1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (Shuf->getMask()->getType()->getVectorElementCount().Scalable) 172 return false; 173 174 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 175 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 177 178 for (int i = 0; i != NumMaskElts; ++i) { 179 if (!DemandedElts[i]) 180 continue; 181 int M = Shuf->getMaskValue(i); 182 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 183 184 // For undef elements, we don't know anything about the common state of 185 // the shuffle result. 186 if (M == -1) 187 return false; 188 if (M < NumElts) 189 DemandedLHS.setBit(M % NumElts); 190 else 191 DemandedRHS.setBit(M % NumElts); 192 } 193 194 return true; 195 } 196 197 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 198 KnownBits &Known, unsigned Depth, const Query &Q); 199 200 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 201 const Query &Q) { 202 Type *Ty = V->getType(); 203 APInt DemandedElts = Ty->isVectorTy() 204 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 205 : APInt(1, 1); 206 computeKnownBits(V, DemandedElts, Known, Depth, Q); 207 } 208 209 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 210 const DataLayout &DL, unsigned Depth, 211 AssumptionCache *AC, const Instruction *CxtI, 212 const DominatorTree *DT, 213 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 214 ::computeKnownBits(V, Known, Depth, 215 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 216 } 217 218 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 219 const Query &Q); 220 221 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 222 unsigned Depth, AssumptionCache *AC, 223 const Instruction *CxtI, 224 const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, 226 bool UseInstrInfo) { 227 return ::computeKnownBits( 228 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 232 const DataLayout &DL, AssumptionCache *AC, 233 const Instruction *CxtI, const DominatorTree *DT, 234 bool UseInstrInfo) { 235 assert(LHS->getType() == RHS->getType() && 236 "LHS and RHS should have the same type"); 237 assert(LHS->getType()->isIntOrIntVectorTy() && 238 "LHS and RHS should be integers"); 239 // Look for an inverted mask: (X & ~M) op (Y & M). 240 Value *M; 241 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 242 match(RHS, m_c_And(m_Specific(M), m_Value()))) 243 return true; 244 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 245 match(LHS, m_c_And(m_Specific(M), m_Value()))) 246 return true; 247 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 248 KnownBits LHSKnown(IT->getBitWidth()); 249 KnownBits RHSKnown(IT->getBitWidth()); 250 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 251 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 252 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 253 } 254 255 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 256 for (const User *U : CxtI->users()) { 257 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 258 if (IC->isEquality()) 259 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 260 if (C->isNullValue()) 261 continue; 262 return false; 263 } 264 return true; 265 } 266 267 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 268 const Query &Q); 269 270 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 271 bool OrZero, unsigned Depth, 272 AssumptionCache *AC, const Instruction *CxtI, 273 const DominatorTree *DT, bool UseInstrInfo) { 274 return ::isKnownToBeAPowerOfTwo( 275 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 276 } 277 278 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 279 280 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 281 AssumptionCache *AC, const Instruction *CxtI, 282 const DominatorTree *DT, bool UseInstrInfo) { 283 return ::isKnownNonZero(V, Depth, 284 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 285 } 286 287 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 288 unsigned Depth, AssumptionCache *AC, 289 const Instruction *CxtI, const DominatorTree *DT, 290 bool UseInstrInfo) { 291 KnownBits Known = 292 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 293 return Known.isNonNegative(); 294 } 295 296 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 297 AssumptionCache *AC, const Instruction *CxtI, 298 const DominatorTree *DT, bool UseInstrInfo) { 299 if (auto *CI = dyn_cast<ConstantInt>(V)) 300 return CI->getValue().isStrictlyPositive(); 301 302 // TODO: We'd doing two recursive queries here. We should factor this such 303 // that only a single query is needed. 304 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 305 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 306 } 307 308 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 309 AssumptionCache *AC, const Instruction *CxtI, 310 const DominatorTree *DT, bool UseInstrInfo) { 311 KnownBits Known = 312 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 313 return Known.isNegative(); 314 } 315 316 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 317 318 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 319 const DataLayout &DL, AssumptionCache *AC, 320 const Instruction *CxtI, const DominatorTree *DT, 321 bool UseInstrInfo) { 322 return ::isKnownNonEqual(V1, V2, 323 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 324 UseInstrInfo, /*ORE=*/nullptr)); 325 } 326 327 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 328 const Query &Q); 329 330 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 331 const DataLayout &DL, unsigned Depth, 332 AssumptionCache *AC, const Instruction *CxtI, 333 const DominatorTree *DT, bool UseInstrInfo) { 334 return ::MaskedValueIsZero( 335 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 336 } 337 338 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 339 unsigned Depth, const Query &Q); 340 341 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 342 const Query &Q) { 343 Type *Ty = V->getType(); 344 APInt DemandedElts = Ty->isVectorTy() 345 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 346 : APInt(1, 1); 347 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 348 } 349 350 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 351 unsigned Depth, AssumptionCache *AC, 352 const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 return ::ComputeNumSignBits( 355 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 356 } 357 358 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 359 bool NSW, 360 KnownBits &KnownOut, KnownBits &Known2, 361 unsigned Depth, const Query &Q) { 362 unsigned BitWidth = KnownOut.getBitWidth(); 363 364 // If an initial sequence of bits in the result is not needed, the 365 // corresponding bits in the operands are not needed. 366 KnownBits LHSKnown(BitWidth); 367 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 368 computeKnownBits(Op1, Known2, Depth + 1, Q); 369 370 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 371 } 372 373 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 374 KnownBits &Known, KnownBits &Known2, 375 unsigned Depth, const Query &Q) { 376 unsigned BitWidth = Known.getBitWidth(); 377 computeKnownBits(Op1, Known, Depth + 1, Q); 378 computeKnownBits(Op0, Known2, Depth + 1, Q); 379 380 bool isKnownNegative = false; 381 bool isKnownNonNegative = false; 382 // If the multiplication is known not to overflow, compute the sign bit. 383 if (NSW) { 384 if (Op0 == Op1) { 385 // The product of a number with itself is non-negative. 386 isKnownNonNegative = true; 387 } else { 388 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 389 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 390 bool isKnownNegativeOp1 = Known.isNegative(); 391 bool isKnownNegativeOp0 = Known2.isNegative(); 392 // The product of two numbers with the same sign is non-negative. 393 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 394 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 395 // The product of a negative number and a non-negative number is either 396 // negative or zero. 397 if (!isKnownNonNegative) 398 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 399 isKnownNonZero(Op0, Depth, Q)) || 400 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 401 isKnownNonZero(Op1, Depth, Q)); 402 } 403 } 404 405 assert(!Known.hasConflict() && !Known2.hasConflict()); 406 // Compute a conservative estimate for high known-0 bits. 407 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 408 Known2.countMinLeadingZeros(), 409 BitWidth) - BitWidth; 410 LeadZ = std::min(LeadZ, BitWidth); 411 412 // The result of the bottom bits of an integer multiply can be 413 // inferred by looking at the bottom bits of both operands and 414 // multiplying them together. 415 // We can infer at least the minimum number of known trailing bits 416 // of both operands. Depending on number of trailing zeros, we can 417 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 418 // a and b are divisible by m and n respectively. 419 // We then calculate how many of those bits are inferrable and set 420 // the output. For example, the i8 mul: 421 // a = XXXX1100 (12) 422 // b = XXXX1110 (14) 423 // We know the bottom 3 bits are zero since the first can be divided by 424 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 425 // Applying the multiplication to the trimmed arguments gets: 426 // XX11 (3) 427 // X111 (7) 428 // ------- 429 // XX11 430 // XX11 431 // XX11 432 // XX11 433 // ------- 434 // XXXXX01 435 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 436 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 437 // The proof for this can be described as: 438 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 439 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 440 // umin(countTrailingZeros(C2), C6) + 441 // umin(C5 - umin(countTrailingZeros(C1), C5), 442 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 443 // %aa = shl i8 %a, C5 444 // %bb = shl i8 %b, C6 445 // %aaa = or i8 %aa, C1 446 // %bbb = or i8 %bb, C2 447 // %mul = mul i8 %aaa, %bbb 448 // %mask = and i8 %mul, C7 449 // => 450 // %mask = i8 ((C1*C2)&C7) 451 // Where C5, C6 describe the known bits of %a, %b 452 // C1, C2 describe the known bottom bits of %a, %b. 453 // C7 describes the mask of the known bits of the result. 454 APInt Bottom0 = Known.One; 455 APInt Bottom1 = Known2.One; 456 457 // How many times we'd be able to divide each argument by 2 (shr by 1). 458 // This gives us the number of trailing zeros on the multiplication result. 459 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 460 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 461 unsigned TrailZero0 = Known.countMinTrailingZeros(); 462 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 463 unsigned TrailZ = TrailZero0 + TrailZero1; 464 465 // Figure out the fewest known-bits operand. 466 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 467 TrailBitsKnown1 - TrailZero1); 468 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 469 470 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 471 Bottom1.getLoBits(TrailBitsKnown1); 472 473 Known.resetAll(); 474 Known.Zero.setHighBits(LeadZ); 475 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 476 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 477 478 // Only make use of no-wrap flags if we failed to compute the sign bit 479 // directly. This matters if the multiplication always overflows, in 480 // which case we prefer to follow the result of the direct computation, 481 // though as the program is invoking undefined behaviour we can choose 482 // whatever we like here. 483 if (isKnownNonNegative && !Known.isNegative()) 484 Known.makeNonNegative(); 485 else if (isKnownNegative && !Known.isNonNegative()) 486 Known.makeNegative(); 487 } 488 489 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 490 KnownBits &Known) { 491 unsigned BitWidth = Known.getBitWidth(); 492 unsigned NumRanges = Ranges.getNumOperands() / 2; 493 assert(NumRanges >= 1); 494 495 Known.Zero.setAllBits(); 496 Known.One.setAllBits(); 497 498 for (unsigned i = 0; i < NumRanges; ++i) { 499 ConstantInt *Lower = 500 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 501 ConstantInt *Upper = 502 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 503 ConstantRange Range(Lower->getValue(), Upper->getValue()); 504 505 // The first CommonPrefixBits of all values in Range are equal. 506 unsigned CommonPrefixBits = 507 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 508 509 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 510 Known.One &= Range.getUnsignedMax() & Mask; 511 Known.Zero &= ~Range.getUnsignedMax() & Mask; 512 } 513 } 514 515 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 516 SmallVector<const Value *, 16> WorkSet(1, I); 517 SmallPtrSet<const Value *, 32> Visited; 518 SmallPtrSet<const Value *, 16> EphValues; 519 520 // The instruction defining an assumption's condition itself is always 521 // considered ephemeral to that assumption (even if it has other 522 // non-ephemeral users). See r246696's test case for an example. 523 if (is_contained(I->operands(), E)) 524 return true; 525 526 while (!WorkSet.empty()) { 527 const Value *V = WorkSet.pop_back_val(); 528 if (!Visited.insert(V).second) 529 continue; 530 531 // If all uses of this value are ephemeral, then so is this value. 532 if (llvm::all_of(V->users(), [&](const User *U) { 533 return EphValues.count(U); 534 })) { 535 if (V == E) 536 return true; 537 538 if (V == I || isSafeToSpeculativelyExecute(V)) { 539 EphValues.insert(V); 540 if (const User *U = dyn_cast<User>(V)) 541 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 542 J != JE; ++J) 543 WorkSet.push_back(*J); 544 } 545 } 546 } 547 548 return false; 549 } 550 551 // Is this an intrinsic that cannot be speculated but also cannot trap? 552 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 553 if (const CallInst *CI = dyn_cast<CallInst>(I)) 554 if (Function *F = CI->getCalledFunction()) 555 switch (F->getIntrinsicID()) { 556 default: break; 557 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 558 case Intrinsic::assume: 559 case Intrinsic::sideeffect: 560 case Intrinsic::dbg_declare: 561 case Intrinsic::dbg_value: 562 case Intrinsic::dbg_label: 563 case Intrinsic::invariant_start: 564 case Intrinsic::invariant_end: 565 case Intrinsic::lifetime_start: 566 case Intrinsic::lifetime_end: 567 case Intrinsic::objectsize: 568 case Intrinsic::ptr_annotation: 569 case Intrinsic::var_annotation: 570 return true; 571 } 572 573 return false; 574 } 575 576 bool llvm::isValidAssumeForContext(const Instruction *Inv, 577 const Instruction *CxtI, 578 const DominatorTree *DT) { 579 // There are two restrictions on the use of an assume: 580 // 1. The assume must dominate the context (or the control flow must 581 // reach the assume whenever it reaches the context). 582 // 2. The context must not be in the assume's set of ephemeral values 583 // (otherwise we will use the assume to prove that the condition 584 // feeding the assume is trivially true, thus causing the removal of 585 // the assume). 586 587 if (DT) { 588 if (DT->dominates(Inv, CxtI)) 589 return true; 590 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 591 // We don't have a DT, but this trivially dominates. 592 return true; 593 } 594 595 // With or without a DT, the only remaining case we will check is if the 596 // instructions are in the same BB. Give up if that is not the case. 597 if (Inv->getParent() != CxtI->getParent()) 598 return false; 599 600 // If we have a dom tree, then we now know that the assume doesn't dominate 601 // the other instruction. If we don't have a dom tree then we can check if 602 // the assume is first in the BB. 603 if (!DT) { 604 // Search forward from the assume until we reach the context (or the end 605 // of the block); the common case is that the assume will come first. 606 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 607 IE = Inv->getParent()->end(); I != IE; ++I) 608 if (&*I == CxtI) 609 return true; 610 } 611 612 // Don't let an assume affect itself - this would cause the problems 613 // `isEphemeralValueOf` is trying to prevent, and it would also make 614 // the loop below go out of bounds. 615 if (Inv == CxtI) 616 return false; 617 618 // The context comes first, but they're both in the same block. 619 // Make sure there is nothing in between that might interrupt 620 // the control flow, not even CxtI itself. 621 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 622 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 623 return false; 624 625 return !isEphemeralValueOf(Inv, CxtI); 626 } 627 628 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 629 // Use of assumptions is context-sensitive. If we don't have a context, we 630 // cannot use them! 631 if (!Q.AC || !Q.CxtI) 632 return false; 633 634 // Note that the patterns below need to be kept in sync with the code 635 // in AssumptionCache::updateAffectedValues. 636 637 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 638 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 639 640 Value *RHS; 641 CmpInst::Predicate Pred; 642 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 643 return false; 644 // assume(v u> y) -> assume(v != 0) 645 if (Pred == ICmpInst::ICMP_UGT) 646 return true; 647 648 // assume(v != 0) 649 // We special-case this one to ensure that we handle `assume(v != null)`. 650 if (Pred == ICmpInst::ICMP_NE) 651 return match(RHS, m_Zero()); 652 653 // All other predicates - rely on generic ConstantRange handling. 654 ConstantInt *CI; 655 if (!match(RHS, m_ConstantInt(CI))) 656 return false; 657 ConstantRange RHSRange(CI->getValue()); 658 ConstantRange TrueValues = 659 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 660 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 661 }; 662 663 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 664 if (!AssumeVH) 665 continue; 666 CallInst *I = cast<CallInst>(AssumeVH); 667 assert(I->getFunction() == Q.CxtI->getFunction() && 668 "Got assumption for the wrong function!"); 669 if (Q.isExcluded(I)) 670 continue; 671 672 // Warning: This loop can end up being somewhat performance sensitive. 673 // We're running this loop for once for each value queried resulting in a 674 // runtime of ~O(#assumes * #values). 675 676 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 677 "must be an assume intrinsic"); 678 679 Value *Arg = I->getArgOperand(0); 680 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 681 if (!Cmp) 682 continue; 683 684 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 685 return true; 686 } 687 688 return false; 689 } 690 691 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 692 unsigned Depth, const Query &Q) { 693 // Use of assumptions is context-sensitive. If we don't have a context, we 694 // cannot use them! 695 if (!Q.AC || !Q.CxtI) 696 return; 697 698 unsigned BitWidth = Known.getBitWidth(); 699 700 // Note that the patterns below need to be kept in sync with the code 701 // in AssumptionCache::updateAffectedValues. 702 703 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 704 if (!AssumeVH) 705 continue; 706 CallInst *I = cast<CallInst>(AssumeVH); 707 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 708 "Got assumption for the wrong function!"); 709 if (Q.isExcluded(I)) 710 continue; 711 712 // Warning: This loop can end up being somewhat performance sensitive. 713 // We're running this loop for once for each value queried resulting in a 714 // runtime of ~O(#assumes * #values). 715 716 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 717 "must be an assume intrinsic"); 718 719 Value *Arg = I->getArgOperand(0); 720 721 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 722 assert(BitWidth == 1 && "assume operand is not i1?"); 723 Known.setAllOnes(); 724 return; 725 } 726 if (match(Arg, m_Not(m_Specific(V))) && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 assert(BitWidth == 1 && "assume operand is not i1?"); 729 Known.setAllZero(); 730 return; 731 } 732 733 // The remaining tests are all recursive, so bail out if we hit the limit. 734 if (Depth == MaxDepth) 735 continue; 736 737 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 738 if (!Cmp) 739 continue; 740 741 Value *A, *B; 742 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 743 744 CmpInst::Predicate Pred; 745 uint64_t C; 746 switch (Cmp->getPredicate()) { 747 default: 748 break; 749 case ICmpInst::ICMP_EQ: 750 // assume(v = a) 751 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 752 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 753 KnownBits RHSKnown(BitWidth); 754 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 755 Known.Zero |= RHSKnown.Zero; 756 Known.One |= RHSKnown.One; 757 // assume(v & b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown(BitWidth); 762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 763 KnownBits MaskKnown(BitWidth); 764 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 765 766 // For those bits in the mask that are known to be one, we can propagate 767 // known bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 769 Known.One |= RHSKnown.One & MaskKnown.One; 770 // assume(~(v & b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown(BitWidth); 775 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 776 KnownBits MaskKnown(BitWidth); 777 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 778 779 // For those bits in the mask that are known to be one, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & MaskKnown.One; 782 Known.One |= RHSKnown.Zero & MaskKnown.One; 783 // assume(v | b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown(BitWidth); 788 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 789 KnownBits BKnown(BitWidth); 790 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. 794 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 795 Known.One |= RHSKnown.One & BKnown.Zero; 796 // assume(~(v | b) = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown(BitWidth); 801 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 802 KnownBits BKnown(BitWidth); 803 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 804 805 // For those bits in B that are known to be zero, we can propagate 806 // inverted known bits from the RHS to V. 807 Known.Zero |= RHSKnown.One & BKnown.Zero; 808 Known.One |= RHSKnown.Zero & BKnown.Zero; 809 // assume(v ^ b = a) 810 } else if (match(Cmp, 811 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown(BitWidth); 814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 815 KnownBits BKnown(BitWidth); 816 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 817 818 // For those bits in B that are known to be zero, we can propagate known 819 // bits from the RHS to V. For those bits in B that are known to be one, 820 // we can propagate inverted known bits from the RHS to V. 821 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 822 Known.One |= RHSKnown.One & BKnown.Zero; 823 Known.Zero |= RHSKnown.One & BKnown.One; 824 Known.One |= RHSKnown.Zero & BKnown.One; 825 // assume(~(v ^ b) = a) 826 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 827 m_Value(A))) && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 829 KnownBits RHSKnown(BitWidth); 830 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 831 KnownBits BKnown(BitWidth); 832 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. For those bits in B that are 836 // known to be one, we can propagate known bits from the RHS to V. 837 Known.Zero |= RHSKnown.One & BKnown.Zero; 838 Known.One |= RHSKnown.Zero & BKnown.Zero; 839 Known.Zero |= RHSKnown.Zero & BKnown.One; 840 Known.One |= RHSKnown.One & BKnown.One; 841 // assume(v << c = a) 842 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 843 m_Value(A))) && 844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 845 KnownBits RHSKnown(BitWidth); 846 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 847 // For those bits in RHS that are known, we can propagate them to known 848 // bits in V shifted to the right by C. 849 RHSKnown.Zero.lshrInPlace(C); 850 Known.Zero |= RHSKnown.Zero; 851 RHSKnown.One.lshrInPlace(C); 852 Known.One |= RHSKnown.One; 853 // assume(~(v << c) = a) 854 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 855 m_Value(A))) && 856 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 857 KnownBits RHSKnown(BitWidth); 858 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 859 // For those bits in RHS that are known, we can propagate them inverted 860 // to known bits in V shifted to the right by C. 861 RHSKnown.One.lshrInPlace(C); 862 Known.Zero |= RHSKnown.One; 863 RHSKnown.Zero.lshrInPlace(C); 864 Known.One |= RHSKnown.Zero; 865 // assume(v >> c = a) 866 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 867 m_Value(A))) && 868 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 869 KnownBits RHSKnown(BitWidth); 870 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 871 // For those bits in RHS that are known, we can propagate them to known 872 // bits in V shifted to the right by C. 873 Known.Zero |= RHSKnown.Zero << C; 874 Known.One |= RHSKnown.One << C; 875 // assume(~(v >> c) = a) 876 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 877 m_Value(A))) && 878 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 879 KnownBits RHSKnown(BitWidth); 880 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 881 // For those bits in RHS that are known, we can propagate them inverted 882 // to known bits in V shifted to the right by C. 883 Known.Zero |= RHSKnown.One << C; 884 Known.One |= RHSKnown.Zero << C; 885 } 886 break; 887 case ICmpInst::ICMP_SGE: 888 // assume(v >=_s c) where c is non-negative 889 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 891 KnownBits RHSKnown(BitWidth); 892 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 893 894 if (RHSKnown.isNonNegative()) { 895 // We know that the sign bit is zero. 896 Known.makeNonNegative(); 897 } 898 } 899 break; 900 case ICmpInst::ICMP_SGT: 901 // assume(v >_s c) where c is at least -1. 902 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 904 KnownBits RHSKnown(BitWidth); 905 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 906 907 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 908 // We know that the sign bit is zero. 909 Known.makeNonNegative(); 910 } 911 } 912 break; 913 case ICmpInst::ICMP_SLE: 914 // assume(v <=_s c) where c is negative 915 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 916 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 917 KnownBits RHSKnown(BitWidth); 918 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 919 920 if (RHSKnown.isNegative()) { 921 // We know that the sign bit is one. 922 Known.makeNegative(); 923 } 924 } 925 break; 926 case ICmpInst::ICMP_SLT: 927 // assume(v <_s c) where c is non-positive 928 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 929 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 930 KnownBits RHSKnown(BitWidth); 931 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 932 933 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 934 // We know that the sign bit is one. 935 Known.makeNegative(); 936 } 937 } 938 break; 939 case ICmpInst::ICMP_ULE: 940 // assume(v <=_u c) 941 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 942 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 943 KnownBits RHSKnown(BitWidth); 944 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 945 946 // Whatever high bits in c are zero are known to be zero. 