1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <array> 74 #include <cassert> 75 #include <cstdint> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace llvm::PatternMatch; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 // According to the LangRef, branching on a poison condition is absolutely 88 // immediate full UB. However, historically we haven't implemented that 89 // consistently as we have an important transformation (non-trivial unswitch) 90 // which introduces instances of branch on poison/undef to otherwise well 91 // defined programs. This flag exists to let us test optimization benefit 92 // of exploiting the specified behavior (in combination with enabling the 93 // unswitch fix.) 94 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 95 cl::Hidden, cl::init(false)); 96 97 98 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 99 /// returns the element type's bitwidth. 100 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 101 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 102 return BitWidth; 103 104 return DL.getPointerTypeSizeInBits(Ty); 105 } 106 107 namespace { 108 109 // Simplifying using an assume can only be done in a particular control-flow 110 // context (the context instruction provides that context). If an assume and 111 // the context instruction are not in the same block then the DT helps in 112 // figuring out if we can use it. 113 struct Query { 114 const DataLayout &DL; 115 AssumptionCache *AC; 116 const Instruction *CxtI; 117 const DominatorTree *DT; 118 119 // Unlike the other analyses, this may be a nullptr because not all clients 120 // provide it currently. 121 OptimizationRemarkEmitter *ORE; 122 123 /// If true, it is safe to use metadata during simplification. 124 InstrInfoQuery IIQ; 125 126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT, bool UseInstrInfo, 128 OptimizationRemarkEmitter *ORE = nullptr) 129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 130 }; 131 132 } // end anonymous namespace 133 134 // Given the provided Value and, potentially, a context instruction, return 135 // the preferred context instruction (if any). 136 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 137 // If we've been provided with a context instruction, then use that (provided 138 // it has been inserted). 139 if (CxtI && CxtI->getParent()) 140 return CxtI; 141 142 // If the value is really an already-inserted instruction, then use that. 143 CxtI = dyn_cast<Instruction>(V); 144 if (CxtI && CxtI->getParent()) 145 return CxtI; 146 147 return nullptr; 148 } 149 150 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V1); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 CxtI = dyn_cast<Instruction>(V2); 162 if (CxtI && CxtI->getParent()) 163 return CxtI; 164 165 return nullptr; 166 } 167 168 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 169 const APInt &DemandedElts, 170 APInt &DemandedLHS, APInt &DemandedRHS) { 171 // The length of scalable vectors is unknown at compile time, thus we 172 // cannot check their values 173 if (isa<ScalableVectorType>(Shuf->getType())) 174 return false; 175 176 int NumElts = 177 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 178 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 179 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 180 if (DemandedElts.isZero()) 181 return true; 182 // Simple case of a shuffle with zeroinitializer. 183 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 184 DemandedLHS.setBit(0); 185 return true; 186 } 187 for (int i = 0; i != NumMaskElts; ++i) { 188 if (!DemandedElts[i]) 189 continue; 190 int M = Shuf->getMaskValue(i); 191 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 192 193 // For undef elements, we don't know anything about the common state of 194 // the shuffle result. 195 if (M == -1) 196 return false; 197 if (M < NumElts) 198 DemandedLHS.setBit(M % NumElts); 199 else 200 DemandedRHS.setBit(M % NumElts); 201 } 202 203 return true; 204 } 205 206 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 207 KnownBits &Known, unsigned Depth, const Query &Q); 208 209 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 210 const Query &Q) { 211 // FIXME: We currently have no way to represent the DemandedElts of a scalable 212 // vector 213 if (isa<ScalableVectorType>(V->getType())) { 214 Known.resetAll(); 215 return; 216 } 217 218 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 219 APInt DemandedElts = 220 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 221 computeKnownBits(V, DemandedElts, Known, Depth, Q); 222 } 223 224 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 225 const DataLayout &DL, unsigned Depth, 226 AssumptionCache *AC, const Instruction *CxtI, 227 const DominatorTree *DT, 228 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 229 ::computeKnownBits(V, Known, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 231 } 232 233 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 234 KnownBits &Known, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, const DominatorTree *DT, 237 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 238 ::computeKnownBits(V, DemandedElts, Known, Depth, 239 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 240 } 241 242 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 243 unsigned Depth, const Query &Q); 244 245 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 246 const Query &Q); 247 248 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, 251 const DominatorTree *DT, 252 OptimizationRemarkEmitter *ORE, 253 bool UseInstrInfo) { 254 return ::computeKnownBits( 255 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 256 } 257 258 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 259 const DataLayout &DL, unsigned Depth, 260 AssumptionCache *AC, const Instruction *CxtI, 261 const DominatorTree *DT, 262 OptimizationRemarkEmitter *ORE, 263 bool UseInstrInfo) { 264 return ::computeKnownBits( 265 V, DemandedElts, Depth, 266 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 267 } 268 269 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 270 const DataLayout &DL, AssumptionCache *AC, 271 const Instruction *CxtI, const DominatorTree *DT, 272 bool UseInstrInfo) { 273 assert(LHS->getType() == RHS->getType() && 274 "LHS and RHS should have the same type"); 275 assert(LHS->getType()->isIntOrIntVectorTy() && 276 "LHS and RHS should be integers"); 277 // Look for an inverted mask: (X & ~M) op (Y & M). 278 { 279 Value *M; 280 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(RHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 284 match(LHS, m_c_And(m_Specific(M), m_Value()))) 285 return true; 286 } 287 // Look for: (A & B) op ~(A | B) 288 { 289 Value *A, *B; 290 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 291 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 292 return true; 293 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 294 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 295 return true; 296 } 297 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 298 KnownBits LHSKnown(IT->getBitWidth()); 299 KnownBits RHSKnown(IT->getBitWidth()); 300 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 301 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 302 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 303 } 304 305 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 306 return !I->user_empty() && all_of(I->users(), [](const User *U) { 307 ICmpInst::Predicate P; 308 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 309 }); 310 } 311 312 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 313 const Query &Q); 314 315 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 316 bool OrZero, unsigned Depth, 317 AssumptionCache *AC, const Instruction *CxtI, 318 const DominatorTree *DT, bool UseInstrInfo) { 319 return ::isKnownToBeAPowerOfTwo( 320 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 321 } 322 323 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 324 unsigned Depth, const Query &Q); 325 326 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 327 328 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 329 AssumptionCache *AC, const Instruction *CxtI, 330 const DominatorTree *DT, bool UseInstrInfo) { 331 return ::isKnownNonZero(V, Depth, 332 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 333 } 334 335 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 336 unsigned Depth, AssumptionCache *AC, 337 const Instruction *CxtI, const DominatorTree *DT, 338 bool UseInstrInfo) { 339 KnownBits Known = 340 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 341 return Known.isNonNegative(); 342 } 343 344 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 345 AssumptionCache *AC, const Instruction *CxtI, 346 const DominatorTree *DT, bool UseInstrInfo) { 347 if (auto *CI = dyn_cast<ConstantInt>(V)) 348 return CI->getValue().isStrictlyPositive(); 349 350 // TODO: We'd doing two recursive queries here. We should factor this such 351 // that only a single query is needed. 352 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 353 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 354 } 355 356 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 357 AssumptionCache *AC, const Instruction *CxtI, 358 const DominatorTree *DT, bool UseInstrInfo) { 359 KnownBits Known = 360 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 361 return Known.isNegative(); 362 } 363 364 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 368 const DataLayout &DL, AssumptionCache *AC, 369 const Instruction *CxtI, const DominatorTree *DT, 370 bool UseInstrInfo) { 371 return ::isKnownNonEqual(V1, V2, 0, 372 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 373 UseInstrInfo, /*ORE=*/nullptr)); 374 } 375 376 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 377 const Query &Q); 378 379 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 380 const DataLayout &DL, unsigned Depth, 381 AssumptionCache *AC, const Instruction *CxtI, 382 const DominatorTree *DT, bool UseInstrInfo) { 383 return ::MaskedValueIsZero( 384 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 385 } 386 387 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 388 unsigned Depth, const Query &Q); 389 390 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 391 const Query &Q) { 392 // FIXME: We currently have no way to represent the DemandedElts of a scalable 393 // vector 394 if (isa<ScalableVectorType>(V->getType())) 395 return 1; 396 397 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 398 APInt DemandedElts = 399 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 400 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 401 } 402 403 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 404 unsigned Depth, AssumptionCache *AC, 405 const Instruction *CxtI, 406 const DominatorTree *DT, bool UseInstrInfo) { 407 return ::ComputeNumSignBits( 408 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 409 } 410 411 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 412 unsigned Depth, AssumptionCache *AC, 413 const Instruction *CxtI, 414 const DominatorTree *DT) { 415 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 416 return V->getType()->getScalarSizeInBits() - SignBits + 1; 417 } 418 419 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 420 bool NSW, const APInt &DemandedElts, 421 KnownBits &KnownOut, KnownBits &Known2, 422 unsigned Depth, const Query &Q) { 423 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 424 425 // If one operand is unknown and we have no nowrap information, 426 // the result will be unknown independently of the second operand. 427 if (KnownOut.isUnknown() && !NSW) 428 return; 429 430 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 431 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 432 } 433 434 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 435 const APInt &DemandedElts, KnownBits &Known, 436 KnownBits &Known2, unsigned Depth, 437 const Query &Q) { 438 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 439 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 440 441 bool isKnownNegative = false; 442 bool isKnownNonNegative = false; 443 // If the multiplication is known not to overflow, compute the sign bit. 444 if (NSW) { 445 if (Op0 == Op1) { 446 // The product of a number with itself is non-negative. 447 isKnownNonNegative = true; 448 } else { 449 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 450 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 451 bool isKnownNegativeOp1 = Known.isNegative(); 452 bool isKnownNegativeOp0 = Known2.isNegative(); 453 // The product of two numbers with the same sign is non-negative. 454 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 455 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 456 // The product of a negative number and a non-negative number is either 457 // negative or zero. 458 if (!isKnownNonNegative) 459 isKnownNegative = 460 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 461 Known2.isNonZero()) || 462 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 463 } 464 } 465 466 bool SelfMultiply = Op0 == Op1; 467 // TODO: SelfMultiply can be poison, but not undef. 468 if (SelfMultiply) 469 SelfMultiply &= 470 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 471 Known = KnownBits::mul(Known, Known2, SelfMultiply); 472 473 // Only make use of no-wrap flags if we failed to compute the sign bit 474 // directly. This matters if the multiplication always overflows, in 475 // which case we prefer to follow the result of the direct computation, 476 // though as the program is invoking undefined behaviour we can choose 477 // whatever we like here. 478 if (isKnownNonNegative && !Known.isNegative()) 479 Known.makeNonNegative(); 480 else if (isKnownNegative && !Known.isNonNegative()) 481 Known.makeNegative(); 482 } 483 484 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 485 KnownBits &Known) { 486 unsigned BitWidth = Known.getBitWidth(); 487 unsigned NumRanges = Ranges.getNumOperands() / 2; 488 assert(NumRanges >= 1); 489 490 Known.Zero.setAllBits(); 491 Known.One.setAllBits(); 492 493 for (unsigned i = 0; i < NumRanges; ++i) { 494 ConstantInt *Lower = 495 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 496 ConstantInt *Upper = 497 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 498 ConstantRange Range(Lower->getValue(), Upper->getValue()); 499 500 // The first CommonPrefixBits of all values in Range are equal. 501 unsigned CommonPrefixBits = 502 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 503 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 504 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 505 Known.One &= UnsignedMax & Mask; 506 Known.Zero &= ~UnsignedMax & Mask; 507 } 508 } 509 510 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 511 SmallVector<const Value *, 16> WorkSet(1, I); 512 SmallPtrSet<const Value *, 32> Visited; 513 SmallPtrSet<const Value *, 16> EphValues; 514 515 // The instruction defining an assumption's condition itself is always 516 // considered ephemeral to that assumption (even if it has other 517 // non-ephemeral users). See r246696's test case for an example. 518 if (is_contained(I->operands(), E)) 519 return true; 520 521 while (!WorkSet.empty()) { 522 const Value *V = WorkSet.pop_back_val(); 523 if (!Visited.insert(V).second) 524 continue; 525 526 // If all uses of this value are ephemeral, then so is this value. 527 if (llvm::all_of(V->users(), [&](const User *U) { 528 return EphValues.count(U); 529 })) { 530 if (V == E) 531 return true; 532 533 if (V == I || (isa<Instruction>(V) && 534 !cast<Instruction>(V)->mayHaveSideEffects() && 535 !cast<Instruction>(V)->isTerminator())) { 536 EphValues.insert(V); 537 if (const User *U = dyn_cast<User>(V)) 538 append_range(WorkSet, U->operands()); 539 } 540 } 541 } 542 543 return false; 544 } 545 546 // Is this an intrinsic that cannot be speculated but also cannot trap? 547 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 548 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 549 return CI->isAssumeLikeIntrinsic(); 550 551 return false; 552 } 553 554 bool llvm::isValidAssumeForContext(const Instruction *Inv, 555 const Instruction *CxtI, 556 const DominatorTree *DT) { 557 // There are two restrictions on the use of an assume: 558 // 1. The assume must dominate the context (or the control flow must 559 // reach the assume whenever it reaches the context). 560 // 2. The context must not be in the assume's set of ephemeral values 561 // (otherwise we will use the assume to prove that the condition 562 // feeding the assume is trivially true, thus causing the removal of 563 // the assume). 564 565 if (Inv->getParent() == CxtI->getParent()) { 566 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 567 // in the BB. 568 if (Inv->comesBefore(CxtI)) 569 return true; 570 571 // Don't let an assume affect itself - this would cause the problems 572 // `isEphemeralValueOf` is trying to prevent, and it would also make 573 // the loop below go out of bounds. 574 if (Inv == CxtI) 575 return false; 576 577 // The context comes first, but they're both in the same block. 578 // Make sure there is nothing in between that might interrupt 579 // the control flow, not even CxtI itself. 580 // We limit the scan distance between the assume and its context instruction 581 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 582 // it can be adjusted if needed (could be turned into a cl::opt). 583 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 584 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 585 return false; 586 587 return !isEphemeralValueOf(Inv, CxtI); 588 } 589 590 // Inv and CxtI are in different blocks. 591 if (DT) { 592 if (DT->dominates(Inv, CxtI)) 593 return true; 594 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 595 // We don't have a DT, but this trivially dominates. 596 return true; 597 } 598 599 return false; 600 } 601 602 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 603 // v u> y implies v != 0. 604 if (Pred == ICmpInst::ICMP_UGT) 605 return true; 606 607 // Special-case v != 0 to also handle v != null. 608 if (Pred == ICmpInst::ICMP_NE) 609 return match(RHS, m_Zero()); 610 611 // All other predicates - rely on generic ConstantRange handling. 612 const APInt *C; 613 if (!match(RHS, m_APInt(C))) 614 return false; 615 616 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 617 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 618 } 619 620 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 621 // Use of assumptions is context-sensitive. If we don't have a context, we 622 // cannot use them! 623 if (!Q.AC || !Q.CxtI) 624 return false; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 643 // Warning: This loop can end up being somewhat performance sensitive. 644 // We're running this loop for once for each value queried resulting in a 645 // runtime of ~O(#assumes * #values). 646 647 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 648 "must be an assume intrinsic"); 649 650 Value *RHS; 651 CmpInst::Predicate Pred; 652 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 653 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 654 return false; 655 656 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 657 return true; 658 } 659 660 return false; 661 } 662 663 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 664 unsigned Depth, const Query &Q) { 665 // Use of assumptions is context-sensitive. If we don't have a context, we 666 // cannot use them! 667 if (!Q.AC || !Q.CxtI) 668 return; 669 670 unsigned BitWidth = Known.getBitWidth(); 671 672 // Refine Known set if the pointer alignment is set by assume bundles. 673 if (V->getType()->isPointerTy()) { 674 if (RetainedKnowledge RK = getKnowledgeValidInContext( 675 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 676 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 677 } 678 } 679 680 // Note that the patterns below need to be kept in sync with the code 681 // in AssumptionCache::updateAffectedValues. 682 683 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 684 if (!AssumeVH) 685 continue; 686 CallInst *I = cast<CallInst>(AssumeVH); 687 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 688 "Got assumption for the wrong function!"); 689 690 // Warning: This loop can end up being somewhat performance sensitive. 691 // We're running this loop for once for each value queried resulting in a 692 // runtime of ~O(#assumes * #values). 693 694 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 695 "must be an assume intrinsic"); 696 697 Value *Arg = I->getArgOperand(0); 698 699 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 700 assert(BitWidth == 1 && "assume operand is not i1?"); 701 Known.setAllOnes(); 702 return; 703 } 704 if (match(Arg, m_Not(m_Specific(V))) && 705 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 706 assert(BitWidth == 1 && "assume operand is not i1?"); 707 Known.setAllZero(); 708 return; 709 } 710 711 // The remaining tests are all recursive, so bail out if we hit the limit. 712 if (Depth == MaxAnalysisRecursionDepth) 713 continue; 714 715 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 716 if (!Cmp) 717 continue; 718 719 // We are attempting to compute known bits for the operands of an assume. 720 // Do not try to use other assumptions for those recursive calls because 721 // that can lead to mutual recursion and a compile-time explosion. 722 // An example of the mutual recursion: computeKnownBits can call 723 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 724 // and so on. 725 Query QueryNoAC = Q; 726 QueryNoAC.AC = nullptr; 727 728 // Note that ptrtoint may change the bitwidth. 729 Value *A, *B; 730 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 731 732 CmpInst::Predicate Pred; 733 uint64_t C; 734 switch (Cmp->getPredicate()) { 735 default: 736 break; 737 case ICmpInst::ICMP_EQ: 738 // assume(v = a) 739 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 KnownBits RHSKnown = 742 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 743 Known.Zero |= RHSKnown.Zero; 744 Known.One |= RHSKnown.One; 745 // assume(v & b = a) 746 } else if (match(Cmp, 747 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 748 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 749 KnownBits RHSKnown = 750 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 751 KnownBits MaskKnown = 752 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 753 754 // For those bits in the mask that are known to be one, we can propagate 755 // known bits from the RHS to V. 756 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 757 Known.One |= RHSKnown.One & MaskKnown.One; 758 // assume(~(v & b) = a) 759 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 760 m_Value(A))) && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 KnownBits RHSKnown = 763 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 764 KnownBits MaskKnown = 765 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 766 767 // For those bits in the mask that are known to be one, we can propagate 768 // inverted known bits from the RHS to V. 769 Known.Zero |= RHSKnown.One & MaskKnown.One; 770 Known.One |= RHSKnown.Zero & MaskKnown.One; 771 // assume(v | b = a) 772 } else if (match(Cmp, 773 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 KnownBits RHSKnown = 776 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 777 KnownBits BKnown = 778 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 779 780 // For those bits in B that are known to be zero, we can propagate known 781 // bits from the RHS to V. 782 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 783 Known.One |= RHSKnown.One & BKnown.Zero; 784 // assume(~(v | b) = a) 785 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 786 m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown = 789 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 790 KnownBits BKnown = 791 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 792 793 // For those bits in B that are known to be zero, we can propagate 794 // inverted known bits from the RHS to V. 795 Known.Zero |= RHSKnown.One & BKnown.Zero; 796 Known.One |= RHSKnown.Zero & BKnown.Zero; 797 // assume(v ^ b = a) 798 } else if (match(Cmp, 799 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown = 802 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 803 KnownBits BKnown = 804 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 805 806 // For those bits in B that are known to be zero, we can propagate known 807 // bits from the RHS to V. For those bits in B that are known to be one, 808 // we can propagate inverted known bits from the RHS to V. 809 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 810 Known.One |= RHSKnown.One & BKnown.Zero; 811 Known.Zero |= RHSKnown.One & BKnown.One; 812 Known.One |= RHSKnown.Zero & BKnown.One; 813 // assume(~(v ^ b) = a) 814 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 815 m_Value(A))) && 816 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 817 KnownBits RHSKnown = 818 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 819 KnownBits BKnown = 820 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 821 822 // For those bits in B that are known to be zero, we can propagate 823 // inverted known bits from the RHS to V. For those bits in B that are 824 // known to be one, we can propagate known bits from the RHS to V. 825 Known.Zero |= RHSKnown.One & BKnown.Zero; 826 Known.One |= RHSKnown.Zero & BKnown.Zero; 827 Known.Zero |= RHSKnown.Zero & BKnown.One; 828 Known.One |= RHSKnown.One & BKnown.One; 829 // assume(v << c = a) 830 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 831 m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 835 836 // For those bits in RHS that are known, we can propagate them to known 837 // bits in V shifted to the right by C. 838 RHSKnown.Zero.lshrInPlace(C); 839 Known.Zero |= RHSKnown.Zero; 840 RHSKnown.One.lshrInPlace(C); 841 Known.One |= RHSKnown.One; 842 // assume(~(v << c) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them inverted 849 // to known bits in V shifted to the right by C. 850 RHSKnown.One.lshrInPlace(C); 851 Known.Zero |= RHSKnown.One; 852 RHSKnown.Zero.lshrInPlace(C); 853 Known.One |= RHSKnown.Zero; 854 // assume(v >> c = a) 855 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 856 m_Value(A))) && 857 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 858 KnownBits RHSKnown = 859 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 860 // For those bits in RHS that are known, we can propagate them to known 861 // bits in V shifted to the right by C. 862 Known.Zero |= RHSKnown.Zero << C; 863 Known.One |= RHSKnown.One << C; 864 // assume(~(v >> c) = a) 865 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 866 m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 870 // For those bits in RHS that are known, we can propagate them inverted 871 // to known bits in V shifted to the right by C. 872 Known.Zero |= RHSKnown.One << C; 873 Known.One |= RHSKnown.Zero << C; 874 } 875 break; 876 case ICmpInst::ICMP_SGE: 877 // assume(v >=_s c) where c is non-negative 878 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 879 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 880 KnownBits RHSKnown = 881 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 882 883 if (RHSKnown.isNonNegative()) { 884 // We know that the sign bit is zero. 885 Known.makeNonNegative(); 886 } 887 } 888 break; 889 case ICmpInst::ICMP_SGT: 890 // assume(v >_s c) where c is at least -1. 891 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 895 896 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 897 // We know that the sign bit is zero. 898 Known.makeNonNegative(); 899 } 900 } 901 break; 902 case ICmpInst::ICMP_SLE: 903 // assume(v <=_s c) where c is negative 904 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 908 909 if (RHSKnown.isNegative()) { 910 // We know that the sign bit is one. 911 Known.makeNegative(); 912 } 913 } 914 break; 915 case ICmpInst::ICMP_SLT: 916 // assume(v <_s c) where c is non-positive 917 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 918 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 919 KnownBits RHSKnown = 920 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 921 922 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 923 // We know that the sign bit is one. 924 Known.makeNegative(); 925 } 926 } 927 break; 928 case ICmpInst::ICMP_ULE: 929 // assume(v <=_u c) 930 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 931 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 932 KnownBits RHSKnown = 933 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 934 935 // Whatever high bits in c are zero are known to be zero. 936 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 937 } 938 break; 939 case ICmpInst::ICMP_ULT: 940 // assume(v <_u c) 941 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 942 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 943 KnownBits RHSKnown = 944 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 945 946 // If the RHS is known zero, then this assumption must be wrong (nothing 947 // is unsigned less than zero). Signal a conflict and get out of here. 948 if (RHSKnown.isZero()) { 949 Known.Zero.setAllBits(); 950 Known.One.setAllBits(); 951 break; 952 } 953 954 // Whatever high bits in c are zero are known to be zero (if c is a power 955 // of 2, then one more). 956 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 957 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 958 else 959 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 960 } 961 break; 962 } 963 } 964 965 // If assumptions conflict with each other or previous known bits, then we 966 // have a logical fallacy. It's possible that the assumption is not reachable, 967 // so this isn't a real bug. On the other hand, the program may have undefined 968 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 969 // clear out the known bits, try to warn the user, and hope for the best. 970 if (Known.Zero.intersects(Known.One)) { 971 Known.resetAll(); 972 973 if (Q.ORE) 974 Q.ORE->emit([&]() { 975 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 976 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 977 CxtI) 978 << "Detected conflicting code assumptions. Program may " 979 "have undefined behavior, or compiler may have " 980 "internal error."; 981 }); 982 } 983 } 984 985 /// Compute known bits from a shift operator, including those with a 986 /// non-constant shift amount. Known is the output of this function. Known2 is a 987 /// pre-allocated temporary with the same bit width as Known and on return 988 /// contains the known bit of the shift value source. KF is an 989 /// operator-specific function that, given the known-bits and a shift amount, 990 /// compute the implied known-bits of the shift operator's result respectively 991 /// for that shift amount. The results from calling KF are conservatively 992 /// combined for all permitted shift amounts. 