1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2,
360                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                    bool NSW, const APInt &DemandedElts,
401                                    KnownBits &KnownOut, KnownBits &Known2,
402                                    unsigned Depth, const Query &Q) {
403   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404 
405   // If one operand is unknown and we have no nowrap information,
406   // the result will be unknown independently of the second operand.
407   if (KnownOut.isUnknown() && !NSW)
408     return;
409 
410   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412 }
413 
414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                 const APInt &DemandedElts, KnownBits &Known,
416                                 KnownBits &Known2, unsigned Depth,
417                                 const Query &Q) {
418   unsigned BitWidth = Known.getBitWidth();
419   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
420   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
421 
422   bool isKnownNegative = false;
423   bool isKnownNonNegative = false;
424   // If the multiplication is known not to overflow, compute the sign bit.
425   if (NSW) {
426     if (Op0 == Op1) {
427       // The product of a number with itself is non-negative.
428       isKnownNonNegative = true;
429     } else {
430       bool isKnownNonNegativeOp1 = Known.isNonNegative();
431       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
432       bool isKnownNegativeOp1 = Known.isNegative();
433       bool isKnownNegativeOp0 = Known2.isNegative();
434       // The product of two numbers with the same sign is non-negative.
435       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
436         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
437       // The product of a negative number and a non-negative number is either
438       // negative or zero.
439       if (!isKnownNonNegative)
440         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
441                            isKnownNonZero(Op0, Depth, Q)) ||
442                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
443                            isKnownNonZero(Op1, Depth, Q));
444     }
445   }
446 
447   assert(!Known.hasConflict() && !Known2.hasConflict());
448   // Compute a conservative estimate for high known-0 bits.
449   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
450                              Known2.countMinLeadingZeros(),
451                              BitWidth) - BitWidth;
452   LeadZ = std::min(LeadZ, BitWidth);
453 
454   // The result of the bottom bits of an integer multiply can be
455   // inferred by looking at the bottom bits of both operands and
456   // multiplying them together.
457   // We can infer at least the minimum number of known trailing bits
458   // of both operands. Depending on number of trailing zeros, we can
459   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
460   // a and b are divisible by m and n respectively.
461   // We then calculate how many of those bits are inferrable and set
462   // the output. For example, the i8 mul:
463   //  a = XXXX1100 (12)
464   //  b = XXXX1110 (14)
465   // We know the bottom 3 bits are zero since the first can be divided by
466   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
467   // Applying the multiplication to the trimmed arguments gets:
468   //    XX11 (3)
469   //    X111 (7)
470   // -------
471   //    XX11
472   //   XX11
473   //  XX11
474   // XX11
475   // -------
476   // XXXXX01
477   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
478   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
479   // The proof for this can be described as:
480   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
481   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
482   //                    umin(countTrailingZeros(C2), C6) +
483   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
484   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
485   // %aa = shl i8 %a, C5
486   // %bb = shl i8 %b, C6
487   // %aaa = or i8 %aa, C1
488   // %bbb = or i8 %bb, C2
489   // %mul = mul i8 %aaa, %bbb
490   // %mask = and i8 %mul, C7
491   //   =>
492   // %mask = i8 ((C1*C2)&C7)
493   // Where C5, C6 describe the known bits of %a, %b
494   // C1, C2 describe the known bottom bits of %a, %b.
495   // C7 describes the mask of the known bits of the result.
496   APInt Bottom0 = Known.One;
497   APInt Bottom1 = Known2.One;
498 
499   // How many times we'd be able to divide each argument by 2 (shr by 1).
500   // This gives us the number of trailing zeros on the multiplication result.
501   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
502   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
503   unsigned TrailZero0 = Known.countMinTrailingZeros();
504   unsigned TrailZero1 = Known2.countMinTrailingZeros();
505   unsigned TrailZ = TrailZero0 + TrailZero1;
506 
507   // Figure out the fewest known-bits operand.
508   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
509                                       TrailBitsKnown1 - TrailZero1);
510   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
511 
512   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
513                       Bottom1.getLoBits(TrailBitsKnown1);
514 
515   Known.resetAll();
516   Known.Zero.setHighBits(LeadZ);
517   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
518   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
519 
520   // Only make use of no-wrap flags if we failed to compute the sign bit
521   // directly.  This matters if the multiplication always overflows, in
522   // which case we prefer to follow the result of the direct computation,
523   // though as the program is invoking undefined behaviour we can choose
524   // whatever we like here.
525   if (isKnownNonNegative && !Known.isNegative())
526     Known.makeNonNegative();
527   else if (isKnownNegative && !Known.isNonNegative())
528     Known.makeNegative();
529 }
530 
531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
532                                              KnownBits &Known) {
533   unsigned BitWidth = Known.getBitWidth();
534   unsigned NumRanges = Ranges.getNumOperands() / 2;
535   assert(NumRanges >= 1);
536 
537   Known.Zero.setAllBits();
538   Known.One.setAllBits();
539 
540   for (unsigned i = 0; i < NumRanges; ++i) {
541     ConstantInt *Lower =
542         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
543     ConstantInt *Upper =
544         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
545     ConstantRange Range(Lower->getValue(), Upper->getValue());
546 
547     // The first CommonPrefixBits of all values in Range are equal.
548     unsigned CommonPrefixBits =
549         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
550     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
551     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
552     Known.One &= UnsignedMax & Mask;
553     Known.Zero &= ~UnsignedMax & Mask;
554   }
555 }
556 
557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
558   SmallVector<const Value *, 16> WorkSet(1, I);
559   SmallPtrSet<const Value *, 32> Visited;
560   SmallPtrSet<const Value *, 16> EphValues;
561 
562   // The instruction defining an assumption's condition itself is always
563   // considered ephemeral to that assumption (even if it has other
564   // non-ephemeral users). See r246696's test case for an example.