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 case ICmpInst::ICMP_ULT: 951 // assume(v <_u c) 952 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 953 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 954 KnownBits RHSKnown(BitWidth); 955 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 956 957 // If the RHS is known zero, then this assumption must be wrong (nothing 958 // is unsigned less than zero). Signal a conflict and get out of here. 959 if (RHSKnown.isZero()) { 960 Known.Zero.setAllBits(); 961 Known.One.setAllBits(); 962 break; 963 } 964 965 // Whatever high bits in c are zero are known to be zero (if c is a power 966 // of 2, then one more). 967 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 968 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 969 else 970 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 971 } 972 break; 973 } 974 } 975 976 // If assumptions conflict with each other or previous known bits, then we 977 // have a logical fallacy. It's possible that the assumption is not reachable, 978 // so this isn't a real bug. On the other hand, the program may have undefined 979 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 980 // clear out the known bits, try to warn the user, and hope for the best. 981 if (Known.Zero.intersects(Known.One)) { 982 Known.resetAll(); 983 984 if (Q.ORE) 985 Q.ORE->emit([&]() { 986 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 987 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 988 CxtI) 989 << "Detected conflicting code assumptions. Program may " 990 "have undefined behavior, or compiler may have " 991 "internal error."; 992 }); 993 } 994 } 995 996 /// Compute known bits from a shift operator, including those with a 997 /// non-constant shift amount. Known is the output of this function. Known2 is a 998 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 999 /// operator-specific functions that, given the known-zero or known-one bits 1000 /// respectively, and a shift amount, compute the implied known-zero or 1001 /// known-one bits of the shift operator's result respectively for that shift 1002 /// amount. The results from calling KZF and KOF are conservatively combined for 1003 /// all permitted shift amounts. 1004 static void computeKnownBitsFromShiftOperator( 1005 const Operator *I, KnownBits &Known, KnownBits &Known2, 1006 unsigned Depth, const Query &Q, 1007 function_ref<APInt(const APInt &, unsigned)> KZF, 1008 function_ref<APInt(const APInt &, unsigned)> KOF) { 1009 unsigned BitWidth = Known.getBitWidth(); 1010 1011 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1012 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 1013 1014 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1015 Known.Zero = KZF(Known.Zero, ShiftAmt); 1016 Known.One = KOF(Known.One, ShiftAmt); 1017 // If the known bits conflict, this must be an overflowing left shift, so 1018 // the shift result is poison. We can return anything we want. Choose 0 for 1019 // the best folding opportunity. 1020 if (Known.hasConflict()) 1021 Known.setAllZero(); 1022 1023 return; 1024 } 1025 1026 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1027 1028 // If the shift amount could be greater than or equal to the bit-width of the 1029 // LHS, the value could be poison, but bail out because the check below is 1030 // expensive. TODO: Should we just carry on? 1031 if (Known.getMaxValue().uge(BitWidth)) { 1032 Known.resetAll(); 1033 return; 1034 } 1035 1036 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1037 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1038 // limit value (which implies all bits are known). 1039 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1040 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1041 1042 // It would be more-clearly correct to use the two temporaries for this 1043 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1044 Known.resetAll(); 1045 1046 // If we know the shifter operand is nonzero, we can sometimes infer more 1047 // known bits. However this is expensive to compute, so be lazy about it and 1048 // only compute it when absolutely necessary. 1049 Optional<bool> ShifterOperandIsNonZero; 1050 1051 // Early exit if we can't constrain any well-defined shift amount. 1052 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1053 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1054 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1055 if (!*ShifterOperandIsNonZero) 1056 return; 1057 } 1058 1059 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1060 1061 Known.Zero.setAllBits(); 1062 Known.One.setAllBits(); 1063 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1064 // Combine the shifted known input bits only for those shift amounts 1065 // compatible with its known constraints. 1066 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1067 continue; 1068 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1069 continue; 1070 // If we know the shifter is nonzero, we may be able to infer more known 1071 // bits. This check is sunk down as far as possible to avoid the expensive 1072 // call to isKnownNonZero if the cheaper checks above fail. 1073 if (ShiftAmt == 0) { 1074 if (!ShifterOperandIsNonZero.hasValue()) 1075 ShifterOperandIsNonZero = 1076 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1077 if (*ShifterOperandIsNonZero) 1078 continue; 1079 } 1080 1081 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1082 Known.One &= KOF(Known2.One, ShiftAmt); 1083 } 1084 1085 // If the known bits conflict, the result is poison. Return a 0 and hope the 1086 // caller can further optimize that. 1087 if (Known.hasConflict()) 1088 Known.setAllZero(); 1089 } 1090 1091 static void computeKnownBitsFromOperator(const Operator *I, 1092 const APInt &DemandedElts, 1093 KnownBits &Known, unsigned Depth, 1094 const Query &Q) { 1095 unsigned BitWidth = Known.getBitWidth(); 1096 1097 KnownBits Known2(Known); 1098 switch (I->getOpcode()) { 1099 default: break; 1100 case Instruction::Load: 1101 if (MDNode *MD = 1102 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1103 computeKnownBitsFromRangeMetadata(*MD, Known); 1104 break; 1105 case Instruction::And: { 1106 // If either the LHS or the RHS are Zero, the result is zero. 1107 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1108 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1109 1110 // Output known-1 bits are only known if set in both the LHS & RHS. 1111 Known.One &= Known2.One; 1112 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1113 Known.Zero |= Known2.Zero; 1114 1115 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1116 // here we handle the more general case of adding any odd number by 1117 // matching the form add(x, add(x, y)) where y is odd. 1118 // TODO: This could be generalized to clearing any bit set in y where the 1119 // following bit is known to be unset in y. 1120 Value *X = nullptr, *Y = nullptr; 1121 if (!Known.Zero[0] && !Known.One[0] && 1122 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1123 Known2.resetAll(); 1124 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1125 if (Known2.countMinTrailingOnes() > 0) 1126 Known.Zero.setBit(0); 1127 } 1128 break; 1129 } 1130 case Instruction::Or: 1131 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1132 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1133 1134 // Output known-0 bits are only known if clear in both the LHS & RHS. 1135 Known.Zero &= Known2.Zero; 1136 // Output known-1 are known to be set if set in either the LHS | RHS. 1137 Known.One |= Known2.One; 1138 break; 1139 case Instruction::Xor: { 1140 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1141 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1142 1143 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1144 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1145 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1146 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1147 Known.Zero = std::move(KnownZeroOut); 1148 break; 1149 } 1150 case Instruction::Mul: { 1151 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1152 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1153 Known2, Depth, Q); 1154 break; 1155 } 1156 case Instruction::UDiv: { 1157 // For the purposes of computing leading zeros we can conservatively 1158 // treat a udiv as a logical right shift by the power of 2 known to 1159 // be less than the denominator. 1160 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1161 unsigned LeadZ = Known2.countMinLeadingZeros(); 1162 1163 Known2.resetAll(); 1164 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1165 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1166 if (RHSMaxLeadingZeros != BitWidth) 1167 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1168 1169 Known.Zero.setHighBits(LeadZ); 1170 break; 1171 } 1172 case Instruction::Select: { 1173 const Value *LHS = nullptr, *RHS = nullptr; 1174 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1175 if (SelectPatternResult::isMinOrMax(SPF)) { 1176 computeKnownBits(RHS, Known, Depth + 1, Q); 1177 computeKnownBits(LHS, Known2, Depth + 1, Q); 1178 } else { 1179 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1180 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1181 } 1182 1183 unsigned MaxHighOnes = 0; 1184 unsigned MaxHighZeros = 0; 1185 if (SPF == SPF_SMAX) { 1186 // If both sides are negative, the result is negative. 1187 if (Known.isNegative() && Known2.isNegative()) 1188 // We can derive a lower bound on the result by taking the max of the 1189 // leading one bits. 1190 MaxHighOnes = 1191 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1192 // If either side is non-negative, the result is non-negative. 1193 else if (Known.isNonNegative() || Known2.isNonNegative()) 1194 MaxHighZeros = 1; 1195 } else if (SPF == SPF_SMIN) { 1196 // If both sides are non-negative, the result is non-negative. 1197 if (Known.isNonNegative() && Known2.isNonNegative()) 1198 // We can derive an upper bound on the result by taking the max of the 1199 // leading zero bits. 1200 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1201 Known2.countMinLeadingZeros()); 1202 // If either side is negative, the result is negative. 1203 else if (Known.isNegative() || Known2.isNegative()) 1204 MaxHighOnes = 1; 1205 } else if (SPF == SPF_UMAX) { 1206 // We can derive a lower bound on the result by taking the max of the 1207 // leading one bits. 1208 MaxHighOnes = 1209 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1210 } else if (SPF == SPF_UMIN) { 1211 // We can derive an upper bound on the result by taking the max of the 1212 // leading zero bits. 1213 MaxHighZeros = 1214 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1215 } else if (SPF == SPF_ABS) { 1216 // RHS from matchSelectPattern returns the negation part of abs pattern. 1217 // If the negate has an NSW flag we can assume the sign bit of the result 1218 // will be 0 because that makes abs(INT_MIN) undefined. 1219 if (match(RHS, m_Neg(m_Specific(LHS))) && 1220 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1221 MaxHighZeros = 1; 1222 } 1223 1224 // Only known if known in both the LHS and RHS. 1225 Known.One &= Known2.One; 1226 Known.Zero &= Known2.Zero; 1227 if (MaxHighOnes > 0) 1228 Known.One.setHighBits(MaxHighOnes); 1229 if (MaxHighZeros > 0) 1230 Known.Zero.setHighBits(MaxHighZeros); 1231 break; 1232 } 1233 case Instruction::FPTrunc: 1234 case Instruction::FPExt: 1235 case Instruction::FPToUI: 1236 case Instruction::FPToSI: 1237 case Instruction::SIToFP: 1238 case Instruction::UIToFP: 1239 break; // Can't work with floating point. 1240 case Instruction::PtrToInt: 1241 case Instruction::IntToPtr: 1242 // Fall through and handle them the same as zext/trunc. 1243 LLVM_FALLTHROUGH; 1244 case Instruction::ZExt: 1245 case Instruction::Trunc: { 1246 Type *SrcTy = I->getOperand(0)->getType(); 1247 1248 unsigned SrcBitWidth; 1249 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1250 // which fall through here. 1251 Type *ScalarTy = SrcTy->getScalarType(); 1252 SrcBitWidth = ScalarTy->isPointerTy() ? 1253 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1254 Q.DL.getTypeSizeInBits(ScalarTy); 1255 1256 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1257 Known = Known.anyextOrTrunc(SrcBitWidth); 1258 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1259 Known = Known.zextOrTrunc(BitWidth); 1260 break; 1261 } 1262 case Instruction::BitCast: { 1263 Type *SrcTy = I->getOperand(0)->getType(); 1264 if (SrcTy->isIntOrPtrTy() && 1265 // TODO: For now, not handling conversions like: 1266 // (bitcast i64 %x to <2 x i32>) 1267 !I->getType()->isVectorTy()) { 1268 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1269 break; 1270 } 1271 break; 1272 } 1273 case Instruction::SExt: { 1274 // Compute the bits in the result that are not present in the input. 1275 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1276 1277 Known = Known.trunc(SrcBitWidth); 1278 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1279 // If the sign bit of the input is known set or clear, then we know the 1280 // top bits of the result. 1281 Known = Known.sext(BitWidth); 1282 break; 1283 } 1284 case Instruction::Shl: { 1285 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1286 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1287 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1288 APInt KZResult = KnownZero << ShiftAmt; 1289 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1290 // If this shift has "nsw" keyword, then the result is either a poison 1291 // value or has the same sign bit as the first operand. 1292 if (NSW && KnownZero.isSignBitSet()) 1293 KZResult.setSignBit(); 1294 return KZResult; 1295 }; 1296 1297 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1298 APInt KOResult = KnownOne << ShiftAmt; 1299 if (NSW && KnownOne.isSignBitSet()) 1300 KOResult.setSignBit(); 1301 return KOResult; 1302 }; 1303 1304 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1305 break; 1306 } 1307 case Instruction::LShr: { 1308 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1309 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1310 APInt KZResult = KnownZero.lshr(ShiftAmt); 1311 // High bits known zero. 1312 KZResult.setHighBits(ShiftAmt); 1313 return KZResult; 1314 }; 1315 1316 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1317 return KnownOne.lshr(ShiftAmt); 1318 }; 1319 1320 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1321 break; 1322 } 1323 case Instruction::AShr: { 1324 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1325 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1326 return KnownZero.ashr(ShiftAmt); 1327 }; 1328 1329 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1330 return KnownOne.ashr(ShiftAmt); 1331 }; 1332 1333 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1334 break; 1335 } 1336 case Instruction::Sub: { 1337 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1338 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1339 Known, Known2, Depth, Q); 1340 break; 1341 } 1342 case Instruction::Add: { 1343 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1344 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1345 Known, Known2, Depth, Q); 1346 break; 1347 } 1348 case Instruction::SRem: 1349 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1350 APInt RA = Rem->getValue().abs(); 1351 if (RA.isPowerOf2()) { 1352 APInt LowBits = RA - 1; 1353 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1354 1355 // The low bits of the first operand are unchanged by the srem. 1356 Known.Zero = Known2.Zero & LowBits; 1357 Known.One = Known2.One & LowBits; 1358 1359 // If the first operand is non-negative or has all low bits zero, then 1360 // the upper bits are all zero. 1361 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1362 Known.Zero |= ~LowBits; 1363 1364 // If the first operand is negative and not all low bits are zero, then 1365 // the upper bits are all one. 1366 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1367 Known.One |= ~LowBits; 1368 1369 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1370 break; 1371 } 1372 } 1373 1374 // The sign bit is the LHS's sign bit, except when the result of the 1375 // remainder is zero. 1376 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1377 // If it's known zero, our sign bit is also zero. 1378 if (Known2.isNonNegative()) 1379 Known.makeNonNegative(); 1380 1381 break; 1382 case Instruction::URem: { 1383 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1384 const APInt &RA = Rem->getValue(); 1385 if (RA.isPowerOf2()) { 1386 APInt LowBits = (RA - 1); 1387 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1388 Known.Zero |= ~LowBits; 1389 Known.One &= LowBits; 1390 break; 1391 } 1392 } 1393 1394 // Since the result is less than or equal to either operand, any leading 1395 // zero bits in either operand must also exist in the result. 1396 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1397 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1398 1399 unsigned Leaders = 1400 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1401 Known.resetAll(); 1402 Known.Zero.setHighBits(Leaders); 1403 break; 1404 } 1405 1406 case Instruction::Alloca: { 1407 const AllocaInst *AI = cast<AllocaInst>(I); 1408 unsigned Align = AI->getAlignment(); 1409 if (Align == 0) 1410 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1411 1412 if (Align > 0) 1413 Known.Zero.setLowBits(countTrailingZeros(Align)); 1414 break; 1415 } 1416 case Instruction::GetElementPtr: { 1417 // Analyze all of the subscripts of this getelementptr instruction 1418 // to determine if we can prove known low zero bits. 1419 KnownBits LocalKnown(BitWidth); 1420 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1421 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1422 1423 gep_type_iterator GTI = gep_type_begin(I); 1424 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1425 Value *Index = I->getOperand(i); 1426 if (StructType *STy = GTI.getStructTypeOrNull()) { 1427 // Handle struct member offset arithmetic. 1428 1429 // Handle case when index is vector zeroinitializer 1430 Constant *CIndex = cast<Constant>(Index); 1431 if (CIndex->isZeroValue()) 1432 continue; 1433 1434 if (CIndex->getType()->isVectorTy()) 1435 Index = CIndex->getSplatValue(); 1436 1437 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1438 const StructLayout *SL = Q.DL.getStructLayout(STy); 1439 uint64_t Offset = SL->getElementOffset(Idx); 1440 TrailZ = std::min<unsigned>(TrailZ, 1441 countTrailingZeros(Offset)); 1442 } else { 1443 // Handle array index arithmetic. 1444 Type *IndexedTy = GTI.getIndexedType(); 1445 if (!IndexedTy->isSized()) { 1446 TrailZ = 0; 1447 break; 1448 } 1449 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1450 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1451 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1452 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1453 TrailZ = std::min(TrailZ, 1454 unsigned(countTrailingZeros(TypeSize) + 1455 LocalKnown.countMinTrailingZeros())); 1456 } 1457 } 1458 1459 Known.Zero.setLowBits(TrailZ); 1460 break; 1461 } 1462 case Instruction::PHI: { 1463 const PHINode *P = cast<PHINode>(I); 1464 // Handle the case of a simple two-predecessor recurrence PHI. 1465 // There's a lot more that could theoretically be done here, but 1466 // this is sufficient to catch some interesting cases. 1467 if (P->getNumIncomingValues() == 2) { 1468 for (unsigned i = 0; i != 2; ++i) { 1469 Value *L = P->getIncomingValue(i); 1470 Value *R = P->getIncomingValue(!i); 1471 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1472 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1473 Operator *LU = dyn_cast<Operator>(L); 1474 if (!LU) 1475 continue; 1476 unsigned Opcode = LU->getOpcode(); 1477 // Check for operations that have the property that if 1478 // both their operands have low zero bits, the result 1479 // will have low zero bits. 1480 if (Opcode == Instruction::Add || 1481 Opcode == Instruction::Sub || 1482 Opcode == Instruction::And || 1483 Opcode == Instruction::Or || 1484 Opcode == Instruction::Mul) { 1485 Value *LL = LU->getOperand(0); 1486 Value *LR = LU->getOperand(1); 1487 // Find a recurrence. 1488 if (LL == I) 1489 L = LR; 1490 else if (LR == I) 1491 L = LL; 1492 else 1493 continue; // Check for recurrence with L and R flipped. 1494 1495 // Change the context instruction to the "edge" that flows into the 1496 // phi. This is important because that is where the value is actually 1497 // "evaluated" even though it is used later somewhere else. (see also 1498 // D69571). 1499 Query RecQ = Q; 1500 1501 // Ok, we have a PHI of the form L op= R. Check for low 1502 // zero bits. 1503 RecQ.CxtI = RInst; 1504 computeKnownBits(R, Known2, Depth + 1, RecQ); 1505 1506 // We need to take the minimum number of known bits 1507 KnownBits Known3(Known); 1508 RecQ.CxtI = LInst; 1509 computeKnownBits(L, Known3, Depth + 1, RecQ); 1510 1511 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1512 Known3.countMinTrailingZeros())); 1513 1514 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1515 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1516 // If initial value of recurrence is nonnegative, and we are adding 1517 // a nonnegative number with nsw, the result can only be nonnegative 1518 // or poison value regardless of the number of times we execute the 1519 // add in phi recurrence. If initial value is negative and we are 1520 // adding a negative number with nsw, the result can only be 1521 // negative or poison value. Similar arguments apply to sub and mul. 1522 // 1523 // (add non-negative, non-negative) --> non-negative 1524 // (add negative, negative) --> negative 1525 if (Opcode == Instruction::Add) { 1526 if (Known2.isNonNegative() && Known3.isNonNegative()) 1527 Known.makeNonNegative(); 1528 else if (Known2.isNegative() && Known3.isNegative()) 1529 Known.makeNegative(); 1530 } 1531 1532 // (sub nsw non-negative, negative) --> non-negative 1533 // (sub nsw negative, non-negative) --> negative 1534 else if (Opcode == Instruction::Sub && LL == I) { 1535 if (Known2.isNonNegative() && Known3.isNegative()) 1536 Known.makeNonNegative(); 1537 else if (Known2.isNegative() && Known3.isNonNegative()) 1538 Known.makeNegative(); 1539 } 1540 1541 // (mul nsw non-negative, non-negative) --> non-negative 1542 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1543 Known3.isNonNegative()) 1544 Known.makeNonNegative(); 1545 } 1546 1547 break; 1548 } 1549 } 1550 } 1551 1552 // Unreachable blocks may have zero-operand PHI nodes. 1553 if (P->getNumIncomingValues() == 0) 1554 break; 1555 1556 // Otherwise take the unions of the known bit sets of the operands, 1557 // taking conservative care to avoid excessive recursion. 1558 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1559 // Skip if every incoming value references to ourself. 1560 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1561 break; 1562 1563 Known.Zero.setAllBits(); 1564 Known.One.setAllBits(); 1565 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1566 Value *IncValue = P->getIncomingValue(u); 1567 // Skip direct self references. 1568 if (IncValue == P) continue; 1569 1570 // Change the context instruction to the "edge" that flows into the 1571 // phi. This is important because that is where the value is actually 1572 // "evaluated" even though it is used later somewhere else. (see also 1573 // D69571). 1574 Query RecQ = Q; 1575 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1576 1577 Known2 = KnownBits(BitWidth); 1578 // Recurse, but cap the recursion to one level, because we don't 1579 // want to waste time spinning around in loops. 1580 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1581 Known.Zero &= Known2.Zero; 1582 Known.One &= Known2.One; 1583 // If all bits have been ruled out, there's no need to check 1584 // more operands. 1585 if (!Known.Zero && !Known.One) 1586 break; 1587 } 1588 } 1589 break; 1590 } 1591 case Instruction::Call: 1592 case Instruction::Invoke: 1593 // If range metadata is attached to this call, set known bits from that, 1594 // and then intersect with known bits based on other properties of the 1595 // function. 1596 if (MDNode *MD = 1597 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1598 computeKnownBitsFromRangeMetadata(*MD, Known); 1599 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1600 computeKnownBits(RV, Known2, Depth + 1, Q); 1601 Known.Zero |= Known2.Zero; 1602 Known.One |= Known2.One; 1603 } 1604 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1605 switch (II->getIntrinsicID()) { 1606 default: break; 1607 case Intrinsic::bitreverse: 1608 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1609 Known.Zero |= Known2.Zero.reverseBits(); 1610 Known.One |= Known2.One.reverseBits(); 1611 break; 1612 case Intrinsic::bswap: 1613 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1614 Known.Zero |= Known2.Zero.byteSwap(); 1615 Known.One |= Known2.One.byteSwap(); 1616 break; 1617 case Intrinsic::ctlz: { 1618 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1619 // If we have a known 1, its position is our upper bound. 1620 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1621 // If this call is undefined for 0, the result will be less than 2^n. 1622 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1623 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1624 unsigned LowBits = Log2_32(PossibleLZ)+1; 1625 Known.Zero.setBitsFrom(LowBits); 1626 break; 1627 } 1628 case Intrinsic::cttz: { 1629 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1630 // If we have a known 1, its position is our upper bound. 1631 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1632 // If this call is undefined for 0, the result will be less than 2^n. 1633 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1634 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1635 unsigned LowBits = Log2_32(PossibleTZ)+1; 1636 Known.Zero.setBitsFrom(LowBits); 1637 break; 1638 } 1639 case Intrinsic::ctpop: { 1640 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1641 // We can bound the space the count needs. Also, bits known to be zero 1642 // can't contribute to the population. 1643 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1644 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1645 Known.Zero.setBitsFrom(LowBits); 1646 // TODO: we could bound KnownOne using the lower bound on the number 1647 // of bits which might be set provided by popcnt KnownOne2. 