993 static void computeKnownBitsFromShiftOperator( 994 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 995 KnownBits &Known2, unsigned Depth, const Query &Q, 996 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 997 unsigned BitWidth = Known.getBitWidth(); 998 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 999 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1000 1001 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1002 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1003 // limit value (which implies all bits are known). 1004 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1005 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1006 bool ShiftAmtIsConstant = Known.isConstant(); 1007 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1008 1009 if (ShiftAmtIsConstant) { 1010 Known = KF(Known2, Known); 1011 1012 // If the known bits conflict, this must be an overflowing left shift, so 1013 // the shift result is poison. We can return anything we want. Choose 0 for 1014 // the best folding opportunity. 1015 if (Known.hasConflict()) 1016 Known.setAllZero(); 1017 1018 return; 1019 } 1020 1021 // If the shift amount could be greater than or equal to the bit-width of the 1022 // LHS, the value could be poison, but bail out because the check below is 1023 // expensive. 1024 // TODO: Should we just carry on? 1025 if (MaxShiftAmtIsOutOfRange) { 1026 Known.resetAll(); 1027 return; 1028 } 1029 1030 // It would be more-clearly correct to use the two temporaries for this 1031 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1032 Known.resetAll(); 1033 1034 // If we know the shifter operand is nonzero, we can sometimes infer more 1035 // known bits. However this is expensive to compute, so be lazy about it and 1036 // only compute it when absolutely necessary. 1037 Optional<bool> ShifterOperandIsNonZero; 1038 1039 // Early exit if we can't constrain any well-defined shift amount. 1040 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1041 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1042 ShifterOperandIsNonZero = 1043 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1044 if (!*ShifterOperandIsNonZero) 1045 return; 1046 } 1047 1048 Known.Zero.setAllBits(); 1049 Known.One.setAllBits(); 1050 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1051 // Combine the shifted known input bits only for those shift amounts 1052 // compatible with its known constraints. 1053 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1054 continue; 1055 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1056 continue; 1057 // If we know the shifter is nonzero, we may be able to infer more known 1058 // bits. This check is sunk down as far as possible to avoid the expensive 1059 // call to isKnownNonZero if the cheaper checks above fail. 1060 if (ShiftAmt == 0) { 1061 if (!ShifterOperandIsNonZero.hasValue()) 1062 ShifterOperandIsNonZero = 1063 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1064 if (*ShifterOperandIsNonZero) 1065 continue; 1066 } 1067 1068 Known = KnownBits::commonBits( 1069 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1070 } 1071 1072 // If the known bits conflict, the result is poison. Return a 0 and hope the 1073 // caller can further optimize that. 1074 if (Known.hasConflict()) 1075 Known.setAllZero(); 1076 } 1077 1078 static void computeKnownBitsFromOperator(const Operator *I, 1079 const APInt &DemandedElts, 1080 KnownBits &Known, unsigned Depth, 1081 const Query &Q) { 1082 unsigned BitWidth = Known.getBitWidth(); 1083 1084 KnownBits Known2(BitWidth); 1085 switch (I->getOpcode()) { 1086 default: break; 1087 case Instruction::Load: 1088 if (MDNode *MD = 1089 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1090 computeKnownBitsFromRangeMetadata(*MD, Known); 1091 break; 1092 case Instruction::And: { 1093 // If either the LHS or the RHS are Zero, the result is zero. 1094 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1095 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1096 1097 Known &= Known2; 1098 1099 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1100 // here we handle the more general case of adding any odd number by 1101 // matching the form add(x, add(x, y)) where y is odd. 1102 // TODO: This could be generalized to clearing any bit set in y where the 1103 // following bit is known to be unset in y. 1104 Value *X = nullptr, *Y = nullptr; 1105 if (!Known.Zero[0] && !Known.One[0] && 1106 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1107 Known2.resetAll(); 1108 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1109 if (Known2.countMinTrailingOnes() > 0) 1110 Known.Zero.setBit(0); 1111 } 1112 break; 1113 } 1114 case Instruction::Or: 1115 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1116 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1117 1118 Known |= Known2; 1119 break; 1120 case Instruction::Xor: 1121 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1123 1124 Known ^= Known2; 1125 break; 1126 case Instruction::Mul: { 1127 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1128 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1129 Known, Known2, Depth, Q); 1130 break; 1131 } 1132 case Instruction::UDiv: { 1133 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1134 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1135 Known = KnownBits::udiv(Known, Known2); 1136 break; 1137 } 1138 case Instruction::Select: { 1139 const Value *LHS = nullptr, *RHS = nullptr; 1140 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1141 if (SelectPatternResult::isMinOrMax(SPF)) { 1142 computeKnownBits(RHS, Known, Depth + 1, Q); 1143 computeKnownBits(LHS, Known2, Depth + 1, Q); 1144 switch (SPF) { 1145 default: 1146 llvm_unreachable("Unhandled select pattern flavor!"); 1147 case SPF_SMAX: 1148 Known = KnownBits::smax(Known, Known2); 1149 break; 1150 case SPF_SMIN: 1151 Known = KnownBits::smin(Known, Known2); 1152 break; 1153 case SPF_UMAX: 1154 Known = KnownBits::umax(Known, Known2); 1155 break; 1156 case SPF_UMIN: 1157 Known = KnownBits::umin(Known, Known2); 1158 break; 1159 } 1160 break; 1161 } 1162 1163 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1164 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1165 1166 // Only known if known in both the LHS and RHS. 1167 Known = KnownBits::commonBits(Known, Known2); 1168 1169 if (SPF == SPF_ABS) { 1170 // RHS from matchSelectPattern returns the negation part of abs pattern. 1171 // If the negate has an NSW flag we can assume the sign bit of the result 1172 // will be 0 because that makes abs(INT_MIN) undefined. 1173 if (match(RHS, m_Neg(m_Specific(LHS))) && 1174 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1175 Known.Zero.setSignBit(); 1176 } 1177 1178 break; 1179 } 1180 case Instruction::FPTrunc: 1181 case Instruction::FPExt: 1182 case Instruction::FPToUI: 1183 case Instruction::FPToSI: 1184 case Instruction::SIToFP: 1185 case Instruction::UIToFP: 1186 break; // Can't work with floating point. 1187 case Instruction::PtrToInt: 1188 case Instruction::IntToPtr: 1189 // Fall through and handle them the same as zext/trunc. 1190 LLVM_FALLTHROUGH; 1191 case Instruction::ZExt: 1192 case Instruction::Trunc: { 1193 Type *SrcTy = I->getOperand(0)->getType(); 1194 1195 unsigned SrcBitWidth; 1196 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1197 // which fall through here. 1198 Type *ScalarTy = SrcTy->getScalarType(); 1199 SrcBitWidth = ScalarTy->isPointerTy() ? 1200 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1201 Q.DL.getTypeSizeInBits(ScalarTy); 1202 1203 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1204 Known = Known.anyextOrTrunc(SrcBitWidth); 1205 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1206 Known = Known.zextOrTrunc(BitWidth); 1207 break; 1208 } 1209 case Instruction::BitCast: { 1210 Type *SrcTy = I->getOperand(0)->getType(); 1211 if (SrcTy->isIntOrPtrTy() && 1212 // TODO: For now, not handling conversions like: 1213 // (bitcast i64 %x to <2 x i32>) 1214 !I->getType()->isVectorTy()) { 1215 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1216 break; 1217 } 1218 1219 // Handle cast from vector integer type to scalar or vector integer. 1220 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1221 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1222 !I->getType()->isIntOrIntVectorTy()) 1223 break; 1224 1225 // Look through a cast from narrow vector elements to wider type. 1226 // Examples: v4i32 -> v2i64, v3i8 -> v24 1227 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1228 if (BitWidth % SubBitWidth == 0) { 1229 // Known bits are automatically intersected across demanded elements of a 1230 // vector. So for example, if a bit is computed as known zero, it must be 1231 // zero across all demanded elements of the vector. 1232 // 1233 // For this bitcast, each demanded element of the output is sub-divided 1234 // across a set of smaller vector elements in the source vector. To get 1235 // the known bits for an entire element of the output, compute the known 1236 // bits for each sub-element sequentially. This is done by shifting the 1237 // one-set-bit demanded elements parameter across the sub-elements for 1238 // consecutive calls to computeKnownBits. We are using the demanded 1239 // elements parameter as a mask operator. 1240 // 1241 // The known bits of each sub-element are then inserted into place 1242 // (dependent on endian) to form the full result of known bits. 1243 unsigned NumElts = DemandedElts.getBitWidth(); 1244 unsigned SubScale = BitWidth / SubBitWidth; 1245 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1246 for (unsigned i = 0; i != NumElts; ++i) { 1247 if (DemandedElts[i]) 1248 SubDemandedElts.setBit(i * SubScale); 1249 } 1250 1251 KnownBits KnownSrc(SubBitWidth); 1252 for (unsigned i = 0; i != SubScale; ++i) { 1253 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1254 Depth + 1, Q); 1255 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1256 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1257 } 1258 } 1259 break; 1260 } 1261 case Instruction::SExt: { 1262 // Compute the bits in the result that are not present in the input. 1263 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1264 1265 Known = Known.trunc(SrcBitWidth); 1266 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1267 // If the sign bit of the input is known set or clear, then we know the 1268 // top bits of the result. 1269 Known = Known.sext(BitWidth); 1270 break; 1271 } 1272 case Instruction::Shl: { 1273 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1274 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1275 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1276 // If this shift has "nsw" keyword, then the result is either a poison 1277 // value or has the same sign bit as the first operand. 1278 if (NSW) { 1279 if (KnownVal.Zero.isSignBitSet()) 1280 Result.Zero.setSignBit(); 1281 if (KnownVal.One.isSignBitSet()) 1282 Result.One.setSignBit(); 1283 } 1284 return Result; 1285 }; 1286 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1287 KF); 1288 // Trailing zeros of a right-shifted constant never decrease. 1289 const APInt *C; 1290 if (match(I->getOperand(0), m_APInt(C))) 1291 Known.Zero.setLowBits(C->countTrailingZeros()); 1292 break; 1293 } 1294 case Instruction::LShr: { 1295 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1296 return KnownBits::lshr(KnownVal, KnownAmt); 1297 }; 1298 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1299 KF); 1300 // Leading zeros of a left-shifted constant never decrease. 1301 const APInt *C; 1302 if (match(I->getOperand(0), m_APInt(C))) 1303 Known.Zero.setHighBits(C->countLeadingZeros()); 1304 break; 1305 } 1306 case Instruction::AShr: { 1307 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1308 return KnownBits::ashr(KnownVal, KnownAmt); 1309 }; 1310 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1311 KF); 1312 break; 1313 } 1314 case Instruction::Sub: { 1315 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1316 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1317 DemandedElts, Known, Known2, Depth, Q); 1318 break; 1319 } 1320 case Instruction::Add: { 1321 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1322 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1323 DemandedElts, Known, Known2, Depth, Q); 1324 break; 1325 } 1326 case Instruction::SRem: 1327 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1328 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1329 Known = KnownBits::srem(Known, Known2); 1330 break; 1331 1332 case Instruction::URem: 1333 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1334 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1335 Known = KnownBits::urem(Known, Known2); 1336 break; 1337 case Instruction::Alloca: 1338 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1339 break; 1340 case Instruction::GetElementPtr: { 1341 // Analyze all of the subscripts of this getelementptr instruction 1342 // to determine if we can prove known low zero bits. 1343 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1344 // Accumulate the constant indices in a separate variable 1345 // to minimize the number of calls to computeForAddSub. 1346 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1347 1348 gep_type_iterator GTI = gep_type_begin(I); 1349 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1350 // TrailZ can only become smaller, short-circuit if we hit zero. 1351 if (Known.isUnknown()) 1352 break; 1353 1354 Value *Index = I->getOperand(i); 1355 1356 // Handle case when index is zero. 1357 Constant *CIndex = dyn_cast<Constant>(Index); 1358 if (CIndex && CIndex->isZeroValue()) 1359 continue; 1360 1361 if (StructType *STy = GTI.getStructTypeOrNull()) { 1362 // Handle struct member offset arithmetic. 1363 1364 assert(CIndex && 1365 "Access to structure field must be known at compile time"); 1366 1367 if (CIndex->getType()->isVectorTy()) 1368 Index = CIndex->getSplatValue(); 1369 1370 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1371 const StructLayout *SL = Q.DL.getStructLayout(STy); 1372 uint64_t Offset = SL->getElementOffset(Idx); 1373 AccConstIndices += Offset; 1374 continue; 1375 } 1376 1377 // Handle array index arithmetic. 1378 Type *IndexedTy = GTI.getIndexedType(); 1379 if (!IndexedTy->isSized()) { 1380 Known.resetAll(); 1381 break; 1382 } 1383 1384 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1385 KnownBits IndexBits(IndexBitWidth); 1386 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1387 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1388 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1389 KnownBits ScalingFactor(IndexBitWidth); 1390 // Multiply by current sizeof type. 1391 // &A[i] == A + i * sizeof(*A[i]). 1392 if (IndexTypeSize.isScalable()) { 1393 // For scalable types the only thing we know about sizeof is 1394 // that this is a multiple of the minimum size. 1395 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1396 } else if (IndexBits.isConstant()) { 1397 APInt IndexConst = IndexBits.getConstant(); 1398 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1399 IndexConst *= ScalingFactor; 1400 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1401 continue; 1402 } else { 1403 ScalingFactor = 1404 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1405 } 1406 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1407 1408 // If the offsets have a different width from the pointer, according 1409 // to the language reference we need to sign-extend or truncate them 1410 // to the width of the pointer. 1411 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1412 1413 // Note that inbounds does *not* guarantee nsw for the addition, as only 1414 // the offset is signed, while the base address is unsigned. 1415 Known = KnownBits::computeForAddSub( 1416 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1417 } 1418 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1419 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1420 Known = KnownBits::computeForAddSub( 1421 /*Add=*/true, /*NSW=*/false, Known, Index); 1422 } 1423 break; 1424 } 1425 case Instruction::PHI: { 1426 const PHINode *P = cast<PHINode>(I); 1427 BinaryOperator *BO = nullptr; 1428 Value *R = nullptr, *L = nullptr; 1429 if (matchSimpleRecurrence(P, BO, R, L)) { 1430 // Handle the case of a simple two-predecessor recurrence PHI. 1431 // There's a lot more that could theoretically be done here, but 1432 // this is sufficient to catch some interesting cases. 1433 unsigned Opcode = BO->getOpcode(); 1434 1435 // If this is a shift recurrence, we know the bits being shifted in. 1436 // We can combine that with information about the start value of the 1437 // recurrence to conclude facts about the result. 1438 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1439 Opcode == Instruction::Shl) && 1440 BO->getOperand(0) == I) { 1441 1442 // We have matched a recurrence of the form: 1443 // %iv = [R, %entry], [%iv.next, %backedge] 1444 // %iv.next = shift_op %iv, L 1445 1446 // Recurse with the phi context to avoid concern about whether facts 1447 // inferred hold at original context instruction. TODO: It may be 1448 // correct to use the original context. IF warranted, explore and 1449 // add sufficient tests to cover. 1450 Query RecQ = Q; 1451 RecQ.CxtI = P; 1452 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1453 switch (Opcode) { 1454 case Instruction::Shl: 1455 // A shl recurrence will only increase the tailing zeros 1456 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1457 break; 1458 case Instruction::LShr: 1459 // A lshr recurrence will preserve the leading zeros of the 1460 // start value 1461 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1462 break; 1463 case Instruction::AShr: 1464 // An ashr recurrence will extend the initial sign bit 1465 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1466 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1467 break; 1468 }; 1469 } 1470 1471 // Check for operations that have the property that if 1472 // both their operands have low zero bits, the result 1473 // will have low zero bits. 1474 if (Opcode == Instruction::Add || 1475 Opcode == Instruction::Sub || 1476 Opcode == Instruction::And || 1477 Opcode == Instruction::Or || 1478 Opcode == Instruction::Mul) { 1479 // Change the context instruction to the "edge" that flows into the 1480 // phi. This is important because that is where the value is actually 1481 // "evaluated" even though it is used later somewhere else. (see also 1482 // D69571). 1483 Query RecQ = Q; 1484 1485 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1486 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1487 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1488 1489 // Ok, we have a PHI of the form L op= R. Check for low 1490 // zero bits. 1491 RecQ.CxtI = RInst; 1492 computeKnownBits(R, Known2, Depth + 1, RecQ); 1493 1494 // We need to take the minimum number of known bits 1495 KnownBits Known3(BitWidth); 1496 RecQ.CxtI = LInst; 1497 computeKnownBits(L, Known3, Depth + 1, RecQ); 1498 1499 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1500 Known3.countMinTrailingZeros())); 1501 1502 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1503 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1504 // If initial value of recurrence is nonnegative, and we are adding 1505 // a nonnegative number with nsw, the result can only be nonnegative 1506 // or poison value regardless of the number of times we execute the 1507 // add in phi recurrence. If initial value is negative and we are 1508 // adding a negative number with nsw, the result can only be 1509 // negative or poison value. Similar arguments apply to sub and mul. 1510 // 1511 // (add non-negative, non-negative) --> non-negative 1512 // (add negative, negative) --> negative 1513 if (Opcode == Instruction::Add) { 1514 if (Known2.isNonNegative() && Known3.isNonNegative()) 1515 Known.makeNonNegative(); 1516 else if (Known2.isNegative() && Known3.isNegative()) 1517 Known.makeNegative(); 1518 } 1519 1520 // (sub nsw non-negative, negative) --> non-negative 1521 // (sub nsw negative, non-negative) --> negative 1522 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1523 if (Known2.isNonNegative() && Known3.isNegative()) 1524 Known.makeNonNegative(); 1525 else if (Known2.isNegative() && Known3.isNonNegative()) 1526 Known.makeNegative(); 1527 } 1528 1529 // (mul nsw non-negative, non-negative) --> non-negative 1530 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1531 Known3.isNonNegative()) 1532 Known.makeNonNegative(); 1533 } 1534 1535 break; 1536 } 1537 } 1538 1539 // Unreachable blocks may have zero-operand PHI nodes. 1540 if (P->getNumIncomingValues() == 0) 1541 break; 1542 1543 // Otherwise take the unions of the known bit sets of the operands, 1544 // taking conservative care to avoid excessive recursion. 1545 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1546 // Skip if every incoming value references to ourself. 1547 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1548 break; 1549 1550 Known.Zero.setAllBits(); 1551 Known.One.setAllBits(); 1552 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1553 Value *IncValue = P->getIncomingValue(u); 1554 // Skip direct self references. 1555 if (IncValue == P) continue; 1556 1557 // Change the context instruction to the "edge" that flows into the 1558 // phi. This is important because that is where the value is actually 1559 // "evaluated" even though it is used later somewhere else. (see also 1560 // D69571). 1561 Query RecQ = Q; 1562 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1563 1564 Known2 = KnownBits(BitWidth); 1565 // Recurse, but cap the recursion to one level, because we don't 1566 // want to waste time spinning around in loops. 1567 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1568 Known = KnownBits::commonBits(Known, Known2); 1569 // If all bits have been ruled out, there's no need to check 1570 // more operands. 1571 if (Known.isUnknown()) 1572 break; 1573 } 1574 } 1575 break; 1576 } 1577 case Instruction::Call: 1578 case Instruction::Invoke: 1579 // If range metadata is attached to this call, set known bits from that, 1580 // and then intersect with known bits based on other properties of the 1581 // function. 1582 if (MDNode *MD = 1583 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1584 computeKnownBitsFromRangeMetadata(*MD, Known); 1585 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1586 computeKnownBits(RV, Known2, Depth + 1, Q); 1587 Known.Zero |= Known2.Zero; 1588 Known.One |= Known2.One; 1589 } 1590 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1591 switch (II->getIntrinsicID()) { 1592 default: break; 1593 case Intrinsic::abs: { 1594 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1595 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1596 Known = Known2.abs(IntMinIsPoison); 1597 break; 1598 } 1599 case Intrinsic::bitreverse: 1600 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1601 Known.Zero |= Known2.Zero.reverseBits(); 1602 Known.One |= Known2.One.reverseBits(); 1603 break; 1604 case Intrinsic::bswap: 1605 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1606 Known.Zero |= Known2.Zero.byteSwap(); 1607 Known.One |= Known2.One.byteSwap(); 1608 break; 1609 case Intrinsic::ctlz: { 1610 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1611 // If we have a known 1, its position is our upper bound. 1612 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1613 // If this call is poison for 0 input, the result will be less than 2^n. 1614 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1615 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1616 unsigned LowBits = Log2_32(PossibleLZ)+1; 1617 Known.Zero.setBitsFrom(LowBits); 1618 break; 1619 } 1620 case Intrinsic::cttz: { 1621 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1622 // If we have a known 1, its position is our upper bound. 1623 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1624 // If this call is poison for 0 input, the result will be less than 2^n. 1625 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1626 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1627 unsigned LowBits = Log2_32(PossibleTZ)+1; 1628 Known.Zero.setBitsFrom(LowBits); 1629 break; 1630 } 1631 case Intrinsic::ctpop: { 1632 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1633 // We can bound the space the count needs. Also, bits known to be zero 1634 // can't contribute to the population. 1635 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1636 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1637 Known.Zero.setBitsFrom(LowBits); 1638 // TODO: we could bound KnownOne using the lower bound on the number 1639 // of bits which might be set provided by popcnt KnownOne2. 1640 break; 1641 } 1642 case Intrinsic::fshr: 1643 case Intrinsic::fshl: { 1644 const APInt *SA; 1645 if (!match(I->getOperand(2), m_APInt(SA))) 1646 break; 1647 1648 // Normalize to funnel shift left. 1649 uint64_t ShiftAmt = SA->urem(BitWidth); 1650 if (II->getIntrinsicID() == Intrinsic::fshr) 1651 ShiftAmt = BitWidth - ShiftAmt; 1652 1653 KnownBits Known3(BitWidth); 1654 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1655 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1656 1657 Known.Zero = 1658 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1659 Known.One = 1660 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1661 break; 1662 } 1663 case Intrinsic::uadd_sat: 1664 case Intrinsic::usub_sat: { 1665 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1666 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1667 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1668 1669 // Add: Leading ones of either operand are preserved. 1670 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1671 // as leading zeros in the result. 1672 unsigned LeadingKnown; 1673 if (IsAdd) 1674 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1675 Known2.countMinLeadingOnes()); 1676 else 1677 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1678 Known2.countMinLeadingOnes()); 1679 1680 Known = KnownBits::computeForAddSub( 1681 IsAdd, /* NSW */ false, Known, Known2); 1682 1683 // We select between the operation result and all-ones/zero 1684 // respectively, so we can preserve known ones/zeros. 1685 if (IsAdd) { 1686 Known.One.setHighBits(LeadingKnown); 1687 Known.Zero.clearAllBits(); 1688 } else { 1689 Known.Zero.setHighBits(LeadingKnown); 1690 Known.One.clearAllBits(); 1691 } 1692 break; 1693 } 1694 case Intrinsic::umin: 1695 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1696 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1697 Known = KnownBits::umin(Known, Known2); 1698 break; 1699 case Intrinsic::umax: 1700 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1701 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1702 Known = KnownBits::umax(Known, Known2); 1703 break; 1704 case Intrinsic::smin: 1705 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1706 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1707 Known = KnownBits::smin(Known, Known2); 1708 break; 1709 case Intrinsic::smax: 1710 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1711 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1712 Known = KnownBits::smax(Known, Known2); 1713 break; 1714 case Intrinsic::x86_sse42_crc32_64_64: 1715 Known.Zero.setBitsFrom(32); 1716 break; 1717 case Intrinsic::riscv_vsetvli: 1718 case Intrinsic::riscv_vsetvlimax: 1719 // Assume that VL output is positive and would fit in an int32_t. 1720 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1721 if (BitWidth >= 32) 1722 Known.Zero.setBitsFrom(31); 1723 break; 1724 case Intrinsic::vscale: { 1725 if (!II->getParent() || !II->getFunction() || 1726 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1727 break; 1728 1729 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1730 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1731 1732 if (!VScaleMax) 1733 break; 1734 1735 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1736 1737 // If vscale min = max then we know the exact value at compile time 1738 // and hence we know the exact bits. 1739 if (VScaleMin == VScaleMax) { 1740 Known.One = VScaleMin; 1741 Known.Zero = VScaleMin; 1742 Known.Zero.flipAllBits(); 1743 break; 1744 } 1745 1746 unsigned FirstZeroHighBit = 1747 32 - countLeadingZeros(VScaleMax.getValue()); 1748 if (FirstZeroHighBit < BitWidth) 1749 Known.Zero.setBitsFrom(FirstZeroHighBit); 1750 1751 break; 1752 } 1753 } 1754 } 1755 break; 1756 case Instruction::ShuffleVector: { 1757 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1758 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1759 if (!Shuf) { 1760 Known.resetAll(); 1761 return; 1762 } 1763 // For undef elements, we don't know anything about the common state of 1764 // the shuffle result. 1765 APInt DemandedLHS, DemandedRHS; 1766 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1767 Known.resetAll(); 1768 return; 1769 } 1770 Known.One.setAllBits(); 1771 Known.Zero.setAllBits(); 1772 if (!!DemandedLHS) { 1773 const Value *LHS = Shuf->getOperand(0); 1774 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1775 // If we don't know any bits, early out. 1776 if (Known.isUnknown()) 1777 break; 1778 } 1779 if (!!DemandedRHS) { 1780 const Value *RHS = Shuf->getOperand(1); 1781 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1782 Known = KnownBits::commonBits(Known, Known2); 1783 } 1784 break; 1785 } 1786 case Instruction::InsertElement: { 1787 const Value *Vec = I->getOperand(0); 1788 const Value *Elt = I->getOperand(1); 1789 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1790 // Early out if the index is non-constant or out-of-range. 1791 unsigned NumElts = DemandedElts.getBitWidth(); 1792 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1793 Known.resetAll(); 1794 return; 1795 } 1796 Known.One.setAllBits(); 1797 Known.Zero.setAllBits(); 1798 unsigned EltIdx = CIdx->getZExtValue(); 1799 // Do we demand the inserted element? 1800 if (DemandedElts[EltIdx]) { 1801 computeKnownBits(Elt, Known, Depth + 1, Q); 1802 // If we don't know any bits, early out. 1803 if (Known.isUnknown()) 1804 break; 1805 } 1806 // We don't need the base vector element that has been inserted. 1807 APInt DemandedVecElts = DemandedElts; 1808 DemandedVecElts.clearBit(EltIdx); 1809 if (!!DemandedVecElts) { 1810 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1811 Known = KnownBits::commonBits(Known, Known2); 1812 } 1813 break; 1814 } 1815 case Instruction::ExtractElement: { 1816 // Look through extract element. If the index is non-constant or 1817 // out-of-range demand all elements, otherwise just the extracted element. 