1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 unsigned BitWidth = Known.getBitWidth(); 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 isKnownNonZero(Op0, Depth, Q)) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 443 isKnownNonZero(Op1, Depth, Q)); 444 } 445 } 446 447 assert(!Known.hasConflict() && !Known2.hasConflict()); 448 // Compute a conservative estimate for high known-0 bits. 449 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 450 Known2.countMinLeadingZeros(), 451 BitWidth) - BitWidth; 452 LeadZ = std::min(LeadZ, BitWidth); 453 454 // The result of the bottom bits of an integer multiply can be 455 // inferred by looking at the bottom bits of both operands and 456 // multiplying them together. 457 // We can infer at least the minimum number of known trailing bits 458 // of both operands. Depending on number of trailing zeros, we can 459 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 460 // a and b are divisible by m and n respectively. 461 // We then calculate how many of those bits are inferrable and set 462 // the output. For example, the i8 mul: 463 // a = XXXX1100 (12) 464 // b = XXXX1110 (14) 465 // We know the bottom 3 bits are zero since the first can be divided by 466 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 467 // Applying the multiplication to the trimmed arguments gets: 468 // XX11 (3) 469 // X111 (7) 470 // ------- 471 // XX11 472 // XX11 473 // XX11 474 // XX11 475 // ------- 476 // XXXXX01 477 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 478 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 479 // The proof for this can be described as: 480 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 481 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 482 // umin(countTrailingZeros(C2), C6) + 483 // umin(C5 - umin(countTrailingZeros(C1), C5), 484 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 485 // %aa = shl i8 %a, C5 486 // %bb = shl i8 %b, C6 487 // %aaa = or i8 %aa, C1 488 // %bbb = or i8 %bb, C2 489 // %mul = mul i8 %aaa, %bbb 490 // %mask = and i8 %mul, C7 491 // => 492 // %mask = i8 ((C1*C2)&C7) 493 // Where C5, C6 describe the known bits of %a, %b 494 // C1, C2 describe the known bottom bits of %a, %b. 495 // C7 describes the mask of the known bits of the result. 496 APInt Bottom0 = Known.One; 497 APInt Bottom1 = Known2.One; 498 499 // How many times we'd be able to divide each argument by 2 (shr by 1). 500 // This gives us the number of trailing zeros on the multiplication result. 501 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 502 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 503 unsigned TrailZero0 = Known.countMinTrailingZeros(); 504 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 505 unsigned TrailZ = TrailZero0 + TrailZero1; 506 507 // Figure out the fewest known-bits operand. 508 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 509 TrailBitsKnown1 - TrailZero1); 510 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 511 512 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 513 Bottom1.getLoBits(TrailBitsKnown1); 514 515 Known.resetAll(); 516 Known.Zero.setHighBits(LeadZ); 517 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 518 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 519 520 // Only make use of no-wrap flags if we failed to compute the sign bit 521 // directly. This matters if the multiplication always overflows, in 522 // which case we prefer to follow the result of the direct computation, 523 // though as the program is invoking undefined behaviour we can choose 524 // whatever we like here. 525 if (isKnownNonNegative && !Known.isNegative()) 526 Known.makeNonNegative(); 527 else if (isKnownNegative && !Known.isNonNegative()) 528 Known.makeNegative(); 529 } 530 531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 532 KnownBits &Known) { 533 unsigned BitWidth = Known.getBitWidth(); 534 unsigned NumRanges = Ranges.getNumOperands() / 2; 535 assert(NumRanges >= 1); 536 537 Known.Zero.setAllBits(); 538 Known.One.setAllBits(); 539 540 for (unsigned i = 0; i < NumRanges; ++i) { 541 ConstantInt *Lower = 542 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 543 ConstantInt *Upper = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 545 ConstantRange Range(Lower->getValue(), Upper->getValue()); 546 547 // The first CommonPrefixBits of all values in Range are equal. 548 unsigned CommonPrefixBits = 549 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 550 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 551 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 552 Known.One &= UnsignedMax & Mask; 553 Known.Zero &= ~UnsignedMax & Mask; 554 } 555 } 556 557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 558 SmallVector<const Value *, 16> WorkSet(1, I); 559 SmallPtrSet<const Value *, 32> Visited; 560 SmallPtrSet<const Value *, 16> EphValues; 561 562 // The instruction defining an assumption's condition itself is always 563 // considered ephemeral to that assumption (even if it has other 564 // non-ephemeral users). See r246696's test case for an example. 565 if (is_contained(I->operands(), E)) 566 return true; 567 568 while (!WorkSet.empty()) { 569 const Value *V = WorkSet.pop_back_val(); 570 if (!Visited.insert(V).second) 571 continue; 572 573 // If all uses of this value are ephemeral, then so is this value. 574 if (llvm::all_of(V->users(), [&](const User *U) { 575 return EphValues.count(U); 576 })) { 577 if (V == E) 578 return true; 579 580 if (V == I || isSafeToSpeculativelyExecute(V)) { 581 EphValues.insert(V); 582 if (const User *U = dyn_cast<User>(V)) 583 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 584 J != JE; ++J) 585 WorkSet.push_back(*J); 586 } 587 } 588 } 589 590 return false; 591 } 592 593 // Is this an intrinsic that cannot be speculated but also cannot trap? 594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 595 if (const CallInst *CI = dyn_cast<CallInst>(I)) 596 if (Function *F = CI->getCalledFunction()) 597 switch (F->getIntrinsicID()) { 598 default: break; 599 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 600 case Intrinsic::assume: 601 case Intrinsic::sideeffect: 602 case Intrinsic::dbg_declare: 603 case Intrinsic::dbg_value: 604 case Intrinsic::dbg_label: 605 case Intrinsic::invariant_start: 606 case Intrinsic::invariant_end: 607 case Intrinsic::lifetime_start: 608 case Intrinsic::lifetime_end: 609 case Intrinsic::objectsize: 610 case Intrinsic::ptr_annotation: 611 case Intrinsic::var_annotation: 612 return true; 613 } 614 615 return false; 616 } 617 618 bool llvm::isValidAssumeForContext(const Instruction *Inv, 619 const Instruction *CxtI, 620 const DominatorTree *DT) { 621 // There are two restrictions on the use of an assume: 622 // 1. The assume must dominate the context (or the control flow must 623 // reach the assume whenever it reaches the context). 624 // 2. The context must not be in the assume's set of ephemeral values 625 // (otherwise we will use the assume to prove that the condition 626 // feeding the assume is trivially true, thus causing the removal of 627 // the assume). 628 629 if (Inv->getParent() == CxtI->getParent()) { 630 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 631 // in the BB. 632 if (Inv->comesBefore(CxtI)) 633 return true; 634 635 // Don't let an assume affect itself - this would cause the problems 636 // `isEphemeralValueOf` is trying to prevent, and it would also make 637 // the loop below go out of bounds. 638 if (Inv == CxtI) 639 return false; 640 641 // The context comes first, but they're both in the same block. 642 // Make sure there is nothing in between that might interrupt 643 // the control flow, not even CxtI itself. 644 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 645 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 646 return false; 647 648 return !isEphemeralValueOf(Inv, CxtI); 649 } 650 651 // Inv and CxtI are in different blocks. 652 if (DT) { 653 if (DT->dominates(Inv, CxtI)) 654 return true; 655 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 656 // We don't have a DT, but this trivially dominates. 657 return true; 658 } 659 660 return false; 661 } 662 663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 664 // Use of assumptions is context-sensitive. If we don't have a context, we 665 // cannot use them! 666 if (!Q.AC || !Q.CxtI) 667 return false; 668 669 // Note that the patterns below need to be kept in sync with the code 670 // in AssumptionCache::updateAffectedValues. 671 672 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 673 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 674 675 Value *RHS; 676 CmpInst::Predicate Pred; 677 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 678 return false; 679 // assume(v u> y) -> assume(v != 0) 680 if (Pred == ICmpInst::ICMP_UGT) 681 return true; 682 683 // assume(v != 0) 684 // We special-case this one to ensure that we handle `assume(v != null)`. 685 if (Pred == ICmpInst::ICMP_NE) 686 return match(RHS, m_Zero()); 687 688 // All other predicates - rely on generic ConstantRange handling. 689 ConstantInt *CI; 690 if (!match(RHS, m_ConstantInt(CI))) 691 return false; 692 ConstantRange RHSRange(CI->getValue()); 693 ConstantRange TrueValues = 694 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 695 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 696 }; 697 698 if (Q.CxtI && V->getType()->isPointerTy()) { 699 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 700 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 701 V->getType()->getPointerAddressSpace())) 702 AttrKinds.push_back(Attribute::Dereferenceable); 703 704 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 705 return true; 706 } 707 708 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 709 if (!AssumeVH) 710 continue; 711 CallInst *I = cast<CallInst>(AssumeVH); 712 assert(I->getFunction() == Q.CxtI->getFunction() && 713 "Got assumption for the wrong function!"); 714 if (Q.isExcluded(I)) 715 continue; 716 717 // Warning: This loop can end up being somewhat performance sensitive. 718 // We're running this loop for once for each value queried resulting in a 719 // runtime of ~O(#assumes * #values). 720 721 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 722 "must be an assume intrinsic"); 723 724 Value *Arg = I->getArgOperand(0); 725 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 726 if (!Cmp) 727 continue; 728 729 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 730 return true; 731 } 732 733 return false; 734 } 735 736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 737 unsigned Depth, const Query &Q) { 738 // Use of assumptions is context-sensitive. If we don't have a context, we 739 // cannot use them! 740 if (!Q.AC || !Q.CxtI) 741 return; 742 743 unsigned BitWidth = Known.getBitWidth(); 744 745 // Note that the patterns below need to be kept in sync with the code 746 // in AssumptionCache::updateAffectedValues. 747 748 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 749 if (!AssumeVH) 750 continue; 751 CallInst *I = cast<CallInst>(AssumeVH); 752 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 753 "Got assumption for the wrong function!"); 754 if (Q.isExcluded(I)) 755 continue; 756 757 // Warning: This loop can end up being somewhat performance sensitive. 758 // We're running this loop for once for each value queried resulting in a 759 // runtime of ~O(#assumes * #values). 760 761 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 762 "must be an assume intrinsic"); 763 764 Value *Arg = I->getArgOperand(0); 765 766 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllOnes(); 769 return; 770 } 771 if (match(Arg, m_Not(m_Specific(V))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 assert(BitWidth == 1 && "assume operand is not i1?"); 774 Known.setAllZero(); 775 return; 776 } 777 778 // The remaining tests are all recursive, so bail out if we hit the limit. 779 if (Depth == MaxAnalysisRecursionDepth) 780 continue; 781 782 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 783 if (!Cmp) 784 continue; 785 786 // Note that ptrtoint may change the bitwidth. 787 Value *A, *B; 788 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 789 790 CmpInst::Predicate Pred; 791 uint64_t C; 792 switch (Cmp->getPredicate()) { 793 default: 794 break; 795 case ICmpInst::ICMP_EQ: 796 // assume(v = a) 797 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 Known.Zero |= RHSKnown.Zero; 802 Known.One |= RHSKnown.One; 803 // assume(v & b = a) 804 } else if (match(Cmp, 805 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown = 808 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 KnownBits MaskKnown = 810 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 812 // For those bits in the mask that are known to be one, we can propagate 813 // known bits from the RHS to V. 814 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 815 Known.One |= RHSKnown.One & MaskKnown.One; 816 // assume(~(v & b) = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 KnownBits MaskKnown = 823 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 825 // For those bits in the mask that are known to be one, we can propagate 826 // inverted known bits from the RHS to V. 827 Known.Zero |= RHSKnown.One & MaskKnown.One; 828 Known.One |= RHSKnown.Zero & MaskKnown.One; 829 // assume(v | b = a) 830 } else if (match(Cmp, 831 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 KnownBits BKnown = 836 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 838 // For those bits in B that are known to be zero, we can propagate known 839 // bits from the RHS to V. 840 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 841 Known.One |= RHSKnown.One & BKnown.Zero; 842 // assume(~(v | b) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 KnownBits BKnown = 849 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 851 // For those bits in B that are known to be zero, we can propagate 852 // inverted known bits from the RHS to V. 853 Known.Zero |= RHSKnown.One & BKnown.Zero; 854 Known.One |= RHSKnown.Zero & BKnown.Zero; 855 // assume(v ^ b = a) 856 } else if (match(Cmp, 857 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 861 KnownBits BKnown = 862 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 864 // For those bits in B that are known to be zero, we can propagate known 865 // bits from the RHS to V. For those bits in B that are known to be one, 866 // we can propagate inverted known bits from the RHS to V. 867 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 868 Known.One |= RHSKnown.One & BKnown.Zero; 869 Known.Zero |= RHSKnown.One & BKnown.One; 870 Known.One |= RHSKnown.Zero & BKnown.One; 871 // assume(~(v ^ b) = a) 872 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 873 m_Value(A))) && 874 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 875 KnownBits RHSKnown = 876 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 877 KnownBits BKnown = 878 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 880 // For those bits in B that are known to be zero, we can propagate 881 // inverted known bits from the RHS to V. For those bits in B that are 882 // known to be one, we can propagate known bits from the RHS to V. 883 Known.Zero |= RHSKnown.One & BKnown.Zero; 884 Known.One |= RHSKnown.Zero & BKnown.Zero; 885 Known.Zero |= RHSKnown.Zero & BKnown.One; 886 Known.One |= RHSKnown.One & BKnown.One; 887 // assume(v << c = a) 888 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 889 m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 891 KnownBits RHSKnown = 892 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 893 894 // For those bits in RHS that are known, we can propagate them to known 895 // bits in V shifted to the right by C. 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.Zero |= RHSKnown.Zero; 898 RHSKnown.One.lshrInPlace(C); 899 Known.One |= RHSKnown.One; 900 // assume(~(v << c) = a) 901 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 902 m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 904 KnownBits RHSKnown = 905 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 906 // For those bits in RHS that are known, we can propagate them inverted 907 // to known bits in V shifted to the right by C. 908 RHSKnown.One.lshrInPlace(C); 909 Known.Zero |= RHSKnown.One; 910 RHSKnown.Zero.lshrInPlace(C); 911 Known.One |= RHSKnown.Zero; 912 // assume(v >> c = a) 913 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 914 m_Value(A))) && 915 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 916 KnownBits RHSKnown = 917 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 918 // For those bits in RHS that are known, we can propagate them to known 919 // bits in V shifted to the right by C. 920 Known.Zero |= RHSKnown.Zero << C; 921 Known.One |= RHSKnown.One << C; 922 // assume(~(v >> c) = a) 923 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 924 m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 // For those bits in RHS that are known, we can propagate them inverted 929 // to known bits in V shifted to the right by C. 930 Known.Zero |= RHSKnown.One << C; 931 Known.One |= RHSKnown.Zero << C; 932 } 933 break; 934 case ICmpInst::ICMP_SGE: 935 // assume(v >=_s c) where c is non-negative 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown = 939 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 940 941 if (RHSKnown.isNonNegative()) { 942 // We know that the sign bit is zero. 943 Known.makeNonNegative(); 944 } 945 } 946 break; 947 case ICmpInst::ICMP_SGT: 948 // assume(v >_s c) where c is at least -1. 949 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 950 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 951 KnownBits RHSKnown = 952 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 953 954 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 955 // We know that the sign bit is zero. 956 Known.makeNonNegative(); 957 } 958 } 959 break; 960 case ICmpInst::ICMP_SLE: 961 // assume(v <=_s c) where c is negative 962 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 963 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 964 KnownBits RHSKnown = 965 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 966 967 if (RHSKnown.isNegative()) { 968 // We know that the sign bit is one. 969 Known.makeNegative(); 970 } 971 } 972 break; 973 case ICmpInst::ICMP_SLT: 974 // assume(v <_s c) where c is non-positive 975 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 976 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 977 KnownBits RHSKnown = 978 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 979 980 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 981 // We know that the sign bit is one. 982 Known.makeNegative(); 983 } 984 } 985 break; 986 case ICmpInst::ICMP_ULE: 987 // assume(v <=_u c) 988 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 989 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 990 KnownBits RHSKnown = 991 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 992 993 // Whatever high bits in c are zero are known to be zero. 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 995 } 996 break; 997 case ICmpInst::ICMP_ULT: 998 // assume(v <_u c) 999 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1000 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1001 KnownBits RHSKnown = 1002 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1003 1004 // If the RHS is known zero, then this assumption must be wrong (nothing 1005 // is unsigned less than zero). Signal a conflict and get out of here. 1006 if (RHSKnown.isZero()) { 1007 Known.Zero.setAllBits(); 1008 Known.One.setAllBits(); 1009 break; 1010 } 1011 1012 // Whatever high bits in c are zero are known to be zero (if c is a power 1013 // of 2, then one more). 1014 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1015 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1016 else 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1018 } 1019 break; 1020 } 1021 } 1022 1023 // If assumptions conflict with each other or previous known bits, then we 1024 // have a logical fallacy. It's possible that the assumption is not reachable, 1025 // so this isn't a real bug. On the other hand, the program may have undefined 1026 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1027 // clear out the known bits, try to warn the user, and hope for the best. 1028 if (Known.Zero.intersects(Known.One)) { 1029 Known.resetAll(); 1030 1031 if (Q.ORE) 1032 Q.ORE->emit([&]() { 1033 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1034 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1035 CxtI) 1036 << "Detected conflicting code assumptions. Program may " 1037 "have undefined behavior, or compiler may have " 1038 "internal error."; 1039 }); 1040 } 1041 } 1042 1043 /// Compute known bits from a shift operator, including those with a 1044 /// non-constant shift amount. Known is the output of this function. Known2 is a 1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1046 /// operator-specific functions that, given the known-zero or known-one bits 1047 /// respectively, and a shift amount, compute the implied known-zero or 1048 /// known-one bits of the shift operator's result respectively for that shift 1049 /// amount. The results from calling KZF and KOF are conservatively combined for 1050 /// all permitted shift amounts. 1051 static void computeKnownBitsFromShiftOperator( 1052 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1053 KnownBits &Known2, unsigned Depth, const Query &Q, 1054 function_ref<APInt(const APInt &, unsigned)> KZF, 1055 function_ref<APInt(const APInt &, unsigned)> KOF) { 1056 unsigned BitWidth = Known.getBitWidth(); 1057 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 if (Known.isConstant()) { 1060 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1061 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1063 Known.Zero = KZF(Known.Zero, ShiftAmt); 1064 Known.One = KOF(Known.One, ShiftAmt); 1065 // If the known bits conflict, this must be an overflowing left shift, so 1066 // the shift result is poison. We can return anything we want. Choose 0 for 1067 // the best folding opportunity. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 1071 return; 1072 } 1073 1074 // If the shift amount could be greater than or equal to the bit-width of the 1075 // LHS, the value could be poison, but bail out because the check below is 1076 // expensive. 1077 // TODO: Should we just carry on? 1078 if (Known.getMaxValue().uge(BitWidth)) { 1079 Known.resetAll(); 1080 return; 1081 } 1082 1083 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1084 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1085 // limit value (which implies all bits are known). 1086 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1087 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1088 1089 // It would be more-clearly correct to use the two temporaries for this 1090 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1091 Known.resetAll(); 1092 1093 // If we know the shifter operand is nonzero, we can sometimes infer more 1094 // known bits. However this is expensive to compute, so be lazy about it and 1095 // only compute it when absolutely necessary. 1096 Optional<bool> ShifterOperandIsNonZero; 1097 1098 // Early exit if we can't constrain any well-defined shift amount. 1099 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1100 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1101 ShifterOperandIsNonZero = 1102 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1103 if (!*ShifterOperandIsNonZero) 1104 return; 1105 } 1106 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1112 // Combine the shifted known input bits only for those shift amounts 1113 // compatible with its known constraints. 1114 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1115 continue; 1116 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1117 continue; 1118 // If we know the shifter is nonzero, we may be able to infer more known 1119 // bits. This check is sunk down as far as possible to avoid the expensive 1120 // call to isKnownNonZero if the cheaper checks above fail. 1121 if (ShiftAmt == 0) { 1122 if (!ShifterOperandIsNonZero.hasValue()) 1123 ShifterOperandIsNonZero = 1124 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1125 if (*ShifterOperandIsNonZero) 1126 continue; 1127 } 1128 1129 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1130 Known.One &= KOF(Known2.One, ShiftAmt); 1131 } 1132 1133 // If the known bits conflict, the result is poison. Return a 0 and hope the 1134 // caller can further optimize that. 1135 if (Known.hasConflict()) 1136 Known.setAllZero(); 1137 } 1138 1139 static void computeKnownBitsFromOperator(const Operator *I, 1140 const APInt &DemandedElts, 1141 KnownBits &Known, unsigned Depth, 1142 const Query &Q) { 1143 unsigned BitWidth = Known.getBitWidth(); 1144 1145 KnownBits Known2(BitWidth); 1146 switch (I->getOpcode()) { 1147 default: break; 1148 case Instruction::Load: 1149 if (MDNode *MD = 1150 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1151 computeKnownBitsFromRangeMetadata(*MD, Known); 1152 break; 1153 case Instruction::And: { 1154 // If either the LHS or the RHS are Zero, the result is zero. 1155 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1157 1158 Known &= Known2; 1159 1160 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1161 // here we handle the more general case of adding any odd number by 1162 // matching the form add(x, add(x, y)) where y is odd. 1163 // TODO: This could be generalized to clearing any bit set in y where the 1164 // following bit is known to be unset in y. 1165 Value *X = nullptr, *Y = nullptr; 1166 if (!Known.Zero[0] && !Known.One[0] && 1167 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1168 Known2.resetAll(); 1169 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1170 if (Known2.countMinTrailingOnes() > 0) 1171 Known.Zero.setBit(0); 1172 } 1173 break; 1174 } 1175 case Instruction::Or: 1176 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1178 1179 Known |= Known2; 1180 break; 1181 case Instruction::Xor: 1182 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1183 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1184 1185 Known ^= Known2; 1186 break; 1187 case Instruction::Mul: { 1188 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1189 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::UDiv: { 1194 // For the purposes of computing leading zeros we can conservatively 1195 // treat a udiv as a logical right shift by the power of 2 known to 1196 // be less than the denominator. 1197 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1198 unsigned LeadZ = Known2.countMinLeadingZeros(); 1199 1200 Known2.resetAll(); 1201 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1202 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1203 if (RHSMaxLeadingZeros != BitWidth) 1204 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1205 1206 Known.Zero.setHighBits(LeadZ); 1207 break; 1208 } 1209 case Instruction::Select: { 1210 const Value *LHS = nullptr, *RHS = nullptr; 1211 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1212 if (SelectPatternResult::isMinOrMax(SPF)) { 1213 computeKnownBits(RHS, Known, Depth + 1, Q); 1214 computeKnownBits(LHS, Known2, Depth + 1, Q); 1215 switch (SPF) { 1216 default: 1217 llvm_unreachable("Unhandled select pattern flavor!"); 1218 case SPF_SMAX: 1219 Known = KnownBits::smax(Known, Known2); 1220 break; 1221 case SPF_SMIN: 1222 Known = KnownBits::smin(Known, Known2); 1223 break; 1224 case SPF_UMAX: 1225 Known = KnownBits::umax(Known, Known2); 1226 break; 1227 case SPF_UMIN: 1228 Known = KnownBits::umin(Known, Known2); 1229 break; 1230 } 1231 break; 1232 } 1233 1234 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1235 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1236 1237 // Only known if known in both the LHS and RHS. 1238 Known.One &= Known2.One; 1239 Known.Zero &= Known2.Zero; 1240 1241 if (SPF == SPF_ABS) { 1242 // RHS from matchSelectPattern returns the negation part of abs pattern. 