565   if (is_contained(I->operands(), E))
566     return true;
567 
568   while (!WorkSet.empty()) {
569     const Value *V = WorkSet.pop_back_val();
570     if (!Visited.insert(V).second)
571       continue;
572 
573     // If all uses of this value are ephemeral, then so is this value.
574     if (llvm::all_of(V->users(), [&](const User *U) {
575                                    return EphValues.count(U);
576                                  })) {
577       if (V == E)
578         return true;
579 
580       if (V == I || isSafeToSpeculativelyExecute(V)) {
581        EphValues.insert(V);
582        if (const User *U = dyn_cast<User>(V))
583          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
584               J != JE; ++J)
585            WorkSet.push_back(*J);
586       }
587     }
588   }
589 
590   return false;
591 }
592 
593 // Is this an intrinsic that cannot be speculated but also cannot trap?
594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
595   if (const CallInst *CI = dyn_cast<CallInst>(I))
596     if (Function *F = CI->getCalledFunction())
597       switch (F->getIntrinsicID()) {
598       default: break;
599       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
600       case Intrinsic::assume:
601       case Intrinsic::sideeffect:
602       case Intrinsic::dbg_declare:
603       case Intrinsic::dbg_value:
604       case Intrinsic::dbg_label:
605       case Intrinsic::invariant_start:
606       case Intrinsic::invariant_end:
607       case Intrinsic::lifetime_start:
608       case Intrinsic::lifetime_end:
609       case Intrinsic::objectsize:
610       case Intrinsic::ptr_annotation:
611       case Intrinsic::var_annotation:
612         return true;
613       }
614 
615   return false;
616 }
617 
618 bool llvm::isValidAssumeForContext(const Instruction *Inv,
619                                    const Instruction *CxtI,
620                                    const DominatorTree *DT) {
621   // There are two restrictions on the use of an assume:
622   //  1. The assume must dominate the context (or the control flow must
623   //     reach the assume whenever it reaches the context).
624   //  2. The context must not be in the assume's set of ephemeral values
625   //     (otherwise we will use the assume to prove that the condition
626   //     feeding the assume is trivially true, thus causing the removal of
627   //     the assume).
628 
629   if (Inv->getParent() == CxtI->getParent()) {
630     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
631     // in the BB.
632     if (Inv->comesBefore(CxtI))
633       return true;
634 
635     // Don't let an assume affect itself - this would cause the problems
636     // `isEphemeralValueOf` is trying to prevent, and it would also make
637     // the loop below go out of bounds.
638     if (Inv == CxtI)
639       return false;
640 
641     // The context comes first, but they're both in the same block.
642     // Make sure there is nothing in between that might interrupt
643     // the control flow, not even CxtI itself.
644     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
645       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
646         return false;
647 
648     return !isEphemeralValueOf(Inv, CxtI);
649   }
650 
651   // Inv and CxtI are in different blocks.
652   if (DT) {
653     if (DT->dominates(Inv, CxtI))
654       return true;
655   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
656     // We don't have a DT, but this trivially dominates.
657     return true;
658   }
659 
660   return false;
661 }
662 
663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
664   // Use of assumptions is context-sensitive. If we don't have a context, we
665   // cannot use them!
666   if (!Q.AC || !Q.CxtI)
667     return false;
668 
669   // Note that the patterns below need to be kept in sync with the code
670   // in AssumptionCache::updateAffectedValues.
671 
672   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
673     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
674 
675     Value *RHS;
676     CmpInst::Predicate Pred;
677     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
678       return false;
679     // assume(v u> y) -> assume(v != 0)
680     if (Pred == ICmpInst::ICMP_UGT)
681       return true;
682 
683     // assume(v != 0)
684     // We special-case this one to ensure that we handle `assume(v != null)`.
685     if (Pred == ICmpInst::ICMP_NE)
686       return match(RHS, m_Zero());
687 
688     // All other predicates - rely on generic ConstantRange handling.
689     ConstantInt *CI;
690     if (!match(RHS, m_ConstantInt(CI)))
691       return false;
692     ConstantRange RHSRange(CI->getValue());
693     ConstantRange TrueValues =
694         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
695     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
696   };
697 
698   if (Q.CxtI && V->getType()->isPointerTy()) {
699     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
700     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
701                               V->getType()->getPointerAddressSpace()))
702       AttrKinds.push_back(Attribute::Dereferenceable);
703 
704     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
705       return true;
706   }
707 
708   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
709     if (!AssumeVH)
710       continue;
711     CallInst *I = cast<CallInst>(AssumeVH);
712     assert(I->getFunction() == Q.CxtI->getFunction() &&
713            "Got assumption for the wrong function!");
714     if (Q.isExcluded(I))
715       continue;
716 
717     // Warning: This loop can end up being somewhat performance sensitive.
718     // We're running this loop for once for each value queried resulting in a
719     // runtime of ~O(#assumes * #values).
720 
721     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
722            "must be an assume intrinsic");
723 
724     Value *Arg = I->getArgOperand(0);
725     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
726     if (!Cmp)
727       continue;
728 
729     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
730       return true;
731   }
732 
733   return false;
734 }
735 
736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
737                                        unsigned Depth, const Query &Q) {
738   // Use of assumptions is context-sensitive. If we don't have a context, we
739   // cannot use them!
740   if (!Q.AC || !Q.CxtI)
741     return;
742 
743   unsigned BitWidth = Known.getBitWidth();
744 
745   // Note that the patterns below need to be kept in sync with the code
746   // in AssumptionCache::updateAffectedValues.