1818 const Value *Vec = I->getOperand(0); 1819 const Value *Idx = I->getOperand(1); 1820 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1821 if (isa<ScalableVectorType>(Vec->getType())) { 1822 // FIXME: there's probably *something* we can do with scalable vectors 1823 Known.resetAll(); 1824 break; 1825 } 1826 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1827 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1828 if (CIdx && CIdx->getValue().ult(NumElts)) 1829 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1830 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1831 break; 1832 } 1833 case Instruction::ExtractValue: 1834 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1835 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1836 if (EVI->getNumIndices() != 1) break; 1837 if (EVI->getIndices()[0] == 0) { 1838 switch (II->getIntrinsicID()) { 1839 default: break; 1840 case Intrinsic::uadd_with_overflow: 1841 case Intrinsic::sadd_with_overflow: 1842 computeKnownBitsAddSub(true, II->getArgOperand(0), 1843 II->getArgOperand(1), false, DemandedElts, 1844 Known, Known2, Depth, Q); 1845 break; 1846 case Intrinsic::usub_with_overflow: 1847 case Intrinsic::ssub_with_overflow: 1848 computeKnownBitsAddSub(false, II->getArgOperand(0), 1849 II->getArgOperand(1), false, DemandedElts, 1850 Known, Known2, Depth, Q); 1851 break; 1852 case Intrinsic::umul_with_overflow: 1853 case Intrinsic::smul_with_overflow: 1854 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1855 DemandedElts, Known, Known2, Depth, Q); 1856 break; 1857 } 1858 } 1859 } 1860 break; 1861 case Instruction::Freeze: 1862 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1863 Depth + 1)) 1864 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1865 break; 1866 } 1867 } 1868 1869 /// Determine which bits of V are known to be either zero or one and return 1870 /// them. 1871 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1872 unsigned Depth, const Query &Q) { 1873 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1874 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1875 return Known; 1876 } 1877 1878 /// Determine which bits of V are known to be either zero or one and return 1879 /// them. 1880 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1881 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1882 computeKnownBits(V, Known, Depth, Q); 1883 return Known; 1884 } 1885 1886 /// Determine which bits of V are known to be either zero or one and return 1887 /// them in the Known bit set. 1888 /// 1889 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1890 /// we cannot optimize based on the assumption that it is zero without changing 1891 /// it to be an explicit zero. If we don't change it to zero, other code could 1892 /// optimized based on the contradictory assumption that it is non-zero. 1893 /// Because instcombine aggressively folds operations with undef args anyway, 1894 /// this won't lose us code quality. 1895 /// 1896 /// This function is defined on values with integer type, values with pointer 1897 /// type, and vectors of integers. In the case 1898 /// where V is a vector, known zero, and known one values are the 1899 /// same width as the vector element, and the bit is set only if it is true 1900 /// for all of the demanded elements in the vector specified by DemandedElts. 1901 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1902 KnownBits &Known, unsigned Depth, const Query &Q) { 1903 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1904 // No demanded elts or V is a scalable vector, better to assume we don't 1905 // know anything. 1906 Known.resetAll(); 1907 return; 1908 } 1909 1910 assert(V && "No Value?"); 1911 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1912 1913 #ifndef NDEBUG 1914 Type *Ty = V->getType(); 1915 unsigned BitWidth = Known.getBitWidth(); 1916 1917 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1918 "Not integer or pointer type!"); 1919 1920 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1921 assert( 1922 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1923 "DemandedElt width should equal the fixed vector number of elements"); 1924 } else { 1925 assert(DemandedElts == APInt(1, 1) && 1926 "DemandedElt width should be 1 for scalars"); 1927 } 1928 1929 Type *ScalarTy = Ty->getScalarType(); 1930 if (ScalarTy->isPointerTy()) { 1931 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1932 "V and Known should have same BitWidth"); 1933 } else { 1934 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1935 "V and Known should have same BitWidth"); 1936 } 1937 #endif 1938 1939 const APInt *C; 1940 if (match(V, m_APInt(C))) { 1941 // We know all of the bits for a scalar constant or a splat vector constant! 1942 Known = KnownBits::makeConstant(*C); 1943 return; 1944 } 1945 // Null and aggregate-zero are all-zeros. 1946 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1947 Known.setAllZero(); 1948 return; 1949 } 1950 // Handle a constant vector by taking the intersection of the known bits of 1951 // each element. 1952 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1953 // We know that CDV must be a vector of integers. Take the intersection of 1954 // each element. 1955 Known.Zero.setAllBits(); Known.One.setAllBits(); 1956 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1957 if (!DemandedElts[i]) 1958 continue; 1959 APInt Elt = CDV->getElementAsAPInt(i); 1960 Known.Zero &= ~Elt; 1961 Known.One &= Elt; 1962 } 1963 return; 1964 } 1965 1966 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1967 // We know that CV must be a vector of integers. Take the intersection of 1968 // each element. 1969 Known.Zero.setAllBits(); Known.One.setAllBits(); 1970 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1971 if (!DemandedElts[i]) 1972 continue; 1973 Constant *Element = CV->getAggregateElement(i); 1974 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1975 if (!ElementCI) { 1976 Known.resetAll(); 1977 return; 1978 } 1979 const APInt &Elt = ElementCI->getValue(); 1980 Known.Zero &= ~Elt; 1981 Known.One &= Elt; 1982 } 1983 return; 1984 } 1985 1986 // Start out not knowing anything. 1987 Known.resetAll(); 1988 1989 // We can't imply anything about undefs. 1990 if (isa<UndefValue>(V)) 1991 return; 1992 1993 // There's no point in looking through other users of ConstantData for 1994 // assumptions. Confirm that we've handled them all. 1995 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1996 1997 // All recursive calls that increase depth must come after this. 1998 if (Depth == MaxAnalysisRecursionDepth) 1999 return; 2000 2001 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2002 // the bits of its aliasee. 2003 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2004 if (!GA->isInterposable()) 2005 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2006 return; 2007 } 2008 2009 if (const Operator *I = dyn_cast<Operator>(V)) 2010 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2011 2012 // Aligned pointers have trailing zeros - refine Known.Zero set 2013 if (isa<PointerType>(V->getType())) { 2014 Align Alignment = V->getPointerAlignment(Q.DL); 2015 Known.Zero.setLowBits(Log2(Alignment)); 2016 } 2017 2018 // computeKnownBitsFromAssume strictly refines Known. 2019 // Therefore, we run them after computeKnownBitsFromOperator. 2020 2021 // Check whether a nearby assume intrinsic can determine some known bits. 2022 computeKnownBitsFromAssume(V, Known, Depth, Q); 2023 2024 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2025 } 2026 2027 /// Return true if the given value is known to have exactly one 2028 /// bit set when defined. For vectors return true if every element is known to 2029 /// be a power of two when defined. Supports values with integer or pointer 2030 /// types and vectors of integers. 2031 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2032 const Query &Q) { 2033 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2034 2035 // Attempt to match against constants. 2036 if (OrZero && match(V, m_Power2OrZero())) 2037 return true; 2038 if (match(V, m_Power2())) 2039 return true; 2040 2041 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2042 // it is shifted off the end then the result is undefined. 2043 if (match(V, m_Shl(m_One(), m_Value()))) 2044 return true; 2045 2046 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2047 // the bottom. If it is shifted off the bottom then the result is undefined. 2048 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2049 return true; 2050 2051 // The remaining tests are all recursive, so bail out if we hit the limit. 2052 if (Depth++ == MaxAnalysisRecursionDepth) 2053 return false; 2054 2055 Value *X = nullptr, *Y = nullptr; 2056 // A shift left or a logical shift right of a power of two is a power of two 2057 // or zero. 2058 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2059 match(V, m_LShr(m_Value(X), m_Value())))) 2060 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2061 2062 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2063 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2064 2065 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2066 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2067 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2068 2069 // Peek through min/max. 2070 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2071 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2072 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2073 } 2074 2075 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2076 // A power of two and'd with anything is a power of two or zero. 2077 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2078 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2079 return true; 2080 // X & (-X) is always a power of two or zero. 2081 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2082 return true; 2083 return false; 2084 } 2085 2086 // Adding a power-of-two or zero to the same power-of-two or zero yields 2087 // either the original power-of-two, a larger power-of-two or zero. 2088 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2089 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2090 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2091 Q.IIQ.hasNoSignedWrap(VOBO)) { 2092 if (match(X, m_And(m_Specific(Y), m_Value())) || 2093 match(X, m_And(m_Value(), m_Specific(Y)))) 2094 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2095 return true; 2096 if (match(Y, m_And(m_Specific(X), m_Value())) || 2097 match(Y, m_And(m_Value(), m_Specific(X)))) 2098 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2099 return true; 2100 2101 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2102 KnownBits LHSBits(BitWidth); 2103 computeKnownBits(X, LHSBits, Depth, Q); 2104 2105 KnownBits RHSBits(BitWidth); 2106 computeKnownBits(Y, RHSBits, Depth, Q); 2107 // If i8 V is a power of two or zero: 2108 // ZeroBits: 1 1 1 0 1 1 1 1 2109 // ~ZeroBits: 0 0 0 1 0 0 0 0 2110 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2111 // If OrZero isn't set, we cannot give back a zero result. 2112 // Make sure either the LHS or RHS has a bit set. 2113 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2114 return true; 2115 } 2116 } 2117 2118 // An exact divide or right shift can only shift off zero bits, so the result 2119 // is a power of two only if the first operand is a power of two and not 2120 // copying a sign bit (sdiv int_min, 2). 2121 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2122 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2123 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2124 Depth, Q); 2125 } 2126 2127 return false; 2128 } 2129 2130 /// Test whether a GEP's result is known to be non-null. 2131 /// 2132 /// Uses properties inherent in a GEP to try to determine whether it is known 2133 /// to be non-null. 2134 /// 2135 /// Currently this routine does not support vector GEPs. 2136 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2137 const Query &Q) { 2138 const Function *F = nullptr; 2139 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2140 F = I->getFunction(); 2141 2142 if (!GEP->isInBounds() || 2143 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2144 return false; 2145 2146 // FIXME: Support vector-GEPs. 2147 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2148 2149 // If the base pointer is non-null, we cannot walk to a null address with an 2150 // inbounds GEP in address space zero. 2151 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2152 return true; 2153 2154 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2155 // If so, then the GEP cannot produce a null pointer, as doing so would 2156 // inherently violate the inbounds contract within address space zero. 2157 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2158 GTI != GTE; ++GTI) { 2159 // Struct types are easy -- they must always be indexed by a constant. 2160 if (StructType *STy = GTI.getStructTypeOrNull()) { 2161 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2162 unsigned ElementIdx = OpC->getZExtValue(); 2163 const StructLayout *SL = Q.DL.getStructLayout(STy); 2164 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2165 if (ElementOffset > 0) 2166 return true; 2167 continue; 2168 } 2169 2170 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2171 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2172 continue; 2173 2174 // Fast path the constant operand case both for efficiency and so we don't 2175 // increment Depth when just zipping down an all-constant GEP. 2176 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2177 if (!OpC->isZero()) 2178 return true; 2179 continue; 2180 } 2181 2182 // We post-increment Depth here because while isKnownNonZero increments it 2183 // as well, when we pop back up that increment won't persist. We don't want 2184 // to recurse 10k times just because we have 10k GEP operands. We don't 2185 // bail completely out because we want to handle constant GEPs regardless 2186 // of depth. 2187 if (Depth++ >= MaxAnalysisRecursionDepth) 2188 continue; 2189 2190 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2191 return true; 2192 } 2193 2194 return false; 2195 } 2196 2197 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2198 const Instruction *CtxI, 2199 const DominatorTree *DT) { 2200 if (isa<Constant>(V)) 2201 return false; 2202 2203 if (!CtxI || !DT) 2204 return false; 2205 2206 unsigned NumUsesExplored = 0; 2207 for (auto *U : V->users()) { 2208 // Avoid massive lists 2209 if (NumUsesExplored >= DomConditionsMaxUses) 2210 break; 2211 NumUsesExplored++; 2212 2213 // If the value is used as an argument to a call or invoke, then argument 2214 // attributes may provide an answer about null-ness. 2215 if (const auto *CB = dyn_cast<CallBase>(U)) 2216 if (auto *CalledFunc = CB->getCalledFunction()) 2217 for (const Argument &Arg : CalledFunc->args()) 2218 if (CB->getArgOperand(Arg.getArgNo()) == V && 2219 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2220 DT->dominates(CB, CtxI)) 2221 return true; 2222 2223 // If the value is used as a load/store, then the pointer must be non null. 2224 if (V == getLoadStorePointerOperand(U)) { 2225 const Instruction *I = cast<Instruction>(U); 2226 if (!NullPointerIsDefined(I->getFunction(), 2227 V->getType()->getPointerAddressSpace()) && 2228 DT->dominates(I, CtxI)) 2229 return true; 2230 } 2231 2232 // Consider only compare instructions uniquely controlling a branch 2233 Value *RHS; 2234 CmpInst::Predicate Pred; 2235 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2236 continue; 2237 2238 bool NonNullIfTrue; 2239 if (cmpExcludesZero(Pred, RHS)) 2240 NonNullIfTrue = true; 2241 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2242 NonNullIfTrue = false; 2243 else 2244 continue; 2245 2246 SmallVector<const User *, 4> WorkList; 2247 SmallPtrSet<const User *, 4> Visited; 2248 for (auto *CmpU : U->users()) { 2249 assert(WorkList.empty() && "Should be!"); 2250 if (Visited.insert(CmpU).second) 2251 WorkList.push_back(CmpU); 2252 2253 while (!WorkList.empty()) { 2254 auto *Curr = WorkList.pop_back_val(); 2255 2256 // If a user is an AND, add all its users to the work list. We only 2257 // propagate "pred != null" condition through AND because it is only 2258 // correct to assume that all conditions of AND are met in true branch. 2259 // TODO: Support similar logic of OR and EQ predicate? 2260 if (NonNullIfTrue) 2261 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2262 for (auto *CurrU : Curr->users()) 2263 if (Visited.insert(CurrU).second) 2264 WorkList.push_back(CurrU); 2265 continue; 2266 } 2267 2268 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2269 assert(BI->isConditional() && "uses a comparison!"); 2270 2271 BasicBlock *NonNullSuccessor = 2272 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2273 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2274 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2275 return true; 2276 } else if (NonNullIfTrue && isGuard(Curr) && 2277 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2278 return true; 2279 } 2280 } 2281 } 2282 } 2283 2284 return false; 2285 } 2286 2287 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2288 /// ensure that the value it's attached to is never Value? 'RangeType' is 2289 /// is the type of the value described by the range. 2290 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2291 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2292 assert(NumRanges >= 1); 2293 for (unsigned i = 0; i < NumRanges; ++i) { 2294 ConstantInt *Lower = 2295 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2296 ConstantInt *Upper = 2297 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2298 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2299 if (Range.contains(Value)) 2300 return false; 2301 } 2302 return true; 2303 } 2304 2305 /// Try to detect a recurrence that monotonically increases/decreases from a 2306 /// non-zero starting value. These are common as induction variables. 2307 static bool isNonZeroRecurrence(const PHINode *PN) { 2308 BinaryOperator *BO = nullptr; 2309 Value *Start = nullptr, *Step = nullptr; 2310 const APInt *StartC, *StepC; 2311 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2312 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2313 return false; 2314 2315 switch (BO->getOpcode()) { 2316 case Instruction::Add: 2317 // Starting from non-zero and stepping away from zero can never wrap back 2318 // to zero. 2319 return BO->hasNoUnsignedWrap() || 2320 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2321 StartC->isNegative() == StepC->isNegative()); 2322 case Instruction::Mul: 2323 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2324 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2325 case Instruction::Shl: 2326 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2327 case Instruction::AShr: 2328 case Instruction::LShr: 2329 return BO->isExact(); 2330 default: 2331 return false; 2332 } 2333 } 2334 2335 /// Return true if the given value is known to be non-zero when defined. For 2336 /// vectors, return true if every demanded element is known to be non-zero when 2337 /// defined. For pointers, if the context instruction and dominator tree are 2338 /// specified, perform context-sensitive analysis and return true if the 2339 /// pointer couldn't possibly be null at the specified instruction. 2340 /// Supports values with integer or pointer type and vectors of integers. 2341 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2342 const Query &Q) { 2343 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2344 // vector 2345 if (isa<ScalableVectorType>(V->getType())) 2346 return false; 2347 2348 if (auto *C = dyn_cast<Constant>(V)) { 2349 if (C->isNullValue()) 2350 return false; 2351 if (isa<ConstantInt>(C)) 2352 // Must be non-zero due to null test above. 2353 return true; 2354 2355 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2356 // See the comment for IntToPtr/PtrToInt instructions below. 2357 if (CE->getOpcode() == Instruction::IntToPtr || 2358 CE->getOpcode() == Instruction::PtrToInt) 2359 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2360 .getFixedSize() <= 2361 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2362 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2363 } 2364 2365 // For constant vectors, check that all elements are undefined or known 2366 // non-zero to determine that the whole vector is known non-zero. 2367 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2368 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2369 if (!DemandedElts[i]) 2370 continue; 2371 Constant *Elt = C->getAggregateElement(i); 2372 if (!Elt || Elt->isNullValue()) 2373 return false; 2374 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2375 return false; 2376 } 2377 return true; 2378 } 2379 2380 // A global variable in address space 0 is non null unless extern weak 2381 // or an absolute symbol reference. Other address spaces may have null as a 2382 // valid address for a global, so we can't assume anything. 2383 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2384 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2385 GV->getType()->getAddressSpace() == 0) 2386 return true; 2387 } else 2388 return false; 2389 } 2390 2391 if (auto *I = dyn_cast<Instruction>(V)) { 2392 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2393 // If the possible ranges don't contain zero, then the value is 2394 // definitely non-zero. 2395 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2396 const APInt ZeroValue(Ty->getBitWidth(), 0); 2397 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2398 return true; 2399 } 2400 } 2401 } 2402 2403 if (isKnownNonZeroFromAssume(V, Q)) 2404 return true; 2405 2406 // Some of the tests below are recursive, so bail out if we hit the limit. 2407 if (Depth++ >= MaxAnalysisRecursionDepth) 2408 return false; 2409 2410 // Check for pointer simplifications. 2411 2412 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2413 // Alloca never returns null, malloc might. 2414 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2415 return true; 2416 2417 // A byval, inalloca may not be null in a non-default addres space. A 2418 // nonnull argument is assumed never 0. 2419 if (const Argument *A = dyn_cast<Argument>(V)) { 2420 if (((A->hasPassPointeeByValueCopyAttr() && 2421 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2422 A->hasNonNullAttr())) 2423 return true; 2424 } 2425 2426 // A Load tagged with nonnull metadata is never null. 2427 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2428 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2429 return true; 2430 2431 if (const auto *Call = dyn_cast<CallBase>(V)) { 2432 if (Call->isReturnNonNull()) 2433 return true; 2434 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2435 return isKnownNonZero(RP, Depth, Q); 2436 } 2437 } 2438 2439 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2440 return true; 2441 2442 // Check for recursive pointer simplifications. 2443 if (V->getType()->isPointerTy()) { 2444 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2445 // do not alter the value, or at least not the nullness property of the 2446 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2447 // 2448 // Note that we have to take special care to avoid looking through 2449 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2450 // as casts that can alter the value, e.g., AddrSpaceCasts. 2451 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2452 return isGEPKnownNonNull(GEP, Depth, Q); 2453 2454 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2455 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2456 2457 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2458 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2459 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2460 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2461 } 2462 2463 // Similar to int2ptr above, we can look through ptr2int here if the cast 2464 // is a no-op or an extend and not a truncate. 2465 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2466 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2467 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2468 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2469 2470 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2471 2472 // X | Y != 0 if X != 0 or Y != 0. 2473 Value *X = nullptr, *Y = nullptr; 2474 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2475 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2476 isKnownNonZero(Y, DemandedElts, Depth, Q); 2477 2478 // ext X != 0 if X != 0. 2479 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2480 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2481 2482 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2483 // if the lowest bit is shifted off the end. 2484 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2485 // shl nuw can't remove any non-zero bits. 2486 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2487 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2488 return isKnownNonZero(X, Depth, Q); 2489 2490 KnownBits Known(BitWidth); 2491 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2492 if (Known.One[0]) 2493 return true; 2494 } 2495 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2496 // defined if the sign bit is shifted off the end. 2497 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2498 // shr exact can only shift out zero bits. 2499 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2500 if (BO->isExact()) 2501 return isKnownNonZero(X, Depth, Q); 2502 2503 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2504 if (Known.isNegative()) 2505 return true; 2506 2507 // If the shifter operand is a constant, and all of the bits shifted 2508 // out are known to be zero, and X is known non-zero then at least one 2509 // non-zero bit must remain. 2510 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2511 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2512 // Is there a known one in the portion not shifted out? 2513 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2514 return true; 2515 // Are all the bits to be shifted out known zero? 2516 if (Known.countMinTrailingZeros() >= ShiftVal) 2517 return isKnownNonZero(X, DemandedElts, Depth, Q); 2518 } 2519 } 2520 // div exact can only produce a zero if the dividend is zero. 2521 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2522 return isKnownNonZero(X, DemandedElts, Depth, Q); 2523 } 2524 // X + Y. 2525 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2526 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2527 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2528 2529 // If X and Y are both non-negative (as signed values) then their sum is not 2530 // zero unless both X and Y are zero. 2531 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2532 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2533 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2534 return true; 2535 2536 // If X and Y are both negative (as signed values) then their sum is not 2537 // zero unless both X and Y equal INT_MIN. 2538 if (XKnown.isNegative() && YKnown.isNegative()) { 2539 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2540 // The sign bit of X is set. If some other bit is set then X is not equal 2541 // to INT_MIN. 2542 if (XKnown.One.intersects(Mask)) 2543 return true; 2544 // The sign bit of Y is set. If some other bit is set then Y is not equal 2545 // to INT_MIN. 2546 if (YKnown.One.intersects(Mask)) 2547 return true; 2548 } 2549 2550 // The sum of a non-negative number and a power of two is not zero. 2551 if (XKnown.isNonNegative() && 2552 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2553 return true; 2554 if (YKnown.isNonNegative() && 2555 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2556 return true; 2557 } 2558 // X * Y. 2559 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2560 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2561 // If X and Y are non-zero then so is X * Y as long as the multiplication 2562 // does not overflow. 2563 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2564 isKnownNonZero(X, DemandedElts, Depth, Q) && 2565 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2566 return true; 2567 } 2568 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2569 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2570 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2571 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2572 return true; 2573 } 2574 // PHI 2575 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2576 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2577 return true; 2578 2579 // Check if all incoming values are non-zero using recursion. 2580 Query RecQ = Q; 2581 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2582 return llvm::all_of(PN->operands(), [&](const Use &U) { 2583 if (U.get() == PN) 2584 return true; 2585 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2586 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2587 }); 2588 } 2589 // ExtractElement 2590 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2591 const Value *Vec = EEI->getVectorOperand(); 2592 const Value *Idx = EEI->getIndexOperand(); 2593 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2594 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2595 unsigned NumElts = VecTy->getNumElements(); 2596 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2597 if (CIdx && CIdx->getValue().ult(NumElts)) 2598 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2599 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2600 } 2601 } 2602 // Freeze 2603 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2604 auto *Op = FI->getOperand(0); 2605 if (isKnownNonZero(Op, Depth, Q) && 2606 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2607 return true; 2608 } 2609 2610 KnownBits Known(BitWidth); 2611 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2612 return Known.One != 0; 2613 } 2614 2615 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2616 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2617 // vector 2618 if (isa<ScalableVectorType>(V->getType())) 2619 return false; 2620 2621 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2622 APInt DemandedElts = 2623 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2624 return isKnownNonZero(V, DemandedElts, Depth, Q); 2625 } 2626 2627 /// If the pair of operators are the same invertible function, return the 2628 /// the operands of the function corresponding to each input. Otherwise, 2629 /// return None. An invertible function is one that is 1-to-1 and maps 2630 /// every input value to exactly one output value. This is equivalent to 2631 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2632 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2633 static Optional<std::pair<Value*, Value*>> 2634 getInvertibleOperands(const Operator *Op1, 2635 const Operator *Op2) { 2636 if (Op1->getOpcode() != Op2->getOpcode()) 2637 return None; 2638 2639 auto getOperands = [&](unsigned OpNum) -> auto { 2640 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2641 }; 2642 2643 switch (Op1->getOpcode()) { 2644 default: 2645 break; 2646 case Instruction::Add: 2647 case Instruction::Sub: 2648 if (Op1->getOperand(0) == Op2->getOperand(0)) 2649 return getOperands(1); 2650 if (Op1->getOperand(1) == Op2->getOperand(1)) 2651 return getOperands(0); 2652 break; 2653 case Instruction::Mul: { 2654 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2655 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2656 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2657 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2658 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2659 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2660 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2661 break; 2662 2663 // Assume operand order has been canonicalized 2664 if (Op1->getOperand(1) == Op2->getOperand(1) && 2665 isa<ConstantInt>(Op1->getOperand(1)) && 2666 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2667 return getOperands(0); 2668 break; 2669 } 2670 case Instruction::Shl: { 2671 // Same as multiplies, with the difference that we don't need to check 2672 // for a non-zero multiply. Shifts always multiply by non-zero. 2673 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2674 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2675 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2676 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2677 break; 2678 2679 if (Op1->getOperand(1) == Op2->getOperand(1)) 2680 return getOperands(0); 2681 break; 2682 } 2683 case Instruction::AShr: 2684 case Instruction::LShr: { 2685 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2686 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2687 if (!PEO1->isExact() || !PEO2->isExact()) 2688 break; 2689 2690 if (Op1->getOperand(1) == Op2->getOperand(1)) 2691 return getOperands(0); 2692 break; 2693 } 2694 case Instruction::SExt: 2695 case Instruction::ZExt: 2696 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2697 return getOperands(0); 2698 break; 2699 case Instruction::PHI: { 2700 const PHINode *PN1 = cast<PHINode>(Op1); 2701 const PHINode *PN2 = cast<PHINode>(Op2); 2702 2703 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2704 // are a single invertible function of the start values? Note that repeated 2705 // application of an invertible function is also invertible 2706 BinaryOperator *BO1 = nullptr; 2707 Value *Start1 = nullptr, *Step1 = nullptr; 2708 BinaryOperator *BO2 = nullptr; 2709 Value *Start2 = nullptr, *Step2 = nullptr; 2710 if (PN1->getParent() != PN2->getParent() || 2711 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2712 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2713 break; 2714 2715 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2716 cast<Operator>(BO2)); 2717 if (!Values) 2718 break; 2719 2720 // We have to be careful of mutually defined recurrences here. Ex: 2721 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2722 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2723 // The invertibility of these is complicated, and not worth reasoning 2724 // about (yet?). 