1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Support/GetElementPtrTypeIterator.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/PatternMatch.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include <cstring> 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 const unsigned MaxDepth = 6; 34 35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 36 /// unknown returns 0). For vector types, returns the element type's bitwidth. 37 static unsigned getBitWidth(Type *Ty, const TargetData *TD) { 38 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 39 return BitWidth; 40 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 41 return TD ? TD->getPointerSizeInBits() : 0; 42 } 43 44 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 45 const APInt &Mask, 46 APInt &KnownZero, APInt &KnownOne, 47 APInt &KnownZero2, APInt &KnownOne2, 48 const TargetData *TD, unsigned Depth) { 49 if (!Add) { 50 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 51 // We know that the top bits of C-X are clear if X contains less bits 52 // than C (i.e. no wrap-around can happen). For example, 20-X is 53 // positive if we can prove that X is >= 0 and < 16. 54 if (!CLHS->getValue().isNegative()) { 55 unsigned BitWidth = Mask.getBitWidth(); 56 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 57 // NLZ can't be BitWidth with no sign bit 58 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 59 llvm::ComputeMaskedBits(Op1, MaskV, KnownZero2, KnownOne2, TD, Depth+1); 60 61 // If all of the MaskV bits are known to be zero, then we know the 62 // output top bits are zero, because we now know that the output is 63 // from [0-C]. 64 if ((KnownZero2 & MaskV) == MaskV) { 65 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 66 // Top bits known zero. 67 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 68 } 69 } 70 } 71 } 72 73 unsigned BitWidth = Mask.getBitWidth(); 74 75 // If one of the operands has trailing zeros, then the bits that the 76 // other operand has in those bit positions will be preserved in the 77 // result. For an add, this works with either operand. For a subtract, 78 // this only works if the known zeros are in the right operand. 79 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 80 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 81 BitWidth - Mask.countLeadingZeros()); 82 llvm::ComputeMaskedBits(Op0, Mask2, LHSKnownZero, LHSKnownOne, TD, Depth+1); 83 assert((LHSKnownZero & LHSKnownOne) == 0 && 84 "Bits known to be one AND zero?"); 85 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 86 87 llvm::ComputeMaskedBits(Op1, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 88 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 89 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 90 91 // Determine which operand has more trailing zeros, and use that 92 // many bits from the other operand. 93 if (LHSKnownZeroOut > RHSKnownZeroOut) { 94 if (Add) { 95 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 96 KnownZero |= KnownZero2 & Mask; 97 KnownOne |= KnownOne2 & Mask; 98 } else { 99 // If the known zeros are in the left operand for a subtract, 100 // fall back to the minimum known zeros in both operands. 101 KnownZero |= APInt::getLowBitsSet(BitWidth, 102 std::min(LHSKnownZeroOut, 103 RHSKnownZeroOut)); 104 } 105 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 106 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 107 KnownZero |= LHSKnownZero & Mask; 108 KnownOne |= LHSKnownOne & Mask; 109 } 110 111 // Are we still trying to solve for the sign bit? 112 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()) { 113 if (NSW) { 114 if (Add) { 115 // Adding two positive numbers can't wrap into negative 116 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 117 KnownZero |= APInt::getSignBit(BitWidth); 118 // and adding two negative numbers can't wrap into positive. 119 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 120 KnownOne |= APInt::getSignBit(BitWidth); 121 } else { 122 // Subtracting a negative number from a positive one can't wrap 123 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 124 KnownZero |= APInt::getSignBit(BitWidth); 125 // neither can subtracting a positive number from a negative one. 126 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 127 KnownOne |= APInt::getSignBit(BitWidth); 128 } 129 } 130 } 131 } 132 133 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 134 /// known to be either zero or one and return them in the KnownZero/KnownOne 135 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 136 /// processing. 137 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 138 /// we cannot optimize based on the assumption that it is zero without changing 139 /// it to be an explicit zero. If we don't change it to zero, other code could 140 /// optimized based on the contradictory assumption that it is non-zero. 141 /// Because instcombine aggressively folds operations with undef args anyway, 142 /// this won't lose us code quality. 143 /// 144 /// This function is defined on values with integer type, values with pointer 145 /// type (but only if TD is non-null), and vectors of integers. In the case 146 /// where V is a vector, the mask, known zero, and known one values are the 147 /// same width as the vector element, and the bit is set only if it is true 148 /// for all of the elements in the vector. 149 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 150 APInt &KnownZero, APInt &KnownOne, 151 const TargetData *TD, unsigned Depth) { 152 assert(V && "No Value?"); 153 assert(Depth <= MaxDepth && "Limit Search Depth"); 154 unsigned BitWidth = Mask.getBitWidth(); 155 assert((V->getType()->isIntOrIntVectorTy() || 156 V->getType()->getScalarType()->isPointerTy()) && 157 "Not integer or pointer type!"); 158 assert((!TD || 159 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 160 (!V->getType()->isIntOrIntVectorTy() || 161 V->getType()->getScalarSizeInBits() == BitWidth) && 162 KnownZero.getBitWidth() == BitWidth && 163 KnownOne.getBitWidth() == BitWidth && 164 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 165 166 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 167 // We know all of the bits for a constant! 168 KnownOne = CI->getValue() & Mask; 169 KnownZero = ~KnownOne & Mask; 170 return; 171 } 172 // Null and aggregate-zero are all-zeros. 173 if (isa<ConstantPointerNull>(V) || 174 isa<ConstantAggregateZero>(V)) { 175 KnownOne.clearAllBits(); 176 KnownZero = Mask; 177 return; 178 } 179 // Handle a constant vector by taking the intersection of the known bits of 180 // each element. There is no real need to handle ConstantVector here, because 181 // we don't handle undef in any particularly useful way. 182 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 183 // We know that CDS must be a vector of integers. Take the intersection of 184 // each element. 185 KnownZero.setAllBits(); KnownOne.setAllBits(); 186 APInt Elt(KnownZero.getBitWidth(), 0); 187 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 188 Elt = CDS->getElementAsInteger(i); 189 KnownZero &= ~Elt; 190 KnownOne &= Elt; 191 } 192 return; 193 } 194 195 // The address of an aligned GlobalValue has trailing zeros. 196 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 197 unsigned Align = GV->getAlignment(); 198 if (Align == 0 && TD) { 199 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 200 Type *ObjectType = GVar->getType()->getElementType(); 201 if (ObjectType->isSized()) { 202 // If the object is defined in the current Module, we'll be giving 203 // it the preferred alignment. Otherwise, we have to assume that it 204 // may only have the minimum ABI alignment. 205 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 206 Align = TD->getPreferredAlignment(GVar); 207 else 208 Align = TD->getABITypeAlignment(ObjectType); 209 } 210 } 211 } 212 if (Align > 0) 213 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 214 CountTrailingZeros_32(Align)); 215 else 216 KnownZero.clearAllBits(); 217 KnownOne.clearAllBits(); 218 return; 219 } 220 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 221 // the bits of its aliasee. 222 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 223 if (GA->mayBeOverridden()) { 224 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 225 } else { 226 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 227 TD, Depth+1); 228 } 229 return; 230 } 231 232 if (Argument *A = dyn_cast<Argument>(V)) { 233 // Get alignment information off byval arguments if specified in the IR. 234 if (A->hasByValAttr()) 235 if (unsigned Align = A->getParamAlignment()) 236 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 237 CountTrailingZeros_32(Align)); 238 return; 239 } 240 241 // Start out not knowing anything. 