1648 break; 1649 } 1650 case Intrinsic::fshr: 1651 case Intrinsic::fshl: { 1652 const APInt *SA; 1653 if (!match(I->getOperand(2), m_APInt(SA))) 1654 break; 1655 1656 // Normalize to funnel shift left. 1657 uint64_t ShiftAmt = SA->urem(BitWidth); 1658 if (II->getIntrinsicID() == Intrinsic::fshr) 1659 ShiftAmt = BitWidth - ShiftAmt; 1660 1661 KnownBits Known3(Known); 1662 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1663 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1664 1665 Known.Zero = 1666 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1667 Known.One = 1668 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1669 break; 1670 } 1671 case Intrinsic::uadd_sat: 1672 case Intrinsic::usub_sat: { 1673 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1674 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1675 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1676 1677 // Add: Leading ones of either operand are preserved. 1678 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1679 // as leading zeros in the result. 1680 unsigned LeadingKnown; 1681 if (IsAdd) 1682 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1683 Known2.countMinLeadingOnes()); 1684 else 1685 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1686 Known2.countMinLeadingOnes()); 1687 1688 Known = KnownBits::computeForAddSub( 1689 IsAdd, /* NSW */ false, Known, Known2); 1690 1691 // We select between the operation result and all-ones/zero 1692 // respectively, so we can preserve known ones/zeros. 1693 if (IsAdd) { 1694 Known.One.setHighBits(LeadingKnown); 1695 Known.Zero.clearAllBits(); 1696 } else { 1697 Known.Zero.setHighBits(LeadingKnown); 1698 Known.One.clearAllBits(); 1699 } 1700 break; 1701 } 1702 case Intrinsic::x86_sse42_crc32_64_64: 1703 Known.Zero.setBitsFrom(32); 1704 break; 1705 } 1706 } 1707 break; 1708 case Instruction::ShuffleVector: { 1709 auto *Shuf = cast<ShuffleVectorInst>(I); 1710 // For undef elements, we don't know anything about the common state of 1711 // the shuffle result. 1712 APInt DemandedLHS, DemandedRHS; 1713 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1714 Known.resetAll(); 1715 return; 1716 } 1717 Known.One.setAllBits(); 1718 Known.Zero.setAllBits(); 1719 if (!!DemandedLHS) { 1720 const Value *LHS = Shuf->getOperand(0); 1721 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1722 // If we don't know any bits, early out. 1723 if (Known.isUnknown()) 1724 break; 1725 } 1726 if (!!DemandedRHS) { 1727 const Value *RHS = Shuf->getOperand(1); 1728 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1729 Known.One &= Known2.One; 1730 Known.Zero &= Known2.Zero; 1731 } 1732 break; 1733 } 1734 case Instruction::InsertElement: { 1735 auto *IEI = cast<InsertElementInst>(I); 1736 Value *Vec = IEI->getOperand(0); 1737 Value *Elt = IEI->getOperand(1); 1738 auto *CIdx = dyn_cast<ConstantInt>(IEI->getOperand(2)); 1739 // Early out if the index is non-constant or out-of-range. 1740 unsigned NumElts = DemandedElts.getBitWidth(); 1741 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1742 Known.resetAll(); 1743 return; 1744 } 1745 Known.One.setAllBits(); 1746 Known.Zero.setAllBits(); 1747 unsigned EltIdx = CIdx->getZExtValue(); 1748 // Do we demand the inserted element? 1749 if (DemandedElts[EltIdx]) { 1750 computeKnownBits(Elt, Known, Depth + 1, Q); 1751 // If we don't know any bits, early out. 1752 if (Known.isUnknown()) 1753 break; 1754 } 1755 // We don't need the base vector element that has been inserted. 1756 APInt DemandedVecElts = DemandedElts; 1757 DemandedVecElts.clearBit(EltIdx); 1758 if (!!DemandedVecElts) { 1759 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1760 Known.One &= Known2.One; 1761 Known.Zero &= Known2.Zero; 1762 } 1763 break; 1764 } 1765 case Instruction::ExtractElement: { 1766 // Look through extract element. If the index is non-constant or 1767 // out-of-range demand all elements, otherwise just the extracted element. 1768 auto* EEI = cast<ExtractElementInst>(I); 1769 const Value* Vec = EEI->getVectorOperand(); 1770 const Value* Idx = EEI->getIndexOperand(); 1771 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1772 unsigned NumElts = Vec->getType()->getVectorNumElements(); 1773 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1774 if (CIdx && CIdx->getValue().ult(NumElts)) 1775 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1776 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1777 break; 1778 } 1779 case Instruction::ExtractValue: 1780 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1781 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1782 if (EVI->getNumIndices() != 1) break; 1783 if (EVI->getIndices()[0] == 0) { 1784 switch (II->getIntrinsicID()) { 1785 default: break; 1786 case Intrinsic::uadd_with_overflow: 1787 case Intrinsic::sadd_with_overflow: 1788 computeKnownBitsAddSub(true, II->getArgOperand(0), 1789 II->getArgOperand(1), false, Known, Known2, 1790 Depth, Q); 1791 break; 1792 case Intrinsic::usub_with_overflow: 1793 case Intrinsic::ssub_with_overflow: 1794 computeKnownBitsAddSub(false, II->getArgOperand(0), 1795 II->getArgOperand(1), false, Known, Known2, 1796 Depth, Q); 1797 break; 1798 case Intrinsic::umul_with_overflow: 1799 case Intrinsic::smul_with_overflow: 1800 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1801 Known, Known2, Depth, Q); 1802 break; 1803 } 1804 } 1805 } 1806 break; 1807 } 1808 } 1809 1810 /// Determine which bits of V are known to be either zero or one and return 1811 /// them. 1812 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1813 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1814 computeKnownBits(V, Known, Depth, Q); 1815 return Known; 1816 } 1817 1818 /// Determine which bits of V are known to be either zero or one and return 1819 /// them in the Known bit set. 1820 /// 1821 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1822 /// we cannot optimize based on the assumption that it is zero without changing 1823 /// it to be an explicit zero. If we don't change it to zero, other code could 1824 /// optimized based on the contradictory assumption that it is non-zero. 1825 /// Because instcombine aggressively folds operations with undef args anyway, 1826 /// this won't lose us code quality. 1827 /// 1828 /// This function is defined on values with integer type, values with pointer 1829 /// type, and vectors of integers. In the case 1830 /// where V is a vector, known zero, and known one values are the 1831 /// same width as the vector element, and the bit is set only if it is true 1832 /// for all of the demanded elements in the vector specified by DemandedElts. 1833 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1834 KnownBits &Known, unsigned Depth, const Query &Q) { 1835 assert(V && "No Value?"); 1836 assert(Depth <= MaxDepth && "Limit Search Depth"); 1837 unsigned BitWidth = Known.getBitWidth(); 1838 1839 Type *Ty = V->getType(); 1840 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1841 "Not integer or pointer type!"); 1842 assert(((Ty->isVectorTy() && 1843 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 1844 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1845 "Unexpected vector size"); 1846 1847 Type *ScalarTy = Ty->getScalarType(); 1848 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1849 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1850 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1851 (void)BitWidth; 1852 (void)ExpectedWidth; 1853 1854 if (!DemandedElts) { 1855 // No demanded elts, better to assume we don't know anything. 1856 Known.resetAll(); 1857 return; 1858 } 1859 1860 const APInt *C; 1861 if (match(V, m_APInt(C))) { 1862 // We know all of the bits for a scalar constant or a splat vector constant! 1863 Known.One = *C; 1864 Known.Zero = ~Known.One; 1865 return; 1866 } 1867 // Null and aggregate-zero are all-zeros. 1868 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1869 Known.setAllZero(); 1870 return; 1871 } 1872 // Handle a constant vector by taking the intersection of the known bits of 1873 // each element. 1874 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1875 assert((!Ty->isVectorTy() || 1876 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1877 "Unexpected vector size"); 1878 // We know that CDS must be a vector of integers. Take the intersection of 1879 // each element. 1880 Known.Zero.setAllBits(); Known.One.setAllBits(); 1881 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1882 if (Ty->isVectorTy() && !DemandedElts[i]) 1883 continue; 1884 APInt Elt = CDS->getElementAsAPInt(i); 1885 Known.Zero &= ~Elt; 1886 Known.One &= Elt; 1887 } 1888 return; 1889 } 1890 1891 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1892 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1893 "Unexpected vector size"); 1894 // We know that CV must be a vector of integers. Take the intersection of 1895 // each element. 1896 Known.Zero.setAllBits(); Known.One.setAllBits(); 1897 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1898 if (!DemandedElts[i]) 1899 continue; 1900 Constant *Element = CV->getAggregateElement(i); 1901 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1902 if (!ElementCI) { 1903 Known.resetAll(); 1904 return; 1905 } 1906 const APInt &Elt = ElementCI->getValue(); 1907 Known.Zero &= ~Elt; 1908 Known.One &= Elt; 1909 } 1910 return; 1911 } 1912 1913 // Start out not knowing anything. 1914 Known.resetAll(); 1915 1916 // We can't imply anything about undefs. 1917 if (isa<UndefValue>(V)) 1918 return; 1919 1920 // There's no point in looking through other users of ConstantData for 1921 // assumptions. Confirm that we've handled them all. 1922 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1923 1924 // Limit search depth. 1925 // All recursive calls that increase depth must come after this. 1926 if (Depth == MaxDepth) 1927 return; 1928 1929 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1930 // the bits of its aliasee. 1931 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1932 if (!GA->isInterposable()) 1933 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1934 return; 1935 } 1936 1937 if (const Operator *I = dyn_cast<Operator>(V)) 1938 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1939 1940 // Aligned pointers have trailing zeros - refine Known.Zero set 1941 if (Ty->isPointerTy()) { 1942 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1943 if (Align) 1944 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1945 } 1946 1947 // computeKnownBitsFromAssume strictly refines Known. 1948 // Therefore, we run them after computeKnownBitsFromOperator. 1949 1950 // Check whether a nearby assume intrinsic can determine some known bits. 1951 computeKnownBitsFromAssume(V, Known, Depth, Q); 1952 1953 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1954 } 1955 1956 /// Return true if the given value is known to have exactly one 1957 /// bit set when defined. For vectors return true if every element is known to 1958 /// be a power of two when defined. Supports values with integer or pointer 1959 /// types and vectors of integers. 1960 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1961 const Query &Q) { 1962 assert(Depth <= MaxDepth && "Limit Search Depth"); 1963 1964 // Attempt to match against constants. 1965 if (OrZero && match(V, m_Power2OrZero())) 1966 return true; 1967 if (match(V, m_Power2())) 1968 return true; 1969 1970 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1971 // it is shifted off the end then the result is undefined. 1972 if (match(V, m_Shl(m_One(), m_Value()))) 1973 return true; 1974 1975 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1976 // the bottom. If it is shifted off the bottom then the result is undefined. 1977 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1978 return true; 1979 1980 // The remaining tests are all recursive, so bail out if we hit the limit. 1981 if (Depth++ == MaxDepth) 1982 return false; 1983 1984 Value *X = nullptr, *Y = nullptr; 1985 // A shift left or a logical shift right of a power of two is a power of two 1986 // or zero. 1987 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1988 match(V, m_LShr(m_Value(X), m_Value())))) 1989 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1990 1991 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1992 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1993 1994 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1995 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1996 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1997 1998 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1999 // A power of two and'd with anything is a power of two or zero. 2000 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2001 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2002 return true; 2003 // X & (-X) is always a power of two or zero. 2004 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2005 return true; 2006 return false; 2007 } 2008 2009 // Adding a power-of-two or zero to the same power-of-two or zero yields 2010 // either the original power-of-two, a larger power-of-two or zero. 2011 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2012 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2013 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2014 Q.IIQ.hasNoSignedWrap(VOBO)) { 2015 if (match(X, m_And(m_Specific(Y), m_Value())) || 2016 match(X, m_And(m_Value(), m_Specific(Y)))) 2017 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2018 return true; 2019 if (match(Y, m_And(m_Specific(X), m_Value())) || 2020 match(Y, m_And(m_Value(), m_Specific(X)))) 2021 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2022 return true; 2023 2024 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2025 KnownBits LHSBits(BitWidth); 2026 computeKnownBits(X, LHSBits, Depth, Q); 2027 2028 KnownBits RHSBits(BitWidth); 2029 computeKnownBits(Y, RHSBits, Depth, Q); 2030 // If i8 V is a power of two or zero: 2031 // ZeroBits: 1 1 1 0 1 1 1 1 2032 // ~ZeroBits: 0 0 0 1 0 0 0 0 2033 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2034 // If OrZero isn't set, we cannot give back a zero result. 2035 // Make sure either the LHS or RHS has a bit set. 2036 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2037 return true; 2038 } 2039 } 2040 2041 // An exact divide or right shift can only shift off zero bits, so the result 2042 // is a power of two only if the first operand is a power of two and not 2043 // copying a sign bit (sdiv int_min, 2). 2044 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2045 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2046 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2047 Depth, Q); 2048 } 2049 2050 return false; 2051 } 2052 2053 /// Test whether a GEP's result is known to be non-null. 2054 /// 2055 /// Uses properties inherent in a GEP to try to determine whether it is known 2056 /// to be non-null. 2057 /// 2058 /// Currently this routine does not support vector GEPs. 2059 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2060 const Query &Q) { 2061 const Function *F = nullptr; 2062 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2063 F = I->getFunction(); 2064 2065 if (!GEP->isInBounds() || 2066 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2067 return false; 2068 2069 // FIXME: Support vector-GEPs. 2070 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2071 2072 // If the base pointer is non-null, we cannot walk to a null address with an 2073 // inbounds GEP in address space zero. 2074 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2075 return true; 2076 2077 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2078 // If so, then the GEP cannot produce a null pointer, as doing so would 2079 // inherently violate the inbounds contract within address space zero. 2080 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2081 GTI != GTE; ++GTI) { 2082 // Struct types are easy -- they must always be indexed by a constant. 2083 if (StructType *STy = GTI.getStructTypeOrNull()) { 2084 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2085 unsigned ElementIdx = OpC->getZExtValue(); 2086 const StructLayout *SL = Q.DL.getStructLayout(STy); 2087 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2088 if (ElementOffset > 0) 2089 return true; 2090 continue; 2091 } 2092 2093 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2094 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2095 continue; 2096 2097 // Fast path the constant operand case both for efficiency and so we don't 2098 // increment Depth when just zipping down an all-constant GEP. 2099 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2100 if (!OpC->isZero()) 2101 return true; 2102 continue; 2103 } 2104 2105 // We post-increment Depth here because while isKnownNonZero increments it 2106 // as well, when we pop back up that increment won't persist. We don't want 2107 // to recurse 10k times just because we have 10k GEP operands. We don't 2108 // bail completely out because we want to handle constant GEPs regardless 2109 // of depth. 2110 if (Depth++ >= MaxDepth) 2111 continue; 2112 2113 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2114 return true; 2115 } 2116 2117 return false; 2118 } 2119 2120 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2121 const Instruction *CtxI, 2122 const DominatorTree *DT) { 2123 if (isa<Constant>(V)) 2124 return false; 2125 2126 if (!CtxI || !DT) 2127 return false; 2128 2129 unsigned NumUsesExplored = 0; 2130 for (auto *U : V->users()) { 2131 // Avoid massive lists 2132 if (NumUsesExplored >= DomConditionsMaxUses) 2133 break; 2134 NumUsesExplored++; 2135 2136 // If the value is used as an argument to a call or invoke, then argument 2137 // attributes may provide an answer about null-ness. 2138 if (auto CS = ImmutableCallSite(U)) 2139 if (auto *CalledFunc = CS.getCalledFunction()) 2140 for (const Argument &Arg : CalledFunc->args()) 2141 if (CS.getArgOperand(Arg.getArgNo()) == V && 2142 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2143 return true; 2144 2145 // If the value is used as a load/store, then the pointer must be non null. 2146 if (V == getLoadStorePointerOperand(U)) { 2147 const Instruction *I = cast<Instruction>(U); 2148 if (!NullPointerIsDefined(I->getFunction(), 2149 V->getType()->getPointerAddressSpace()) && 2150 DT->dominates(I, CtxI)) 2151 return true; 2152 } 2153 2154 // Consider only compare instructions uniquely controlling a branch 2155 CmpInst::Predicate Pred; 2156 if (!match(const_cast<User *>(U), 2157 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2158 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2159 continue; 2160 2161 SmallVector<const User *, 4> WorkList; 2162 SmallPtrSet<const User *, 4> Visited; 2163 for (auto *CmpU : U->users()) { 2164 assert(WorkList.empty() && "Should be!"); 2165 if (Visited.insert(CmpU).second) 2166 WorkList.push_back(CmpU); 2167 2168 while (!WorkList.empty()) { 2169 auto *Curr = WorkList.pop_back_val(); 2170 2171 // If a user is an AND, add all its users to the work list. We only 2172 // propagate "pred != null" condition through AND because it is only 2173 // correct to assume that all conditions of AND are met in true branch. 2174 // TODO: Support similar logic of OR and EQ predicate? 2175 if (Pred == ICmpInst::ICMP_NE) 2176 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2177 if (BO->getOpcode() == Instruction::And) { 2178 for (auto *BOU : BO->users()) 2179 if (Visited.insert(BOU).second) 2180 WorkList.push_back(BOU); 2181 continue; 2182 } 2183 2184 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2185 assert(BI->isConditional() && "uses a comparison!"); 2186 2187 BasicBlock *NonNullSuccessor = 2188 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2189 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2190 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2191 return true; 2192 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2193 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2194 return true; 2195 } 2196 } 2197 } 2198 } 2199 2200 return false; 2201 } 2202 2203 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2204 /// ensure that the value it's attached to is never Value? 'RangeType' is 2205 /// is the type of the value described by the range. 2206 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2207 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2208 assert(NumRanges >= 1); 2209 for (unsigned i = 0; i < NumRanges; ++i) { 2210 ConstantInt *Lower = 2211 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2212 ConstantInt *Upper = 2213 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2214 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2215 if (Range.contains(Value)) 2216 return false; 2217 } 2218 return true; 2219 } 2220 2221 /// Return true if the given value is known to be non-zero when defined. For 2222 /// vectors, return true if every element is known to be non-zero when 2223 /// defined. For pointers, if the context instruction and dominator tree are 2224 /// specified, perform context-sensitive analysis and return true if the 2225 /// pointer couldn't possibly be null at the specified instruction. 2226 /// Supports values with integer or pointer type and vectors of integers. 2227 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2228 if (auto *C = dyn_cast<Constant>(V)) { 2229 if (C->isNullValue()) 2230 return false; 2231 if (isa<ConstantInt>(C)) 2232 // Must be non-zero due to null test above. 2233 return true; 2234 2235 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2236 // See the comment for IntToPtr/PtrToInt instructions below. 2237 if (CE->getOpcode() == Instruction::IntToPtr || 2238 CE->getOpcode() == Instruction::PtrToInt) 2239 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2240 Q.DL.getTypeSizeInBits(CE->getType())) 2241 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2242 } 2243 2244 // For constant vectors, check that all elements are undefined or known 2245 // non-zero to determine that the whole vector is known non-zero. 2246 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2247 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2248 Constant *Elt = C->getAggregateElement(i); 2249 if (!Elt || Elt->isNullValue()) 2250 return false; 2251 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2252 return false; 2253 } 2254 return true; 2255 } 2256 2257 // A global variable in address space 0 is non null unless extern weak 2258 // or an absolute symbol reference. Other address spaces may have null as a 2259 // valid address for a global, so we can't assume anything. 2260 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2261 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2262 GV->getType()->getAddressSpace() == 0) 2263 return true; 2264 } else 2265 return false; 2266 } 2267 2268 if (auto *I = dyn_cast<Instruction>(V)) { 2269 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2270 // If the possible ranges don't contain zero, then the value is 2271 // definitely non-zero. 2272 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2273 const APInt ZeroValue(Ty->getBitWidth(), 0); 2274 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2275 return true; 2276 } 2277 } 2278 } 2279 2280 if (isKnownNonZeroFromAssume(V, Q)) 2281 return true; 2282 2283 // Some of the tests below are recursive, so bail out if we hit the limit. 2284 if (Depth++ >= MaxDepth) 2285 return false; 2286 2287 // Check for pointer simplifications. 2288 if (V->getType()->isPointerTy()) { 2289 // Alloca never returns null, malloc might. 2290 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2291 return true; 2292 2293 // A byval, inalloca, or nonnull argument is never null. 2294 if (const Argument *A = dyn_cast<Argument>(V)) 2295 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2296 return true; 2297 2298 // A Load tagged with nonnull metadata is never null. 2299 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2300 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2301 return true; 2302 2303 if (const auto *Call = dyn_cast<CallBase>(V)) { 2304 if (Call->isReturnNonNull()) 2305 return true; 2306 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2307 return isKnownNonZero(RP, Depth, Q); 2308 } 2309 } 2310 2311 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2312 return true; 2313 2314 // Check for recursive pointer simplifications. 2315 if (V->getType()->isPointerTy()) { 2316 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2317 // do not alter the value, or at least not the nullness property of the 2318 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2319 // 2320 // Note that we have to take special care to avoid looking through 2321 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2322 // as casts that can alter the value, e.g., AddrSpaceCasts. 2323 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2324 if (isGEPKnownNonNull(GEP, Depth, Q)) 2325 return true; 2326 2327 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2328 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2329 2330 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2331 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2332 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2333 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2334 } 2335 2336 // Similar to int2ptr above, we can look through ptr2int here if the cast 2337 // is a no-op or an extend and not a truncate. 2338 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2339 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2340 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2341 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2342 2343 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2344 2345 // X | Y != 0 if X != 0 or Y != 0. 2346 Value *X = nullptr, *Y = nullptr; 2347 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2348 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2349 2350 // ext X != 0 if X != 0. 2351 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2352 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2353 2354 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2355 // if the lowest bit is shifted off the end. 2356 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2357 // shl nuw can't remove any non-zero bits. 2358 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2359 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2360 return isKnownNonZero(X, Depth, Q); 2361 2362 KnownBits Known(BitWidth); 2363 computeKnownBits(X, Known, Depth, Q); 2364 if (Known.One[0]) 2365 return true; 2366 } 2367 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2368 // defined if the sign bit is shifted off the end. 2369 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2370 // shr exact can only shift out zero bits. 2371 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2372 if (BO->isExact()) 2373 return isKnownNonZero(X, Depth, Q); 2374 2375 KnownBits Known = computeKnownBits(X, Depth, Q); 2376 if (Known.isNegative()) 2377 return true; 2378 2379 // If the shifter operand is a constant, and all of the bits shifted 2380 // out are known to be zero, and X is known non-zero then at least one 2381 // non-zero bit must remain. 