1243 // If the negate has an NSW flag we can assume the sign bit of the result 1244 // will be 0 because that makes abs(INT_MIN) undefined. 1245 if (match(RHS, m_Neg(m_Specific(LHS))) && 1246 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1247 Known.Zero.setSignBit(); 1248 } 1249 1250 break; 1251 } 1252 case Instruction::FPTrunc: 1253 case Instruction::FPExt: 1254 case Instruction::FPToUI: 1255 case Instruction::FPToSI: 1256 case Instruction::SIToFP: 1257 case Instruction::UIToFP: 1258 break; // Can't work with floating point. 1259 case Instruction::PtrToInt: 1260 case Instruction::IntToPtr: 1261 // Fall through and handle them the same as zext/trunc. 1262 LLVM_FALLTHROUGH; 1263 case Instruction::ZExt: 1264 case Instruction::Trunc: { 1265 Type *SrcTy = I->getOperand(0)->getType(); 1266 1267 unsigned SrcBitWidth; 1268 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1269 // which fall through here. 1270 Type *ScalarTy = SrcTy->getScalarType(); 1271 SrcBitWidth = ScalarTy->isPointerTy() ? 1272 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1273 Q.DL.getTypeSizeInBits(ScalarTy); 1274 1275 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1276 Known = Known.anyextOrTrunc(SrcBitWidth); 1277 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1278 Known = Known.zextOrTrunc(BitWidth); 1279 break; 1280 } 1281 case Instruction::BitCast: { 1282 Type *SrcTy = I->getOperand(0)->getType(); 1283 if (SrcTy->isIntOrPtrTy() && 1284 // TODO: For now, not handling conversions like: 1285 // (bitcast i64 %x to <2 x i32>) 1286 !I->getType()->isVectorTy()) { 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 break; 1289 } 1290 break; 1291 } 1292 case Instruction::SExt: { 1293 // Compute the bits in the result that are not present in the input. 1294 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1295 1296 Known = Known.trunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 // If the sign bit of the input is known set or clear, then we know the 1299 // top bits of the result. 1300 Known = Known.sext(BitWidth); 1301 break; 1302 } 1303 case Instruction::Shl: { 1304 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1305 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1306 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1307 APInt KZResult = KnownZero << ShiftAmt; 1308 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1309 // If this shift has "nsw" keyword, then the result is either a poison 1310 // value or has the same sign bit as the first operand. 1311 if (NSW && KnownZero.isSignBitSet()) 1312 KZResult.setSignBit(); 1313 return KZResult; 1314 }; 1315 1316 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1317 APInt KOResult = KnownOne << ShiftAmt; 1318 if (NSW && KnownOne.isSignBitSet()) 1319 KOResult.setSignBit(); 1320 return KOResult; 1321 }; 1322 1323 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1324 KZF, KOF); 1325 break; 1326 } 1327 case Instruction::LShr: { 1328 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1329 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1330 APInt KZResult = KnownZero.lshr(ShiftAmt); 1331 // High bits known zero. 1332 KZResult.setHighBits(ShiftAmt); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1337 return KnownOne.lshr(ShiftAmt); 1338 }; 1339 1340 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1341 KZF, KOF); 1342 break; 1343 } 1344 case Instruction::AShr: { 1345 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1346 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1347 return KnownZero.ashr(ShiftAmt); 1348 }; 1349 1350 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1351 return KnownOne.ashr(ShiftAmt); 1352 }; 1353 1354 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1355 KZF, KOF); 1356 break; 1357 } 1358 case Instruction::Sub: { 1359 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1360 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1361 DemandedElts, Known, Known2, Depth, Q); 1362 break; 1363 } 1364 case Instruction::Add: { 1365 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1366 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1367 DemandedElts, Known, Known2, Depth, Q); 1368 break; 1369 } 1370 case Instruction::SRem: 1371 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1372 APInt RA = Rem->getValue().abs(); 1373 if (RA.isPowerOf2()) { 1374 APInt LowBits = RA - 1; 1375 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1376 1377 // The low bits of the first operand are unchanged by the srem. 1378 Known.Zero = Known2.Zero & LowBits; 1379 Known.One = Known2.One & LowBits; 1380 1381 // If the first operand is non-negative or has all low bits zero, then 1382 // the upper bits are all zero. 1383 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1384 Known.Zero |= ~LowBits; 1385 1386 // If the first operand is negative and not all low bits are zero, then 1387 // the upper bits are all one. 1388 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1389 Known.One |= ~LowBits; 1390 1391 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1392 break; 1393 } 1394 } 1395 1396 // The sign bit is the LHS's sign bit, except when the result of the 1397 // remainder is zero. 1398 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1399 // If it's known zero, our sign bit is also zero. 1400 if (Known2.isNonNegative()) 1401 Known.makeNonNegative(); 1402 1403 break; 1404 case Instruction::URem: { 1405 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1406 const APInt &RA = Rem->getValue(); 1407 if (RA.isPowerOf2()) { 1408 APInt LowBits = (RA - 1); 1409 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1410 Known.Zero |= ~LowBits; 1411 Known.One &= LowBits; 1412 break; 1413 } 1414 } 1415 1416 // Since the result is less than or equal to either operand, any leading 1417 // zero bits in either operand must also exist in the result. 1418 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1419 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1420 1421 unsigned Leaders = 1422 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1423 Known.resetAll(); 1424 Known.Zero.setHighBits(Leaders); 1425 break; 1426 } 1427 case Instruction::Alloca: 1428 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1429 break; 1430 case Instruction::GetElementPtr: { 1431 // Analyze all of the subscripts of this getelementptr instruction 1432 // to determine if we can prove known low zero bits. 1433 KnownBits LocalKnown(BitWidth); 1434 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1435 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1436 1437 gep_type_iterator GTI = gep_type_begin(I); 1438 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1439 // TrailZ can only become smaller, short-circuit if we hit zero. 1440 if (TrailZ == 0) 1441 break; 1442 1443 Value *Index = I->getOperand(i); 1444 if (StructType *STy = GTI.getStructTypeOrNull()) { 1445 // Handle struct member offset arithmetic. 1446 1447 // Handle case when index is vector zeroinitializer 1448 Constant *CIndex = cast<Constant>(Index); 1449 if (CIndex->isZeroValue()) 1450 continue; 1451 1452 if (CIndex->getType()->isVectorTy()) 1453 Index = CIndex->getSplatValue(); 1454 1455 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1456 const StructLayout *SL = Q.DL.getStructLayout(STy); 1457 uint64_t Offset = SL->getElementOffset(Idx); 1458 TrailZ = std::min<unsigned>(TrailZ, 1459 countTrailingZeros(Offset)); 1460 } else { 1461 // Handle array index arithmetic. 1462 Type *IndexedTy = GTI.getIndexedType(); 1463 if (!IndexedTy->isSized()) { 1464 TrailZ = 0; 1465 break; 1466 } 1467 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1468 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1469 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1470 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1471 TrailZ = std::min(TrailZ, 1472 unsigned(countTrailingZeros(TypeSize) + 1473 LocalKnown.countMinTrailingZeros())); 1474 } 1475 } 1476 1477 Known.Zero.setLowBits(TrailZ); 1478 break; 1479 } 1480 case Instruction::PHI: { 1481 const PHINode *P = cast<PHINode>(I); 1482 // Handle the case of a simple two-predecessor recurrence PHI. 1483 // There's a lot more that could theoretically be done here, but 1484 // this is sufficient to catch some interesting cases. 1485 if (P->getNumIncomingValues() == 2) { 1486 for (unsigned i = 0; i != 2; ++i) { 1487 Value *L = P->getIncomingValue(i); 1488 Value *R = P->getIncomingValue(!i); 1489 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1490 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1491 Operator *LU = dyn_cast<Operator>(L); 1492 if (!LU) 1493 continue; 1494 unsigned Opcode = LU->getOpcode(); 1495 // Check for operations that have the property that if 1496 // both their operands have low zero bits, the result 1497 // will have low zero bits. 1498 if (Opcode == Instruction::Add || 1499 Opcode == Instruction::Sub || 1500 Opcode == Instruction::And || 1501 Opcode == Instruction::Or || 1502 Opcode == Instruction::Mul) { 1503 Value *LL = LU->getOperand(0); 1504 Value *LR = LU->getOperand(1); 1505 // Find a recurrence. 1506 if (LL == I) 1507 L = LR; 1508 else if (LR == I) 1509 L = LL; 1510 else 1511 continue; // Check for recurrence with L and R flipped. 1512 1513 // Change the context instruction to the "edge" that flows into the 1514 // phi. This is important because that is where the value is actually 1515 // "evaluated" even though it is used later somewhere else. (see also 1516 // D69571). 1517 Query RecQ = Q; 1518 1519 // Ok, we have a PHI of the form L op= R. Check for low 1520 // zero bits. 1521 RecQ.CxtI = RInst; 1522 computeKnownBits(R, Known2, Depth + 1, RecQ); 1523 1524 // We need to take the minimum number of known bits 1525 KnownBits Known3(BitWidth); 1526 RecQ.CxtI = LInst; 1527 computeKnownBits(L, Known3, Depth + 1, RecQ); 1528 1529 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1530 Known3.countMinTrailingZeros())); 1531 1532 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1533 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1534 // If initial value of recurrence is nonnegative, and we are adding 1535 // a nonnegative number with nsw, the result can only be nonnegative 1536 // or poison value regardless of the number of times we execute the 1537 // add in phi recurrence. If initial value is negative and we are 1538 // adding a negative number with nsw, the result can only be 1539 // negative or poison value. Similar arguments apply to sub and mul. 1540 // 1541 // (add non-negative, non-negative) --> non-negative 1542 // (add negative, negative) --> negative 1543 if (Opcode == Instruction::Add) { 1544 if (Known2.isNonNegative() && Known3.isNonNegative()) 1545 Known.makeNonNegative(); 1546 else if (Known2.isNegative() && Known3.isNegative()) 1547 Known.makeNegative(); 1548 } 1549 1550 // (sub nsw non-negative, negative) --> non-negative 1551 // (sub nsw negative, non-negative) --> negative 1552 else if (Opcode == Instruction::Sub && LL == I) { 1553 if (Known2.isNonNegative() && Known3.isNegative()) 1554 Known.makeNonNegative(); 1555 else if (Known2.isNegative() && Known3.isNonNegative()) 1556 Known.makeNegative(); 1557 } 1558 1559 // (mul nsw non-negative, non-negative) --> non-negative 1560 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1561 Known3.isNonNegative()) 1562 Known.makeNonNegative(); 1563 } 1564 1565 break; 1566 } 1567 } 1568 } 1569 1570 // Unreachable blocks may have zero-operand PHI nodes. 1571 if (P->getNumIncomingValues() == 0) 1572 break; 1573 1574 // Otherwise take the unions of the known bit sets of the operands, 1575 // taking conservative care to avoid excessive recursion. 1576 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1577 // Skip if every incoming value references to ourself. 1578 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1579 break; 1580 1581 Known.Zero.setAllBits(); 1582 Known.One.setAllBits(); 1583 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1584 Value *IncValue = P->getIncomingValue(u); 1585 // Skip direct self references. 1586 if (IncValue == P) continue; 1587 1588 // Change the context instruction to the "edge" that flows into the 1589 // phi. This is important because that is where the value is actually 1590 // "evaluated" even though it is used later somewhere else. (see also 1591 // D69571). 1592 Query RecQ = Q; 1593 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1594 1595 Known2 = KnownBits(BitWidth); 1596 // Recurse, but cap the recursion to one level, because we don't 1597 // want to waste time spinning around in loops. 1598 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1599 Known.Zero &= Known2.Zero; 1600 Known.One &= Known2.One; 1601 // If all bits have been ruled out, there's no need to check 1602 // more operands. 1603 if (!Known.Zero && !Known.One) 1604 break; 1605 } 1606 } 1607 break; 1608 } 1609 case Instruction::Call: 1610 case Instruction::Invoke: 1611 // If range metadata is attached to this call, set known bits from that, 1612 // and then intersect with known bits based on other properties of the 1613 // function. 1614 if (MDNode *MD = 1615 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1616 computeKnownBitsFromRangeMetadata(*MD, Known); 1617 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1618 computeKnownBits(RV, Known2, Depth + 1, Q); 1619 Known.Zero |= Known2.Zero; 1620 Known.One |= Known2.One; 1621 } 1622 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1623 switch (II->getIntrinsicID()) { 1624 default: break; 1625 case Intrinsic::abs: 1626 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1627 1628 // If the source's MSB is zero then we know the rest of the bits. 1629 if (Known2.isNonNegative()) { 1630 Known.Zero |= Known2.Zero; 1631 Known.One |= Known2.One; 1632 break; 1633 } 1634 1635 // Absolute value preserves trailing zero count. 1636 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1637 1638 // If this call is undefined for INT_MIN, the result is positive. We 1639 // also know it can't be INT_MIN if there is a set bit that isn't the 1640 // sign bit. 1641 Known2.One.clearSignBit(); 1642 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1643 Known.Zero.setSignBit(); 1644 // FIXME: Handle known negative input? 1645 // FIXME: Calculate the negated Known bits and combine them? 1646 break; 1647 case Intrinsic::bitreverse: 1648 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1649 Known.Zero |= Known2.Zero.reverseBits(); 1650 Known.One |= Known2.One.reverseBits(); 1651 break; 1652 case Intrinsic::bswap: 1653 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1654 Known.Zero |= Known2.Zero.byteSwap(); 1655 Known.One |= Known2.One.byteSwap(); 1656 break; 1657 case Intrinsic::ctlz: { 1658 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1659 // If we have a known 1, its position is our upper bound. 1660 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1661 // If this call is undefined for 0, the result will be less than 2^n. 1662 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1663 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1664 unsigned LowBits = Log2_32(PossibleLZ)+1; 1665 Known.Zero.setBitsFrom(LowBits); 1666 break; 1667 } 1668 case Intrinsic::cttz: { 1669 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1670 // If we have a known 1, its position is our upper bound. 1671 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1672 // If this call is undefined for 0, the result will be less than 2^n. 1673 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1674 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1675 unsigned LowBits = Log2_32(PossibleTZ)+1; 1676 Known.Zero.setBitsFrom(LowBits); 1677 break; 1678 } 1679 case Intrinsic::ctpop: { 1680 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1681 // We can bound the space the count needs. Also, bits known to be zero 1682 // can't contribute to the population. 1683 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1684 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1685 Known.Zero.setBitsFrom(LowBits); 1686 // TODO: we could bound KnownOne using the lower bound on the number 1687 // of bits which might be set provided by popcnt KnownOne2. 1688 break; 1689 } 1690 case Intrinsic::fshr: 1691 case Intrinsic::fshl: { 1692 const APInt *SA; 1693 if (!match(I->getOperand(2), m_APInt(SA))) 1694 break; 1695 1696 // Normalize to funnel shift left. 1697 uint64_t ShiftAmt = SA->urem(BitWidth); 1698 if (II->getIntrinsicID() == Intrinsic::fshr) 1699 ShiftAmt = BitWidth - ShiftAmt; 1700 1701 KnownBits Known3(BitWidth); 1702 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1703 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1704 1705 Known.Zero = 1706 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1707 Known.One = 1708 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1709 break; 1710 } 1711 case Intrinsic::uadd_sat: 1712 case Intrinsic::usub_sat: { 1713 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1714 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1715 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1716 1717 // Add: Leading ones of either operand are preserved. 1718 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1719 // as leading zeros in the result. 1720 unsigned LeadingKnown; 1721 if (IsAdd) 1722 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1723 Known2.countMinLeadingOnes()); 1724 else 1725 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1726 Known2.countMinLeadingOnes()); 1727 1728 Known = KnownBits::computeForAddSub( 1729 IsAdd, /* NSW */ false, Known, Known2); 1730 1731 // We select between the operation result and all-ones/zero 1732 // respectively, so we can preserve known ones/zeros. 1733 if (IsAdd) { 1734 Known.One.setHighBits(LeadingKnown); 1735 Known.Zero.clearAllBits(); 1736 } else { 1737 Known.Zero.setHighBits(LeadingKnown); 1738 Known.One.clearAllBits(); 1739 } 1740 break; 1741 } 1742 case Intrinsic::umin: 1743 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1744 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1745 Known = KnownBits::umin(Known, Known2); 1746 break; 1747 case Intrinsic::umax: 1748 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1749 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1750 Known = KnownBits::umax(Known, Known2); 1751 break; 1752 case Intrinsic::smin: 1753 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1754 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1755 Known = KnownBits::smin(Known, Known2); 1756 break; 1757 case Intrinsic::smax: 1758 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1759 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1760 Known = KnownBits::smax(Known, Known2); 1761 break; 1762 case Intrinsic::x86_sse42_crc32_64_64: 1763 Known.Zero.setBitsFrom(32); 1764 break; 1765 } 1766 } 1767 break; 1768 case Instruction::ShuffleVector: { 1769 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1770 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1771 if (!Shuf) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 // For undef elements, we don't know anything about the common state of 1776 // the shuffle result. 1777 APInt DemandedLHS, DemandedRHS; 1778 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1779 Known.resetAll(); 1780 return; 1781 } 1782 Known.One.setAllBits(); 1783 Known.Zero.setAllBits(); 1784 if (!!DemandedLHS) { 1785 const Value *LHS = Shuf->getOperand(0); 1786 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1787 // If we don't know any bits, early out. 1788 if (Known.isUnknown()) 1789 break; 1790 } 1791 if (!!DemandedRHS) { 1792 const Value *RHS = Shuf->getOperand(1); 1793 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1794 Known.One &= Known2.One; 1795 Known.Zero &= Known2.Zero; 1796 } 1797 break; 1798 } 1799 case Instruction::InsertElement: { 1800 const Value *Vec = I->getOperand(0); 1801 const Value *Elt = I->getOperand(1); 1802 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1803 // Early out if the index is non-constant or out-of-range. 1804 unsigned NumElts = DemandedElts.getBitWidth(); 1805 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1806 Known.resetAll(); 1807 return; 1808 } 1809 Known.One.setAllBits(); 1810 Known.Zero.setAllBits(); 1811 unsigned EltIdx = CIdx->getZExtValue(); 1812 // Do we demand the inserted element? 1813 if (DemandedElts[EltIdx]) { 1814 computeKnownBits(Elt, Known, Depth + 1, Q); 1815 // If we don't know any bits, early out. 1816 if (Known.isUnknown()) 1817 break; 1818 } 1819 // We don't need the base vector element that has been inserted. 1820 APInt DemandedVecElts = DemandedElts; 1821 DemandedVecElts.clearBit(EltIdx); 1822 if (!!DemandedVecElts) { 1823 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1824 Known.One &= Known2.One; 1825 Known.Zero &= Known2.Zero; 1826 } 1827 break; 1828 } 1829 case Instruction::ExtractElement: { 1830 // Look through extract element. If the index is non-constant or 1831 // out-of-range demand all elements, otherwise just the extracted element. 1832 const Value *Vec = I->getOperand(0); 1833 const Value *Idx = I->getOperand(1); 1834 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1835 if (isa<ScalableVectorType>(Vec->getType())) { 1836 // FIXME: there's probably *something* we can do with scalable vectors 1837 Known.resetAll(); 1838 break; 1839 } 1840 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1841 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1842 if (CIdx && CIdx->getValue().ult(NumElts)) 1843 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1844 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1845 break; 1846 } 1847 case Instruction::ExtractValue: 1848 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1849 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1850 if (EVI->getNumIndices() != 1) break; 1851 if (EVI->getIndices()[0] == 0) { 1852 switch (II->getIntrinsicID()) { 1853 default: break; 1854 case Intrinsic::uadd_with_overflow: 1855 case Intrinsic::sadd_with_overflow: 1856 computeKnownBitsAddSub(true, II->getArgOperand(0), 1857 II->getArgOperand(1), false, DemandedElts, 1858 Known, Known2, Depth, Q); 1859 break; 1860 case Intrinsic::usub_with_overflow: 1861 case Intrinsic::ssub_with_overflow: 1862 computeKnownBitsAddSub(false, II->getArgOperand(0), 1863 II->getArgOperand(1), false, DemandedElts, 1864 Known, Known2, Depth, Q); 1865 break; 1866 case Intrinsic::umul_with_overflow: 1867 case Intrinsic::smul_with_overflow: 1868 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1869 DemandedElts, Known, Known2, Depth, Q); 1870 break; 1871 } 1872 } 1873 } 1874 break; 1875 case Instruction::Freeze: 1876 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.CxtI, Q.DT, Depth + 1)) 1877 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1878 break; 1879 } 1880 } 1881 1882 /// Determine which bits of V are known to be either zero or one and return 1883 /// them. 1884 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1885 unsigned Depth, const Query &Q) { 1886 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1887 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1888 return Known; 1889 } 1890 1891 /// Determine which bits of V are known to be either zero or one and return 1892 /// them. 1893 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1894 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1895 computeKnownBits(V, Known, Depth, Q); 1896 return Known; 1897 } 1898 1899 /// Determine which bits of V are known to be either zero or one and return 1900 /// them in the Known bit set. 1901 /// 1902 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1903 /// we cannot optimize based on the assumption that it is zero without changing 1904 /// it to be an explicit zero. If we don't change it to zero, other code could 1905 /// optimized based on the contradictory assumption that it is non-zero. 1906 /// Because instcombine aggressively folds operations with undef args anyway, 1907 /// this won't lose us code quality. 1908 /// 1909 /// This function is defined on values with integer type, values with pointer 1910 /// type, and vectors of integers. In the case 1911 /// where V is a vector, known zero, and known one values are the 1912 /// same width as the vector element, and the bit is set only if it is true 1913 /// for all of the demanded elements in the vector specified by DemandedElts. 1914 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1915 KnownBits &Known, unsigned Depth, const Query &Q) { 1916 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1917 // No demanded elts or V is a scalable vector, better to assume we don't 1918 // know anything. 1919 Known.resetAll(); 1920 return; 1921 } 1922 1923 assert(V && "No Value?"); 1924 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1925 1926 #ifndef NDEBUG 1927 Type *Ty = V->getType(); 1928 unsigned BitWidth = Known.getBitWidth(); 1929 1930 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1931 "Not integer or pointer type!"); 1932 1933 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1934 assert( 1935 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1936 "DemandedElt width should equal the fixed vector number of elements"); 1937 } else { 1938 assert(DemandedElts == APInt(1, 1) && 1939 "DemandedElt width should be 1 for scalars"); 1940 } 1941 1942 Type *ScalarTy = Ty->getScalarType(); 1943 if (ScalarTy->isPointerTy()) { 1944 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1945 "V and Known should have same BitWidth"); 1946 } else { 1947 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1948 "V and Known should have same BitWidth"); 1949 } 1950 #endif 1951 1952 const APInt *C; 1953 if (match(V, m_APInt(C))) { 1954 // We know all of the bits for a scalar constant or a splat vector constant! 1955 Known.One = *C; 1956 Known.Zero = ~Known.One; 1957 return; 1958 } 1959 // Null and aggregate-zero are all-zeros. 1960 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1961 Known.setAllZero(); 1962 return; 1963 } 1964 // Handle a constant vector by taking the intersection of the known bits of 1965 // each element. 1966 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1967 // We know that CDV must be a vector of integers. Take the intersection of 1968 // each element. 1969 Known.Zero.setAllBits(); Known.One.setAllBits(); 1970 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1971 if (!DemandedElts[i]) 1972 continue; 1973 APInt Elt = CDV->getElementAsAPInt(i); 1974 Known.Zero &= ~Elt; 1975 Known.One &= Elt; 1976 } 1977 return; 1978 } 1979 1980 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1981 // We know that CV must be a vector of integers. Take the intersection of 1982 // each element. 1983 Known.Zero.setAllBits(); Known.One.setAllBits(); 1984 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1985 if (!DemandedElts[i]) 1986 continue; 1987 Constant *Element = CV->getAggregateElement(i); 1988 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1989 if (!ElementCI) { 1990 Known.resetAll(); 1991 return; 1992 } 1993 const APInt &Elt = ElementCI->getValue(); 1994 Known.Zero &= ~Elt; 1995 Known.One &= Elt; 1996 } 1997 return; 1998 } 1999 2000 // Start out not knowing anything. 2001 Known.resetAll(); 2002 2003 // We can't imply anything about undefs. 2004 if (isa<UndefValue>(V)) 2005 return; 2006 2007 // There's no point in looking through other users of ConstantData for 2008 // assumptions. Confirm that we've handled them all. 2009 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2010 2011 // All recursive calls that increase depth must come after this. 2012 if (Depth == MaxAnalysisRecursionDepth) 2013 return; 2014 2015 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2016 // the bits of its aliasee. 