242 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 243 244 if (Depth == MaxDepth || Mask == 0) 245 return; // Limit search depth. 246 247 Operator *I = dyn_cast<Operator>(V); 248 if (!I) return; 249 250 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 251 switch (I->getOpcode()) { 252 default: break; 253 case Instruction::And: { 254 // If either the LHS or the RHS are Zero, the result is zero. 255 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 256 APInt Mask2(Mask & ~KnownZero); 257 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 258 Depth+1); 259 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 260 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 261 262 // Output known-1 bits are only known if set in both the LHS & RHS. 263 KnownOne &= KnownOne2; 264 // Output known-0 are known to be clear if zero in either the LHS | RHS. 265 KnownZero |= KnownZero2; 266 return; 267 } 268 case Instruction::Or: { 269 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 270 APInt Mask2(Mask & ~KnownOne); 271 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 272 Depth+1); 273 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 274 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 275 276 // Output known-0 bits are only known if clear in both the LHS & RHS. 277 KnownZero &= KnownZero2; 278 // Output known-1 are known to be set if set in either the LHS | RHS. 279 KnownOne |= KnownOne2; 280 return; 281 } 282 case Instruction::Xor: { 283 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 284 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 285 Depth+1); 286 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 287 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 288 289 // Output known-0 bits are known if clear or set in both the LHS & RHS. 290 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 291 // Output known-1 are known to be set if set in only one of the LHS, RHS. 292 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 293 KnownZero = KnownZeroOut; 294 return; 295 } 296 case Instruction::Mul: { 297 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 298 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); 299 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 300 Depth+1); 301 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 302 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 303 304 bool isKnownNegative = false; 305 bool isKnownNonNegative = false; 306 // If the multiplication is known not to overflow, compute the sign bit. 307 if (Mask.isNegative() && 308 cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) { 309 Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0); 310 if (Op1 == Op2) { 311 // The product of a number with itself is non-negative. 312 isKnownNonNegative = true; 313 } else { 314 bool isKnownNonNegative1 = KnownZero.isNegative(); 315 bool isKnownNonNegative2 = KnownZero2.isNegative(); 316 bool isKnownNegative1 = KnownOne.isNegative(); 317 bool isKnownNegative2 = KnownOne2.isNegative(); 318 // The product of two numbers with the same sign is non-negative. 319 isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) || 320 (isKnownNonNegative1 && isKnownNonNegative2); 321 // The product of a negative number and a non-negative number is either 322 // negative or zero. 323 if (!isKnownNonNegative) 324 isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 && 325 isKnownNonZero(Op2, TD, Depth)) || 326 (isKnownNegative2 && isKnownNonNegative1 && 327 isKnownNonZero(Op1, TD, Depth)); 328 } 329 } 330 331 // If low bits are zero in either operand, output low known-0 bits. 332 // Also compute a conserative estimate for high known-0 bits. 333 // More trickiness is possible, but this is sufficient for the 334 // interesting case of alignment computation. 335 KnownOne.clearAllBits(); 336 unsigned TrailZ = KnownZero.countTrailingOnes() + 337 KnownZero2.countTrailingOnes(); 338 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 339 KnownZero2.countLeadingOnes(), 340 BitWidth) - BitWidth; 341 342 TrailZ = std::min(TrailZ, BitWidth); 343 LeadZ = std::min(LeadZ, BitWidth); 344 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 345 APInt::getHighBitsSet(BitWidth, LeadZ); 346 KnownZero &= Mask; 347 348 // Only make use of no-wrap flags if we failed to compute the sign bit 349 // directly. This matters if the multiplication always overflows, in 350 // which case we prefer to follow the result of the direct computation, 351 // though as the program is invoking undefined behaviour we can choose 352 // whatever we like here. 353 if (isKnownNonNegative && !KnownOne.isNegative()) 354 KnownZero.setBit(BitWidth - 1); 355 else if (isKnownNegative && !KnownZero.isNegative()) 356 KnownOne.setBit(BitWidth - 1); 357 358 return; 359 } 360 case Instruction::UDiv: { 361 // For the purposes of computing leading zeros we can conservatively 362 // treat a udiv as a logical right shift by the power of 2 known to 363 // be less than the denominator. 364 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 365 ComputeMaskedBits(I->getOperand(0), 366 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 367 unsigned LeadZ = KnownZero2.countLeadingOnes(); 368 369 KnownOne2.clearAllBits(); 370 KnownZero2.clearAllBits(); 371 ComputeMaskedBits(I->getOperand(1), 372 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 373 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 374 if (RHSUnknownLeadingOnes != BitWidth) 375 LeadZ = std::min(BitWidth, 376 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 377 378 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 379 return; 380 } 381 case Instruction::Select: 382 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 383 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 384 Depth+1); 385 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 386 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 387 388 // Only known if known in both the LHS and RHS. 389 KnownOne &= KnownOne2; 390 KnownZero &= KnownZero2; 391 return; 392 case Instruction::FPTrunc: 393 case Instruction::FPExt: 394 case Instruction::FPToUI: 395 case Instruction::FPToSI: 396 case Instruction::SIToFP: 397 case Instruction::UIToFP: 398 return; // Can't work with floating point. 399 case Instruction::PtrToInt: 400 case Instruction::IntToPtr: 401 // We can't handle these if we don't know the pointer size. 402 if (!TD) return; 403 // FALL THROUGH and handle them the same as zext/trunc. 404 case Instruction::ZExt: 405 case Instruction::Trunc: { 406 Type *SrcTy = I->getOperand(0)->getType(); 407 408 unsigned SrcBitWidth; 409 // Note that we handle pointer operands here because of inttoptr/ptrtoint 410 // which fall through here. 411 if (SrcTy->isPointerTy()) 412 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 413 else 414 SrcBitWidth = SrcTy->getScalarSizeInBits(); 415 416 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 417 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 418 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 419 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 420 Depth+1); 421 KnownZero = KnownZero.zextOrTrunc(BitWidth); 422 KnownOne = KnownOne.zextOrTrunc(BitWidth); 423 // Any top bits are known to be zero. 424 if (BitWidth > SrcBitWidth) 425 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 426 return; 427 } 428 case Instruction::BitCast: { 429 Type *SrcTy = I->getOperand(0)->getType(); 430 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 431 // TODO: For now, not handling conversions like: 432 // (bitcast i64 %x to <2 x i32>) 433 !I->getType()->isVectorTy()) { 434 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 435 Depth+1); 436 return; 437 } 438 break; 439 } 440 case Instruction::SExt: { 441 // Compute the bits in the result that are not present in the input. 442 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 443 444 APInt MaskIn = Mask.trunc(SrcBitWidth); 445 KnownZero = KnownZero.trunc(SrcBitWidth); 446 KnownOne = KnownOne.trunc(SrcBitWidth); 447 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 448 Depth+1); 449 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 450 KnownZero = KnownZero.zext(BitWidth); 451 KnownOne = KnownOne.zext(BitWidth); 452 453 // If the sign bit of the input is known set or clear, then we know the 454 // top bits of the result. 