2382 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2383 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2384 // Is there a known one in the portion not shifted out? 2385 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2386 return true; 2387 // Are all the bits to be shifted out known zero? 2388 if (Known.countMinTrailingZeros() >= ShiftVal) 2389 return isKnownNonZero(X, Depth, Q); 2390 } 2391 } 2392 // div exact can only produce a zero if the dividend is zero. 2393 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2394 return isKnownNonZero(X, Depth, Q); 2395 } 2396 // X + Y. 2397 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2398 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2399 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2400 2401 // If X and Y are both non-negative (as signed values) then their sum is not 2402 // zero unless both X and Y are zero. 2403 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2404 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2405 return true; 2406 2407 // If X and Y are both negative (as signed values) then their sum is not 2408 // zero unless both X and Y equal INT_MIN. 2409 if (XKnown.isNegative() && YKnown.isNegative()) { 2410 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2411 // The sign bit of X is set. If some other bit is set then X is not equal 2412 // to INT_MIN. 2413 if (XKnown.One.intersects(Mask)) 2414 return true; 2415 // The sign bit of Y is set. If some other bit is set then Y is not equal 2416 // to INT_MIN. 2417 if (YKnown.One.intersects(Mask)) 2418 return true; 2419 } 2420 2421 // The sum of a non-negative number and a power of two is not zero. 2422 if (XKnown.isNonNegative() && 2423 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2424 return true; 2425 if (YKnown.isNonNegative() && 2426 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2427 return true; 2428 } 2429 // X * Y. 2430 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2431 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2432 // If X and Y are non-zero then so is X * Y as long as the multiplication 2433 // does not overflow. 2434 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2435 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2436 return true; 2437 } 2438 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2439 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2440 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2441 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2442 return true; 2443 } 2444 // PHI 2445 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2446 // Try and detect a recurrence that monotonically increases from a 2447 // starting value, as these are common as induction variables. 2448 if (PN->getNumIncomingValues() == 2) { 2449 Value *Start = PN->getIncomingValue(0); 2450 Value *Induction = PN->getIncomingValue(1); 2451 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2452 std::swap(Start, Induction); 2453 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2454 if (!C->isZero() && !C->isNegative()) { 2455 ConstantInt *X; 2456 if (Q.IIQ.UseInstrInfo && 2457 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2458 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2459 !X->isNegative()) 2460 return true; 2461 } 2462 } 2463 } 2464 // Check if all incoming values are non-zero constant. 2465 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2466 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2467 }); 2468 if (AllNonZeroConstants) 2469 return true; 2470 } 2471 2472 KnownBits Known(BitWidth); 2473 computeKnownBits(V, Known, Depth, Q); 2474 return Known.One != 0; 2475 } 2476 2477 /// Return true if V2 == V1 + X, where X is known non-zero. 2478 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2479 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2480 if (!BO || BO->getOpcode() != Instruction::Add) 2481 return false; 2482 Value *Op = nullptr; 2483 if (V2 == BO->getOperand(0)) 2484 Op = BO->getOperand(1); 2485 else if (V2 == BO->getOperand(1)) 2486 Op = BO->getOperand(0); 2487 else 2488 return false; 2489 return isKnownNonZero(Op, 0, Q); 2490 } 2491 2492 /// Return true if it is known that V1 != V2. 2493 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2494 if (V1 == V2) 2495 return false; 2496 if (V1->getType() != V2->getType()) 2497 // We can't look through casts yet. 2498 return false; 2499 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2500 return true; 2501 2502 if (V1->getType()->isIntOrIntVectorTy()) { 2503 // Are any known bits in V1 contradictory to known bits in V2? If V1 2504 // has a known zero where V2 has a known one, they must not be equal. 2505 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2506 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2507 2508 if (Known1.Zero.intersects(Known2.One) || 2509 Known2.Zero.intersects(Known1.One)) 2510 return true; 2511 } 2512 return false; 2513 } 2514 2515 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2516 /// simplify operations downstream. Mask is known to be zero for bits that V 2517 /// cannot have. 2518 /// 2519 /// This function is defined on values with integer type, values with pointer 2520 /// type, and vectors of integers. In the case 2521 /// where V is a vector, the mask, known zero, and known one values are the 2522 /// same width as the vector element, and the bit is set only if it is true 2523 /// for all of the elements in the vector. 2524 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2525 const Query &Q) { 2526 KnownBits Known(Mask.getBitWidth()); 2527 computeKnownBits(V, Known, Depth, Q); 2528 return Mask.isSubsetOf(Known.Zero); 2529 } 2530 2531 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2532 // Returns the input and lower/upper bounds. 2533 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2534 const APInt *&CLow, const APInt *&CHigh) { 2535 assert(isa<Operator>(Select) && 2536 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2537 "Input should be a Select!"); 2538 2539 const Value *LHS = nullptr, *RHS = nullptr; 2540 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2541 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2542 return false; 2543 2544 if (!match(RHS, m_APInt(CLow))) 2545 return false; 2546 2547 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2548 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2549 if (getInverseMinMaxFlavor(SPF) != SPF2) 2550 return false; 2551 2552 if (!match(RHS2, m_APInt(CHigh))) 2553 return false; 2554 2555 if (SPF == SPF_SMIN) 2556 std::swap(CLow, CHigh); 2557 2558 In = LHS2; 2559 return CLow->sle(*CHigh); 2560 } 2561 2562 /// For vector constants, loop over the elements and find the constant with the 2563 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2564 /// or if any element was not analyzed; otherwise, return the count for the 2565 /// element with the minimum number of sign bits. 2566 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2567 const APInt &DemandedElts, 2568 unsigned TyBits) { 2569 const auto *CV = dyn_cast<Constant>(V); 2570 if (!CV || !CV->getType()->isVectorTy()) 2571 return 0; 2572 2573 unsigned MinSignBits = TyBits; 2574 unsigned NumElts = CV->getType()->getVectorNumElements(); 2575 for (unsigned i = 0; i != NumElts; ++i) { 2576 if (!DemandedElts[i]) 2577 continue; 2578 // If we find a non-ConstantInt, bail out. 2579 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2580 if (!Elt) 2581 return 0; 2582 2583 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2584 } 2585 2586 return MinSignBits; 2587 } 2588 2589 static unsigned ComputeNumSignBitsImpl(const Value *V, 2590 const APInt &DemandedElts, 2591 unsigned Depth, const Query &Q); 2592 2593 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2594 unsigned Depth, const Query &Q) { 2595 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2596 assert(Result > 0 && "At least one sign bit needs to be present!"); 2597 return Result; 2598 } 2599 2600 /// Return the number of times the sign bit of the register is replicated into 2601 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2602 /// (itself), but other cases can give us information. For example, immediately 2603 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2604 /// other, so we return 3. For vectors, return the number of sign bits for the 2605 /// vector element with the minimum number of known sign bits of the demanded 2606 /// elements in the vector specified by DemandedElts. 2607 static unsigned ComputeNumSignBitsImpl(const Value *V, 2608 const APInt &DemandedElts, 2609 unsigned Depth, const Query &Q) { 2610 assert(Depth <= MaxDepth && "Limit Search Depth"); 2611 2612 // We return the minimum number of sign bits that are guaranteed to be present 2613 // in V, so for undef we have to conservatively return 1. We don't have the 2614 // same behavior for poison though -- that's a FIXME today. 2615 2616 Type *Ty = V->getType(); 2617 assert(((Ty->isVectorTy() && 2618 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 2619 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2620 "Unexpected vector size"); 2621 2622 Type *ScalarTy = Ty->getScalarType(); 2623 unsigned TyBits = ScalarTy->isPointerTy() ? 2624 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2625 Q.DL.getTypeSizeInBits(ScalarTy); 2626 2627 unsigned Tmp, Tmp2; 2628 unsigned FirstAnswer = 1; 2629 2630 // Note that ConstantInt is handled by the general computeKnownBits case 2631 // below. 2632 2633 if (Depth == MaxDepth) 2634 return 1; // Limit search depth. 2635 2636 if (auto *U = dyn_cast<Operator>(V)) { 2637 switch (Operator::getOpcode(V)) { 2638 default: break; 2639 case Instruction::SExt: 2640 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2641 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2642 2643 case Instruction::SDiv: { 2644 const APInt *Denominator; 2645 // sdiv X, C -> adds log(C) sign bits. 2646 if (match(U->getOperand(1), m_APInt(Denominator))) { 2647 2648 // Ignore non-positive denominator. 2649 if (!Denominator->isStrictlyPositive()) 2650 break; 2651 2652 // Calculate the incoming numerator bits. 2653 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2654 2655 // Add floor(log(C)) bits to the numerator bits. 2656 return std::min(TyBits, NumBits + Denominator->logBase2()); 2657 } 2658 break; 2659 } 2660 2661 case Instruction::SRem: { 2662 const APInt *Denominator; 2663 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2664 // positive constant. This let us put a lower bound on the number of sign 2665 // bits. 2666 if (match(U->getOperand(1), m_APInt(Denominator))) { 2667 2668 // Ignore non-positive denominator. 2669 if (!Denominator->isStrictlyPositive()) 2670 break; 2671 2672 // Calculate the incoming numerator bits. SRem by a positive constant 2673 // can't lower the number of sign bits. 2674 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2675 2676 // Calculate the leading sign bit constraints by examining the 2677 // denominator. Given that the denominator is positive, there are two 2678 // cases: 2679 // 2680 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2681 // (1 << ceilLogBase2(C)). 2682 // 2683 // 2. the numerator is negative. Then the result range is (-C,0] and 2684 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2685 // 2686 // Thus a lower bound on the number of sign bits is `TyBits - 2687 // ceilLogBase2(C)`. 2688 2689 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2690 return std::max(NumrBits, ResBits); 2691 } 2692 break; 2693 } 2694 2695 case Instruction::AShr: { 2696 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2697 // ashr X, C -> adds C sign bits. Vectors too. 2698 const APInt *ShAmt; 2699 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2700 if (ShAmt->uge(TyBits)) 2701 break; // Bad shift. 2702 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2703 Tmp += ShAmtLimited; 2704 if (Tmp > TyBits) Tmp = TyBits; 2705 } 2706 return Tmp; 2707 } 2708 case Instruction::Shl: { 2709 const APInt *ShAmt; 2710 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2711 // shl destroys sign bits. 2712 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2713 if (ShAmt->uge(TyBits) || // Bad shift. 2714 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2715 Tmp2 = ShAmt->getZExtValue(); 2716 return Tmp - Tmp2; 2717 } 2718 break; 2719 } 2720 case Instruction::And: 2721 case Instruction::Or: 2722 case Instruction::Xor: // NOT is handled here. 2723 // Logical binary ops preserve the number of sign bits at the worst. 2724 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2725 if (Tmp != 1) { 2726 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2727 FirstAnswer = std::min(Tmp, Tmp2); 2728 // We computed what we know about the sign bits as our first 2729 // answer. Now proceed to the generic code that uses 2730 // computeKnownBits, and pick whichever answer is better. 2731 } 2732 break; 2733 2734 case Instruction::Select: { 2735 // If we have a clamp pattern, we know that the number of sign bits will 2736 // be the minimum of the clamp min/max range. 2737 const Value *X; 2738 const APInt *CLow, *CHigh; 2739 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2740 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2741 2742 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2743 if (Tmp == 1) break; 2744 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2745 return std::min(Tmp, Tmp2); 2746 } 2747 2748 case Instruction::Add: 2749 // Add can have at most one carry bit. Thus we know that the output 2750 // is, at worst, one more bit than the inputs. 2751 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2752 if (Tmp == 1) break; 2753 2754 // Special case decrementing a value (ADD X, -1): 2755 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2756 if (CRHS->isAllOnesValue()) { 2757 KnownBits Known(TyBits); 2758 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2759 2760 // If the input is known to be 0 or 1, the output is 0/-1, which is 2761 // all sign bits set. 2762 if ((Known.Zero | 1).isAllOnesValue()) 2763 return TyBits; 2764 2765 // If we are subtracting one from a positive number, there is no carry 2766 // out of the result. 2767 if (Known.isNonNegative()) 2768 return Tmp; 2769 } 2770 2771 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2772 if (Tmp2 == 1) break; 2773 return std::min(Tmp, Tmp2) - 1; 2774 2775 case Instruction::Sub: 2776 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2777 if (Tmp2 == 1) break; 2778 2779 // Handle NEG. 2780 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2781 if (CLHS->isNullValue()) { 2782 KnownBits Known(TyBits); 2783 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2784 // If the input is known to be 0 or 1, the output is 0/-1, which is 2785 // all sign bits set. 2786 if ((Known.Zero | 1).isAllOnesValue()) 2787 return TyBits; 2788 2789 // If the input is known to be positive (the sign bit is known clear), 2790 // the output of the NEG has the same number of sign bits as the 2791 // input. 2792 if (Known.isNonNegative()) 2793 return Tmp2; 2794 2795 // Otherwise, we treat this like a SUB. 2796 } 2797 2798 // Sub can have at most one carry bit. Thus we know that the output 2799 // is, at worst, one more bit than the inputs. 2800 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2801 if (Tmp == 1) break; 2802 return std::min(Tmp, Tmp2) - 1; 2803 2804 case Instruction::Mul: { 2805 // The output of the Mul can be at most twice the valid bits in the 2806 // inputs. 2807 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2808 if (SignBitsOp0 == 1) break; 2809 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2810 if (SignBitsOp1 == 1) break; 2811 unsigned OutValidBits = 2812 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2813 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2814 } 2815 2816 case Instruction::PHI: { 2817 const PHINode *PN = cast<PHINode>(U); 2818 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2819 // Don't analyze large in-degree PHIs. 2820 if (NumIncomingValues > 4) break; 2821 // Unreachable blocks may have zero-operand PHI nodes. 2822 if (NumIncomingValues == 0) break; 2823 2824 // Take the minimum of all incoming values. This can't infinitely loop 2825 // because of our depth threshold. 2826 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2827 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2828 if (Tmp == 1) return Tmp; 2829 Tmp = std::min( 2830 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2831 } 2832 return Tmp; 2833 } 2834 2835 case Instruction::Trunc: 2836 // FIXME: it's tricky to do anything useful for this, but it is an 2837 // important case for targets like X86. 2838 break; 2839 2840 case Instruction::ExtractElement: 2841 // Look through extract element. At the moment we keep this simple and 2842 // skip tracking the specific element. But at least we might find 2843 // information valid for all elements of the vector (for example if vector 2844 // is sign extended, shifted, etc). 2845 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2846 2847 case Instruction::ShuffleVector: { 2848 // Collect the minimum number of sign bits that are shared by every vector 2849 // element referenced by the shuffle. 2850 auto *Shuf = cast<ShuffleVectorInst>(U); 2851 APInt DemandedLHS, DemandedRHS; 2852 // For undef elements, we don't know anything about the common state of 2853 // the shuffle result. 2854 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2855 return 1; 2856 Tmp = std::numeric_limits<unsigned>::max(); 2857 if (!!DemandedLHS) { 2858 const Value *LHS = Shuf->getOperand(0); 2859 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2860 } 2861 // If we don't know anything, early out and try computeKnownBits 2862 // fall-back. 2863 if (Tmp == 1) 2864 break; 2865 if (!!DemandedRHS) { 2866 const Value *RHS = Shuf->getOperand(1); 2867 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2868 Tmp = std::min(Tmp, Tmp2); 2869 } 2870 // If we don't know anything, early out and try computeKnownBits 2871 // fall-back. 2872 if (Tmp == 1) 2873 break; 2874 assert(Tmp <= Ty->getScalarSizeInBits() && 2875 "Failed to determine minimum sign bits"); 2876 return Tmp; 2877 } 2878 } 2879 } 2880 2881 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2882 // use this information. 2883 2884 // If we can examine all elements of a vector constant successfully, we're 2885 // done (we can't do any better than that). If not, keep trying. 2886 if (unsigned VecSignBits = 2887 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2888 return VecSignBits; 2889 2890 KnownBits Known(TyBits); 2891 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2892 2893 // If we know that the sign bit is either zero or one, determine the number of 2894 // identical bits in the top of the input value. 2895 return std::max(FirstAnswer, Known.countMinSignBits()); 2896 } 2897 2898 /// This function computes the integer multiple of Base that equals V. 2899 /// If successful, it returns true and returns the multiple in 2900 /// Multiple. If unsuccessful, it returns false. It looks 2901 /// through SExt instructions only if LookThroughSExt is true. 2902 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2903 bool LookThroughSExt, unsigned Depth) { 2904 assert(V && "No Value?"); 2905 assert(Depth <= MaxDepth && "Limit Search Depth"); 2906 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2907 2908 Type *T = V->getType(); 2909 2910 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2911 2912 if (Base == 0) 2913 return false; 2914 2915 if (Base == 1) { 2916 Multiple = V; 2917 return true; 2918 } 2919 2920 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2921 Constant *BaseVal = ConstantInt::get(T, Base); 2922 if (CO && CO == BaseVal) { 2923 // Multiple is 1. 2924 Multiple = ConstantInt::get(T, 1); 2925 return true; 2926 } 2927 2928 if (CI && CI->getZExtValue() % Base == 0) { 2929 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2930 return true; 2931 } 2932 2933 if (Depth == MaxDepth) return false; // Limit search depth. 2934 2935 Operator *I = dyn_cast<Operator>(V); 2936 if (!I) return false; 2937 2938 switch (I->getOpcode()) { 2939 default: break; 2940 case Instruction::SExt: 2941 if (!LookThroughSExt) return false; 2942 // otherwise fall through to ZExt 2943 LLVM_FALLTHROUGH; 2944 case Instruction::ZExt: 2945 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2946 LookThroughSExt, Depth+1); 2947 case Instruction::Shl: 2948 case Instruction::Mul: { 2949 Value *Op0 = I->getOperand(0); 2950 Value *Op1 = I->getOperand(1); 2951 2952 if (I->getOpcode() == Instruction::Shl) { 2953 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2954 if (!Op1CI) return false; 2955 // Turn Op0 << Op1 into Op0 * 2^Op1 2956 APInt Op1Int = Op1CI->getValue(); 2957 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2958 APInt API(Op1Int.getBitWidth(), 0); 2959 API.setBit(BitToSet); 2960 Op1 = ConstantInt::get(V->getContext(), API); 2961 } 2962 2963 Value *Mul0 = nullptr; 2964 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2965 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2966 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2967 if (Op1C->getType()->getPrimitiveSizeInBits() < 2968 MulC->getType()->getPrimitiveSizeInBits()) 2969 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2970 if (Op1C->getType()->getPrimitiveSizeInBits() > 2971 MulC->getType()->getPrimitiveSizeInBits()) 2972 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2973 2974 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2975 Multiple = ConstantExpr::getMul(MulC, Op1C); 2976 return true; 2977 } 2978 2979 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2980 if (Mul0CI->getValue() == 1) { 2981 // V == Base * Op1, so return Op1 2982 Multiple = Op1; 2983 return true; 2984 } 2985 } 2986 2987 Value *Mul1 = nullptr; 2988 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2989 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2990 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2991 if (Op0C->getType()->getPrimitiveSizeInBits() < 2992 MulC->getType()->getPrimitiveSizeInBits()) 2993 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2994 if (Op0C->getType()->getPrimitiveSizeInBits() > 2995 MulC->getType()->getPrimitiveSizeInBits()) 2996 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2997 2998 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2999 Multiple = ConstantExpr::getMul(MulC, Op0C); 3000 return true; 3001 } 3002 3003 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3004 if (Mul1CI->getValue() == 1) { 3005 // V == Base * Op0, so return Op0 3006 Multiple = Op0; 3007 return true; 3008 } 3009 } 3010 } 3011 } 3012 3013 // We could not determine if V is a multiple of Base. 3014 return false; 3015 } 3016 3017 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3018 const TargetLibraryInfo *TLI) { 3019 const Function *F = ICS.getCalledFunction(); 3020 if (!F) 3021 return Intrinsic::not_intrinsic; 3022 3023 if (F->isIntrinsic()) 3024 return F->getIntrinsicID(); 3025 3026 if (!TLI) 3027 return Intrinsic::not_intrinsic; 3028 3029 LibFunc Func; 3030 // We're going to make assumptions on the semantics of the functions, check 3031 // that the target knows that it's available in this environment and it does 3032 // not have local linkage. 3033 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3034 return Intrinsic::not_intrinsic; 3035 3036 if (!ICS.onlyReadsMemory()) 3037 return Intrinsic::not_intrinsic; 3038 3039 // Otherwise check if we have a call to a function that can be turned into a 3040 // vector intrinsic. 3041 switch (Func) { 3042 default: 3043 break; 3044 case LibFunc_sin: 3045 case LibFunc_sinf: 3046 case LibFunc_sinl: 3047 return Intrinsic::sin; 3048 case LibFunc_cos: 3049 case LibFunc_cosf: 3050 case LibFunc_cosl: 3051 return Intrinsic::cos; 3052 case LibFunc_exp: 3053 case LibFunc_expf: 3054 case LibFunc_expl: 3055 return Intrinsic::exp; 3056 case LibFunc_exp2: 3057 case LibFunc_exp2f: 3058 case LibFunc_exp2l: 3059 return Intrinsic::exp2; 3060 case LibFunc_log: 3061 case LibFunc_logf: 3062 case LibFunc_logl: 3063 return Intrinsic::log; 3064 case LibFunc_log10: 3065 case LibFunc_log10f: 3066 case LibFunc_log10l: 3067 return Intrinsic::log10; 3068 case LibFunc_log2: 3069 case LibFunc_log2f: 3070 case LibFunc_log2l: 3071 return Intrinsic::log2; 3072 case LibFunc_fabs: 3073 case LibFunc_fabsf: 3074 case LibFunc_fabsl: 3075 return Intrinsic::fabs; 3076 case LibFunc_fmin: 3077 case LibFunc_fminf: 3078 case LibFunc_fminl: 3079 return Intrinsic::minnum; 3080 case LibFunc_fmax: 3081 case LibFunc_fmaxf: 3082 case LibFunc_fmaxl: 3083 return Intrinsic::maxnum; 3084 case LibFunc_copysign: 3085 case LibFunc_copysignf: 3086 case LibFunc_copysignl: 3087 return Intrinsic::copysign; 3088 case LibFunc_floor: 3089 case LibFunc_floorf: 3090 case LibFunc_floorl: 3091 return Intrinsic::floor; 3092 case LibFunc_ceil: 3093 case LibFunc_ceilf: 3094 case LibFunc_ceill: 3095 return Intrinsic::ceil; 3096 case LibFunc_trunc: 3097 case LibFunc_truncf: 3098 case LibFunc_truncl: 3099 return Intrinsic::trunc; 3100 case LibFunc_rint: 3101 case LibFunc_rintf: 3102 case LibFunc_rintl: 3103 return Intrinsic::rint; 3104 case LibFunc_nearbyint: 3105 case LibFunc_nearbyintf: 3106 case LibFunc_nearbyintl: 3107 return Intrinsic::nearbyint; 3108 case LibFunc_round: 3109 case LibFunc_roundf: 3110 case LibFunc_roundl: 3111 return Intrinsic::round; 3112 case LibFunc_pow: 3113 case LibFunc_powf: 3114 case LibFunc_powl: 3115 return Intrinsic::pow; 3116 case LibFunc_sqrt: 3117 case LibFunc_sqrtf: 3118 case LibFunc_sqrtl: 3119 return Intrinsic::sqrt; 3120 } 3121 3122 return Intrinsic::not_intrinsic; 3123 } 3124 3125 /// Return true if we can prove that the specified FP value is never equal to 3126 /// -0.0. 3127 /// 3128 /// NOTE: this function will need to be revisited when we support non-default 3129 /// rounding modes! 3130 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3131 unsigned Depth) { 3132 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3133 return !CFP->getValueAPF().isNegZero(); 3134 3135 // Limit search depth. 3136 if (Depth == MaxDepth) 3137 return false; 3138 3139 auto *Op = dyn_cast<Operator>(V); 3140 if (!Op) 3141 return false; 3142 3143 // Check if the nsz fast-math flag is set. 3144 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3145 if (FPO->hasNoSignedZeros()) 3146 return true; 3147 3148 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3149 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3150 return true; 3151 3152 // sitofp and uitofp turn into +0.0 for zero. 3153 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3154 return true; 3155 3156 if (auto *Call = dyn_cast<CallInst>(Op)) { 3157 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3158 switch (IID) { 3159 default: 3160 break; 3161 // sqrt(-0.0) = -0.0, no other negative results are possible. 