 4502 case Instruction::Invoke: 4503 case Instruction::CallBr: 4504 case Instruction::PHI: 4505 case Instruction::Store: 4506 case Instruction::Ret: 4507 case Instruction::Br: 4508 case Instruction::IndirectBr: 4509 case Instruction::Switch: 4510 case Instruction::Unreachable: 4511 case Instruction::Fence: 4512 case Instruction::AtomicRMW: 4513 case Instruction::AtomicCmpXchg: 4514 case Instruction::LandingPad: 4515 case Instruction::Resume: 4516 case Instruction::CatchSwitch: 4517 case Instruction::CatchPad: 4518 case Instruction::CatchRet: 4519 case Instruction::CleanupPad: 4520 case Instruction::CleanupRet: 4521 return false; // Misc instructions which have effects 4522 } 4523 } 4524 4525 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4526 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4527 } 4528 4529 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4530 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4531 switch (OR) { 4532 case ConstantRange::OverflowResult::MayOverflow: 4533 return OverflowResult::MayOverflow; 4534 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4535 return OverflowResult::AlwaysOverflowsLow; 4536 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4537 return OverflowResult::AlwaysOverflowsHigh; 4538 case ConstantRange::OverflowResult::NeverOverflows: 4539 return OverflowResult::NeverOverflows; 4540 } 4541 llvm_unreachable("Unknown OverflowResult"); 4542 } 4543 4544 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4545 static ConstantRange computeConstantRangeIncludingKnownBits( 4546 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4547 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4548 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4549 KnownBits Known = computeKnownBits( 4550 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4551 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4552 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4553 ConstantRange::PreferredRangeType RangeType = 4554 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4555 return CR1.intersectWith(CR2, RangeType); 4556 } 4557 4558 OverflowResult llvm::computeOverflowForUnsignedMul( 4559 const Value *LHS, const Value *RHS, const DataLayout &DL, 4560 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4561 bool UseInstrInfo) { 4562 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4563 nullptr, UseInstrInfo); 4564 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4565 nullptr, UseInstrInfo); 4566 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4567 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4568 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4569 } 4570 4571 OverflowResult 4572 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4573 const DataLayout &DL, AssumptionCache *AC, 4574 const Instruction *CxtI, 4575 const DominatorTree *DT, bool UseInstrInfo) { 4576 // Multiplying n * m significant bits yields a result of n + m significant 4577 // bits. If the total number of significant bits does not exceed the 4578 // result bit width (minus 1), there is no overflow. 4579 // This means if we have enough leading sign bits in the operands 4580 // we can guarantee that the result does not overflow. 4581 // Ref: "Hacker's Delight" by Henry Warren 4582 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4583 4584 // Note that underestimating the number of sign bits gives a more 4585 // conservative answer. 4586 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4587 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4588 4589 // First handle the easy case: if we have enough sign bits there's 4590 // definitely no overflow. 4591 if (SignBits > BitWidth + 1) 4592 return OverflowResult::NeverOverflows; 4593 4594 // There are two ambiguous cases where there can be no overflow: 4595 // SignBits == BitWidth + 1 and 4596 // SignBits == BitWidth 4597 // The second case is difficult to check, therefore we only handle the 4598 // first case. 4599 if (SignBits == BitWidth + 1) { 4600 // It overflows only when both arguments are negative and the true 4601 // product is exactly the minimum negative number. 4602 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4603 // For simplicity we just check if at least one side is not negative. 4604 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4605 nullptr, UseInstrInfo); 4606 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4607 nullptr, UseInstrInfo); 4608 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4609 return OverflowResult::NeverOverflows; 4610 } 4611 return OverflowResult::MayOverflow; 4612 } 4613 4614 OverflowResult llvm::computeOverflowForUnsignedAdd( 4615 const Value *LHS, const Value *RHS, const DataLayout &DL, 4616 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4617 bool UseInstrInfo) { 4618 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4619 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4620 nullptr, UseInstrInfo); 4621 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4622 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4623 nullptr, UseInstrInfo); 4624 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4625 } 4626 4627 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4628 const Value *RHS, 4629 const AddOperator *Add, 4630 const DataLayout &DL, 4631 AssumptionCache *AC, 4632 const Instruction *CxtI, 4633 const DominatorTree *DT) { 4634 if (Add && Add->hasNoSignedWrap()) { 4635 return OverflowResult::NeverOverflows; 4636 } 4637 4638 // If LHS and RHS each have at least two sign bits, the addition will look 4639 // like 4640 // 4641 // XX..... + 4642 // YY..... 4643 // 4644 // If the carry into the most significant position is 0, X and Y can't both 4645 // be 1 and therefore the carry out of the addition is also 0. 4646 // 4647 // If the carry into the most significant position is 1, X and Y can't both 4648 // be 0 and therefore the carry out of the addition is also 1. 4649 // 4650 // Since the carry into the most significant position is always equal to 4651 // the carry out of the addition, there is no signed overflow. 4652 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4653 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4654 return OverflowResult::NeverOverflows; 4655 4656 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4657 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4658 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4659 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4660 OverflowResult OR = 4661 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4662 if (OR != OverflowResult::MayOverflow) 4663 return OR; 4664 4665 // The remaining code needs Add to be available. Early returns if not so. 4666 if (!Add) 4667 return OverflowResult::MayOverflow; 4668 4669 // If the sign of Add is the same as at least one of the operands, this add 4670 // CANNOT overflow. If this can be determined from the known bits of the 4671 // operands the above signedAddMayOverflow() check will have already done so. 4672 // The only other way to improve on the known bits is from an assumption, so 4673 // call computeKnownBitsFromAssume() directly. 4674 bool LHSOrRHSKnownNonNegative = 4675 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4676 bool LHSOrRHSKnownNegative = 4677 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4678 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4679 KnownBits AddKnown(LHSRange.getBitWidth()); 4680 computeKnownBitsFromAssume( 4681 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4682 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4683 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4684 return OverflowResult::NeverOverflows; 4685 } 4686 4687 return OverflowResult::MayOverflow; 4688 } 4689 4690 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4691 const Value *RHS, 4692 const DataLayout &DL, 4693 AssumptionCache *AC, 4694 const Instruction *CxtI, 4695 const DominatorTree *DT) { 4696 // Checking for conditions implied by dominating conditions may be expensive. 4697 // Limit it to usub_with_overflow calls for now. 4698 if (match(CxtI, 4699 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4700 if (auto C = 4701 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4702 if (*C) 4703 return OverflowResult::NeverOverflows; 4704 return OverflowResult::AlwaysOverflowsLow; 4705 } 4706 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4707 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4708 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4709 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4710 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4711 } 4712 4713 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4714 const Value *RHS, 4715 const DataLayout &DL, 4716 AssumptionCache *AC, 4717 const Instruction *CxtI, 4718 const DominatorTree *DT) { 4719 // If LHS and RHS each have at least two sign bits, the subtraction 4720 // cannot overflow. 4721 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4722 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4723 return OverflowResult::NeverOverflows; 4724 4725 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4726 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4727 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4728 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4729 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4730 } 4731 4732 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4733 const DominatorTree &DT) { 4734 SmallVector<const BranchInst *, 2> GuardingBranches; 4735 SmallVector<const ExtractValueInst *, 2> Results; 4736 4737 for (const User *U : WO->users()) { 4738 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4739 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4740 4741 if (EVI->getIndices()[0] == 0) 4742 Results.push_back(EVI); 4743 else { 4744 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4745 4746 for (const auto *U : EVI->users()) 4747 if (const auto *B = dyn_cast<BranchInst>(U)) { 4748 assert(B->isConditional() && "How else is it using an i1?"); 4749 GuardingBranches.push_back(B); 4750 } 4751 } 4752 } else { 4753 // We are using the aggregate directly in a way we don't want to analyze 4754 // here (storing it to a global, say). 