455 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 456 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 457 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 458 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 459 return; 460 } 461 case Instruction::Shl: 462 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 463 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 464 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 465 APInt Mask2(Mask.lshr(ShiftAmt)); 466 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 467 Depth+1); 468 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 469 KnownZero <<= ShiftAmt; 470 KnownOne <<= ShiftAmt; 471 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 472 return; 473 } 474 break; 475 case Instruction::LShr: 476 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 477 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 478 // Compute the new bits that are at the top now. 479 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 480 481 // Unsigned shift right. 482 APInt Mask2(Mask.shl(ShiftAmt)); 483 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 484 Depth+1); 485 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 486 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 487 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 488 // high bits known zero. 489 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 490 return; 491 } 492 break; 493 case Instruction::AShr: 494 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 495 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 496 // Compute the new bits that are at the top now. 497 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 498 499 // Signed shift right. 500 APInt Mask2(Mask.shl(ShiftAmt)); 501 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 502 Depth+1); 503 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 504 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 505 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 506 507 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 508 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 509 KnownZero |= HighBits; 510 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 511 KnownOne |= HighBits; 512 return; 513 } 514 break; 515 case Instruction::Sub: { 516 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 517 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 518 Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, 519 TD, Depth); 520 break; 521 } 522 case Instruction::Add: { 523 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 524 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 525 Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, 526 TD, Depth); 527 break; 528 } 529 case Instruction::SRem: 530 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 531 APInt RA = Rem->getValue().abs(); 532 if (RA.isPowerOf2()) { 533 APInt LowBits = RA - 1; 534 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 535 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 536 Depth+1); 537 538 // The low bits of the first operand are unchanged by the srem. 539 KnownZero = KnownZero2 & LowBits; 540 KnownOne = KnownOne2 & LowBits; 541 542 // If the first operand is non-negative or has all low bits zero, then 543 // the upper bits are all zero. 544 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 545 KnownZero |= ~LowBits; 546 547 // If the first operand is negative and not all low bits are zero, then 548 // the upper bits are all one. 549 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 550 KnownOne |= ~LowBits; 551 552 KnownZero &= Mask; 553 KnownOne &= Mask; 554 555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 556 } 557 } 558 559 // The sign bit is the LHS's sign bit, except when the result of the 560 // remainder is zero. 561 if (Mask.isNegative() && KnownZero.isNonNegative()) { 562 APInt Mask2 = APInt::getSignBit(BitWidth); 563 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 564 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 565 Depth+1); 566 // If it's known zero, our sign bit is also zero. 567 if (LHSKnownZero.isNegative()) 568 KnownZero |= LHSKnownZero; 569 } 570 571 break; 572 case Instruction::URem: { 573 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 574 APInt RA = Rem->getValue(); 575 if (RA.isPowerOf2()) { 576 APInt LowBits = (RA - 1); 577 APInt Mask2 = LowBits & Mask; 578 KnownZero |= ~LowBits & Mask; 579 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 580 Depth+1); 581 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 582 break; 583 } 584 } 585 586 // Since the result is less than or equal to either operand, any leading 587 // zero bits in either operand must also exist in the result. 588 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 589 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 590 TD, Depth+1); 591 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 592 TD, Depth+1); 593 594 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 595 KnownZero2.countLeadingOnes()); 596 KnownOne.clearAllBits(); 597 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 598 break; 599 } 600 601 case Instruction::Alloca: { 602 AllocaInst *AI = cast<AllocaInst>(V); 603 unsigned Align = AI->getAlignment(); 604 if (Align == 0 && TD) 605 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 606 607 if (Align > 0) 608 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 609 CountTrailingZeros_32(Align)); 610 break; 611 } 612 case Instruction::GetElementPtr: { 613 // Analyze all of the subscripts of this getelementptr instruction 614 // to determine if we can prove known low zero bits. 615 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 616 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 617 ComputeMaskedBits(I->getOperand(0), LocalMask, 618 LocalKnownZero, LocalKnownOne, TD, Depth+1); 619 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 620 621 gep_type_iterator GTI = gep_type_begin(I); 622 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 623 Value *Index = I->getOperand(i); 624 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 625 // Handle struct member offset arithmetic. 626 if (!TD) return; 627 const StructLayout *SL = TD->getStructLayout(STy); 628 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 629 uint64_t Offset = SL->getElementOffset(Idx); 630 TrailZ = std::min(TrailZ, 631 CountTrailingZeros_64(Offset)); 632 } else { 633 // Handle array index arithmetic. 634 Type *IndexedTy = GTI.getIndexedType(); 635 if (!IndexedTy->isSized()) return; 636 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 637 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 638 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 639 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 640 ComputeMaskedBits(Index, LocalMask, 641 LocalKnownZero, LocalKnownOne, TD, Depth+1); 642 TrailZ = std::min(TrailZ, 643 unsigned(CountTrailingZeros_64(TypeSize) + 644 LocalKnownZero.countTrailingOnes())); 645 } 646 } 647 648 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 649 break; 650 } 651 case Instruction::PHI: { 652 PHINode *P = cast<PHINode>(I); 653 // Handle the case of a simple two-predecessor recurrence PHI. 654 // There's a lot more that could theoretically be done here, but 655 // this is sufficient to catch some interesting cases. 656 if (P->getNumIncomingValues() == 2) { 657 for (unsigned i = 0; i != 2; ++i) { 658 Value *L = P->getIncomingValue(i); 659 Value *R = P->getIncomingValue(!i); 660 Operator *LU = dyn_cast<Operator>(L); 661 if (!LU) 662 continue; 663 unsigned Opcode = LU->getOpcode(); 664 // Check for operations that have the property that if 665 // both their operands have low zero bits, the result 666 // will have low zero bits. 667 if (Opcode == Instruction::Add || 668 Opcode == Instruction::Sub || 669 Opcode == Instruction::And || 670 Opcode == Instruction::Or || 671 Opcode == Instruction::Mul) { 672 Value *LL = LU->getOperand(0); 673 Value *LR = LU->getOperand(1); 674 // Find a recurrence. 675 if (LL == I) 676 L = LR; 677 else if (LR == I) 678 L = LL; 679 else 680 break; 681 // Ok, we have a PHI of the form L op= R. Check for low 682 // zero bits. 683 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 684 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 685 Mask2 = APInt::getLowBitsSet(BitWidth, 686 KnownZero2.countTrailingOnes()); 687 688 // We need to take the minimum number of known bits 689 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 690 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 691 692 KnownZero = Mask & 693 APInt::getLowBitsSet(BitWidth, 694 std::min(KnownZero2.countTrailingOnes(), 695 KnownZero3.countTrailingOnes())); 696 break; 697 } 698 } 699 } 700 701 // Unreachable blocks may have zero-operand PHI nodes. 702 if (P->getNumIncomingValues() == 0) 703 return; 704 705 // Otherwise take the unions of the known bit sets of the operands, 706 // taking conservative care to avoid excessive recursion. 707 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 708 // Skip if every incoming value references to ourself. 709 if (P->hasConstantValue() == P) 710 break; 711 712 KnownZero = Mask; 713 KnownOne = Mask; 714 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 715 // Skip direct self references. 