3162 case Intrinsic::sqrt: 3163 case Intrinsic::canonicalize: 3164 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3165 // fabs(x) != -0.0 3166 case Intrinsic::fabs: 3167 return true; 3168 } 3169 } 3170 3171 return false; 3172 } 3173 3174 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3175 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3176 /// bit despite comparing equal. 3177 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3178 const TargetLibraryInfo *TLI, 3179 bool SignBitOnly, 3180 unsigned Depth) { 3181 // TODO: This function does not do the right thing when SignBitOnly is true 3182 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3183 // which flips the sign bits of NaNs. See 3184 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3185 3186 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3187 return !CFP->getValueAPF().isNegative() || 3188 (!SignBitOnly && CFP->getValueAPF().isZero()); 3189 } 3190 3191 // Handle vector of constants. 3192 if (auto *CV = dyn_cast<Constant>(V)) { 3193 if (CV->getType()->isVectorTy()) { 3194 unsigned NumElts = CV->getType()->getVectorNumElements(); 3195 for (unsigned i = 0; i != NumElts; ++i) { 3196 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3197 if (!CFP) 3198 return false; 3199 if (CFP->getValueAPF().isNegative() && 3200 (SignBitOnly || !CFP->getValueAPF().isZero())) 3201 return false; 3202 } 3203 3204 // All non-negative ConstantFPs. 3205 return true; 3206 } 3207 } 3208 3209 if (Depth == MaxDepth) 3210 return false; // Limit search depth. 3211 3212 const Operator *I = dyn_cast<Operator>(V); 3213 if (!I) 3214 return false; 3215 3216 switch (I->getOpcode()) { 3217 default: 3218 break; 3219 // Unsigned integers are always nonnegative. 3220 case Instruction::UIToFP: 3221 return true; 3222 case Instruction::FMul: 3223 // x*x is always non-negative or a NaN. 3224 if (I->getOperand(0) == I->getOperand(1) && 3225 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3226 return true; 3227 3228 LLVM_FALLTHROUGH; 3229 case Instruction::FAdd: 3230 case Instruction::FDiv: 3231 case Instruction::FRem: 3232 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3233 Depth + 1) && 3234 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3235 Depth + 1); 3236 case Instruction::Select: 3237 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3238 Depth + 1) && 3239 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3240 Depth + 1); 3241 case Instruction::FPExt: 3242 case Instruction::FPTrunc: 3243 // Widening/narrowing never change sign. 3244 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3245 Depth + 1); 3246 case Instruction::ExtractElement: 3247 // Look through extract element. At the moment we keep this simple and skip 3248 // tracking the specific element. But at least we might find information 3249 // valid for all elements of the vector. 3250 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3251 Depth + 1); 3252 case Instruction::Call: 3253 const auto *CI = cast<CallInst>(I); 3254 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3255 switch (IID) { 3256 default: 3257 break; 3258 case Intrinsic::maxnum: 3259 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3260 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3261 SignBitOnly, Depth + 1)) || 3262 (isKnownNeverNaN(I->getOperand(1), TLI) && 3263 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3264 SignBitOnly, Depth + 1)); 3265 3266 case Intrinsic::maximum: 3267 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3268 Depth + 1) || 3269 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3270 Depth + 1); 3271 case Intrinsic::minnum: 3272 case Intrinsic::minimum: 3273 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3274 Depth + 1) && 3275 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3276 Depth + 1); 3277 case Intrinsic::exp: 3278 case Intrinsic::exp2: 3279 case Intrinsic::fabs: 3280 return true; 3281 3282 case Intrinsic::sqrt: 3283 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3284 if (!SignBitOnly) 3285 return true; 3286 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3287 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3288 3289 case Intrinsic::powi: 3290 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3291 // powi(x,n) is non-negative if n is even. 3292 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3293 return true; 3294 } 3295 // TODO: This is not correct. Given that exp is an integer, here are the 3296 // ways that pow can return a negative value: 3297 // 3298 // pow(x, exp) --> negative if exp is odd and x is negative. 3299 // pow(-0, exp) --> -inf if exp is negative odd. 3300 // pow(-0, exp) --> -0 if exp is positive odd. 3301 // pow(-inf, exp) --> -0 if exp is negative odd. 3302 // pow(-inf, exp) --> -inf if exp is positive odd. 3303 // 3304 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3305 // but we must return false if x == -0. Unfortunately we do not currently 3306 // have a way of expressing this constraint. See details in 3307 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3308 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3309 Depth + 1); 3310 3311 case Intrinsic::fma: 3312 case Intrinsic::fmuladd: 3313 // x*x+y is non-negative if y is non-negative. 3314 return I->getOperand(0) == I->getOperand(1) && 3315 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3316 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3317 Depth + 1); 3318 } 3319 break; 3320 } 3321 return false; 3322 } 3323 3324 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3325 const TargetLibraryInfo *TLI) { 3326 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3327 } 3328 3329 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3330 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3331 } 3332 3333 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3334 unsigned Depth) { 3335 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3336 3337 // If we're told that infinities won't happen, assume they won't. 3338 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3339 if (FPMathOp->hasNoInfs()) 3340 return true; 3341 3342 // Handle scalar constants. 3343 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3344 return !CFP->isInfinity(); 3345 3346 if (Depth == MaxDepth) 3347 return false; 3348 3349 if (auto *Inst = dyn_cast<Instruction>(V)) { 3350 switch (Inst->getOpcode()) { 3351 case Instruction::Select: { 3352 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3353 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3354 } 3355 case Instruction::UIToFP: 3356 // If the input type fits into the floating type the result is finite. 3357 return ilogb(APFloat::getLargest( 3358 Inst->getType()->getScalarType()->getFltSemantics())) >= 3359 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3360 default: 3361 break; 3362 } 3363 } 3364 3365 // Bail out for constant expressions, but try to handle vector constants. 3366 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3367 return false; 3368 3369 // For vectors, verify that each element is not infinity. 3370 unsigned NumElts = V->getType()->getVectorNumElements(); 3371 for (unsigned i = 0; i != NumElts; ++i) { 3372 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3373 if (!Elt) 3374 return false; 3375 if (isa<UndefValue>(Elt)) 3376 continue; 3377 auto *CElt = dyn_cast<ConstantFP>(Elt); 3378 if (!CElt || CElt->isInfinity()) 3379 return false; 3380 } 3381 // All elements were confirmed non-infinity or undefined. 3382 return true; 3383 } 3384 3385 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3386 unsigned Depth) { 3387 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3388 3389 // If we're told that NaNs won't happen, assume they won't. 3390 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3391 if (FPMathOp->hasNoNaNs()) 3392 return true; 3393 3394 // Handle scalar constants. 3395 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3396 return !CFP->isNaN(); 3397 3398 if (Depth == MaxDepth) 3399 return false; 3400 3401 if (auto *Inst = dyn_cast<Instruction>(V)) { 3402 switch (Inst->getOpcode()) { 3403 case Instruction::FAdd: 3404 case Instruction::FSub: 3405 // Adding positive and negative infinity produces NaN. 3406 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3407 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3408 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3409 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3410 3411 case Instruction::FMul: 3412 // Zero multiplied with infinity produces NaN. 3413 // FIXME: If neither side can be zero fmul never produces NaN. 3414 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3415 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3416 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3417 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3418 3419 case Instruction::FDiv: 3420 case Instruction::FRem: 3421 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3422 return false; 3423 3424 case Instruction::Select: { 3425 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3426 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3427 } 3428 case Instruction::SIToFP: 3429 case Instruction::UIToFP: 3430 return true; 3431 case Instruction::FPTrunc: 3432 case Instruction::FPExt: 3433 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3434 default: 3435 break; 3436 } 3437 } 3438 3439 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3440 switch (II->getIntrinsicID()) { 3441 case Intrinsic::canonicalize: 3442 case Intrinsic::fabs: 3443 case Intrinsic::copysign: 3444 case Intrinsic::exp: 3445 case Intrinsic::exp2: 3446 case Intrinsic::floor: 3447 case Intrinsic::ceil: 3448 case Intrinsic::trunc: 3449 case Intrinsic::rint: 3450 case Intrinsic::nearbyint: 3451 case Intrinsic::round: 3452 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3453 case Intrinsic::sqrt: 3454 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3455 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3456 case Intrinsic::minnum: 3457 case Intrinsic::maxnum: 3458 // If either operand is not NaN, the result is not NaN. 3459 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3460 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3461 default: 3462 return false; 3463 } 3464 } 3465 3466 // Bail out for constant expressions, but try to handle vector constants. 3467 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3468 return false; 3469 3470 // For vectors, verify that each element is not NaN. 3471 unsigned NumElts = V->getType()->getVectorNumElements(); 3472 for (unsigned i = 0; i != NumElts; ++i) { 3473 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3474 if (!Elt) 3475 return false; 3476 if (isa<UndefValue>(Elt)) 3477 continue; 3478 auto *CElt = dyn_cast<ConstantFP>(Elt); 3479 if (!CElt || CElt->isNaN()) 3480 return false; 3481 } 3482 // All elements were confirmed not-NaN or undefined. 3483 return true; 3484 } 3485 3486 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3487 3488 // All byte-wide stores are splatable, even of arbitrary variables. 3489 if (V->getType()->isIntegerTy(8)) 3490 return V; 3491 3492 LLVMContext &Ctx = V->getContext(); 3493 3494 // Undef don't care. 3495 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3496 if (isa<UndefValue>(V)) 3497 return UndefInt8; 3498 3499 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3500 if (!Size) 3501 return UndefInt8; 3502 3503 Constant *C = dyn_cast<Constant>(V); 3504 if (!C) { 3505 // Conceptually, we could handle things like: 3506 // %a = zext i8 %X to i16 3507 // %b = shl i16 %a, 8 3508 // %c = or i16 %a, %b 3509 // but until there is an example that actually needs this, it doesn't seem 3510 // worth worrying about. 3511 return nullptr; 3512 } 3513 3514 // Handle 'null' ConstantArrayZero etc. 3515 if (C->isNullValue()) 3516 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3517 3518 // Constant floating-point values can be handled as integer values if the 3519 // corresponding integer value is "byteable". An important case is 0.0. 3520 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3521 Type *Ty = nullptr; 3522 if (CFP->getType()->isHalfTy()) 3523 Ty = Type::getInt16Ty(Ctx); 3524 else if (CFP->getType()->isFloatTy()) 3525 Ty = Type::getInt32Ty(Ctx); 3526 else if (CFP->getType()->isDoubleTy()) 3527 Ty = Type::getInt64Ty(Ctx); 3528 // Don't handle long double formats, which have strange constraints. 3529 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3530 : nullptr; 3531 } 3532 3533 // We can handle constant integers that are multiple of 8 bits. 3534 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3535 if (CI->getBitWidth() % 8 == 0) { 3536 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3537 if (!CI->getValue().isSplat(8)) 3538 return nullptr; 3539 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3540 } 3541 } 3542 3543 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3544 if (CE->getOpcode() == Instruction::IntToPtr) { 3545 auto PS = DL.getPointerSizeInBits( 3546 cast<PointerType>(CE->getType())->getAddressSpace()); 3547 return isBytewiseValue( 3548 ConstantExpr::getIntegerCast(CE->getOperand(0), 3549 Type::getIntNTy(Ctx, PS), false), 3550 DL); 3551 } 3552 } 3553 3554 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3555 if (LHS == RHS) 3556 return LHS; 3557 if (!LHS || !RHS) 3558 return nullptr; 3559 if (LHS == UndefInt8) 3560 return RHS; 3561 if (RHS == UndefInt8) 3562 return LHS; 3563 return nullptr; 3564 }; 3565 3566 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3567 Value *Val = UndefInt8; 3568 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3569 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3570 return nullptr; 3571 return Val; 3572 } 3573 3574 if (isa<ConstantAggregate>(C)) { 3575 Value *Val = UndefInt8; 3576 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3577 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3578 return nullptr; 3579 return Val; 3580 } 3581 3582 // Don't try to handle the handful of other constants. 3583 return nullptr; 3584 } 3585 3586 // This is the recursive version of BuildSubAggregate. It takes a few different 3587 // arguments. Idxs is the index within the nested struct From that we are 3588 // looking at now (which is of type IndexedType). IdxSkip is the number of 3589 // indices from Idxs that should be left out when inserting into the resulting 3590 // struct. To is the result struct built so far, new insertvalue instructions 3591 // build on that. 3592 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3593 SmallVectorImpl<unsigned> &Idxs, 3594 unsigned IdxSkip, 3595 Instruction *InsertBefore) { 3596 StructType *STy = dyn_cast<StructType>(IndexedType); 3597 if (STy) { 3598 // Save the original To argument so we can modify it 3599 Value *OrigTo = To; 3600 // General case, the type indexed by Idxs is a struct 3601 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3602 // Process each struct element recursively 3603 Idxs.push_back(i); 3604 Value *PrevTo = To; 3605 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3606 InsertBefore); 3607 Idxs.pop_back(); 3608 if (!To) { 3609 // Couldn't find any inserted value for this index? Cleanup 3610 while (PrevTo != OrigTo) { 3611 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3612 PrevTo = Del->getAggregateOperand(); 3613 Del->eraseFromParent(); 3614 } 3615 // Stop processing elements 3616 break; 3617 } 3618 } 3619 // If we successfully found a value for each of our subaggregates 3620 if (To) 3621 return To; 3622 } 3623 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3624 // the struct's elements had a value that was inserted directly. In the latter 3625 // case, perhaps we can't determine each of the subelements individually, but 3626 // we might be able to find the complete struct somewhere. 3627 3628 // Find the value that is at that particular spot 3629 Value *V = FindInsertedValue(From, Idxs); 3630 3631 if (!V) 3632 return nullptr; 3633 3634 // Insert the value in the new (sub) aggregate 3635 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3636 "tmp", InsertBefore); 3637 } 3638 3639 // This helper takes a nested struct and extracts a part of it (which is again a 3640 // struct) into a new value. For example, given the struct: 3641 // { a, { b, { c, d }, e } } 3642 // and the indices "1, 1" this returns 3643 // { c, d }. 3644 // 3645 // It does this by inserting an insertvalue for each element in the resulting 3646 // struct, as opposed to just inserting a single struct. This will only work if 3647 // each of the elements of the substruct are known (ie, inserted into From by an 3648 // insertvalue instruction somewhere). 3649 // 3650 // All inserted insertvalue instructions are inserted before InsertBefore 3651 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3652 Instruction *InsertBefore) { 3653 assert(InsertBefore && "Must have someplace to insert!"); 3654 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3655 idx_range); 3656 Value *To = UndefValue::get(IndexedType); 3657 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3658 unsigned IdxSkip = Idxs.size(); 3659 3660 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3661 } 3662 3663 /// Given an aggregate and a sequence of indices, see if the scalar value 3664 /// indexed is already around as a register, for example if it was inserted 3665 /// directly into the aggregate. 3666 /// 3667 /// If InsertBefore is not null, this function will duplicate (modified) 3668 /// insertvalues when a part of a nested struct is extracted. 3669 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3670 Instruction *InsertBefore) { 3671 // Nothing to index? Just return V then (this is useful at the end of our 3672 // recursion). 3673 if (idx_range.empty()) 3674 return V; 3675 // We have indices, so V should have an indexable type. 3676 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3677 "Not looking at a struct or array?"); 3678 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3679 "Invalid indices for type?"); 3680 3681 if (Constant *C = dyn_cast<Constant>(V)) { 3682 C = C->getAggregateElement(idx_range[0]); 3683 if (!C) return nullptr; 3684 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3685 } 3686 3687 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3688 // Loop the indices for the insertvalue instruction in parallel with the 3689 // requested indices 3690 const unsigned *req_idx = idx_range.begin(); 3691 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3692 i != e; ++i, ++req_idx) { 3693 if (req_idx == idx_range.end()) { 3694 // We can't handle this without inserting insertvalues 3695 if (!InsertBefore) 3696 return nullptr; 3697 3698 // The requested index identifies a part of a nested aggregate. Handle 3699 // this specially. For example, 3700 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3701 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3702 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3703 // This can be changed into 3704 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3705 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3706 // which allows the unused 0,0 element from the nested struct to be 3707 // removed. 3708 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3709 InsertBefore); 3710 } 3711 3712 // This insert value inserts something else than what we are looking for. 3713 // See if the (aggregate) value inserted into has the value we are 3714 // looking for, then. 3715 if (*req_idx != *i) 3716 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3717 InsertBefore); 3718 } 3719 // If we end up here, the indices of the insertvalue match with those 3720 // requested (though possibly only partially). Now we recursively look at 3721 // the inserted value, passing any remaining indices. 3722 return FindInsertedValue(I->getInsertedValueOperand(), 3723 makeArrayRef(req_idx, idx_range.end()), 3724 InsertBefore); 3725 } 3726 3727 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3728 // If we're extracting a value from an aggregate that was extracted from 3729 // something else, we can extract from that something else directly instead. 3730 // However, we will need to chain I's indices with the requested indices. 3731 3732 // Calculate the number of indices required 3733 unsigned size = I->getNumIndices() + idx_range.size(); 3734 // Allocate some space to put the new indices in 3735 SmallVector<unsigned, 5> Idxs; 3736 Idxs.reserve(size); 3737 // Add indices from the extract value instruction 3738 Idxs.append(I->idx_begin(), I->idx_end()); 3739 3740 // Add requested indices 3741 Idxs.append(idx_range.begin(), idx_range.end()); 3742 3743 assert(Idxs.size() == size 3744 && "Number of indices added not correct?"); 3745 3746 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3747 } 3748 // Otherwise, we don't know (such as, extracting from a function return value 3749 // or load instruction) 3750 return nullptr; 3751 } 3752 3753 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3754 unsigned CharSize) { 3755 // Make sure the GEP has exactly three arguments. 3756 if (GEP->getNumOperands() != 3) 3757 return false; 3758 3759 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3760 // CharSize. 3761 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3762 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3763 return false; 3764 3765 // Check to make sure that the first operand of the GEP is an integer and 3766 // has value 0 so that we are sure we're indexing into the initializer. 3767 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3768 if (!FirstIdx || !FirstIdx->isZero()) 3769 return false; 3770 3771 return true; 3772 } 3773 3774 bool llvm::getConstantDataArrayInfo(const Value *V, 3775 ConstantDataArraySlice &Slice, 3776 unsigned ElementSize, uint64_t Offset) { 3777 assert(V); 3778 3779 // Look through bitcast instructions and geps. 3780 V = V->stripPointerCasts(); 3781 3782 // If the value is a GEP instruction or constant expression, treat it as an 3783 // offset. 3784 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3785 // The GEP operator should be based on a pointer to string constant, and is 3786 // indexing into the string constant. 3787 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3788 return false; 3789 3790 // If the second index isn't a ConstantInt, then this is a variable index 3791 // into the array. If this occurs, we can't say anything meaningful about 3792 // the string. 3793 uint64_t StartIdx = 0; 3794 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3795 StartIdx = CI->getZExtValue(); 3796 else 3797 return false; 3798 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3799 StartIdx + Offset); 3800 } 3801 3802 // The GEP instruction, constant or instruction, must reference a global 3803 // variable that is a constant and is initialized. The referenced constant 3804 // initializer is the array that we'll use for optimization. 3805 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3806 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3807 return false; 3808 3809 const ConstantDataArray *Array; 3810 ArrayType *ArrayTy; 3811 if (GV->getInitializer()->isNullValue()) { 3812 Type *GVTy = GV->getValueType(); 3813 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3814 // A zeroinitializer for the array; there is no ConstantDataArray. 3815 Array = nullptr; 3816 } else { 3817 const DataLayout &DL = GV->getParent()->getDataLayout(); 3818 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3819 uint64_t Length = SizeInBytes / (ElementSize / 8); 3820 if (Length <= Offset) 3821 return false; 3822 3823 Slice.Array = nullptr; 3824 Slice.Offset = 0; 3825 Slice.Length = Length - Offset; 3826 return true; 3827 } 3828 } else { 3829 // This must be a ConstantDataArray. 3830 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3831 if (!Array) 3832 return false; 3833 ArrayTy = Array->getType(); 3834 } 3835 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3836 return false; 3837 3838 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3839 if (Offset > NumElts) 3840 return false; 3841 3842 Slice.Array = Array; 3843 Slice.Offset = Offset; 3844 Slice.Length = NumElts - Offset; 3845 return true; 3846 } 3847 3848 /// This function computes the length of a null-terminated C string pointed to 3849 /// by V. If successful, it returns true and returns the string in Str. 3850 /// If unsuccessful, it returns false. 3851 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3852 uint64_t Offset, bool TrimAtNul) { 3853 ConstantDataArraySlice Slice; 3854 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3855 return false; 3856 3857 if (Slice.Array == nullptr) { 3858 if (TrimAtNul) { 3859 Str = StringRef(); 3860 return true; 3861 } 3862 if (Slice.Length == 1) { 3863 Str = StringRef("", 1); 3864 return true; 3865 } 3866 // We cannot instantiate a StringRef as we do not have an appropriate string 3867 // of 0s at hand. 3868 return false; 3869 } 3870 3871 // Start out with the entire array in the StringRef. 3872 Str = Slice.Array->getAsString(); 3873 // Skip over 'offset' bytes. 3874 Str = Str.substr(Slice.Offset); 3875 3876 if (TrimAtNul) { 3877 // Trim off the \0 and anything after it. If the array is not nul 3878 // terminated, we just return the whole end of string. The client may know 3879 // some other way that the string is length-bound. 3880 Str = Str.substr(0, Str.find('\0')); 3881 } 3882 return true; 3883 } 3884 3885 // These next two are very similar to the above, but also look through PHI 3886 // nodes. 3887 // TODO: See if we can integrate these two together. 3888 3889 /// If we can compute the length of the string pointed to by 3890 /// the specified pointer, return 'len+1'. If we can't, return 0. 3891 static uint64_t GetStringLengthH(const Value *V, 3892 SmallPtrSetImpl<const PHINode*> &PHIs, 3893 unsigned CharSize) { 3894 // Look through noop bitcast instructions. 3895 V = V->stripPointerCasts(); 3896 3897 // If this is a PHI node, there are two cases: either we have already seen it 3898 // or we haven't. 3899 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3900 if (!PHIs.insert(PN).second) 3901 return ~0ULL; // already in the set. 3902 3903 // If it was new, see if all the input strings are the same length. 3904 uint64_t LenSoFar = ~0ULL; 3905 for (Value *IncValue : PN->incoming_values()) { 3906 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3907 if (Len == 0) return 0; // Unknown length -> unknown. 3908 3909 if (Len == ~0ULL) continue; 3910 3911 if (Len != LenSoFar && LenSoFar != ~0ULL) 3912 return 0; // Disagree -> unknown. 3913 LenSoFar = Len; 3914 } 3915 3916 // Success, all agree. 3917 return LenSoFar; 3918 } 3919 3920 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3921 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3922 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3923 if (Len1 == 0) return 0; 3924 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3925 if (Len2 == 0) return 0; 3926 if (Len1 == ~0ULL) return Len2; 3927 if (Len2 == ~0ULL) return Len1; 3928 if (Len1 != Len2) return 0; 3929 return Len1; 3930 } 3931 3932 // Otherwise, see if we can read the string. 