2017 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2018 if (!GA->isInterposable()) 2019 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2020 return; 2021 } 2022 2023 if (const Operator *I = dyn_cast<Operator>(V)) 2024 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2025 2026 // Aligned pointers have trailing zeros - refine Known.Zero set 2027 if (isa<PointerType>(V->getType())) { 2028 Align Alignment = V->getPointerAlignment(Q.DL); 2029 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2030 } 2031 2032 // computeKnownBitsFromAssume strictly refines Known. 2033 // Therefore, we run them after computeKnownBitsFromOperator. 2034 2035 // Check whether a nearby assume intrinsic can determine some known bits. 2036 computeKnownBitsFromAssume(V, Known, Depth, Q); 2037 2038 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2039 } 2040 2041 /// Return true if the given value is known to have exactly one 2042 /// bit set when defined. For vectors return true if every element is known to 2043 /// be a power of two when defined. Supports values with integer or pointer 2044 /// types and vectors of integers. 2045 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2046 const Query &Q) { 2047 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2048 2049 // Attempt to match against constants. 2050 if (OrZero && match(V, m_Power2OrZero())) 2051 return true; 2052 if (match(V, m_Power2())) 2053 return true; 2054 2055 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2056 // it is shifted off the end then the result is undefined. 2057 if (match(V, m_Shl(m_One(), m_Value()))) 2058 return true; 2059 2060 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2061 // the bottom. If it is shifted off the bottom then the result is undefined. 2062 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2063 return true; 2064 2065 // The remaining tests are all recursive, so bail out if we hit the limit. 2066 if (Depth++ == MaxAnalysisRecursionDepth) 2067 return false; 2068 2069 Value *X = nullptr, *Y = nullptr; 2070 // A shift left or a logical shift right of a power of two is a power of two 2071 // or zero. 2072 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2073 match(V, m_LShr(m_Value(X), m_Value())))) 2074 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2075 2076 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2077 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2078 2079 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2080 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2081 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2082 2083 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2084 // A power of two and'd with anything is a power of two or zero. 2085 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2086 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2087 return true; 2088 // X & (-X) is always a power of two or zero. 2089 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2090 return true; 2091 return false; 2092 } 2093 2094 // Adding a power-of-two or zero to the same power-of-two or zero yields 2095 // either the original power-of-two, a larger power-of-two or zero. 2096 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2097 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2098 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2099 Q.IIQ.hasNoSignedWrap(VOBO)) { 2100 if (match(X, m_And(m_Specific(Y), m_Value())) || 2101 match(X, m_And(m_Value(), m_Specific(Y)))) 2102 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2103 return true; 2104 if (match(Y, m_And(m_Specific(X), m_Value())) || 2105 match(Y, m_And(m_Value(), m_Specific(X)))) 2106 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2107 return true; 2108 2109 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2110 KnownBits LHSBits(BitWidth); 2111 computeKnownBits(X, LHSBits, Depth, Q); 2112 2113 KnownBits RHSBits(BitWidth); 2114 computeKnownBits(Y, RHSBits, Depth, Q); 2115 // If i8 V is a power of two or zero: 2116 // ZeroBits: 1 1 1 0 1 1 1 1 2117 // ~ZeroBits: 0 0 0 1 0 0 0 0 2118 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2119 // If OrZero isn't set, we cannot give back a zero result. 2120 // Make sure either the LHS or RHS has a bit set. 2121 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2122 return true; 2123 } 2124 } 2125 2126 // An exact divide or right shift can only shift off zero bits, so the result 2127 // is a power of two only if the first operand is a power of two and not 2128 // copying a sign bit (sdiv int_min, 2). 2129 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2130 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2131 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2132 Depth, Q); 2133 } 2134 2135 return false; 2136 } 2137 2138 /// Test whether a GEP's result is known to be non-null. 2139 /// 2140 /// Uses properties inherent in a GEP to try to determine whether it is known 2141 /// to be non-null. 2142 /// 2143 /// Currently this routine does not support vector GEPs. 2144 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2145 const Query &Q) { 2146 const Function *F = nullptr; 2147 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2148 F = I->getFunction(); 2149 2150 if (!GEP->isInBounds() || 2151 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2152 return false; 2153 2154 // FIXME: Support vector-GEPs. 2155 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2156 2157 // If the base pointer is non-null, we cannot walk to a null address with an 2158 // inbounds GEP in address space zero. 2159 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2160 return true; 2161 2162 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2163 // If so, then the GEP cannot produce a null pointer, as doing so would 2164 // inherently violate the inbounds contract within address space zero. 2165 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2166 GTI != GTE; ++GTI) { 2167 // Struct types are easy -- they must always be indexed by a constant. 2168 if (StructType *STy = GTI.getStructTypeOrNull()) { 2169 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2170 unsigned ElementIdx = OpC->getZExtValue(); 2171 const StructLayout *SL = Q.DL.getStructLayout(STy); 2172 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2173 if (ElementOffset > 0) 2174 return true; 2175 continue; 2176 } 2177 2178 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2179 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2180 continue; 2181 2182 // Fast path the constant operand case both for efficiency and so we don't 2183 // increment Depth when just zipping down an all-constant GEP. 2184 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2185 if (!OpC->isZero()) 2186 return true; 2187 continue; 2188 } 2189 2190 // We post-increment Depth here because while isKnownNonZero increments it 2191 // as well, when we pop back up that increment won't persist. We don't want 2192 // to recurse 10k times just because we have 10k GEP operands. We don't 2193 // bail completely out because we want to handle constant GEPs regardless 2194 // of depth. 2195 if (Depth++ >= MaxAnalysisRecursionDepth) 2196 continue; 2197 2198 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2199 return true; 2200 } 2201 2202 return false; 2203 } 2204 2205 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2206 const Instruction *CtxI, 2207 const DominatorTree *DT) { 2208 if (isa<Constant>(V)) 2209 return false; 2210 2211 if (!CtxI || !DT) 2212 return false; 2213 2214 unsigned NumUsesExplored = 0; 2215 for (auto *U : V->users()) { 2216 // Avoid massive lists 2217 if (NumUsesExplored >= DomConditionsMaxUses) 2218 break; 2219 NumUsesExplored++; 2220 2221 // If the value is used as an argument to a call or invoke, then argument 2222 // attributes may provide an answer about null-ness. 2223 if (const auto *CB = dyn_cast<CallBase>(U)) 2224 if (auto *CalledFunc = CB->getCalledFunction()) 2225 for (const Argument &Arg : CalledFunc->args()) 2226 if (CB->getArgOperand(Arg.getArgNo()) == V && 2227 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2228 return true; 2229 2230 // If the value is used as a load/store, then the pointer must be non null. 2231 if (V == getLoadStorePointerOperand(U)) { 2232 const Instruction *I = cast<Instruction>(U); 2233 if (!NullPointerIsDefined(I->getFunction(), 2234 V->getType()->getPointerAddressSpace()) && 2235 DT->dominates(I, CtxI)) 2236 return true; 2237 } 2238 2239 // Consider only compare instructions uniquely controlling a branch 2240 CmpInst::Predicate Pred; 2241 if (!match(const_cast<User *>(U), 2242 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2243 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2244 continue; 2245 2246 SmallVector<const User *, 4> WorkList; 2247 SmallPtrSet<const User *, 4> Visited; 2248 for (auto *CmpU : U->users()) { 2249 assert(WorkList.empty() && "Should be!"); 2250 if (Visited.insert(CmpU).second) 2251 WorkList.push_back(CmpU); 2252 2253 while (!WorkList.empty()) { 2254 auto *Curr = WorkList.pop_back_val(); 2255 2256 // If a user is an AND, add all its users to the work list. We only 2257 // propagate "pred != null" condition through AND because it is only 2258 // correct to assume that all conditions of AND are met in true branch. 2259 // TODO: Support similar logic of OR and EQ predicate? 2260 if (Pred == ICmpInst::ICMP_NE) 2261 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2262 if (BO->getOpcode() == Instruction::And) { 2263 for (auto *BOU : BO->users()) 2264 if (Visited.insert(BOU).second) 2265 WorkList.push_back(BOU); 2266 continue; 2267 } 2268 2269 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2270 assert(BI->isConditional() && "uses a comparison!"); 2271 2272 BasicBlock *NonNullSuccessor = 2273 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2274 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2275 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2276 return true; 2277 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2278 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2279 return true; 2280 } 2281 } 2282 } 2283 } 2284 2285 return false; 2286 } 2287 2288 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2289 /// ensure that the value it's attached to is never Value? 'RangeType' is 2290 /// is the type of the value described by the range. 2291 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2292 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2293 assert(NumRanges >= 1); 2294 for (unsigned i = 0; i < NumRanges; ++i) { 2295 ConstantInt *Lower = 2296 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2297 ConstantInt *Upper = 2298 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2299 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2300 if (Range.contains(Value)) 2301 return false; 2302 } 2303 return true; 2304 } 2305 2306 /// Return true if the given value is known to be non-zero when defined. For 2307 /// vectors, return true if every demanded element is known to be non-zero when 2308 /// defined. For pointers, if the context instruction and dominator tree are 2309 /// specified, perform context-sensitive analysis and return true if the 2310 /// pointer couldn't possibly be null at the specified instruction. 2311 /// Supports values with integer or pointer type and vectors of integers. 2312 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2313 const Query &Q) { 2314 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2315 // vector 2316 if (isa<ScalableVectorType>(V->getType())) 2317 return false; 2318 2319 if (auto *C = dyn_cast<Constant>(V)) { 2320 if (C->isNullValue()) 2321 return false; 2322 if (isa<ConstantInt>(C)) 2323 // Must be non-zero due to null test above. 2324 return true; 2325 2326 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2327 // See the comment for IntToPtr/PtrToInt instructions below. 2328 if (CE->getOpcode() == Instruction::IntToPtr || 2329 CE->getOpcode() == Instruction::PtrToInt) 2330 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2331 Q.DL.getTypeSizeInBits(CE->getType())) 2332 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2333 } 2334 2335 // For constant vectors, check that all elements are undefined or known 2336 // non-zero to determine that the whole vector is known non-zero. 2337 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2338 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2339 if (!DemandedElts[i]) 2340 continue; 2341 Constant *Elt = C->getAggregateElement(i); 2342 if (!Elt || Elt->isNullValue()) 2343 return false; 2344 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2345 return false; 2346 } 2347 return true; 2348 } 2349 2350 // A global variable in address space 0 is non null unless extern weak 2351 // or an absolute symbol reference. Other address spaces may have null as a 2352 // valid address for a global, so we can't assume anything. 2353 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2354 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2355 GV->getType()->getAddressSpace() == 0) 2356 return true; 2357 } else 2358 return false; 2359 } 2360 2361 if (auto *I = dyn_cast<Instruction>(V)) { 2362 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2363 // If the possible ranges don't contain zero, then the value is 2364 // definitely non-zero. 2365 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2366 const APInt ZeroValue(Ty->getBitWidth(), 0); 2367 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2368 return true; 2369 } 2370 } 2371 } 2372 2373 if (isKnownNonZeroFromAssume(V, Q)) 2374 return true; 2375 2376 // Some of the tests below are recursive, so bail out if we hit the limit. 2377 if (Depth++ >= MaxAnalysisRecursionDepth) 2378 return false; 2379 2380 // Check for pointer simplifications. 2381 2382 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2383 // Alloca never returns null, malloc might. 2384 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2385 return true; 2386 2387 // A byval, inalloca may not be null in a non-default addres space. A 2388 // nonnull argument is assumed never 0. 2389 if (const Argument *A = dyn_cast<Argument>(V)) { 2390 if (((A->hasPassPointeeByValueCopyAttr() && 2391 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2392 A->hasNonNullAttr())) 2393 return true; 2394 } 2395 2396 // A Load tagged with nonnull metadata is never null. 2397 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2398 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2399 return true; 2400 2401 if (const auto *Call = dyn_cast<CallBase>(V)) { 2402 if (Call->isReturnNonNull()) 2403 return true; 2404 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2405 return isKnownNonZero(RP, Depth, Q); 2406 } 2407 } 2408 2409 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2410 return true; 2411 2412 // Check for recursive pointer simplifications. 2413 if (V->getType()->isPointerTy()) { 2414 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2415 // do not alter the value, or at least not the nullness property of the 2416 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2417 // 2418 // Note that we have to take special care to avoid looking through 2419 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2420 // as casts that can alter the value, e.g., AddrSpaceCasts. 2421 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2422 return isGEPKnownNonNull(GEP, Depth, Q); 2423 2424 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2425 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2426 2427 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2428 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2429 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2430 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2431 } 2432 2433 // Similar to int2ptr above, we can look through ptr2int here if the cast 2434 // is a no-op or an extend and not a truncate. 2435 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2436 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2437 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2438 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2439 2440 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2441 2442 // X | Y != 0 if X != 0 or Y != 0. 2443 Value *X = nullptr, *Y = nullptr; 2444 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2445 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2446 isKnownNonZero(Y, DemandedElts, Depth, Q); 2447 2448 // ext X != 0 if X != 0. 2449 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2450 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2451 2452 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2453 // if the lowest bit is shifted off the end. 2454 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2455 // shl nuw can't remove any non-zero bits. 2456 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2457 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2458 return isKnownNonZero(X, Depth, Q); 2459 2460 KnownBits Known(BitWidth); 2461 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2462 if (Known.One[0]) 2463 return true; 2464 } 2465 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2466 // defined if the sign bit is shifted off the end. 2467 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2468 // shr exact can only shift out zero bits. 2469 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2470 if (BO->isExact()) 2471 return isKnownNonZero(X, Depth, Q); 2472 2473 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2474 if (Known.isNegative()) 2475 return true; 2476 2477 // If the shifter operand is a constant, and all of the bits shifted 2478 // out are known to be zero, and X is known non-zero then at least one 2479 // non-zero bit must remain. 2480 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2481 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2482 // Is there a known one in the portion not shifted out? 2483 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2484 return true; 2485 // Are all the bits to be shifted out known zero? 2486 if (Known.countMinTrailingZeros() >= ShiftVal) 2487 return isKnownNonZero(X, DemandedElts, Depth, Q); 2488 } 2489 } 2490 // div exact can only produce a zero if the dividend is zero. 2491 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2492 return isKnownNonZero(X, DemandedElts, Depth, Q); 2493 } 2494 // X + Y. 2495 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2496 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2497 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2498 2499 // If X and Y are both non-negative (as signed values) then their sum is not 2500 // zero unless both X and Y are zero. 2501 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2502 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2503 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2504 return true; 2505 2506 // If X and Y are both negative (as signed values) then their sum is not 2507 // zero unless both X and Y equal INT_MIN. 2508 if (XKnown.isNegative() && YKnown.isNegative()) { 2509 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2510 // The sign bit of X is set. If some other bit is set then X is not equal 2511 // to INT_MIN. 2512 if (XKnown.One.intersects(Mask)) 2513 return true; 2514 // The sign bit of Y is set. If some other bit is set then Y is not equal 2515 // to INT_MIN. 2516 if (YKnown.One.intersects(Mask)) 2517 return true; 2518 } 2519 2520 // The sum of a non-negative number and a power of two is not zero. 2521 if (XKnown.isNonNegative() && 2522 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2523 return true; 2524 if (YKnown.isNonNegative() && 2525 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2526 return true; 2527 } 2528 // X * Y. 2529 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2530 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2531 // If X and Y are non-zero then so is X * Y as long as the multiplication 2532 // does not overflow. 2533 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2534 isKnownNonZero(X, DemandedElts, Depth, Q) && 2535 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2536 return true; 2537 } 2538 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2539 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2540 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2541 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2542 return true; 2543 } 2544 // PHI 2545 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2546 // Try and detect a recurrence that monotonically increases from a 2547 // starting value, as these are common as induction variables. 2548 if (PN->getNumIncomingValues() == 2) { 2549 Value *Start = PN->getIncomingValue(0); 2550 Value *Induction = PN->getIncomingValue(1); 2551 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2552 std::swap(Start, Induction); 2553 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2554 if (!C->isZero() && !C->isNegative()) { 2555 ConstantInt *X; 2556 if (Q.IIQ.UseInstrInfo && 2557 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2558 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2559 !X->isNegative()) 2560 return true; 2561 } 2562 } 2563 } 2564 // Check if all incoming values are non-zero using recursion. 2565 Query RecQ = Q; 2566 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2567 return llvm::all_of(PN->operands(), [&](const Use &U) { 2568 if (U.get() == PN) 2569 return true; 2570 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2571 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2572 }); 2573 } 2574 // ExtractElement 2575 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2576 const Value *Vec = EEI->getVectorOperand(); 2577 const Value *Idx = EEI->getIndexOperand(); 2578 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2579 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2580 unsigned NumElts = VecTy->getNumElements(); 2581 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2582 if (CIdx && CIdx->getValue().ult(NumElts)) 2583 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2584 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2585 } 2586 } 2587 // Freeze 2588 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2589 auto *Op = FI->getOperand(0); 2590 if (isKnownNonZero(Op, Depth, Q) && 2591 isGuaranteedNotToBePoison(Op, Q.CxtI, Q.DT, Depth)) 2592 return true; 2593 } 2594 2595 KnownBits Known(BitWidth); 2596 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2597 return Known.One != 0; 2598 } 2599 2600 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2601 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2602 // vector 2603 if (isa<ScalableVectorType>(V->getType())) 2604 return false; 2605 2606 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2607 APInt DemandedElts = 2608 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2609 return isKnownNonZero(V, DemandedElts, Depth, Q); 2610 } 2611 2612 /// Return true if V2 == V1 + X, where X is known non-zero. 2613 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2614 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2615 if (!BO || BO->getOpcode() != Instruction::Add) 2616 return false; 2617 Value *Op = nullptr; 2618 if (V2 == BO->getOperand(0)) 2619 Op = BO->getOperand(1); 2620 else if (V2 == BO->getOperand(1)) 2621 Op = BO->getOperand(0); 2622 else 2623 return false; 2624 return isKnownNonZero(Op, 0, Q); 2625 } 2626 2627 /// Return true if it is known that V1 != V2. 2628 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2629 if (V1 == V2) 2630 return false; 2631 if (V1->getType() != V2->getType()) 2632 // We can't look through casts yet. 2633 return false; 2634 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2635 return true; 2636 2637 if (V1->getType()->isIntOrIntVectorTy()) { 2638 // Are any known bits in V1 contradictory to known bits in V2? If V1 2639 // has a known zero where V2 has a known one, they must not be equal. 2640 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2641 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2642 2643 if (Known1.Zero.intersects(Known2.One) || 2644 Known2.Zero.intersects(Known1.One)) 2645 return true; 2646 } 2647 return false; 2648 } 2649 2650 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2651 /// simplify operations downstream. Mask is known to be zero for bits that V 2652 /// cannot have. 2653 /// 2654 /// This function is defined on values with integer type, values with pointer 2655 /// type, and vectors of integers. In the case 2656 /// where V is a vector, the mask, known zero, and known one values are the 2657 /// same width as the vector element, and the bit is set only if it is true 2658 /// for all of the elements in the vector. 2659 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2660 const Query &Q) { 2661 KnownBits Known(Mask.getBitWidth()); 2662 computeKnownBits(V, Known, Depth, Q); 2663 return Mask.isSubsetOf(Known.Zero); 2664 } 2665 2666 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2667 // Returns the input and lower/upper bounds. 2668 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2669 const APInt *&CLow, const APInt *&CHigh) { 2670 assert(isa<Operator>(Select) && 2671 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2672 "Input should be a Select!"); 2673 2674 const Value *LHS = nullptr, *RHS = nullptr; 2675 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2676 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2677 return false; 2678 2679 if (!match(RHS, m_APInt(CLow))) 2680 return false; 2681 2682 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2683 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2684 if (getInverseMinMaxFlavor(SPF) != SPF2) 2685 return false; 2686 2687 if (!match(RHS2, m_APInt(CHigh))) 2688 return false; 2689 2690 if (SPF == SPF_SMIN) 2691 std::swap(CLow, CHigh); 2692 2693 In = LHS2; 2694 return CLow->sle(*CHigh); 2695 } 2696 2697 /// For vector constants, loop over the elements and find the constant with the 2698 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2699 /// or if any element was not analyzed; otherwise, return the count for the 2700 /// element with the minimum number of sign bits. 2701 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2702 const APInt &DemandedElts, 2703 unsigned TyBits) { 2704 const auto *CV = dyn_cast<Constant>(V); 2705 if (!CV || !isa<FixedVectorType>(CV->getType())) 2706 return 0; 2707 2708 unsigned MinSignBits = TyBits; 2709 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2710 for (unsigned i = 0; i != NumElts; ++i) { 2711 if (!DemandedElts[i]) 2712 continue; 2713 // If we find a non-ConstantInt, bail out. 2714 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2715 if (!Elt) 2716 return 0; 2717 2718 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2719 } 2720 2721 return MinSignBits; 2722 } 2723 2724 static unsigned ComputeNumSignBitsImpl(const Value *V, 2725 const APInt &DemandedElts, 2726 unsigned Depth, const Query &Q); 2727 2728 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2729 unsigned Depth, const Query &Q) { 2730 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2731 assert(Result > 0 && "At least one sign bit needs to be present!"); 2732 return Result; 2733 } 2734 2735 /// Return the number of times the sign bit of the register is replicated into 2736 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2737 /// (itself), but other cases can give us information. For example, immediately 2738 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2739 /// other, so we return 3. For vectors, return the number of sign bits for the 2740 /// vector element with the minimum number of known sign bits of the demanded 2741 /// elements in the vector specified by DemandedElts. 