716 if (P->getIncomingValue(i) == P) continue; 717 718 KnownZero2 = APInt(BitWidth, 0); 719 KnownOne2 = APInt(BitWidth, 0); 720 // Recurse, but cap the recursion to one level, because we don't 721 // want to waste time spinning around in loops. 722 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 723 KnownZero2, KnownOne2, TD, MaxDepth-1); 724 KnownZero &= KnownZero2; 725 KnownOne &= KnownOne2; 726 // If all bits have been ruled out, there's no need to check 727 // more operands. 728 if (!KnownZero && !KnownOne) 729 break; 730 } 731 } 732 break; 733 } 734 case Instruction::Call: 735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 736 switch (II->getIntrinsicID()) { 737 default: break; 738 case Intrinsic::ctlz: 739 case Intrinsic::cttz: { 740 unsigned LowBits = Log2_32(BitWidth)+1; 741 // If this call is undefined for 0, the result will be less than 2^n. 742 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 743 LowBits -= 1; 744 KnownZero = Mask & APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 745 break; 746 } 747 case Intrinsic::ctpop: { 748 unsigned LowBits = Log2_32(BitWidth)+1; 749 KnownZero = Mask & APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 750 break; 751 } 752 case Intrinsic::x86_sse42_crc32_64_8: 753 case Intrinsic::x86_sse42_crc32_64_64: 754 KnownZero = Mask & APInt::getHighBitsSet(64, 32); 755 break; 756 } 757 } 758 break; 759 case Instruction::ExtractValue: 760 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 761 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 762 if (EVI->getNumIndices() != 1) break; 763 if (EVI->getIndices()[0] == 0) { 764 switch (II->getIntrinsicID()) { 765 default: break; 766 case Intrinsic::uadd_with_overflow: 767 case Intrinsic::sadd_with_overflow: 768 ComputeMaskedBitsAddSub(true, II->getArgOperand(0), 769 II->getArgOperand(1), false, Mask, 770 KnownZero, KnownOne, KnownZero2, KnownOne2, 771 TD, Depth); 772 break; 773 case Intrinsic::usub_with_overflow: 774 case Intrinsic::ssub_with_overflow: 775 ComputeMaskedBitsAddSub(false, II->getArgOperand(0), 776 II->getArgOperand(1), false, Mask, 777 KnownZero, KnownOne, KnownZero2, KnownOne2, 778 TD, Depth); 779 break; 780 } 781 } 782 } 783 } 784 } 785 786 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 787 /// one. Convenience wrapper around ComputeMaskedBits. 788 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 789 const TargetData *TD, unsigned Depth) { 790 unsigned BitWidth = getBitWidth(V->getType(), TD); 791 if (!BitWidth) { 792 KnownZero = false; 793 KnownOne = false; 794 return; 795 } 796 APInt ZeroBits(BitWidth, 0); 797 APInt OneBits(BitWidth, 0); 798 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 799 Depth); 800 KnownOne = OneBits[BitWidth - 1]; 801 KnownZero = ZeroBits[BitWidth - 1]; 802 } 803 804 /// isPowerOfTwo - Return true if the given value is known to have exactly one 805 /// bit set when defined. For vectors return true if every element is known to 806 /// be a power of two when defined. Supports values with integer or pointer 807 /// types and vectors of integers. 808 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero, 809 unsigned Depth) { 810 if (Constant *C = dyn_cast<Constant>(V)) { 811 if (C->isNullValue()) 812 return OrZero; 813 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 814 return CI->getValue().isPowerOf2(); 815 // TODO: Handle vector constants. 816 } 817 818 // 1 << X is clearly a power of two if the one is not shifted off the end. If 819 // it is shifted off the end then the result is undefined. 820 if (match(V, m_Shl(m_One(), m_Value()))) 821 return true; 822 823 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 824 // bottom. If it is shifted off the bottom then the result is undefined. 825 if (match(V, m_LShr(m_SignBit(), m_Value()))) 826 return true; 827 828 // The remaining tests are all recursive, so bail out if we hit the limit. 829 if (Depth++ == MaxDepth) 830 return false; 831 832 Value *X = 0, *Y = 0; 833 // A shift of a power of two is a power of two or zero. 834 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 835 match(V, m_Shr(m_Value(X), m_Value())))) 836 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth); 837 838 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 839 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth); 840 841 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 842 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) && 843 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth); 844 845 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 846 // A power of two and'd with anything is a power of two or zero. 847 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) || 848 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth)) 849 return true; 850 // X & (-X) is always a power of two or zero. 851 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 852 return true; 853 return false; 854 } 855 856 // An exact divide or right shift can only shift off zero bits, so the result 857 // is a power of two only if the first operand is a power of two and not 858 // copying a sign bit (sdiv int_min, 2). 859 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 860 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 861 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth); 862 } 863 864 return false; 865 } 866 867 /// isKnownNonZero - Return true if the given value is known to be non-zero 868 /// when defined. For vectors return true if every element is known to be 869 /// non-zero when defined. Supports values with integer or pointer type and 870 /// vectors of integers. 871 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 872 if (Constant *C = dyn_cast<Constant>(V)) { 873 if (C->isNullValue()) 874 return false; 875 if (isa<ConstantInt>(C)) 876 // Must be non-zero due to null test above. 877 return true; 878 // TODO: Handle vectors 879 return false; 880 } 881 882 // The remaining tests are all recursive, so bail out if we hit the limit. 883 if (Depth++ >= MaxDepth) 884 return false; 885 886 unsigned BitWidth = getBitWidth(V->getType(), TD); 887 888 // X | Y != 0 if X != 0 or Y != 0. 889 Value *X = 0, *Y = 0; 890 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 891 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 892 893 // ext X != 0 if X != 0. 894 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 895 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 896 897 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 898 // if the lowest bit is shifted off the end. 899 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 900 // shl nuw can't remove any non-zero bits. 901 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 902 if (BO->hasNoUnsignedWrap()) 903 return isKnownNonZero(X, TD, Depth); 904 905 APInt KnownZero(BitWidth, 0); 906 APInt KnownOne(BitWidth, 0); 907 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 908 if (KnownOne[0]) 909 return true; 910 } 911 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 912 // defined if the sign bit is shifted off the end. 913 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 914 // shr exact can only shift out zero bits. 915 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 916 if (BO->isExact()) 917 return isKnownNonZero(X, TD, Depth); 918 919 bool XKnownNonNegative, XKnownNegative; 920 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 921 if (XKnownNegative) 922 return true; 923 } 924 // div exact can only produce a zero if the dividend is zero. 925 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 926 return isKnownNonZero(X, TD, Depth); 927 } 928 // X + Y. 929 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 930 bool XKnownNonNegative, XKnownNegative; 931 bool YKnownNonNegative, YKnownNegative; 932 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 933 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 934 935 // If X and Y are both non-negative (as signed values) then their sum is not 936 // zero unless both X and Y are zero. 937 if (XKnownNonNegative && YKnownNonNegative) 938 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 939 return true; 940 941 // If X and Y are both negative (as signed values) then their sum is not 942 // zero unless both X and Y equal INT_MIN. 943 if (BitWidth && XKnownNegative && YKnownNegative) { 944 APInt KnownZero(BitWidth, 0); 945 APInt KnownOne(BitWidth, 0); 946 APInt Mask = APInt::getSignedMaxValue(BitWidth); 947 // The sign bit of X is set. If some other bit is set then X is not equal 948 // to INT_MIN. 949 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 950 if ((KnownOne & Mask) != 0) 951 return true; 952 // The sign bit of Y is set. If some other bit is set then Y is not equal 953 // to INT_MIN. 954 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 955 if ((KnownOne & Mask) != 0) 956 return true; 957 } 958 959 // The sum of a non-negative number and a power of two is not zero. 960 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth)) 961 return true; 962 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) 963 return true; 964 } 965 // X * Y. 966 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 967 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 968 // If X and Y are non-zero then so is X * Y as long as the multiplication 969 // does not overflow. 