747 
748   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
749     if (!AssumeVH)
750       continue;
751     CallInst *I = cast<CallInst>(AssumeVH);
752     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
753            "Got assumption for the wrong function!");
754     if (Q.isExcluded(I))
755       continue;
756 
757     // Warning: This loop can end up being somewhat performance sensitive.
758     // We're running this loop for once for each value queried resulting in a
759     // runtime of ~O(#assumes * #values).
760 
761     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
762            "must be an assume intrinsic");
763 
764     Value *Arg = I->getArgOperand(0);
765 
766     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
767       assert(BitWidth == 1 && "assume operand is not i1?");
768       Known.setAllOnes();
769       return;
770     }
771     if (match(Arg, m_Not(m_Specific(V))) &&
772         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
773       assert(BitWidth == 1 && "assume operand is not i1?");
774       Known.setAllZero();
775       return;
776     }
777 
778     // The remaining tests are all recursive, so bail out if we hit the limit.
779     if (Depth == MaxAnalysisRecursionDepth)
780       continue;
781 
782     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
783     if (!Cmp)
784       continue;
785 
786     // Note that ptrtoint may change the bitwidth.
787     Value *A, *B;
788     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
789 
790     CmpInst::Predicate Pred;
791     uint64_t C;
792     switch (Cmp->getPredicate()) {
793     default:
794       break;
795     case ICmpInst::ICMP_EQ:
796       // assume(v = a)
797       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
798           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
799         KnownBits RHSKnown =
800             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
801         Known.Zero |= RHSKnown.Zero;
802         Known.One  |= RHSKnown.One;
803       // assume(v & b = a)
804       } else if (match(Cmp,
805                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
806                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
807         KnownBits RHSKnown =
808             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
809         KnownBits MaskKnown =
810             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
811 
812         // For those bits in the mask that are known to be one, we can propagate
813         // known bits from the RHS to V.
814         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
815         Known.One  |= RHSKnown.One  & MaskKnown.One;
816       // assume(~(v & b) = a)
817       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
818                                      m_Value(A))) &&
819                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
820         KnownBits RHSKnown =
821             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
822         KnownBits MaskKnown =
823             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
824 
825         // For those bits in the mask that are known to be one, we can propagate
826         // inverted known bits from the RHS to V.
827         Known.Zero |= RHSKnown.One  & MaskKnown.One;
828         Known.One  |= RHSKnown.Zero & MaskKnown.One;
829       // assume(v | b = a)
830       } else if (match(Cmp,
831                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
832                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
833         KnownBits RHSKnown =
834             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
835         KnownBits BKnown =
836             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
837 
838         // For those bits in B that are known to be zero, we can propagate known
839         // bits from the RHS to V.
840         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
841         Known.One  |= RHSKnown.One  & BKnown.Zero;
842       // assume(~(v | b) = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
848         KnownBits BKnown =
849             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
850 
851         // For those bits in B that are known to be zero, we can propagate
852         // inverted known bits from the RHS to V.
853         Known.Zero |= RHSKnown.One  & BKnown.Zero;
854         Known.One  |= RHSKnown.Zero & BKnown.Zero;
855       // assume(v ^ b = a)
856       } else if (match(Cmp,
857                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
861         KnownBits BKnown =
862             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
863 
864         // For those bits in B that are known to be zero, we can propagate known
865         // bits from the RHS to V. For those bits in B that are known to be one,
866         // we can propagate inverted known bits from the RHS to V.
867         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
868         Known.One  |= RHSKnown.One  & BKnown.Zero;
869         Known.Zero |= RHSKnown.One  & BKnown.One;
870         Known.One  |= RHSKnown.Zero & BKnown.One;
871       // assume(~(v ^ b) = a)
872       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
873                                      m_Value(A))) &&
874                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
875         KnownBits RHSKnown =
876             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
877         KnownBits BKnown =
878             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
879 
880         // For those bits in B that are known to be zero, we can propagate
881         // inverted known bits from the RHS to V. For those bits in B that are
882         // known to be one, we can propagate known bits from the RHS to V.
883         Known.Zero |= RHSKnown.One  & BKnown.Zero;
884         Known.One  |= RHSKnown.Zero & BKnown.Zero;
885         Known.Zero |= RHSKnown.Zero & BKnown.One;
886         Known.One  |= RHSKnown.One  & BKnown.One;
887       // assume(v << c = a)
888       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
889                                      m_Value(A))) &&
890                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
891         KnownBits RHSKnown =
892             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
893 
894         // For those bits in RHS that are known, we can propagate them to known
895         // bits in V shifted to the right by C.
896         RHSKnown.Zero.lshrInPlace(C);
897         Known.Zero |= RHSKnown.Zero;
898         RHSKnown.One.lshrInPlace(C);
899         Known.One  |= RHSKnown.One;
900       // assume(~(v << c) = a)
901       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
902                                      m_Value(A))) &&
903                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
904         KnownBits RHSKnown =
905             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
906         // For those bits in RHS that are known, we can propagate them inverted
907         // to known bits in V shifted to the right by C.
908         RHSKnown.One.lshrInPlace(C);
909         Known.Zero |= RHSKnown.One;
910         RHSKnown.Zero.lshrInPlace(C);
911         Known.One  |= RHSKnown.Zero;
912       // assume(v >> c = a)
913       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
914                                      m_Value(A))) &&
915                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
916         KnownBits RHSKnown =
917             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
918         // For those bits in RHS that are known, we can propagate them to known
919         // bits in V shifted to the right by C.
920         Known.Zero |= RHSKnown.Zero << C;
921         Known.One  |= RHSKnown.One  << C;
922       // assume(~(v >> c) = a)
923       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
924                                      m_Value(A))) &&
925                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
926         KnownBits RHSKnown =
927             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
928         // For those bits in RHS that are known, we can propagate them inverted
929         // to known bits in V shifted to the right by C.