2725 if (Values->first != PN1 || Values->second != PN2) 2726 break; 2727 2728 return std::make_pair(Start1, Start2); 2729 } 2730 } 2731 return None; 2732 } 2733 2734 /// Return true if V2 == V1 + X, where X is known non-zero. 2735 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2736 const Query &Q) { 2737 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2738 if (!BO || BO->getOpcode() != Instruction::Add) 2739 return false; 2740 Value *Op = nullptr; 2741 if (V2 == BO->getOperand(0)) 2742 Op = BO->getOperand(1); 2743 else if (V2 == BO->getOperand(1)) 2744 Op = BO->getOperand(0); 2745 else 2746 return false; 2747 return isKnownNonZero(Op, Depth + 1, Q); 2748 } 2749 2750 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2751 /// the multiplication is nuw or nsw. 2752 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2753 const Query &Q) { 2754 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2755 const APInt *C; 2756 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2757 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2758 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2759 } 2760 return false; 2761 } 2762 2763 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2764 /// the shift is nuw or nsw. 2765 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2766 const Query &Q) { 2767 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2768 const APInt *C; 2769 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2770 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2771 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2772 } 2773 return false; 2774 } 2775 2776 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2777 unsigned Depth, const Query &Q) { 2778 // Check two PHIs are in same block. 2779 if (PN1->getParent() != PN2->getParent()) 2780 return false; 2781 2782 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2783 bool UsedFullRecursion = false; 2784 for (const BasicBlock *IncomBB : PN1->blocks()) { 2785 if (!VisitedBBs.insert(IncomBB).second) 2786 continue; // Don't reprocess blocks that we have dealt with already. 2787 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2788 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2789 const APInt *C1, *C2; 2790 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2791 continue; 2792 2793 // Only one pair of phi operands is allowed for full recursion. 2794 if (UsedFullRecursion) 2795 return false; 2796 2797 Query RecQ = Q; 2798 RecQ.CxtI = IncomBB->getTerminator(); 2799 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2800 return false; 2801 UsedFullRecursion = true; 2802 } 2803 return true; 2804 } 2805 2806 /// Return true if it is known that V1 != V2. 2807 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2808 const Query &Q) { 2809 if (V1 == V2) 2810 return false; 2811 if (V1->getType() != V2->getType()) 2812 // We can't look through casts yet. 2813 return false; 2814 2815 if (Depth >= MaxAnalysisRecursionDepth) 2816 return false; 2817 2818 // See if we can recurse through (exactly one of) our operands. This 2819 // requires our operation be 1-to-1 and map every input value to exactly 2820 // one output value. Such an operation is invertible. 2821 auto *O1 = dyn_cast<Operator>(V1); 2822 auto *O2 = dyn_cast<Operator>(V2); 2823 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2824 if (auto Values = getInvertibleOperands(O1, O2)) 2825 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2826 2827 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2828 const PHINode *PN2 = cast<PHINode>(V2); 2829 // FIXME: This is missing a generalization to handle the case where one is 2830 // a PHI and another one isn't. 2831 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2832 return true; 2833 }; 2834 } 2835 2836 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2837 return true; 2838 2839 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2840 return true; 2841 2842 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2843 return true; 2844 2845 if (V1->getType()->isIntOrIntVectorTy()) { 2846 // Are any known bits in V1 contradictory to known bits in V2? If V1 2847 // has a known zero where V2 has a known one, they must not be equal. 2848 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2849 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2850 2851 if (Known1.Zero.intersects(Known2.One) || 2852 Known2.Zero.intersects(Known1.One)) 2853 return true; 2854 } 2855 return false; 2856 } 2857 2858 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2859 /// simplify operations downstream. Mask is known to be zero for bits that V 2860 /// cannot have. 2861 /// 2862 /// This function is defined on values with integer type, values with pointer 2863 /// type, and vectors of integers. In the case 2864 /// where V is a vector, the mask, known zero, and known one values are the 2865 /// same width as the vector element, and the bit is set only if it is true 2866 /// for all of the elements in the vector. 2867 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2868 const Query &Q) { 2869 KnownBits Known(Mask.getBitWidth()); 2870 computeKnownBits(V, Known, Depth, Q); 2871 return Mask.isSubsetOf(Known.Zero); 2872 } 2873 2874 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2875 // Returns the input and lower/upper bounds. 2876 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2877 const APInt *&CLow, const APInt *&CHigh) { 2878 assert(isa<Operator>(Select) && 2879 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2880 "Input should be a Select!"); 2881 2882 const Value *LHS = nullptr, *RHS = nullptr; 2883 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2884 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2885 return false; 2886 2887 if (!match(RHS, m_APInt(CLow))) 2888 return false; 2889 2890 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2891 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2892 if (getInverseMinMaxFlavor(SPF) != SPF2) 2893 return false; 2894 2895 if (!match(RHS2, m_APInt(CHigh))) 2896 return false; 2897 2898 if (SPF == SPF_SMIN) 2899 std::swap(CLow, CHigh); 2900 2901 In = LHS2; 2902 return CLow->sle(*CHigh); 2903 } 2904 2905 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 2906 const APInt *&CLow, 2907 const APInt *&CHigh) { 2908 assert((II->getIntrinsicID() == Intrinsic::smin || 2909 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); 2910 2911 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 2912 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 2913 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 2914 !match(II->getArgOperand(1), m_APInt(CLow)) || 2915 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 2916 return false; 2917 2918 if (II->getIntrinsicID() == Intrinsic::smin) 2919 std::swap(CLow, CHigh); 2920 return CLow->sle(*CHigh); 2921 } 2922 2923 /// For vector constants, loop over the elements and find the constant with the 2924 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2925 /// or if any element was not analyzed; otherwise, return the count for the 2926 /// element with the minimum number of sign bits. 2927 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2928 const APInt &DemandedElts, 2929 unsigned TyBits) { 2930 const auto *CV = dyn_cast<Constant>(V); 2931 if (!CV || !isa<FixedVectorType>(CV->getType())) 2932 return 0; 2933 2934 unsigned MinSignBits = TyBits; 2935 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2936 for (unsigned i = 0; i != NumElts; ++i) { 2937 if (!DemandedElts[i]) 2938 continue; 2939 // If we find a non-ConstantInt, bail out. 2940 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2941 if (!Elt) 2942 return 0; 2943 2944 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2945 } 2946 2947 return MinSignBits; 2948 } 2949 2950 static unsigned ComputeNumSignBitsImpl(const Value *V, 2951 const APInt &DemandedElts, 2952 unsigned Depth, const Query &Q); 2953 2954 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2955 unsigned Depth, const Query &Q) { 2956 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2957 assert(Result > 0 && "At least one sign bit needs to be present!"); 2958 return Result; 2959 } 2960 2961 /// Return the number of times the sign bit of the register is replicated into 2962 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2963 /// (itself), but other cases can give us information. For example, immediately 2964 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2965 /// other, so we return 3. For vectors, return the number of sign bits for the 2966 /// vector element with the minimum number of known sign bits of the demanded 2967 /// elements in the vector specified by DemandedElts. 2968 static unsigned ComputeNumSignBitsImpl(const Value *V, 2969 const APInt &DemandedElts, 2970 unsigned Depth, const Query &Q) { 2971 Type *Ty = V->getType(); 2972 2973 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2974 // vector 2975 if (isa<ScalableVectorType>(Ty)) 2976 return 1; 2977 2978 #ifndef NDEBUG 2979 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2980 2981 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2982 assert( 2983 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2984 "DemandedElt width should equal the fixed vector number of elements"); 2985 } else { 2986 assert(DemandedElts == APInt(1, 1) && 2987 "DemandedElt width should be 1 for scalars"); 2988 } 2989 #endif 2990 2991 // We return the minimum number of sign bits that are guaranteed to be present 2992 // in V, so for undef we have to conservatively return 1. We don't have the 2993 // same behavior for poison though -- that's a FIXME today. 2994 2995 Type *ScalarTy = Ty->getScalarType(); 2996 unsigned TyBits = ScalarTy->isPointerTy() ? 2997 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2998 Q.DL.getTypeSizeInBits(ScalarTy); 2999 3000 unsigned Tmp, Tmp2; 3001 unsigned FirstAnswer = 1; 3002 3003 // Note that ConstantInt is handled by the general computeKnownBits case 3004 // below. 3005 3006 if (Depth == MaxAnalysisRecursionDepth) 3007 return 1; 3008 3009 if (auto *U = dyn_cast<Operator>(V)) { 3010 switch (Operator::getOpcode(V)) { 3011 default: break; 3012 case Instruction::SExt: 3013 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3014 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 3015 3016 case Instruction::SDiv: { 3017 const APInt *Denominator; 3018 // sdiv X, C -> adds log(C) sign bits. 3019 if (match(U->getOperand(1), m_APInt(Denominator))) { 3020 3021 // Ignore non-positive denominator. 3022 if (!Denominator->isStrictlyPositive()) 3023 break; 3024 3025 // Calculate the incoming numerator bits. 3026 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3027 3028 // Add floor(log(C)) bits to the numerator bits. 3029 return std::min(TyBits, NumBits + Denominator->logBase2()); 3030 } 3031 break; 3032 } 3033 3034 case Instruction::SRem: { 3035 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3036 3037 const APInt *Denominator; 3038 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3039 // positive constant. This let us put a lower bound on the number of sign 3040 // bits. 3041 if (match(U->getOperand(1), m_APInt(Denominator))) { 3042 3043 // Ignore non-positive denominator. 3044 if (Denominator->isStrictlyPositive()) { 3045 // Calculate the leading sign bit constraints by examining the 3046 // denominator. Given that the denominator is positive, there are two 3047 // cases: 3048 // 3049 // 1. The numerator is positive. The result range is [0,C) and 3050 // [0,C) u< (1 << ceilLogBase2(C)). 3051 // 3052 // 2. The numerator is negative. Then the result range is (-C,0] and 3053 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3054 // 3055 // Thus a lower bound on the number of sign bits is `TyBits - 3056 // ceilLogBase2(C)`. 3057 3058 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3059 Tmp = std::max(Tmp, ResBits); 3060 } 3061 } 3062 return Tmp; 3063 } 3064 3065 case Instruction::AShr: { 3066 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3067 // ashr X, C -> adds C sign bits. Vectors too. 3068 const APInt *ShAmt; 3069 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3070 if (ShAmt->uge(TyBits)) 3071 break; // Bad shift. 3072 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3073 Tmp += ShAmtLimited; 3074 if (Tmp > TyBits) Tmp = TyBits; 3075 } 3076 return Tmp; 3077 } 3078 case Instruction::Shl: { 3079 const APInt *ShAmt; 3080 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3081 // shl destroys sign bits. 3082 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3083 if (ShAmt->uge(TyBits) || // Bad shift. 3084 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3085 Tmp2 = ShAmt->getZExtValue(); 3086 return Tmp - Tmp2; 3087 } 3088 break; 3089 } 3090 case Instruction::And: 3091 case Instruction::Or: 3092 case Instruction::Xor: // NOT is handled here. 3093 // Logical binary ops preserve the number of sign bits at the worst. 3094 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3095 if (Tmp != 1) { 3096 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3097 FirstAnswer = std::min(Tmp, Tmp2); 3098 // We computed what we know about the sign bits as our first 3099 // answer. Now proceed to the generic code that uses 3100 // computeKnownBits, and pick whichever answer is better. 3101 } 3102 break; 3103 3104 case Instruction::Select: { 3105 // If we have a clamp pattern, we know that the number of sign bits will 3106 // be the minimum of the clamp min/max range. 3107 const Value *X; 3108 const APInt *CLow, *CHigh; 3109 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3110 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3111 3112 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3113 if (Tmp == 1) break; 3114 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3115 return std::min(Tmp, Tmp2); 3116 } 3117 3118 case Instruction::Add: 3119 // Add can have at most one carry bit. Thus we know that the output 3120 // is, at worst, one more bit than the inputs. 3121 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3122 if (Tmp == 1) break; 3123 3124 // Special case decrementing a value (ADD X, -1): 3125 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3126 if (CRHS->isAllOnesValue()) { 3127 KnownBits Known(TyBits); 3128 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3129 3130 // If the input is known to be 0 or 1, the output is 0/-1, which is 3131 // all sign bits set. 3132 if ((Known.Zero | 1).isAllOnes()) 3133 return TyBits; 3134 3135 // If we are subtracting one from a positive number, there is no carry 3136 // out of the result. 3137 if (Known.isNonNegative()) 3138 return Tmp; 3139 } 3140 3141 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3142 if (Tmp2 == 1) break; 3143 return std::min(Tmp, Tmp2) - 1; 3144 3145 case Instruction::Sub: 3146 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3147 if (Tmp2 == 1) break; 3148 3149 // Handle NEG. 3150 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3151 if (CLHS->isNullValue()) { 3152 KnownBits Known(TyBits); 3153 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3154 // If the input is known to be 0 or 1, the output is 0/-1, which is 3155 // all sign bits set. 3156 if ((Known.Zero | 1).isAllOnes()) 3157 return TyBits; 3158 3159 // If the input is known to be positive (the sign bit is known clear), 3160 // the output of the NEG has the same number of sign bits as the 3161 // input. 3162 if (Known.isNonNegative()) 3163 return Tmp2; 3164 3165 // Otherwise, we treat this like a SUB. 3166 } 3167 3168 // Sub can have at most one carry bit. Thus we know that the output 3169 // is, at worst, one more bit than the inputs. 3170 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3171 if (Tmp == 1) break; 3172 return std::min(Tmp, Tmp2) - 1; 3173 3174 case Instruction::Mul: { 3175 // The output of the Mul can be at most twice the valid bits in the 3176 // inputs. 3177 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3178 if (SignBitsOp0 == 1) break; 3179 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3180 if (SignBitsOp1 == 1) break; 3181 unsigned OutValidBits = 3182 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3183 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3184 } 3185 3186 case Instruction::PHI: { 3187 const PHINode *PN = cast<PHINode>(U); 3188 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3189 // Don't analyze large in-degree PHIs. 3190 if (NumIncomingValues > 4) break; 3191 // Unreachable blocks may have zero-operand PHI nodes. 3192 if (NumIncomingValues == 0) break; 3193 3194 // Take the minimum of all incoming values. This can't infinitely loop 3195 // because of our depth threshold. 3196 Query RecQ = Q; 3197 Tmp = TyBits; 3198 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3199 if (Tmp == 1) return Tmp; 3200 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3201 Tmp = std::min( 3202 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3203 } 3204 return Tmp; 3205 } 3206 3207 case Instruction::Trunc: 3208 // FIXME: it's tricky to do anything useful for this, but it is an 3209 // important case for targets like X86. 3210 break; 3211 3212 case Instruction::ExtractElement: 3213 // Look through extract element. At the moment we keep this simple and 3214 // skip tracking the specific element. But at least we might find 3215 // information valid for all elements of the vector (for example if vector 3216 // is sign extended, shifted, etc). 3217 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3218 3219 case Instruction::ShuffleVector: { 3220 // Collect the minimum number of sign bits that are shared by every vector 3221 // element referenced by the shuffle. 3222 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3223 if (!Shuf) { 3224 // FIXME: Add support for shufflevector constant expressions. 3225 return 1; 3226 } 3227 APInt DemandedLHS, DemandedRHS; 3228 // For undef elements, we don't know anything about the common state of 3229 // the shuffle result. 3230 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3231 return 1; 3232 Tmp = std::numeric_limits<unsigned>::max(); 3233 if (!!DemandedLHS) { 3234 const Value *LHS = Shuf->getOperand(0); 3235 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3236 } 3237 // If we don't know anything, early out and try computeKnownBits 3238 // fall-back. 3239 if (Tmp == 1) 3240 break; 3241 if (!!DemandedRHS) { 3242 const Value *RHS = Shuf->getOperand(1); 3243 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3244 Tmp = std::min(Tmp, Tmp2); 3245 } 3246 // If we don't know anything, early out and try computeKnownBits 3247 // fall-back. 3248 if (Tmp == 1) 3249 break; 3250 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3251 return Tmp; 3252 } 3253 case Instruction::Call: { 3254 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3255 switch (II->getIntrinsicID()) { 3256 default: break; 3257 case Intrinsic::abs: 3258 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3259 if (Tmp == 1) break; 3260 3261 // Absolute value reduces number of sign bits by at most 1. 3262 return Tmp - 1; 3263 case Intrinsic::smin: 3264 case Intrinsic::smax: { 3265 const APInt *CLow, *CHigh; 3266 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 3267 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3268 } 3269 } 3270 } 3271 } 3272 } 3273 } 3274 3275 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3276 // use this information. 3277 3278 // If we can examine all elements of a vector constant successfully, we're 3279 // done (we can't do any better than that). If not, keep trying. 3280 if (unsigned VecSignBits = 3281 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3282 return VecSignBits; 3283 3284 KnownBits Known(TyBits); 3285 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3286 3287 // If we know that the sign bit is either zero or one, determine the number of 3288 // identical bits in the top of the input value. 3289 return std::max(FirstAnswer, Known.countMinSignBits()); 3290 } 3291 3292 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3293 const TargetLibraryInfo *TLI) { 3294 const Function *F = CB.getCalledFunction(); 3295 if (!F) 3296 return Intrinsic::not_intrinsic; 3297 3298 if (F->isIntrinsic()) 3299 return F->getIntrinsicID(); 3300 3301 // We are going to infer semantics of a library function based on mapping it 3302 // to an LLVM intrinsic. Check that the library function is available from 3303 // this callbase and in this environment. 3304 LibFunc Func; 3305 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3306 !CB.onlyReadsMemory()) 3307 return Intrinsic::not_intrinsic; 3308 3309 switch (Func) { 3310 default: 3311 break; 3312 case LibFunc_sin: 3313 case LibFunc_sinf: 3314 case LibFunc_sinl: 3315 return Intrinsic::sin; 3316 case LibFunc_cos: 3317 case LibFunc_cosf: 3318 case LibFunc_cosl: 3319 return Intrinsic::cos; 3320 case LibFunc_exp: 3321 case LibFunc_expf: 3322 case LibFunc_expl: 3323 return Intrinsic::exp; 3324 case LibFunc_exp2: 3325 case LibFunc_exp2f: 3326 case LibFunc_exp2l: 3327 return Intrinsic::exp2; 3328 case LibFunc_log: 3329 case LibFunc_logf: 3330 case LibFunc_logl: 3331 return Intrinsic::log; 3332 case LibFunc_log10: 3333 case LibFunc_log10f: 3334 case LibFunc_log10l: 3335 return Intrinsic::log10; 3336 case LibFunc_log2: 3337 case LibFunc_log2f: 3338 case LibFunc_log2l: 3339 return Intrinsic::log2; 3340 case LibFunc_fabs: 3341 case LibFunc_fabsf: 3342 case LibFunc_fabsl: 3343 return Intrinsic::fabs; 3344 case LibFunc_fmin: 3345 case LibFunc_fminf: 3346 case LibFunc_fminl: 3347 return Intrinsic::minnum; 3348 case LibFunc_fmax: 3349 case LibFunc_fmaxf: 3350 case LibFunc_fmaxl: 3351 return Intrinsic::maxnum; 3352 case LibFunc_copysign: 3353 case LibFunc_copysignf: 3354 case LibFunc_copysignl: 3355 return Intrinsic::copysign; 3356 case LibFunc_floor: 3357 case LibFunc_floorf: 3358 case LibFunc_floorl: 3359 return Intrinsic::floor; 3360 case LibFunc_ceil: 3361 case LibFunc_ceilf: 3362 case LibFunc_ceill: 3363 return Intrinsic::ceil; 3364 case LibFunc_trunc: 3365 case LibFunc_truncf: 3366 case LibFunc_truncl: 3367 return Intrinsic::trunc; 3368 case LibFunc_rint: 3369 case LibFunc_rintf: 3370 case LibFunc_rintl: 3371 return Intrinsic::rint; 3372 case LibFunc_nearbyint: 3373 case LibFunc_nearbyintf: 3374 case LibFunc_nearbyintl: 3375 return Intrinsic::nearbyint; 3376 case LibFunc_round: 3377 case LibFunc_roundf: 3378 case LibFunc_roundl: 3379 return Intrinsic::round; 3380 case LibFunc_roundeven: 3381 case LibFunc_roundevenf: 3382 case LibFunc_roundevenl: 3383 return Intrinsic::roundeven; 3384 case LibFunc_pow: 3385 case LibFunc_powf: 3386 case LibFunc_powl: 3387 return Intrinsic::pow; 3388 case LibFunc_sqrt: 3389 case LibFunc_sqrtf: 3390 case LibFunc_sqrtl: 3391 return Intrinsic::sqrt; 3392 } 3393 3394 return Intrinsic::not_intrinsic; 3395 } 3396 3397 /// Return true if we can prove that the specified FP value is never equal to 3398 /// -0.0. 3399 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3400 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3401 /// the same as +0.0 in floating-point ops. 3402 /// 3403 /// NOTE: this function will need to be revisited when we support non-default 3404 /// rounding modes! 3405 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3406 unsigned Depth) { 3407 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3408 return !CFP->getValueAPF().isNegZero(); 3409 3410 if (Depth == MaxAnalysisRecursionDepth) 3411 return false; 3412 3413 auto *Op = dyn_cast<Operator>(V); 3414 if (!Op) 3415 return false; 3416 3417 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3418 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3419 return true; 3420 3421 // sitofp and uitofp turn into +0.0 for zero. 3422 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3423 return true; 3424 3425 if (auto *Call = dyn_cast<CallInst>(Op)) { 3426 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3427 switch (IID) { 3428 default: 3429 break; 3430 // sqrt(-0.0) = -0.0, no other negative results are possible. 3431 case Intrinsic::sqrt: 3432 case Intrinsic::canonicalize: 3433 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3434 // fabs(x) != -0.0 3435 case Intrinsic::fabs: 3436 return true; 3437 } 3438 } 3439 3440 return false; 3441 } 3442 3443 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3444 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3445 /// bit despite comparing equal. 3446 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3447 const TargetLibraryInfo *TLI, 3448 bool SignBitOnly, 3449 unsigned Depth) { 3450 // TODO: This function does not do the right thing when SignBitOnly is true 3451 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3452 // which flips the sign bits of NaNs. See 3453 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3454 3455 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3456 return !CFP->getValueAPF().isNegative() || 3457 (!SignBitOnly && CFP->getValueAPF().isZero()); 3458 } 3459 3460 // Handle vector of constants. 3461 if (auto *CV = dyn_cast<Constant>(V)) { 3462 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3463 unsigned NumElts = CVFVTy->getNumElements(); 3464 for (unsigned i = 0; i != NumElts; ++i) { 3465 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3466 if (!CFP) 3467 return false; 3468 if (CFP->getValueAPF().isNegative() && 3469 (SignBitOnly || !CFP->getValueAPF().isZero())) 3470 return false; 3471 } 3472 3473 // All non-negative ConstantFPs. 3474 return true; 3475 } 3476 } 3477 3478 if (Depth == MaxAnalysisRecursionDepth) 3479 return false; 3480 3481 const Operator *I = dyn_cast<Operator>(V); 3482 if (!I) 3483 return false; 3484 3485 switch (I->getOpcode()) { 3486 default: 3487 break; 3488 // Unsigned integers are always nonnegative. 3489 case Instruction::UIToFP: 3490 return true; 3491 case Instruction::FMul: 3492 case Instruction::FDiv: 3493 // X * X is always non-negative or a NaN. 3494 // X / X is always exactly 1.0 or a NaN. 3495 if (I->getOperand(0) == I->getOperand(1) && 3496 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3497 return true; 3498 3499 LLVM_FALLTHROUGH; 3500 case Instruction::FAdd: 3501 case Instruction::FRem: 3502 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3503 Depth + 1) && 3504 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3505 Depth + 1); 3506 case Instruction::Select: 3507 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3508 Depth + 1) && 3509 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3510 Depth + 1); 3511 case Instruction::FPExt: 3512 case Instruction::FPTrunc: 3513 // Widening/narrowing never change sign. 3514 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3515 Depth + 1); 3516 case Instruction::ExtractElement: 3517 // Look through extract element. At the moment we keep this simple and skip 3518 // tracking the specific element. But at least we might find information 3519 // valid for all elements of the vector. 3520 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3521 Depth + 1); 3522 case Instruction::Call: 3523 const auto *CI = cast<CallInst>(I); 3524 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3525 switch (IID) { 3526 default: 3527 break; 3528 case Intrinsic::maxnum: { 3529 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3530 auto isPositiveNum = [&](Value *V) { 3531 if (SignBitOnly) { 3532 // With SignBitOnly, this is tricky because the result of 3533 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3534 // a constant strictly greater than 0.0. 3535 const APFloat *C; 3536 return match(V, m_APFloat(C)) && 3537 *C > APFloat::getZero(C->getSemantics()); 3538 } 3539 3540 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3541 // maxnum can't be ordered-less-than-zero. 3542 return isKnownNeverNaN(V, TLI) && 3543 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3544 }; 3545 3546 // TODO: This could be improved. We could also check that neither operand 3547 // has its sign bit set (and at least 1 is not-NAN?). 3548 return isPositiveNum(V0) || isPositiveNum(V1); 3549 } 3550 3551 case Intrinsic::maximum: 3552 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3553 Depth + 1) || 3554 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3555 Depth + 1); 3556 case Intrinsic::minnum: 3557 case Intrinsic::minimum: 3558 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3559 Depth + 1) && 3560 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3561 Depth + 1); 3562 case Intrinsic::exp: 3563 case Intrinsic::exp2: 3564 case Intrinsic::fabs: 3565 return true; 3566 3567 case Intrinsic::sqrt: 3568 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3569 if (!SignBitOnly) 3570 return true; 3571 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3572 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3573 3574 case Intrinsic::powi: 3575 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3576 // powi(x,n) is non-negative if n is even. 3577 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3578 return true; 3579 } 3580 // TODO: This is not correct. Given that exp is an integer, here are the 3581 // ways that pow can return a negative value: 3582 // 3583 // pow(x, exp) --> negative if exp is odd and x is negative. 