970 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 971 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 972 return true; 973 } 974 // (C ? X : Y) != 0 if X != 0 and Y != 0. 975 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 976 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 977 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 978 return true; 979 } 980 981 if (!BitWidth) return false; 982 APInt KnownZero(BitWidth, 0); 983 APInt KnownOne(BitWidth, 0); 984 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 985 TD, Depth); 986 return KnownOne != 0; 987 } 988 989 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 990 /// this predicate to simplify operations downstream. Mask is known to be zero 991 /// for bits that V cannot have. 992 /// 993 /// This function is defined on values with integer type, values with pointer 994 /// type (but only if TD is non-null), and vectors of integers. In the case 995 /// where V is a vector, the mask, known zero, and known one values are the 996 /// same width as the vector element, and the bit is set only if it is true 997 /// for all of the elements in the vector. 998 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 999 const TargetData *TD, unsigned Depth) { 1000 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1001 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1002 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1003 return (KnownZero & Mask) == Mask; 1004 } 1005 1006 1007 1008 /// ComputeNumSignBits - Return the number of times the sign bit of the 1009 /// register is replicated into the other bits. We know that at least 1 bit 1010 /// is always equal to the sign bit (itself), but other cases can give us 1011 /// information. For example, immediately after an "ashr X, 2", we know that 1012 /// the top 3 bits are all equal to each other, so we return 3. 1013 /// 1014 /// 'Op' must have a scalar integer type. 1015 /// 1016 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 1017 unsigned Depth) { 1018 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1019 "ComputeNumSignBits requires a TargetData object to operate " 1020 "on non-integer values!"); 1021 Type *Ty = V->getType(); 1022 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1023 Ty->getScalarSizeInBits(); 1024 unsigned Tmp, Tmp2; 1025 unsigned FirstAnswer = 1; 1026 1027 // Note that ConstantInt is handled by the general ComputeMaskedBits case 1028 // below. 1029 1030 if (Depth == 6) 1031 return 1; // Limit search depth. 1032 1033 Operator *U = dyn_cast<Operator>(V); 1034 switch (Operator::getOpcode(V)) { 1035 default: break; 1036 case Instruction::SExt: 1037 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1038 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1039 1040 case Instruction::AShr: { 1041 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1042 // ashr X, C -> adds C sign bits. Vectors too. 1043 const APInt *ShAmt; 1044 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1045 Tmp += ShAmt->getZExtValue(); 1046 if (Tmp > TyBits) Tmp = TyBits; 1047 } 1048 return Tmp; 1049 } 1050 case Instruction::Shl: { 1051 const APInt *ShAmt; 1052 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1053 // shl destroys sign bits. 1054 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1055 Tmp2 = ShAmt->getZExtValue(); 1056 if (Tmp2 >= TyBits || // Bad shift. 1057 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1058 return Tmp - Tmp2; 1059 } 1060 break; 1061 } 1062 case Instruction::And: 1063 case Instruction::Or: 1064 case Instruction::Xor: // NOT is handled here. 1065 // Logical binary ops preserve the number of sign bits at the worst. 1066 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1067 if (Tmp != 1) { 1068 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1069 FirstAnswer = std::min(Tmp, Tmp2); 1070 // We computed what we know about the sign bits as our first 1071 // answer. Now proceed to the generic code that uses 1072 // ComputeMaskedBits, and pick whichever answer is better. 1073 } 1074 break; 1075 1076 case Instruction::Select: 1077 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1078 if (Tmp == 1) return 1; // Early out. 1079 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1080 return std::min(Tmp, Tmp2); 1081 1082 case Instruction::Add: 1083 // Add can have at most one carry bit. Thus we know that the output 1084 // is, at worst, one more bit than the inputs. 1085 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1086 if (Tmp == 1) return 1; // Early out. 1087 1088 // Special case decrementing a value (ADD X, -1): 1089 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1090 if (CRHS->isAllOnesValue()) { 1091 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1092 APInt Mask = APInt::getAllOnesValue(TyBits); 1093 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 1094 Depth+1); 1095 1096 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1097 // sign bits set. 1098 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1099 return TyBits; 1100 1101 // If we are subtracting one from a positive number, there is no carry 1102 // out of the result. 1103 if (KnownZero.isNegative()) 1104 return Tmp; 1105 } 1106 1107 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1108 if (Tmp2 == 1) return 1; 1109 return std::min(Tmp, Tmp2)-1; 1110 1111 case Instruction::Sub: 1112 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1113 if (Tmp2 == 1) return 1; 1114 1115 // Handle NEG. 1116 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1117 if (CLHS->isNullValue()) { 1118 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1119 APInt Mask = APInt::getAllOnesValue(TyBits); 1120 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 1121 TD, Depth+1); 1122 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1123 // sign bits set. 1124 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1125 return TyBits; 1126 1127 // If the input is known to be positive (the sign bit is known clear), 1128 // the output of the NEG has the same number of sign bits as the input. 1129 if (KnownZero.isNegative()) 1130 return Tmp2; 1131 1132 // Otherwise, we treat this like a SUB. 1133 } 1134 1135 // Sub can have at most one carry bit. Thus we know that the output 1136 // is, at worst, one more bit than the inputs. 1137 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1138 if (Tmp == 1) return 1; // Early out. 1139 return std::min(Tmp, Tmp2)-1; 1140 1141 case Instruction::PHI: { 1142 PHINode *PN = cast<PHINode>(U); 1143 // Don't analyze large in-degree PHIs. 1144 if (PN->getNumIncomingValues() > 4) break; 1145 1146 // Take the minimum of all incoming values. This can't infinitely loop 1147 // because of our depth threshold. 1148 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1149 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1150 if (Tmp == 1) return Tmp; 1151 Tmp = std::min(Tmp, 1152 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1153 } 1154 return Tmp; 1155 } 1156 1157 case Instruction::Trunc: 1158 // FIXME: it's tricky to do anything useful for this, but it is an important 1159 // case for targets like X86. 1160 break; 1161 } 1162 1163 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1164 // use this information. 1165 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1166 APInt Mask = APInt::getAllOnesValue(TyBits); 1167 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1168 1169 if (KnownZero.isNegative()) { // sign bit is 0 1170 Mask = KnownZero; 1171 } else if (KnownOne.isNegative()) { // sign bit is 1; 1172 Mask = KnownOne; 1173 } else { 1174 // Nothing known. 1175 return FirstAnswer; 1176 } 1177 1178 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1179 // the number of identical bits in the top of the input value. 1180 Mask = ~Mask; 1181 Mask <<= Mask.getBitWidth()-TyBits; 1182 // Return # leading zeros. We use 'min' here in case Val was zero before 1183 // shifting. We don't want to return '64' as for an i32 "0". 