2742 static unsigned ComputeNumSignBitsImpl(const Value *V, 2743 const APInt &DemandedElts, 2744 unsigned Depth, const Query &Q) { 2745 Type *Ty = V->getType(); 2746 2747 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2748 // vector 2749 if (isa<ScalableVectorType>(Ty)) 2750 return 1; 2751 2752 #ifndef NDEBUG 2753 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2754 2755 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2756 assert( 2757 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2758 "DemandedElt width should equal the fixed vector number of elements"); 2759 } else { 2760 assert(DemandedElts == APInt(1, 1) && 2761 "DemandedElt width should be 1 for scalars"); 2762 } 2763 #endif 2764 2765 // We return the minimum number of sign bits that are guaranteed to be present 2766 // in V, so for undef we have to conservatively return 1. We don't have the 2767 // same behavior for poison though -- that's a FIXME today. 2768 2769 Type *ScalarTy = Ty->getScalarType(); 2770 unsigned TyBits = ScalarTy->isPointerTy() ? 2771 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2772 Q.DL.getTypeSizeInBits(ScalarTy); 2773 2774 unsigned Tmp, Tmp2; 2775 unsigned FirstAnswer = 1; 2776 2777 // Note that ConstantInt is handled by the general computeKnownBits case 2778 // below. 2779 2780 if (Depth == MaxAnalysisRecursionDepth) 2781 return 1; 2782 2783 if (auto *U = dyn_cast<Operator>(V)) { 2784 switch (Operator::getOpcode(V)) { 2785 default: break; 2786 case Instruction::SExt: 2787 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2788 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2789 2790 case Instruction::SDiv: { 2791 const APInt *Denominator; 2792 // sdiv X, C -> adds log(C) sign bits. 2793 if (match(U->getOperand(1), m_APInt(Denominator))) { 2794 2795 // Ignore non-positive denominator. 2796 if (!Denominator->isStrictlyPositive()) 2797 break; 2798 2799 // Calculate the incoming numerator bits. 2800 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2801 2802 // Add floor(log(C)) bits to the numerator bits. 2803 return std::min(TyBits, NumBits + Denominator->logBase2()); 2804 } 2805 break; 2806 } 2807 2808 case Instruction::SRem: { 2809 const APInt *Denominator; 2810 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2811 // positive constant. This let us put a lower bound on the number of sign 2812 // bits. 2813 if (match(U->getOperand(1), m_APInt(Denominator))) { 2814 2815 // Ignore non-positive denominator. 2816 if (!Denominator->isStrictlyPositive()) 2817 break; 2818 2819 // Calculate the incoming numerator bits. SRem by a positive constant 2820 // can't lower the number of sign bits. 2821 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2822 2823 // Calculate the leading sign bit constraints by examining the 2824 // denominator. Given that the denominator is positive, there are two 2825 // cases: 2826 // 2827 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2828 // (1 << ceilLogBase2(C)). 2829 // 2830 // 2. the numerator is negative. Then the result range is (-C,0] and 2831 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2832 // 2833 // Thus a lower bound on the number of sign bits is `TyBits - 2834 // ceilLogBase2(C)`. 2835 2836 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2837 return std::max(NumrBits, ResBits); 2838 } 2839 break; 2840 } 2841 2842 case Instruction::AShr: { 2843 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2844 // ashr X, C -> adds C sign bits. Vectors too. 2845 const APInt *ShAmt; 2846 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2847 if (ShAmt->uge(TyBits)) 2848 break; // Bad shift. 2849 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2850 Tmp += ShAmtLimited; 2851 if (Tmp > TyBits) Tmp = TyBits; 2852 } 2853 return Tmp; 2854 } 2855 case Instruction::Shl: { 2856 const APInt *ShAmt; 2857 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2858 // shl destroys sign bits. 2859 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2860 if (ShAmt->uge(TyBits) || // Bad shift. 2861 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2862 Tmp2 = ShAmt->getZExtValue(); 2863 return Tmp - Tmp2; 2864 } 2865 break; 2866 } 2867 case Instruction::And: 2868 case Instruction::Or: 2869 case Instruction::Xor: // NOT is handled here. 2870 // Logical binary ops preserve the number of sign bits at the worst. 2871 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2872 if (Tmp != 1) { 2873 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2874 FirstAnswer = std::min(Tmp, Tmp2); 2875 // We computed what we know about the sign bits as our first 2876 // answer. Now proceed to the generic code that uses 2877 // computeKnownBits, and pick whichever answer is better. 2878 } 2879 break; 2880 2881 case Instruction::Select: { 2882 // If we have a clamp pattern, we know that the number of sign bits will 2883 // be the minimum of the clamp min/max range. 2884 const Value *X; 2885 const APInt *CLow, *CHigh; 2886 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2887 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2888 2889 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2890 if (Tmp == 1) break; 2891 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2892 return std::min(Tmp, Tmp2); 2893 } 2894 2895 case Instruction::Add: 2896 // Add can have at most one carry bit. Thus we know that the output 2897 // is, at worst, one more bit than the inputs. 2898 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2899 if (Tmp == 1) break; 2900 2901 // Special case decrementing a value (ADD X, -1): 2902 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2903 if (CRHS->isAllOnesValue()) { 2904 KnownBits Known(TyBits); 2905 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2906 2907 // If the input is known to be 0 or 1, the output is 0/-1, which is 2908 // all sign bits set. 2909 if ((Known.Zero | 1).isAllOnesValue()) 2910 return TyBits; 2911 2912 // If we are subtracting one from a positive number, there is no carry 2913 // out of the result. 2914 if (Known.isNonNegative()) 2915 return Tmp; 2916 } 2917 2918 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2919 if (Tmp2 == 1) break; 2920 return std::min(Tmp, Tmp2) - 1; 2921 2922 case Instruction::Sub: 2923 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2924 if (Tmp2 == 1) break; 2925 2926 // Handle NEG. 2927 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2928 if (CLHS->isNullValue()) { 2929 KnownBits Known(TyBits); 2930 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2931 // If the input is known to be 0 or 1, the output is 0/-1, which is 2932 // all sign bits set. 2933 if ((Known.Zero | 1).isAllOnesValue()) 2934 return TyBits; 2935 2936 // If the input is known to be positive (the sign bit is known clear), 2937 // the output of the NEG has the same number of sign bits as the 2938 // input. 2939 if (Known.isNonNegative()) 2940 return Tmp2; 2941 2942 // Otherwise, we treat this like a SUB. 2943 } 2944 2945 // Sub can have at most one carry bit. Thus we know that the output 2946 // is, at worst, one more bit than the inputs. 2947 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2948 if (Tmp == 1) break; 2949 return std::min(Tmp, Tmp2) - 1; 2950 2951 case Instruction::Mul: { 2952 // The output of the Mul can be at most twice the valid bits in the 2953 // inputs. 2954 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2955 if (SignBitsOp0 == 1) break; 2956 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2957 if (SignBitsOp1 == 1) break; 2958 unsigned OutValidBits = 2959 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2960 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2961 } 2962 2963 case Instruction::PHI: { 2964 const PHINode *PN = cast<PHINode>(U); 2965 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2966 // Don't analyze large in-degree PHIs. 2967 if (NumIncomingValues > 4) break; 2968 // Unreachable blocks may have zero-operand PHI nodes. 2969 if (NumIncomingValues == 0) break; 2970 2971 // Take the minimum of all incoming values. This can't infinitely loop 2972 // because of our depth threshold. 2973 Query RecQ = Q; 2974 Tmp = TyBits; 2975 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2976 if (Tmp == 1) return Tmp; 2977 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2978 Tmp = std::min( 2979 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2980 } 2981 return Tmp; 2982 } 2983 2984 case Instruction::Trunc: 2985 // FIXME: it's tricky to do anything useful for this, but it is an 2986 // important case for targets like X86. 2987 break; 2988 2989 case Instruction::ExtractElement: 2990 // Look through extract element. At the moment we keep this simple and 2991 // skip tracking the specific element. But at least we might find 2992 // information valid for all elements of the vector (for example if vector 2993 // is sign extended, shifted, etc). 2994 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2995 2996 case Instruction::ShuffleVector: { 2997 // Collect the minimum number of sign bits that are shared by every vector 2998 // element referenced by the shuffle. 2999 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3000 if (!Shuf) { 3001 // FIXME: Add support for shufflevector constant expressions. 3002 return 1; 3003 } 3004 APInt DemandedLHS, DemandedRHS; 3005 // For undef elements, we don't know anything about the common state of 3006 // the shuffle result. 3007 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3008 return 1; 3009 Tmp = std::numeric_limits<unsigned>::max(); 3010 if (!!DemandedLHS) { 3011 const Value *LHS = Shuf->getOperand(0); 3012 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3013 } 3014 // If we don't know anything, early out and try computeKnownBits 3015 // fall-back. 3016 if (Tmp == 1) 3017 break; 3018 if (!!DemandedRHS) { 3019 const Value *RHS = Shuf->getOperand(1); 3020 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3021 Tmp = std::min(Tmp, Tmp2); 3022 } 3023 // If we don't know anything, early out and try computeKnownBits 3024 // fall-back. 3025 if (Tmp == 1) 3026 break; 3027 assert(Tmp <= Ty->getScalarSizeInBits() && 3028 "Failed to determine minimum sign bits"); 3029 return Tmp; 3030 } 3031 case Instruction::Call: { 3032 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3033 switch (II->getIntrinsicID()) { 3034 default: break; 3035 case Intrinsic::abs: 3036 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3037 if (Tmp == 1) break; 3038 3039 // Absolute value reduces number of sign bits by at most 1. 3040 return Tmp - 1; 3041 } 3042 } 3043 } 3044 } 3045 } 3046 3047 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3048 // use this information. 3049 3050 // If we can examine all elements of a vector constant successfully, we're 3051 // done (we can't do any better than that). If not, keep trying. 3052 if (unsigned VecSignBits = 3053 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3054 return VecSignBits; 3055 3056 KnownBits Known(TyBits); 3057 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3058 3059 // If we know that the sign bit is either zero or one, determine the number of 3060 // identical bits in the top of the input value. 3061 return std::max(FirstAnswer, Known.countMinSignBits()); 3062 } 3063 3064 /// This function computes the integer multiple of Base that equals V. 3065 /// If successful, it returns true and returns the multiple in 3066 /// Multiple. If unsuccessful, it returns false. It looks 3067 /// through SExt instructions only if LookThroughSExt is true. 3068 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3069 bool LookThroughSExt, unsigned Depth) { 3070 assert(V && "No Value?"); 3071 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3072 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3073 3074 Type *T = V->getType(); 3075 3076 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3077 3078 if (Base == 0) 3079 return false; 3080 3081 if (Base == 1) { 3082 Multiple = V; 3083 return true; 3084 } 3085 3086 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3087 Constant *BaseVal = ConstantInt::get(T, Base); 3088 if (CO && CO == BaseVal) { 3089 // Multiple is 1. 3090 Multiple = ConstantInt::get(T, 1); 3091 return true; 3092 } 3093 3094 if (CI && CI->getZExtValue() % Base == 0) { 3095 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3096 return true; 3097 } 3098 3099 if (Depth == MaxAnalysisRecursionDepth) return false; 3100 3101 Operator *I = dyn_cast<Operator>(V); 3102 if (!I) return false; 3103 3104 switch (I->getOpcode()) { 3105 default: break; 3106 case Instruction::SExt: 3107 if (!LookThroughSExt) return false; 3108 // otherwise fall through to ZExt 3109 LLVM_FALLTHROUGH; 3110 case Instruction::ZExt: 3111 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3112 LookThroughSExt, Depth+1); 3113 case Instruction::Shl: 3114 case Instruction::Mul: { 3115 Value *Op0 = I->getOperand(0); 3116 Value *Op1 = I->getOperand(1); 3117 3118 if (I->getOpcode() == Instruction::Shl) { 3119 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3120 if (!Op1CI) return false; 3121 // Turn Op0 << Op1 into Op0 * 2^Op1 3122 APInt Op1Int = Op1CI->getValue(); 3123 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3124 APInt API(Op1Int.getBitWidth(), 0); 3125 API.setBit(BitToSet); 3126 Op1 = ConstantInt::get(V->getContext(), API); 3127 } 3128 3129 Value *Mul0 = nullptr; 3130 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3131 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3132 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3133 if (Op1C->getType()->getPrimitiveSizeInBits() < 3134 MulC->getType()->getPrimitiveSizeInBits()) 3135 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3136 if (Op1C->getType()->getPrimitiveSizeInBits() > 3137 MulC->getType()->getPrimitiveSizeInBits()) 3138 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3139 3140 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3141 Multiple = ConstantExpr::getMul(MulC, Op1C); 3142 return true; 3143 } 3144 3145 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3146 if (Mul0CI->getValue() == 1) { 3147 // V == Base * Op1, so return Op1 3148 Multiple = Op1; 3149 return true; 3150 } 3151 } 3152 3153 Value *Mul1 = nullptr; 3154 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3155 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3156 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3157 if (Op0C->getType()->getPrimitiveSizeInBits() < 3158 MulC->getType()->getPrimitiveSizeInBits()) 3159 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3160 if (Op0C->getType()->getPrimitiveSizeInBits() > 3161 MulC->getType()->getPrimitiveSizeInBits()) 3162 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3163 3164 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3165 Multiple = ConstantExpr::getMul(MulC, Op0C); 3166 return true; 3167 } 3168 3169 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3170 if (Mul1CI->getValue() == 1) { 3171 // V == Base * Op0, so return Op0 3172 Multiple = Op0; 3173 return true; 3174 } 3175 } 3176 } 3177 } 3178 3179 // We could not determine if V is a multiple of Base. 3180 return false; 3181 } 3182 3183 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3184 const TargetLibraryInfo *TLI) { 3185 const Function *F = CB.getCalledFunction(); 3186 if (!F) 3187 return Intrinsic::not_intrinsic; 3188 3189 if (F->isIntrinsic()) 3190 return F->getIntrinsicID(); 3191 3192 // We are going to infer semantics of a library function based on mapping it 3193 // to an LLVM intrinsic. Check that the library function is available from 3194 // this callbase and in this environment. 3195 LibFunc Func; 3196 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3197 !CB.onlyReadsMemory()) 3198 return Intrinsic::not_intrinsic; 3199 3200 switch (Func) { 3201 default: 3202 break; 3203 case LibFunc_sin: 3204 case LibFunc_sinf: 3205 case LibFunc_sinl: 3206 return Intrinsic::sin; 3207 case LibFunc_cos: 3208 case LibFunc_cosf: 3209 case LibFunc_cosl: 3210 return Intrinsic::cos; 3211 case LibFunc_exp: 3212 case LibFunc_expf: 3213 case LibFunc_expl: 3214 return Intrinsic::exp; 3215 case LibFunc_exp2: 3216 case LibFunc_exp2f: 3217 case LibFunc_exp2l: 3218 return Intrinsic::exp2; 3219 case LibFunc_log: 3220 case LibFunc_logf: 3221 case LibFunc_logl: 3222 return Intrinsic::log; 3223 case LibFunc_log10: 3224 case LibFunc_log10f: 3225 case LibFunc_log10l: 3226 return Intrinsic::log10; 3227 case LibFunc_log2: 3228 case LibFunc_log2f: 3229 case LibFunc_log2l: 3230 return Intrinsic::log2; 3231 case LibFunc_fabs: 3232 case LibFunc_fabsf: 3233 case LibFunc_fabsl: 3234 return Intrinsic::fabs; 3235 case LibFunc_fmin: 3236 case LibFunc_fminf: 3237 case LibFunc_fminl: 3238 return Intrinsic::minnum; 3239 case LibFunc_fmax: 3240 case LibFunc_fmaxf: 3241 case LibFunc_fmaxl: 3242 return Intrinsic::maxnum; 3243 case LibFunc_copysign: 3244 case LibFunc_copysignf: 3245 case LibFunc_copysignl: 3246 return Intrinsic::copysign; 3247 case LibFunc_floor: 3248 case LibFunc_floorf: 3249 case LibFunc_floorl: 3250 return Intrinsic::floor; 3251 case LibFunc_ceil: 3252 case LibFunc_ceilf: 3253 case LibFunc_ceill: 3254 return Intrinsic::ceil; 3255 case LibFunc_trunc: 3256 case LibFunc_truncf: 3257 case LibFunc_truncl: 3258 return Intrinsic::trunc; 3259 case LibFunc_rint: 3260 case LibFunc_rintf: 3261 case LibFunc_rintl: 3262 return Intrinsic::rint; 3263 case LibFunc_nearbyint: 3264 case LibFunc_nearbyintf: 3265 case LibFunc_nearbyintl: 3266 return Intrinsic::nearbyint; 3267 case LibFunc_round: 3268 case LibFunc_roundf: 3269 case LibFunc_roundl: 3270 return Intrinsic::round; 3271 case LibFunc_roundeven: 3272 case LibFunc_roundevenf: 3273 case LibFunc_roundevenl: 3274 return Intrinsic::roundeven; 3275 case LibFunc_pow: 3276 case LibFunc_powf: 3277 case LibFunc_powl: 3278 return Intrinsic::pow; 3279 case LibFunc_sqrt: 3280 case LibFunc_sqrtf: 3281 case LibFunc_sqrtl: 3282 return Intrinsic::sqrt; 3283 } 3284 3285 return Intrinsic::not_intrinsic; 3286 } 3287 3288 /// Return true if we can prove that the specified FP value is never equal to 3289 /// -0.0. 3290 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3291 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3292 /// the same as +0.0 in floating-point ops. 3293 /// 3294 /// NOTE: this function will need to be revisited when we support non-default 3295 /// rounding modes! 3296 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3297 unsigned Depth) { 3298 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3299 return !CFP->getValueAPF().isNegZero(); 3300 3301 if (Depth == MaxAnalysisRecursionDepth) 3302 return false; 3303 3304 auto *Op = dyn_cast<Operator>(V); 3305 if (!Op) 3306 return false; 3307 3308 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3309 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3310 return true; 3311 3312 // sitofp and uitofp turn into +0.0 for zero. 3313 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3314 return true; 3315 3316 if (auto *Call = dyn_cast<CallInst>(Op)) { 3317 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3318 switch (IID) { 3319 default: 3320 break; 3321 // sqrt(-0.0) = -0.0, no other negative results are possible. 3322 case Intrinsic::sqrt: 3323 case Intrinsic::canonicalize: 3324 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3325 // fabs(x) != -0.0 3326 case Intrinsic::fabs: 3327 return true; 3328 } 3329 } 3330 3331 return false; 3332 } 3333 3334 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3335 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3336 /// bit despite comparing equal. 3337 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3338 const TargetLibraryInfo *TLI, 3339 bool SignBitOnly, 3340 unsigned Depth) { 3341 // TODO: This function does not do the right thing when SignBitOnly is true 3342 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3343 // which flips the sign bits of NaNs. See 3344 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3345 3346 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3347 return !CFP->getValueAPF().isNegative() || 3348 (!SignBitOnly && CFP->getValueAPF().isZero()); 3349 } 3350 3351 // Handle vector of constants. 3352 if (auto *CV = dyn_cast<Constant>(V)) { 3353 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3354 unsigned NumElts = CVFVTy->getNumElements(); 3355 for (unsigned i = 0; i != NumElts; ++i) { 3356 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3357 if (!CFP) 3358 return false; 3359 if (CFP->getValueAPF().isNegative() && 3360 (SignBitOnly || !CFP->getValueAPF().isZero())) 3361 return false; 3362 } 3363 3364 // All non-negative ConstantFPs. 3365 return true; 3366 } 3367 } 3368 3369 if (Depth == MaxAnalysisRecursionDepth) 3370 return false; 3371 3372 const Operator *I = dyn_cast<Operator>(V); 3373 if (!I) 3374 return false; 3375 3376 switch (I->getOpcode()) { 3377 default: 3378 break; 3379 // Unsigned integers are always nonnegative. 3380 case Instruction::UIToFP: 3381 return true; 3382 case Instruction::FMul: 3383 case Instruction::FDiv: 3384 // X * X is always non-negative or a NaN. 3385 // X / X is always exactly 1.0 or a NaN. 3386 if (I->getOperand(0) == I->getOperand(1) && 3387 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3388 return true; 3389 3390 LLVM_FALLTHROUGH; 3391 case Instruction::FAdd: 3392 case Instruction::FRem: 3393 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3394 Depth + 1) && 3395 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3396 Depth + 1); 3397 case Instruction::Select: 3398 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3399 Depth + 1) && 3400 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3401 Depth + 1); 3402 case Instruction::FPExt: 3403 case Instruction::FPTrunc: 3404 // Widening/narrowing never change sign. 3405 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3406 Depth + 1); 3407 case Instruction::ExtractElement: 3408 // Look through extract element. At the moment we keep this simple and skip 3409 // tracking the specific element. But at least we might find information 3410 // valid for all elements of the vector. 3411 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3412 Depth + 1); 3413 case Instruction::Call: 3414 const auto *CI = cast<CallInst>(I); 3415 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3416 switch (IID) { 3417 default: 3418 break; 3419 case Intrinsic::maxnum: { 3420 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3421 auto isPositiveNum = [&](Value *V) { 3422 if (SignBitOnly) { 3423 // With SignBitOnly, this is tricky because the result of 3424 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3425 // a constant strictly greater than 0.0. 3426 const APFloat *C; 3427 return match(V, m_APFloat(C)) && 3428 *C > APFloat::getZero(C->getSemantics()); 3429 } 3430 3431 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3432 // maxnum can't be ordered-less-than-zero. 3433 return isKnownNeverNaN(V, TLI) && 3434 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3435 }; 3436 3437 // TODO: This could be improved. We could also check that neither operand 3438 // has its sign bit set (and at least 1 is not-NAN?). 3439 return isPositiveNum(V0) || isPositiveNum(V1); 3440 } 3441 3442 case Intrinsic::maximum: 3443 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3444 Depth + 1) || 3445 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3446 Depth + 1); 3447 case Intrinsic::minnum: 3448 case Intrinsic::minimum: 3449 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3450 Depth + 1) && 3451 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3452 Depth + 1); 3453 case Intrinsic::exp: 3454 case Intrinsic::exp2: 3455 case Intrinsic::fabs: 3456 return true; 3457 3458 case Intrinsic::sqrt: 3459 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3460 if (!SignBitOnly) 3461 return true; 3462 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3463 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3464 3465 case Intrinsic::powi: 3466 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3467 // powi(x,n) is non-negative if n is even. 3468 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3469 return true; 3470 } 3471 // TODO: This is not correct. Given that exp is an integer, here are the 3472 // ways that pow can return a negative value: 3473 // 3474 // pow(x, exp) --> negative if exp is odd and x is negative. 3475 // pow(-0, exp) --> -inf if exp is negative odd. 3476 // pow(-0, exp) --> -0 if exp is positive odd. 3477 // pow(-inf, exp) --> -0 if exp is negative odd. 3478 // pow(-inf, exp) --> -inf if exp is positive odd. 3479 // 3480 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3481 // but we must return false if x == -0. Unfortunately we do not currently 3482 // have a way of expressing this constraint. See details in 3483 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3484 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3485 Depth + 1); 3486 3487 case Intrinsic::fma: 3488 case Intrinsic::fmuladd: 3489 // x*x+y is non-negative if y is non-negative. 3490 return I->getOperand(0) == I->getOperand(1) && 3491 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3492 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3493 Depth + 1); 3494 } 3495 break; 3496 } 3497 return false; 3498 } 3499 3500 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3501 const TargetLibraryInfo *TLI) { 3502 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3503 } 3504 3505 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3506 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3507 } 3508 3509 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3510 unsigned Depth) { 3511 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3512 3513 // If we're told that infinities won't happen, assume they won't. 3514 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3515 if (FPMathOp->hasNoInfs()) 3516 return true; 3517 3518 // Handle scalar constants. 3519 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3520 return !CFP->isInfinity(); 3521 3522 if (Depth == MaxAnalysisRecursionDepth) 3523 return false; 3524 3525 if (auto *Inst = dyn_cast<Instruction>(V)) { 3526 switch (Inst->getOpcode()) { 3527 case Instruction::Select: { 3528 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3529 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3530 } 3531 case Instruction::SIToFP: 3532 case Instruction::UIToFP: { 3533 // Get width of largest magnitude integer (remove a bit if signed). 3534 // This still works for a signed minimum value because the largest FP 3535 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3536 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3537 if (Inst->getOpcode() == Instruction::SIToFP) 3538 --IntSize; 3539 3540 // If the exponent of the largest finite FP value can hold the largest 3541 // integer, the result of the cast must be finite. 3542 Type *FPTy = Inst->getType()->getScalarType(); 3543 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3544 } 3545 default: 3546 break; 3547 } 3548 } 3549 3550 // try to handle fixed width vector constants 3551 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3552 if (VFVTy && isa<Constant>(V)) { 3553 // For vectors, verify that each element is not infinity. 3554 unsigned NumElts = VFVTy->getNumElements(); 3555 for (unsigned i = 0; i != NumElts; ++i) { 3556 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3557 if (!Elt) 3558 return false; 3559 if (isa<UndefValue>(Elt)) 3560 continue; 3561 auto *CElt = dyn_cast<ConstantFP>(Elt); 3562 if (!CElt || CElt->isInfinity()) 3563 return false; 3564 } 3565 // All elements were confirmed non-infinity or undefined. 3566 return true; 3567 } 3568 3569 // was not able to prove that V never contains infinity 3570 return false; 3571 } 3572 3573 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3574 unsigned Depth) { 3575 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3576 3577 // If we're told that NaNs won't happen, assume they won't. 3578 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3579 if (FPMathOp->hasNoNaNs()) 3580 return true; 3581 3582 // Handle scalar constants. 