3584 // pow(-0, exp) --> -inf if exp is negative odd. 3585 // pow(-0, exp) --> -0 if exp is positive odd. 3586 // pow(-inf, exp) --> -0 if exp is negative odd. 3587 // pow(-inf, exp) --> -inf if exp is positive odd. 3588 // 3589 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3590 // but we must return false if x == -0. Unfortunately we do not currently 3591 // have a way of expressing this constraint. See details in 3592 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3593 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3594 Depth + 1); 3595 3596 case Intrinsic::fma: 3597 case Intrinsic::fmuladd: 3598 // x*x+y is non-negative if y is non-negative. 3599 return I->getOperand(0) == I->getOperand(1) && 3600 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3601 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3602 Depth + 1); 3603 } 3604 break; 3605 } 3606 return false; 3607 } 3608 3609 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3610 const TargetLibraryInfo *TLI) { 3611 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3612 } 3613 3614 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3615 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3616 } 3617 3618 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3619 unsigned Depth) { 3620 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3621 3622 // If we're told that infinities won't happen, assume they won't. 3623 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3624 if (FPMathOp->hasNoInfs()) 3625 return true; 3626 3627 // Handle scalar constants. 3628 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3629 return !CFP->isInfinity(); 3630 3631 if (Depth == MaxAnalysisRecursionDepth) 3632 return false; 3633 3634 if (auto *Inst = dyn_cast<Instruction>(V)) { 3635 switch (Inst->getOpcode()) { 3636 case Instruction::Select: { 3637 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3638 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3639 } 3640 case Instruction::SIToFP: 3641 case Instruction::UIToFP: { 3642 // Get width of largest magnitude integer (remove a bit if signed). 3643 // This still works for a signed minimum value because the largest FP 3644 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3645 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3646 if (Inst->getOpcode() == Instruction::SIToFP) 3647 --IntSize; 3648 3649 // If the exponent of the largest finite FP value can hold the largest 3650 // integer, the result of the cast must be finite. 3651 Type *FPTy = Inst->getType()->getScalarType(); 3652 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3653 } 3654 default: 3655 break; 3656 } 3657 } 3658 3659 // try to handle fixed width vector constants 3660 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3661 if (VFVTy && isa<Constant>(V)) { 3662 // For vectors, verify that each element is not infinity. 3663 unsigned NumElts = VFVTy->getNumElements(); 3664 for (unsigned i = 0; i != NumElts; ++i) { 3665 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3666 if (!Elt) 3667 return false; 3668 if (isa<UndefValue>(Elt)) 3669 continue; 3670 auto *CElt = dyn_cast<ConstantFP>(Elt); 3671 if (!CElt || CElt->isInfinity()) 3672 return false; 3673 } 3674 // All elements were confirmed non-infinity or undefined. 3675 return true; 3676 } 3677 3678 // was not able to prove that V never contains infinity 3679 return false; 3680 } 3681 3682 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3683 unsigned Depth) { 3684 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3685 3686 // If we're told that NaNs won't happen, assume they won't. 3687 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3688 if (FPMathOp->hasNoNaNs()) 3689 return true; 3690 3691 // Handle scalar constants. 3692 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3693 return !CFP->isNaN(); 3694 3695 if (Depth == MaxAnalysisRecursionDepth) 3696 return false; 3697 3698 if (auto *Inst = dyn_cast<Instruction>(V)) { 3699 switch (Inst->getOpcode()) { 3700 case Instruction::FAdd: 3701 case Instruction::FSub: 3702 // Adding positive and negative infinity produces NaN. 3703 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3704 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3705 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3706 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3707 3708 case Instruction::FMul: 3709 // Zero multiplied with infinity produces NaN. 3710 // FIXME: If neither side can be zero fmul never produces NaN. 3711 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3712 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3713 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3714 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3715 3716 case Instruction::FDiv: 3717 case Instruction::FRem: 3718 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3719 return false; 3720 3721 case Instruction::Select: { 3722 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3723 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3724 } 3725 case Instruction::SIToFP: 3726 case Instruction::UIToFP: 3727 return true; 3728 case Instruction::FPTrunc: 3729 case Instruction::FPExt: 3730 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3731 default: 3732 break; 3733 } 3734 } 3735 3736 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3737 switch (II->getIntrinsicID()) { 3738 case Intrinsic::canonicalize: 3739 case Intrinsic::fabs: 3740 case Intrinsic::copysign: 3741 case Intrinsic::exp: 3742 case Intrinsic::exp2: 3743 case Intrinsic::floor: 3744 case Intrinsic::ceil: 3745 case Intrinsic::trunc: 3746 case Intrinsic::rint: 3747 case Intrinsic::nearbyint: 3748 case Intrinsic::round: 3749 case Intrinsic::roundeven: 3750 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3751 case Intrinsic::sqrt: 3752 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3753 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3754 case Intrinsic::minnum: 3755 case Intrinsic::maxnum: 3756 // If either operand is not NaN, the result is not NaN. 3757 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3758 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3759 default: 3760 return false; 3761 } 3762 } 3763 3764 // Try to handle fixed width vector constants 3765 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3766 if (VFVTy && isa<Constant>(V)) { 3767 // For vectors, verify that each element is not NaN. 3768 unsigned NumElts = VFVTy->getNumElements(); 3769 for (unsigned i = 0; i != NumElts; ++i) { 3770 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3771 if (!Elt) 3772 return false; 3773 if (isa<UndefValue>(Elt)) 3774 continue; 3775 auto *CElt = dyn_cast<ConstantFP>(Elt); 3776 if (!CElt || CElt->isNaN()) 3777 return false; 3778 } 3779 // All elements were confirmed not-NaN or undefined. 3780 return true; 3781 } 3782 3783 // Was not able to prove that V never contains NaN 3784 return false; 3785 } 3786 3787 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3788 3789 // All byte-wide stores are splatable, even of arbitrary variables. 3790 if (V->getType()->isIntegerTy(8)) 3791 return V; 3792 3793 LLVMContext &Ctx = V->getContext(); 3794 3795 // Undef don't care. 3796 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3797 if (isa<UndefValue>(V)) 3798 return UndefInt8; 3799 3800 // Return Undef for zero-sized type. 3801 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3802 return UndefInt8; 3803 3804 Constant *C = dyn_cast<Constant>(V); 3805 if (!C) { 3806 // Conceptually, we could handle things like: 3807 // %a = zext i8 %X to i16 3808 // %b = shl i16 %a, 8 3809 // %c = or i16 %a, %b 3810 // but until there is an example that actually needs this, it doesn't seem 3811 // worth worrying about. 3812 return nullptr; 3813 } 3814 3815 // Handle 'null' ConstantArrayZero etc. 3816 if (C->isNullValue()) 3817 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3818 3819 // Constant floating-point values can be handled as integer values if the 3820 // corresponding integer value is "byteable". An important case is 0.0. 3821 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3822 Type *Ty = nullptr; 3823 if (CFP->getType()->isHalfTy()) 3824 Ty = Type::getInt16Ty(Ctx); 3825 else if (CFP->getType()->isFloatTy()) 3826 Ty = Type::getInt32Ty(Ctx); 3827 else if (CFP->getType()->isDoubleTy()) 3828 Ty = Type::getInt64Ty(Ctx); 3829 // Don't handle long double formats, which have strange constraints. 3830 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3831 : nullptr; 3832 } 3833 3834 // We can handle constant integers that are multiple of 8 bits. 3835 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3836 if (CI->getBitWidth() % 8 == 0) { 3837 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3838 if (!CI->getValue().isSplat(8)) 3839 return nullptr; 3840 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3841 } 3842 } 3843 3844 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3845 if (CE->getOpcode() == Instruction::IntToPtr) { 3846 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3847 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3848 return isBytewiseValue( 3849 ConstantExpr::getIntegerCast(CE->getOperand(0), 3850 Type::getIntNTy(Ctx, BitWidth), false), 3851 DL); 3852 } 3853 } 3854 } 3855 3856 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3857 if (LHS == RHS) 3858 return LHS; 3859 if (!LHS || !RHS) 3860 return nullptr; 3861 if (LHS == UndefInt8) 3862 return RHS; 3863 if (RHS == UndefInt8) 3864 return LHS; 3865 return nullptr; 3866 }; 3867 3868 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3869 Value *Val = UndefInt8; 3870 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3871 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3872 return nullptr; 3873 return Val; 3874 } 3875 3876 if (isa<ConstantAggregate>(C)) { 3877 Value *Val = UndefInt8; 3878 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3879 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3880 return nullptr; 3881 return Val; 3882 } 3883 3884 // Don't try to handle the handful of other constants. 3885 return nullptr; 3886 } 3887 3888 // This is the recursive version of BuildSubAggregate. It takes a few different 3889 // arguments. Idxs is the index within the nested struct From that we are 3890 // looking at now (which is of type IndexedType). IdxSkip is the number of 3891 // indices from Idxs that should be left out when inserting into the resulting 3892 // struct. To is the result struct built so far, new insertvalue instructions 3893 // build on that. 3894 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3895 SmallVectorImpl<unsigned> &Idxs, 3896 unsigned IdxSkip, 3897 Instruction *InsertBefore) { 3898 StructType *STy = dyn_cast<StructType>(IndexedType); 3899 if (STy) { 3900 // Save the original To argument so we can modify it 3901 Value *OrigTo = To; 3902 // General case, the type indexed by Idxs is a struct 3903 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3904 // Process each struct element recursively 3905 Idxs.push_back(i); 3906 Value *PrevTo = To; 3907 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3908 InsertBefore); 3909 Idxs.pop_back(); 3910 if (!To) { 3911 // Couldn't find any inserted value for this index? Cleanup 3912 while (PrevTo != OrigTo) { 3913 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3914 PrevTo = Del->getAggregateOperand(); 3915 Del->eraseFromParent(); 3916 } 3917 // Stop processing elements 3918 break; 3919 } 3920 } 3921 // If we successfully found a value for each of our subaggregates 3922 if (To) 3923 return To; 3924 } 3925 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3926 // the struct's elements had a value that was inserted directly. In the latter 3927 // case, perhaps we can't determine each of the subelements individually, but 3928 // we might be able to find the complete struct somewhere. 3929 3930 // Find the value that is at that particular spot 3931 Value *V = FindInsertedValue(From, Idxs); 3932 3933 if (!V) 3934 return nullptr; 3935 3936 // Insert the value in the new (sub) aggregate 3937 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3938 "tmp", InsertBefore); 3939 } 3940 3941 // This helper takes a nested struct and extracts a part of it (which is again a 3942 // struct) into a new value. For example, given the struct: 3943 // { a, { b, { c, d }, e } } 3944 // and the indices "1, 1" this returns 3945 // { c, d }. 3946 // 3947 // It does this by inserting an insertvalue for each element in the resulting 3948 // struct, as opposed to just inserting a single struct. This will only work if 3949 // each of the elements of the substruct are known (ie, inserted into From by an 3950 // insertvalue instruction somewhere). 3951 // 3952 // All inserted insertvalue instructions are inserted before InsertBefore 3953 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3954 Instruction *InsertBefore) { 3955 assert(InsertBefore && "Must have someplace to insert!"); 3956 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3957 idx_range); 3958 Value *To = UndefValue::get(IndexedType); 3959 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3960 unsigned IdxSkip = Idxs.size(); 3961 3962 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3963 } 3964 3965 /// Given an aggregate and a sequence of indices, see if the scalar value 3966 /// indexed is already around as a register, for example if it was inserted 3967 /// directly into the aggregate. 3968 /// 3969 /// If InsertBefore is not null, this function will duplicate (modified) 3970 /// insertvalues when a part of a nested struct is extracted. 3971 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3972 Instruction *InsertBefore) { 3973 // Nothing to index? Just return V then (this is useful at the end of our 3974 // recursion). 3975 if (idx_range.empty()) 3976 return V; 3977 // We have indices, so V should have an indexable type. 3978 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3979 "Not looking at a struct or array?"); 3980 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3981 "Invalid indices for type?"); 3982 3983 if (Constant *C = dyn_cast<Constant>(V)) { 3984 C = C->getAggregateElement(idx_range[0]); 3985 if (!C) return nullptr; 3986 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3987 } 3988 3989 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3990 // Loop the indices for the insertvalue instruction in parallel with the 3991 // requested indices 3992 const unsigned *req_idx = idx_range.begin(); 3993 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3994 i != e; ++i, ++req_idx) { 3995 if (req_idx == idx_range.end()) { 3996 // We can't handle this without inserting insertvalues 3997 if (!InsertBefore) 3998 return nullptr; 3999 4000 // The requested index identifies a part of a nested aggregate. Handle 4001 // this specially. For example, 4002 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4003 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4004 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4005 // This can be changed into 4006 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4007 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4008 // which allows the unused 0,0 element from the nested struct to be 4009 // removed. 4010 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4011 InsertBefore); 4012 } 4013 4014 // This insert value inserts something else than what we are looking for. 4015 // See if the (aggregate) value inserted into has the value we are 4016 // looking for, then. 4017 if (*req_idx != *i) 4018 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4019 InsertBefore); 4020 } 4021 // If we end up here, the indices of the insertvalue match with those 4022 // requested (though possibly only partially). Now we recursively look at 4023 // the inserted value, passing any remaining indices. 4024 return FindInsertedValue(I->getInsertedValueOperand(), 4025 makeArrayRef(req_idx, idx_range.end()), 4026 InsertBefore); 4027 } 4028 4029 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4030 // If we're extracting a value from an aggregate that was extracted from 4031 // something else, we can extract from that something else directly instead. 4032 // However, we will need to chain I's indices with the requested indices. 4033 4034 // Calculate the number of indices required 4035 unsigned size = I->getNumIndices() + idx_range.size(); 4036 // Allocate some space to put the new indices in 4037 SmallVector<unsigned, 5> Idxs; 4038 Idxs.reserve(size); 4039 // Add indices from the extract value instruction 4040 Idxs.append(I->idx_begin(), I->idx_end()); 4041 4042 // Add requested indices 4043 Idxs.append(idx_range.begin(), idx_range.end()); 4044 4045 assert(Idxs.size() == size 4046 && "Number of indices added not correct?"); 4047 4048 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4049 } 4050 // Otherwise, we don't know (such as, extracting from a function return value 4051 // or load instruction) 4052 return nullptr; 4053 } 4054 4055 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4056 unsigned CharSize) { 4057 // Make sure the GEP has exactly three arguments. 4058 if (GEP->getNumOperands() != 3) 4059 return false; 4060 4061 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4062 // CharSize. 4063 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4064 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4065 return false; 4066 4067 // Check to make sure that the first operand of the GEP is an integer and 4068 // has value 0 so that we are sure we're indexing into the initializer. 4069 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4070 if (!FirstIdx || !FirstIdx->isZero()) 4071 return false; 4072 4073 return true; 4074 } 4075 4076 bool llvm::getConstantDataArrayInfo(const Value *V, 4077 ConstantDataArraySlice &Slice, 4078 unsigned ElementSize, uint64_t Offset) { 4079 assert(V); 4080 4081 // Look through bitcast instructions and geps. 4082 V = V->stripPointerCasts(); 4083 4084 // If the value is a GEP instruction or constant expression, treat it as an 4085 // offset. 4086 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4087 // The GEP operator should be based on a pointer to string constant, and is 4088 // indexing into the string constant. 4089 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4090 return false; 4091 4092 // If the second index isn't a ConstantInt, then this is a variable index 4093 // into the array. If this occurs, we can't say anything meaningful about 4094 // the string. 4095 uint64_t StartIdx = 0; 4096 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4097 StartIdx = CI->getZExtValue(); 4098 else 4099 return false; 4100 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4101 StartIdx + Offset); 4102 } 4103 4104 // The GEP instruction, constant or instruction, must reference a global 4105 // variable that is a constant and is initialized. The referenced constant 4106 // initializer is the array that we'll use for optimization. 4107 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4108 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4109 return false; 4110 4111 const ConstantDataArray *Array; 4112 ArrayType *ArrayTy; 4113 if (GV->getInitializer()->isNullValue()) { 4114 Type *GVTy = GV->getValueType(); 4115 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4116 // A zeroinitializer for the array; there is no ConstantDataArray. 4117 Array = nullptr; 4118 } else { 4119 const DataLayout &DL = GV->getParent()->getDataLayout(); 4120 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4121 uint64_t Length = SizeInBytes / (ElementSize / 8); 4122 if (Length <= Offset) 4123 return false; 4124 4125 Slice.Array = nullptr; 4126 Slice.Offset = 0; 4127 Slice.Length = Length - Offset; 4128 return true; 4129 } 4130 } else { 4131 // This must be a ConstantDataArray. 4132 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4133 if (!Array) 4134 return false; 4135 ArrayTy = Array->getType(); 4136 } 4137 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4138 return false; 4139 4140 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4141 if (Offset > NumElts) 4142 return false; 4143 4144 Slice.Array = Array; 4145 Slice.Offset = Offset; 4146 Slice.Length = NumElts - Offset; 4147 return true; 4148 } 4149 4150 /// This function computes the length of a null-terminated C string pointed to 4151 /// by V. If successful, it returns true and returns the string in Str. 4152 /// If unsuccessful, it returns false. 4153 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4154 uint64_t Offset, bool TrimAtNul) { 4155 ConstantDataArraySlice Slice; 4156 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4157 return false; 4158 4159 if (Slice.Array == nullptr) { 4160 if (TrimAtNul) { 4161 Str = StringRef(); 4162 return true; 4163 } 4164 if (Slice.Length == 1) { 4165 Str = StringRef("", 1); 4166 return true; 4167 } 4168 // We cannot instantiate a StringRef as we do not have an appropriate string 4169 // of 0s at hand. 4170 return false; 4171 } 4172 4173 // Start out with the entire array in the StringRef. 4174 Str = Slice.Array->getAsString(); 4175 // Skip over 'offset' bytes. 4176 Str = Str.substr(Slice.Offset); 4177 4178 if (TrimAtNul) { 4179 // Trim off the \0 and anything after it. If the array is not nul 4180 // terminated, we just return the whole end of string. The client may know 4181 // some other way that the string is length-bound. 4182 Str = Str.substr(0, Str.find('\0')); 4183 } 4184 return true; 4185 } 4186 4187 // These next two are very similar to the above, but also look through PHI 4188 // nodes. 4189 // TODO: See if we can integrate these two together. 4190 4191 /// If we can compute the length of the string pointed to by 4192 /// the specified pointer, return 'len+1'. If we can't, return 0. 4193 static uint64_t GetStringLengthH(const Value *V, 4194 SmallPtrSetImpl<const PHINode*> &PHIs, 4195 unsigned CharSize) { 4196 // Look through noop bitcast instructions. 4197 V = V->stripPointerCasts(); 4198 4199 // If this is a PHI node, there are two cases: either we have already seen it 4200 // or we haven't. 4201 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4202 if (!PHIs.insert(PN).second) 4203 return ~0ULL; // already in the set. 4204 4205 // If it was new, see if all the input strings are the same length. 4206 uint64_t LenSoFar = ~0ULL; 4207 for (Value *IncValue : PN->incoming_values()) { 4208 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4209 if (Len == 0) return 0; // Unknown length -> unknown. 4210 4211 if (Len == ~0ULL) continue; 4212 4213 if (Len != LenSoFar && LenSoFar != ~0ULL) 4214 return 0; // Disagree -> unknown. 4215 LenSoFar = Len; 4216 } 4217 4218 // Success, all agree. 4219 return LenSoFar; 4220 } 4221 4222 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4223 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4224 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4225 if (Len1 == 0) return 0; 4226 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4227 if (Len2 == 0) return 0; 4228 if (Len1 == ~0ULL) return Len2; 4229 if (Len2 == ~0ULL) return Len1; 4230 if (Len1 != Len2) return 0; 4231 return Len1; 4232 } 4233 4234 // Otherwise, see if we can read the string. 4235 ConstantDataArraySlice Slice; 4236 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4237 return 0; 4238 4239 if (Slice.Array == nullptr) 4240 return 1; 4241 4242 // Search for nul characters 4243 unsigned NullIndex = 0; 4244 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4245 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4246 break; 4247 } 4248 4249 return NullIndex + 1; 4250 } 4251 4252 /// If we can compute the length of the string pointed to by 4253 /// the specified pointer, return 'len+1'. If we can't, return 0. 4254 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4255 if (!V->getType()->isPointerTy()) 4256 return 0; 4257 4258 SmallPtrSet<const PHINode*, 32> PHIs; 4259 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4260 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4261 // an empty string as a length. 4262 return Len == ~0ULL ? 1 : Len; 4263 } 4264 4265 const Value * 4266 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4267 bool MustPreserveNullness) { 4268 assert(Call && 4269 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4270 if (const Value *RV = Call->getReturnedArgOperand()) 4271 return RV; 4272 // This can be used only as a aliasing property. 4273 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4274 Call, MustPreserveNullness)) 4275 return Call->getArgOperand(0); 4276 return nullptr; 4277 } 4278 4279 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4280 const CallBase *Call, bool MustPreserveNullness) { 4281 switch (Call->getIntrinsicID()) { 4282 case Intrinsic::launder_invariant_group: 4283 case Intrinsic::strip_invariant_group: 4284 case Intrinsic::aarch64_irg: 4285 case Intrinsic::aarch64_tagp: 4286 return true; 4287 case Intrinsic::ptrmask: 4288 return !MustPreserveNullness; 4289 default: 4290 return false; 4291 } 4292 } 4293 4294 /// \p PN defines a loop-variant pointer to an object. Check if the 4295 /// previous iteration of the loop was referring to the same object as \p PN. 4296 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4297 const LoopInfo *LI) { 4298 // Find the loop-defined value. 4299 Loop *L = LI->getLoopFor(PN->getParent()); 4300 if (PN->getNumIncomingValues() != 2) 4301 return true; 4302 4303 // Find the value from previous iteration. 4304 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4305 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4306 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4307 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4308 return true; 4309 4310 // If a new pointer is loaded in the loop, the pointer references a different 4311 // object in every iteration. E.g.: 4312 // for (i) 4313 // int *p = a[i]; 4314 // ... 4315 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4316 if (!L->isLoopInvariant(Load->getPointerOperand())) 4317 return false; 4318 return true; 4319 } 4320 4321 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4322 if (!V->getType()->isPointerTy()) 4323 return V; 4324 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4325 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4326 V = GEP->getPointerOperand(); 4327 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4328 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4329 V = cast<Operator>(V)->getOperand(0); 4330 if (!V->getType()->isPointerTy()) 4331 return V; 4332 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4333 if (GA->isInterposable()) 4334 return V; 4335 V = GA->getAliasee(); 4336 } else { 4337 if (auto *PHI = dyn_cast<PHINode>(V)) { 4338 // Look through single-arg phi nodes created by LCSSA. 4339 if (PHI->getNumIncomingValues() == 1) { 4340 V = PHI->getIncomingValue(0); 4341 continue; 4342 } 4343 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4344 // CaptureTracking can know about special capturing properties of some 4345 // intrinsics like launder.invariant.group, that can't be expressed with 4346 // the attributes, but have properties like returning aliasing pointer. 4347 // Because some analysis may assume that nocaptured pointer is not 4348 // returned from some special intrinsic (because function would have to 4349 // be marked with returns attribute), it is crucial to use this function 4350 // because it should be in sync with CaptureTracking. Not using it may 4351 // cause weird miscompilations where 2 aliasing pointers are assumed to 4352 // noalias. 4353 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4354 V = RP; 4355 continue; 4356 } 4357 } 4358 4359 return V; 4360 } 4361 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4362 } 4363 return V; 4364 } 4365 4366 void llvm::getUnderlyingObjects(const Value *V, 4367 SmallVectorImpl<const Value *> &Objects, 4368 LoopInfo *LI, unsigned MaxLookup) { 4369 SmallPtrSet<const Value *, 4> Visited; 4370 SmallVector<const Value *, 4> Worklist; 4371 Worklist.push_back(V); 4372 do { 4373 const Value *P = Worklist.pop_back_val(); 4374 P = getUnderlyingObject(P, MaxLookup); 4375 4376 if (!Visited.insert(P).second) 4377 continue; 4378 4379 if (auto *SI = dyn_cast<SelectInst>(P)) { 4380 Worklist.push_back(SI->getTrueValue()); 4381 Worklist.push_back(SI->getFalseValue()); 4382 continue; 4383 } 4384 4385 if (auto *PN = dyn_cast<PHINode>(P)) { 4386 // If this PHI changes the underlying object in every iteration of the 4387 // loop, don't look through it. Consider: 4388 // int **A; 4389 // for (i) { 4390 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4391 // Curr = A[i]; 4392 // *Prev, *Curr; 4393 // 4394 // Prev is tracking Curr one iteration behind so they refer to different 4395 // underlying objects. 4396 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4397 isSameUnderlyingObjectInLoop(PN, LI)) 4398 append_range(Worklist, PN->incoming_values()); 4399 continue; 4400 } 4401 4402 Objects.push_back(P); 4403 } while (!Worklist.empty()); 4404 } 4405 4406 /// This is the function that does the work of looking through basic 4407 /// ptrtoint+arithmetic+inttoptr sequences. 4408 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4409 do { 4410 if (const Operator *U = dyn_cast<Operator>(V)) { 4411 // If we find a ptrtoint, we can transfer control back to the 4412 // regular getUnderlyingObjectFromInt. 4413 if (U->getOpcode() == Instruction::PtrToInt) 4414 return U->getOperand(0); 4415 // If we find an add of a constant, a multiplied value, or a phi, it's 4416 // likely that the other operand will lead us to the base 4417 // object. We don't have to worry about the case where the 4418 // object address is somehow being computed by the multiply, 4419 // because our callers only care when the result is an 4420 // identifiable object. 4421 if (U->getOpcode() != Instruction::Add || 4422 (!isa<ConstantInt>(U->getOperand(1)) && 4423 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4424 !isa<PHINode>(U->getOperand(1)))) 4425 return V; 4426 V = U->getOperand(0); 4427 } else { 4428 return V; 4429 } 4430 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4431 } while (true); 4432 } 4433 4434 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4435 /// ptrtoint+arithmetic+inttoptr sequences. 4436 /// It returns false if unidentified object is found in getUnderlyingObjects. 4437 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4438 SmallVectorImpl<Value *> &Objects) { 4439 SmallPtrSet<const Value *, 16> Visited; 4440 SmallVector<const Value *, 4> Working(1, V); 4441 do { 4442 V = Working.pop_back_val(); 4443 4444 SmallVector<const Value *, 4> Objs; 4445 getUnderlyingObjects(V, Objs); 4446 4447 for (const Value *V : Objs) { 4448 if (!Visited.insert(V).second) 4449 continue; 4450 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4451 const Value *O = 4452 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4453 if (O->getType()->isPointerTy()) { 4454 Working.push_back(O); 4455 continue; 4456 } 4457 } 4458 // If getUnderlyingObjects fails to find an identifiable object, 4459 // getUnderlyingObjectsForCodeGen also fails for safety. 