1184 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1185 } 1186 1187 /// ComputeMultiple - This function computes the integer multiple of Base that 1188 /// equals V. If successful, it returns true and returns the multiple in 1189 /// Multiple. If unsuccessful, it returns false. It looks 1190 /// through SExt instructions only if LookThroughSExt is true. 1191 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1192 bool LookThroughSExt, unsigned Depth) { 1193 const unsigned MaxDepth = 6; 1194 1195 assert(V && "No Value?"); 1196 assert(Depth <= MaxDepth && "Limit Search Depth"); 1197 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1198 1199 Type *T = V->getType(); 1200 1201 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1202 1203 if (Base == 0) 1204 return false; 1205 1206 if (Base == 1) { 1207 Multiple = V; 1208 return true; 1209 } 1210 1211 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1212 Constant *BaseVal = ConstantInt::get(T, Base); 1213 if (CO && CO == BaseVal) { 1214 // Multiple is 1. 1215 Multiple = ConstantInt::get(T, 1); 1216 return true; 1217 } 1218 1219 if (CI && CI->getZExtValue() % Base == 0) { 1220 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1221 return true; 1222 } 1223 1224 if (Depth == MaxDepth) return false; // Limit search depth. 1225 1226 Operator *I = dyn_cast<Operator>(V); 1227 if (!I) return false; 1228 1229 switch (I->getOpcode()) { 1230 default: break; 1231 case Instruction::SExt: 1232 if (!LookThroughSExt) return false; 1233 // otherwise fall through to ZExt 1234 case Instruction::ZExt: 1235 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1236 LookThroughSExt, Depth+1); 1237 case Instruction::Shl: 1238 case Instruction::Mul: { 1239 Value *Op0 = I->getOperand(0); 1240 Value *Op1 = I->getOperand(1); 1241 1242 if (I->getOpcode() == Instruction::Shl) { 1243 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1244 if (!Op1CI) return false; 1245 // Turn Op0 << Op1 into Op0 * 2^Op1 1246 APInt Op1Int = Op1CI->getValue(); 1247 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1248 APInt API(Op1Int.getBitWidth(), 0); 1249 API.setBit(BitToSet); 1250 Op1 = ConstantInt::get(V->getContext(), API); 1251 } 1252 1253 Value *Mul0 = NULL; 1254 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1255 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1256 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1257 if (Op1C->getType()->getPrimitiveSizeInBits() < 1258 MulC->getType()->getPrimitiveSizeInBits()) 1259 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1260 if (Op1C->getType()->getPrimitiveSizeInBits() > 1261 MulC->getType()->getPrimitiveSizeInBits()) 1262 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1263 1264 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1265 Multiple = ConstantExpr::getMul(MulC, Op1C); 1266 return true; 1267 } 1268 1269 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1270 if (Mul0CI->getValue() == 1) { 1271 // V == Base * Op1, so return Op1 1272 Multiple = Op1; 1273 return true; 1274 } 1275 } 1276 1277 Value *Mul1 = NULL; 1278 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1279 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1280 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1281 if (Op0C->getType()->getPrimitiveSizeInBits() < 1282 MulC->getType()->getPrimitiveSizeInBits()) 1283 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1284 if (Op0C->getType()->getPrimitiveSizeInBits() > 1285 MulC->getType()->getPrimitiveSizeInBits()) 1286 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1287 1288 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1289 Multiple = ConstantExpr::getMul(MulC, Op0C); 1290 return true; 1291 } 1292 1293 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1294 if (Mul1CI->getValue() == 1) { 1295 // V == Base * Op0, so return Op0 1296 Multiple = Op0; 1297 return true; 1298 } 1299 } 1300 } 1301 } 1302 1303 // We could not determine if V is a multiple of Base. 1304 return false; 1305 } 1306 1307 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1308 /// value is never equal to -0.0. 1309 /// 1310 /// NOTE: this function will need to be revisited when we support non-default 1311 /// rounding modes! 1312 /// 1313 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1314 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1315 return !CFP->getValueAPF().isNegZero(); 1316 1317 if (Depth == 6) 1318 return 1; // Limit search depth. 1319 1320 const Operator *I = dyn_cast<Operator>(V); 1321 if (I == 0) return false; 1322 1323 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1324 if (I->getOpcode() == Instruction::FAdd && 1325 isa<ConstantFP>(I->getOperand(1)) && 1326 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1327 return true; 1328 1329 // sitofp and uitofp turn into +0.0 for zero. 1330 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1331 return true; 1332 1333 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1334 // sqrt(-0.0) = -0.0, no other negative results are possible. 1335 if (II->getIntrinsicID() == Intrinsic::sqrt) 1336 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1337 1338 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1339 if (const Function *F = CI->getCalledFunction()) { 1340 if (F->isDeclaration()) { 1341 // abs(x) != -0.0 1342 if (F->getName() == "abs") return true; 1343 // fabs[lf](x) != -0.0 1344 if (F->getName() == "fabs") return true; 1345 if (F->getName() == "fabsf") return true; 1346 if (F->getName() == "fabsl") return true; 1347 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1348 F->getName() == "sqrtl") 1349 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1350 } 1351 } 1352 1353 return false; 1354 } 1355 1356 /// isBytewiseValue - If the specified value can be set by repeating the same 1357 /// byte in memory, return the i8 value that it is represented with. This is 1358 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1359 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1360 /// byte store (e.g. i16 0x1234), return null. 1361 Value *llvm::isBytewiseValue(Value *V) { 1362 // All byte-wide stores are splatable, even of arbitrary variables. 1363 if (V->getType()->isIntegerTy(8)) return V; 1364 1365 // Handle 'null' ConstantArrayZero etc. 1366 if (Constant *C = dyn_cast<Constant>(V)) 1367 if (C->isNullValue()) 1368 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1369 1370 // Constant float and double values can be handled as integer values if the 1371 // corresponding integer value is "byteable". An important case is 0.0. 1372 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1373 if (CFP->getType()->isFloatTy()) 1374 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1375 if (CFP->getType()->isDoubleTy()) 1376 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1377 // Don't handle long double formats, which have strange constraints. 1378 } 1379 1380 // We can handle constant integers that are power of two in size and a 1381 // multiple of 8 bits. 1382 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1383 unsigned Width = CI->getBitWidth(); 1384 if (isPowerOf2_32(Width) && Width > 8) { 1385 // We can handle this value if the recursive binary decomposition is the 1386 // same at all levels. 1387 APInt Val = CI->getValue(); 1388 APInt Val2; 1389 while (Val.getBitWidth() != 8) { 1390 unsigned NextWidth = Val.getBitWidth()/2; 1391 Val2 = Val.lshr(NextWidth); 1392 Val2 = Val2.trunc(Val.getBitWidth()/2); 1393 Val = Val.trunc(Val.getBitWidth()/2); 1394 1395 // If the top/bottom halves aren't the same, reject it. 1396 if (Val != Val2) 1397 return 0; 1398 } 1399 return ConstantInt::get(V->getContext(), Val); 1400 } 1401 } 1402 1403 // A ConstantDataArray/Vector is splatable if all its members are equal and 1404 // also splatable. 1405 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1406 Value *Elt = CA->getElementAsConstant(0); 1407 Value *Val = isBytewiseValue(Elt); 1408 if (!Val) 1409 return 0; 1410 1411 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1412 if (CA->getElementAsConstant(I) != Elt) 1413 return 0; 1414 1415 return Val; 1416 } 1417 1418 // Conceptually, we could handle things like: 1419 // %a = zext i8 %X to i16 1420 // %b = shl i16 %a, 8 1421 // %c = or i16 %a, %b 1422 // but until there is an example that actually needs this, it doesn't seem 1423 // worth worrying about. 