4755 return false; 4756 } 4757 } 4758 4759 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4760 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4761 if (!NoWrapEdge.isSingleEdge()) 4762 return false; 4763 4764 // Check if all users of the add are provably no-wrap. 4765 for (const auto *Result : Results) { 4766 // If the extractvalue itself is not executed on overflow, the we don't 4767 // need to check each use separately, since domination is transitive. 4768 if (DT.dominates(NoWrapEdge, Result->getParent())) 4769 continue; 4770 4771 for (auto &RU : Result->uses()) 4772 if (!DT.dominates(NoWrapEdge, RU)) 4773 return false; 4774 } 4775 4776 return true; 4777 }; 4778 4779 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4780 } 4781 4782 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4783 // See whether I has flags that may create poison 4784 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4785 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4786 return true; 4787 } 4788 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4789 if (ExactOp->isExact()) 4790 return true; 4791 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4792 auto FMF = FP->getFastMathFlags(); 4793 if (FMF.noNaNs() || FMF.noInfs()) 4794 return true; 4795 } 4796 4797 unsigned Opcode = Op->getOpcode(); 4798 4799 // Check whether opcode is a poison/undef-generating operation 4800 switch (Opcode) { 4801 case Instruction::Shl: 4802 case Instruction::AShr: 4803 case Instruction::LShr: { 4804 // Shifts return poison if shiftwidth is larger than the bitwidth. 4805 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4806 SmallVector<Constant *, 4> ShiftAmounts; 4807 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4808 unsigned NumElts = FVTy->getNumElements(); 4809 for (unsigned i = 0; i < NumElts; ++i) 4810 ShiftAmounts.push_back(C->getAggregateElement(i)); 4811 } else if (isa<ScalableVectorType>(C->getType())) 4812 return true; // Can't tell, just return true to be safe 4813 else 4814 ShiftAmounts.push_back(C); 4815 4816 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4817 auto *CI = dyn_cast<ConstantInt>(C); 4818 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4819 }); 4820 return !Safe; 4821 } 4822 return true; 4823 } 4824 case Instruction::FPToSI: 4825 case Instruction::FPToUI: 4826 // fptosi/ui yields poison if the resulting value does not fit in the 4827 // destination type. 4828 return true; 4829 case Instruction::Call: 4830 case Instruction::CallBr: 4831 case Instruction::Invoke: { 4832 const auto *CB = cast<CallBase>(Op); 4833 return !CB->hasRetAttr(Attribute::NoUndef); 4834 } 4835 case Instruction::InsertElement: 4836 case Instruction::ExtractElement: { 4837 // If index exceeds the length of the vector, it returns poison 4838 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4839 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4840 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4841 if (!Idx || 4842 Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue()) 4843 return true; 4844 return false; 4845 } 4846 case Instruction::ShuffleVector: { 4847 // shufflevector may return undef. 4848 if (PoisonOnly) 4849 return false; 4850 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4851 ? cast<ConstantExpr>(Op)->getShuffleMask() 4852 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4853 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4854 } 4855 case Instruction::FNeg: 4856 case Instruction::PHI: 4857 case Instruction::Select: 4858 case Instruction::URem: 4859 case Instruction::SRem: 4860 case Instruction::ExtractValue: 4861 case Instruction::InsertValue: 4862 case Instruction::Freeze: 4863 case Instruction::ICmp: 4864 case Instruction::FCmp: 4865 return false; 4866 case Instruction::GetElementPtr: { 4867 const auto *GEP = cast<GEPOperator>(Op); 4868 return GEP->isInBounds(); 4869 } 4870 default: { 4871 const auto *CE = dyn_cast<ConstantExpr>(Op); 4872 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4873 return false; 4874 else if (Instruction::isBinaryOp(Opcode)) 4875 return false; 4876 // Be conservative and return true. 4877 return true; 4878 } 4879 } 4880 } 4881 4882 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4883 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4884 } 4885 4886 bool llvm::canCreatePoison(const Operator *Op) { 4887 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4888 } 4889 4890 static bool programUndefinedIfUndefOrPoison(const Value *V, 4891 bool PoisonOnly); 4892 4893 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4894 const Instruction *CtxI, 4895 const DominatorTree *DT, 4896 unsigned Depth, bool PoisonOnly) { 4897 if (Depth >= MaxAnalysisRecursionDepth) 4898 return false; 4899 4900 if (isa<MetadataAsValue>(V)) 4901 return false; 4902 4903 if (const auto *A = dyn_cast<Argument>(V)) { 4904 if (A->hasAttribute(Attribute::NoUndef)) 4905 return true; 4906 } 4907 4908 if (auto *C = dyn_cast<Constant>(V)) { 4909 if (isa<UndefValue>(C)) 4910 return PoisonOnly; 4911 4912 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4913 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4914 return true; 4915 4916 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4917 return (PoisonOnly || !C->containsUndefElement()) && 4918 !C->containsConstantExpression(); 4919 } 4920 4921 // Strip cast operations from a pointer value. 4922 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4923 // inbounds with zero offset. To guarantee that the result isn't poison, the 4924 // stripped pointer is checked as it has to be pointing into an allocated 4925 // object or be null `null` to ensure `inbounds` getelement pointers with a 4926 // zero offset could not produce poison. 4927 // It can strip off addrspacecast that do not change bit representation as 4928 // well. We believe that such addrspacecast is equivalent to no-op. 4929 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4930 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4931 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4932 return true; 4933 4934 auto OpCheck = [&](const Value *V) { 4935 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1, PoisonOnly); 4936 }; 4937 4938 if (auto *Opr = dyn_cast<Operator>(V)) { 4939 // If the value is a freeze instruction, then it can never 4940 // be undef or poison. 4941 if (isa<FreezeInst>(V)) 4942 return true; 4943 4944 if (const auto *CB = dyn_cast<CallBase>(V)) { 4945 if (CB->hasRetAttr(Attribute::NoUndef)) 4946 return true; 4947 } 4948 4949 if (const auto *PN = dyn_cast<PHINode>(V)) { 4950 unsigned Num = PN->getNumIncomingValues(); 4951 bool IsWellDefined = true; 4952 for (unsigned i = 0; i < Num; ++i) { 4953 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4954 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), TI, DT, 4955 Depth + 1, PoisonOnly)) { 4956 IsWellDefined = false; 4957 break; 4958 } 4959 } 4960 if (IsWellDefined) 4961 return true; 4962 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4963 return true; 4964 } 4965 4966 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4967 return true; 4968 4969 // CxtI may be null or a cloned instruction. 4970 if (!CtxI || !CtxI->getParent() || !DT) 4971 return false; 4972 4973 auto *DNode = DT->getNode(CtxI->getParent()); 4974 if (!DNode) 4975 // Unreachable block 4976 return false; 4977 4978 // If V is used as a branch condition before reaching CtxI, V cannot be 4979 // undef or poison. 4980 // br V, BB1, BB2 4981 // BB1: 4982 // CtxI ; V cannot be undef or poison here 4983 auto *Dominator = DNode->getIDom(); 4984 while (Dominator) { 4985 auto *TI = Dominator->getBlock()->getTerminator(); 4986 4987 Value *Cond = nullptr; 4988 if (auto BI = dyn_cast<BranchInst>(TI)) { 4989 if (BI->isConditional()) 4990 Cond = BI->getCondition(); 4991 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4992 Cond = SI->getCondition(); 4993 } 4994 4995 if (Cond) { 4996 if (Cond == V) 4997 return true; 4998 else if (PoisonOnly && isa<Operator>(Cond)) { 4999 // For poison, we can analyze further 5000 auto *Opr = cast<Operator>(Cond); 5001 if (propagatesPoison(Opr) && 5002 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 5003 return true; 5004 } 5005 } 5006 5007 Dominator = Dominator->getIDom(); 5008 } 5009 5010 return false; 5011 } 5012 5013 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 5014 const Instruction *CtxI, 5015 const DominatorTree *DT, 5016 unsigned Depth) { 5017 return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, false); 5018 } 5019 5020 bool llvm::isGuaranteedNotToBePoison(const Value *V, const Instruction *CtxI, 5021 const DominatorTree *DT, unsigned Depth) { 5022 return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, true); 5023 } 5024 5025 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5026 const DataLayout &DL, 5027 AssumptionCache *AC, 5028 const Instruction *CxtI, 5029 const DominatorTree *DT) { 5030 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5031 Add, DL, AC, CxtI, DT); 5032 } 5033 5034 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5035 const Value *RHS, 5036 const DataLayout &DL, 5037 AssumptionCache *AC, 5038 const Instruction *CxtI, 5039 const DominatorTree *DT) { 5040 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5041 } 5042 5043 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5044 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5045 // of time because it's possible for another thread to interfere with it for an 5046 // arbitrary length of time, but programs aren't allowed to rely on that. 5047 5048 // If there is no successor, then execution can't transfer to it. 5049 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5050 return !CRI->unwindsToCaller(); 5051 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5052 return !CatchSwitch->unwindsToCaller(); 5053 if (isa<ResumeInst>(I)) 5054 return false; 5055 if (isa<ReturnInst>(I)) 5056 return false; 5057 if (isa<UnreachableInst>(I)) 5058 return false; 5059 5060 // Calls can throw, or contain an infinite loop, or kill the process. 