3583 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3584 return !CFP->isNaN(); 3585 3586 if (Depth == MaxAnalysisRecursionDepth) 3587 return false; 3588 3589 if (auto *Inst = dyn_cast<Instruction>(V)) { 3590 switch (Inst->getOpcode()) { 3591 case Instruction::FAdd: 3592 case Instruction::FSub: 3593 // Adding positive and negative infinity produces NaN. 3594 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3595 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3596 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3597 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3598 3599 case Instruction::FMul: 3600 // Zero multiplied with infinity produces NaN. 3601 // FIXME: If neither side can be zero fmul never produces NaN. 3602 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3603 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3604 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3605 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3606 3607 case Instruction::FDiv: 3608 case Instruction::FRem: 3609 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3610 return false; 3611 3612 case Instruction::Select: { 3613 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3614 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3615 } 3616 case Instruction::SIToFP: 3617 case Instruction::UIToFP: 3618 return true; 3619 case Instruction::FPTrunc: 3620 case Instruction::FPExt: 3621 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3622 default: 3623 break; 3624 } 3625 } 3626 3627 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3628 switch (II->getIntrinsicID()) { 3629 case Intrinsic::canonicalize: 3630 case Intrinsic::fabs: 3631 case Intrinsic::copysign: 3632 case Intrinsic::exp: 3633 case Intrinsic::exp2: 3634 case Intrinsic::floor: 3635 case Intrinsic::ceil: 3636 case Intrinsic::trunc: 3637 case Intrinsic::rint: 3638 case Intrinsic::nearbyint: 3639 case Intrinsic::round: 3640 case Intrinsic::roundeven: 3641 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3642 case Intrinsic::sqrt: 3643 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3644 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3645 case Intrinsic::minnum: 3646 case Intrinsic::maxnum: 3647 // If either operand is not NaN, the result is not NaN. 3648 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3649 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3650 default: 3651 return false; 3652 } 3653 } 3654 3655 // Try to handle fixed width vector constants 3656 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3657 if (VFVTy && isa<Constant>(V)) { 3658 // For vectors, verify that each element is not NaN. 3659 unsigned NumElts = VFVTy->getNumElements(); 3660 for (unsigned i = 0; i != NumElts; ++i) { 3661 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3662 if (!Elt) 3663 return false; 3664 if (isa<UndefValue>(Elt)) 3665 continue; 3666 auto *CElt = dyn_cast<ConstantFP>(Elt); 3667 if (!CElt || CElt->isNaN()) 3668 return false; 3669 } 3670 // All elements were confirmed not-NaN or undefined. 3671 return true; 3672 } 3673 3674 // Was not able to prove that V never contains NaN 3675 return false; 3676 } 3677 3678 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3679 3680 // All byte-wide stores are splatable, even of arbitrary variables. 3681 if (V->getType()->isIntegerTy(8)) 3682 return V; 3683 3684 LLVMContext &Ctx = V->getContext(); 3685 3686 // Undef don't care. 3687 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3688 if (isa<UndefValue>(V)) 3689 return UndefInt8; 3690 3691 // Return Undef for zero-sized type. 3692 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3693 return UndefInt8; 3694 3695 Constant *C = dyn_cast<Constant>(V); 3696 if (!C) { 3697 // Conceptually, we could handle things like: 3698 // %a = zext i8 %X to i16 3699 // %b = shl i16 %a, 8 3700 // %c = or i16 %a, %b 3701 // but until there is an example that actually needs this, it doesn't seem 3702 // worth worrying about. 3703 return nullptr; 3704 } 3705 3706 // Handle 'null' ConstantArrayZero etc. 3707 if (C->isNullValue()) 3708 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3709 3710 // Constant floating-point values can be handled as integer values if the 3711 // corresponding integer value is "byteable". An important case is 0.0. 3712 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3713 Type *Ty = nullptr; 3714 if (CFP->getType()->isHalfTy()) 3715 Ty = Type::getInt16Ty(Ctx); 3716 else if (CFP->getType()->isFloatTy()) 3717 Ty = Type::getInt32Ty(Ctx); 3718 else if (CFP->getType()->isDoubleTy()) 3719 Ty = Type::getInt64Ty(Ctx); 3720 // Don't handle long double formats, which have strange constraints. 3721 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3722 : nullptr; 3723 } 3724 3725 // We can handle constant integers that are multiple of 8 bits. 3726 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3727 if (CI->getBitWidth() % 8 == 0) { 3728 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3729 if (!CI->getValue().isSplat(8)) 3730 return nullptr; 3731 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3732 } 3733 } 3734 3735 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3736 if (CE->getOpcode() == Instruction::IntToPtr) { 3737 auto PS = DL.getPointerSizeInBits( 3738 cast<PointerType>(CE->getType())->getAddressSpace()); 3739 return isBytewiseValue( 3740 ConstantExpr::getIntegerCast(CE->getOperand(0), 3741 Type::getIntNTy(Ctx, PS), false), 3742 DL); 3743 } 3744 } 3745 3746 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3747 if (LHS == RHS) 3748 return LHS; 3749 if (!LHS || !RHS) 3750 return nullptr; 3751 if (LHS == UndefInt8) 3752 return RHS; 3753 if (RHS == UndefInt8) 3754 return LHS; 3755 return nullptr; 3756 }; 3757 3758 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3759 Value *Val = UndefInt8; 3760 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3761 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3762 return nullptr; 3763 return Val; 3764 } 3765 3766 if (isa<ConstantAggregate>(C)) { 3767 Value *Val = UndefInt8; 3768 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3769 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3770 return nullptr; 3771 return Val; 3772 } 3773 3774 // Don't try to handle the handful of other constants. 3775 return nullptr; 3776 } 3777 3778 // This is the recursive version of BuildSubAggregate. It takes a few different 3779 // arguments. Idxs is the index within the nested struct From that we are 3780 // looking at now (which is of type IndexedType). IdxSkip is the number of 3781 // indices from Idxs that should be left out when inserting into the resulting 3782 // struct. To is the result struct built so far, new insertvalue instructions 3783 // build on that. 3784 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3785 SmallVectorImpl<unsigned> &Idxs, 3786 unsigned IdxSkip, 3787 Instruction *InsertBefore) { 3788 StructType *STy = dyn_cast<StructType>(IndexedType); 3789 if (STy) { 3790 // Save the original To argument so we can modify it 3791 Value *OrigTo = To; 3792 // General case, the type indexed by Idxs is a struct 3793 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3794 // Process each struct element recursively 3795 Idxs.push_back(i); 3796 Value *PrevTo = To; 3797 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3798 InsertBefore); 3799 Idxs.pop_back(); 3800 if (!To) { 3801 // Couldn't find any inserted value for this index? Cleanup 3802 while (PrevTo != OrigTo) { 3803 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3804 PrevTo = Del->getAggregateOperand(); 3805 Del->eraseFromParent(); 3806 } 3807 // Stop processing elements 3808 break; 3809 } 3810 } 3811 // If we successfully found a value for each of our subaggregates 3812 if (To) 3813 return To; 3814 } 3815 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3816 // the struct's elements had a value that was inserted directly. In the latter 3817 // case, perhaps we can't determine each of the subelements individually, but 3818 // we might be able to find the complete struct somewhere. 3819 3820 // Find the value that is at that particular spot 3821 Value *V = FindInsertedValue(From, Idxs); 3822 3823 if (!V) 3824 return nullptr; 3825 3826 // Insert the value in the new (sub) aggregate 3827 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3828 "tmp", InsertBefore); 3829 } 3830 3831 // This helper takes a nested struct and extracts a part of it (which is again a 3832 // struct) into a new value. For example, given the struct: 3833 // { a, { b, { c, d }, e } } 3834 // and the indices "1, 1" this returns 3835 // { c, d }. 3836 // 3837 // It does this by inserting an insertvalue for each element in the resulting 3838 // struct, as opposed to just inserting a single struct. This will only work if 3839 // each of the elements of the substruct are known (ie, inserted into From by an 3840 // insertvalue instruction somewhere). 3841 // 3842 // All inserted insertvalue instructions are inserted before InsertBefore 3843 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3844 Instruction *InsertBefore) { 3845 assert(InsertBefore && "Must have someplace to insert!"); 3846 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3847 idx_range); 3848 Value *To = UndefValue::get(IndexedType); 3849 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3850 unsigned IdxSkip = Idxs.size(); 3851 3852 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3853 } 3854 3855 /// Given an aggregate and a sequence of indices, see if the scalar value 3856 /// indexed is already around as a register, for example if it was inserted 3857 /// directly into the aggregate. 3858 /// 3859 /// If InsertBefore is not null, this function will duplicate (modified) 3860 /// insertvalues when a part of a nested struct is extracted. 3861 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3862 Instruction *InsertBefore) { 3863 // Nothing to index? Just return V then (this is useful at the end of our 3864 // recursion). 3865 if (idx_range.empty()) 3866 return V; 3867 // We have indices, so V should have an indexable type. 3868 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3869 "Not looking at a struct or array?"); 3870 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3871 "Invalid indices for type?"); 3872 3873 if (Constant *C = dyn_cast<Constant>(V)) { 3874 C = C->getAggregateElement(idx_range[0]); 3875 if (!C) return nullptr; 3876 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3877 } 3878 3879 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3880 // Loop the indices for the insertvalue instruction in parallel with the 3881 // requested indices 3882 const unsigned *req_idx = idx_range.begin(); 3883 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3884 i != e; ++i, ++req_idx) { 3885 if (req_idx == idx_range.end()) { 3886 // We can't handle this without inserting insertvalues 3887 if (!InsertBefore) 3888 return nullptr; 3889 3890 // The requested index identifies a part of a nested aggregate. Handle 3891 // this specially. For example, 3892 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3893 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3894 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3895 // This can be changed into 3896 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3897 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3898 // which allows the unused 0,0 element from the nested struct to be 3899 // removed. 3900 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3901 InsertBefore); 3902 } 3903 3904 // This insert value inserts something else than what we are looking for. 3905 // See if the (aggregate) value inserted into has the value we are 3906 // looking for, then. 3907 if (*req_idx != *i) 3908 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3909 InsertBefore); 3910 } 3911 // If we end up here, the indices of the insertvalue match with those 3912 // requested (though possibly only partially). Now we recursively look at 3913 // the inserted value, passing any remaining indices. 3914 return FindInsertedValue(I->getInsertedValueOperand(), 3915 makeArrayRef(req_idx, idx_range.end()), 3916 InsertBefore); 3917 } 3918 3919 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3920 // If we're extracting a value from an aggregate that was extracted from 3921 // something else, we can extract from that something else directly instead. 3922 // However, we will need to chain I's indices with the requested indices. 3923 3924 // Calculate the number of indices required 3925 unsigned size = I->getNumIndices() + idx_range.size(); 3926 // Allocate some space to put the new indices in 3927 SmallVector<unsigned, 5> Idxs; 3928 Idxs.reserve(size); 3929 // Add indices from the extract value instruction 3930 Idxs.append(I->idx_begin(), I->idx_end()); 3931 3932 // Add requested indices 3933 Idxs.append(idx_range.begin(), idx_range.end()); 3934 3935 assert(Idxs.size() == size 3936 && "Number of indices added not correct?"); 3937 3938 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3939 } 3940 // Otherwise, we don't know (such as, extracting from a function return value 3941 // or load instruction) 3942 return nullptr; 3943 } 3944 3945 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3946 unsigned CharSize) { 3947 // Make sure the GEP has exactly three arguments. 3948 if (GEP->getNumOperands() != 3) 3949 return false; 3950 3951 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3952 // CharSize. 3953 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3954 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3955 return false; 3956 3957 // Check to make sure that the first operand of the GEP is an integer and 3958 // has value 0 so that we are sure we're indexing into the initializer. 3959 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3960 if (!FirstIdx || !FirstIdx->isZero()) 3961 return false; 3962 3963 return true; 3964 } 3965 3966 bool llvm::getConstantDataArrayInfo(const Value *V, 3967 ConstantDataArraySlice &Slice, 3968 unsigned ElementSize, uint64_t Offset) { 3969 assert(V); 3970 3971 // Look through bitcast instructions and geps. 3972 V = V->stripPointerCasts(); 3973 3974 // If the value is a GEP instruction or constant expression, treat it as an 3975 // offset. 3976 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3977 // The GEP operator should be based on a pointer to string constant, and is 3978 // indexing into the string constant. 3979 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3980 return false; 3981 3982 // If the second index isn't a ConstantInt, then this is a variable index 3983 // into the array. If this occurs, we can't say anything meaningful about 3984 // the string. 3985 uint64_t StartIdx = 0; 3986 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3987 StartIdx = CI->getZExtValue(); 3988 else 3989 return false; 3990 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3991 StartIdx + Offset); 3992 } 3993 3994 // The GEP instruction, constant or instruction, must reference a global 3995 // variable that is a constant and is initialized. The referenced constant 3996 // initializer is the array that we'll use for optimization. 3997 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3998 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3999 return false; 4000 4001 const ConstantDataArray *Array; 4002 ArrayType *ArrayTy; 4003 if (GV->getInitializer()->isNullValue()) { 4004 Type *GVTy = GV->getValueType(); 4005 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4006 // A zeroinitializer for the array; there is no ConstantDataArray. 4007 Array = nullptr; 4008 } else { 4009 const DataLayout &DL = GV->getParent()->getDataLayout(); 4010 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4011 uint64_t Length = SizeInBytes / (ElementSize / 8); 4012 if (Length <= Offset) 4013 return false; 4014 4015 Slice.Array = nullptr; 4016 Slice.Offset = 0; 4017 Slice.Length = Length - Offset; 4018 return true; 4019 } 4020 } else { 4021 // This must be a ConstantDataArray. 4022 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4023 if (!Array) 4024 return false; 4025 ArrayTy = Array->getType(); 4026 } 4027 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4028 return false; 4029 4030 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4031 if (Offset > NumElts) 4032 return false; 4033 4034 Slice.Array = Array; 4035 Slice.Offset = Offset; 4036 Slice.Length = NumElts - Offset; 4037 return true; 4038 } 4039 4040 /// This function computes the length of a null-terminated C string pointed to 4041 /// by V. If successful, it returns true and returns the string in Str. 4042 /// If unsuccessful, it returns false. 4043 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4044 uint64_t Offset, bool TrimAtNul) { 4045 ConstantDataArraySlice Slice; 4046 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4047 return false; 4048 4049 if (Slice.Array == nullptr) { 4050 if (TrimAtNul) { 4051 Str = StringRef(); 4052 return true; 4053 } 4054 if (Slice.Length == 1) { 4055 Str = StringRef("", 1); 4056 return true; 4057 } 4058 // We cannot instantiate a StringRef as we do not have an appropriate string 4059 // of 0s at hand. 4060 return false; 4061 } 4062 4063 // Start out with the entire array in the StringRef. 4064 Str = Slice.Array->getAsString(); 4065 // Skip over 'offset' bytes. 4066 Str = Str.substr(Slice.Offset); 4067 4068 if (TrimAtNul) { 4069 // Trim off the \0 and anything after it. If the array is not nul 4070 // terminated, we just return the whole end of string. The client may know 4071 // some other way that the string is length-bound. 4072 Str = Str.substr(0, Str.find('\0')); 4073 } 4074 return true; 4075 } 4076 4077 // These next two are very similar to the above, but also look through PHI 4078 // nodes. 4079 // TODO: See if we can integrate these two together. 4080 4081 /// If we can compute the length of the string pointed to by 4082 /// the specified pointer, return 'len+1'. If we can't, return 0. 4083 static uint64_t GetStringLengthH(const Value *V, 4084 SmallPtrSetImpl<const PHINode*> &PHIs, 4085 unsigned CharSize) { 4086 // Look through noop bitcast instructions. 4087 V = V->stripPointerCasts(); 4088 4089 // If this is a PHI node, there are two cases: either we have already seen it 4090 // or we haven't. 4091 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4092 if (!PHIs.insert(PN).second) 4093 return ~0ULL; // already in the set. 4094 4095 // If it was new, see if all the input strings are the same length. 4096 uint64_t LenSoFar = ~0ULL; 4097 for (Value *IncValue : PN->incoming_values()) { 4098 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4099 if (Len == 0) return 0; // Unknown length -> unknown. 4100 4101 if (Len == ~0ULL) continue; 4102 4103 if (Len != LenSoFar && LenSoFar != ~0ULL) 4104 return 0; // Disagree -> unknown. 4105 LenSoFar = Len; 4106 } 4107 4108 // Success, all agree. 4109 return LenSoFar; 4110 } 4111 4112 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4113 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4114 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4115 if (Len1 == 0) return 0; 4116 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4117 if (Len2 == 0) return 0; 4118 if (Len1 == ~0ULL) return Len2; 4119 if (Len2 == ~0ULL) return Len1; 4120 if (Len1 != Len2) return 0; 4121 return Len1; 4122 } 4123 4124 // Otherwise, see if we can read the string. 4125 ConstantDataArraySlice Slice; 4126 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4127 return 0; 4128 4129 if (Slice.Array == nullptr) 4130 return 1; 4131 4132 // Search for nul characters 4133 unsigned NullIndex = 0; 4134 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4135 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4136 break; 4137 } 4138 4139 return NullIndex + 1; 4140 } 4141 4142 /// If we can compute the length of the string pointed to by 4143 /// the specified pointer, return 'len+1'. If we can't, return 0. 4144 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4145 if (!V->getType()->isPointerTy()) 4146 return 0; 4147 4148 SmallPtrSet<const PHINode*, 32> PHIs; 4149 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4150 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4151 // an empty string as a length. 4152 return Len == ~0ULL ? 1 : Len; 4153 } 4154 4155 const Value * 4156 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4157 bool MustPreserveNullness) { 4158 assert(Call && 4159 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4160 if (const Value *RV = Call->getReturnedArgOperand()) 4161 return RV; 4162 // This can be used only as a aliasing property. 4163 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4164 Call, MustPreserveNullness)) 4165 return Call->getArgOperand(0); 4166 return nullptr; 4167 } 4168 4169 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4170 const CallBase *Call, bool MustPreserveNullness) { 4171 switch (Call->getIntrinsicID()) { 4172 case Intrinsic::launder_invariant_group: 4173 case Intrinsic::strip_invariant_group: 4174 case Intrinsic::aarch64_irg: 4175 case Intrinsic::aarch64_tagp: 4176 return true; 4177 case Intrinsic::ptrmask: 4178 return !MustPreserveNullness; 4179 default: 4180 return false; 4181 } 4182 } 4183 4184 /// \p PN defines a loop-variant pointer to an object. Check if the 4185 /// previous iteration of the loop was referring to the same object as \p PN. 4186 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4187 const LoopInfo *LI) { 4188 // Find the loop-defined value. 4189 Loop *L = LI->getLoopFor(PN->getParent()); 4190 if (PN->getNumIncomingValues() != 2) 4191 return true; 4192 4193 // Find the value from previous iteration. 4194 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4195 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4196 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4197 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4198 return true; 4199 4200 // If a new pointer is loaded in the loop, the pointer references a different 4201 // object in every iteration. E.g.: 4202 // for (i) 4203 // int *p = a[i]; 4204 // ... 4205 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4206 if (!L->isLoopInvariant(Load->getPointerOperand())) 4207 return false; 4208 return true; 4209 } 4210 4211 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4212 if (!V->getType()->isPointerTy()) 4213 return V; 4214 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4215 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4216 V = GEP->getPointerOperand(); 4217 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4218 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4219 V = cast<Operator>(V)->getOperand(0); 4220 if (!V->getType()->isPointerTy()) 4221 return V; 4222 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4223 if (GA->isInterposable()) 4224 return V; 4225 V = GA->getAliasee(); 4226 } else { 4227 if (auto *PHI = dyn_cast<PHINode>(V)) { 4228 // Look through single-arg phi nodes created by LCSSA. 4229 if (PHI->getNumIncomingValues() == 1) { 4230 V = PHI->getIncomingValue(0); 4231 continue; 4232 } 4233 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4234 // CaptureTracking can know about special capturing properties of some 4235 // intrinsics like launder.invariant.group, that can't be expressed with 4236 // the attributes, but have properties like returning aliasing pointer. 4237 // Because some analysis may assume that nocaptured pointer is not 4238 // returned from some special intrinsic (because function would have to 4239 // be marked with returns attribute), it is crucial to use this function 4240 // because it should be in sync with CaptureTracking. Not using it may 4241 // cause weird miscompilations where 2 aliasing pointers are assumed to 4242 // noalias. 4243 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4244 V = RP; 4245 continue; 4246 } 4247 } 4248 4249 return V; 4250 } 4251 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4252 } 4253 return V; 4254 } 4255 4256 void llvm::getUnderlyingObjects(const Value *V, 4257 SmallVectorImpl<const Value *> &Objects, 4258 LoopInfo *LI, unsigned MaxLookup) { 4259 SmallPtrSet<const Value *, 4> Visited; 4260 SmallVector<const Value *, 4> Worklist; 4261 Worklist.push_back(V); 4262 do { 4263 const Value *P = Worklist.pop_back_val(); 4264 P = getUnderlyingObject(P, MaxLookup); 4265 4266 if (!Visited.insert(P).second) 4267 continue; 4268 4269 if (auto *SI = dyn_cast<SelectInst>(P)) { 4270 Worklist.push_back(SI->getTrueValue()); 4271 Worklist.push_back(SI->getFalseValue()); 4272 continue; 4273 } 4274 4275 if (auto *PN = dyn_cast<PHINode>(P)) { 4276 // If this PHI changes the underlying object in every iteration of the 4277 // loop, don't look through it. Consider: 4278 // int **A; 4279 // for (i) { 4280 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4281 // Curr = A[i]; 4282 // *Prev, *Curr; 4283 // 4284 // Prev is tracking Curr one iteration behind so they refer to different 4285 // underlying objects. 4286 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4287 isSameUnderlyingObjectInLoop(PN, LI)) 4288 for (Value *IncValue : PN->incoming_values()) 4289 Worklist.push_back(IncValue); 4290 continue; 4291 } 4292 4293 Objects.push_back(P); 4294 } while (!Worklist.empty()); 4295 } 4296 4297 /// This is the function that does the work of looking through basic 4298 /// ptrtoint+arithmetic+inttoptr sequences. 4299 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4300 do { 4301 if (const Operator *U = dyn_cast<Operator>(V)) { 4302 // If we find a ptrtoint, we can transfer control back to the 4303 // regular getUnderlyingObjectFromInt. 4304 if (U->getOpcode() == Instruction::PtrToInt) 4305 return U->getOperand(0); 4306 // If we find an add of a constant, a multiplied value, or a phi, it's 4307 // likely that the other operand will lead us to the base 4308 // object. We don't have to worry about the case where the 4309 // object address is somehow being computed by the multiply, 4310 // because our callers only care when the result is an 4311 // identifiable object. 4312 if (U->getOpcode() != Instruction::Add || 4313 (!isa<ConstantInt>(U->getOperand(1)) && 4314 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4315 !isa<PHINode>(U->getOperand(1)))) 4316 return V; 4317 V = U->getOperand(0); 4318 } else { 4319 return V; 4320 } 4321 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4322 } while (true); 4323 } 4324 4325 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4326 /// ptrtoint+arithmetic+inttoptr sequences. 4327 /// It returns false if unidentified object is found in getUnderlyingObjects. 4328 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4329 SmallVectorImpl<Value *> &Objects) { 4330 SmallPtrSet<const Value *, 16> Visited; 4331 SmallVector<const Value *, 4> Working(1, V); 4332 do { 4333 V = Working.pop_back_val(); 4334 4335 SmallVector<const Value *, 4> Objs; 4336 getUnderlyingObjects(V, Objs); 4337 4338 for (const Value *V : Objs) { 4339 if (!Visited.insert(V).second) 4340 continue; 4341 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4342 const Value *O = 4343 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4344 if (O->getType()->isPointerTy()) { 4345 Working.push_back(O); 4346 continue; 4347 } 4348 } 4349 // If getUnderlyingObjects fails to find an identifiable object, 4350 // getUnderlyingObjectsForCodeGen also fails for safety. 