930         Known.Zero |= RHSKnown.One  << C;
931         Known.One  |= RHSKnown.Zero << C;
932       }
933       break;
934     case ICmpInst::ICMP_SGE:
935       // assume(v >=_s c) where c is non-negative
936       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
937           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
938         KnownBits RHSKnown =
939             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
940 
941         if (RHSKnown.isNonNegative()) {
942           // We know that the sign bit is zero.
943           Known.makeNonNegative();
944         }
945       }
946       break;
947     case ICmpInst::ICMP_SGT:
948       // assume(v >_s c) where c is at least -1.
949       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
950           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
951         KnownBits RHSKnown =
952             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
953 
954         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
955           // We know that the sign bit is zero.
956           Known.makeNonNegative();
957         }
958       }
959       break;
960     case ICmpInst::ICMP_SLE:
961       // assume(v <=_s c) where c is negative
962       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
963           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
964         KnownBits RHSKnown =
965             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
966 
967         if (RHSKnown.isNegative()) {
968           // We know that the sign bit is one.
969           Known.makeNegative();
970         }
971       }
972       break;
973     case ICmpInst::ICMP_SLT:
974       // assume(v <_s c) where c is non-positive
975       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
976           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
977         KnownBits RHSKnown =
978             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
979 
980         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
981           // We know that the sign bit is one.
982           Known.makeNegative();
983         }
984       }
985       break;
986     case ICmpInst::ICMP_ULE:
987       // assume(v <=_u c)
988       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
989           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
990         KnownBits RHSKnown =
991             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
992 
993         // Whatever high bits in c are zero are known to be zero.
994         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
995       }
996       break;
997     case ICmpInst::ICMP_ULT:
998       // assume(v <_u c)
999       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1000           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1001         KnownBits RHSKnown =
1002             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1003 
1004         // If the RHS is known zero, then this assumption must be wrong (nothing
1005         // is unsigned less than zero). Signal a conflict and get out of here.
1006         if (RHSKnown.isZero()) {
1007           Known.Zero.setAllBits();
1008           Known.One.setAllBits();
1009           break;
1010         }
1011 
1012         // Whatever high bits in c are zero are known to be zero (if c is a power
1013         // of 2, then one more).
1014         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
1015           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
1016         else
1017           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
1018       }
1019       break;
1020     }
1021   }
1022 
1023   // If assumptions conflict with each other or previous known bits, then we
1024   // have a logical fallacy. It's possible that the assumption is not reachable,
1025   // so this isn't a real bug. On the other hand, the program may have undefined
1026   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
1027   // clear out the known bits, try to warn the user, and hope for the best.
1028   if (Known.Zero.intersects(Known.One)) {
1029     Known.resetAll();
1030 
1031     if (Q.ORE)
1032       Q.ORE->emit([&]() {
1033         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
1034         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
1035                                           CxtI)
1036                << "Detected conflicting code assumptions. Program may "
1037                   "have undefined behavior, or compiler may have "
1038                   "internal error.";
1039       });
1040   }
1041 }
1042 
1043 /// Compute known bits from a shift operator, including those with a
1044 /// non-constant shift amount. Known is the output of this function. Known2 is a
1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
1046 /// operator-specific functions that, given the known-zero or known-one bits
1047 /// respectively, and a shift amount, compute the implied known-zero or
1048 /// known-one bits of the shift operator's result respectively for that shift
1049 /// amount. The results from calling KZF and KOF are conservatively combined for
1050 /// all permitted shift amounts.
1051 static void computeKnownBitsFromShiftOperator(
1052     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1053     KnownBits &Known2, unsigned Depth, const Query &Q,
1054     function_ref<APInt(const APInt &, unsigned)> KZF,
1055     function_ref<APInt(const APInt &, unsigned)> KOF) {
1056   unsigned BitWidth = Known.getBitWidth();
1057 
1058   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1059   if (Known.isConstant()) {
1060     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
1061 
1062     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1063     Known.Zero = KZF(Known.Zero, ShiftAmt);
1064     Known.One  = KOF(Known.One, ShiftAmt);
1065     // If the known bits conflict, this must be an overflowing left shift, so
1066     // the shift result is poison. We can return anything we want. Choose 0 for
1067     // the best folding opportunity.
1068     if (Known.hasConflict())
1069       Known.setAllZero();
1070 
1071     return;
1072   }
1073 
1074   // If the shift amount could be greater than or equal to the bit-width of the
1075   // LHS, the value could be poison, but bail out because the check below is
1076   // expensive.
1077   // TODO: Should we just carry on?
1078   if (Known.getMaxValue().uge(BitWidth)) {
1079     Known.resetAll();
1080     return;
1081   }
1082 
1083   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1084   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1085   // limit value (which implies all bits are known).
1086   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1087   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1088 
1089   // It would be more-clearly correct to use the two temporaries for this
1090   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1091   Known.resetAll();
1092 
1093   // If we know the shifter operand is nonzero, we can sometimes infer more
1094   // known bits. However this is expensive to compute, so be lazy about it and
1095   // only compute it when absolutely necessary.
1096   Optional<bool> ShifterOperandIsNonZero;
1097 
1098   // Early exit if we can't constrain any well-defined shift amount.
1099   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1100       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1101     ShifterOperandIsNonZero =
1102         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1103     if (!*ShifterOperandIsNonZero)
1104       return;
1105   }
1106 
1107   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1108 
1109   Known.Zero.setAllBits();
1110   Known.One.setAllBits();
1111   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1112     // Combine the shifted known input bits only for those shift amounts
1113     // compatible with its known constraints.