1424 return 0; 1425 } 1426 1427 1428 // This is the recursive version of BuildSubAggregate. It takes a few different 1429 // arguments. Idxs is the index within the nested struct From that we are 1430 // looking at now (which is of type IndexedType). IdxSkip is the number of 1431 // indices from Idxs that should be left out when inserting into the resulting 1432 // struct. To is the result struct built so far, new insertvalue instructions 1433 // build on that. 1434 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1435 SmallVector<unsigned, 10> &Idxs, 1436 unsigned IdxSkip, 1437 Instruction *InsertBefore) { 1438 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1439 if (STy) { 1440 // Save the original To argument so we can modify it 1441 Value *OrigTo = To; 1442 // General case, the type indexed by Idxs is a struct 1443 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1444 // Process each struct element recursively 1445 Idxs.push_back(i); 1446 Value *PrevTo = To; 1447 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1448 InsertBefore); 1449 Idxs.pop_back(); 1450 if (!To) { 1451 // Couldn't find any inserted value for this index? Cleanup 1452 while (PrevTo != OrigTo) { 1453 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1454 PrevTo = Del->getAggregateOperand(); 1455 Del->eraseFromParent(); 1456 } 1457 // Stop processing elements 1458 break; 1459 } 1460 } 1461 // If we successfully found a value for each of our subaggregates 1462 if (To) 1463 return To; 1464 } 1465 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1466 // the struct's elements had a value that was inserted directly. In the latter 1467 // case, perhaps we can't determine each of the subelements individually, but 1468 // we might be able to find the complete struct somewhere. 1469 1470 // Find the value that is at that particular spot 1471 Value *V = FindInsertedValue(From, Idxs); 1472 1473 if (!V) 1474 return NULL; 1475 1476 // Insert the value in the new (sub) aggregrate 1477 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1478 "tmp", InsertBefore); 1479 } 1480 1481 // This helper takes a nested struct and extracts a part of it (which is again a 1482 // struct) into a new value. For example, given the struct: 1483 // { a, { b, { c, d }, e } } 1484 // and the indices "1, 1" this returns 1485 // { c, d }. 1486 // 1487 // It does this by inserting an insertvalue for each element in the resulting 1488 // struct, as opposed to just inserting a single struct. This will only work if 1489 // each of the elements of the substruct are known (ie, inserted into From by an 1490 // insertvalue instruction somewhere). 1491 // 1492 // All inserted insertvalue instructions are inserted before InsertBefore 1493 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1494 Instruction *InsertBefore) { 1495 assert(InsertBefore && "Must have someplace to insert!"); 1496 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1497 idx_range); 1498 Value *To = UndefValue::get(IndexedType); 1499 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1500 unsigned IdxSkip = Idxs.size(); 1501 1502 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1503 } 1504 1505 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1506 /// the scalar value indexed is already around as a register, for example if it 1507 /// were inserted directly into the aggregrate. 1508 /// 1509 /// If InsertBefore is not null, this function will duplicate (modified) 1510 /// insertvalues when a part of a nested struct is extracted. 1511 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1512 Instruction *InsertBefore) { 1513 // Nothing to index? Just return V then (this is useful at the end of our 1514 // recursion). 1515 if (idx_range.empty()) 1516 return V; 1517 // We have indices, so V should have an indexable type. 1518 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1519 "Not looking at a struct or array?"); 1520 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1521 "Invalid indices for type?"); 1522 1523 if (Constant *C = dyn_cast<Constant>(V)) { 1524 C = C->getAggregateElement(idx_range[0]); 1525 if (C == 0) return 0; 1526 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1527 } 1528 1529 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1530 // Loop the indices for the insertvalue instruction in parallel with the 1531 // requested indices 1532 const unsigned *req_idx = idx_range.begin(); 1533 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1534 i != e; ++i, ++req_idx) { 1535 if (req_idx == idx_range.end()) { 1536 // We can't handle this without inserting insertvalues 1537 if (!InsertBefore) 1538 return 0; 1539 1540 // The requested index identifies a part of a nested aggregate. Handle 1541 // this specially. For example, 1542 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1543 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1544 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1545 // This can be changed into 1546 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1547 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1548 // which allows the unused 0,0 element from the nested struct to be 1549 // removed. 1550 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1551 InsertBefore); 1552 } 1553 1554 // This insert value inserts something else than what we are looking for. 1555 // See if the (aggregrate) value inserted into has the value we are 1556 // looking for, then. 1557 if (*req_idx != *i) 1558 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1559 InsertBefore); 1560 } 1561 // If we end up here, the indices of the insertvalue match with those 1562 // requested (though possibly only partially). Now we recursively look at 1563 // the inserted value, passing any remaining indices. 1564 return FindInsertedValue(I->getInsertedValueOperand(), 1565 makeArrayRef(req_idx, idx_range.end()), 1566 InsertBefore); 1567 } 1568 1569 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1570 // If we're extracting a value from an aggregrate that was extracted from 1571 // something else, we can extract from that something else directly instead. 1572 // However, we will need to chain I's indices with the requested indices. 1573 1574 // Calculate the number of indices required 1575 unsigned size = I->getNumIndices() + idx_range.size(); 1576 // Allocate some space to put the new indices in 1577 SmallVector<unsigned, 5> Idxs; 1578 Idxs.reserve(size); 1579 // Add indices from the extract value instruction 1580 Idxs.append(I->idx_begin(), I->idx_end()); 1581 1582 // Add requested indices 1583 Idxs.append(idx_range.begin(), idx_range.end()); 1584 1585 assert(Idxs.size() == size 1586 && "Number of indices added not correct?"); 1587 1588 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1589 } 1590 // Otherwise, we don't know (such as, extracting from a function return value 1591 // or load instruction) 1592 return 0; 1593 } 1594 1595 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1596 /// it can be expressed as a base pointer plus a constant offset. Return the 1597 /// base and offset to the caller. 1598 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1599 const TargetData &TD) { 1600 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1601 if (PtrOp == 0 || Ptr->getType()->isVectorTy()) 1602 return Ptr; 1603 1604 // Just look through bitcasts. 1605 if (PtrOp->getOpcode() == Instruction::BitCast) 1606 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1607 1608 // If this is a GEP with constant indices, we can look through it. 1609 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1610 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1611 1612 gep_type_iterator GTI = gep_type_begin(GEP); 1613 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1614 ++I, ++GTI) { 1615 ConstantInt *OpC = cast<ConstantInt>(*I); 1616 if (OpC->isZero()) continue; 1617 1618 // Handle a struct and array indices which add their offset to the pointer. 1619 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1620 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1621 } else { 1622 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1623 Offset += OpC->getSExtValue()*Size; 1624 } 1625 } 1626 1627 // Re-sign extend from the pointer size if needed to get overflow edge cases 1628 // right. 1629 unsigned PtrSize = TD.getPointerSizeInBits(); 1630 if (PtrSize < 64) 1631 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1632 1633 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1634 } 1635 1636 1637 /// getConstantStringInfo - This function computes the length of a 1638 /// null-terminated C string pointed to by V. If successful, it returns true 1639 /// and returns the string in Str. If unsuccessful, it returns false. 1640 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1641 uint64_t Offset, bool TrimAtNul) { 1642 assert(V); 1643 1644 // Look through bitcast instructions and geps. 1645 V = V->stripPointerCasts(); 1646 1647 // If the value is a GEP instructionor constant expression, treat it as an 1648 // offset. 1649 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1650 // Make sure the GEP has exactly three arguments. 1651 if (GEP->getNumOperands() != 3) 1652 return false; 1653 1654 // Make sure the index-ee is a pointer to array of i8. 