5061 if (const auto *CB = dyn_cast<CallBase>(I)) { 5062 // Call sites that throw have implicit non-local control flow. 5063 if (!CB->doesNotThrow()) 5064 return false; 5065 5066 // A function which doens't throw and has "willreturn" attribute will 5067 // always return. 5068 if (CB->hasFnAttr(Attribute::WillReturn)) 5069 return true; 5070 5071 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5072 // etc. and thus not return. However, LLVM already assumes that 5073 // 5074 // - Thread exiting actions are modeled as writes to memory invisible to 5075 // the program. 5076 // 5077 // - Loops that don't have side effects (side effects are volatile/atomic 5078 // stores and IO) always terminate (see http://llvm.org/PR965). 5079 // Furthermore IO itself is also modeled as writes to memory invisible to 5080 // the program. 5081 // 5082 // We rely on those assumptions here, and use the memory effects of the call 5083 // target as a proxy for checking that it always returns. 5084 5085 // FIXME: This isn't aggressive enough; a call which only writes to a global 5086 // is guaranteed to return. 5087 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5088 } 5089 5090 // Other instructions return normally. 5091 return true; 5092 } 5093 5094 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5095 // TODO: This is slightly conservative for invoke instruction since exiting 5096 // via an exception *is* normal control for them. 5097 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5098 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5099 return false; 5100 return true; 5101 } 5102 5103 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5104 const Loop *L) { 5105 // The loop header is guaranteed to be executed for every iteration. 5106 // 5107 // FIXME: Relax this constraint to cover all basic blocks that are 5108 // guaranteed to be executed at every iteration. 5109 if (I->getParent() != L->getHeader()) return false; 5110 5111 for (const Instruction &LI : *L->getHeader()) { 5112 if (&LI == I) return true; 5113 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5114 } 5115 llvm_unreachable("Instruction not contained in its own parent basic block."); 5116 } 5117 5118 bool llvm::propagatesPoison(const Operator *I) { 5119 switch (I->getOpcode()) { 5120 case Instruction::Freeze: 5121 case Instruction::Select: 5122 case Instruction::PHI: 5123 case Instruction::Call: 5124 case Instruction::Invoke: 5125 return false; 5126 case Instruction::ICmp: 5127 case Instruction::FCmp: 5128 case Instruction::GetElementPtr: 5129 return true; 5130 default: 5131 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5132 return true; 5133 5134 // Be conservative and return false. 5135 return false; 5136 } 5137 } 5138 5139 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5140 SmallPtrSetImpl<const Value *> &Operands) { 5141 switch (I->getOpcode()) { 5142 case Instruction::Store: 5143 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5144 break; 5145 5146 case Instruction::Load: 5147 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5148 break; 5149 5150 case Instruction::AtomicCmpXchg: 5151 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5152 break; 5153 5154 case Instruction::AtomicRMW: 5155 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5156 break; 5157 5158 case Instruction::UDiv: 5159 case Instruction::SDiv: 5160 case Instruction::URem: 5161 case Instruction::SRem: 5162 Operands.insert(I->getOperand(1)); 5163 break; 5164 5165 case Instruction::Call: 5166 case Instruction::Invoke: { 5167 const CallBase *CB = cast<CallBase>(I); 5168 if (CB->isIndirectCall()) 5169 Operands.insert(CB->getCalledOperand()); 5170 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5171 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5172 Operands.insert(CB->getArgOperand(i)); 5173 } 5174 break; 5175 } 5176 5177 default: 5178 break; 5179 } 5180 } 5181 5182 bool llvm::mustTriggerUB(const Instruction *I, 5183 const SmallSet<const Value *, 16>& KnownPoison) { 5184 SmallPtrSet<const Value *, 4> NonPoisonOps; 5185 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5186 5187 for (const auto *V : NonPoisonOps) 5188 if (KnownPoison.count(V)) 5189 return true; 5190 5191 return false; 5192 } 5193 5194 static bool programUndefinedIfUndefOrPoison(const Value *V, 5195 bool PoisonOnly) { 5196 // We currently only look for uses of values within the same basic 5197 // block, as that makes it easier to guarantee that the uses will be 5198 // executed given that Inst is executed. 5199 // 5200 // FIXME: Expand this to consider uses beyond the same basic block. To do 5201 // this, look out for the distinction between post-dominance and strong 5202 // post-dominance. 5203 const BasicBlock *BB = nullptr; 5204 BasicBlock::const_iterator Begin; 5205 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5206 BB = Inst->getParent(); 5207 Begin = Inst->getIterator(); 5208 Begin++; 5209 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5210 BB = &Arg->getParent()->getEntryBlock(); 5211 Begin = BB->begin(); 5212 } else { 5213 return false; 5214 } 5215 5216 BasicBlock::const_iterator End = BB->end(); 5217 5218 if (!PoisonOnly) { 5219 // Be conservative & just check whether a value is passed to a noundef 5220 // argument. 5221 // Instructions that raise UB with a poison operand are well-defined 5222 // or have unclear semantics when the input is partially undef. 5223 // For example, 'udiv x, (undef | 1)' isn't UB. 5224 5225 for (auto &I : make_range(Begin, End)) { 5226 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5227 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5228 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5229 CB->getArgOperand(i) == V) 5230 return true; 5231 } 5232 } 5233 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5234 break; 5235 } 5236 return false; 5237 } 5238 5239 // Set of instructions that we have proved will yield poison if Inst 5240 // does. 5241 SmallSet<const Value *, 16> YieldsPoison; 5242 SmallSet<const BasicBlock *, 4> Visited; 5243 5244 YieldsPoison.insert(V); 5245 auto Propagate = [&](const User *User) { 5246 if (propagatesPoison(cast<Operator>(User))) 5247 YieldsPoison.insert(User); 5248 }; 5249 for_each(V->users(), Propagate); 5250 Visited.insert(BB); 5251 5252 unsigned Iter = 0; 5253 while (Iter++ < MaxAnalysisRecursionDepth) { 5254 for (auto &I : make_range(Begin, End)) { 5255 if (mustTriggerUB(&I, YieldsPoison)) 5256 return true; 5257 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5258 return false; 5259 5260 // Mark poison that propagates from I through uses of I. 5261 if (YieldsPoison.count(&I)) 5262 for_each(I.users(), Propagate); 5263 } 5264 5265 if (auto *NextBB = BB->getSingleSuccessor()) { 5266 if (Visited.insert(NextBB).second) { 5267 BB = NextBB; 5268 Begin = BB->getFirstNonPHI()->getIterator(); 5269 End = BB->end(); 5270 continue; 5271 } 5272 } 5273 5274 break; 5275 } 5276 return false; 5277 } 5278 5279 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5280 return ::programUndefinedIfUndefOrPoison(Inst, false); 5281 } 5282 5283 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5284 return ::programUndefinedIfUndefOrPoison(Inst, true); 5285 } 5286 5287 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5288 if (FMF.noNaNs()) 5289 return true; 5290 5291 if (auto *C = dyn_cast<ConstantFP>(V)) 5292 return !C->isNaN(); 5293 5294 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5295 if (!C->getElementType()->isFloatingPointTy()) 5296 return false; 5297 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5298 if (C->getElementAsAPFloat(I).isNaN()) 5299 return false; 5300 } 5301 return true; 5302 } 5303 5304 if (isa<ConstantAggregateZero>(V)) 5305 return true; 5306 5307 return false; 5308 } 5309 5310 static bool isKnownNonZero(const Value *V) { 5311 if (auto *C = dyn_cast<ConstantFP>(V)) 5312 return !C->isZero(); 5313 5314 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5315 if (!C->getElementType()->isFloatingPointTy()) 5316 return false; 5317 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5318 if (C->getElementAsAPFloat(I).isZero()) 5319 return false; 5320 } 5321 return true; 5322 } 5323 5324 return false; 5325 } 5326 5327 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5328 /// Given non-min/max outer cmp/select from the clamp pattern this 5329 /// function recognizes if it can be substitued by a "canonical" min/max 5330 /// pattern. 5331 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5332 Value *CmpLHS, Value *CmpRHS, 5333 Value *TrueVal, Value *FalseVal, 5334 Value *&LHS, Value *&RHS) { 5335 // Try to match 5336 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5337 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5338 // and return description of the outer Max/Min. 5339 5340 // First, check if select has inverse order: 5341 if (CmpRHS == FalseVal) { 5342 std::swap(TrueVal, FalseVal); 5343 Pred = CmpInst::getInversePredicate(Pred); 5344 } 5345 5346 // Assume success now. If there's no match, callers should not use these anyway. 5347 LHS = TrueVal; 5348 RHS = FalseVal; 5349 5350 const APFloat *FC1; 5351 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5352 return {SPF_UNKNOWN, SPNB_NA, false}; 5353 5354 const APFloat *FC2; 5355 switch (Pred) { 5356 case CmpInst::FCMP_OLT: 5357 case CmpInst::FCMP_OLE: 5358 case CmpInst::FCMP_ULT: 5359 case CmpInst::FCMP_ULE: 5360 if (match(FalseVal, 5361 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5362 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5363 *FC1 < *FC2) 5364 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5365 break; 5366 case CmpInst::FCMP_OGT: 5367 case CmpInst::FCMP_OGE: 5368 case CmpInst::FCMP_UGT: 5369 case CmpInst::FCMP_UGE: 5370 if (match(FalseVal, 5371 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5372 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5373 *FC1 > *FC2) 5374 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5375 break; 5376 default: 5377 break; 5378 } 5379 5380 return {SPF_UNKNOWN, SPNB_NA, false}; 5381 } 5382 5383 /// Recognize variations of: 5384 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5385 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5386 Value *CmpLHS, Value *CmpRHS, 5387 Value *TrueVal, Value *FalseVal) { 5388 // Swap the select operands and predicate to match the patterns below. 