1114     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1115       continue;
1116     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1117       continue;
1118     // If we know the shifter is nonzero, we may be able to infer more known
1119     // bits. This check is sunk down as far as possible to avoid the expensive
1120     // call to isKnownNonZero if the cheaper checks above fail.
1121     if (ShiftAmt == 0) {
1122       if (!ShifterOperandIsNonZero.hasValue())
1123         ShifterOperandIsNonZero =
1124             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1125       if (*ShifterOperandIsNonZero)
1126         continue;
1127     }
1128 
1129     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1130     Known.One  &= KOF(Known2.One, ShiftAmt);
1131   }
1132 
1133   // If the known bits conflict, the result is poison. Return a 0 and hope the
1134   // caller can further optimize that.
1135   if (Known.hasConflict())
1136     Known.setAllZero();
1137 }
1138 
1139 static void computeKnownBitsFromOperator(const Operator *I,
1140                                          const APInt &DemandedElts,
1141                                          KnownBits &Known, unsigned Depth,
1142                                          const Query &Q) {
1143   unsigned BitWidth = Known.getBitWidth();
1144 
1145   KnownBits Known2(BitWidth);
1146   switch (I->getOpcode()) {
1147   default: break;
1148   case Instruction::Load:
1149     if (MDNode *MD =
1150             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1151       computeKnownBitsFromRangeMetadata(*MD, Known);
1152     break;
1153   case Instruction::And: {
1154     // If either the LHS or the RHS are Zero, the result is zero.
1155     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1156     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1157 
1158     Known &= Known2;
1159 
1160     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1161     // here we handle the more general case of adding any odd number by
1162     // matching the form add(x, add(x, y)) where y is odd.
1163     // TODO: This could be generalized to clearing any bit set in y where the
1164     // following bit is known to be unset in y.
1165     Value *X = nullptr, *Y = nullptr;
1166     if (!Known.Zero[0] && !Known.One[0] &&
1167         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1168       Known2.resetAll();
1169       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1170       if (Known2.countMinTrailingOnes() > 0)
1171         Known.Zero.setBit(0);
1172     }
1173     break;
1174   }
1175   case Instruction::Or:
1176     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1178 
1179     Known |= Known2;
1180     break;
1181   case Instruction::Xor:
1182     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1183     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1184 
1185     Known ^= Known2;
1186     break;
1187   case Instruction::Mul: {
1188     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1189     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1190                         Known, Known2, Depth, Q);
1191     break;
1192   }
1193   case Instruction::UDiv: {
1194     // For the purposes of computing leading zeros we can conservatively
1195     // treat a udiv as a logical right shift by the power of 2 known to
1196     // be less than the denominator.
1197     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1198     unsigned LeadZ = Known2.countMinLeadingZeros();
1199 
1200     Known2.resetAll();
1201     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1202     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1203     if (RHSMaxLeadingZeros != BitWidth)
1204       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1205 
1206     Known.Zero.setHighBits(LeadZ);
1207     break;
1208   }
1209   case Instruction::Select: {
1210     const Value *LHS = nullptr, *RHS = nullptr;
1211     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1212     if (SelectPatternResult::isMinOrMax(SPF)) {
1213       computeKnownBits(RHS, Known, Depth + 1, Q);
1214       computeKnownBits(LHS, Known2, Depth + 1, Q);
1215       switch (SPF) {
1216       default:
1217         llvm_unreachable("Unhandled select pattern flavor!");
1218       case SPF_SMAX:
1219         Known = KnownBits::smax(Known, Known2);
1220         break;
1221       case SPF_SMIN:
1222         Known = KnownBits::smin(Known, Known2);
1223         break;
1224       case SPF_UMAX:
1225         Known = KnownBits::umax(Known, Known2);
1226         break;
1227       case SPF_UMIN:
1228         Known = KnownBits::umin(Known, Known2);
1229         break;
1230       }
1231       break;
1232     }
1233 
1234     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1235     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1236 
1237     // Only known if known in both the LHS and RHS.
1238     Known.One &= Known2.One;
1239     Known.Zero &= Known2.Zero;
1240 
1241     if (SPF == SPF_ABS) {
1242       // RHS from matchSelectPattern returns the negation part of abs pattern.
1243       // If the negate has an NSW flag we can assume the sign bit of the result
1244       // will be 0 because that makes abs(INT_MIN) undefined.
1245       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1246           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1247         Known.Zero.setSignBit();
1248     }
1249 
1250     break;
1251   }
1252   case Instruction::FPTrunc:
1253   case Instruction::FPExt:
1254   case Instruction::FPToUI:
1255   case Instruction::FPToSI:
1256   case Instruction::SIToFP:
1257   case Instruction::UIToFP:
1258     break; // Can't work with floating point.
1259   case Instruction::PtrToInt:
1260   case Instruction::IntToPtr:
1261     // Fall through and handle them the same as zext/trunc.
1262     LLVM_FALLTHROUGH;
1263   case Instruction::ZExt:
1264   case Instruction::Trunc: {
1265     Type *SrcTy = I->getOperand(0)->getType();
1266 
1267     unsigned SrcBitWidth;
1268     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1269     // which fall through here.
1270     Type *ScalarTy = SrcTy->getScalarType();
1271     SrcBitWidth = ScalarTy->isPointerTy() ?
1272       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1273       Q.DL.getTypeSizeInBits(ScalarTy);
1274 
1275     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1276     Known = Known.anyextOrTrunc(SrcBitWidth);
1277     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1278     Known = Known.zextOrTrunc(BitWidth);
1279     break;
1280   }
1281   case Instruction::BitCast: {
1282     Type *SrcTy = I->getOperand(0)->getType();
1283     if (SrcTy->isIntOrPtrTy() &&
1284         // TODO: For now, not handling conversions like:
1285         // (bitcast i64 %x to <2 x i32>)
1286         !I->getType()->isVectorTy()) {
1287       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1288       break;
1289     }
1290     break;
1291   }
1292   case Instruction::SExt: {
1293     // Compute the bits in the result that are not present in the input.