4460 if (!isIdentifiedObject(V)) { 4461 Objects.clear(); 4462 return false; 4463 } 4464 Objects.push_back(const_cast<Value *>(V)); 4465 } 4466 } while (!Working.empty()); 4467 return true; 4468 } 4469 4470 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4471 AllocaInst *Result = nullptr; 4472 SmallPtrSet<Value *, 4> Visited; 4473 SmallVector<Value *, 4> Worklist; 4474 4475 auto AddWork = [&](Value *V) { 4476 if (Visited.insert(V).second) 4477 Worklist.push_back(V); 4478 }; 4479 4480 AddWork(V); 4481 do { 4482 V = Worklist.pop_back_val(); 4483 assert(Visited.count(V)); 4484 4485 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4486 if (Result && Result != AI) 4487 return nullptr; 4488 Result = AI; 4489 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4490 AddWork(CI->getOperand(0)); 4491 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4492 for (Value *IncValue : PN->incoming_values()) 4493 AddWork(IncValue); 4494 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4495 AddWork(SI->getTrueValue()); 4496 AddWork(SI->getFalseValue()); 4497 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4498 if (OffsetZero && !GEP->hasAllZeroIndices()) 4499 return nullptr; 4500 AddWork(GEP->getPointerOperand()); 4501 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4502 Value *Returned = CB->getReturnedArgOperand(); 4503 if (Returned) 4504 AddWork(Returned); 4505 else 4506 return nullptr; 4507 } else { 4508 return nullptr; 4509 } 4510 } while (!Worklist.empty()); 4511 4512 return Result; 4513 } 4514 4515 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4516 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4517 for (const User *U : V->users()) { 4518 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4519 if (!II) 4520 return false; 4521 4522 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4523 continue; 4524 4525 if (AllowDroppable && II->isDroppable()) 4526 continue; 4527 4528 return false; 4529 } 4530 return true; 4531 } 4532 4533 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4534 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4535 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4536 } 4537 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4538 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4539 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4540 } 4541 4542 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4543 if (!LI.isUnordered()) 4544 return true; 4545 const Function &F = *LI.getFunction(); 4546 // Speculative load may create a race that did not exist in the source. 4547 return F.hasFnAttribute(Attribute::SanitizeThread) || 4548 // Speculative load may load data from dirty regions. 4549 F.hasFnAttribute(Attribute::SanitizeAddress) || 4550 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4551 } 4552 4553 4554 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4555 const Instruction *CtxI, 4556 const DominatorTree *DT, 4557 const TargetLibraryInfo *TLI) { 4558 const Operator *Inst = dyn_cast<Operator>(V); 4559 if (!Inst) 4560 return false; 4561 4562 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4563 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4564 if (C->canTrap()) 4565 return false; 4566 4567 switch (Inst->getOpcode()) { 4568 default: 4569 return true; 4570 case Instruction::UDiv: 4571 case Instruction::URem: { 4572 // x / y is undefined if y == 0. 4573 const APInt *V; 4574 if (match(Inst->getOperand(1), m_APInt(V))) 4575 return *V != 0; 4576 return false; 4577 } 4578 case Instruction::SDiv: 4579 case Instruction::SRem: { 4580 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4581 const APInt *Numerator, *Denominator; 4582 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4583 return false; 4584 // We cannot hoist this division if the denominator is 0. 4585 if (*Denominator == 0) 4586 return false; 4587 // It's safe to hoist if the denominator is not 0 or -1. 4588 if (!Denominator->isAllOnes()) 4589 return true; 4590 // At this point we know that the denominator is -1. It is safe to hoist as 4591 // long we know that the numerator is not INT_MIN. 4592 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4593 return !Numerator->isMinSignedValue(); 4594 // The numerator *might* be MinSignedValue. 4595 return false; 4596 } 4597 case Instruction::Load: { 4598 const LoadInst *LI = cast<LoadInst>(Inst); 4599 if (mustSuppressSpeculation(*LI)) 4600 return false; 4601 const DataLayout &DL = LI->getModule()->getDataLayout(); 4602 return isDereferenceableAndAlignedPointer( 4603 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4604 TLI); 4605 } 4606 case Instruction::Call: { 4607 auto *CI = cast<const CallInst>(Inst); 4608 const Function *Callee = CI->getCalledFunction(); 4609 4610 // The called function could have undefined behavior or side-effects, even 4611 // if marked readnone nounwind. 4612 return Callee && Callee->isSpeculatable(); 4613 } 4614 case Instruction::VAArg: 4615 case Instruction::Alloca: 4616 case Instruction::Invoke: 4617 case Instruction::CallBr: 4618 case Instruction::PHI: 4619 case Instruction::Store: 4620 case Instruction::Ret: 4621 case Instruction::Br: 4622 case Instruction::IndirectBr: 4623 case Instruction::Switch: 4624 case Instruction::Unreachable: 4625 case Instruction::Fence: 4626 case Instruction::AtomicRMW: 4627 case Instruction::AtomicCmpXchg: 4628 case Instruction::LandingPad: 4629 case Instruction::Resume: 4630 case Instruction::CatchSwitch: 4631 case Instruction::CatchPad: 4632 case Instruction::CatchRet: 4633 case Instruction::CleanupPad: 4634 case Instruction::CleanupRet: 4635 return false; // Misc instructions which have effects 4636 } 4637 } 4638 4639 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4640 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4641 } 4642 4643 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4644 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4645 switch (OR) { 4646 case ConstantRange::OverflowResult::MayOverflow: 4647 return OverflowResult::MayOverflow; 4648 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4649 return OverflowResult::AlwaysOverflowsLow; 4650 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4651 return OverflowResult::AlwaysOverflowsHigh; 4652 case ConstantRange::OverflowResult::NeverOverflows: 4653 return OverflowResult::NeverOverflows; 4654 } 4655 llvm_unreachable("Unknown OverflowResult"); 4656 } 4657 4658 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4659 static ConstantRange computeConstantRangeIncludingKnownBits( 4660 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4661 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4662 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4663 KnownBits Known = computeKnownBits( 4664 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4665 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4666 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4667 ConstantRange::PreferredRangeType RangeType = 4668 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4669 return CR1.intersectWith(CR2, RangeType); 4670 } 4671 4672 OverflowResult llvm::computeOverflowForUnsignedMul( 4673 const Value *LHS, const Value *RHS, const DataLayout &DL, 4674 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4675 bool UseInstrInfo) { 4676 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4677 nullptr, UseInstrInfo); 4678 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4679 nullptr, UseInstrInfo); 4680 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4681 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4682 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4683 } 4684 4685 OverflowResult 4686 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4687 const DataLayout &DL, AssumptionCache *AC, 4688 const Instruction *CxtI, 4689 const DominatorTree *DT, bool UseInstrInfo) { 4690 // Multiplying n * m significant bits yields a result of n + m significant 4691 // bits. If the total number of significant bits does not exceed the 4692 // result bit width (minus 1), there is no overflow. 4693 // This means if we have enough leading sign bits in the operands 4694 // we can guarantee that the result does not overflow. 4695 // Ref: "Hacker's Delight" by Henry Warren 4696 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4697 4698 // Note that underestimating the number of sign bits gives a more 4699 // conservative answer. 4700 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4701 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4702 4703 // First handle the easy case: if we have enough sign bits there's 4704 // definitely no overflow. 4705 if (SignBits > BitWidth + 1) 4706 return OverflowResult::NeverOverflows; 4707 4708 // There are two ambiguous cases where there can be no overflow: 4709 // SignBits == BitWidth + 1 and 4710 // SignBits == BitWidth 4711 // The second case is difficult to check, therefore we only handle the 4712 // first case. 4713 if (SignBits == BitWidth + 1) { 4714 // It overflows only when both arguments are negative and the true 4715 // product is exactly the minimum negative number. 4716 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4717 // For simplicity we just check if at least one side is not negative. 4718 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4719 nullptr, UseInstrInfo); 4720 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4721 nullptr, UseInstrInfo); 4722 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4723 return OverflowResult::NeverOverflows; 4724 } 4725 return OverflowResult::MayOverflow; 4726 } 4727 4728 OverflowResult llvm::computeOverflowForUnsignedAdd( 4729 const Value *LHS, const Value *RHS, const DataLayout &DL, 4730 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4731 bool UseInstrInfo) { 4732 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4733 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4734 nullptr, UseInstrInfo); 4735 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4736 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4737 nullptr, UseInstrInfo); 4738 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4739 } 4740 4741 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4742 const Value *RHS, 4743 const AddOperator *Add, 4744 const DataLayout &DL, 4745 AssumptionCache *AC, 4746 const Instruction *CxtI, 4747 const DominatorTree *DT) { 4748 if (Add && Add->hasNoSignedWrap()) { 4749 return OverflowResult::NeverOverflows; 4750 } 4751 4752 // If LHS and RHS each have at least two sign bits, the addition will look 4753 // like 4754 // 4755 // XX..... + 4756 // YY..... 4757 // 4758 // If the carry into the most significant position is 0, X and Y can't both 4759 // be 1 and therefore the carry out of the addition is also 0. 4760 // 4761 // If the carry into the most significant position is 1, X and Y can't both 4762 // be 0 and therefore the carry out of the addition is also 1. 4763 // 4764 // Since the carry into the most significant position is always equal to 4765 // the carry out of the addition, there is no signed overflow. 4766 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4767 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4768 return OverflowResult::NeverOverflows; 4769 4770 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4771 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4772 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4773 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4774 OverflowResult OR = 4775 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4776 if (OR != OverflowResult::MayOverflow) 4777 return OR; 4778 4779 // The remaining code needs Add to be available. Early returns if not so. 4780 if (!Add) 4781 return OverflowResult::MayOverflow; 4782 4783 // If the sign of Add is the same as at least one of the operands, this add 4784 // CANNOT overflow. If this can be determined from the known bits of the 4785 // operands the above signedAddMayOverflow() check will have already done so. 4786 // The only other way to improve on the known bits is from an assumption, so 4787 // call computeKnownBitsFromAssume() directly. 4788 bool LHSOrRHSKnownNonNegative = 4789 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4790 bool LHSOrRHSKnownNegative = 4791 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4792 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4793 KnownBits AddKnown(LHSRange.getBitWidth()); 4794 computeKnownBitsFromAssume( 4795 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4796 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4797 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4798 return OverflowResult::NeverOverflows; 4799 } 4800 4801 return OverflowResult::MayOverflow; 4802 } 4803 4804 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4805 const Value *RHS, 4806 const DataLayout &DL, 4807 AssumptionCache *AC, 4808 const Instruction *CxtI, 4809 const DominatorTree *DT) { 4810 // Checking for conditions implied by dominating conditions may be expensive. 4811 // Limit it to usub_with_overflow calls for now. 4812 if (match(CxtI, 4813 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4814 if (auto C = 4815 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4816 if (*C) 4817 return OverflowResult::NeverOverflows; 4818 return OverflowResult::AlwaysOverflowsLow; 4819 } 4820 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4821 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4822 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4823 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4824 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4825 } 4826 4827 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4828 const Value *RHS, 4829 const DataLayout &DL, 4830 AssumptionCache *AC, 4831 const Instruction *CxtI, 4832 const DominatorTree *DT) { 4833 // If LHS and RHS each have at least two sign bits, the subtraction 4834 // cannot overflow. 4835 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4836 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4837 return OverflowResult::NeverOverflows; 4838 4839 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4840 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4841 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4842 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4843 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4844 } 4845 4846 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4847 const DominatorTree &DT) { 4848 SmallVector<const BranchInst *, 2> GuardingBranches; 4849 SmallVector<const ExtractValueInst *, 2> Results; 4850 4851 for (const User *U : WO->users()) { 4852 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4853 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4854 4855 if (EVI->getIndices()[0] == 0) 4856 Results.push_back(EVI); 4857 else { 4858 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4859 4860 for (const auto *U : EVI->users()) 4861 if (const auto *B = dyn_cast<BranchInst>(U)) { 4862 assert(B->isConditional() && "How else is it using an i1?"); 4863 GuardingBranches.push_back(B); 4864 } 4865 } 4866 } else { 4867 // We are using the aggregate directly in a way we don't want to analyze 4868 // here (storing it to a global, say). 4869 return false; 4870 } 4871 } 4872 4873 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4874 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4875 if (!NoWrapEdge.isSingleEdge()) 4876 return false; 4877 4878 // Check if all users of the add are provably no-wrap. 4879 for (const auto *Result : Results) { 4880 // If the extractvalue itself is not executed on overflow, the we don't 4881 // need to check each use separately, since domination is transitive. 4882 if (DT.dominates(NoWrapEdge, Result->getParent())) 4883 continue; 4884 4885 for (auto &RU : Result->uses()) 4886 if (!DT.dominates(NoWrapEdge, RU)) 4887 return false; 4888 } 4889 4890 return true; 4891 }; 4892 4893 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4894 } 4895 4896 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4897 bool ConsiderFlags) { 4898 4899 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 4900 return true; 4901 4902 unsigned Opcode = Op->getOpcode(); 4903 4904 // Check whether opcode is a poison/undef-generating operation 4905 switch (Opcode) { 4906 case Instruction::Shl: 4907 case Instruction::AShr: 4908 case Instruction::LShr: { 4909 // Shifts return poison if shiftwidth is larger than the bitwidth. 4910 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4911 SmallVector<Constant *, 4> ShiftAmounts; 4912 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4913 unsigned NumElts = FVTy->getNumElements(); 4914 for (unsigned i = 0; i < NumElts; ++i) 4915 ShiftAmounts.push_back(C->getAggregateElement(i)); 4916 } else if (isa<ScalableVectorType>(C->getType())) 4917 return true; // Can't tell, just return true to be safe 4918 else 4919 ShiftAmounts.push_back(C); 4920 4921 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4922 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4923 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4924 }); 4925 return !Safe; 4926 } 4927 return true; 4928 } 4929 case Instruction::FPToSI: 4930 case Instruction::FPToUI: 4931 // fptosi/ui yields poison if the resulting value does not fit in the 4932 // destination type. 4933 return true; 4934 case Instruction::Call: 4935 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4936 switch (II->getIntrinsicID()) { 4937 // TODO: Add more intrinsics. 4938 case Intrinsic::ctpop: 4939 case Intrinsic::sadd_with_overflow: 4940 case Intrinsic::ssub_with_overflow: 4941 case Intrinsic::smul_with_overflow: 4942 case Intrinsic::uadd_with_overflow: 4943 case Intrinsic::usub_with_overflow: 4944 case Intrinsic::umul_with_overflow: 4945 return false; 4946 } 4947 } 4948 LLVM_FALLTHROUGH; 4949 case Instruction::CallBr: 4950 case Instruction::Invoke: { 4951 const auto *CB = cast<CallBase>(Op); 4952 return !CB->hasRetAttr(Attribute::NoUndef); 4953 } 4954 case Instruction::InsertElement: 4955 case Instruction::ExtractElement: { 4956 // If index exceeds the length of the vector, it returns poison 4957 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4958 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4959 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4960 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4961 return true; 4962 return false; 4963 } 4964 case Instruction::ShuffleVector: { 4965 // shufflevector may return undef. 4966 if (PoisonOnly) 4967 return false; 4968 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4969 ? cast<ConstantExpr>(Op)->getShuffleMask() 4970 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4971 return is_contained(Mask, UndefMaskElem); 4972 } 4973 case Instruction::FNeg: 4974 case Instruction::PHI: 4975 case Instruction::Select: 4976 case Instruction::URem: 4977 case Instruction::SRem: 4978 case Instruction::ExtractValue: 4979 case Instruction::InsertValue: 4980 case Instruction::Freeze: 4981 case Instruction::ICmp: 4982 case Instruction::FCmp: 4983 return false; 4984 case Instruction::GetElementPtr: 4985 // inbounds is handled above 4986 // TODO: what about inrange on constexpr? 4987 return false; 4988 default: { 4989 const auto *CE = dyn_cast<ConstantExpr>(Op); 4990 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4991 return false; 4992 else if (Instruction::isBinaryOp(Opcode)) 4993 return false; 4994 // Be conservative and return true. 4995 return true; 4996 } 4997 } 4998 } 4999 5000 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5001 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5002 } 5003 5004 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5005 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5006 } 5007 5008 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5009 const Value *V, unsigned Depth) { 5010 if (ValAssumedPoison == V) 5011 return true; 5012 5013 const unsigned MaxDepth = 2; 5014 if (Depth >= MaxDepth) 5015 return false; 5016 5017 if (const auto *I = dyn_cast<Instruction>(V)) { 5018 if (propagatesPoison(cast<Operator>(I))) 5019 return any_of(I->operands(), [=](const Value *Op) { 5020 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5021 }); 5022 5023 // 'select ValAssumedPoison, _, _' is poison. 5024 if (const auto *SI = dyn_cast<SelectInst>(I)) 5025 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5026 Depth + 1); 5027 // V = extractvalue V0, idx 5028 // V2 = extractvalue V0, idx2 5029 // V0's elements are all poison or not. (e.g., add_with_overflow) 5030 const WithOverflowInst *II; 5031 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5032 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5033 llvm::is_contained(II->args(), ValAssumedPoison))) 5034 return true; 5035 } 5036 return false; 5037 } 5038 5039 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5040 unsigned Depth) { 5041 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5042 return true; 5043 5044 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5045 return true; 5046 5047 const unsigned MaxDepth = 2; 5048 if (Depth >= MaxDepth) 5049 return false; 5050 5051 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5052 if (I && !canCreatePoison(cast<Operator>(I))) { 5053 return all_of(I->operands(), [=](const Value *Op) { 5054 return impliesPoison(Op, V, Depth + 1); 5055 }); 5056 } 5057 return false; 5058 } 5059 5060 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5061 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5062 } 5063 5064 static bool programUndefinedIfUndefOrPoison(const Value *V, 5065 bool PoisonOnly); 5066 5067 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5068 AssumptionCache *AC, 5069 const Instruction *CtxI, 5070 const DominatorTree *DT, 5071 unsigned Depth, bool PoisonOnly) { 5072 if (Depth >= MaxAnalysisRecursionDepth) 5073 return false; 5074 5075 if (isa<MetadataAsValue>(V)) 5076 return false; 5077 5078 if (const auto *A = dyn_cast<Argument>(V)) { 5079 if (A->hasAttribute(Attribute::NoUndef)) 5080 return true; 5081 } 5082 5083 if (auto *C = dyn_cast<Constant>(V)) { 5084 if (isa<UndefValue>(C)) 5085 return PoisonOnly && !isa<PoisonValue>(C); 5086 5087 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5088 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5089 return true; 5090 5091 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5092 return (PoisonOnly ? !C->containsPoisonElement() 5093 : !C->containsUndefOrPoisonElement()) && 5094 !C->containsConstantExpression(); 5095 } 5096 5097 // Strip cast operations from a pointer value. 5098 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5099 // inbounds with zero offset. To guarantee that the result isn't poison, the 5100 // stripped pointer is checked as it has to be pointing into an allocated 5101 // object or be null `null` to ensure `inbounds` getelement pointers with a 5102 // zero offset could not produce poison. 5103 // It can strip off addrspacecast that do not change bit representation as 5104 // well. We believe that such addrspacecast is equivalent to no-op. 5105 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5106 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5107 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5108 return true; 5109 5110 auto OpCheck = [&](const Value *V) { 5111 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5112 PoisonOnly); 5113 }; 5114 5115 if (auto *Opr = dyn_cast<Operator>(V)) { 5116 // If the value is a freeze instruction, then it can never 5117 // be undef or poison. 5118 if (isa<FreezeInst>(V)) 5119 return true; 5120 5121 if (const auto *CB = dyn_cast<CallBase>(V)) { 5122 if (CB->hasRetAttr(Attribute::NoUndef)) 5123 return true; 5124 } 5125 5126 if (const auto *PN = dyn_cast<PHINode>(V)) { 5127 unsigned Num = PN->getNumIncomingValues(); 5128 bool IsWellDefined = true; 5129 for (unsigned i = 0; i < Num; ++i) { 5130 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5131 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5132 DT, Depth + 1, PoisonOnly)) { 5133 IsWellDefined = false; 5134 break; 5135 } 5136 } 5137 if (IsWellDefined) 5138 return true; 5139 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5140 return true; 5141 } 5142 5143 if (auto *I = dyn_cast<LoadInst>(V)) 5144 if (I->getMetadata(LLVMContext::MD_noundef)) 5145 return true; 5146 5147 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5148 return true; 5149 5150 // CxtI may be null or a cloned instruction. 5151 if (!CtxI || !CtxI->getParent() || !DT) 5152 return false; 5153 5154 auto *DNode = DT->getNode(CtxI->getParent()); 5155 if (!DNode) 5156 // Unreachable block 5157 return false; 5158 5159 // If V is used as a branch condition before reaching CtxI, V cannot be 5160 // undef or poison. 5161 // br V, BB1, BB2 5162 // BB1: 5163 // CtxI ; V cannot be undef or poison here 5164 auto *Dominator = DNode->getIDom(); 5165 while (Dominator) { 5166 auto *TI = Dominator->getBlock()->getTerminator(); 5167 5168 Value *Cond = nullptr; 5169 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5170 if (BI->isConditional()) 5171 Cond = BI->getCondition(); 5172 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5173 Cond = SI->getCondition(); 5174 } 5175 5176 if (Cond) { 5177 if (Cond == V) 5178 return true; 5179 else if (PoisonOnly && isa<Operator>(Cond)) { 5180 // For poison, we can analyze further 5181 auto *Opr = cast<Operator>(Cond); 5182 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5183 return true; 5184 } 5185 } 5186 5187 Dominator = Dominator->getIDom(); 5188 } 5189 5190 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5191 return true; 5192 5193 return false; 5194 } 5195 5196 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5197 const Instruction *CtxI, 5198 const DominatorTree *DT, 5199 unsigned Depth) { 5200 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5201 } 5202 5203 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5204 const Instruction *CtxI, 5205 const DominatorTree *DT, unsigned Depth) { 5206 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5207 } 5208 5209 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5210 const DataLayout &DL, 5211 AssumptionCache *AC, 5212 const Instruction *CxtI, 5213 const DominatorTree *DT) { 5214 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5215 Add, DL, AC, CxtI, DT); 5216 } 5217 5218 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5219 const Value *RHS, 5220 const DataLayout &DL, 5221 AssumptionCache *AC, 5222 const Instruction *CxtI, 5223 const DominatorTree *DT) { 5224 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5225 } 5226 5227 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5228 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5229 // of time because it's possible for another thread to interfere with it for an 5230 // arbitrary length of time, but programs aren't allowed to rely on that. 5231 5232 // If there is no successor, then execution can't transfer to it. 5233 if (isa<ReturnInst>(I)) 5234 return false; 5235 if (isa<UnreachableInst>(I)) 5236 return false; 5237 5238 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5239 // Instruction::willReturn. 5240 // 5241 // FIXME: Move this check into Instruction::willReturn. 5242 if (isa<CatchPadInst>(I)) { 5243 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5244 default: 5245 // A catchpad may invoke exception object constructors and such, which 5246 // in some languages can be arbitrary code, so be conservative by default. 5247 return false; 5248 case EHPersonality::CoreCLR: 5249 // For CoreCLR, it just involves a type test. 5250 return true; 5251 } 5252 } 5253 5254 // An instruction that returns without throwing must transfer control flow 5255 // to a successor. 5256 return !I->mayThrow() && I->willReturn(); 5257 } 5258 5259 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5260 // TODO: This is slightly conservative for invoke instruction since exiting 5261 // via an exception *is* normal control for them. 5262 for (const Instruction &I : *BB) 5263 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5264 return false; 5265 return true; 5266 } 5267 5268 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5269 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5270 unsigned ScanLimit) { 5271 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5272 ScanLimit); 5273 } 5274 5275 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5276 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5277 assert(ScanLimit && "scan limit must be non-zero"); 5278 for (const Instruction &I : Range) { 5279 if (isa<DbgInfoIntrinsic>(I)) 5280 continue; 5281 if (--ScanLimit == 0) 5282 return false; 5283 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5284 return false; 5285 } 5286 return true; 5287 } 5288 5289 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5290 const Loop *L) { 5291 // The loop header is guaranteed to be executed for every iteration. 5292 // 5293 // FIXME: Relax this constraint to cover all basic blocks that are 5294 // guaranteed to be executed at every iteration. 5295 if (I->getParent() != L->getHeader()) return false; 5296 5297 for (const Instruction &LI : *L->getHeader()) { 5298 if (&LI == I) return true; 5299 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5300 } 5301 llvm_unreachable("Instruction not contained in its own parent basic block."); 5302 } 5303 5304 bool llvm::propagatesPoison(const Operator *I) { 5305 switch (I->getOpcode()) { 5306 case Instruction::Freeze: 5307 case Instruction::Select: 5308 case Instruction::PHI: 5309 case Instruction::Invoke: 5310 return false; 5311 case Instruction::Call: 5312 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5313 switch (II->getIntrinsicID()) { 5314 // TODO: Add more intrinsics. 5315 case Intrinsic::sadd_with_overflow: 5316 case Intrinsic::ssub_with_overflow: 5317 case Intrinsic::smul_with_overflow: 5318 case Intrinsic::uadd_with_overflow: 5319 case Intrinsic::usub_with_overflow: 5320 case Intrinsic::umul_with_overflow: 5321 // If an input is a vector containing a poison element, the 5322 // two output vectors (calculated results, overflow bits)' 5323 // corresponding lanes are poison. 5324 return true; 5325 case Intrinsic::ctpop: 5326 return true; 5327 } 5328 } 5329 return false; 5330 case Instruction::ICmp: 5331 case Instruction::FCmp: 5332 case Instruction::GetElementPtr: 5333 return true; 5334 default: 5335 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5336 return true; 5337 5338 // Be conservative and return false. 5339 return false; 5340 } 5341 } 5342 5343 void llvm::getGuaranteedWellDefinedOps( 5344 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5345 switch (I->getOpcode()) { 5346 case Instruction::Store: 5347 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5348 break; 5349 5350 case Instruction::Load: 5351 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5352 break; 5353 5354 // Since dereferenceable attribute imply noundef, atomic operations 5355 // also implicitly have noundef pointers too 5356 case Instruction::AtomicCmpXchg: 5357 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5358 break; 5359 5360 case Instruction::AtomicRMW: 5361 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5362 break; 5363 5364 case Instruction::Call: 5365 case Instruction::Invoke: { 5366 const CallBase *CB = cast<CallBase>(I); 5367 if (CB->isIndirectCall()) 5368 Operands.insert(CB->getCalledOperand()); 5369 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5370 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5371 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5372 Operands.insert(CB->getArgOperand(i)); 5373 } 5374 break; 5375 } 5376 case Instruction::Ret: 5377 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5378 Operands.insert(I->getOperand(0)); 5379 break; 5380 default: 5381 break; 5382 } 5383 } 5384 5385 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5386 SmallPtrSetImpl<const Value *> &Operands) { 5387 getGuaranteedWellDefinedOps(I, Operands); 5388 switch (I->getOpcode()) { 5389 // Divisors of these operations are allowed to be partially undef. 