4351 if (!isIdentifiedObject(V)) { 4352 Objects.clear(); 4353 return false; 4354 } 4355 Objects.push_back(const_cast<Value *>(V)); 4356 } 4357 } while (!Working.empty()); 4358 return true; 4359 } 4360 4361 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4362 AllocaInst *Result = nullptr; 4363 SmallPtrSet<Value *, 4> Visited; 4364 SmallVector<Value *, 4> Worklist; 4365 4366 auto AddWork = [&](Value *V) { 4367 if (Visited.insert(V).second) 4368 Worklist.push_back(V); 4369 }; 4370 4371 AddWork(V); 4372 do { 4373 V = Worklist.pop_back_val(); 4374 assert(Visited.count(V)); 4375 4376 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4377 if (Result && Result != AI) 4378 return nullptr; 4379 Result = AI; 4380 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4381 AddWork(CI->getOperand(0)); 4382 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4383 for (Value *IncValue : PN->incoming_values()) 4384 AddWork(IncValue); 4385 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4386 AddWork(SI->getTrueValue()); 4387 AddWork(SI->getFalseValue()); 4388 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4389 if (OffsetZero && !GEP->hasAllZeroIndices()) 4390 return nullptr; 4391 AddWork(GEP->getPointerOperand()); 4392 } else { 4393 return nullptr; 4394 } 4395 } while (!Worklist.empty()); 4396 4397 return Result; 4398 } 4399 4400 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4401 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4402 for (const User *U : V->users()) { 4403 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4404 if (!II) 4405 return false; 4406 4407 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4408 continue; 4409 4410 if (AllowDroppable && II->isDroppable()) 4411 continue; 4412 4413 return false; 4414 } 4415 return true; 4416 } 4417 4418 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4419 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4420 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4421 } 4422 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4423 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4424 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4425 } 4426 4427 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4428 if (!LI.isUnordered()) 4429 return true; 4430 const Function &F = *LI.getFunction(); 4431 // Speculative load may create a race that did not exist in the source. 4432 return F.hasFnAttribute(Attribute::SanitizeThread) || 4433 // Speculative load may load data from dirty regions. 4434 F.hasFnAttribute(Attribute::SanitizeAddress) || 4435 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4436 } 4437 4438 4439 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4440 const Instruction *CtxI, 4441 const DominatorTree *DT) { 4442 const Operator *Inst = dyn_cast<Operator>(V); 4443 if (!Inst) 4444 return false; 4445 4446 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4447 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4448 if (C->canTrap()) 4449 return false; 4450 4451 switch (Inst->getOpcode()) { 4452 default: 4453 return true; 4454 case Instruction::UDiv: 4455 case Instruction::URem: { 4456 // x / y is undefined if y == 0. 4457 const APInt *V; 4458 if (match(Inst->getOperand(1), m_APInt(V))) 4459 return *V != 0; 4460 return false; 4461 } 4462 case Instruction::SDiv: 4463 case Instruction::SRem: { 4464 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4465 const APInt *Numerator, *Denominator; 4466 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4467 return false; 4468 // We cannot hoist this division if the denominator is 0. 4469 if (*Denominator == 0) 4470 return false; 4471 // It's safe to hoist if the denominator is not 0 or -1. 4472 if (*Denominator != -1) 4473 return true; 4474 // At this point we know that the denominator is -1. It is safe to hoist as 4475 // long we know that the numerator is not INT_MIN. 4476 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4477 return !Numerator->isMinSignedValue(); 4478 // The numerator *might* be MinSignedValue. 4479 return false; 4480 } 4481 case Instruction::Load: { 4482 const LoadInst *LI = cast<LoadInst>(Inst); 4483 if (mustSuppressSpeculation(*LI)) 4484 return false; 4485 const DataLayout &DL = LI->getModule()->getDataLayout(); 4486 return isDereferenceableAndAlignedPointer( 4487 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4488 DL, CtxI, DT); 4489 } 4490 case Instruction::Call: { 4491 auto *CI = cast<const CallInst>(Inst); 4492 const Function *Callee = CI->getCalledFunction(); 4493 4494 // The called function could have undefined behavior or side-effects, even 4495 // if marked readnone nounwind. 4496 return Callee && Callee->isSpeculatable(); 4497 } 4498 case Instruction::VAArg: 4499 case Instruction::Alloca: 4500 case Instruction::Invoke: 4501 case Instruction::CallBr: 4502 case Instruction::PHI: 4503 case Instruction::Store: 4504 case Instruction::Ret: 4505 case Instruction::Br: 4506 case Instruction::IndirectBr: 4507 case Instruction::Switch: 4508 case Instruction::Unreachable: 4509 case Instruction::Fence: 4510 case Instruction::AtomicRMW: 4511 case Instruction::AtomicCmpXchg: 4512 case Instruction::LandingPad: 4513 case Instruction::Resume: 4514 case Instruction::CatchSwitch: 4515 case Instruction::CatchPad: 4516 case Instruction::CatchRet: 4517 case Instruction::CleanupPad: 4518 case Instruction::CleanupRet: 4519 return false; // Misc instructions which have effects 4520 } 4521 } 4522 4523 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4524 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4525 } 4526 4527 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4528 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4529 switch (OR) { 4530 case ConstantRange::OverflowResult::MayOverflow: 4531 return OverflowResult::MayOverflow; 4532 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4533 return OverflowResult::AlwaysOverflowsLow; 4534 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4535 return OverflowResult::AlwaysOverflowsHigh; 4536 case ConstantRange::OverflowResult::NeverOverflows: 4537 return OverflowResult::NeverOverflows; 4538 } 4539 llvm_unreachable("Unknown OverflowResult"); 4540 } 4541 4542 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4543 static ConstantRange computeConstantRangeIncludingKnownBits( 4544 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4545 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4546 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4547 KnownBits Known = computeKnownBits( 4548 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4549 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4550 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4551 ConstantRange::PreferredRangeType RangeType = 4552 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4553 return CR1.intersectWith(CR2, RangeType); 4554 } 4555 4556 OverflowResult llvm::computeOverflowForUnsignedMul( 4557 const Value *LHS, const Value *RHS, const DataLayout &DL, 4558 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4559 bool UseInstrInfo) { 4560 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4561 nullptr, UseInstrInfo); 4562 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4563 nullptr, UseInstrInfo); 4564 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4565 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4566 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4567 } 4568 4569 OverflowResult 4570 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4571 const DataLayout &DL, AssumptionCache *AC, 4572 const Instruction *CxtI, 4573 const DominatorTree *DT, bool UseInstrInfo) { 4574 // Multiplying n * m significant bits yields a result of n + m significant 4575 // bits. If the total number of significant bits does not exceed the 4576 // result bit width (minus 1), there is no overflow. 4577 // This means if we have enough leading sign bits in the operands 4578 // we can guarantee that the result does not overflow. 4579 // Ref: "Hacker's Delight" by Henry Warren 4580 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4581 4582 // Note that underestimating the number of sign bits gives a more 4583 // conservative answer. 4584 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4585 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4586 4587 // First handle the easy case: if we have enough sign bits there's 4588 // definitely no overflow. 4589 if (SignBits > BitWidth + 1) 4590 return OverflowResult::NeverOverflows; 4591 4592 // There are two ambiguous cases where there can be no overflow: 4593 // SignBits == BitWidth + 1 and 4594 // SignBits == BitWidth 4595 // The second case is difficult to check, therefore we only handle the 4596 // first case. 4597 if (SignBits == BitWidth + 1) { 4598 // It overflows only when both arguments are negative and the true 4599 // product is exactly the minimum negative number. 4600 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4601 // For simplicity we just check if at least one side is not negative. 4602 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4603 nullptr, UseInstrInfo); 4604 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4605 nullptr, UseInstrInfo); 4606 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4607 return OverflowResult::NeverOverflows; 4608 } 4609 return OverflowResult::MayOverflow; 4610 } 4611 4612 OverflowResult llvm::computeOverflowForUnsignedAdd( 4613 const Value *LHS, const Value *RHS, const DataLayout &DL, 4614 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4615 bool UseInstrInfo) { 4616 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4617 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4618 nullptr, UseInstrInfo); 4619 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4620 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4621 nullptr, UseInstrInfo); 4622 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4623 } 4624 4625 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4626 const Value *RHS, 4627 const AddOperator *Add, 4628 const DataLayout &DL, 4629 AssumptionCache *AC, 4630 const Instruction *CxtI, 4631 const DominatorTree *DT) { 4632 if (Add && Add->hasNoSignedWrap()) { 4633 return OverflowResult::NeverOverflows; 4634 } 4635 4636 // If LHS and RHS each have at least two sign bits, the addition will look 4637 // like 4638 // 4639 // XX..... + 4640 // YY..... 4641 // 4642 // If the carry into the most significant position is 0, X and Y can't both 4643 // be 1 and therefore the carry out of the addition is also 0. 4644 // 4645 // If the carry into the most significant position is 1, X and Y can't both 4646 // be 0 and therefore the carry out of the addition is also 1. 4647 // 4648 // Since the carry into the most significant position is always equal to 4649 // the carry out of the addition, there is no signed overflow. 4650 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4651 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4652 return OverflowResult::NeverOverflows; 4653 4654 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4655 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4656 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4657 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4658 OverflowResult OR = 4659 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4660 if (OR != OverflowResult::MayOverflow) 4661 return OR; 4662 4663 // The remaining code needs Add to be available. Early returns if not so. 4664 if (!Add) 4665 return OverflowResult::MayOverflow; 4666 4667 // If the sign of Add is the same as at least one of the operands, this add 4668 // CANNOT overflow. If this can be determined from the known bits of the 4669 // operands the above signedAddMayOverflow() check will have already done so. 4670 // The only other way to improve on the known bits is from an assumption, so 4671 // call computeKnownBitsFromAssume() directly. 4672 bool LHSOrRHSKnownNonNegative = 4673 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4674 bool LHSOrRHSKnownNegative = 4675 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4676 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4677 KnownBits AddKnown(LHSRange.getBitWidth()); 4678 computeKnownBitsFromAssume( 4679 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4680 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4681 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4682 return OverflowResult::NeverOverflows; 4683 } 4684 4685 return OverflowResult::MayOverflow; 4686 } 4687 4688 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4689 const Value *RHS, 4690 const DataLayout &DL, 4691 AssumptionCache *AC, 4692 const Instruction *CxtI, 4693 const DominatorTree *DT) { 4694 // Checking for conditions implied by dominating conditions may be expensive. 4695 // Limit it to usub_with_overflow calls for now. 4696 if (match(CxtI, 4697 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4698 if (auto C = 4699 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4700 if (*C) 4701 return OverflowResult::NeverOverflows; 4702 return OverflowResult::AlwaysOverflowsLow; 4703 } 4704 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4705 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4706 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4707 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4708 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4709 } 4710 4711 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4712 const Value *RHS, 4713 const DataLayout &DL, 4714 AssumptionCache *AC, 4715 const Instruction *CxtI, 4716 const DominatorTree *DT) { 4717 // If LHS and RHS each have at least two sign bits, the subtraction 4718 // cannot overflow. 4719 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4720 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4721 return OverflowResult::NeverOverflows; 4722 4723 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4724 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4725 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4726 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4727 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4728 } 4729 4730 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4731 const DominatorTree &DT) { 4732 SmallVector<const BranchInst *, 2> GuardingBranches; 4733 SmallVector<const ExtractValueInst *, 2> Results; 4734 4735 for (const User *U : WO->users()) { 4736 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4737 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4738 4739 if (EVI->getIndices()[0] == 0) 4740 Results.push_back(EVI); 4741 else { 4742 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4743 4744 for (const auto *U : EVI->users()) 4745 if (const auto *B = dyn_cast<BranchInst>(U)) { 4746 assert(B->isConditional() && "How else is it using an i1?"); 4747 GuardingBranches.push_back(B); 4748 } 4749 } 4750 } else { 4751 // We are using the aggregate directly in a way we don't want to analyze 4752 // here (storing it to a global, say). 4753 return false; 4754 } 4755 } 4756 4757 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4758 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4759 if (!NoWrapEdge.isSingleEdge()) 4760 return false; 4761 4762 // Check if all users of the add are provably no-wrap. 4763 for (const auto *Result : Results) { 4764 // If the extractvalue itself is not executed on overflow, the we don't 4765 // need to check each use separately, since domination is transitive. 4766 if (DT.dominates(NoWrapEdge, Result->getParent())) 4767 continue; 4768 4769 for (auto &RU : Result->uses()) 4770 if (!DT.dominates(NoWrapEdge, RU)) 4771 return false; 4772 } 4773 4774 return true; 4775 }; 4776 4777 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4778 } 4779 4780 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4781 // See whether I has flags that may create poison 4782 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4783 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4784 return true; 4785 } 4786 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4787 if (ExactOp->isExact()) 4788 return true; 4789 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4790 auto FMF = FP->getFastMathFlags(); 4791 if (FMF.noNaNs() || FMF.noInfs()) 4792 return true; 4793 } 4794 4795 unsigned Opcode = Op->getOpcode(); 4796 4797 // Check whether opcode is a poison/undef-generating operation 4798 switch (Opcode) { 4799 case Instruction::Shl: 4800 case Instruction::AShr: 4801 case Instruction::LShr: { 4802 // Shifts return poison if shiftwidth is larger than the bitwidth. 4803 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4804 SmallVector<Constant *, 4> ShiftAmounts; 4805 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4806 unsigned NumElts = FVTy->getNumElements(); 4807 for (unsigned i = 0; i < NumElts; ++i) 4808 ShiftAmounts.push_back(C->getAggregateElement(i)); 4809 } else if (isa<ScalableVectorType>(C->getType())) 4810 return true; // Can't tell, just return true to be safe 4811 else 4812 ShiftAmounts.push_back(C); 4813 4814 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4815 auto *CI = dyn_cast<ConstantInt>(C); 4816 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4817 }); 4818 return !Safe; 4819 } 4820 return true; 4821 } 4822 case Instruction::FPToSI: 4823 case Instruction::FPToUI: 4824 // fptosi/ui yields poison if the resulting value does not fit in the 4825 // destination type. 4826 return true; 4827 case Instruction::Call: 4828 case Instruction::CallBr: 4829 case Instruction::Invoke: { 4830 const auto *CB = cast<CallBase>(Op); 4831 return !CB->hasRetAttr(Attribute::NoUndef); 4832 } 4833 case Instruction::InsertElement: 4834 case Instruction::ExtractElement: { 4835 // If index exceeds the length of the vector, it returns poison 4836 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4837 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4838 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4839 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4840 return true; 4841 return false; 4842 } 4843 case Instruction::ShuffleVector: { 4844 // shufflevector may return undef. 4845 if (PoisonOnly) 4846 return false; 4847 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4848 ? cast<ConstantExpr>(Op)->getShuffleMask() 4849 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4850 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4851 } 4852 case Instruction::FNeg: 4853 case Instruction::PHI: 4854 case Instruction::Select: 4855 case Instruction::URem: 4856 case Instruction::SRem: 4857 case Instruction::ExtractValue: 4858 case Instruction::InsertValue: 4859 case Instruction::Freeze: 4860 case Instruction::ICmp: 4861 case Instruction::FCmp: 4862 return false; 4863 case Instruction::GetElementPtr: { 4864 const auto *GEP = cast<GEPOperator>(Op); 4865 return GEP->isInBounds(); 4866 } 4867 default: { 4868 const auto *CE = dyn_cast<ConstantExpr>(Op); 4869 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4870 return false; 4871 else if (Instruction::isBinaryOp(Opcode)) 4872 return false; 4873 // Be conservative and return true. 4874 return true; 4875 } 4876 } 4877 } 4878 4879 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4880 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4881 } 4882 4883 bool llvm::canCreatePoison(const Operator *Op) { 4884 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4885 } 4886 4887 static bool programUndefinedIfUndefOrPoison(const Value *V, 4888 bool PoisonOnly); 4889 4890 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4891 const Instruction *CtxI, 4892 const DominatorTree *DT, 4893 unsigned Depth, bool PoisonOnly) { 4894 if (Depth >= MaxAnalysisRecursionDepth) 4895 return false; 4896 4897 if (isa<MetadataAsValue>(V)) 4898 return false; 4899 4900 if (const auto *A = dyn_cast<Argument>(V)) { 4901 if (A->hasAttribute(Attribute::NoUndef)) 4902 return true; 4903 } 4904 4905 if (auto *C = dyn_cast<Constant>(V)) { 4906 if (isa<UndefValue>(C)) 4907 return PoisonOnly; 4908 4909 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4910 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4911 return true; 4912 4913 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4914 return (PoisonOnly || !C->containsUndefElement()) && 4915 !C->containsConstantExpression(); 4916 } 4917 4918 // Strip cast operations from a pointer value. 4919 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4920 // inbounds with zero offset. To guarantee that the result isn't poison, the 4921 // stripped pointer is checked as it has to be pointing into an allocated 4922 // object or be null `null` to ensure `inbounds` getelement pointers with a 4923 // zero offset could not produce poison. 4924 // It can strip off addrspacecast that do not change bit representation as 4925 // well. We believe that such addrspacecast is equivalent to no-op. 4926 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4927 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4928 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4929 return true; 4930 4931 auto OpCheck = [&](const Value *V) { 4932 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1, PoisonOnly); 4933 }; 4934 4935 if (auto *Opr = dyn_cast<Operator>(V)) { 4936 // If the value is a freeze instruction, then it can never 4937 // be undef or poison. 4938 if (isa<FreezeInst>(V)) 4939 return true; 4940 4941 if (const auto *CB = dyn_cast<CallBase>(V)) { 4942 if (CB->hasRetAttr(Attribute::NoUndef)) 4943 return true; 4944 } 4945 4946 if (const auto *PN = dyn_cast<PHINode>(V)) { 4947 unsigned Num = PN->getNumIncomingValues(); 4948 bool IsWellDefined = true; 4949 for (unsigned i = 0; i < Num; ++i) { 4950 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4951 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), TI, DT, 4952 Depth + 1, PoisonOnly)) { 4953 IsWellDefined = false; 4954 break; 4955 } 4956 } 4957 if (IsWellDefined) 4958 return true; 4959 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4960 return true; 4961 } 4962 4963 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4964 return true; 4965 4966 // CxtI may be null or a cloned instruction. 4967 if (!CtxI || !CtxI->getParent() || !DT) 4968 return false; 4969 4970 auto *DNode = DT->getNode(CtxI->getParent()); 4971 if (!DNode) 4972 // Unreachable block 4973 return false; 4974 4975 // If V is used as a branch condition before reaching CtxI, V cannot be 4976 // undef or poison. 4977 // br V, BB1, BB2 4978 // BB1: 4979 // CtxI ; V cannot be undef or poison here 4980 auto *Dominator = DNode->getIDom(); 4981 while (Dominator) { 4982 auto *TI = Dominator->getBlock()->getTerminator(); 4983 4984 Value *Cond = nullptr; 4985 if (auto BI = dyn_cast<BranchInst>(TI)) { 4986 if (BI->isConditional()) 4987 Cond = BI->getCondition(); 4988 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4989 Cond = SI->getCondition(); 4990 } 4991 4992 if (Cond) { 4993 if (Cond == V) 4994 return true; 4995 else if (PoisonOnly && isa<Operator>(Cond)) { 4996 // For poison, we can analyze further 4997 auto *Opr = cast<Operator>(Cond); 4998 if (propagatesPoison(Opr) && 4999 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 5000 return true; 5001 } 5002 } 5003 5004 Dominator = Dominator->getIDom(); 5005 } 5006 5007 return false; 5008 } 5009 5010 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 5011 const Instruction *CtxI, 5012 const DominatorTree *DT, 5013 unsigned Depth) { 5014 return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, false); 5015 } 5016 5017 bool llvm::isGuaranteedNotToBePoison(const Value *V, const Instruction *CtxI, 5018 const DominatorTree *DT, unsigned Depth) { 5019 return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, true); 5020 } 5021 5022 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5023 const DataLayout &DL, 5024 AssumptionCache *AC, 5025 const Instruction *CxtI, 5026 const DominatorTree *DT) { 5027 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5028 Add, DL, AC, CxtI, DT); 5029 } 5030 5031 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5032 const Value *RHS, 5033 const DataLayout &DL, 5034 AssumptionCache *AC, 5035 const Instruction *CxtI, 5036 const DominatorTree *DT) { 5037 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5038 } 5039 5040 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5041 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5042 // of time because it's possible for another thread to interfere with it for an 5043 // arbitrary length of time, but programs aren't allowed to rely on that. 5044 5045 // If there is no successor, then execution can't transfer to it. 5046 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5047 return !CRI->unwindsToCaller(); 5048 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5049 return !CatchSwitch->unwindsToCaller(); 5050 if (isa<ResumeInst>(I)) 5051 return false; 5052 if (isa<ReturnInst>(I)) 5053 return false; 5054 if (isa<UnreachableInst>(I)) 5055 return false; 5056 5057 // Calls can throw, or contain an infinite loop, or kill the process. 5058 if (const auto *CB = dyn_cast<CallBase>(I)) { 5059 // Call sites that throw have implicit non-local control flow. 5060 if (!CB->doesNotThrow()) 5061 return false; 5062 5063 // A function which doens't throw and has "willreturn" attribute will 5064 // always return. 5065 if (CB->hasFnAttr(Attribute::WillReturn)) 5066 return true; 5067 5068 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5069 // etc. and thus not return. However, LLVM already assumes that 5070 // 5071 // - Thread exiting actions are modeled as writes to memory invisible to 5072 // the program. 5073 // 5074 // - Loops that don't have side effects (side effects are volatile/atomic 5075 // stores and IO) always terminate (see http://llvm.org/PR965). 5076 // Furthermore IO itself is also modeled as writes to memory invisible to 5077 // the program. 5078 // 5079 // We rely on those assumptions here, and use the memory effects of the call 5080 // target as a proxy for checking that it always returns. 5081 5082 // FIXME: This isn't aggressive enough; a call which only writes to a global 5083 // is guaranteed to return. 5084 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5085 } 5086 5087 // Other instructions return normally. 5088 return true; 5089 } 5090 5091 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5092 // TODO: This is slightly conservative for invoke instruction since exiting 5093 // via an exception *is* normal control for them. 5094 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5095 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5096 return false; 5097 return true; 5098 } 5099 5100 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5101 const Loop *L) { 5102 // The loop header is guaranteed to be executed for every iteration. 5103 // 5104 // FIXME: Relax this constraint to cover all basic blocks that are 5105 // guaranteed to be executed at every iteration. 5106 if (I->getParent() != L->getHeader()) return false; 5107 5108 for (const Instruction &LI : *L->getHeader()) { 5109 if (&LI == I) return true; 5110 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5111 } 5112 llvm_unreachable("Instruction not contained in its own parent basic block."); 5113 } 5114 5115 bool llvm::propagatesPoison(const Operator *I) { 5116 switch (I->getOpcode()) { 5117 case Instruction::Freeze: 5118 case Instruction::Select: 5119 case Instruction::PHI: 5120 case Instruction::Call: 5121 case Instruction::Invoke: 5122 return false; 5123 case Instruction::ICmp: 5124 case Instruction::FCmp: 5125 case Instruction::GetElementPtr: 5126 return true; 5127 default: 5128 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5129 return true; 5130 5131 // Be conservative and return false. 5132 return false; 5133 } 5134 } 5135 5136 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5137 SmallPtrSetImpl<const Value *> &Operands) { 5138 switch (I->getOpcode()) { 5139 case Instruction::Store: 5140 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5141 break; 5142 5143 case Instruction::Load: 5144 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5145 break; 5146 5147 case Instruction::AtomicCmpXchg: 5148 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5149 break; 5150 5151 case Instruction::AtomicRMW: 5152 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5153 break; 5154 5155 case Instruction::UDiv: 5156 case Instruction::SDiv: 5157 case Instruction::URem: 5158 case Instruction::SRem: 5159 Operands.insert(I->getOperand(1)); 5160 break; 5161 5162 case Instruction::Call: 5163 case Instruction::Invoke: { 5164 const CallBase *CB = cast<CallBase>(I); 5165 if (CB->isIndirectCall()) 5166 Operands.insert(CB->getCalledOperand()); 5167 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5168 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5169 Operands.insert(CB->getArgOperand(i)); 5170 } 5171 break; 5172 } 5173 5174 default: 5175 break; 5176 } 5177 } 5178 5179 bool llvm::mustTriggerUB(const Instruction *I, 5180 const SmallSet<const Value *, 16>& KnownPoison) { 5181 SmallPtrSet<const Value *, 4> NonPoisonOps; 5182 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5183 5184 for (const auto *V : NonPoisonOps) 5185 if (KnownPoison.count(V)) 5186 return true; 5187 5188 return false; 5189 } 5190 5191 static bool programUndefinedIfUndefOrPoison(const Value *V, 5192 bool PoisonOnly) { 5193 // We currently only look for uses of values within the same basic 5194 // block, as that makes it easier to guarantee that the uses will be 5195 // executed given that Inst is executed. 