1294     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1295 
1296     Known = Known.trunc(SrcBitWidth);
1297     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1298     // If the sign bit of the input is known set or clear, then we know the
1299     // top bits of the result.
1300     Known = Known.sext(BitWidth);
1301     break;
1302   }
1303   case Instruction::Shl: {
1304     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1305     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1306     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1307       APInt KZResult = KnownZero << ShiftAmt;
1308       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1309       // If this shift has "nsw" keyword, then the result is either a poison
1310       // value or has the same sign bit as the first operand.
1311       if (NSW && KnownZero.isSignBitSet())
1312         KZResult.setSignBit();
1313       return KZResult;
1314     };
1315 
1316     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1317       APInt KOResult = KnownOne << ShiftAmt;
1318       if (NSW && KnownOne.isSignBitSet())
1319         KOResult.setSignBit();
1320       return KOResult;
1321     };
1322 
1323     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1324                                       KZF, KOF);
1325     break;
1326   }
1327   case Instruction::LShr: {
1328     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1329     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1330       APInt KZResult = KnownZero.lshr(ShiftAmt);
1331       // High bits known zero.
1332       KZResult.setHighBits(ShiftAmt);
1333       return KZResult;
1334     };
1335 
1336     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1337       return KnownOne.lshr(ShiftAmt);
1338     };
1339 
1340     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1341                                       KZF, KOF);
1342     break;
1343   }
1344   case Instruction::AShr: {
1345     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1346     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1347       return KnownZero.ashr(ShiftAmt);
1348     };
1349 
1350     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1351       return KnownOne.ashr(ShiftAmt);
1352     };
1353 
1354     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1355                                       KZF, KOF);
1356     break;
1357   }
1358   case Instruction::Sub: {
1359     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1360     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1361                            DemandedElts, Known, Known2, Depth, Q);
1362     break;
1363   }
1364   case Instruction::Add: {
1365     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1366     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1367                            DemandedElts, Known, Known2, Depth, Q);
1368     break;
1369   }
1370   case Instruction::SRem:
1371     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1372       APInt RA = Rem->getValue().abs();
1373       if (RA.isPowerOf2()) {
1374         APInt LowBits = RA - 1;
1375         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1376 
1377         // The low bits of the first operand are unchanged by the srem.
1378         Known.Zero = Known2.Zero & LowBits;
1379         Known.One = Known2.One & LowBits;
1380 
1381         // If the first operand is non-negative or has all low bits zero, then
1382         // the upper bits are all zero.
1383         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1384           Known.Zero |= ~LowBits;
1385 
1386         // If the first operand is negative and not all low bits are zero, then
1387         // the upper bits are all one.
1388         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1389           Known.One |= ~LowBits;
1390 
1391         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1392         break;
1393       }
1394     }
1395 
1396     // The sign bit is the LHS's sign bit, except when the result of the
1397     // remainder is zero.
1398     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1399     // If it's known zero, our sign bit is also zero.
1400     if (Known2.isNonNegative())
1401       Known.makeNonNegative();
1402 
1403     break;
1404   case Instruction::URem: {
1405     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1406       const APInt &RA = Rem->getValue();
1407       if (RA.isPowerOf2()) {
1408         APInt LowBits = (RA - 1);
1409         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1410         Known.Zero |= ~LowBits;
1411         Known.One &= LowBits;
1412         break;
1413       }
1414     }
1415 
1416     // Since the result is less than or equal to either operand, any leading
1417     // zero bits in either operand must also exist in the result.
1418     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1419     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1420 
1421     unsigned Leaders =
1422         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1423     Known.resetAll();
1424     Known.Zero.setHighBits(Leaders);
1425     break;
1426   }
1427   case Instruction::Alloca:
1428     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1429     break;
1430   case Instruction::GetElementPtr: {
1431     // Analyze all of the subscripts of this getelementptr instruction
1432     // to determine if we can prove known low zero bits.
1433     KnownBits LocalKnown(BitWidth);
1434     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1435     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1436 
1437     gep_type_iterator GTI = gep_type_begin(I);
1438     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1439       // TrailZ can only become smaller, short-circuit if we hit zero.
1440       if (TrailZ == 0)
1441         break;
1442 
1443       Value *Index = I->getOperand(i);
1444       if (StructType *STy = GTI.getStructTypeOrNull()) {
1445         // Handle struct member offset arithmetic.
1446 
1447         // Handle case when index is vector zeroinitializer
1448         Constant *CIndex = cast<Constant>(Index);
1449         if (CIndex->isZeroValue())
1450           continue;
1451 
1452         if (CIndex->getType()->isVectorTy())
1453           Index = CIndex->getSplatValue();
1454 
1455         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1456         const StructLayout *SL = Q.DL.getStructLayout(STy);
1457         uint64_t Offset = SL->getElementOffset(Idx);
1458         TrailZ = std::min<unsigned>(TrailZ,
1459                                     countTrailingZeros(Offset));
1460       } else {
1461         // Handle array index arithmetic.
1462         Type *IndexedTy = GTI.getIndexedType();
1463         if (!IndexedTy->isSized()) {
1464           TrailZ = 0;
1465           break;
1466         }
1467         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1468         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1469         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1470         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1471         TrailZ = std::min(TrailZ,
1472                           unsigned(countTrailingZeros(TypeSize) +
1473                                    LocalKnown.countMinTrailingZeros()));
1474       }
1475     }
1476 
1477     Known.Zero.setLowBits(TrailZ);
1478     break;
1479   }
1480   case Instruction::PHI: {
1481     const PHINode *P = cast<PHINode>(I);
1482     // Handle the case of a simple two-predecessor recurrence PHI.