3933 ConstantDataArraySlice Slice; 3934 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3935 return 0; 3936 3937 if (Slice.Array == nullptr) 3938 return 1; 3939 3940 // Search for nul characters 3941 unsigned NullIndex = 0; 3942 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3943 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3944 break; 3945 } 3946 3947 return NullIndex + 1; 3948 } 3949 3950 /// If we can compute the length of the string pointed to by 3951 /// the specified pointer, return 'len+1'. If we can't, return 0. 3952 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3953 if (!V->getType()->isPointerTy()) 3954 return 0; 3955 3956 SmallPtrSet<const PHINode*, 32> PHIs; 3957 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3958 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3959 // an empty string as a length. 3960 return Len == ~0ULL ? 1 : Len; 3961 } 3962 3963 const Value * 3964 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3965 bool MustPreserveNullness) { 3966 assert(Call && 3967 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3968 if (const Value *RV = Call->getReturnedArgOperand()) 3969 return RV; 3970 // This can be used only as a aliasing property. 3971 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3972 Call, MustPreserveNullness)) 3973 return Call->getArgOperand(0); 3974 return nullptr; 3975 } 3976 3977 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3978 const CallBase *Call, bool MustPreserveNullness) { 3979 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3980 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3981 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3982 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3983 (!MustPreserveNullness && 3984 Call->getIntrinsicID() == Intrinsic::ptrmask); 3985 } 3986 3987 /// \p PN defines a loop-variant pointer to an object. Check if the 3988 /// previous iteration of the loop was referring to the same object as \p PN. 3989 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3990 const LoopInfo *LI) { 3991 // Find the loop-defined value. 3992 Loop *L = LI->getLoopFor(PN->getParent()); 3993 if (PN->getNumIncomingValues() != 2) 3994 return true; 3995 3996 // Find the value from previous iteration. 3997 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3998 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3999 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4000 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4001 return true; 4002 4003 // If a new pointer is loaded in the loop, the pointer references a different 4004 // object in every iteration. E.g.: 4005 // for (i) 4006 // int *p = a[i]; 4007 // ... 4008 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4009 if (!L->isLoopInvariant(Load->getPointerOperand())) 4010 return false; 4011 return true; 4012 } 4013 4014 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4015 unsigned MaxLookup) { 4016 if (!V->getType()->isPointerTy()) 4017 return V; 4018 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4019 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4020 V = GEP->getPointerOperand(); 4021 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4022 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4023 V = cast<Operator>(V)->getOperand(0); 4024 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4025 if (GA->isInterposable()) 4026 return V; 4027 V = GA->getAliasee(); 4028 } else if (isa<AllocaInst>(V)) { 4029 // An alloca can't be further simplified. 4030 return V; 4031 } else { 4032 if (auto *Call = dyn_cast<CallBase>(V)) { 4033 // CaptureTracking can know about special capturing properties of some 4034 // intrinsics like launder.invariant.group, that can't be expressed with 4035 // the attributes, but have properties like returning aliasing pointer. 4036 // Because some analysis may assume that nocaptured pointer is not 4037 // returned from some special intrinsic (because function would have to 4038 // be marked with returns attribute), it is crucial to use this function 4039 // because it should be in sync with CaptureTracking. Not using it may 4040 // cause weird miscompilations where 2 aliasing pointers are assumed to 4041 // noalias. 4042 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4043 V = RP; 4044 continue; 4045 } 4046 } 4047 4048 // See if InstructionSimplify knows any relevant tricks. 4049 if (Instruction *I = dyn_cast<Instruction>(V)) 4050 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4051 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4052 V = Simplified; 4053 continue; 4054 } 4055 4056 return V; 4057 } 4058 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4059 } 4060 return V; 4061 } 4062 4063 void llvm::GetUnderlyingObjects(const Value *V, 4064 SmallVectorImpl<const Value *> &Objects, 4065 const DataLayout &DL, LoopInfo *LI, 4066 unsigned MaxLookup) { 4067 SmallPtrSet<const Value *, 4> Visited; 4068 SmallVector<const Value *, 4> Worklist; 4069 Worklist.push_back(V); 4070 do { 4071 const Value *P = Worklist.pop_back_val(); 4072 P = GetUnderlyingObject(P, DL, MaxLookup); 4073 4074 if (!Visited.insert(P).second) 4075 continue; 4076 4077 if (auto *SI = dyn_cast<SelectInst>(P)) { 4078 Worklist.push_back(SI->getTrueValue()); 4079 Worklist.push_back(SI->getFalseValue()); 4080 continue; 4081 } 4082 4083 if (auto *PN = dyn_cast<PHINode>(P)) { 4084 // If this PHI changes the underlying object in every iteration of the 4085 // loop, don't look through it. Consider: 4086 // int **A; 4087 // for (i) { 4088 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4089 // Curr = A[i]; 4090 // *Prev, *Curr; 4091 // 4092 // Prev is tracking Curr one iteration behind so they refer to different 4093 // underlying objects. 4094 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4095 isSameUnderlyingObjectInLoop(PN, LI)) 4096 for (Value *IncValue : PN->incoming_values()) 4097 Worklist.push_back(IncValue); 4098 continue; 4099 } 4100 4101 Objects.push_back(P); 4102 } while (!Worklist.empty()); 4103 } 4104 4105 /// This is the function that does the work of looking through basic 4106 /// ptrtoint+arithmetic+inttoptr sequences. 4107 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4108 do { 4109 if (const Operator *U = dyn_cast<Operator>(V)) { 4110 // If we find a ptrtoint, we can transfer control back to the 4111 // regular getUnderlyingObjectFromInt. 4112 if (U->getOpcode() == Instruction::PtrToInt) 4113 return U->getOperand(0); 4114 // If we find an add of a constant, a multiplied value, or a phi, it's 4115 // likely that the other operand will lead us to the base 4116 // object. We don't have to worry about the case where the 4117 // object address is somehow being computed by the multiply, 4118 // because our callers only care when the result is an 4119 // identifiable object. 4120 if (U->getOpcode() != Instruction::Add || 4121 (!isa<ConstantInt>(U->getOperand(1)) && 4122 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4123 !isa<PHINode>(U->getOperand(1)))) 4124 return V; 4125 V = U->getOperand(0); 4126 } else { 4127 return V; 4128 } 4129 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4130 } while (true); 4131 } 4132 4133 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4134 /// ptrtoint+arithmetic+inttoptr sequences. 4135 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4136 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4137 SmallVectorImpl<Value *> &Objects, 4138 const DataLayout &DL) { 4139 SmallPtrSet<const Value *, 16> Visited; 4140 SmallVector<const Value *, 4> Working(1, V); 4141 do { 4142 V = Working.pop_back_val(); 4143 4144 SmallVector<const Value *, 4> Objs; 4145 GetUnderlyingObjects(V, Objs, DL); 4146 4147 for (const Value *V : Objs) { 4148 if (!Visited.insert(V).second) 4149 continue; 4150 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4151 const Value *O = 4152 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4153 if (O->getType()->isPointerTy()) { 4154 Working.push_back(O); 4155 continue; 4156 } 4157 } 4158 // If GetUnderlyingObjects fails to find an identifiable object, 4159 // getUnderlyingObjectsForCodeGen also fails for safety. 4160 if (!isIdentifiedObject(V)) { 4161 Objects.clear(); 4162 return false; 4163 } 4164 Objects.push_back(const_cast<Value *>(V)); 4165 } 4166 } while (!Working.empty()); 4167 return true; 4168 } 4169 4170 /// Return true if the only users of this pointer are lifetime markers. 4171 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4172 for (const User *U : V->users()) { 4173 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4174 if (!II) return false; 4175 4176 if (!II->isLifetimeStartOrEnd()) 4177 return false; 4178 } 4179 return true; 4180 } 4181 4182 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4183 if (!LI.isUnordered()) 4184 return true; 4185 const Function &F = *LI.getFunction(); 4186 // Speculative load may create a race that did not exist in the source. 4187 return F.hasFnAttribute(Attribute::SanitizeThread) || 4188 // Speculative load may load data from dirty regions. 4189 F.hasFnAttribute(Attribute::SanitizeAddress) || 4190 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4191 } 4192 4193 4194 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4195 const Instruction *CtxI, 4196 const DominatorTree *DT) { 4197 const Operator *Inst = dyn_cast<Operator>(V); 4198 if (!Inst) 4199 return false; 4200 4201 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4202 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4203 if (C->canTrap()) 4204 return false; 4205 4206 switch (Inst->getOpcode()) { 4207 default: 4208 return true; 4209 case Instruction::UDiv: 4210 case Instruction::URem: { 4211 // x / y is undefined if y == 0. 4212 const APInt *V; 4213 if (match(Inst->getOperand(1), m_APInt(V))) 4214 return *V != 0; 4215 return false; 4216 } 4217 case Instruction::SDiv: 4218 case Instruction::SRem: { 4219 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4220 const APInt *Numerator, *Denominator; 4221 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4222 return false; 4223 // We cannot hoist this division if the denominator is 0. 4224 if (*Denominator == 0) 4225 return false; 4226 // It's safe to hoist if the denominator is not 0 or -1. 4227 if (*Denominator != -1) 4228 return true; 4229 // At this point we know that the denominator is -1. It is safe to hoist as 4230 // long we know that the numerator is not INT_MIN. 4231 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4232 return !Numerator->isMinSignedValue(); 4233 // The numerator *might* be MinSignedValue. 4234 return false; 4235 } 4236 case Instruction::Load: { 4237 const LoadInst *LI = cast<LoadInst>(Inst); 4238 if (mustSuppressSpeculation(*LI)) 4239 return false; 4240 const DataLayout &DL = LI->getModule()->getDataLayout(); 4241 return isDereferenceableAndAlignedPointer( 4242 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4243 DL, CtxI, DT); 4244 } 4245 case Instruction::Call: { 4246 auto *CI = cast<const CallInst>(Inst); 4247 const Function *Callee = CI->getCalledFunction(); 4248 4249 // The called function could have undefined behavior or side-effects, even 4250 // if marked readnone nounwind. 4251 return Callee && Callee->isSpeculatable(); 4252 } 4253 case Instruction::VAArg: 4254 case Instruction::Alloca: 4255 case Instruction::Invoke: 4256 case Instruction::CallBr: 4257 case Instruction::PHI: 4258 case Instruction::Store: 4259 case Instruction::Ret: 4260 case Instruction::Br: 4261 case Instruction::IndirectBr: 4262 case Instruction::Switch: 4263 case Instruction::Unreachable: 4264 case Instruction::Fence: 4265 case Instruction::AtomicRMW: 4266 case Instruction::AtomicCmpXchg: 4267 case Instruction::LandingPad: 4268 case Instruction::Resume: 4269 case Instruction::CatchSwitch: 4270 case Instruction::CatchPad: 4271 case Instruction::CatchRet: 4272 case Instruction::CleanupPad: 4273 case Instruction::CleanupRet: 4274 return false; // Misc instructions which have effects 4275 } 4276 } 4277 4278 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4279 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4280 } 4281 4282 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4283 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4284 switch (OR) { 4285 case ConstantRange::OverflowResult::MayOverflow: 4286 return OverflowResult::MayOverflow; 4287 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4288 return OverflowResult::AlwaysOverflowsLow; 4289 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4290 return OverflowResult::AlwaysOverflowsHigh; 4291 case ConstantRange::OverflowResult::NeverOverflows: 4292 return OverflowResult::NeverOverflows; 4293 } 4294 llvm_unreachable("Unknown OverflowResult"); 4295 } 4296 4297 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4298 static ConstantRange computeConstantRangeIncludingKnownBits( 4299 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4300 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4301 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4302 KnownBits Known = computeKnownBits( 4303 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4304 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4305 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4306 ConstantRange::PreferredRangeType RangeType = 4307 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4308 return CR1.intersectWith(CR2, RangeType); 4309 } 4310 4311 OverflowResult llvm::computeOverflowForUnsignedMul( 4312 const Value *LHS, const Value *RHS, const DataLayout &DL, 4313 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4314 bool UseInstrInfo) { 4315 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4316 nullptr, UseInstrInfo); 4317 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4318 nullptr, UseInstrInfo); 4319 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4320 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4321 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4322 } 4323 4324 OverflowResult 4325 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4326 const DataLayout &DL, AssumptionCache *AC, 4327 const Instruction *CxtI, 4328 const DominatorTree *DT, bool UseInstrInfo) { 4329 // Multiplying n * m significant bits yields a result of n + m significant 4330 // bits. If the total number of significant bits does not exceed the 4331 // result bit width (minus 1), there is no overflow. 4332 // This means if we have enough leading sign bits in the operands 4333 // we can guarantee that the result does not overflow. 4334 // Ref: "Hacker's Delight" by Henry Warren 4335 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4336 4337 // Note that underestimating the number of sign bits gives a more 4338 // conservative answer. 4339 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4340 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4341 4342 // First handle the easy case: if we have enough sign bits there's 4343 // definitely no overflow. 4344 if (SignBits > BitWidth + 1) 4345 return OverflowResult::NeverOverflows; 4346 4347 // There are two ambiguous cases where there can be no overflow: 4348 // SignBits == BitWidth + 1 and 4349 // SignBits == BitWidth 4350 // The second case is difficult to check, therefore we only handle the 4351 // first case. 4352 if (SignBits == BitWidth + 1) { 4353 // It overflows only when both arguments are negative and the true 4354 // product is exactly the minimum negative number. 4355 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4356 // For simplicity we just check if at least one side is not negative. 4357 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4358 nullptr, UseInstrInfo); 4359 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4360 nullptr, UseInstrInfo); 4361 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4362 return OverflowResult::NeverOverflows; 4363 } 4364 return OverflowResult::MayOverflow; 4365 } 4366 4367 OverflowResult llvm::computeOverflowForUnsignedAdd( 4368 const Value *LHS, const Value *RHS, const DataLayout &DL, 4369 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4370 bool UseInstrInfo) { 4371 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4372 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4373 nullptr, UseInstrInfo); 4374 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4375 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4376 nullptr, UseInstrInfo); 4377 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4378 } 4379 4380 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4381 const Value *RHS, 4382 const AddOperator *Add, 4383 const DataLayout &DL, 4384 AssumptionCache *AC, 4385 const Instruction *CxtI, 4386 const DominatorTree *DT) { 4387 if (Add && Add->hasNoSignedWrap()) { 4388 return OverflowResult::NeverOverflows; 4389 } 4390 4391 // If LHS and RHS each have at least two sign bits, the addition will look 4392 // like 4393 // 4394 // XX..... + 4395 // YY..... 4396 // 4397 // If the carry into the most significant position is 0, X and Y can't both 4398 // be 1 and therefore the carry out of the addition is also 0. 4399 // 4400 // If the carry into the most significant position is 1, X and Y can't both 4401 // be 0 and therefore the carry out of the addition is also 1. 4402 // 4403 // Since the carry into the most significant position is always equal to 4404 // the carry out of the addition, there is no signed overflow. 4405 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4406 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4407 return OverflowResult::NeverOverflows; 4408 4409 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4410 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4411 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4412 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4413 OverflowResult OR = 4414 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4415 if (OR != OverflowResult::MayOverflow) 4416 return OR; 4417 4418 // The remaining code needs Add to be available. Early returns if not so. 4419 if (!Add) 4420 return OverflowResult::MayOverflow; 4421 4422 // If the sign of Add is the same as at least one of the operands, this add 4423 // CANNOT overflow. If this can be determined from the known bits of the 4424 // operands the above signedAddMayOverflow() check will have already done so. 4425 // The only other way to improve on the known bits is from an assumption, so 4426 // call computeKnownBitsFromAssume() directly. 4427 bool LHSOrRHSKnownNonNegative = 4428 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4429 bool LHSOrRHSKnownNegative = 4430 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4431 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4432 KnownBits AddKnown(LHSRange.getBitWidth()); 4433 computeKnownBitsFromAssume( 4434 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4435 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4436 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4437 return OverflowResult::NeverOverflows; 4438 } 4439 4440 return OverflowResult::MayOverflow; 4441 } 4442 4443 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4444 const Value *RHS, 4445 const DataLayout &DL, 4446 AssumptionCache *AC, 4447 const Instruction *CxtI, 4448 const DominatorTree *DT) { 4449 // Checking for conditions implied by dominating conditions may be expensive. 4450 // Limit it to usub_with_overflow calls for now. 4451 if (match(CxtI, 4452 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4453 if (auto C = 4454 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4455 if (*C) 4456 return OverflowResult::NeverOverflows; 4457 return OverflowResult::AlwaysOverflowsLow; 4458 } 4459 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4460 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4461 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4462 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4463 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4464 } 4465 4466 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4467 const Value *RHS, 4468 const DataLayout &DL, 4469 AssumptionCache *AC, 4470 const Instruction *CxtI, 4471 const DominatorTree *DT) { 4472 // If LHS and RHS each have at least two sign bits, the subtraction 4473 // cannot overflow. 4474 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4475 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4476 return OverflowResult::NeverOverflows; 4477 4478 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4479 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4480 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4481 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4482 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4483 } 4484 4485 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4486 const DominatorTree &DT) { 4487 SmallVector<const BranchInst *, 2> GuardingBranches; 4488 SmallVector<const ExtractValueInst *, 2> Results; 4489 4490 for (const User *U : WO->users()) { 4491 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4492 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4493 4494 if (EVI->getIndices()[0] == 0) 4495 Results.push_back(EVI); 4496 else { 4497 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4498 4499 for (const auto *U : EVI->users()) 4500 if (const auto *B = dyn_cast<BranchInst>(U)) { 4501 assert(B->isConditional() && "How else is it using an i1?"); 4502 GuardingBranches.push_back(B); 4503 } 4504 } 4505 } else { 4506 // We are using the aggregate directly in a way we don't want to analyze 4507 // here (storing it to a global, say). 4508 return false; 4509 } 4510 } 4511 4512 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4513 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4514 if (!NoWrapEdge.isSingleEdge()) 4515 return false; 4516 4517 // Check if all users of the add are provably no-wrap. 4518 for (const auto *Result : Results) { 4519 // If the extractvalue itself is not executed on overflow, the we don't 4520 // need to check each use separately, since domination is transitive. 4521 if (DT.dominates(NoWrapEdge, Result->getParent())) 4522 continue; 4523 4524 for (auto &RU : Result->uses()) 4525 if (!DT.dominates(NoWrapEdge, RU)) 4526 return false; 4527 } 4528 4529 return true; 4530 }; 4531 4532 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4533 } 4534 4535 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4536 const Instruction *CtxI, 4537 const DominatorTree *DT) { 4538 // If the value is a freeze instruction, then it can never 4539 // be undef or poison. 4540 if (isa<FreezeInst>(V)) 4541 return true; 4542 // TODO: Some instructions are guaranteed to return neither undef 4543 // nor poison if their arguments are not poison/undef. 4544 4545 // TODO: Deal with other Constant subclasses. 4546 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4547 return true; 4548 4549 if (auto PN = dyn_cast<PHINode>(V)) { 4550 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4551 return isa<ConstantInt>(U.get()); 4552 })) 4553 return true; 4554 } 4555 4556 if (auto II = dyn_cast<ICmpInst>(V)) { 4557 if (llvm::all_of(II->operands(), [](const Value *V) { 4558 return isGuaranteedNotToBeUndefOrPoison(V); 4559 })) 4560 return true; 4561 } 4562 4563 if (auto I = dyn_cast<Instruction>(V)) { 4564 if (programUndefinedIfFullPoison(I) && I->getType()->isIntegerTy(1)) 4565 // Note: once we have an agreement that poison is a value-wise concept, 4566 // we can remove the isIntegerTy(1) constraint. 4567 return true; 4568 } 4569 4570 // CxtI may be null or a cloned instruction. 4571 if (!CtxI || !CtxI->getParent() || !DT) 4572 return false; 4573 4574 // If V is used as a branch condition before reaching CtxI, V cannot be 4575 // undef or poison. 4576 // br V, BB1, BB2 4577 // BB1: 4578 // CtxI ; V cannot be undef or poison here 4579 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4580 while (Dominator) { 4581 auto *TI = Dominator->getBlock()->getTerminator(); 4582 4583 if (auto BI = dyn_cast<BranchInst>(TI)) { 4584 if (BI->isConditional() && BI->getCondition() == V) 4585 return true; 4586 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4587 if (SI->getCondition() == V) 4588 return true; 4589 } 4590 4591 Dominator = Dominator->getIDom(); 4592 } 4593 4594 return false; 4595 } 4596 4597 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4598 const DataLayout &DL, 4599 AssumptionCache *AC, 4600 const Instruction *CxtI, 4601 const DominatorTree *DT) { 4602 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4603 Add, DL, AC, CxtI, DT); 4604 } 4605 4606 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4607 const Value *RHS, 4608 const DataLayout &DL, 4609 AssumptionCache *AC, 4610 const Instruction *CxtI, 4611 const DominatorTree *DT) { 4612 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4613 } 4614 4615 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4616 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4617 // of time because it's possible for another thread to interfere with it for an 4618 // arbitrary length of time, but programs aren't allowed to rely on that. 4619 4620 // If there is no successor, then execution can't transfer to it. 4621 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4622 return !CRI->unwindsToCaller(); 4623 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4624 return !CatchSwitch->unwindsToCaller(); 4625 if (isa<ResumeInst>(I)) 4626 return false; 4627 if (isa<ReturnInst>(I)) 4628 return false; 4629 if (isa<UnreachableInst>(I)) 4630 return false; 4631 4632 // Calls can throw, or contain an infinite loop, or kill the process. 4633 if (auto CS = ImmutableCallSite(I)) { 4634 // Call sites that throw have implicit non-local control flow. 4635 if (!CS.doesNotThrow()) 4636 return false; 4637 4638 // A function which doens't throw and has "willreturn" attribute will 4639 // always return. 4640 if (CS.hasFnAttr(Attribute::WillReturn)) 4641 return true; 4642 4643 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4644 // etc. and thus not return. However, LLVM already assumes that 4645 // 4646 // - Thread exiting actions are modeled as writes to memory invisible to 4647 // the program. 4648 // 4649 // - Loops that don't have side effects (side effects are volatile/atomic 4650 // stores and IO) always terminate (see http://llvm.org/PR965). 4651 // Furthermore IO itself is also modeled as writes to memory invisible to 4652 // the program. 4653 // 4654 // We rely on those assumptions here, and use the memory effects of the call 4655 // target as a proxy for checking that it always returns. 4656 4657 // FIXME: This isn't aggressive enough; a call which only writes to a global 4658 // is guaranteed to return. 4659 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4660 } 4661 4662 // Other instructions return normally. 4663 return true; 4664 } 4665 4666 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4667 // TODO: This is slightly conservative for invoke instruction since exiting 4668 // via an exception *is* normal control for them. 4669 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4670 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4671 return false; 4672 return true; 4673 } 4674 4675 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4676 const Loop *L) { 4677 // The loop header is guaranteed to be executed for every iteration. 