5389 if (CmpRHS != TrueVal) { 5390 Pred = ICmpInst::getSwappedPredicate(Pred); 5391 std::swap(TrueVal, FalseVal); 5392 } 5393 const APInt *C1; 5394 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5395 const APInt *C2; 5396 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5397 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5398 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5399 return {SPF_SMAX, SPNB_NA, false}; 5400 5401 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5402 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5403 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5404 return {SPF_SMIN, SPNB_NA, false}; 5405 5406 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5407 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5408 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5409 return {SPF_UMAX, SPNB_NA, false}; 5410 5411 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5412 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5413 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5414 return {SPF_UMIN, SPNB_NA, false}; 5415 } 5416 return {SPF_UNKNOWN, SPNB_NA, false}; 5417 } 5418 5419 /// Recognize variations of: 5420 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5421 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5422 Value *CmpLHS, Value *CmpRHS, 5423 Value *TVal, Value *FVal, 5424 unsigned Depth) { 5425 // TODO: Allow FP min/max with nnan/nsz. 5426 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5427 5428 Value *A = nullptr, *B = nullptr; 5429 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5430 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5431 return {SPF_UNKNOWN, SPNB_NA, false}; 5432 5433 Value *C = nullptr, *D = nullptr; 5434 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5435 if (L.Flavor != R.Flavor) 5436 return {SPF_UNKNOWN, SPNB_NA, false}; 5437 5438 // We have something like: x Pred y ? min(a, b) : min(c, d). 5439 // Try to match the compare to the min/max operations of the select operands. 5440 // First, make sure we have the right compare predicate. 5441 switch (L.Flavor) { 5442 case SPF_SMIN: 5443 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5444 Pred = ICmpInst::getSwappedPredicate(Pred); 5445 std::swap(CmpLHS, CmpRHS); 5446 } 5447 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5448 break; 5449 return {SPF_UNKNOWN, SPNB_NA, false}; 5450 case SPF_SMAX: 5451 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5452 Pred = ICmpInst::getSwappedPredicate(Pred); 5453 std::swap(CmpLHS, CmpRHS); 5454 } 5455 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5456 break; 5457 return {SPF_UNKNOWN, SPNB_NA, false}; 5458 case SPF_UMIN: 5459 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5460 Pred = ICmpInst::getSwappedPredicate(Pred); 5461 std::swap(CmpLHS, CmpRHS); 5462 } 5463 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5464 break; 5465 return {SPF_UNKNOWN, SPNB_NA, false}; 5466 case SPF_UMAX: 5467 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5468 Pred = ICmpInst::getSwappedPredicate(Pred); 5469 std::swap(CmpLHS, CmpRHS); 5470 } 5471 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5472 break; 5473 return {SPF_UNKNOWN, SPNB_NA, false}; 5474 default: 5475 return {SPF_UNKNOWN, SPNB_NA, false}; 5476 } 5477 5478 // If there is a common operand in the already matched min/max and the other 5479 // min/max operands match the compare operands (either directly or inverted), 5480 // then this is min/max of the same flavor. 5481 5482 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5483 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5484 if (D == B) { 5485 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5486 match(A, m_Not(m_Specific(CmpRHS))))) 5487 return {L.Flavor, SPNB_NA, false}; 5488 } 5489 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5490 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5491 if (C == B) { 5492 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5493 match(A, m_Not(m_Specific(CmpRHS))))) 5494 return {L.Flavor, SPNB_NA, false}; 5495 } 5496 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5497 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5498 if (D == A) { 5499 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5500 match(B, m_Not(m_Specific(CmpRHS))))) 5501 return {L.Flavor, SPNB_NA, false}; 5502 } 5503 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5504 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5505 if (C == A) { 5506 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5507 match(B, m_Not(m_Specific(CmpRHS))))) 5508 return {L.Flavor, SPNB_NA, false}; 5509 } 5510 5511 return {SPF_UNKNOWN, SPNB_NA, false}; 5512 } 5513 5514 /// If the input value is the result of a 'not' op, constant integer, or vector 5515 /// splat of a constant integer, return the bitwise-not source value. 5516 /// TODO: This could be extended to handle non-splat vector integer constants. 5517 static Value *getNotValue(Value *V) { 5518 Value *NotV; 5519 if (match(V, m_Not(m_Value(NotV)))) 5520 return NotV; 5521 5522 const APInt *C; 5523 if (match(V, m_APInt(C))) 5524 return ConstantInt::get(V->getType(), ~(*C)); 5525 5526 return nullptr; 5527 } 5528 5529 /// Match non-obvious integer minimum and maximum sequences. 5530 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5531 Value *CmpLHS, Value *CmpRHS, 5532 Value *TrueVal, Value *FalseVal, 5533 Value *&LHS, Value *&RHS, 5534 unsigned Depth) { 5535 // Assume success. If there's no match, callers should not use these anyway. 5536 LHS = TrueVal; 5537 RHS = FalseVal; 5538 5539 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5540 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5541 return SPR; 5542 5543 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5544 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5545 return SPR; 5546 5547 // Look through 'not' ops to find disguised min/max. 5548 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5549 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5550 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5551 switch (Pred) { 5552 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5553 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5554 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5555 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5556 default: break; 5557 } 5558 } 5559 5560 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5561 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5562 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5563 switch (Pred) { 5564 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5565 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5566 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5567 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5568 default: break; 5569 } 5570 } 5571 5572 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5573 return {SPF_UNKNOWN, SPNB_NA, false}; 5574 5575 // Z = X -nsw Y 5576 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5577 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5578 if (match(TrueVal, m_Zero()) && 5579 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5580 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5581 5582 // Z = X -nsw Y 5583 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5584 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5585 if (match(FalseVal, m_Zero()) && 5586 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5587 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5588 5589 const APInt *C1; 5590 if (!match(CmpRHS, m_APInt(C1))) 5591 return {SPF_UNKNOWN, SPNB_NA, false}; 5592 5593 // An unsigned min/max can be written with a signed compare. 5594 const APInt *C2; 5595 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5596 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5597 // Is the sign bit set? 5598 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5599 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5600 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5601 C2->isMaxSignedValue()) 5602 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5603 5604 // Is the sign bit clear? 5605 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5606 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5607 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5608 C2->isMinSignedValue()) 5609 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5610 } 5611 5612 return {SPF_UNKNOWN, SPNB_NA, false}; 5613 } 5614 5615 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5616 assert(X && Y && "Invalid operand"); 5617 5618 // X = sub (0, Y) || X = sub nsw (0, Y) 5619 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5620 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5621 return true; 5622 5623 // Y = sub (0, X) || Y = sub nsw (0, X) 5624 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5625 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5626 return true; 5627 5628 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5629 Value *A, *B; 5630 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5631 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5632 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5633 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5634 } 5635 5636 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5637 FastMathFlags FMF, 5638 Value *CmpLHS, Value *CmpRHS, 5639 Value *TrueVal, Value *FalseVal, 5640 Value *&LHS, Value *&RHS, 5641 unsigned Depth) { 5642 if (CmpInst::isFPPredicate(Pred)) { 5643 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5644 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5645 // purpose of identifying min/max. Disregard vector constants with undefined 5646 // elements because those can not be back-propagated for analysis. 