1483     // There's a lot more that could theoretically be done here, but
1484     // this is sufficient to catch some interesting cases.
1485     if (P->getNumIncomingValues() == 2) {
1486       for (unsigned i = 0; i != 2; ++i) {
1487         Value *L = P->getIncomingValue(i);
1488         Value *R = P->getIncomingValue(!i);
1489         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1490         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1491         Operator *LU = dyn_cast<Operator>(L);
1492         if (!LU)
1493           continue;
1494         unsigned Opcode = LU->getOpcode();
1495         // Check for operations that have the property that if
1496         // both their operands have low zero bits, the result
1497         // will have low zero bits.
1498         if (Opcode == Instruction::Add ||
1499             Opcode == Instruction::Sub ||
1500             Opcode == Instruction::And ||
1501             Opcode == Instruction::Or ||
1502             Opcode == Instruction::Mul) {
1503           Value *LL = LU->getOperand(0);
1504           Value *LR = LU->getOperand(1);
1505           // Find a recurrence.
1506           if (LL == I)
1507             L = LR;
1508           else if (LR == I)
1509             L = LL;
1510           else
1511             continue; // Check for recurrence with L and R flipped.
1512 
1513           // Change the context instruction to the "edge" that flows into the
1514           // phi. This is important because that is where the value is actually
1515           // "evaluated" even though it is used later somewhere else. (see also
1516           // D69571).
1517           Query RecQ = Q;
1518 
1519           // Ok, we have a PHI of the form L op= R. Check for low
1520           // zero bits.
1521           RecQ.CxtI = RInst;
1522           computeKnownBits(R, Known2, Depth + 1, RecQ);
1523 
1524           // We need to take the minimum number of known bits
1525           KnownBits Known3(BitWidth);
1526           RecQ.CxtI = LInst;
1527           computeKnownBits(L, Known3, Depth + 1, RecQ);
1528 
1529           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1530                                          Known3.countMinTrailingZeros()));
1531 
1532           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1533           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1534             // If initial value of recurrence is nonnegative, and we are adding
1535             // a nonnegative number with nsw, the result can only be nonnegative
1536             // or poison value regardless of the number of times we execute the
1537             // add in phi recurrence. If initial value is negative and we are
1538             // adding a negative number with nsw, the result can only be
1539             // negative or poison value. Similar arguments apply to sub and mul.
1540             //
1541             // (add non-negative, non-negative) --> non-negative
1542             // (add negative, negative) --> negative
1543             if (Opcode == Instruction::Add) {
1544               if (Known2.isNonNegative() && Known3.isNonNegative())
1545                 Known.makeNonNegative();
1546               else if (Known2.isNegative() && Known3.isNegative())
1547                 Known.makeNegative();
1548             }
1549 
1550             // (sub nsw non-negative, negative) --> non-negative
1551             // (sub nsw negative, non-negative) --> negative
1552             else if (Opcode == Instruction::Sub && LL == I) {
1553               if (Known2.isNonNegative() && Known3.isNegative())
1554                 Known.makeNonNegative();
1555               else if (Known2.isNegative() && Known3.isNonNegative())
1556                 Known.makeNegative();
1557             }
1558 
1559             // (mul nsw non-negative, non-negative) --> non-negative
1560             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1561                      Known3.isNonNegative())
1562               Known.makeNonNegative();
1563           }
1564 
1565           break;
1566         }
1567       }
1568     }
1569 
1570     // Unreachable blocks may have zero-operand PHI nodes.
1571     if (P->getNumIncomingValues() == 0)
1572       break;
1573 
1574     // Otherwise take the unions of the known bit sets of the operands,
1575     // taking conservative care to avoid excessive recursion.
1576     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1577       // Skip if every incoming value references to ourself.
1578       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1579         break;
1580 
1581       Known.Zero.setAllBits();
1582       Known.One.setAllBits();
1583       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1584         Value *IncValue = P->getIncomingValue(u);
1585         // Skip direct self references.
1586         if (IncValue == P) continue;
1587 
1588         // Change the context instruction to the "edge" that flows into the
1589         // phi. This is important because that is where the value is actually
1590         // "evaluated" even though it is used later somewhere else. (see also
1591         // D69571).
1592         Query RecQ = Q;
1593         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1594 
1595         Known2 = KnownBits(BitWidth);
1596         // Recurse, but cap the recursion to one level, because we don't
1597         // want to waste time spinning around in loops.
1598         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1599         Known.Zero &= Known2.Zero;
1600         Known.One &= Known2.One;
1601         // If all bits have been ruled out, there's no need to check
1602         // more operands.
1603         if (!Known.Zero && !Known.One)
1604           break;
1605       }
1606     }
1607     break;
1608   }
1609   case Instruction::Call:
1610   case Instruction::Invoke:
1611     // If range metadata is attached to this call, set known bits from that,
1612     // and then intersect with known bits based on other properties of the
1613     // function.
1614     if (MDNode *MD =
1615             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1616       computeKnownBitsFromRangeMetadata(*MD, Known);
1617     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1618       computeKnownBits(RV, Known2, Depth + 1, Q);
1619       Known.Zero |= Known2.Zero;
1620       Known.One |= Known2.One;
1621     }
1622     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1623       switch (II->getIntrinsicID()) {
1624       default: break;
1625       case Intrinsic::abs:
1626         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1627 
1628         // If the source's MSB is zero then we know the rest of the bits.