4678 // 4679 // FIXME: Relax this constraint to cover all basic blocks that are 4680 // guaranteed to be executed at every iteration. 4681 if (I->getParent() != L->getHeader()) return false; 4682 4683 for (const Instruction &LI : *L->getHeader()) { 4684 if (&LI == I) return true; 4685 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4686 } 4687 llvm_unreachable("Instruction not contained in its own parent basic block."); 4688 } 4689 4690 bool llvm::propagatesFullPoison(const Instruction *I) { 4691 // TODO: This should include all instructions apart from phis, selects and 4692 // call-like instructions. 4693 switch (I->getOpcode()) { 4694 case Instruction::Add: 4695 case Instruction::Sub: 4696 case Instruction::Xor: 4697 case Instruction::Trunc: 4698 case Instruction::BitCast: 4699 case Instruction::AddrSpaceCast: 4700 case Instruction::Mul: 4701 case Instruction::Shl: 4702 case Instruction::GetElementPtr: 4703 // These operations all propagate poison unconditionally. Note that poison 4704 // is not any particular value, so xor or subtraction of poison with 4705 // itself still yields poison, not zero. 4706 return true; 4707 4708 case Instruction::AShr: 4709 case Instruction::SExt: 4710 // For these operations, one bit of the input is replicated across 4711 // multiple output bits. A replicated poison bit is still poison. 4712 return true; 4713 4714 case Instruction::ICmp: 4715 // Comparing poison with any value yields poison. This is why, for 4716 // instance, x s< (x +nsw 1) can be folded to true. 4717 return true; 4718 4719 default: 4720 return false; 4721 } 4722 } 4723 4724 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4725 switch (I->getOpcode()) { 4726 case Instruction::Store: 4727 return cast<StoreInst>(I)->getPointerOperand(); 4728 4729 case Instruction::Load: 4730 return cast<LoadInst>(I)->getPointerOperand(); 4731 4732 case Instruction::AtomicCmpXchg: 4733 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4734 4735 case Instruction::AtomicRMW: 4736 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4737 4738 case Instruction::UDiv: 4739 case Instruction::SDiv: 4740 case Instruction::URem: 4741 case Instruction::SRem: 4742 return I->getOperand(1); 4743 4744 case Instruction::Call: 4745 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4746 switch (II->getIntrinsicID()) { 4747 case Intrinsic::assume: 4748 return II->getArgOperand(0); 4749 default: 4750 return nullptr; 4751 } 4752 } 4753 return nullptr; 4754 4755 default: 4756 return nullptr; 4757 } 4758 } 4759 4760 bool llvm::mustTriggerUB(const Instruction *I, 4761 const SmallSet<const Value *, 16>& KnownPoison) { 4762 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4763 return (NotPoison && KnownPoison.count(NotPoison)); 4764 } 4765 4766 4767 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4768 // We currently only look for uses of poison values within the same basic 4769 // block, as that makes it easier to guarantee that the uses will be 4770 // executed given that PoisonI is executed. 4771 // 4772 // FIXME: Expand this to consider uses beyond the same basic block. To do 4773 // this, look out for the distinction between post-dominance and strong 4774 // post-dominance. 4775 const BasicBlock *BB = PoisonI->getParent(); 4776 4777 // Set of instructions that we have proved will yield poison if PoisonI 4778 // does. 4779 SmallSet<const Value *, 16> YieldsPoison; 4780 SmallSet<const BasicBlock *, 4> Visited; 4781 YieldsPoison.insert(PoisonI); 4782 Visited.insert(PoisonI->getParent()); 4783 4784 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4785 4786 unsigned Iter = 0; 4787 while (Iter++ < MaxDepth) { 4788 for (auto &I : make_range(Begin, End)) { 4789 if (&I != PoisonI) { 4790 if (mustTriggerUB(&I, YieldsPoison)) 4791 return true; 4792 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4793 return false; 4794 } 4795 4796 // Mark poison that propagates from I through uses of I. 4797 if (YieldsPoison.count(&I)) { 4798 for (const User *User : I.users()) { 4799 const Instruction *UserI = cast<Instruction>(User); 4800 if (propagatesFullPoison(UserI)) 4801 YieldsPoison.insert(User); 4802 } 4803 } 4804 } 4805 4806 if (auto *NextBB = BB->getSingleSuccessor()) { 4807 if (Visited.insert(NextBB).second) { 4808 BB = NextBB; 4809 Begin = BB->getFirstNonPHI()->getIterator(); 4810 End = BB->end(); 4811 continue; 4812 } 4813 } 4814 4815 break; 4816 } 4817 return false; 4818 } 4819 4820 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4821 if (FMF.noNaNs()) 4822 return true; 4823 4824 if (auto *C = dyn_cast<ConstantFP>(V)) 4825 return !C->isNaN(); 4826 4827 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4828 if (!C->getElementType()->isFloatingPointTy()) 4829 return false; 4830 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4831 if (C->getElementAsAPFloat(I).isNaN()) 4832 return false; 4833 } 4834 return true; 4835 } 4836 4837 if (isa<ConstantAggregateZero>(V)) 4838 return true; 4839 4840 return false; 4841 } 4842 4843 static bool isKnownNonZero(const Value *V) { 4844 if (auto *C = dyn_cast<ConstantFP>(V)) 4845 return !C->isZero(); 4846 4847 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4848 if (!C->getElementType()->isFloatingPointTy()) 4849 return false; 4850 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4851 if (C->getElementAsAPFloat(I).isZero()) 4852 return false; 4853 } 4854 return true; 4855 } 4856 4857 return false; 4858 } 4859 4860 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4861 /// Given non-min/max outer cmp/select from the clamp pattern this 4862 /// function recognizes if it can be substitued by a "canonical" min/max 4863 /// pattern. 4864 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4865 Value *CmpLHS, Value *CmpRHS, 4866 Value *TrueVal, Value *FalseVal, 4867 Value *&LHS, Value *&RHS) { 4868 // Try to match 4869 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4870 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4871 // and return description of the outer Max/Min. 4872 4873 // First, check if select has inverse order: 4874 if (CmpRHS == FalseVal) { 4875 std::swap(TrueVal, FalseVal); 4876 Pred = CmpInst::getInversePredicate(Pred); 4877 } 4878 4879 // Assume success now. If there's no match, callers should not use these anyway. 4880 LHS = TrueVal; 4881 RHS = FalseVal; 4882 4883 const APFloat *FC1; 4884 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4885 return {SPF_UNKNOWN, SPNB_NA, false}; 4886 4887 const APFloat *FC2; 4888 switch (Pred) { 4889 case CmpInst::FCMP_OLT: 4890 case CmpInst::FCMP_OLE: 4891 case CmpInst::FCMP_ULT: 4892 case CmpInst::FCMP_ULE: 4893 if (match(FalseVal, 4894 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4895 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4896 *FC1 < *FC2) 4897 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4898 break; 4899 case CmpInst::FCMP_OGT: 4900 case CmpInst::FCMP_OGE: 4901 case CmpInst::FCMP_UGT: 4902 case CmpInst::FCMP_UGE: 4903 if (match(FalseVal, 4904 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4905 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4906 *FC1 > *FC2) 4907 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4908 break; 4909 default: 4910 break; 4911 } 4912 4913 return {SPF_UNKNOWN, SPNB_NA, false}; 4914 } 4915 4916 /// Recognize variations of: 4917 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4918 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4919 Value *CmpLHS, Value *CmpRHS, 4920 Value *TrueVal, Value *FalseVal) { 4921 // Swap the select operands and predicate to match the patterns below. 4922 if (CmpRHS != TrueVal) { 4923 Pred = ICmpInst::getSwappedPredicate(Pred); 4924 std::swap(TrueVal, FalseVal); 4925 } 4926 const APInt *C1; 4927 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4928 const APInt *C2; 4929 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4930 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4931 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4932 return {SPF_SMAX, SPNB_NA, false}; 4933 4934 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4935 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4936 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4937 return {SPF_SMIN, SPNB_NA, false}; 4938 4939 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4940 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4941 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4942 return {SPF_UMAX, SPNB_NA, false}; 4943 4944 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4945 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4946 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4947 return {SPF_UMIN, SPNB_NA, false}; 4948 } 4949 return {SPF_UNKNOWN, SPNB_NA, false}; 4950 } 4951 4952 /// Recognize variations of: 4953 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4954 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4955 Value *CmpLHS, Value *CmpRHS, 4956 Value *TVal, Value *FVal, 4957 unsigned Depth) { 4958 // TODO: Allow FP min/max with nnan/nsz. 4959 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4960 4961 Value *A = nullptr, *B = nullptr; 4962 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4963 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4964 return {SPF_UNKNOWN, SPNB_NA, false}; 4965 4966 Value *C = nullptr, *D = nullptr; 4967 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4968 if (L.Flavor != R.Flavor) 4969 return {SPF_UNKNOWN, SPNB_NA, false}; 4970 4971 // We have something like: x Pred y ? min(a, b) : min(c, d). 4972 // Try to match the compare to the min/max operations of the select operands. 4973 // First, make sure we have the right compare predicate. 4974 switch (L.Flavor) { 4975 case SPF_SMIN: 4976 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4977 Pred = ICmpInst::getSwappedPredicate(Pred); 4978 std::swap(CmpLHS, CmpRHS); 4979 } 4980 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4981 break; 4982 return {SPF_UNKNOWN, SPNB_NA, false}; 4983 case SPF_SMAX: 4984 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4985 Pred = ICmpInst::getSwappedPredicate(Pred); 4986 std::swap(CmpLHS, CmpRHS); 4987 } 4988 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4989 break; 4990 return {SPF_UNKNOWN, SPNB_NA, false}; 4991 case SPF_UMIN: 4992 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4993 Pred = ICmpInst::getSwappedPredicate(Pred); 4994 std::swap(CmpLHS, CmpRHS); 4995 } 4996 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4997 break; 4998 return {SPF_UNKNOWN, SPNB_NA, false}; 4999 case SPF_UMAX: 5000 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5001 Pred = ICmpInst::getSwappedPredicate(Pred); 5002 std::swap(CmpLHS, CmpRHS); 5003 } 5004 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5005 break; 5006 return {SPF_UNKNOWN, SPNB_NA, false}; 5007 default: 5008 return {SPF_UNKNOWN, SPNB_NA, false}; 5009 } 5010 5011 // If there is a common operand in the already matched min/max and the other 5012 // min/max operands match the compare operands (either directly or inverted), 5013 // then this is min/max of the same flavor. 5014 5015 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5016 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5017 if (D == B) { 5018 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5019 match(A, m_Not(m_Specific(CmpRHS))))) 5020 return {L.Flavor, SPNB_NA, false}; 5021 } 5022 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5023 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5024 if (C == B) { 5025 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5026 match(A, m_Not(m_Specific(CmpRHS))))) 5027 return {L.Flavor, SPNB_NA, false}; 5028 } 5029 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5030 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5031 if (D == A) { 5032 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5033 match(B, m_Not(m_Specific(CmpRHS))))) 5034 return {L.Flavor, SPNB_NA, false}; 5035 } 5036 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5037 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5038 if (C == A) { 5039 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5040 match(B, m_Not(m_Specific(CmpRHS))))) 5041 return {L.Flavor, SPNB_NA, false}; 5042 } 5043 5044 return {SPF_UNKNOWN, SPNB_NA, false}; 5045 } 5046 5047 /// Match non-obvious integer minimum and maximum sequences. 5048 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5049 Value *CmpLHS, Value *CmpRHS, 5050 Value *TrueVal, Value *FalseVal, 5051 Value *&LHS, Value *&RHS, 5052 unsigned Depth) { 5053 // Assume success. If there's no match, callers should not use these anyway. 5054 LHS = TrueVal; 5055 RHS = FalseVal; 5056 5057 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5058 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5059 return SPR; 5060 5061 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5062 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5063 return SPR; 5064 5065 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5066 return {SPF_UNKNOWN, SPNB_NA, false}; 5067 5068 // Z = X -nsw Y 5069 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5070 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5071 if (match(TrueVal, m_Zero()) && 5072 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5073 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5074 5075 // Z = X -nsw Y 5076 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5077 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5078 if (match(FalseVal, m_Zero()) && 5079 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5080 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5081 5082 const APInt *C1; 5083 if (!match(CmpRHS, m_APInt(C1))) 5084 return {SPF_UNKNOWN, SPNB_NA, false}; 5085 5086 // An unsigned min/max can be written with a signed compare. 5087 const APInt *C2; 5088 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5089 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5090 // Is the sign bit set? 5091 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5092 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5093 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5094 C2->isMaxSignedValue()) 5095 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5096 5097 // Is the sign bit clear? 5098 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5099 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5100 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5101 C2->isMinSignedValue()) 5102 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5103 } 5104 5105 // Look through 'not' ops to find disguised signed min/max. 5106 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 5107 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 5108 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 5109 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 5110 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5111 5112 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 5113 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 5114 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 5115 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 5116 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5117 5118 return {SPF_UNKNOWN, SPNB_NA, false}; 5119 } 5120 5121 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5122 assert(X && Y && "Invalid operand"); 5123 5124 // X = sub (0, Y) || X = sub nsw (0, Y) 5125 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5126 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5127 return true; 5128 5129 // Y = sub (0, X) || Y = sub nsw (0, X) 5130 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5131 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5132 return true; 5133 5134 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5135 Value *A, *B; 5136 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5137 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5138 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5139 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5140 } 5141 5142 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5143 FastMathFlags FMF, 5144 Value *CmpLHS, Value *CmpRHS, 5145 Value *TrueVal, Value *FalseVal, 5146 Value *&LHS, Value *&RHS, 5147 unsigned Depth) { 5148 if (CmpInst::isFPPredicate(Pred)) { 5149 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5150 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5151 // purpose of identifying min/max. Disregard vector constants with undefined 5152 // elements because those can not be back-propagated for analysis. 5153 Value *OutputZeroVal = nullptr; 5154 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5155 !cast<Constant>(TrueVal)->containsUndefElement()) 5156 OutputZeroVal = TrueVal; 5157 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5158 !cast<Constant>(FalseVal)->containsUndefElement()) 5159 OutputZeroVal = FalseVal; 5160 5161 if (OutputZeroVal) { 5162 if (match(CmpLHS, m_AnyZeroFP())) 5163 CmpLHS = OutputZeroVal; 5164 if (match(CmpRHS, m_AnyZeroFP())) 5165 CmpRHS = OutputZeroVal; 5166 } 5167 } 5168 5169 LHS = CmpLHS; 5170 RHS = CmpRHS; 5171 5172 // Signed zero may return inconsistent results between implementations. 5173 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5174 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5175 // Therefore, we behave conservatively and only proceed if at least one of the 5176 // operands is known to not be zero or if we don't care about signed zero. 5177 switch (Pred) { 5178 default: break; 5179 // FIXME: Include OGT/OLT/UGT/ULT. 5180 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5181 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5182 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5183 !isKnownNonZero(CmpRHS)) 5184 return {SPF_UNKNOWN, SPNB_NA, false}; 5185 } 5186 5187 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5188 bool Ordered = false; 5189 5190 // When given one NaN and one non-NaN input: 5191 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5192 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5193 // ordered comparison fails), which could be NaN or non-NaN. 5194 // so here we discover exactly what NaN behavior is required/accepted. 5195 if (CmpInst::isFPPredicate(Pred)) { 5196 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5197 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5198 5199 if (LHSSafe && RHSSafe) { 5200 // Both operands are known non-NaN. 5201 NaNBehavior = SPNB_RETURNS_ANY; 5202 } else if (CmpInst::isOrdered(Pred)) { 5203 // An ordered comparison will return false when given a NaN, so it 5204 // returns the RHS. 5205 Ordered = true; 5206 if (LHSSafe) 5207 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5208 NaNBehavior = SPNB_RETURNS_NAN; 5209 else if (RHSSafe) 5210 NaNBehavior = SPNB_RETURNS_OTHER; 5211 else 5212 // Completely unsafe. 5213 return {SPF_UNKNOWN, SPNB_NA, false}; 5214 } else { 5215 Ordered = false; 5216 // An unordered comparison will return true when given a NaN, so it 5217 // returns the LHS. 5218 if (LHSSafe) 5219 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5220 NaNBehavior = SPNB_RETURNS_OTHER; 5221 else if (RHSSafe) 5222 NaNBehavior = SPNB_RETURNS_NAN; 5223 else 5224 // Completely unsafe. 5225 return {SPF_UNKNOWN, SPNB_NA, false}; 5226 } 5227 } 5228 5229 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5230 std::swap(CmpLHS, CmpRHS); 5231 Pred = CmpInst::getSwappedPredicate(Pred); 5232 if (NaNBehavior == SPNB_RETURNS_NAN) 5233 NaNBehavior = SPNB_RETURNS_OTHER; 5234 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5235 NaNBehavior = SPNB_RETURNS_NAN; 5236 Ordered = !Ordered; 5237 } 5238 5239 // ([if]cmp X, Y) ? X : Y 5240 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5241 switch (Pred) { 5242 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5243 case ICmpInst::ICMP_UGT: 5244 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5245 case ICmpInst::ICMP_SGT: 5246 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5247 case ICmpInst::ICMP_ULT: 5248 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5249 case ICmpInst::ICMP_SLT: 5250 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5251 case FCmpInst::FCMP_UGT: 5252 case FCmpInst::FCMP_UGE: 5253 case FCmpInst::FCMP_OGT: 5254 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5255 case FCmpInst::FCMP_ULT: 5256 case FCmpInst::FCMP_ULE: 5257 case FCmpInst::FCMP_OLT: 5258 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5259 } 5260 } 5261 5262 if (isKnownNegation(TrueVal, FalseVal)) { 5263 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5264 // match against either LHS or sext(LHS). 5265 auto MaybeSExtCmpLHS = 5266 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5267 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5268 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5269 if (match(TrueVal, MaybeSExtCmpLHS)) { 5270 // Set the return values. If the compare uses the negated value (-X >s 0), 5271 // swap the return values because the negated value is always 'RHS'. 5272 LHS = TrueVal; 5273 RHS = FalseVal; 5274 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5275 std::swap(LHS, RHS); 5276 5277 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5278 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5279 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5280 return {SPF_ABS, SPNB_NA, false}; 5281 5282 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5283 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5284 return {SPF_ABS, SPNB_NA, false}; 5285 5286 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5287 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5288 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5289 return {SPF_NABS, SPNB_NA, false}; 5290 } 5291 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5292 // Set the return values. If the compare uses the negated value (-X >s 0), 5293 // swap the return values because the negated value is always 'RHS'. 5294 LHS = FalseVal; 5295 RHS = TrueVal; 5296 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5297 std::swap(LHS, RHS); 5298 5299 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5300 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5301 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5302 return {SPF_NABS, SPNB_NA, false}; 5303 5304 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5305 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5306 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5307 return {SPF_ABS, SPNB_NA, false}; 5308 } 5309 } 5310 5311 if (CmpInst::isIntPredicate(Pred)) 5312 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5313 5314 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5315 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5316 // semantics than minNum. Be conservative in such case. 5317 if (NaNBehavior != SPNB_RETURNS_ANY || 5318 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5319 !isKnownNonZero(CmpRHS))) 5320 return {SPF_UNKNOWN, SPNB_NA, false}; 5321 5322 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5323 } 5324 5325 /// Helps to match a select pattern in case of a type mismatch. 5326 /// 5327 /// The function processes the case when type of true and false values of a 5328 /// select instruction differs from type of the cmp instruction operands because 5329 /// of a cast instruction. The function checks if it is legal to move the cast 5330 /// operation after "select". If yes, it returns the new second value of 5331 /// "select" (with the assumption that cast is moved): 5332 /// 1. As operand of cast instruction when both values of "select" are same cast 5333 /// instructions. 5334 /// 2. As restored constant (by applying reverse cast operation) when the first 5335 /// value of the "select" is a cast operation and the second value is a 5336 /// constant. 5337 /// NOTE: We return only the new second value because the first value could be 5338 /// accessed as operand of cast instruction. 5339 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5340 Instruction::CastOps *CastOp) { 5341 auto *Cast1 = dyn_cast<CastInst>(V1); 5342 if (!Cast1) 5343 return nullptr; 5344 5345 *CastOp = Cast1->getOpcode(); 5346 Type *SrcTy = Cast1->getSrcTy(); 5347 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5348 // If V1 and V2 are both the same cast from the same type, look through V1. 5349 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5350 return Cast2->getOperand(0); 5351 return nullptr; 5352 } 5353 5354 auto *C = dyn_cast<Constant>(V2); 5355 if (!C) 5356 return nullptr; 5357 5358 Constant *CastedTo = nullptr; 5359 switch (*CastOp) { 5360 case Instruction::ZExt: 5361 if (CmpI->isUnsigned()) 5362 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5363 break; 5364 case Instruction::SExt: 5365 if (CmpI->isSigned()) 5366 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5367 break; 5368 case Instruction::Trunc: 5369 Constant *CmpConst; 5370 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5371 CmpConst->getType() == SrcTy) { 5372 // Here we have the following case: 5373 // 5374 // %cond = cmp iN %x, CmpConst 5375 // %tr = trunc iN %x to iK 5376 // %narrowsel = select i1 %cond, iK %t, iK C 5377 // 5378 // We can always move trunc after select operation: 5379 // 5380 // %cond = cmp iN %x, CmpConst 5381 // %widesel = select i1 %cond, iN %x, iN CmpConst 5382 // %tr = trunc iN %widesel to iK 5383 // 5384 // Note that C could be extended in any way because we don't care about 5385 // upper bits after truncation. It can't be abs pattern, because it would 5386 // look like: 5387 // 5388 // select i1 %cond, x, -x. 5389 // 5390 // So only min/max pattern could be matched. Such match requires widened C 5391 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5392 // CmpConst == C is checked below. 5393 CastedTo = CmpConst; 5394 } else { 5395 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5396 } 5397 break; 5398 case Instruction::FPTrunc: 5399 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5400 break; 5401 case Instruction::FPExt: 5402 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5403 break; 5404 case Instruction::FPToUI: 5405 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5406 break; 5407 case Instruction::FPToSI: 5408 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5409 break; 5410 case Instruction::UIToFP: 5411 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5412 break; 5413 case Instruction::SIToFP: 5414 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5415 break; 5416 default: 5417 break; 5418 } 5419 5420 if (!CastedTo) 5421 return nullptr; 5422 5423 // Make sure the cast doesn't lose any information. 