5647 Value *OutputZeroVal = nullptr; 5648 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5649 !cast<Constant>(TrueVal)->containsUndefElement()) 5650 OutputZeroVal = TrueVal; 5651 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5652 !cast<Constant>(FalseVal)->containsUndefElement()) 5653 OutputZeroVal = FalseVal; 5654 5655 if (OutputZeroVal) { 5656 if (match(CmpLHS, m_AnyZeroFP())) 5657 CmpLHS = OutputZeroVal; 5658 if (match(CmpRHS, m_AnyZeroFP())) 5659 CmpRHS = OutputZeroVal; 5660 } 5661 } 5662 5663 LHS = CmpLHS; 5664 RHS = CmpRHS; 5665 5666 // Signed zero may return inconsistent results between implementations. 5667 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5668 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5669 // Therefore, we behave conservatively and only proceed if at least one of the 5670 // operands is known to not be zero or if we don't care about signed zero. 5671 switch (Pred) { 5672 default: break; 5673 // FIXME: Include OGT/OLT/UGT/ULT. 5674 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5675 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5676 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5677 !isKnownNonZero(CmpRHS)) 5678 return {SPF_UNKNOWN, SPNB_NA, false}; 5679 } 5680 5681 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5682 bool Ordered = false; 5683 5684 // When given one NaN and one non-NaN input: 5685 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5686 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5687 // ordered comparison fails), which could be NaN or non-NaN. 5688 // so here we discover exactly what NaN behavior is required/accepted. 5689 if (CmpInst::isFPPredicate(Pred)) { 5690 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5691 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5692 5693 if (LHSSafe && RHSSafe) { 5694 // Both operands are known non-NaN. 5695 NaNBehavior = SPNB_RETURNS_ANY; 5696 } else if (CmpInst::isOrdered(Pred)) { 5697 // An ordered comparison will return false when given a NaN, so it 5698 // returns the RHS. 5699 Ordered = true; 5700 if (LHSSafe) 5701 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5702 NaNBehavior = SPNB_RETURNS_NAN; 5703 else if (RHSSafe) 5704 NaNBehavior = SPNB_RETURNS_OTHER; 5705 else 5706 // Completely unsafe. 5707 return {SPF_UNKNOWN, SPNB_NA, false}; 5708 } else { 5709 Ordered = false; 5710 // An unordered comparison will return true when given a NaN, so it 5711 // returns the LHS. 5712 if (LHSSafe) 5713 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5714 NaNBehavior = SPNB_RETURNS_OTHER; 5715 else if (RHSSafe) 5716 NaNBehavior = SPNB_RETURNS_NAN; 5717 else 5718 // Completely unsafe. 5719 return {SPF_UNKNOWN, SPNB_NA, false}; 5720 } 5721 } 5722 5723 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5724 std::swap(CmpLHS, CmpRHS); 5725 Pred = CmpInst::getSwappedPredicate(Pred); 5726 if (NaNBehavior == SPNB_RETURNS_NAN) 5727 NaNBehavior = SPNB_RETURNS_OTHER; 5728 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5729 NaNBehavior = SPNB_RETURNS_NAN; 5730 Ordered = !Ordered; 5731 } 5732 5733 // ([if]cmp X, Y) ? X : Y 5734 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5735 switch (Pred) { 5736 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5737 case ICmpInst::ICMP_UGT: 5738 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5739 case ICmpInst::ICMP_SGT: 5740 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5741 case ICmpInst::ICMP_ULT: 5742 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5743 case ICmpInst::ICMP_SLT: 5744 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5745 case FCmpInst::FCMP_UGT: 5746 case FCmpInst::FCMP_UGE: 5747 case FCmpInst::FCMP_OGT: 5748 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5749 case FCmpInst::FCMP_ULT: 5750 case FCmpInst::FCMP_ULE: 5751 case FCmpInst::FCMP_OLT: 5752 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5753 } 5754 } 5755 5756 if (isKnownNegation(TrueVal, FalseVal)) { 5757 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5758 // match against either LHS or sext(LHS). 5759 auto MaybeSExtCmpLHS = 5760 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5761 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5762 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5763 if (match(TrueVal, MaybeSExtCmpLHS)) { 5764 // Set the return values. If the compare uses the negated value (-X >s 0), 5765 // swap the return values because the negated value is always 'RHS'. 5766 LHS = TrueVal; 5767 RHS = FalseVal; 5768 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5769 std::swap(LHS, RHS); 5770 5771 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5772 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5773 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5774 return {SPF_ABS, SPNB_NA, false}; 5775 5776 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5777 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5778 return {SPF_ABS, SPNB_NA, false}; 5779 5780 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5781 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5782 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5783 return {SPF_NABS, SPNB_NA, false}; 5784 } 5785 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5786 // Set the return values. If the compare uses the negated value (-X >s 0), 5787 // swap the return values because the negated value is always 'RHS'. 5788 LHS = FalseVal; 5789 RHS = TrueVal; 5790 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5791 std::swap(LHS, RHS); 5792 5793 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5794 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5795 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5796 return {SPF_NABS, SPNB_NA, false}; 5797 5798 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5799 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5800 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5801 return {SPF_ABS, SPNB_NA, false}; 5802 } 5803 } 5804 5805 if (CmpInst::isIntPredicate(Pred)) 5806 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5807 5808 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5809 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5810 // semantics than minNum. Be conservative in such case. 5811 if (NaNBehavior != SPNB_RETURNS_ANY || 5812 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5813 !isKnownNonZero(CmpRHS))) 5814 return {SPF_UNKNOWN, SPNB_NA, false}; 5815 5816 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5817 } 5818 5819 /// Helps to match a select pattern in case of a type mismatch. 5820 /// 5821 /// The function processes the case when type of true and false values of a 5822 /// select instruction differs from type of the cmp instruction operands because 5823 /// of a cast instruction. The function checks if it is legal to move the cast 5824 /// operation after "select". If yes, it returns the new second value of 5825 /// "select" (with the assumption that cast is moved): 5826 /// 1. As operand of cast instruction when both values of "select" are same cast 5827 /// instructions. 5828 /// 2. As restored constant (by applying reverse cast operation) when the first 5829 /// value of the "select" is a cast operation and the second value is a 5830 /// constant. 5831 /// NOTE: We return only the new second value because the first value could be 5832 /// accessed as operand of cast instruction. 5833 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5834 Instruction::CastOps *CastOp) { 5835 auto *Cast1 = dyn_cast<CastInst>(V1); 5836 if (!Cast1) 5837 return nullptr; 5838 5839 *CastOp = Cast1->getOpcode(); 5840 Type *SrcTy = Cast1->getSrcTy(); 5841 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5842 // If V1 and V2 are both the same cast from the same type, look through V1. 5843 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5844 return Cast2->getOperand(0); 5845 return nullptr; 5846 } 5847 5848 auto *C = dyn_cast<Constant>(V2); 5849 if (!C) 5850 return nullptr; 5851 5852 Constant *CastedTo = nullptr; 5853 switch (*CastOp) { 5854 case Instruction::ZExt: 5855 if (CmpI->isUnsigned()) 5856 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5857 break; 5858 case Instruction::SExt: 5859 if (CmpI->isSigned()) 5860 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5861 break; 5862 case Instruction::Trunc: 5863 Constant *CmpConst; 5864 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5865 CmpConst->getType() == SrcTy) { 5866 // Here we have the following case: 5867 // 5868 // %cond = cmp iN %x, CmpConst 5869 // %tr = trunc iN %x to iK 5870 // %narrowsel = select i1 %cond, iK %t, iK C 5871 // 5872 // We can always move trunc after select operation: 5873 // 5874 // %cond = cmp iN %x, CmpConst 5875 // %widesel = select i1 %cond, iN %x, iN CmpConst 5876 // %tr = trunc iN %widesel to iK 5877 // 5878 // Note that C could be extended in any way because we don't care about 5879 // upper bits after truncation. It can't be abs pattern, because it would 5880 // look like: 5881 // 5882 // select i1 %cond, x, -x. 5883 // 5884 // So only min/max pattern could be matched. Such match requires widened C 5885 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5886 // CmpConst == C is checked below. 