5196 // 5197 // FIXME: Expand this to consider uses beyond the same basic block. To do 5198 // this, look out for the distinction between post-dominance and strong 5199 // post-dominance. 5200 const BasicBlock *BB = nullptr; 5201 BasicBlock::const_iterator Begin; 5202 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5203 BB = Inst->getParent(); 5204 Begin = Inst->getIterator(); 5205 Begin++; 5206 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5207 BB = &Arg->getParent()->getEntryBlock(); 5208 Begin = BB->begin(); 5209 } else { 5210 return false; 5211 } 5212 5213 BasicBlock::const_iterator End = BB->end(); 5214 5215 if (!PoisonOnly) { 5216 // Be conservative & just check whether a value is passed to a noundef 5217 // argument. 5218 // Instructions that raise UB with a poison operand are well-defined 5219 // or have unclear semantics when the input is partially undef. 5220 // For example, 'udiv x, (undef | 1)' isn't UB. 5221 5222 for (auto &I : make_range(Begin, End)) { 5223 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5224 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5225 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5226 CB->getArgOperand(i) == V) 5227 return true; 5228 } 5229 } 5230 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5231 break; 5232 } 5233 return false; 5234 } 5235 5236 // Set of instructions that we have proved will yield poison if Inst 5237 // does. 5238 SmallSet<const Value *, 16> YieldsPoison; 5239 SmallSet<const BasicBlock *, 4> Visited; 5240 5241 YieldsPoison.insert(V); 5242 auto Propagate = [&](const User *User) { 5243 if (propagatesPoison(cast<Operator>(User))) 5244 YieldsPoison.insert(User); 5245 }; 5246 for_each(V->users(), Propagate); 5247 Visited.insert(BB); 5248 5249 unsigned Iter = 0; 5250 while (Iter++ < MaxAnalysisRecursionDepth) { 5251 for (auto &I : make_range(Begin, End)) { 5252 if (mustTriggerUB(&I, YieldsPoison)) 5253 return true; 5254 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5255 return false; 5256 5257 // Mark poison that propagates from I through uses of I. 5258 if (YieldsPoison.count(&I)) 5259 for_each(I.users(), Propagate); 5260 } 5261 5262 if (auto *NextBB = BB->getSingleSuccessor()) { 5263 if (Visited.insert(NextBB).second) { 5264 BB = NextBB; 5265 Begin = BB->getFirstNonPHI()->getIterator(); 5266 End = BB->end(); 5267 continue; 5268 } 5269 } 5270 5271 break; 5272 } 5273 return false; 5274 } 5275 5276 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5277 return ::programUndefinedIfUndefOrPoison(Inst, false); 5278 } 5279 5280 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5281 return ::programUndefinedIfUndefOrPoison(Inst, true); 5282 } 5283 5284 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5285 if (FMF.noNaNs()) 5286 return true; 5287 5288 if (auto *C = dyn_cast<ConstantFP>(V)) 5289 return !C->isNaN(); 5290 5291 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5292 if (!C->getElementType()->isFloatingPointTy()) 5293 return false; 5294 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5295 if (C->getElementAsAPFloat(I).isNaN()) 5296 return false; 5297 } 5298 return true; 5299 } 5300 5301 if (isa<ConstantAggregateZero>(V)) 5302 return true; 5303 5304 return false; 5305 } 5306 5307 static bool isKnownNonZero(const Value *V) { 5308 if (auto *C = dyn_cast<ConstantFP>(V)) 5309 return !C->isZero(); 5310 5311 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5312 if (!C->getElementType()->isFloatingPointTy()) 5313 return false; 5314 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5315 if (C->getElementAsAPFloat(I).isZero()) 5316 return false; 5317 } 5318 return true; 5319 } 5320 5321 return false; 5322 } 5323 5324 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5325 /// Given non-min/max outer cmp/select from the clamp pattern this 5326 /// function recognizes if it can be substitued by a "canonical" min/max 5327 /// pattern. 5328 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5329 Value *CmpLHS, Value *CmpRHS, 5330 Value *TrueVal, Value *FalseVal, 5331 Value *&LHS, Value *&RHS) { 5332 // Try to match 5333 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5334 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5335 // and return description of the outer Max/Min. 5336 5337 // First, check if select has inverse order: 5338 if (CmpRHS == FalseVal) { 5339 std::swap(TrueVal, FalseVal); 5340 Pred = CmpInst::getInversePredicate(Pred); 5341 } 5342 5343 // Assume success now. If there's no match, callers should not use these anyway. 5344 LHS = TrueVal; 5345 RHS = FalseVal; 5346 5347 const APFloat *FC1; 5348 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5349 return {SPF_UNKNOWN, SPNB_NA, false}; 5350 5351 const APFloat *FC2; 5352 switch (Pred) { 5353 case CmpInst::FCMP_OLT: 5354 case CmpInst::FCMP_OLE: 5355 case CmpInst::FCMP_ULT: 5356 case CmpInst::FCMP_ULE: 5357 if (match(FalseVal, 5358 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5359 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5360 *FC1 < *FC2) 5361 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5362 break; 5363 case CmpInst::FCMP_OGT: 5364 case CmpInst::FCMP_OGE: 5365 case CmpInst::FCMP_UGT: 5366 case CmpInst::FCMP_UGE: 5367 if (match(FalseVal, 5368 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5369 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5370 *FC1 > *FC2) 5371 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5372 break; 5373 default: 5374 break; 5375 } 5376 5377 return {SPF_UNKNOWN, SPNB_NA, false}; 5378 } 5379 5380 /// Recognize variations of: 5381 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5382 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5383 Value *CmpLHS, Value *CmpRHS, 5384 Value *TrueVal, Value *FalseVal) { 5385 // Swap the select operands and predicate to match the patterns below. 5386 if (CmpRHS != TrueVal) { 5387 Pred = ICmpInst::getSwappedPredicate(Pred); 5388 std::swap(TrueVal, FalseVal); 5389 } 5390 const APInt *C1; 5391 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5392 const APInt *C2; 5393 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5394 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5395 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5396 return {SPF_SMAX, SPNB_NA, false}; 5397 5398 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5399 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5400 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5401 return {SPF_SMIN, SPNB_NA, false}; 5402 5403 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5404 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5405 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5406 return {SPF_UMAX, SPNB_NA, false}; 5407 5408 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5409 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5410 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5411 return {SPF_UMIN, SPNB_NA, false}; 5412 } 5413 return {SPF_UNKNOWN, SPNB_NA, false}; 5414 } 5415 5416 /// Recognize variations of: 5417 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5418 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5419 Value *CmpLHS, Value *CmpRHS, 5420 Value *TVal, Value *FVal, 5421 unsigned Depth) { 5422 // TODO: Allow FP min/max with nnan/nsz. 5423 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5424 5425 Value *A = nullptr, *B = nullptr; 5426 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5427 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5428 return {SPF_UNKNOWN, SPNB_NA, false}; 5429 5430 Value *C = nullptr, *D = nullptr; 5431 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5432 if (L.Flavor != R.Flavor) 5433 return {SPF_UNKNOWN, SPNB_NA, false}; 5434 5435 // We have something like: x Pred y ? min(a, b) : min(c, d). 5436 // Try to match the compare to the min/max operations of the select operands. 5437 // First, make sure we have the right compare predicate. 5438 switch (L.Flavor) { 5439 case SPF_SMIN: 5440 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5441 Pred = ICmpInst::getSwappedPredicate(Pred); 5442 std::swap(CmpLHS, CmpRHS); 5443 } 5444 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5445 break; 5446 return {SPF_UNKNOWN, SPNB_NA, false}; 5447 case SPF_SMAX: 5448 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5449 Pred = ICmpInst::getSwappedPredicate(Pred); 5450 std::swap(CmpLHS, CmpRHS); 5451 } 5452 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5453 break; 5454 return {SPF_UNKNOWN, SPNB_NA, false}; 5455 case SPF_UMIN: 5456 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5457 Pred = ICmpInst::getSwappedPredicate(Pred); 5458 std::swap(CmpLHS, CmpRHS); 5459 } 5460 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5461 break; 5462 return {SPF_UNKNOWN, SPNB_NA, false}; 5463 case SPF_UMAX: 5464 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5465 Pred = ICmpInst::getSwappedPredicate(Pred); 5466 std::swap(CmpLHS, CmpRHS); 5467 } 5468 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5469 break; 5470 return {SPF_UNKNOWN, SPNB_NA, false}; 5471 default: 5472 return {SPF_UNKNOWN, SPNB_NA, false}; 5473 } 5474 5475 // If there is a common operand in the already matched min/max and the other 5476 // min/max operands match the compare operands (either directly or inverted), 5477 // then this is min/max of the same flavor. 5478 5479 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5480 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5481 if (D == B) { 5482 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5483 match(A, m_Not(m_Specific(CmpRHS))))) 5484 return {L.Flavor, SPNB_NA, false}; 5485 } 5486 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5487 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5488 if (C == B) { 5489 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5490 match(A, m_Not(m_Specific(CmpRHS))))) 5491 return {L.Flavor, SPNB_NA, false}; 5492 } 5493 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5494 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5495 if (D == A) { 5496 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5497 match(B, m_Not(m_Specific(CmpRHS))))) 5498 return {L.Flavor, SPNB_NA, false}; 5499 } 5500 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5501 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5502 if (C == A) { 5503 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5504 match(B, m_Not(m_Specific(CmpRHS))))) 5505 return {L.Flavor, SPNB_NA, false}; 5506 } 5507 5508 return {SPF_UNKNOWN, SPNB_NA, false}; 5509 } 5510 5511 /// If the input value is the result of a 'not' op, constant integer, or vector 5512 /// splat of a constant integer, return the bitwise-not source value. 5513 /// TODO: This could be extended to handle non-splat vector integer constants. 5514 static Value *getNotValue(Value *V) { 5515 Value *NotV; 5516 if (match(V, m_Not(m_Value(NotV)))) 5517 return NotV; 5518 5519 const APInt *C; 5520 if (match(V, m_APInt(C))) 5521 return ConstantInt::get(V->getType(), ~(*C)); 5522 5523 return nullptr; 5524 } 5525 5526 /// Match non-obvious integer minimum and maximum sequences. 5527 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5528 Value *CmpLHS, Value *CmpRHS, 5529 Value *TrueVal, Value *FalseVal, 5530 Value *&LHS, Value *&RHS, 5531 unsigned Depth) { 5532 // Assume success. If there's no match, callers should not use these anyway. 5533 LHS = TrueVal; 5534 RHS = FalseVal; 5535 5536 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5537 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5538 return SPR; 5539 5540 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5541 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5542 return SPR; 5543 5544 // Look through 'not' ops to find disguised min/max. 5545 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5546 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5547 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5548 switch (Pred) { 5549 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5550 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5551 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5552 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5553 default: break; 5554 } 5555 } 5556 5557 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5558 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5559 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5560 switch (Pred) { 5561 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5562 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5563 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5564 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5565 default: break; 5566 } 5567 } 5568 5569 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5570 return {SPF_UNKNOWN, SPNB_NA, false}; 5571 5572 // Z = X -nsw Y 5573 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5574 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5575 if (match(TrueVal, m_Zero()) && 5576 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5577 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5578 5579 // Z = X -nsw Y 5580 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5581 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5582 if (match(FalseVal, m_Zero()) && 5583 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5584 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5585 5586 const APInt *C1; 5587 if (!match(CmpRHS, m_APInt(C1))) 5588 return {SPF_UNKNOWN, SPNB_NA, false}; 5589 5590 // An unsigned min/max can be written with a signed compare. 5591 const APInt *C2; 5592 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5593 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5594 // Is the sign bit set? 5595 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5596 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5597 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5598 C2->isMaxSignedValue()) 5599 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5600 5601 // Is the sign bit clear? 5602 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5603 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5604 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5605 C2->isMinSignedValue()) 5606 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5607 } 5608 5609 return {SPF_UNKNOWN, SPNB_NA, false}; 5610 } 5611 5612 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5613 assert(X && Y && "Invalid operand"); 5614 5615 // X = sub (0, Y) || X = sub nsw (0, Y) 5616 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5617 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5618 return true; 5619 5620 // Y = sub (0, X) || Y = sub nsw (0, X) 5621 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5622 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5623 return true; 5624 5625 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5626 Value *A, *B; 5627 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5628 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5629 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5630 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5631 } 5632 5633 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5634 FastMathFlags FMF, 5635 Value *CmpLHS, Value *CmpRHS, 5636 Value *TrueVal, Value *FalseVal, 5637 Value *&LHS, Value *&RHS, 5638 unsigned Depth) { 5639 if (CmpInst::isFPPredicate(Pred)) { 5640 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5641 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5642 // purpose of identifying min/max. Disregard vector constants with undefined 5643 // elements because those can not be back-propagated for analysis. 5644 Value *OutputZeroVal = nullptr; 5645 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5646 !cast<Constant>(TrueVal)->containsUndefElement()) 5647 OutputZeroVal = TrueVal; 5648 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5649 !cast<Constant>(FalseVal)->containsUndefElement()) 5650 OutputZeroVal = FalseVal; 5651 5652 if (OutputZeroVal) { 5653 if (match(CmpLHS, m_AnyZeroFP())) 5654 CmpLHS = OutputZeroVal; 5655 if (match(CmpRHS, m_AnyZeroFP())) 5656 CmpRHS = OutputZeroVal; 5657 } 5658 } 5659 5660 LHS = CmpLHS; 5661 RHS = CmpRHS; 5662 5663 // Signed zero may return inconsistent results between implementations. 5664 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5665 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5666 // Therefore, we behave conservatively and only proceed if at least one of the 5667 // operands is known to not be zero or if we don't care about signed zero. 5668 switch (Pred) { 5669 default: break; 5670 // FIXME: Include OGT/OLT/UGT/ULT. 5671 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5672 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5673 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5674 !isKnownNonZero(CmpRHS)) 5675 return {SPF_UNKNOWN, SPNB_NA, false}; 5676 } 5677 5678 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5679 bool Ordered = false; 5680 5681 // When given one NaN and one non-NaN input: 5682 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5683 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5684 // ordered comparison fails), which could be NaN or non-NaN. 5685 // so here we discover exactly what NaN behavior is required/accepted. 5686 if (CmpInst::isFPPredicate(Pred)) { 5687 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5688 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5689 5690 if (LHSSafe && RHSSafe) { 5691 // Both operands are known non-NaN. 5692 NaNBehavior = SPNB_RETURNS_ANY; 5693 } else if (CmpInst::isOrdered(Pred)) { 5694 // An ordered comparison will return false when given a NaN, so it 5695 // returns the RHS. 5696 Ordered = true; 5697 if (LHSSafe) 5698 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5699 NaNBehavior = SPNB_RETURNS_NAN; 5700 else if (RHSSafe) 5701 NaNBehavior = SPNB_RETURNS_OTHER; 5702 else 5703 // Completely unsafe. 5704 return {SPF_UNKNOWN, SPNB_NA, false}; 5705 } else { 5706 Ordered = false; 5707 // An unordered comparison will return true when given a NaN, so it 5708 // returns the LHS. 5709 if (LHSSafe) 5710 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5711 NaNBehavior = SPNB_RETURNS_OTHER; 5712 else if (RHSSafe) 5713 NaNBehavior = SPNB_RETURNS_NAN; 5714 else 5715 // Completely unsafe. 5716 return {SPF_UNKNOWN, SPNB_NA, false}; 5717 } 5718 } 5719 5720 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5721 std::swap(CmpLHS, CmpRHS); 5722 Pred = CmpInst::getSwappedPredicate(Pred); 5723 if (NaNBehavior == SPNB_RETURNS_NAN) 5724 NaNBehavior = SPNB_RETURNS_OTHER; 5725 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5726 NaNBehavior = SPNB_RETURNS_NAN; 5727 Ordered = !Ordered; 5728 } 5729 5730 // ([if]cmp X, Y) ? X : Y 5731 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5732 switch (Pred) { 5733 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5734 case ICmpInst::ICMP_UGT: 5735 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5736 case ICmpInst::ICMP_SGT: 5737 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5738 case ICmpInst::ICMP_ULT: 5739 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5740 case ICmpInst::ICMP_SLT: 5741 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5742 case FCmpInst::FCMP_UGT: 5743 case FCmpInst::FCMP_UGE: 5744 case FCmpInst::FCMP_OGT: 5745 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5746 case FCmpInst::FCMP_ULT: 5747 case FCmpInst::FCMP_ULE: 5748 case FCmpInst::FCMP_OLT: 5749 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5750 } 5751 } 5752 5753 if (isKnownNegation(TrueVal, FalseVal)) { 5754 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5755 // match against either LHS or sext(LHS). 5756 auto MaybeSExtCmpLHS = 5757 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5758 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5759 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5760 if (match(TrueVal, MaybeSExtCmpLHS)) { 5761 // Set the return values. If the compare uses the negated value (-X >s 0), 5762 // swap the return values because the negated value is always 'RHS'. 5763 LHS = TrueVal; 5764 RHS = FalseVal; 5765 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5766 std::swap(LHS, RHS); 5767 5768 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5769 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5770 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5771 return {SPF_ABS, SPNB_NA, false}; 5772 5773 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5774 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5775 return {SPF_ABS, SPNB_NA, false}; 5776 5777 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5778 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5779 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5780 return {SPF_NABS, SPNB_NA, false}; 5781 } 5782 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5783 // Set the return values. If the compare uses the negated value (-X >s 0), 5784 // swap the return values because the negated value is always 'RHS'. 5785 LHS = FalseVal; 5786 RHS = TrueVal; 5787 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5788 std::swap(LHS, RHS); 5789 5790 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5791 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5792 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5793 return {SPF_NABS, SPNB_NA, false}; 5794 5795 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5796 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5797 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5798 return {SPF_ABS, SPNB_NA, false}; 5799 } 5800 } 5801 5802 if (CmpInst::isIntPredicate(Pred)) 5803 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5804 5805 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5806 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5807 // semantics than minNum. Be conservative in such case. 5808 if (NaNBehavior != SPNB_RETURNS_ANY || 5809 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5810 !isKnownNonZero(CmpRHS))) 5811 return {SPF_UNKNOWN, SPNB_NA, false}; 5812 5813 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5814 } 5815 5816 /// Helps to match a select pattern in case of a type mismatch. 5817 /// 5818 /// The function processes the case when type of true and false values of a 5819 /// select instruction differs from type of the cmp instruction operands because 5820 /// of a cast instruction. The function checks if it is legal to move the cast 5821 /// operation after "select". If yes, it returns the new second value of 5822 /// "select" (with the assumption that cast is moved): 5823 /// 1. As operand of cast instruction when both values of "select" are same cast 5824 /// instructions. 5825 /// 2. As restored constant (by applying reverse cast operation) when the first 5826 /// value of the "select" is a cast operation and the second value is a 5827 /// constant. 5828 /// NOTE: We return only the new second value because the first value could be 5829 /// accessed as operand of cast instruction. 5830 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5831 Instruction::CastOps *CastOp) { 5832 auto *Cast1 = dyn_cast<CastInst>(V1); 5833 if (!Cast1) 5834 return nullptr; 5835 5836 *CastOp = Cast1->getOpcode(); 5837 Type *SrcTy = Cast1->getSrcTy(); 5838 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5839 // If V1 and V2 are both the same cast from the same type, look through V1. 5840 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5841 return Cast2->getOperand(0); 5842 return nullptr; 5843 } 5844 5845 auto *C = dyn_cast<Constant>(V2); 5846 if (!C) 5847 return nullptr; 5848 5849 Constant *CastedTo = nullptr; 5850 switch (*CastOp) { 5851 case Instruction::ZExt: 5852 if (CmpI->isUnsigned()) 5853 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5854 break; 5855 case Instruction::SExt: 5856 if (CmpI->isSigned()) 5857 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5858 break; 5859 case Instruction::Trunc: 5860 Constant *CmpConst; 5861 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5862 CmpConst->getType() == SrcTy) { 5863 // Here we have the following case: 5864 // 5865 // %cond = cmp iN %x, CmpConst 5866 // %tr = trunc iN %x to iK 5867 // %narrowsel = select i1 %cond, iK %t, iK C 5868 // 5869 // We can always move trunc after select operation: 5870 // 5871 // %cond = cmp iN %x, CmpConst 5872 // %widesel = select i1 %cond, iN %x, iN CmpConst 5873 // %tr = trunc iN %widesel to iK 5874 // 5875 // Note that C could be extended in any way because we don't care about 5876 // upper bits after truncation. It can't be abs pattern, because it would 5877 // look like: 5878 // 5879 // select i1 %cond, x, -x. 5880 // 5881 // So only min/max pattern could be matched. Such match requires widened C 5882 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5883 // CmpConst == C is checked below. 5884 CastedTo = CmpConst; 5885 } else { 5886 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5887 } 5888 break; 5889 case Instruction::FPTrunc: 5890 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5891 break; 5892 case Instruction::FPExt: 5893 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5894 break; 5895 case Instruction::FPToUI: 5896 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5897 break; 5898 case Instruction::FPToSI: 5899 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5900 break; 5901 case Instruction::UIToFP: 5902 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5903 break; 5904 case Instruction::SIToFP: 5905 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5906 break; 5907 default: 5908 break; 5909 } 5910 5911 if (!CastedTo) 5912 return nullptr; 5913 5914 // Make sure the cast doesn't lose any information. 5915 Constant *CastedBack = 5916 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5917 if (CastedBack != C) 5918 return nullptr; 5919 5920 return CastedTo; 5921 } 5922 5923 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5924 Instruction::CastOps *CastOp, 5925 unsigned Depth) { 5926 if (Depth >= MaxAnalysisRecursionDepth) 5927 return {SPF_UNKNOWN, SPNB_NA, false}; 5928 5929 SelectInst *SI = dyn_cast<SelectInst>(V); 5930 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5931 5932 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5933 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5934 5935 Value *TrueVal = SI->getTrueValue(); 5936 Value *FalseVal = SI->getFalseValue(); 5937 5938 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5939 CastOp, Depth); 5940 } 5941 5942 SelectPatternResult llvm::matchDecomposedSelectPattern( 5943 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5944 Instruction::CastOps *CastOp, unsigned Depth) { 5945 CmpInst::Predicate Pred = CmpI->getPredicate(); 5946 Value *CmpLHS = CmpI->getOperand(0); 5947 Value *CmpRHS = CmpI->getOperand(1); 5948 FastMathFlags FMF; 5949 if (isa<FPMathOperator>(CmpI)) 5950 FMF = CmpI->getFastMathFlags(); 5951 5952 // Bail out early. 5953 if (CmpI->isEquality()) 5954 return {SPF_UNKNOWN, SPNB_NA, false}; 5955 5956 // Deal with type mismatches. 5957 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5958 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5959 // If this is a potential fmin/fmax with a cast to integer, then ignore 5960 // -0.0 because there is no corresponding integer value. 