5390 case Instruction::UDiv: 5391 case Instruction::SDiv: 5392 case Instruction::URem: 5393 case Instruction::SRem: 5394 Operands.insert(I->getOperand(1)); 5395 break; 5396 case Instruction::Switch: 5397 if (BranchOnPoisonAsUB) 5398 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5399 break; 5400 case Instruction::Br: { 5401 auto *BR = cast<BranchInst>(I); 5402 if (BranchOnPoisonAsUB && BR->isConditional()) 5403 Operands.insert(BR->getCondition()); 5404 break; 5405 } 5406 default: 5407 break; 5408 } 5409 } 5410 5411 bool llvm::mustTriggerUB(const Instruction *I, 5412 const SmallSet<const Value *, 16>& KnownPoison) { 5413 SmallPtrSet<const Value *, 4> NonPoisonOps; 5414 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5415 5416 for (const auto *V : NonPoisonOps) 5417 if (KnownPoison.count(V)) 5418 return true; 5419 5420 return false; 5421 } 5422 5423 static bool programUndefinedIfUndefOrPoison(const Value *V, 5424 bool PoisonOnly) { 5425 // We currently only look for uses of values within the same basic 5426 // block, as that makes it easier to guarantee that the uses will be 5427 // executed given that Inst is executed. 5428 // 5429 // FIXME: Expand this to consider uses beyond the same basic block. To do 5430 // this, look out for the distinction between post-dominance and strong 5431 // post-dominance. 5432 const BasicBlock *BB = nullptr; 5433 BasicBlock::const_iterator Begin; 5434 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5435 BB = Inst->getParent(); 5436 Begin = Inst->getIterator(); 5437 Begin++; 5438 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5439 BB = &Arg->getParent()->getEntryBlock(); 5440 Begin = BB->begin(); 5441 } else { 5442 return false; 5443 } 5444 5445 // Limit number of instructions we look at, to avoid scanning through large 5446 // blocks. The current limit is chosen arbitrarily. 5447 unsigned ScanLimit = 32; 5448 BasicBlock::const_iterator End = BB->end(); 5449 5450 if (!PoisonOnly) { 5451 // Since undef does not propagate eagerly, be conservative & just check 5452 // whether a value is directly passed to an instruction that must take 5453 // well-defined operands. 5454 5455 for (auto &I : make_range(Begin, End)) { 5456 if (isa<DbgInfoIntrinsic>(I)) 5457 continue; 5458 if (--ScanLimit == 0) 5459 break; 5460 5461 SmallPtrSet<const Value *, 4> WellDefinedOps; 5462 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5463 if (WellDefinedOps.contains(V)) 5464 return true; 5465 5466 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5467 break; 5468 } 5469 return false; 5470 } 5471 5472 // Set of instructions that we have proved will yield poison if Inst 5473 // does. 5474 SmallSet<const Value *, 16> YieldsPoison; 5475 SmallSet<const BasicBlock *, 4> Visited; 5476 5477 YieldsPoison.insert(V); 5478 auto Propagate = [&](const User *User) { 5479 if (propagatesPoison(cast<Operator>(User))) 5480 YieldsPoison.insert(User); 5481 }; 5482 for_each(V->users(), Propagate); 5483 Visited.insert(BB); 5484 5485 while (true) { 5486 for (auto &I : make_range(Begin, End)) { 5487 if (isa<DbgInfoIntrinsic>(I)) 5488 continue; 5489 if (--ScanLimit == 0) 5490 return false; 5491 if (mustTriggerUB(&I, YieldsPoison)) 5492 return true; 5493 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5494 return false; 5495 5496 // Mark poison that propagates from I through uses of I. 5497 if (YieldsPoison.count(&I)) 5498 for_each(I.users(), Propagate); 5499 } 5500 5501 BB = BB->getSingleSuccessor(); 5502 if (!BB || !Visited.insert(BB).second) 5503 break; 5504 5505 Begin = BB->getFirstNonPHI()->getIterator(); 5506 End = BB->end(); 5507 } 5508 return false; 5509 } 5510 5511 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5512 return ::programUndefinedIfUndefOrPoison(Inst, false); 5513 } 5514 5515 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5516 return ::programUndefinedIfUndefOrPoison(Inst, true); 5517 } 5518 5519 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5520 if (FMF.noNaNs()) 5521 return true; 5522 5523 if (auto *C = dyn_cast<ConstantFP>(V)) 5524 return !C->isNaN(); 5525 5526 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5527 if (!C->getElementType()->isFloatingPointTy()) 5528 return false; 5529 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5530 if (C->getElementAsAPFloat(I).isNaN()) 5531 return false; 5532 } 5533 return true; 5534 } 5535 5536 if (isa<ConstantAggregateZero>(V)) 5537 return true; 5538 5539 return false; 5540 } 5541 5542 static bool isKnownNonZero(const Value *V) { 5543 if (auto *C = dyn_cast<ConstantFP>(V)) 5544 return !C->isZero(); 5545 5546 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5547 if (!C->getElementType()->isFloatingPointTy()) 5548 return false; 5549 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5550 if (C->getElementAsAPFloat(I).isZero()) 5551 return false; 5552 } 5553 return true; 5554 } 5555 5556 return false; 5557 } 5558 5559 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5560 /// Given non-min/max outer cmp/select from the clamp pattern this 5561 /// function recognizes if it can be substitued by a "canonical" min/max 5562 /// pattern. 5563 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5564 Value *CmpLHS, Value *CmpRHS, 5565 Value *TrueVal, Value *FalseVal, 5566 Value *&LHS, Value *&RHS) { 5567 // Try to match 5568 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5569 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5570 // and return description of the outer Max/Min. 5571 5572 // First, check if select has inverse order: 5573 if (CmpRHS == FalseVal) { 5574 std::swap(TrueVal, FalseVal); 5575 Pred = CmpInst::getInversePredicate(Pred); 5576 } 5577 5578 // Assume success now. If there's no match, callers should not use these anyway. 5579 LHS = TrueVal; 5580 RHS = FalseVal; 5581 5582 const APFloat *FC1; 5583 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5584 return {SPF_UNKNOWN, SPNB_NA, false}; 5585 5586 const APFloat *FC2; 5587 switch (Pred) { 5588 case CmpInst::FCMP_OLT: 5589 case CmpInst::FCMP_OLE: 5590 case CmpInst::FCMP_ULT: 5591 case CmpInst::FCMP_ULE: 5592 if (match(FalseVal, 5593 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5594 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5595 *FC1 < *FC2) 5596 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5597 break; 5598 case CmpInst::FCMP_OGT: 5599 case CmpInst::FCMP_OGE: 5600 case CmpInst::FCMP_UGT: 5601 case CmpInst::FCMP_UGE: 5602 if (match(FalseVal, 5603 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5604 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5605 *FC1 > *FC2) 5606 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5607 break; 5608 default: 5609 break; 5610 } 5611 5612 return {SPF_UNKNOWN, SPNB_NA, false}; 5613 } 5614 5615 /// Recognize variations of: 5616 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5617 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5618 Value *CmpLHS, Value *CmpRHS, 5619 Value *TrueVal, Value *FalseVal) { 5620 // Swap the select operands and predicate to match the patterns below. 5621 if (CmpRHS != TrueVal) { 5622 Pred = ICmpInst::getSwappedPredicate(Pred); 5623 std::swap(TrueVal, FalseVal); 5624 } 5625 const APInt *C1; 5626 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5627 const APInt *C2; 5628 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5629 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5630 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5631 return {SPF_SMAX, SPNB_NA, false}; 5632 5633 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5634 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5635 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5636 return {SPF_SMIN, SPNB_NA, false}; 5637 5638 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5639 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5640 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5641 return {SPF_UMAX, SPNB_NA, false}; 5642 5643 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5644 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5645 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5646 return {SPF_UMIN, SPNB_NA, false}; 5647 } 5648 return {SPF_UNKNOWN, SPNB_NA, false}; 5649 } 5650 5651 /// Recognize variations of: 5652 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5653 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5654 Value *CmpLHS, Value *CmpRHS, 5655 Value *TVal, Value *FVal, 5656 unsigned Depth) { 5657 // TODO: Allow FP min/max with nnan/nsz. 5658 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5659 5660 Value *A = nullptr, *B = nullptr; 5661 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5662 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5663 return {SPF_UNKNOWN, SPNB_NA, false}; 5664 5665 Value *C = nullptr, *D = nullptr; 5666 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5667 if (L.Flavor != R.Flavor) 5668 return {SPF_UNKNOWN, SPNB_NA, false}; 5669 5670 // We have something like: x Pred y ? min(a, b) : min(c, d). 5671 // Try to match the compare to the min/max operations of the select operands. 5672 // First, make sure we have the right compare predicate. 5673 switch (L.Flavor) { 5674 case SPF_SMIN: 5675 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5676 Pred = ICmpInst::getSwappedPredicate(Pred); 5677 std::swap(CmpLHS, CmpRHS); 5678 } 5679 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5680 break; 5681 return {SPF_UNKNOWN, SPNB_NA, false}; 5682 case SPF_SMAX: 5683 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5684 Pred = ICmpInst::getSwappedPredicate(Pred); 5685 std::swap(CmpLHS, CmpRHS); 5686 } 5687 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5688 break; 5689 return {SPF_UNKNOWN, SPNB_NA, false}; 5690 case SPF_UMIN: 5691 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5692 Pred = ICmpInst::getSwappedPredicate(Pred); 5693 std::swap(CmpLHS, CmpRHS); 5694 } 5695 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5696 break; 5697 return {SPF_UNKNOWN, SPNB_NA, false}; 5698 case SPF_UMAX: 5699 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5700 Pred = ICmpInst::getSwappedPredicate(Pred); 5701 std::swap(CmpLHS, CmpRHS); 5702 } 5703 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5704 break; 5705 return {SPF_UNKNOWN, SPNB_NA, false}; 5706 default: 5707 return {SPF_UNKNOWN, SPNB_NA, false}; 5708 } 5709 5710 // If there is a common operand in the already matched min/max and the other 5711 // min/max operands match the compare operands (either directly or inverted), 5712 // then this is min/max of the same flavor. 5713 5714 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5715 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5716 if (D == B) { 5717 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5718 match(A, m_Not(m_Specific(CmpRHS))))) 5719 return {L.Flavor, SPNB_NA, false}; 5720 } 5721 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5722 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5723 if (C == B) { 5724 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5725 match(A, m_Not(m_Specific(CmpRHS))))) 5726 return {L.Flavor, SPNB_NA, false}; 5727 } 5728 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5729 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5730 if (D == A) { 5731 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5732 match(B, m_Not(m_Specific(CmpRHS))))) 5733 return {L.Flavor, SPNB_NA, false}; 5734 } 5735 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5736 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5737 if (C == A) { 5738 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5739 match(B, m_Not(m_Specific(CmpRHS))))) 5740 return {L.Flavor, SPNB_NA, false}; 5741 } 5742 5743 return {SPF_UNKNOWN, SPNB_NA, false}; 5744 } 5745 5746 /// If the input value is the result of a 'not' op, constant integer, or vector 5747 /// splat of a constant integer, return the bitwise-not source value. 5748 /// TODO: This could be extended to handle non-splat vector integer constants. 5749 static Value *getNotValue(Value *V) { 5750 Value *NotV; 5751 if (match(V, m_Not(m_Value(NotV)))) 5752 return NotV; 5753 5754 const APInt *C; 5755 if (match(V, m_APInt(C))) 5756 return ConstantInt::get(V->getType(), ~(*C)); 5757 5758 return nullptr; 5759 } 5760 5761 /// Match non-obvious integer minimum and maximum sequences. 5762 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5763 Value *CmpLHS, Value *CmpRHS, 5764 Value *TrueVal, Value *FalseVal, 5765 Value *&LHS, Value *&RHS, 5766 unsigned Depth) { 5767 // Assume success. If there's no match, callers should not use these anyway. 5768 LHS = TrueVal; 5769 RHS = FalseVal; 5770 5771 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5772 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5773 return SPR; 5774 5775 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5776 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5777 return SPR; 5778 5779 // Look through 'not' ops to find disguised min/max. 5780 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5781 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5782 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5783 switch (Pred) { 5784 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5785 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5786 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5787 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5788 default: break; 5789 } 5790 } 5791 5792 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5793 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5794 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5795 switch (Pred) { 5796 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5797 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5798 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5799 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5800 default: break; 5801 } 5802 } 5803 5804 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5805 return {SPF_UNKNOWN, SPNB_NA, false}; 5806 5807 // Z = X -nsw Y 5808 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5809 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5810 if (match(TrueVal, m_Zero()) && 5811 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5812 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5813 5814 // Z = X -nsw Y 5815 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5816 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5817 if (match(FalseVal, m_Zero()) && 5818 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5819 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5820 5821 const APInt *C1; 5822 if (!match(CmpRHS, m_APInt(C1))) 5823 return {SPF_UNKNOWN, SPNB_NA, false}; 5824 5825 // An unsigned min/max can be written with a signed compare. 5826 const APInt *C2; 5827 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5828 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5829 // Is the sign bit set? 5830 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5831 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5832 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5833 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5834 5835 // Is the sign bit clear? 5836 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5837 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5838 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5839 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5840 } 5841 5842 return {SPF_UNKNOWN, SPNB_NA, false}; 5843 } 5844 5845 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5846 assert(X && Y && "Invalid operand"); 5847 5848 // X = sub (0, Y) || X = sub nsw (0, Y) 5849 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5850 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5851 return true; 5852 5853 // Y = sub (0, X) || Y = sub nsw (0, X) 5854 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5855 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5856 return true; 5857 5858 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5859 Value *A, *B; 5860 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5861 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5862 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5863 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5864 } 5865 5866 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5867 FastMathFlags FMF, 5868 Value *CmpLHS, Value *CmpRHS, 5869 Value *TrueVal, Value *FalseVal, 5870 Value *&LHS, Value *&RHS, 5871 unsigned Depth) { 5872 if (CmpInst::isFPPredicate(Pred)) { 5873 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5874 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5875 // purpose of identifying min/max. Disregard vector constants with undefined 5876 // elements because those can not be back-propagated for analysis. 5877 Value *OutputZeroVal = nullptr; 5878 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5879 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5880 OutputZeroVal = TrueVal; 5881 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5882 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5883 OutputZeroVal = FalseVal; 5884 5885 if (OutputZeroVal) { 5886 if (match(CmpLHS, m_AnyZeroFP())) 5887 CmpLHS = OutputZeroVal; 5888 if (match(CmpRHS, m_AnyZeroFP())) 5889 CmpRHS = OutputZeroVal; 5890 } 5891 } 5892 5893 LHS = CmpLHS; 5894 RHS = CmpRHS; 5895 5896 // Signed zero may return inconsistent results between implementations. 5897 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5898 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5899 // Therefore, we behave conservatively and only proceed if at least one of the 5900 // operands is known to not be zero or if we don't care about signed zero. 5901 switch (Pred) { 5902 default: break; 5903 // FIXME: Include OGT/OLT/UGT/ULT. 5904 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5905 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5906 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5907 !isKnownNonZero(CmpRHS)) 5908 return {SPF_UNKNOWN, SPNB_NA, false}; 5909 } 5910 5911 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5912 bool Ordered = false; 5913 5914 // When given one NaN and one non-NaN input: 5915 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5916 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5917 // ordered comparison fails), which could be NaN or non-NaN. 5918 // so here we discover exactly what NaN behavior is required/accepted. 5919 if (CmpInst::isFPPredicate(Pred)) { 5920 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5921 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5922 5923 if (LHSSafe && RHSSafe) { 5924 // Both operands are known non-NaN. 5925 NaNBehavior = SPNB_RETURNS_ANY; 5926 } else if (CmpInst::isOrdered(Pred)) { 5927 // An ordered comparison will return false when given a NaN, so it 5928 // returns the RHS. 5929 Ordered = true; 5930 if (LHSSafe) 5931 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5932 NaNBehavior = SPNB_RETURNS_NAN; 5933 else if (RHSSafe) 5934 NaNBehavior = SPNB_RETURNS_OTHER; 5935 else 5936 // Completely unsafe. 5937 return {SPF_UNKNOWN, SPNB_NA, false}; 5938 } else { 5939 Ordered = false; 5940 // An unordered comparison will return true when given a NaN, so it 5941 // returns the LHS. 5942 if (LHSSafe) 5943 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5944 NaNBehavior = SPNB_RETURNS_OTHER; 5945 else if (RHSSafe) 5946 NaNBehavior = SPNB_RETURNS_NAN; 5947 else 5948 // Completely unsafe. 5949 return {SPF_UNKNOWN, SPNB_NA, false}; 5950 } 5951 } 5952 5953 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5954 std::swap(CmpLHS, CmpRHS); 5955 Pred = CmpInst::getSwappedPredicate(Pred); 5956 if (NaNBehavior == SPNB_RETURNS_NAN) 5957 NaNBehavior = SPNB_RETURNS_OTHER; 5958 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5959 NaNBehavior = SPNB_RETURNS_NAN; 5960 Ordered = !Ordered; 5961 } 5962 5963 // ([if]cmp X, Y) ? X : Y 5964 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5965 switch (Pred) { 5966 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5967 case ICmpInst::ICMP_UGT: 5968 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5969 case ICmpInst::ICMP_SGT: 5970 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5971 case ICmpInst::ICMP_ULT: 5972 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5973 case ICmpInst::ICMP_SLT: 5974 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5975 case FCmpInst::FCMP_UGT: 5976 case FCmpInst::FCMP_UGE: 5977 case FCmpInst::FCMP_OGT: 5978 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5979 case FCmpInst::FCMP_ULT: 5980 case FCmpInst::FCMP_ULE: 5981 case FCmpInst::FCMP_OLT: 5982 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5983 } 5984 } 5985 5986 if (isKnownNegation(TrueVal, FalseVal)) { 5987 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5988 // match against either LHS or sext(LHS). 5989 auto MaybeSExtCmpLHS = 5990 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5991 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5992 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5993 if (match(TrueVal, MaybeSExtCmpLHS)) { 5994 // Set the return values. If the compare uses the negated value (-X >s 0), 5995 // swap the return values because the negated value is always 'RHS'. 5996 LHS = TrueVal; 5997 RHS = FalseVal; 5998 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5999 std::swap(LHS, RHS); 6000 6001 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6002 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6003 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6004 return {SPF_ABS, SPNB_NA, false}; 6005 6006 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6007 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6008 return {SPF_ABS, SPNB_NA, false}; 6009 6010 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6011 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6012 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6013 return {SPF_NABS, SPNB_NA, false}; 6014 } 6015 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6016 // Set the return values. If the compare uses the negated value (-X >s 0), 6017 // swap the return values because the negated value is always 'RHS'. 6018 LHS = FalseVal; 6019 RHS = TrueVal; 6020 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6021 std::swap(LHS, RHS); 6022 6023 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6024 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6025 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6026 return {SPF_NABS, SPNB_NA, false}; 6027 6028 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6029 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6030 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6031 return {SPF_ABS, SPNB_NA, false}; 6032 } 6033 } 6034 6035 if (CmpInst::isIntPredicate(Pred)) 6036 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6037 6038 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6039 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6040 // semantics than minNum. Be conservative in such case. 6041 if (NaNBehavior != SPNB_RETURNS_ANY || 6042 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6043 !isKnownNonZero(CmpRHS))) 6044 return {SPF_UNKNOWN, SPNB_NA, false}; 6045 6046 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6047 } 6048 6049 /// Helps to match a select pattern in case of a type mismatch. 6050 /// 6051 /// The function processes the case when type of true and false values of a 6052 /// select instruction differs from type of the cmp instruction operands because 6053 /// of a cast instruction. The function checks if it is legal to move the cast 6054 /// operation after "select". If yes, it returns the new second value of 6055 /// "select" (with the assumption that cast is moved): 6056 /// 1. As operand of cast instruction when both values of "select" are same cast 6057 /// instructions. 6058 /// 2. As restored constant (by applying reverse cast operation) when the first 6059 /// value of the "select" is a cast operation and the second value is a 6060 /// constant. 6061 /// NOTE: We return only the new second value because the first value could be 6062 /// accessed as operand of cast instruction. 6063 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6064 Instruction::CastOps *CastOp) { 6065 auto *Cast1 = dyn_cast<CastInst>(V1); 6066 if (!Cast1) 6067 return nullptr; 6068 6069 *CastOp = Cast1->getOpcode(); 6070 Type *SrcTy = Cast1->getSrcTy(); 6071 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6072 // If V1 and V2 are both the same cast from the same type, look through V1. 6073 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6074 return Cast2->getOperand(0); 6075 return nullptr; 6076 } 6077 6078 auto *C = dyn_cast<Constant>(V2); 6079 if (!C) 6080 return nullptr; 6081 6082 Constant *CastedTo = nullptr; 6083 switch (*CastOp) { 6084 case Instruction::ZExt: 6085 if (CmpI->isUnsigned()) 6086 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6087 break; 6088 case Instruction::SExt: 6089 if (CmpI->isSigned()) 6090 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6091 break; 6092 case Instruction::Trunc: 6093 Constant *CmpConst; 6094 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6095 CmpConst->getType() == SrcTy) { 6096 // Here we have the following case: 6097 // 6098 // %cond = cmp iN %x, CmpConst 6099 // %tr = trunc iN %x to iK 6100 // %narrowsel = select i1 %cond, iK %t, iK C 6101 // 6102 // We can always move trunc after select operation: 6103 // 6104 // %cond = cmp iN %x, CmpConst 6105 // %widesel = select i1 %cond, iN %x, iN CmpConst 6106 // %tr = trunc iN %widesel to iK 6107 // 6108 // Note that C could be extended in any way because we don't care about 6109 // upper bits after truncation. It can't be abs pattern, because it would 6110 // look like: 6111 // 6112 // select i1 %cond, x, -x. 6113 // 6114 // So only min/max pattern could be matched. Such match requires widened C 6115 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6116 // CmpConst == C is checked below. 6117 CastedTo = CmpConst; 6118 } else { 6119 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6120 } 6121 break; 6122 case Instruction::FPTrunc: 6123 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6124 break; 6125 case Instruction::FPExt: 6126 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6127 break; 6128 case Instruction::FPToUI: 6129 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6130 break; 6131 case Instruction::FPToSI: 6132 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6133 break; 6134 case Instruction::UIToFP: 6135 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6136 break; 6137 case Instruction::SIToFP: 6138 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6139 break; 6140 default: 6141 break; 6142 } 6143 6144 if (!CastedTo) 6145 return nullptr; 6146 6147 // Make sure the cast doesn't lose any information. 6148 Constant *CastedBack = 6149 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6150 if (CastedBack != C) 6151 return nullptr; 6152 6153 return CastedTo; 6154 } 6155 6156 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6157 Instruction::CastOps *CastOp, 6158 unsigned Depth) { 6159 if (Depth >= MaxAnalysisRecursionDepth) 6160 return {SPF_UNKNOWN, SPNB_NA, false}; 6161 6162 SelectInst *SI = dyn_cast<SelectInst>(V); 6163 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6164 6165 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6166 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6167 6168 Value *TrueVal = SI->getTrueValue(); 6169 Value *FalseVal = SI->getFalseValue(); 6170 6171 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6172 CastOp, Depth); 6173 } 6174 6175 SelectPatternResult llvm::matchDecomposedSelectPattern( 6176 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6177 Instruction::CastOps *CastOp, unsigned Depth) { 6178 CmpInst::Predicate Pred = CmpI->getPredicate(); 6179 Value *CmpLHS = CmpI->getOperand(0); 6180 Value *CmpRHS = CmpI->getOperand(1); 6181 FastMathFlags FMF; 6182 if (isa<FPMathOperator>(CmpI)) 6183 FMF = CmpI->getFastMathFlags(); 6184 6185 // Bail out early. 6186 if (CmpI->isEquality()) 6187 return {SPF_UNKNOWN, SPNB_NA, false}; 6188 6189 // Deal with type mismatches. 6190 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6191 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6192 // If this is a potential fmin/fmax with a cast to integer, then ignore 6193 // -0.0 because there is no corresponding integer value. 6194 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6195 FMF.setNoSignedZeros(); 6196 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6197 cast<CastInst>(TrueVal)->getOperand(0), C, 6198 LHS, RHS, Depth); 6199 } 6200 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6201 // If this is a potential fmin/fmax with a cast to integer, then ignore 6202 // -0.0 because there is no corresponding integer value. 6203 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6204 FMF.setNoSignedZeros(); 6205 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6206 C, cast<CastInst>(FalseVal)->getOperand(0), 6207 LHS, RHS, Depth); 6208 } 6209 } 6210 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6211 LHS, RHS, Depth); 6212 } 6213 6214 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6215 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6216 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6217 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6218 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6219 if (SPF == SPF_FMINNUM) 6220 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6221 if (SPF == SPF_FMAXNUM) 6222 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6223 llvm_unreachable("unhandled!"); 6224 } 6225 6226 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6227 if (SPF == SPF_SMIN) return SPF_SMAX; 6228 if (SPF == SPF_UMIN) return SPF_UMAX; 6229 if (SPF == SPF_SMAX) return SPF_SMIN; 6230 if (SPF == SPF_UMAX) return SPF_UMIN; 6231 llvm_unreachable("unhandled!"); 6232 } 6233 6234 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6235 switch (MinMaxID) { 6236 case Intrinsic::smax: return Intrinsic::smin; 6237 case Intrinsic::smin: return Intrinsic::smax; 6238 case Intrinsic::umax: return Intrinsic::umin; 6239 case Intrinsic::umin: return Intrinsic::umax; 6240 default: llvm_unreachable("Unexpected intrinsic"); 6241 } 6242 } 6243 6244 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6245 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6246 } 6247 6248 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6249 switch (SPF) { 6250 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6251 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6252 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6253 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6254 default: llvm_unreachable("Unexpected flavor"); 6255 } 6256 } 6257 6258 std::pair<Intrinsic::ID, bool> 6259 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6260 // Check if VL contains select instructions that can be folded into a min/max 6261 // vector intrinsic and return the intrinsic if it is possible. 