5887 CastedTo = CmpConst; 5888 } else { 5889 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5890 } 5891 break; 5892 case Instruction::FPTrunc: 5893 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5894 break; 5895 case Instruction::FPExt: 5896 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5897 break; 5898 case Instruction::FPToUI: 5899 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5900 break; 5901 case Instruction::FPToSI: 5902 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5903 break; 5904 case Instruction::UIToFP: 5905 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5906 break; 5907 case Instruction::SIToFP: 5908 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5909 break; 5910 default: 5911 break; 5912 } 5913 5914 if (!CastedTo) 5915 return nullptr; 5916 5917 // Make sure the cast doesn't lose any information. 5918 Constant *CastedBack = 5919 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5920 if (CastedBack != C) 5921 return nullptr; 5922 5923 return CastedTo; 5924 } 5925 5926 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5927 Instruction::CastOps *CastOp, 5928 unsigned Depth) { 5929 if (Depth >= MaxAnalysisRecursionDepth) 5930 return {SPF_UNKNOWN, SPNB_NA, false}; 5931 5932 SelectInst *SI = dyn_cast<SelectInst>(V); 5933 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5934 5935 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5936 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5937 5938 Value *TrueVal = SI->getTrueValue(); 5939 Value *FalseVal = SI->getFalseValue(); 5940 5941 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5942 CastOp, Depth); 5943 } 5944 5945 SelectPatternResult llvm::matchDecomposedSelectPattern( 5946 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5947 Instruction::CastOps *CastOp, unsigned Depth) { 5948 CmpInst::Predicate Pred = CmpI->getPredicate(); 5949 Value *CmpLHS = CmpI->getOperand(0); 5950 Value *CmpRHS = CmpI->getOperand(1); 5951 FastMathFlags FMF; 5952 if (isa<FPMathOperator>(CmpI)) 5953 FMF = CmpI->getFastMathFlags(); 5954 5955 // Bail out early. 5956 if (CmpI->isEquality()) 5957 return {SPF_UNKNOWN, SPNB_NA, false}; 5958 5959 // Deal with type mismatches. 5960 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5961 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5962 // If this is a potential fmin/fmax with a cast to integer, then ignore 5963 // -0.0 because there is no corresponding integer value. 5964 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5965 FMF.setNoSignedZeros(); 5966 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5967 cast<CastInst>(TrueVal)->getOperand(0), C, 5968 LHS, RHS, Depth); 5969 } 5970 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5971 // If this is a potential fmin/fmax with a cast to integer, then ignore 5972 // -0.0 because there is no corresponding integer value. 5973 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5974 FMF.setNoSignedZeros(); 5975 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5976 C, cast<CastInst>(FalseVal)->getOperand(0), 5977 LHS, RHS, Depth); 5978 } 5979 } 5980 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5981 LHS, RHS, Depth); 5982 } 5983 5984 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5985 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5986 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5987 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5988 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5989 if (SPF == SPF_FMINNUM) 5990 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5991 if (SPF == SPF_FMAXNUM) 5992 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5993 llvm_unreachable("unhandled!"); 5994 } 5995 5996 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5997 if (SPF == SPF_SMIN) return SPF_SMAX; 5998 if (SPF == SPF_UMIN) return SPF_UMAX; 5999 if (SPF == SPF_SMAX) return SPF_SMIN; 6000 if (SPF == SPF_UMAX) return SPF_UMIN; 6001 llvm_unreachable("unhandled!"); 6002 } 6003 6004 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6005 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6006 } 6007 6008 /// Return true if "icmp Pred LHS RHS" is always true. 6009 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6010 const Value *RHS, const DataLayout &DL, 6011 unsigned Depth) { 6012 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6013 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6014 return true; 6015 6016 switch (Pred) { 6017 default: 6018 return false; 6019 6020 case CmpInst::ICMP_SLE: { 6021 const APInt *C; 6022 6023 // LHS s<= LHS +_{nsw} C if C >= 0 6024 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6025 return !C->isNegative(); 6026 return false; 6027 } 6028 6029 case CmpInst::ICMP_ULE: { 6030 const APInt *C; 6031 6032 // LHS u<= LHS +_{nuw} C for any C 6033 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6034 return true; 6035 6036 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6037 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6038 const Value *&X, 6039 const APInt *&CA, const APInt *&CB) { 6040 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6041 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6042 return true; 6043 6044 // If X & C == 0 then (X | C) == X +_{nuw} C 6045 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6046 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6047 KnownBits Known(CA->getBitWidth()); 6048 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6049 /*CxtI*/ nullptr, /*DT*/ nullptr); 6050 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6051 return true; 6052 } 6053 6054 return false; 6055 }; 6056 6057 const Value *X; 6058 const APInt *CLHS, *CRHS; 6059 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6060 return CLHS->ule(*CRHS); 6061 6062 return false; 6063 } 6064 } 6065 } 6066 6067 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6068 /// ALHS ARHS" is true. Otherwise, return None. 6069 static Optional<bool> 6070 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6071 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6072 const DataLayout &DL, unsigned Depth) { 6073 switch (Pred) { 6074 default: 6075 return None; 6076 6077 case CmpInst::ICMP_SLT: 6078 case CmpInst::ICMP_SLE: 6079 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6080 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6081 return true; 6082 return None; 6083 6084 case CmpInst::ICMP_ULT: 6085 case CmpInst::ICMP_ULE: 6086 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6087 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6088 return true; 6089 return None; 6090 } 6091 } 6092 6093 /// Return true if the operands of the two compares match. IsSwappedOps is true 6094 /// when the operands match, but are swapped. 6095 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6096 const Value *BLHS, const Value *BRHS, 6097 bool &IsSwappedOps) { 6098 6099 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6100 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6101 return IsMatchingOps || IsSwappedOps; 6102 } 6103 6104 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6105 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6106 /// Otherwise, return None if we can't infer anything. 6107 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6108 CmpInst::Predicate BPred, 6109 bool AreSwappedOps) { 6110 // Canonicalize the predicate as if the operands were not commuted. 6111 if (AreSwappedOps) 6112 BPred = ICmpInst::getSwappedPredicate(BPred); 6113 6114 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6115 return true; 6116 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6117 return false; 6118 6119 return None; 6120 } 6121 6122 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6123 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6124 /// Otherwise, return None if we can't infer anything. 6125 static Optional<bool> 6126 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6127 const ConstantInt *C1, 6128 CmpInst::Predicate BPred, 6129 const ConstantInt *C2) { 6130 ConstantRange DomCR = 6131 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6132 ConstantRange CR = 6133 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6134 ConstantRange Intersection = DomCR.intersectWith(CR); 6135 ConstantRange Difference = DomCR.difference(CR); 6136 if (Intersection.isEmptySet()) 6137 return false; 6138 if (Difference.isEmptySet()) 6139 return true; 6140 return None; 6141 } 6142 6143 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6144 /// false. Otherwise, return None if we can't infer anything. 6145 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6146 CmpInst::Predicate BPred, 6147 const Value *BLHS, const Value *BRHS, 6148 const DataLayout &DL, bool LHSIsTrue, 6149 unsigned Depth) { 6150 Value *ALHS = LHS->getOperand(0); 6151 Value *ARHS = LHS->getOperand(1); 6152 6153 // The rest of the logic assumes the LHS condition is true. If that's not the 6154 // case, invert the predicate to make it so. 6155 CmpInst::Predicate APred = 6156 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6157 6158 // Can we infer anything when the two compares have matching operands? 6159 bool AreSwappedOps; 6160 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6161 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6162 APred, BPred, AreSwappedOps)) 6163 return Implication; 6164 // No amount of additional analysis will infer the second condition, so 6165 // early exit. 6166 return None; 6167 } 6168 6169 // Can we infer anything when the LHS operands match and the RHS operands are 6170 // constants (not necessarily matching)? 6171 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6172 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6173 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6174 return Implication; 6175 // No amount of additional analysis will infer the second condition, so 6176 // early exit. 6177 return None; 6178 } 6179 6180 if (APred == BPred) 6181 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6182 return None; 6183 } 6184 6185 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6186 /// false. Otherwise, return None if we can't infer anything. We expect the 6187 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6188 static Optional<bool> 6189 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6190 const Value *RHSOp0, const Value *RHSOp1, 6191 6192 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6193 // The LHS must be an 'or' or an 'and' instruction. 