5961 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5962 FMF.setNoSignedZeros(); 5963 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5964 cast<CastInst>(TrueVal)->getOperand(0), C, 5965 LHS, RHS, Depth); 5966 } 5967 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5968 // If this is a potential fmin/fmax with a cast to integer, then ignore 5969 // -0.0 because there is no corresponding integer value. 5970 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5971 FMF.setNoSignedZeros(); 5972 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5973 C, cast<CastInst>(FalseVal)->getOperand(0), 5974 LHS, RHS, Depth); 5975 } 5976 } 5977 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5978 LHS, RHS, Depth); 5979 } 5980 5981 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5982 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5983 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5984 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5985 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5986 if (SPF == SPF_FMINNUM) 5987 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5988 if (SPF == SPF_FMAXNUM) 5989 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5990 llvm_unreachable("unhandled!"); 5991 } 5992 5993 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5994 if (SPF == SPF_SMIN) return SPF_SMAX; 5995 if (SPF == SPF_UMIN) return SPF_UMAX; 5996 if (SPF == SPF_SMAX) return SPF_SMIN; 5997 if (SPF == SPF_UMAX) return SPF_UMIN; 5998 llvm_unreachable("unhandled!"); 5999 } 6000 6001 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6002 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6003 } 6004 6005 /// Return true if "icmp Pred LHS RHS" is always true. 6006 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6007 const Value *RHS, const DataLayout &DL, 6008 unsigned Depth) { 6009 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6010 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6011 return true; 6012 6013 switch (Pred) { 6014 default: 6015 return false; 6016 6017 case CmpInst::ICMP_SLE: { 6018 const APInt *C; 6019 6020 // LHS s<= LHS +_{nsw} C if C >= 0 6021 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6022 return !C->isNegative(); 6023 return false; 6024 } 6025 6026 case CmpInst::ICMP_ULE: { 6027 const APInt *C; 6028 6029 // LHS u<= LHS +_{nuw} C for any C 6030 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6031 return true; 6032 6033 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6034 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6035 const Value *&X, 6036 const APInt *&CA, const APInt *&CB) { 6037 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6038 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6039 return true; 6040 6041 // If X & C == 0 then (X | C) == X +_{nuw} C 6042 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6043 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6044 KnownBits Known(CA->getBitWidth()); 6045 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6046 /*CxtI*/ nullptr, /*DT*/ nullptr); 6047 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6048 return true; 6049 } 6050 6051 return false; 6052 }; 6053 6054 const Value *X; 6055 const APInt *CLHS, *CRHS; 6056 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6057 return CLHS->ule(*CRHS); 6058 6059 return false; 6060 } 6061 } 6062 } 6063 6064 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6065 /// ALHS ARHS" is true. Otherwise, return None. 6066 static Optional<bool> 6067 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6068 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6069 const DataLayout &DL, unsigned Depth) { 6070 switch (Pred) { 6071 default: 6072 return None; 6073 6074 case CmpInst::ICMP_SLT: 6075 case CmpInst::ICMP_SLE: 6076 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6077 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6078 return true; 6079 return None; 6080 6081 case CmpInst::ICMP_ULT: 6082 case CmpInst::ICMP_ULE: 6083 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6084 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6085 return true; 6086 return None; 6087 } 6088 } 6089 6090 /// Return true if the operands of the two compares match. IsSwappedOps is true 6091 /// when the operands match, but are swapped. 6092 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6093 const Value *BLHS, const Value *BRHS, 6094 bool &IsSwappedOps) { 6095 6096 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6097 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6098 return IsMatchingOps || IsSwappedOps; 6099 } 6100 6101 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6102 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6103 /// Otherwise, return None if we can't infer anything. 6104 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6105 CmpInst::Predicate BPred, 6106 bool AreSwappedOps) { 6107 // Canonicalize the predicate as if the operands were not commuted. 6108 if (AreSwappedOps) 6109 BPred = ICmpInst::getSwappedPredicate(BPred); 6110 6111 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6112 return true; 6113 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6114 return false; 6115 6116 return None; 6117 } 6118 6119 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6120 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6121 /// Otherwise, return None if we can't infer anything. 6122 static Optional<bool> 6123 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6124 const ConstantInt *C1, 6125 CmpInst::Predicate BPred, 6126 const ConstantInt *C2) { 6127 ConstantRange DomCR = 6128 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6129 ConstantRange CR = 6130 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6131 ConstantRange Intersection = DomCR.intersectWith(CR); 6132 ConstantRange Difference = DomCR.difference(CR); 6133 if (Intersection.isEmptySet()) 6134 return false; 6135 if (Difference.isEmptySet()) 6136 return true; 6137 return None; 6138 } 6139 6140 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6141 /// false. Otherwise, return None if we can't infer anything. 6142 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6143 CmpInst::Predicate BPred, 6144 const Value *BLHS, const Value *BRHS, 6145 const DataLayout &DL, bool LHSIsTrue, 6146 unsigned Depth) { 6147 Value *ALHS = LHS->getOperand(0); 6148 Value *ARHS = LHS->getOperand(1); 6149 6150 // The rest of the logic assumes the LHS condition is true. If that's not the 6151 // case, invert the predicate to make it so. 6152 CmpInst::Predicate APred = 6153 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6154 6155 // Can we infer anything when the two compares have matching operands? 6156 bool AreSwappedOps; 6157 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6158 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6159 APred, BPred, AreSwappedOps)) 6160 return Implication; 6161 // No amount of additional analysis will infer the second condition, so 6162 // early exit. 6163 return None; 6164 } 6165 6166 // Can we infer anything when the LHS operands match and the RHS operands are 6167 // constants (not necessarily matching)? 6168 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6169 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6170 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6171 return Implication; 6172 // No amount of additional analysis will infer the second condition, so 6173 // early exit. 6174 return None; 6175 } 6176 6177 if (APred == BPred) 6178 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6179 return None; 6180 } 6181 6182 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6183 /// false. Otherwise, return None if we can't infer anything. We expect the 6184 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6185 static Optional<bool> 6186 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6187 const Value *RHSOp0, const Value *RHSOp1, 6188 6189 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6190 // The LHS must be an 'or' or an 'and' instruction. 6191 assert((LHS->getOpcode() == Instruction::And || 6192 LHS->getOpcode() == Instruction::Or) && 6193 "Expected LHS to be 'and' or 'or'."); 6194 6195 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6196 6197 // If the result of an 'or' is false, then we know both legs of the 'or' are 6198 // false. Similarly, if the result of an 'and' is true, then we know both 6199 // legs of the 'and' are true. 6200 Value *ALHS, *ARHS; 6201 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6202 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6203 // FIXME: Make this non-recursion. 6204 if (Optional<bool> Implication = isImpliedCondition( 6205 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6206 return Implication; 6207 if (Optional<bool> Implication = isImpliedCondition( 6208 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6209 return Implication; 6210 return None; 6211 } 6212 return None; 6213 } 6214 6215 Optional<bool> 6216 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6217 const Value *RHSOp0, const Value *RHSOp1, 6218 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6219 // Bail out when we hit the limit. 6220 if (Depth == MaxAnalysisRecursionDepth) 6221 return None; 6222 6223 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6224 // example. 6225 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6226 return None; 6227 6228 Type *OpTy = LHS->getType(); 6229 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6230 6231 // FIXME: Extending the code below to handle vectors. 6232 if (OpTy->isVectorTy()) 6233 return None; 6234 6235 assert(OpTy->isIntegerTy(1) && "implied by above"); 6236 6237 // Both LHS and RHS are icmps. 6238 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6239 if (LHSCmp) 6240 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6241 Depth); 6242 6243 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6244 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6245 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6246 if (LHSBO) { 6247 if ((LHSBO->getOpcode() == Instruction::And || 6248 LHSBO->getOpcode() == Instruction::Or)) 6249 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6250 Depth); 6251 } 6252 return None; 6253 } 6254 6255 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6256 const DataLayout &DL, bool LHSIsTrue, 6257 unsigned Depth) { 6258 // LHS ==> RHS by definition 6259 if (LHS == RHS) 6260 return LHSIsTrue; 6261 6262 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6263 if (RHSCmp) 6264 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6265 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6266 LHSIsTrue, Depth); 6267 return None; 6268 } 6269 6270 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6271 // condition dominating ContextI or nullptr, if no condition is found. 6272 static std::pair<Value *, bool> 6273 getDomPredecessorCondition(const Instruction *ContextI) { 6274 if (!ContextI || !ContextI->getParent()) 6275 return {nullptr, false}; 6276 6277 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6278 // dominator tree (eg, from a SimplifyQuery) instead? 6279 const BasicBlock *ContextBB = ContextI->getParent(); 6280 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6281 if (!PredBB) 6282 return {nullptr, false}; 6283 6284 // We need a conditional branch in the predecessor. 6285 Value *PredCond; 6286 BasicBlock *TrueBB, *FalseBB; 6287 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6288 return {nullptr, false}; 6289 6290 // The branch should get simplified. Don't bother simplifying this condition. 6291 if (TrueBB == FalseBB) 6292 return {nullptr, false}; 6293 6294 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6295 "Predecessor block does not point to successor?"); 6296 6297 // Is this condition implied by the predecessor condition? 6298 return {PredCond, TrueBB == ContextBB}; 6299 } 6300 6301 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6302 const Instruction *ContextI, 6303 const DataLayout &DL) { 6304 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6305 auto PredCond = getDomPredecessorCondition(ContextI); 6306 if (PredCond.first) 6307 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6308 return None; 6309 } 6310 6311 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6312 const Value *LHS, const Value *RHS, 6313 const Instruction *ContextI, 6314 const DataLayout &DL) { 6315 auto PredCond = getDomPredecessorCondition(ContextI); 6316 if (PredCond.first) 6317 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6318 PredCond.second); 6319 return None; 6320 } 6321 6322 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6323 APInt &Upper, const InstrInfoQuery &IIQ) { 6324 unsigned Width = Lower.getBitWidth(); 6325 const APInt *C; 6326 switch (BO.getOpcode()) { 6327 case Instruction::Add: 6328 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6329 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6330 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6331 // 'add nuw x, C' produces [C, UINT_MAX]. 6332 Lower = *C; 6333 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6334 if (C->isNegative()) { 6335 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6336 Lower = APInt::getSignedMinValue(Width); 6337 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6338 } else { 6339 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6340 Lower = APInt::getSignedMinValue(Width) + *C; 6341 Upper = APInt::getSignedMaxValue(Width) + 1; 6342 } 6343 } 6344 } 6345 break; 6346 6347 case Instruction::And: 6348 if (match(BO.getOperand(1), m_APInt(C))) 6349 // 'and x, C' produces [0, C]. 6350 Upper = *C + 1; 6351 break; 6352 6353 case Instruction::Or: 6354 if (match(BO.getOperand(1), m_APInt(C))) 6355 // 'or x, C' produces [C, UINT_MAX]. 6356 Lower = *C; 6357 break; 6358 6359 case Instruction::AShr: 6360 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6361 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6362 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6363 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6364 } else if (match(BO.getOperand(0), m_APInt(C))) { 6365 unsigned ShiftAmount = Width - 1; 6366 if (!C->isNullValue() && IIQ.isExact(&BO)) 6367 ShiftAmount = C->countTrailingZeros(); 6368 if (C->isNegative()) { 6369 // 'ashr C, x' produces [C, C >> (Width-1)] 6370 Lower = *C; 6371 Upper = C->ashr(ShiftAmount) + 1; 6372 } else { 6373 // 'ashr C, x' produces [C >> (Width-1), C] 6374 Lower = C->ashr(ShiftAmount); 6375 Upper = *C + 1; 6376 } 6377 } 6378 break; 6379 6380 case Instruction::LShr: 6381 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6382 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6383 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6384 } else if (match(BO.getOperand(0), m_APInt(C))) { 6385 // 'lshr C, x' produces [C >> (Width-1), C]. 6386 unsigned ShiftAmount = Width - 1; 6387 if (!C->isNullValue() && IIQ.isExact(&BO)) 6388 ShiftAmount = C->countTrailingZeros(); 6389 Lower = C->lshr(ShiftAmount); 6390 Upper = *C + 1; 6391 } 6392 break; 6393 6394 case Instruction::Shl: 6395 if (match(BO.getOperand(0), m_APInt(C))) { 6396 if (IIQ.hasNoUnsignedWrap(&BO)) { 6397 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6398 Lower = *C; 6399 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6400 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6401 if (C->isNegative()) { 6402 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6403 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6404 Lower = C->shl(ShiftAmount); 6405 Upper = *C + 1; 6406 } else { 6407 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6408 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6409 Lower = *C; 6410 Upper = C->shl(ShiftAmount) + 1; 6411 } 6412 } 6413 } 6414 break; 6415 6416 case Instruction::SDiv: 6417 if (match(BO.getOperand(1), m_APInt(C))) { 6418 APInt IntMin = APInt::getSignedMinValue(Width); 6419 APInt IntMax = APInt::getSignedMaxValue(Width); 6420 if (C->isAllOnesValue()) { 6421 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6422 // where C != -1 and C != 0 and C != 1 6423 Lower = IntMin + 1; 6424 Upper = IntMax + 1; 6425 } else if (C->countLeadingZeros() < Width - 1) { 6426 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6427 // where C != -1 and C != 0 and C != 1 6428 Lower = IntMin.sdiv(*C); 6429 Upper = IntMax.sdiv(*C); 6430 if (Lower.sgt(Upper)) 6431 std::swap(Lower, Upper); 6432 Upper = Upper + 1; 6433 assert(Upper != Lower && "Upper part of range has wrapped!"); 6434 } 6435 } else if (match(BO.getOperand(0), m_APInt(C))) { 6436 if (C->isMinSignedValue()) { 6437 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6438 Lower = *C; 6439 Upper = Lower.lshr(1) + 1; 6440 } else { 6441 // 'sdiv C, x' produces [-|C|, |C|]. 6442 Upper = C->abs() + 1; 6443 Lower = (-Upper) + 1; 6444 } 6445 } 6446 break; 6447 6448 case Instruction::UDiv: 6449 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6450 // 'udiv x, C' produces [0, UINT_MAX / C]. 6451 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6452 } else if (match(BO.getOperand(0), m_APInt(C))) { 6453 // 'udiv C, x' produces [0, C]. 6454 Upper = *C + 1; 6455 } 6456 break; 6457 6458 case Instruction::SRem: 6459 if (match(BO.getOperand(1), m_APInt(C))) { 6460 // 'srem x, C' produces (-|C|, |C|). 6461 Upper = C->abs(); 6462 Lower = (-Upper) + 1; 6463 } 6464 break; 6465 6466 case Instruction::URem: 6467 if (match(BO.getOperand(1), m_APInt(C))) 6468 // 'urem x, C' produces [0, C). 6469 Upper = *C; 6470 break; 6471 6472 default: 6473 break; 6474 } 6475 } 6476 6477 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6478 APInt &Upper) { 6479 unsigned Width = Lower.getBitWidth(); 6480 const APInt *C; 6481 switch (II.getIntrinsicID()) { 6482 case Intrinsic::uadd_sat: 6483 // uadd.sat(x, C) produces [C, UINT_MAX]. 6484 if (match(II.getOperand(0), m_APInt(C)) || 6485 match(II.getOperand(1), m_APInt(C))) 6486 Lower = *C; 6487 break; 6488 case Intrinsic::sadd_sat: 6489 if (match(II.getOperand(0), m_APInt(C)) || 6490 match(II.getOperand(1), m_APInt(C))) { 6491 if (C->isNegative()) { 6492 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6493 Lower = APInt::getSignedMinValue(Width); 6494 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6495 } else { 6496 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6497 Lower = APInt::getSignedMinValue(Width) + *C; 6498 Upper = APInt::getSignedMaxValue(Width) + 1; 6499 } 6500 } 6501 break; 6502 case Intrinsic::usub_sat: 6503 // usub.sat(C, x) produces [0, C]. 6504 if (match(II.getOperand(0), m_APInt(C))) 6505 Upper = *C + 1; 6506 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6507 else if (match(II.getOperand(1), m_APInt(C))) 6508 Upper = APInt::getMaxValue(Width) - *C + 1; 6509 break; 6510 case Intrinsic::ssub_sat: 6511 if (match(II.getOperand(0), m_APInt(C))) { 6512 if (C->isNegative()) { 6513 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6514 Lower = APInt::getSignedMinValue(Width); 6515 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6516 } else { 6517 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6518 Lower = *C - APInt::getSignedMaxValue(Width); 6519 Upper = APInt::getSignedMaxValue(Width) + 1; 6520 } 6521 } else if (match(II.getOperand(1), m_APInt(C))) { 6522 if (C->isNegative()) { 6523 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6524 Lower = APInt::getSignedMinValue(Width) - *C; 6525 Upper = APInt::getSignedMaxValue(Width) + 1; 6526 } else { 6527 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6528 Lower = APInt::getSignedMinValue(Width); 6529 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6530 } 6531 } 6532 break; 6533 case Intrinsic::umin: 6534 case Intrinsic::umax: 6535 case Intrinsic::smin: 6536 case Intrinsic::smax: 6537 if (!match(II.getOperand(0), m_APInt(C)) && 6538 !match(II.getOperand(1), m_APInt(C))) 6539 break; 6540 6541 switch (II.getIntrinsicID()) { 6542 case Intrinsic::umin: 6543 Upper = *C + 1; 6544 break; 6545 case Intrinsic::umax: 6546 Lower = *C; 6547 break; 6548 case Intrinsic::smin: 6549 Lower = APInt::getSignedMinValue(Width); 6550 Upper = *C + 1; 6551 break; 6552 case Intrinsic::smax: 6553 Lower = *C; 6554 Upper = APInt::getSignedMaxValue(Width) + 1; 6555 break; 6556 default: 6557 llvm_unreachable("Must be min/max intrinsic"); 6558 } 6559 break; 6560 case Intrinsic::abs: 6561 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6562 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6563 if (match(II.getOperand(1), m_One())) 6564 Upper = APInt::getSignedMaxValue(Width) + 1; 6565 else 6566 Upper = APInt::getSignedMinValue(Width) + 1; 6567 break; 6568 default: 6569 break; 6570 } 6571 } 6572 6573 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6574 APInt &Upper, const InstrInfoQuery &IIQ) { 6575 const Value *LHS = nullptr, *RHS = nullptr; 6576 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6577 if (R.Flavor == SPF_UNKNOWN) 6578 return; 6579 6580 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6581 6582 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6583 // If the negation part of the abs (in RHS) has the NSW flag, 6584 // then the result of abs(X) is [0..SIGNED_MAX], 6585 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6586 Lower = APInt::getNullValue(BitWidth); 6587 if (match(RHS, m_Neg(m_Specific(LHS))) && 6588 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6589 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6590 else 6591 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6592 return; 6593 } 6594 6595 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6596 // The result of -abs(X) is <= 0. 6597 Lower = APInt::getSignedMinValue(BitWidth); 6598 Upper = APInt(BitWidth, 1); 6599 return; 6600 } 6601 6602 const APInt *C; 6603 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6604 return; 6605 6606 switch (R.Flavor) { 6607 case SPF_UMIN: 6608 Upper = *C + 1; 6609 break; 6610 case SPF_UMAX: 6611 Lower = *C; 6612 break; 6613 case SPF_SMIN: 6614 Lower = APInt::getSignedMinValue(BitWidth); 6615 Upper = *C + 1; 6616 break; 6617 case SPF_SMAX: 6618 Lower = *C; 6619 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6620 break; 6621 default: 6622 break; 6623 } 6624 } 6625 6626 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6627 AssumptionCache *AC, 6628 const Instruction *CtxI, 6629 unsigned Depth) { 6630 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6631 6632 if (Depth == MaxAnalysisRecursionDepth) 6633 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6634 6635 const APInt *C; 6636 if (match(V, m_APInt(C))) 6637 return ConstantRange(*C); 6638 6639 InstrInfoQuery IIQ(UseInstrInfo); 6640 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6641 APInt Lower = APInt(BitWidth, 0); 6642 APInt Upper = APInt(BitWidth, 0); 6643 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6644 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6645 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6646 setLimitsForIntrinsic(*II, Lower, Upper); 6647 else if (auto *SI = dyn_cast<SelectInst>(V)) 6648 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6649 6650 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6651 6652 if (auto *I = dyn_cast<Instruction>(V)) 6653 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6654 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6655 6656 if (CtxI && AC) { 6657 // Try to restrict the range based on information from assumptions. 6658 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6659 if (!AssumeVH) 6660 continue; 6661 CallInst *I = cast<CallInst>(AssumeVH); 6662 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6663 "Got assumption for the wrong function!"); 6664 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6665 "must be an assume intrinsic"); 6666 6667 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6668 continue; 6669 Value *Arg = I->getArgOperand(0); 6670 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6671 // Currently we just use information from comparisons. 6672 if (!Cmp || Cmp->getOperand(0) != V) 6673 continue; 6674 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6675 AC, I, Depth + 1); 6676 CR = CR.intersectWith( 6677 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6678 } 6679 } 6680 6681 return CR; 6682 } 6683 6684 static Optional<int64_t> 6685 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6686 // Skip over the first indices. 6687 gep_type_iterator GTI = gep_type_begin(GEP); 6688 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6689 /*skip along*/; 6690 6691 // Compute the offset implied by the rest of the indices. 6692 int64_t Offset = 0; 6693 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6694 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6695 if (!OpC) 6696 return None; 6697 if (OpC->isZero()) 6698 continue; // No offset. 6699 6700 // Handle struct indices, which add their field offset to the pointer. 6701 if (StructType *STy = GTI.getStructTypeOrNull()) { 6702 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6703 continue; 6704 } 6705 6706 // Otherwise, we have a sequential type like an array or fixed-length 6707 // vector. Multiply the index by the ElementSize. 6708 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6709 if (Size.isScalable()) 6710 return None; 6711 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6712 } 6713 6714 return Offset; 6715 } 6716 6717 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6718 const DataLayout &DL) { 6719 Ptr1 = Ptr1->stripPointerCasts(); 6720 Ptr2 = Ptr2->stripPointerCasts(); 6721 6722 // Handle the trivial case first. 6723 if (Ptr1 == Ptr2) { 6724 return 0; 6725 } 6726 6727 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6728 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6729 6730 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6731 // as in "P" and "gep P, 1". 6732 // Also do this iteratively to handle the the following case: 6733 // Ptr_t1 = GEP Ptr1, c1 6734 // Ptr_t2 = GEP Ptr_t1, c2 6735 // Ptr2 = GEP Ptr_t2, c3 6736 // where we will return c1+c2+c3. 6737 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6738 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6739 // are the same, and return the difference between offsets. 6740 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6741 const Value *Ptr) -> Optional<int64_t> { 6742 const GEPOperator *GEP_T = GEP; 6743 int64_t OffsetVal = 0; 6744 bool HasSameBase = false; 6745 while (GEP_T) { 6746 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6747 if (!Offset) 6748 return None; 6749 OffsetVal += *Offset; 6750 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6751 if (Op0 == Ptr) { 6752 HasSameBase = true; 6753 break; 6754 } 6755 GEP_T = dyn_cast<GEPOperator>(Op0); 6756 } 6757 if (!HasSameBase) 6758 return None; 6759 return OffsetVal; 6760 }; 6761 6762 if (GEP1) { 6763 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6764 if (Offset) 6765 return -*Offset; 6766 } 6767 if (GEP2) { 6768 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6769 if (Offset) 6770 return Offset; 6771 } 6772 6773 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6774 // base. After that base, they may have some number of common (and 6775 // potentially variable) indices. After that they handle some constant 6776 // offset, which determines their offset from each other. At this point, we 6777 // handle no other case. 6778 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6779 return None; 6780 6781 // Skip any common indices and track the GEP types. 6782 unsigned Idx = 1; 6783 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6784 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6785 break; 6786 6787 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6788 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6789 if (!Offset1 || !Offset2) 6790 return None; 6791 return *Offset2 - *Offset1; 6792 } 6793