1655 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1656 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1657 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1658 return false; 1659 1660 // Check to make sure that the first operand of the GEP is an integer and 1661 // has value 0 so that we are sure we're indexing into the initializer. 1662 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1663 if (FirstIdx == 0 || !FirstIdx->isZero()) 1664 return false; 1665 1666 // If the second index isn't a ConstantInt, then this is a variable index 1667 // into the array. If this occurs, we can't say anything meaningful about 1668 // the string. 1669 uint64_t StartIdx = 0; 1670 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1671 StartIdx = CI->getZExtValue(); 1672 else 1673 return false; 1674 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1675 } 1676 1677 // The GEP instruction, constant or instruction, must reference a global 1678 // variable that is a constant and is initialized. The referenced constant 1679 // initializer is the array that we'll use for optimization. 1680 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1681 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1682 return false; 1683 1684 // Handle the all-zeros case 1685 if (GV->getInitializer()->isNullValue()) { 1686 // This is a degenerate case. The initializer is constant zero so the 1687 // length of the string must be zero. 1688 Str = ""; 1689 return true; 1690 } 1691 1692 // Must be a Constant Array 1693 const ConstantDataArray *Array = 1694 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1695 if (Array == 0 || !Array->isString()) 1696 return false; 1697 1698 // Get the number of elements in the array 1699 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1700 1701 // Start out with the entire array in the StringRef. 1702 Str = Array->getAsString(); 1703 1704 if (Offset > NumElts) 1705 return false; 1706 1707 // Skip over 'offset' bytes. 1708 Str = Str.substr(Offset); 1709 1710 if (TrimAtNul) { 1711 // Trim off the \0 and anything after it. If the array is not nul 1712 // terminated, we just return the whole end of string. The client may know 1713 // some other way that the string is length-bound. 1714 Str = Str.substr(0, Str.find('\0')); 1715 } 1716 return true; 1717 } 1718 1719 // These next two are very similar to the above, but also look through PHI 1720 // nodes. 1721 // TODO: See if we can integrate these two together. 1722 1723 /// GetStringLengthH - If we can compute the length of the string pointed to by 1724 /// the specified pointer, return 'len+1'. If we can't, return 0. 1725 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1726 // Look through noop bitcast instructions. 1727 V = V->stripPointerCasts(); 1728 1729 // If this is a PHI node, there are two cases: either we have already seen it 1730 // or we haven't. 1731 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1732 if (!PHIs.insert(PN)) 1733 return ~0ULL; // already in the set. 1734 1735 // If it was new, see if all the input strings are the same length. 1736 uint64_t LenSoFar = ~0ULL; 1737 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1738 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1739 if (Len == 0) return 0; // Unknown length -> unknown. 1740 1741 if (Len == ~0ULL) continue; 1742 1743 if (Len != LenSoFar && LenSoFar != ~0ULL) 1744 return 0; // Disagree -> unknown. 1745 LenSoFar = Len; 1746 } 1747 1748 // Success, all agree. 1749 return LenSoFar; 1750 } 1751 1752 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1753 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1754 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1755 if (Len1 == 0) return 0; 1756 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1757 if (Len2 == 0) return 0; 1758 if (Len1 == ~0ULL) return Len2; 1759 if (Len2 == ~0ULL) return Len1; 1760 if (Len1 != Len2) return 0; 1761 return Len1; 1762 } 1763 1764 // Otherwise, see if we can read the string. 1765 StringRef StrData; 1766 if (!getConstantStringInfo(V, StrData)) 1767 return 0; 1768 1769 return StrData.size()+1; 1770 } 1771 1772 /// GetStringLength - If we can compute the length of the string pointed to by 1773 /// the specified pointer, return 'len+1'. If we can't, return 0. 1774 uint64_t llvm::GetStringLength(Value *V) { 1775 if (!V->getType()->isPointerTy()) return 0; 1776 1777 SmallPtrSet<PHINode*, 32> PHIs; 1778 uint64_t Len = GetStringLengthH(V, PHIs); 1779 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1780 // an empty string as a length. 1781 return Len == ~0ULL ? 1 : Len; 1782 } 1783 1784 Value * 1785 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1786 if (!V->getType()->isPointerTy()) 1787 return V; 1788 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1789 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1790 V = GEP->getPointerOperand(); 1791 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1792 V = cast<Operator>(V)->getOperand(0); 1793 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1794 if (GA->mayBeOverridden()) 1795 return V; 1796 V = GA->getAliasee(); 1797 } else { 1798 // See if InstructionSimplify knows any relevant tricks. 1799 if (Instruction *I = dyn_cast<Instruction>(V)) 1800 // TODO: Acquire a DominatorTree and use it. 1801 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1802 V = Simplified; 1803 continue; 1804 } 1805 1806 return V; 1807 } 1808 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1809 } 1810 return V; 1811 } 1812 1813 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1814 /// are lifetime markers. 1815 /// 1816 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1817 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1818 UI != UE; ++UI) { 1819 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1820 if (!II) return false; 1821 1822 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1823 II->getIntrinsicID() != Intrinsic::lifetime_end) 1824 return false; 1825 } 1826 return true; 1827 } 1828 1829 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1830 const TargetData *TD) { 1831 const Operator *Inst = dyn_cast<Operator>(V); 1832 if (!Inst) 1833 return false; 1834 1835 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1836 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1837 if (C->canTrap()) 1838 return false; 1839 1840 switch (Inst->getOpcode()) { 1841 default: 1842 return true; 1843 case Instruction::UDiv: 1844 case Instruction::URem: 1845 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1846 return isKnownNonZero(Inst->getOperand(1), TD); 1847 case Instruction::SDiv: 1848 case Instruction::SRem: { 1849 Value *Op = Inst->getOperand(1); 1850 // x / y is undefined if y == 0 1851 if (!isKnownNonZero(Op, TD)) 1852 return false; 1853 // x / y might be undefined if y == -1 1854 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1855 if (BitWidth == 0) 1856 return false; 1857 APInt KnownZero(BitWidth, 0); 1858 APInt KnownOne(BitWidth, 0); 1859 ComputeMaskedBits(Op, APInt::getAllOnesValue(BitWidth), 1860 KnownZero, KnownOne, TD); 1861 return !!KnownZero; 1862 } 1863 case Instruction::Load: { 1864 const LoadInst *LI = cast<LoadInst>(Inst); 1865 if (!LI->isUnordered()) 1866 return false; 1867 return LI->getPointerOperand()->isDereferenceablePointer(); 1868 } 1869 case Instruction::Call: { 1870 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1871 switch (II->getIntrinsicID()) { 1872 case Intrinsic::bswap: 1873 case Intrinsic::ctlz: 1874 case Intrinsic::ctpop: 1875 case Intrinsic::cttz: 1876 case Intrinsic::objectsize: 1877 case Intrinsic::sadd_with_overflow: 1878 case Intrinsic::smul_with_overflow: 1879 case Intrinsic::ssub_with_overflow: 1880 case Intrinsic::uadd_with_overflow: 1881 case Intrinsic::umul_with_overflow: 1882 case Intrinsic::usub_with_overflow: 1883 return true; 1884 // TODO: some fp intrinsics are marked as having the same error handling 1885 // as libm. They're safe to speculate when they won't error. 1886 // TODO: are convert_{from,to}_fp16 safe? 1887 // TODO: can we list target-specific intrinsics here? 1888 default: break; 1889 } 1890 } 1891 return false; // The called function could have undefined behavior or 1892 // side-effects, even if marked readnone nounwind. 1893 } 1894 case Instruction::VAArg: 1895 case Instruction::Alloca: 1896 case Instruction::Invoke: 1897 case Instruction::PHI: 1898 case Instruction::Store: 1899 case Instruction::Ret: 1900 case Instruction::Br: 1901 case Instruction::IndirectBr: 1902 case Instruction::Switch: 1903 case Instruction::Unreachable: 1904 case Instruction::Fence: 1905 case Instruction::LandingPad: 1906 case Instruction::AtomicRMW: 1907 case Instruction::AtomicCmpXchg: 1908 case Instruction::Resume: 1909 return false; // Misc instructions which have effects 1910 } 1911 } 1912