6194 assert((LHS->getOpcode() == Instruction::And || 6195 LHS->getOpcode() == Instruction::Or) && 6196 "Expected LHS to be 'and' or 'or'."); 6197 6198 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6199 6200 // If the result of an 'or' is false, then we know both legs of the 'or' are 6201 // false. Similarly, if the result of an 'and' is true, then we know both 6202 // legs of the 'and' are true. 6203 Value *ALHS, *ARHS; 6204 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6205 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6206 // FIXME: Make this non-recursion. 6207 if (Optional<bool> Implication = isImpliedCondition( 6208 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6209 return Implication; 6210 if (Optional<bool> Implication = isImpliedCondition( 6211 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6212 return Implication; 6213 return None; 6214 } 6215 return None; 6216 } 6217 6218 Optional<bool> 6219 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6220 const Value *RHSOp0, const Value *RHSOp1, 6221 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6222 // Bail out when we hit the limit. 6223 if (Depth == MaxAnalysisRecursionDepth) 6224 return None; 6225 6226 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6227 // example. 6228 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6229 return None; 6230 6231 Type *OpTy = LHS->getType(); 6232 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6233 6234 // FIXME: Extending the code below to handle vectors. 6235 if (OpTy->isVectorTy()) 6236 return None; 6237 6238 assert(OpTy->isIntegerTy(1) && "implied by above"); 6239 6240 // Both LHS and RHS are icmps. 6241 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6242 if (LHSCmp) 6243 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6244 Depth); 6245 6246 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6247 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6248 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6249 if (LHSBO) { 6250 if ((LHSBO->getOpcode() == Instruction::And || 6251 LHSBO->getOpcode() == Instruction::Or)) 6252 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6253 Depth); 6254 } 6255 return None; 6256 } 6257 6258 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6259 const DataLayout &DL, bool LHSIsTrue, 6260 unsigned Depth) { 6261 // LHS ==> RHS by definition 6262 if (LHS == RHS) 6263 return LHSIsTrue; 6264 6265 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6266 if (RHSCmp) 6267 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6268 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6269 LHSIsTrue, Depth); 6270 return None; 6271 } 6272 6273 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6274 // condition dominating ContextI or nullptr, if no condition is found. 6275 static std::pair<Value *, bool> 6276 getDomPredecessorCondition(const Instruction *ContextI) { 6277 if (!ContextI || !ContextI->getParent()) 6278 return {nullptr, false}; 6279 6280 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6281 // dominator tree (eg, from a SimplifyQuery) instead? 6282 const BasicBlock *ContextBB = ContextI->getParent(); 6283 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6284 if (!PredBB) 6285 return {nullptr, false}; 6286 6287 // We need a conditional branch in the predecessor. 6288 Value *PredCond; 6289 BasicBlock *TrueBB, *FalseBB; 6290 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6291 return {nullptr, false}; 6292 6293 // The branch should get simplified. Don't bother simplifying this condition. 6294 if (TrueBB == FalseBB) 6295 return {nullptr, false}; 6296 6297 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6298 "Predecessor block does not point to successor?"); 6299 6300 // Is this condition implied by the predecessor condition? 6301 return {PredCond, TrueBB == ContextBB}; 6302 } 6303 6304 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6305 const Instruction *ContextI, 6306 const DataLayout &DL) { 6307 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6308 auto PredCond = getDomPredecessorCondition(ContextI); 6309 if (PredCond.first) 6310 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6311 return None; 6312 } 6313 6314 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6315 const Value *LHS, const Value *RHS, 6316 const Instruction *ContextI, 6317 const DataLayout &DL) { 6318 auto PredCond = getDomPredecessorCondition(ContextI); 6319 if (PredCond.first) 6320 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6321 PredCond.second); 6322 return None; 6323 } 6324 6325 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6326 APInt &Upper, const InstrInfoQuery &IIQ) { 6327 unsigned Width = Lower.getBitWidth(); 6328 const APInt *C; 6329 switch (BO.getOpcode()) { 6330 case Instruction::Add: 6331 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6332 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6333 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6334 // 'add nuw x, C' produces [C, UINT_MAX]. 6335 Lower = *C; 6336 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6337 if (C->isNegative()) { 6338 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6339 Lower = APInt::getSignedMinValue(Width); 6340 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6341 } else { 6342 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6343 Lower = APInt::getSignedMinValue(Width) + *C; 6344 Upper = APInt::getSignedMaxValue(Width) + 1; 6345 } 6346 } 6347 } 6348 break; 6349 6350 case Instruction::And: 6351 if (match(BO.getOperand(1), m_APInt(C))) 6352 // 'and x, C' produces [0, C]. 6353 Upper = *C + 1; 6354 break; 6355 6356 case Instruction::Or: 6357 if (match(BO.getOperand(1), m_APInt(C))) 6358 // 'or x, C' produces [C, UINT_MAX]. 6359 Lower = *C; 6360 break; 6361 6362 case Instruction::AShr: 6363 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6364 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6365 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6366 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6367 } else if (match(BO.getOperand(0), m_APInt(C))) { 6368 unsigned ShiftAmount = Width - 1; 6369 if (!C->isNullValue() && IIQ.isExact(&BO)) 6370 ShiftAmount = C->countTrailingZeros(); 6371 if (C->isNegative()) { 6372 // 'ashr C, x' produces [C, C >> (Width-1)] 6373 Lower = *C; 6374 Upper = C->ashr(ShiftAmount) + 1; 6375 } else { 6376 // 'ashr C, x' produces [C >> (Width-1), C] 6377 Lower = C->ashr(ShiftAmount); 6378 Upper = *C + 1; 6379 } 6380 } 6381 break; 6382 6383 case Instruction::LShr: 6384 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6385 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6386 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6387 } else if (match(BO.getOperand(0), m_APInt(C))) { 6388 // 'lshr C, x' produces [C >> (Width-1), C]. 6389 unsigned ShiftAmount = Width - 1; 6390 if (!C->isNullValue() && IIQ.isExact(&BO)) 6391 ShiftAmount = C->countTrailingZeros(); 6392 Lower = C->lshr(ShiftAmount); 6393 Upper = *C + 1; 6394 } 6395 break; 6396 6397 case Instruction::Shl: 6398 if (match(BO.getOperand(0), m_APInt(C))) { 6399 if (IIQ.hasNoUnsignedWrap(&BO)) { 6400 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6401 Lower = *C; 6402 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6403 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6404 if (C->isNegative()) { 6405 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6406 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6407 Lower = C->shl(ShiftAmount); 6408 Upper = *C + 1; 6409 } else { 6410 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6411 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6412 Lower = *C; 6413 Upper = C->shl(ShiftAmount) + 1; 6414 } 6415 } 6416 } 6417 break; 6418 6419 case Instruction::SDiv: 6420 if (match(BO.getOperand(1), m_APInt(C))) { 6421 APInt IntMin = APInt::getSignedMinValue(Width); 6422 APInt IntMax = APInt::getSignedMaxValue(Width); 6423 if (C->isAllOnesValue()) { 6424 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6425 // where C != -1 and C != 0 and C != 1 6426 Lower = IntMin + 1; 6427 Upper = IntMax + 1; 6428 } else if (C->countLeadingZeros() < Width - 1) { 6429 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6430 // where C != -1 and C != 0 and C != 1 6431 Lower = IntMin.sdiv(*C); 6432 Upper = IntMax.sdiv(*C); 6433 if (Lower.sgt(Upper)) 6434 std::swap(Lower, Upper); 6435 Upper = Upper + 1; 6436 assert(Upper != Lower && "Upper part of range has wrapped!"); 6437 } 6438 } else if (match(BO.getOperand(0), m_APInt(C))) { 6439 if (C->isMinSignedValue()) { 6440 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6441 Lower = *C; 6442 Upper = Lower.lshr(1) + 1; 6443 } else { 6444 // 'sdiv C, x' produces [-|C|, |C|]. 6445 Upper = C->abs() + 1; 6446 Lower = (-Upper) + 1; 6447 } 6448 } 6449 break; 6450 6451 case Instruction::UDiv: 6452 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6453 // 'udiv x, C' produces [0, UINT_MAX / C]. 6454 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6455 } else if (match(BO.getOperand(0), m_APInt(C))) { 6456 // 'udiv C, x' produces [0, C]. 6457 Upper = *C + 1; 6458 } 6459 break; 6460 6461 case Instruction::SRem: 6462 if (match(BO.getOperand(1), m_APInt(C))) { 6463 // 'srem x, C' produces (-|C|, |C|). 6464 Upper = C->abs(); 6465 Lower = (-Upper) + 1; 6466 } 6467 break; 6468 6469 case Instruction::URem: 6470 if (match(BO.getOperand(1), m_APInt(C))) 6471 // 'urem x, C' produces [0, C). 6472 Upper = *C; 6473 break; 6474 6475 default: 6476 break; 6477 } 6478 } 6479 6480 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6481 APInt &Upper) { 6482 unsigned Width = Lower.getBitWidth(); 6483 const APInt *C; 6484 switch (II.getIntrinsicID()) { 6485 case Intrinsic::uadd_sat: 6486 // uadd.sat(x, C) produces [C, UINT_MAX]. 