5424 Constant *CastedBack = 5425 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5426 if (CastedBack != C) 5427 return nullptr; 5428 5429 return CastedTo; 5430 } 5431 5432 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5433 Instruction::CastOps *CastOp, 5434 unsigned Depth) { 5435 if (Depth >= MaxDepth) 5436 return {SPF_UNKNOWN, SPNB_NA, false}; 5437 5438 SelectInst *SI = dyn_cast<SelectInst>(V); 5439 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5440 5441 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5442 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5443 5444 Value *TrueVal = SI->getTrueValue(); 5445 Value *FalseVal = SI->getFalseValue(); 5446 5447 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5448 CastOp, Depth); 5449 } 5450 5451 SelectPatternResult llvm::matchDecomposedSelectPattern( 5452 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5453 Instruction::CastOps *CastOp, unsigned Depth) { 5454 CmpInst::Predicate Pred = CmpI->getPredicate(); 5455 Value *CmpLHS = CmpI->getOperand(0); 5456 Value *CmpRHS = CmpI->getOperand(1); 5457 FastMathFlags FMF; 5458 if (isa<FPMathOperator>(CmpI)) 5459 FMF = CmpI->getFastMathFlags(); 5460 5461 // Bail out early. 5462 if (CmpI->isEquality()) 5463 return {SPF_UNKNOWN, SPNB_NA, false}; 5464 5465 // Deal with type mismatches. 5466 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5467 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5468 // If this is a potential fmin/fmax with a cast to integer, then ignore 5469 // -0.0 because there is no corresponding integer value. 5470 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5471 FMF.setNoSignedZeros(); 5472 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5473 cast<CastInst>(TrueVal)->getOperand(0), C, 5474 LHS, RHS, Depth); 5475 } 5476 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5477 // If this is a potential fmin/fmax with a cast to integer, then ignore 5478 // -0.0 because there is no corresponding integer value. 5479 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5480 FMF.setNoSignedZeros(); 5481 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5482 C, cast<CastInst>(FalseVal)->getOperand(0), 5483 LHS, RHS, Depth); 5484 } 5485 } 5486 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5487 LHS, RHS, Depth); 5488 } 5489 5490 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5491 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5492 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5493 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5494 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5495 if (SPF == SPF_FMINNUM) 5496 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5497 if (SPF == SPF_FMAXNUM) 5498 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5499 llvm_unreachable("unhandled!"); 5500 } 5501 5502 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5503 if (SPF == SPF_SMIN) return SPF_SMAX; 5504 if (SPF == SPF_UMIN) return SPF_UMAX; 5505 if (SPF == SPF_SMAX) return SPF_SMIN; 5506 if (SPF == SPF_UMAX) return SPF_UMIN; 5507 llvm_unreachable("unhandled!"); 5508 } 5509 5510 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5511 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5512 } 5513 5514 /// Return true if "icmp Pred LHS RHS" is always true. 5515 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5516 const Value *RHS, const DataLayout &DL, 5517 unsigned Depth) { 5518 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5519 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5520 return true; 5521 5522 switch (Pred) { 5523 default: 5524 return false; 5525 5526 case CmpInst::ICMP_SLE: { 5527 const APInt *C; 5528 5529 // LHS s<= LHS +_{nsw} C if C >= 0 5530 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5531 return !C->isNegative(); 5532 return false; 5533 } 5534 5535 case CmpInst::ICMP_ULE: { 5536 const APInt *C; 5537 5538 // LHS u<= LHS +_{nuw} C for any C 5539 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5540 return true; 5541 5542 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5543 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5544 const Value *&X, 5545 const APInt *&CA, const APInt *&CB) { 5546 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5547 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5548 return true; 5549 5550 // If X & C == 0 then (X | C) == X +_{nuw} C 5551 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5552 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5553 KnownBits Known(CA->getBitWidth()); 5554 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5555 /*CxtI*/ nullptr, /*DT*/ nullptr); 5556 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5557 return true; 5558 } 5559 5560 return false; 5561 }; 5562 5563 const Value *X; 5564 const APInt *CLHS, *CRHS; 5565 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5566 return CLHS->ule(*CRHS); 5567 5568 return false; 5569 } 5570 } 5571 } 5572 5573 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5574 /// ALHS ARHS" is true. Otherwise, return None. 5575 static Optional<bool> 5576 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5577 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5578 const DataLayout &DL, unsigned Depth) { 5579 switch (Pred) { 5580 default: 5581 return None; 5582 5583 case CmpInst::ICMP_SLT: 5584 case CmpInst::ICMP_SLE: 5585 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5586 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5587 return true; 5588 return None; 5589 5590 case CmpInst::ICMP_ULT: 5591 case CmpInst::ICMP_ULE: 5592 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5593 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5594 return true; 5595 return None; 5596 } 5597 } 5598 5599 /// Return true if the operands of the two compares match. IsSwappedOps is true 5600 /// when the operands match, but are swapped. 5601 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5602 const Value *BLHS, const Value *BRHS, 5603 bool &IsSwappedOps) { 5604 5605 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5606 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5607 return IsMatchingOps || IsSwappedOps; 5608 } 5609 5610 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5611 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5612 /// Otherwise, return None if we can't infer anything. 5613 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5614 CmpInst::Predicate BPred, 5615 bool AreSwappedOps) { 5616 // Canonicalize the predicate as if the operands were not commuted. 5617 if (AreSwappedOps) 5618 BPred = ICmpInst::getSwappedPredicate(BPred); 5619 5620 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5621 return true; 5622 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5623 return false; 5624 5625 return None; 5626 } 5627 5628 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5629 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5630 /// Otherwise, return None if we can't infer anything. 5631 static Optional<bool> 5632 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5633 const ConstantInt *C1, 5634 CmpInst::Predicate BPred, 5635 const ConstantInt *C2) { 5636 ConstantRange DomCR = 5637 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5638 ConstantRange CR = 5639 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5640 ConstantRange Intersection = DomCR.intersectWith(CR); 5641 ConstantRange Difference = DomCR.difference(CR); 5642 if (Intersection.isEmptySet()) 5643 return false; 5644 if (Difference.isEmptySet()) 5645 return true; 5646 return None; 5647 } 5648 5649 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5650 /// false. Otherwise, return None if we can't infer anything. 5651 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5652 CmpInst::Predicate BPred, 5653 const Value *BLHS, const Value *BRHS, 5654 const DataLayout &DL, bool LHSIsTrue, 5655 unsigned Depth) { 5656 Value *ALHS = LHS->getOperand(0); 5657 Value *ARHS = LHS->getOperand(1); 5658 5659 // The rest of the logic assumes the LHS condition is true. If that's not the 5660 // case, invert the predicate to make it so. 5661 CmpInst::Predicate APred = 5662 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5663 5664 // Can we infer anything when the two compares have matching operands? 5665 bool AreSwappedOps; 5666 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5667 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5668 APred, BPred, AreSwappedOps)) 5669 return Implication; 5670 // No amount of additional analysis will infer the second condition, so 5671 // early exit. 5672 return None; 5673 } 5674 5675 // Can we infer anything when the LHS operands match and the RHS operands are 5676 // constants (not necessarily matching)? 5677 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5678 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5679 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5680 return Implication; 5681 // No amount of additional analysis will infer the second condition, so 5682 // early exit. 5683 return None; 5684 } 5685 5686 if (APred == BPred) 5687 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5688 return None; 5689 } 5690 5691 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5692 /// false. Otherwise, return None if we can't infer anything. We expect the 5693 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5694 static Optional<bool> 5695 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5696 const Value *RHSOp0, const Value *RHSOp1, 5697 5698 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5699 // The LHS must be an 'or' or an 'and' instruction. 5700 assert((LHS->getOpcode() == Instruction::And || 5701 LHS->getOpcode() == Instruction::Or) && 5702 "Expected LHS to be 'and' or 'or'."); 5703 5704 assert(Depth <= MaxDepth && "Hit recursion limit"); 5705 5706 // If the result of an 'or' is false, then we know both legs of the 'or' are 5707 // false. Similarly, if the result of an 'and' is true, then we know both 5708 // legs of the 'and' are true. 5709 Value *ALHS, *ARHS; 5710 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5711 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5712 // FIXME: Make this non-recursion. 5713 if (Optional<bool> Implication = isImpliedCondition( 5714 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5715 return Implication; 5716 if (Optional<bool> Implication = isImpliedCondition( 5717 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5718 return Implication; 5719 return None; 5720 } 5721 return None; 5722 } 5723 5724 Optional<bool> 5725 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5726 const Value *RHSOp0, const Value *RHSOp1, 5727 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5728 // Bail out when we hit the limit. 5729 if (Depth == MaxDepth) 5730 return None; 5731 5732 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5733 // example. 5734 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5735 return None; 5736 5737 Type *OpTy = LHS->getType(); 5738 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5739 5740 // FIXME: Extending the code below to handle vectors. 5741 if (OpTy->isVectorTy()) 5742 return None; 5743 5744 assert(OpTy->isIntegerTy(1) && "implied by above"); 5745 5746 // Both LHS and RHS are icmps. 5747 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5748 if (LHSCmp) 5749 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5750 Depth); 5751 5752 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5753 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5754 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5755 if (LHSBO) { 5756 if ((LHSBO->getOpcode() == Instruction::And || 5757 LHSBO->getOpcode() == Instruction::Or)) 5758 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5759 Depth); 5760 } 5761 return None; 5762 } 5763 5764 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5765 const DataLayout &DL, bool LHSIsTrue, 5766 unsigned Depth) { 5767 // LHS ==> RHS by definition 5768 if (LHS == RHS) 5769 return LHSIsTrue; 5770 5771 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5772 if (RHSCmp) 5773 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 5774 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 5775 LHSIsTrue, Depth); 5776 return None; 5777 } 5778 5779 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 5780 // condition dominating ContextI or nullptr, if no condition is found. 5781 static std::pair<Value *, bool> 5782 getDomPredecessorCondition(const Instruction *ContextI) { 5783 if (!ContextI || !ContextI->getParent()) 5784 return {nullptr, false}; 5785 5786 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5787 // dominator tree (eg, from a SimplifyQuery) instead? 5788 const BasicBlock *ContextBB = ContextI->getParent(); 5789 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5790 if (!PredBB) 5791 return {nullptr, false}; 5792 5793 // We need a conditional branch in the predecessor. 5794 Value *PredCond; 5795 BasicBlock *TrueBB, *FalseBB; 5796 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5797 return {nullptr, false}; 5798 5799 // The branch should get simplified. Don't bother simplifying this condition. 5800 if (TrueBB == FalseBB) 5801 return {nullptr, false}; 5802 5803 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5804 "Predecessor block does not point to successor?"); 5805 5806 // Is this condition implied by the predecessor condition? 5807 return {PredCond, TrueBB == ContextBB}; 5808 } 5809 5810 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5811 const Instruction *ContextI, 5812 const DataLayout &DL) { 5813 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5814 auto PredCond = getDomPredecessorCondition(ContextI); 5815 if (PredCond.first) 5816 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 5817 return None; 5818 } 5819 5820 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 5821 const Value *LHS, const Value *RHS, 5822 const Instruction *ContextI, 5823 const DataLayout &DL) { 5824 auto PredCond = getDomPredecessorCondition(ContextI); 5825 if (PredCond.first) 5826 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 5827 PredCond.second); 5828 return None; 5829 } 5830 5831 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5832 APInt &Upper, const InstrInfoQuery &IIQ) { 5833 unsigned Width = Lower.getBitWidth(); 5834 const APInt *C; 5835 switch (BO.getOpcode()) { 5836 case Instruction::Add: 5837 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5838 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5839 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5840 // 'add nuw x, C' produces [C, UINT_MAX]. 5841 Lower = *C; 5842 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5843 if (C->isNegative()) { 5844 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5845 Lower = APInt::getSignedMinValue(Width); 5846 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5847 } else { 5848 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5849 Lower = APInt::getSignedMinValue(Width) + *C; 5850 Upper = APInt::getSignedMaxValue(Width) + 1; 5851 } 5852 } 5853 } 5854 break; 5855 5856 case Instruction::And: 5857 if (match(BO.getOperand(1), m_APInt(C))) 5858 // 'and x, C' produces [0, C]. 5859 Upper = *C + 1; 5860 break; 5861 5862 case Instruction::Or: 5863 if (match(BO.getOperand(1), m_APInt(C))) 5864 // 'or x, C' produces [C, UINT_MAX]. 5865 Lower = *C; 5866 break; 5867 5868 case Instruction::AShr: 5869 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5870 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5871 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5872 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5873 } else if (match(BO.getOperand(0), m_APInt(C))) { 5874 unsigned ShiftAmount = Width - 1; 5875 if (!C->isNullValue() && IIQ.isExact(&BO)) 5876 ShiftAmount = C->countTrailingZeros(); 5877 if (C->isNegative()) { 5878 // 'ashr C, x' produces [C, C >> (Width-1)] 5879 Lower = *C; 5880 Upper = C->ashr(ShiftAmount) + 1; 5881 } else { 5882 // 'ashr C, x' produces [C >> (Width-1), C] 5883 Lower = C->ashr(ShiftAmount); 5884 Upper = *C + 1; 5885 } 5886 } 5887 break; 5888 5889 case Instruction::LShr: 5890 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5891 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5892 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5893 } else if (match(BO.getOperand(0), m_APInt(C))) { 5894 // 'lshr C, x' produces [C >> (Width-1), C]. 5895 unsigned ShiftAmount = Width - 1; 5896 if (!C->isNullValue() && IIQ.isExact(&BO)) 5897 ShiftAmount = C->countTrailingZeros(); 5898 Lower = C->lshr(ShiftAmount); 5899 Upper = *C + 1; 5900 } 5901 break; 5902 5903 case Instruction::Shl: 5904 if (match(BO.getOperand(0), m_APInt(C))) { 5905 if (IIQ.hasNoUnsignedWrap(&BO)) { 5906 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5907 Lower = *C; 5908 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5909 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5910 if (C->isNegative()) { 5911 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5912 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5913 Lower = C->shl(ShiftAmount); 5914 Upper = *C + 1; 5915 } else { 5916 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5917 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5918 Lower = *C; 5919 Upper = C->shl(ShiftAmount) + 1; 5920 } 5921 } 5922 } 5923 break; 5924 5925 case Instruction::SDiv: 5926 if (match(BO.getOperand(1), m_APInt(C))) { 5927 APInt IntMin = APInt::getSignedMinValue(Width); 5928 APInt IntMax = APInt::getSignedMaxValue(Width); 5929 if (C->isAllOnesValue()) { 5930 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5931 // where C != -1 and C != 0 and C != 1 5932 Lower = IntMin + 1; 5933 Upper = IntMax + 1; 5934 } else if (C->countLeadingZeros() < Width - 1) { 5935 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5936 // where C != -1 and C != 0 and C != 1 5937 Lower = IntMin.sdiv(*C); 5938 Upper = IntMax.sdiv(*C); 5939 if (Lower.sgt(Upper)) 5940 std::swap(Lower, Upper); 5941 Upper = Upper + 1; 5942 assert(Upper != Lower && "Upper part of range has wrapped!"); 5943 } 5944 } else if (match(BO.getOperand(0), m_APInt(C))) { 5945 if (C->isMinSignedValue()) { 5946 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5947 Lower = *C; 5948 Upper = Lower.lshr(1) + 1; 5949 } else { 5950 // 'sdiv C, x' produces [-|C|, |C|]. 5951 Upper = C->abs() + 1; 5952 Lower = (-Upper) + 1; 5953 } 5954 } 5955 break; 5956 5957 case Instruction::UDiv: 5958 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5959 // 'udiv x, C' produces [0, UINT_MAX / C]. 5960 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5961 } else if (match(BO.getOperand(0), m_APInt(C))) { 5962 // 'udiv C, x' produces [0, C]. 5963 Upper = *C + 1; 5964 } 5965 break; 5966 5967 case Instruction::SRem: 5968 if (match(BO.getOperand(1), m_APInt(C))) { 5969 // 'srem x, C' produces (-|C|, |C|). 5970 Upper = C->abs(); 5971 Lower = (-Upper) + 1; 5972 } 5973 break; 5974 5975 case Instruction::URem: 5976 if (match(BO.getOperand(1), m_APInt(C))) 5977 // 'urem x, C' produces [0, C). 5978 Upper = *C; 5979 break; 5980 5981 default: 5982 break; 5983 } 5984 } 5985 5986 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5987 APInt &Upper) { 5988 unsigned Width = Lower.getBitWidth(); 5989 const APInt *C; 5990 switch (II.getIntrinsicID()) { 5991 case Intrinsic::uadd_sat: 5992 // uadd.sat(x, C) produces [C, UINT_MAX]. 5993 if (match(II.getOperand(0), m_APInt(C)) || 5994 match(II.getOperand(1), m_APInt(C))) 5995 Lower = *C; 5996 break; 5997 case Intrinsic::sadd_sat: 5998 if (match(II.getOperand(0), m_APInt(C)) || 5999 match(II.getOperand(1), m_APInt(C))) { 6000 if (C->isNegative()) { 6001 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6002 Lower = APInt::getSignedMinValue(Width); 6003 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6004 } else { 6005 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6006 Lower = APInt::getSignedMinValue(Width) + *C; 6007 Upper = APInt::getSignedMaxValue(Width) + 1; 6008 } 6009 } 6010 break; 6011 case Intrinsic::usub_sat: 6012 // usub.sat(C, x) produces [0, C]. 6013 if (match(II.getOperand(0), m_APInt(C))) 6014 Upper = *C + 1; 6015 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6016 else if (match(II.getOperand(1), m_APInt(C))) 6017 Upper = APInt::getMaxValue(Width) - *C + 1; 6018 break; 6019 case Intrinsic::ssub_sat: 6020 if (match(II.getOperand(0), m_APInt(C))) { 6021 if (C->isNegative()) { 6022 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6023 Lower = APInt::getSignedMinValue(Width); 6024 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6025 } else { 6026 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6027 Lower = *C - APInt::getSignedMaxValue(Width); 6028 Upper = APInt::getSignedMaxValue(Width) + 1; 6029 } 6030 } else if (match(II.getOperand(1), m_APInt(C))) { 6031 if (C->isNegative()) { 6032 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6033 Lower = APInt::getSignedMinValue(Width) - *C; 6034 Upper = APInt::getSignedMaxValue(Width) + 1; 6035 } else { 6036 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6037 Lower = APInt::getSignedMinValue(Width); 6038 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6039 } 6040 } 6041 break; 6042 default: 6043 break; 6044 } 6045 } 6046 6047 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6048 APInt &Upper, const InstrInfoQuery &IIQ) { 6049 const Value *LHS = nullptr, *RHS = nullptr; 6050 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6051 if (R.Flavor == SPF_UNKNOWN) 6052 return; 6053 6054 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6055 6056 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6057 // If the negation part of the abs (in RHS) has the NSW flag, 6058 // then the result of abs(X) is [0..SIGNED_MAX], 6059 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6060 Lower = APInt::getNullValue(BitWidth); 6061 if (match(RHS, m_Neg(m_Specific(LHS))) && 6062 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6063 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6064 else 6065 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6066 return; 6067 } 6068 6069 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6070 // The result of -abs(X) is <= 0. 6071 Lower = APInt::getSignedMinValue(BitWidth); 6072 Upper = APInt(BitWidth, 1); 6073 return; 6074 } 6075 6076 const APInt *C; 6077 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6078 return; 6079 6080 switch (R.Flavor) { 6081 case SPF_UMIN: 6082 Upper = *C + 1; 6083 break; 6084 case SPF_UMAX: 6085 Lower = *C; 6086 break; 6087 case SPF_SMIN: 6088 Lower = APInt::getSignedMinValue(BitWidth); 6089 Upper = *C + 1; 6090 break; 6091 case SPF_SMAX: 6092 Lower = *C; 6093 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6094 break; 6095 default: 6096 break; 6097 } 6098 } 6099 6100 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6101 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6102 6103 const APInt *C; 6104 if (match(V, m_APInt(C))) 6105 return ConstantRange(*C); 6106 6107 InstrInfoQuery IIQ(UseInstrInfo); 6108 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6109 APInt Lower = APInt(BitWidth, 0); 6110 APInt Upper = APInt(BitWidth, 0); 6111 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6112 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6113 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6114 setLimitsForIntrinsic(*II, Lower, Upper); 6115 else if (auto *SI = dyn_cast<SelectInst>(V)) 6116 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6117 6118 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6119 6120 if (auto *I = dyn_cast<Instruction>(V)) 6121 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6122 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6123 6124 return CR; 6125 } 6126 6127 static Optional<int64_t> 6128 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6129 // Skip over the first indices. 6130 gep_type_iterator GTI = gep_type_begin(GEP); 6131 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6132 /*skip along*/; 6133 6134 // Compute the offset implied by the rest of the indices. 6135 int64_t Offset = 0; 6136 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6137 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6138 if (!OpC) 6139 return None; 6140 if (OpC->isZero()) 6141 continue; // No offset. 6142 6143 // Handle struct indices, which add their field offset to the pointer. 6144 if (StructType *STy = GTI.getStructTypeOrNull()) { 6145 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6146 continue; 6147 } 6148 6149 // Otherwise, we have a sequential type like an array or vector. Multiply 6150 // the index by the ElementSize. 6151 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6152 Offset += Size * OpC->getSExtValue(); 6153 } 6154 6155 return Offset; 6156 } 6157 6158 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6159 const DataLayout &DL) { 6160 Ptr1 = Ptr1->stripPointerCasts(); 6161 Ptr2 = Ptr2->stripPointerCasts(); 6162 6163 // Handle the trivial case first. 6164 if (Ptr1 == Ptr2) { 6165 return 0; 6166 } 6167 6168 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6169 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6170 6171 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6172 // as in "P" and "gep P, 1". 6173 // Also do this iteratively to handle the the following case: 6174 // Ptr_t1 = GEP Ptr1, c1 6175 // Ptr_t2 = GEP Ptr_t1, c2 6176 // Ptr2 = GEP Ptr_t2, c3 6177 // where we will return c1+c2+c3. 6178 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6179 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6180 // are the same, and return the difference between offsets. 6181 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6182 const Value *Ptr) -> Optional<int64_t> { 6183 const GEPOperator *GEP_T = GEP; 6184 int64_t OffsetVal = 0; 6185 bool HasSameBase = false; 6186 while (GEP_T) { 6187 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6188 if (!Offset) 6189 return None; 6190 OffsetVal += *Offset; 6191 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6192 if (Op0 == Ptr) { 6193 HasSameBase = true; 6194 break; 6195 } 6196 GEP_T = dyn_cast<GEPOperator>(Op0); 6197 } 6198 if (!HasSameBase) 6199 return None; 6200 return OffsetVal; 6201 }; 6202 6203 if (GEP1) { 6204 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6205 if (Offset) 6206 return -*Offset; 6207 } 6208 if (GEP2) { 6209 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6210 if (Offset) 6211 return Offset; 6212 } 6213 6214 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6215 // base. After that base, they may have some number of common (and 6216 // potentially variable) indices. After that they handle some constant 6217 // offset, which determines their offset from each other. At this point, we 6218 // handle no other case. 6219 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6220 return None; 6221 6222 // Skip any common indices and track the GEP types. 6223 unsigned Idx = 1; 6224 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6225 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6226 break; 6227 6228 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6229 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6230 if (!Offset1 || !Offset2) 6231 return None; 6232 return *Offset2 - *Offset1; 6233 } 6234