6262 // TODO: Support floating point min/max. 6263 bool AllCmpSingleUse = true; 6264 SelectPatternResult SelectPattern; 6265 SelectPattern.Flavor = SPF_UNKNOWN; 6266 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6267 Value *LHS, *RHS; 6268 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6269 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6270 CurrentPattern.Flavor == SPF_FMINNUM || 6271 CurrentPattern.Flavor == SPF_FMAXNUM || 6272 !I->getType()->isIntOrIntVectorTy()) 6273 return false; 6274 if (SelectPattern.Flavor != SPF_UNKNOWN && 6275 SelectPattern.Flavor != CurrentPattern.Flavor) 6276 return false; 6277 SelectPattern = CurrentPattern; 6278 AllCmpSingleUse &= 6279 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6280 return true; 6281 })) { 6282 switch (SelectPattern.Flavor) { 6283 case SPF_SMIN: 6284 return {Intrinsic::smin, AllCmpSingleUse}; 6285 case SPF_UMIN: 6286 return {Intrinsic::umin, AllCmpSingleUse}; 6287 case SPF_SMAX: 6288 return {Intrinsic::smax, AllCmpSingleUse}; 6289 case SPF_UMAX: 6290 return {Intrinsic::umax, AllCmpSingleUse}; 6291 default: 6292 llvm_unreachable("unexpected select pattern flavor"); 6293 } 6294 } 6295 return {Intrinsic::not_intrinsic, false}; 6296 } 6297 6298 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6299 Value *&Start, Value *&Step) { 6300 // Handle the case of a simple two-predecessor recurrence PHI. 6301 // There's a lot more that could theoretically be done here, but 6302 // this is sufficient to catch some interesting cases. 6303 if (P->getNumIncomingValues() != 2) 6304 return false; 6305 6306 for (unsigned i = 0; i != 2; ++i) { 6307 Value *L = P->getIncomingValue(i); 6308 Value *R = P->getIncomingValue(!i); 6309 Operator *LU = dyn_cast<Operator>(L); 6310 if (!LU) 6311 continue; 6312 unsigned Opcode = LU->getOpcode(); 6313 6314 switch (Opcode) { 6315 default: 6316 continue; 6317 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6318 case Instruction::LShr: 6319 case Instruction::AShr: 6320 case Instruction::Shl: 6321 case Instruction::Add: 6322 case Instruction::Sub: 6323 case Instruction::And: 6324 case Instruction::Or: 6325 case Instruction::Mul: { 6326 Value *LL = LU->getOperand(0); 6327 Value *LR = LU->getOperand(1); 6328 // Find a recurrence. 6329 if (LL == P) 6330 L = LR; 6331 else if (LR == P) 6332 L = LL; 6333 else 6334 continue; // Check for recurrence with L and R flipped. 6335 6336 break; // Match! 6337 } 6338 }; 6339 6340 // We have matched a recurrence of the form: 6341 // %iv = [R, %entry], [%iv.next, %backedge] 6342 // %iv.next = binop %iv, L 6343 // OR 6344 // %iv = [R, %entry], [%iv.next, %backedge] 6345 // %iv.next = binop L, %iv 6346 BO = cast<BinaryOperator>(LU); 6347 Start = R; 6348 Step = L; 6349 return true; 6350 } 6351 return false; 6352 } 6353 6354 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6355 Value *&Start, Value *&Step) { 6356 BinaryOperator *BO = nullptr; 6357 P = dyn_cast<PHINode>(I->getOperand(0)); 6358 if (!P) 6359 P = dyn_cast<PHINode>(I->getOperand(1)); 6360 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6361 } 6362 6363 /// Return true if "icmp Pred LHS RHS" is always true. 6364 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6365 const Value *RHS, const DataLayout &DL, 6366 unsigned Depth) { 6367 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6368 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6369 return true; 6370 6371 switch (Pred) { 6372 default: 6373 return false; 6374 6375 case CmpInst::ICMP_SLE: { 6376 const APInt *C; 6377 6378 // LHS s<= LHS +_{nsw} C if C >= 0 6379 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6380 return !C->isNegative(); 6381 return false; 6382 } 6383 6384 case CmpInst::ICMP_ULE: { 6385 const APInt *C; 6386 6387 // LHS u<= LHS +_{nuw} C for any C 6388 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6389 return true; 6390 6391 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6392 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6393 const Value *&X, 6394 const APInt *&CA, const APInt *&CB) { 6395 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6396 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6397 return true; 6398 6399 // If X & C == 0 then (X | C) == X +_{nuw} C 6400 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6401 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6402 KnownBits Known(CA->getBitWidth()); 6403 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6404 /*CxtI*/ nullptr, /*DT*/ nullptr); 6405 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6406 return true; 6407 } 6408 6409 return false; 6410 }; 6411 6412 const Value *X; 6413 const APInt *CLHS, *CRHS; 6414 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6415 return CLHS->ule(*CRHS); 6416 6417 return false; 6418 } 6419 } 6420 } 6421 6422 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6423 /// ALHS ARHS" is true. Otherwise, return None. 6424 static Optional<bool> 6425 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6426 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6427 const DataLayout &DL, unsigned Depth) { 6428 switch (Pred) { 6429 default: 6430 return None; 6431 6432 case CmpInst::ICMP_SLT: 6433 case CmpInst::ICMP_SLE: 6434 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6435 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6436 return true; 6437 return None; 6438 6439 case CmpInst::ICMP_ULT: 6440 case CmpInst::ICMP_ULE: 6441 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6442 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6443 return true; 6444 return None; 6445 } 6446 } 6447 6448 /// Return true if the operands of the two compares match. IsSwappedOps is true 6449 /// when the operands match, but are swapped. 6450 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6451 const Value *BLHS, const Value *BRHS, 6452 bool &IsSwappedOps) { 6453 6454 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6455 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6456 return IsMatchingOps || IsSwappedOps; 6457 } 6458 6459 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6460 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6461 /// Otherwise, return None if we can't infer anything. 6462 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6463 CmpInst::Predicate BPred, 6464 bool AreSwappedOps) { 6465 // Canonicalize the predicate as if the operands were not commuted. 6466 if (AreSwappedOps) 6467 BPred = ICmpInst::getSwappedPredicate(BPred); 6468 6469 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6470 return true; 6471 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6472 return false; 6473 6474 return None; 6475 } 6476 6477 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6478 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6479 /// Otherwise, return None if we can't infer anything. 6480 static Optional<bool> 6481 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6482 const ConstantInt *C1, 6483 CmpInst::Predicate BPred, 6484 const ConstantInt *C2) { 6485 ConstantRange DomCR = 6486 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6487 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6488 ConstantRange Intersection = DomCR.intersectWith(CR); 6489 ConstantRange Difference = DomCR.difference(CR); 6490 if (Intersection.isEmptySet()) 6491 return false; 6492 if (Difference.isEmptySet()) 6493 return true; 6494 return None; 6495 } 6496 6497 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6498 /// false. Otherwise, return None if we can't infer anything. 6499 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6500 CmpInst::Predicate BPred, 6501 const Value *BLHS, const Value *BRHS, 6502 const DataLayout &DL, bool LHSIsTrue, 6503 unsigned Depth) { 6504 Value *ALHS = LHS->getOperand(0); 6505 Value *ARHS = LHS->getOperand(1); 6506 6507 // The rest of the logic assumes the LHS condition is true. If that's not the 6508 // case, invert the predicate to make it so. 6509 CmpInst::Predicate APred = 6510 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6511 6512 // Can we infer anything when the two compares have matching operands? 6513 bool AreSwappedOps; 6514 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6515 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6516 APred, BPred, AreSwappedOps)) 6517 return Implication; 6518 // No amount of additional analysis will infer the second condition, so 6519 // early exit. 6520 return None; 6521 } 6522 6523 // Can we infer anything when the LHS operands match and the RHS operands are 6524 // constants (not necessarily matching)? 6525 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6526 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6527 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6528 return Implication; 6529 // No amount of additional analysis will infer the second condition, so 6530 // early exit. 6531 return None; 6532 } 6533 6534 if (APred == BPred) 6535 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6536 return None; 6537 } 6538 6539 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6540 /// false. Otherwise, return None if we can't infer anything. We expect the 6541 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6542 static Optional<bool> 6543 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6544 const Value *RHSOp0, const Value *RHSOp1, 6545 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6546 // The LHS must be an 'or', 'and', or a 'select' instruction. 6547 assert((LHS->getOpcode() == Instruction::And || 6548 LHS->getOpcode() == Instruction::Or || 6549 LHS->getOpcode() == Instruction::Select) && 6550 "Expected LHS to be 'and', 'or', or 'select'."); 6551 6552 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6553 6554 // If the result of an 'or' is false, then we know both legs of the 'or' are 6555 // false. Similarly, if the result of an 'and' is true, then we know both 6556 // legs of the 'and' are true. 6557 const Value *ALHS, *ARHS; 6558 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6559 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6560 // FIXME: Make this non-recursion. 6561 if (Optional<bool> Implication = isImpliedCondition( 6562 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6563 return Implication; 6564 if (Optional<bool> Implication = isImpliedCondition( 6565 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6566 return Implication; 6567 return None; 6568 } 6569 return None; 6570 } 6571 6572 Optional<bool> 6573 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6574 const Value *RHSOp0, const Value *RHSOp1, 6575 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6576 // Bail out when we hit the limit. 6577 if (Depth == MaxAnalysisRecursionDepth) 6578 return None; 6579 6580 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6581 // example. 6582 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6583 return None; 6584 6585 Type *OpTy = LHS->getType(); 6586 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6587 6588 // FIXME: Extending the code below to handle vectors. 6589 if (OpTy->isVectorTy()) 6590 return None; 6591 6592 assert(OpTy->isIntegerTy(1) && "implied by above"); 6593 6594 // Both LHS and RHS are icmps. 6595 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6596 if (LHSCmp) 6597 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6598 Depth); 6599 6600 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6601 /// the RHS to be an icmp. 6602 /// FIXME: Add support for and/or/select on the RHS. 6603 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6604 if ((LHSI->getOpcode() == Instruction::And || 6605 LHSI->getOpcode() == Instruction::Or || 6606 LHSI->getOpcode() == Instruction::Select)) 6607 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6608 Depth); 6609 } 6610 return None; 6611 } 6612 6613 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6614 const DataLayout &DL, bool LHSIsTrue, 6615 unsigned Depth) { 6616 // LHS ==> RHS by definition 6617 if (LHS == RHS) 6618 return LHSIsTrue; 6619 6620 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6621 if (RHSCmp) 6622 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6623 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6624 LHSIsTrue, Depth); 6625 return None; 6626 } 6627 6628 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6629 // condition dominating ContextI or nullptr, if no condition is found. 6630 static std::pair<Value *, bool> 6631 getDomPredecessorCondition(const Instruction *ContextI) { 6632 if (!ContextI || !ContextI->getParent()) 6633 return {nullptr, false}; 6634 6635 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6636 // dominator tree (eg, from a SimplifyQuery) instead? 6637 const BasicBlock *ContextBB = ContextI->getParent(); 6638 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6639 if (!PredBB) 6640 return {nullptr, false}; 6641 6642 // We need a conditional branch in the predecessor. 6643 Value *PredCond; 6644 BasicBlock *TrueBB, *FalseBB; 6645 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6646 return {nullptr, false}; 6647 6648 // The branch should get simplified. Don't bother simplifying this condition. 6649 if (TrueBB == FalseBB) 6650 return {nullptr, false}; 6651 6652 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6653 "Predecessor block does not point to successor?"); 6654 6655 // Is this condition implied by the predecessor condition? 6656 return {PredCond, TrueBB == ContextBB}; 6657 } 6658 6659 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6660 const Instruction *ContextI, 6661 const DataLayout &DL) { 6662 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6663 auto PredCond = getDomPredecessorCondition(ContextI); 6664 if (PredCond.first) 6665 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6666 return None; 6667 } 6668 6669 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6670 const Value *LHS, const Value *RHS, 6671 const Instruction *ContextI, 6672 const DataLayout &DL) { 6673 auto PredCond = getDomPredecessorCondition(ContextI); 6674 if (PredCond.first) 6675 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6676 PredCond.second); 6677 return None; 6678 } 6679 6680 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6681 APInt &Upper, const InstrInfoQuery &IIQ, 6682 bool PreferSignedRange) { 6683 unsigned Width = Lower.getBitWidth(); 6684 const APInt *C; 6685 switch (BO.getOpcode()) { 6686 case Instruction::Add: 6687 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6688 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6689 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6690 6691 // If the caller expects a signed compare, then try to use a signed range. 6692 // Otherwise if both no-wraps are set, use the unsigned range because it 6693 // is never larger than the signed range. Example: 6694 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6695 if (PreferSignedRange && HasNSW && HasNUW) 6696 HasNUW = false; 6697 6698 if (HasNUW) { 6699 // 'add nuw x, C' produces [C, UINT_MAX]. 6700 Lower = *C; 6701 } else if (HasNSW) { 6702 if (C->isNegative()) { 6703 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6704 Lower = APInt::getSignedMinValue(Width); 6705 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6706 } else { 6707 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6708 Lower = APInt::getSignedMinValue(Width) + *C; 6709 Upper = APInt::getSignedMaxValue(Width) + 1; 6710 } 6711 } 6712 } 6713 break; 6714 6715 case Instruction::And: 6716 if (match(BO.getOperand(1), m_APInt(C))) 6717 // 'and x, C' produces [0, C]. 6718 Upper = *C + 1; 6719 break; 6720 6721 case Instruction::Or: 6722 if (match(BO.getOperand(1), m_APInt(C))) 6723 // 'or x, C' produces [C, UINT_MAX]. 6724 Lower = *C; 6725 break; 6726 6727 case Instruction::AShr: 6728 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6729 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6730 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6731 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6732 } else if (match(BO.getOperand(0), m_APInt(C))) { 6733 unsigned ShiftAmount = Width - 1; 6734 if (!C->isZero() && IIQ.isExact(&BO)) 6735 ShiftAmount = C->countTrailingZeros(); 6736 if (C->isNegative()) { 6737 // 'ashr C, x' produces [C, C >> (Width-1)] 6738 Lower = *C; 6739 Upper = C->ashr(ShiftAmount) + 1; 6740 } else { 6741 // 'ashr C, x' produces [C >> (Width-1), C] 6742 Lower = C->ashr(ShiftAmount); 6743 Upper = *C + 1; 6744 } 6745 } 6746 break; 6747 6748 case Instruction::LShr: 6749 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6750 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6751 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6752 } else if (match(BO.getOperand(0), m_APInt(C))) { 6753 // 'lshr C, x' produces [C >> (Width-1), C]. 6754 unsigned ShiftAmount = Width - 1; 6755 if (!C->isZero() && IIQ.isExact(&BO)) 6756 ShiftAmount = C->countTrailingZeros(); 6757 Lower = C->lshr(ShiftAmount); 6758 Upper = *C + 1; 6759 } 6760 break; 6761 6762 case Instruction::Shl: 6763 if (match(BO.getOperand(0), m_APInt(C))) { 6764 if (IIQ.hasNoUnsignedWrap(&BO)) { 6765 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6766 Lower = *C; 6767 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6768 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6769 if (C->isNegative()) { 6770 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6771 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6772 Lower = C->shl(ShiftAmount); 6773 Upper = *C + 1; 6774 } else { 6775 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6776 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6777 Lower = *C; 6778 Upper = C->shl(ShiftAmount) + 1; 6779 } 6780 } 6781 } 6782 break; 6783 6784 case Instruction::SDiv: 6785 if (match(BO.getOperand(1), m_APInt(C))) { 6786 APInt IntMin = APInt::getSignedMinValue(Width); 6787 APInt IntMax = APInt::getSignedMaxValue(Width); 6788 if (C->isAllOnes()) { 6789 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6790 // where C != -1 and C != 0 and C != 1 6791 Lower = IntMin + 1; 6792 Upper = IntMax + 1; 6793 } else if (C->countLeadingZeros() < Width - 1) { 6794 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6795 // where C != -1 and C != 0 and C != 1 6796 Lower = IntMin.sdiv(*C); 6797 Upper = IntMax.sdiv(*C); 6798 if (Lower.sgt(Upper)) 6799 std::swap(Lower, Upper); 6800 Upper = Upper + 1; 6801 assert(Upper != Lower && "Upper part of range has wrapped!"); 6802 } 6803 } else if (match(BO.getOperand(0), m_APInt(C))) { 6804 if (C->isMinSignedValue()) { 6805 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6806 Lower = *C; 6807 Upper = Lower.lshr(1) + 1; 6808 } else { 6809 // 'sdiv C, x' produces [-|C|, |C|]. 6810 Upper = C->abs() + 1; 6811 Lower = (-Upper) + 1; 6812 } 6813 } 6814 break; 6815 6816 case Instruction::UDiv: 6817 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6818 // 'udiv x, C' produces [0, UINT_MAX / C]. 6819 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6820 } else if (match(BO.getOperand(0), m_APInt(C))) { 6821 // 'udiv C, x' produces [0, C]. 6822 Upper = *C + 1; 6823 } 6824 break; 6825 6826 case Instruction::SRem: 6827 if (match(BO.getOperand(1), m_APInt(C))) { 6828 // 'srem x, C' produces (-|C|, |C|). 6829 Upper = C->abs(); 6830 Lower = (-Upper) + 1; 6831 } 6832 break; 6833 6834 case Instruction::URem: 6835 if (match(BO.getOperand(1), m_APInt(C))) 6836 // 'urem x, C' produces [0, C). 6837 Upper = *C; 6838 break; 6839 6840 default: 6841 break; 6842 } 6843 } 6844 6845 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6846 APInt &Upper) { 6847 unsigned Width = Lower.getBitWidth(); 6848 const APInt *C; 6849 switch (II.getIntrinsicID()) { 6850 case Intrinsic::ctpop: 6851 case Intrinsic::ctlz: 6852 case Intrinsic::cttz: 6853 // Maximum of set/clear bits is the bit width. 6854 assert(Lower == 0 && "Expected lower bound to be zero"); 6855 Upper = Width + 1; 6856 break; 6857 case Intrinsic::uadd_sat: 6858 // uadd.sat(x, C) produces [C, UINT_MAX]. 6859 if (match(II.getOperand(0), m_APInt(C)) || 6860 match(II.getOperand(1), m_APInt(C))) 6861 Lower = *C; 6862 break; 6863 case Intrinsic::sadd_sat: 6864 if (match(II.getOperand(0), m_APInt(C)) || 6865 match(II.getOperand(1), m_APInt(C))) { 6866 if (C->isNegative()) { 6867 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6868 Lower = APInt::getSignedMinValue(Width); 6869 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6870 } else { 6871 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6872 Lower = APInt::getSignedMinValue(Width) + *C; 6873 Upper = APInt::getSignedMaxValue(Width) + 1; 6874 } 6875 } 6876 break; 6877 case Intrinsic::usub_sat: 6878 // usub.sat(C, x) produces [0, C]. 6879 if (match(II.getOperand(0), m_APInt(C))) 6880 Upper = *C + 1; 6881 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6882 else if (match(II.getOperand(1), m_APInt(C))) 6883 Upper = APInt::getMaxValue(Width) - *C + 1; 6884 break; 6885 case Intrinsic::ssub_sat: 6886 if (match(II.getOperand(0), m_APInt(C))) { 6887 if (C->isNegative()) { 6888 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6889 Lower = APInt::getSignedMinValue(Width); 6890 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6891 } else { 6892 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6893 Lower = *C - APInt::getSignedMaxValue(Width); 6894 Upper = APInt::getSignedMaxValue(Width) + 1; 6895 } 6896 } else if (match(II.getOperand(1), m_APInt(C))) { 6897 if (C->isNegative()) { 6898 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6899 Lower = APInt::getSignedMinValue(Width) - *C; 6900 Upper = APInt::getSignedMaxValue(Width) + 1; 6901 } else { 6902 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6903 Lower = APInt::getSignedMinValue(Width); 6904 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6905 } 6906 } 6907 break; 6908 case Intrinsic::umin: 6909 case Intrinsic::umax: 6910 case Intrinsic::smin: 6911 case Intrinsic::smax: 6912 if (!match(II.getOperand(0), m_APInt(C)) && 6913 !match(II.getOperand(1), m_APInt(C))) 6914 break; 6915 6916 switch (II.getIntrinsicID()) { 6917 case Intrinsic::umin: 6918 Upper = *C + 1; 6919 break; 6920 case Intrinsic::umax: 6921 Lower = *C; 6922 break; 6923 case Intrinsic::smin: 6924 Lower = APInt::getSignedMinValue(Width); 6925 Upper = *C + 1; 6926 break; 6927 case Intrinsic::smax: 6928 Lower = *C; 6929 Upper = APInt::getSignedMaxValue(Width) + 1; 6930 break; 6931 default: 6932 llvm_unreachable("Must be min/max intrinsic"); 6933 } 6934 break; 6935 case Intrinsic::abs: 6936 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6937 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6938 if (match(II.getOperand(1), m_One())) 6939 Upper = APInt::getSignedMaxValue(Width) + 1; 6940 else 6941 Upper = APInt::getSignedMinValue(Width) + 1; 6942 break; 6943 default: 6944 break; 6945 } 6946 } 6947 6948 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6949 APInt &Upper, const InstrInfoQuery &IIQ) { 6950 const Value *LHS = nullptr, *RHS = nullptr; 6951 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6952 if (R.Flavor == SPF_UNKNOWN) 6953 return; 6954 6955 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6956 6957 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6958 // If the negation part of the abs (in RHS) has the NSW flag, 6959 // then the result of abs(X) is [0..SIGNED_MAX], 6960 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6961 Lower = APInt::getZero(BitWidth); 6962 if (match(RHS, m_Neg(m_Specific(LHS))) && 6963 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6964 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6965 else 6966 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6967 return; 6968 } 6969 6970 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6971 // The result of -abs(X) is <= 0. 6972 Lower = APInt::getSignedMinValue(BitWidth); 6973 Upper = APInt(BitWidth, 1); 6974 return; 6975 } 6976 6977 const APInt *C; 6978 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6979 return; 6980 6981 switch (R.Flavor) { 6982 case SPF_UMIN: 6983 Upper = *C + 1; 6984 break; 6985 case SPF_UMAX: 6986 Lower = *C; 6987 break; 6988 case SPF_SMIN: 6989 Lower = APInt::getSignedMinValue(BitWidth); 6990 Upper = *C + 1; 6991 break; 6992 case SPF_SMAX: 6993 Lower = *C; 6994 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6995 break; 6996 default: 6997 break; 6998 } 6999 } 7000 7001 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 7002 // The maximum representable value of a half is 65504. For floats the maximum 7003 // value is 3.4e38 which requires roughly 129 bits. 7004 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 7005 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 7006 return; 7007 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 7008 Lower = APInt(BitWidth, -65504); 7009 Upper = APInt(BitWidth, 65505); 7010 } 7011 7012 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 7013 // For a fptoui the lower limit is left as 0. 7014 Upper = APInt(BitWidth, 65505); 7015 } 7016 } 7017 7018 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 7019 bool UseInstrInfo, AssumptionCache *AC, 7020 const Instruction *CtxI, 7021 const DominatorTree *DT, 7022 unsigned Depth) { 7023 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7024 7025 if (Depth == MaxAnalysisRecursionDepth) 7026 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7027 7028 const APInt *C; 7029 if (match(V, m_APInt(C))) 7030 return ConstantRange(*C); 7031 7032 InstrInfoQuery IIQ(UseInstrInfo); 7033 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7034 APInt Lower = APInt(BitWidth, 0); 7035 APInt Upper = APInt(BitWidth, 0); 7036 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7037 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7038 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7039 setLimitsForIntrinsic(*II, Lower, Upper); 7040 else if (auto *SI = dyn_cast<SelectInst>(V)) 7041 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7042 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7043 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7044 7045 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7046 7047 if (auto *I = dyn_cast<Instruction>(V)) 7048 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7049 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7050 7051 if (CtxI && AC) { 7052 // Try to restrict the range based on information from assumptions. 7053 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7054 if (!AssumeVH) 7055 continue; 7056 CallInst *I = cast<CallInst>(AssumeVH); 7057 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7058 "Got assumption for the wrong function!"); 7059 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7060 "must be an assume intrinsic"); 7061 7062 if (!isValidAssumeForContext(I, CtxI, DT)) 7063 continue; 7064 Value *Arg = I->getArgOperand(0); 7065 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7066 // Currently we just use information from comparisons. 7067 if (!Cmp || Cmp->getOperand(0) != V) 7068 continue; 7069 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7070 ConstantRange RHS = 7071 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7072 UseInstrInfo, AC, I, DT, Depth + 1); 7073 CR = CR.intersectWith( 7074 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7075 } 7076 } 7077 7078 return CR; 7079 } 7080 7081 static Optional<int64_t> 7082 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7083 // Skip over the first indices. 7084 gep_type_iterator GTI = gep_type_begin(GEP); 7085 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7086 /*skip along*/; 7087 7088 // Compute the offset implied by the rest of the indices. 7089 int64_t Offset = 0; 7090 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7091 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7092 if (!OpC) 7093 return None; 7094 if (OpC->isZero()) 7095 continue; // No offset. 7096 7097 // Handle struct indices, which add their field offset to the pointer. 7098 if (StructType *STy = GTI.getStructTypeOrNull()) { 7099 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7100 continue; 7101 } 7102 7103 // Otherwise, we have a sequential type like an array or fixed-length 7104 // vector. Multiply the index by the ElementSize. 7105 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7106 if (Size.isScalable()) 7107 return None; 7108 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7109 } 7110 7111 return Offset; 7112 } 7113 7114 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7115 const DataLayout &DL) { 7116 Ptr1 = Ptr1->stripPointerCasts(); 7117 Ptr2 = Ptr2->stripPointerCasts(); 7118 7119 // Handle the trivial case first. 7120 if (Ptr1 == Ptr2) { 7121 return 0; 7122 } 7123 7124 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7125 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7126 7127 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7128 // as in "P" and "gep P, 1". 7129 // Also do this iteratively to handle the the following case: 7130 // Ptr_t1 = GEP Ptr1, c1 7131 // Ptr_t2 = GEP Ptr_t1, c2 7132 // Ptr2 = GEP Ptr_t2, c3 7133 // where we will return c1+c2+c3. 7134 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7135 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7136 // are the same, and return the difference between offsets. 7137 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7138 const Value *Ptr) -> Optional<int64_t> { 7139 const GEPOperator *GEP_T = GEP; 7140 int64_t OffsetVal = 0; 7141 bool HasSameBase = false; 7142 while (GEP_T) { 7143 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7144 if (!Offset) 7145 return None; 7146 OffsetVal += *Offset; 7147 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7148 if (Op0 == Ptr) { 7149 HasSameBase = true; 7150 break; 7151 } 7152 GEP_T = dyn_cast<GEPOperator>(Op0); 7153 } 7154 if (!HasSameBase) 7155 return None; 7156 return OffsetVal; 7157 }; 7158 7159 if (GEP1) { 7160 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7161 if (Offset) 7162 return -*Offset; 7163 } 7164 if (GEP2) { 7165 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7166 if (Offset) 7167 return Offset; 7168 } 7169 7170 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7171 // base. After that base, they may have some number of common (and 7172 // potentially variable) indices. After that they handle some constant 7173 // offset, which determines their offset from each other. At this point, we 7174 // handle no other case. 7175 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7176 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7177 return None; 7178 7179 // Skip any common indices and track the GEP types. 7180 unsigned Idx = 1; 7181 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7182 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7183 break; 7184 7185 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7186 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7187 if (!Offset1 || !Offset2) 7188 return None; 7189 return *Offset2 - *Offset1; 7190 } 7191