6487 if (match(II.getOperand(0), m_APInt(C)) || 6488 match(II.getOperand(1), m_APInt(C))) 6489 Lower = *C; 6490 break; 6491 case Intrinsic::sadd_sat: 6492 if (match(II.getOperand(0), m_APInt(C)) || 6493 match(II.getOperand(1), m_APInt(C))) { 6494 if (C->isNegative()) { 6495 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6496 Lower = APInt::getSignedMinValue(Width); 6497 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6498 } else { 6499 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6500 Lower = APInt::getSignedMinValue(Width) + *C; 6501 Upper = APInt::getSignedMaxValue(Width) + 1; 6502 } 6503 } 6504 break; 6505 case Intrinsic::usub_sat: 6506 // usub.sat(C, x) produces [0, C]. 6507 if (match(II.getOperand(0), m_APInt(C))) 6508 Upper = *C + 1; 6509 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6510 else if (match(II.getOperand(1), m_APInt(C))) 6511 Upper = APInt::getMaxValue(Width) - *C + 1; 6512 break; 6513 case Intrinsic::ssub_sat: 6514 if (match(II.getOperand(0), m_APInt(C))) { 6515 if (C->isNegative()) { 6516 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6517 Lower = APInt::getSignedMinValue(Width); 6518 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6519 } else { 6520 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6521 Lower = *C - APInt::getSignedMaxValue(Width); 6522 Upper = APInt::getSignedMaxValue(Width) + 1; 6523 } 6524 } else if (match(II.getOperand(1), m_APInt(C))) { 6525 if (C->isNegative()) { 6526 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6527 Lower = APInt::getSignedMinValue(Width) - *C; 6528 Upper = APInt::getSignedMaxValue(Width) + 1; 6529 } else { 6530 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6531 Lower = APInt::getSignedMinValue(Width); 6532 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6533 } 6534 } 6535 break; 6536 case Intrinsic::umin: 6537 case Intrinsic::umax: 6538 case Intrinsic::smin: 6539 case Intrinsic::smax: 6540 if (!match(II.getOperand(0), m_APInt(C)) && 6541 !match(II.getOperand(1), m_APInt(C))) 6542 break; 6543 6544 switch (II.getIntrinsicID()) { 6545 case Intrinsic::umin: 6546 Upper = *C + 1; 6547 break; 6548 case Intrinsic::umax: 6549 Lower = *C; 6550 break; 6551 case Intrinsic::smin: 6552 Lower = APInt::getSignedMinValue(Width); 6553 Upper = *C + 1; 6554 break; 6555 case Intrinsic::smax: 6556 Lower = *C; 6557 Upper = APInt::getSignedMaxValue(Width) + 1; 6558 break; 6559 default: 6560 llvm_unreachable("Must be min/max intrinsic"); 6561 } 6562 break; 6563 case Intrinsic::abs: 6564 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6565 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6566 if (match(II.getOperand(1), m_One())) 6567 Upper = APInt::getSignedMaxValue(Width) + 1; 6568 else 6569 Upper = APInt::getSignedMinValue(Width) + 1; 6570 break; 6571 default: 6572 break; 6573 } 6574 } 6575 6576 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6577 APInt &Upper, const InstrInfoQuery &IIQ) { 6578 const Value *LHS = nullptr, *RHS = nullptr; 6579 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6580 if (R.Flavor == SPF_UNKNOWN) 6581 return; 6582 6583 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6584 6585 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6586 // If the negation part of the abs (in RHS) has the NSW flag, 6587 // then the result of abs(X) is [0..SIGNED_MAX], 6588 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6589 Lower = APInt::getNullValue(BitWidth); 6590 if (match(RHS, m_Neg(m_Specific(LHS))) && 6591 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6592 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6593 else 6594 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6595 return; 6596 } 6597 6598 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6599 // The result of -abs(X) is <= 0. 6600 Lower = APInt::getSignedMinValue(BitWidth); 6601 Upper = APInt(BitWidth, 1); 6602 return; 6603 } 6604 6605 const APInt *C; 6606 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6607 return; 6608 6609 switch (R.Flavor) { 6610 case SPF_UMIN: 6611 Upper = *C + 1; 6612 break; 6613 case SPF_UMAX: 6614 Lower = *C; 6615 break; 6616 case SPF_SMIN: 6617 Lower = APInt::getSignedMinValue(BitWidth); 6618 Upper = *C + 1; 6619 break; 6620 case SPF_SMAX: 6621 Lower = *C; 6622 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6623 break; 6624 default: 6625 break; 6626 } 6627 } 6628 6629 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6630 AssumptionCache *AC, 6631 const Instruction *CtxI, 6632 unsigned Depth) { 6633 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6634 6635 if (Depth == MaxAnalysisRecursionDepth) 6636 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6637 6638 const APInt *C; 6639 if (match(V, m_APInt(C))) 6640 return ConstantRange(*C); 6641 6642 InstrInfoQuery IIQ(UseInstrInfo); 6643 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6644 APInt Lower = APInt(BitWidth, 0); 6645 APInt Upper = APInt(BitWidth, 0); 6646 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6647 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6648 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6649 setLimitsForIntrinsic(*II, Lower, Upper); 6650 else if (auto *SI = dyn_cast<SelectInst>(V)) 6651 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6652 6653 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6654 6655 if (auto *I = dyn_cast<Instruction>(V)) 6656 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6657 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6658 6659 if (CtxI && AC) { 6660 // Try to restrict the range based on information from assumptions. 6661 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6662 if (!AssumeVH) 6663 continue; 6664 CallInst *I = cast<CallInst>(AssumeVH); 6665 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6666 "Got assumption for the wrong function!"); 6667 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6668 "must be an assume intrinsic"); 6669 6670 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6671 continue; 6672 Value *Arg = I->getArgOperand(0); 6673 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6674 // Currently we just use information from comparisons. 6675 if (!Cmp || Cmp->getOperand(0) != V) 6676 continue; 6677 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6678 AC, I, Depth + 1); 6679 CR = CR.intersectWith( 6680 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6681 } 6682 } 6683 6684 return CR; 6685 } 6686 6687 static Optional<int64_t> 6688 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6689 // Skip over the first indices. 6690 gep_type_iterator GTI = gep_type_begin(GEP); 6691 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6692 /*skip along*/; 6693 6694 // Compute the offset implied by the rest of the indices. 6695 int64_t Offset = 0; 6696 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6697 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6698 if (!OpC) 6699 return None; 6700 if (OpC->isZero()) 6701 continue; // No offset. 6702 6703 // Handle struct indices, which add their field offset to the pointer. 6704 if (StructType *STy = GTI.getStructTypeOrNull()) { 6705 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6706 continue; 6707 } 6708 6709 // Otherwise, we have a sequential type like an array or fixed-length 6710 // vector. Multiply the index by the ElementSize. 6711 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6712 if (Size.isScalable()) 6713 return None; 6714 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6715 } 6716 6717 return Offset; 6718 } 6719 6720 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6721 const DataLayout &DL) { 6722 Ptr1 = Ptr1->stripPointerCasts(); 6723 Ptr2 = Ptr2->stripPointerCasts(); 6724 6725 // Handle the trivial case first. 6726 if (Ptr1 == Ptr2) { 6727 return 0; 6728 } 6729 6730 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6731 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6732 6733 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6734 // as in "P" and "gep P, 1". 6735 // Also do this iteratively to handle the the following case: 6736 // Ptr_t1 = GEP Ptr1, c1 6737 // Ptr_t2 = GEP Ptr_t1, c2 6738 // Ptr2 = GEP Ptr_t2, c3 6739 // where we will return c1+c2+c3. 6740 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6741 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6742 // are the same, and return the difference between offsets. 6743 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6744 const Value *Ptr) -> Optional<int64_t> { 6745 const GEPOperator *GEP_T = GEP; 6746 int64_t OffsetVal = 0; 6747 bool HasSameBase = false; 6748 while (GEP_T) { 6749 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6750 if (!Offset) 6751 return None; 6752 OffsetVal += *Offset; 6753 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6754 if (Op0 == Ptr) { 6755 HasSameBase = true; 6756 break; 6757 } 6758 GEP_T = dyn_cast<GEPOperator>(Op0); 6759 } 6760 if (!HasSameBase) 6761 return None; 6762 return OffsetVal; 6763 }; 6764 6765 if (GEP1) { 6766 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6767 if (Offset) 6768 return -*Offset; 6769 } 6770 if (GEP2) { 6771 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6772 if (Offset) 6773 return Offset; 6774 } 6775 6776 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6777 // base. After that base, they may have some number of common (and 6778 // potentially variable) indices. After that they handle some constant 6779 // offset, which determines their offset from each other. At this point, we 6780 // handle no other case. 6781 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6782 return None; 6783 6784 // Skip any common indices and track the GEP types. 6785 unsigned Idx = 1; 6786 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6787 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6788 break; 6789 6790 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6791 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6792 if (!Offset1 || !Offset2) 6793 return None; 6794 return *Offset2 - *Offset1; 6795 } 6796