1629         if (Known2.isNonNegative()) {
1630           Known.Zero |= Known2.Zero;
1631           Known.One |= Known2.One;
1632           break;
1633         }
1634 
1635         // Absolute value preserves trailing zero count.
1636         Known.Zero.setLowBits(Known2.Zero.countTrailingOnes());
1637 
1638         // If this call is undefined for INT_MIN, the result is positive. We
1639         // also know it can't be INT_MIN if there is a set bit that isn't the
1640         // sign bit.
1641         Known2.One.clearSignBit();
1642         if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue())
1643           Known.Zero.setSignBit();
1644         // FIXME: Handle known negative input?
1645         // FIXME: Calculate the negated Known bits and combine them?
1646         break;
1647       case Intrinsic::bitreverse:
1648         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1649         Known.Zero |= Known2.Zero.reverseBits();
1650         Known.One |= Known2.One.reverseBits();
1651         break;
1652       case Intrinsic::bswap:
1653         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1654         Known.Zero |= Known2.Zero.byteSwap();
1655         Known.One |= Known2.One.byteSwap();
1656         break;
1657       case Intrinsic::ctlz: {
1658         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1659         // If we have a known 1, its position is our upper bound.
1660         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1661         // If this call is undefined for 0, the result will be less than 2^n.
1662         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1663           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1664         unsigned LowBits = Log2_32(PossibleLZ)+1;
1665         Known.Zero.setBitsFrom(LowBits);
1666         break;
1667       }
1668       case Intrinsic::cttz: {
1669         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1670         // If we have a known 1, its position is our upper bound.
1671         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1672         // If this call is undefined for 0, the result will be less than 2^n.
1673         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1674           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1675         unsigned LowBits = Log2_32(PossibleTZ)+1;
1676         Known.Zero.setBitsFrom(LowBits);
1677         break;
1678       }
1679       case Intrinsic::ctpop: {
1680         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1681         // We can bound the space the count needs.  Also, bits known to be zero
1682         // can't contribute to the population.
1683         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1684         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1685         Known.Zero.setBitsFrom(LowBits);
1686         // TODO: we could bound KnownOne using the lower bound on the number
1687         // of bits which might be set provided by popcnt KnownOne2.
1688         break;
1689       }
1690       case Intrinsic::fshr:
1691       case Intrinsic::fshl: {
1692         const APInt *SA;
1693         if (!match(I->getOperand(2), m_APInt(SA)))
1694           break;
1695 
1696         // Normalize to funnel shift left.
1697         uint64_t ShiftAmt = SA->urem(BitWidth);
1698         if (II->getIntrinsicID() == Intrinsic::fshr)
1699           ShiftAmt = BitWidth - ShiftAmt;
1700 
1701         KnownBits Known3(BitWidth);
1702         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1703         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1704 
1705         Known.Zero =
1706             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1707         Known.One =
1708             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1709         break;
1710       }
1711       case Intrinsic::uadd_sat:
1712       case Intrinsic::usub_sat: {
1713         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1714         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1715         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1716 
1717         // Add: Leading ones of either operand are preserved.
1718         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1719         // as leading zeros in the result.
1720         unsigned LeadingKnown;
1721         if (IsAdd)
1722           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1723                                   Known2.countMinLeadingOnes());
1724         else
1725           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1726                                   Known2.countMinLeadingOnes());
1727 
1728         Known = KnownBits::computeForAddSub(
1729             IsAdd, /* NSW */ false, Known, Known2);
1730 
1731         // We select between the operation result and all-ones/zero
1732         // respectively, so we can preserve known ones/zeros.
1733         if (IsAdd) {
1734           Known.One.setHighBits(LeadingKnown);
1735           Known.Zero.clearAllBits();
1736         } else {
1737           Known.Zero.setHighBits(LeadingKnown);
1738           Known.One.clearAllBits();
1739         }
1740         break;
1741       }
1742       case Intrinsic::umin:
1743         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1744         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1745         Known = KnownBits::umin(Known, Known2);
1746         break;
1747       case Intrinsic::umax:
1748         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1749         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1750         Known = KnownBits::umax(Known, Known2);
1751         break;
1752       case Intrinsic::smin:
1753         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1754         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1755         Known = KnownBits::smin(Known, Known2);
1756         break;
1757       case Intrinsic::smax:
1758         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1759         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1760         Known = KnownBits::smax(Known, Known2);
1761         break;
1762       case Intrinsic::x86_sse42_crc32_64_64:
1763         Known.Zero.setBitsFrom(32);
1764         break;
1765       }
1766     }
1767     break;
1768   case Instruction::ShuffleVector: {
1769     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1770     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1771     if (!Shuf) {
1772       Known.resetAll();
1773       return;
1774     }
1775     // For undef elements, we don't know anything about the common state of
1776     // the shuffle result.
1777     APInt DemandedLHS, DemandedRHS;
1778     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1779       Known.resetAll();
1780       return;
1781     }
1782     Known.One.setAllBits();
1783     Known.Zero.setAllBits();
1784     if (!!DemandedLHS) {
1785       const Value *LHS = Shuf->getOperand(0);
1786       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1787       // If we don't know any bits, early out.
1788       if (Known.isUnknown())
1789         break;
1790     }
1791     if (!!DemandedRHS) {
1792       const Value *RHS = Shuf->getOperand(1);
1793       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1794       Known.One &= Known2.One;
1795       Known.Zero &= Known2.Zero;
1796     }
1797     break;
1798   }
1799   case Instruction::InsertElement: {
1800     const Value *Vec = I->getOperand(0);
1801     const Value *Elt = I->getOperand(1);
1802     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1803     // Early out if the index is non-constant or out-of-range.
1804     unsigned NumElts = DemandedElts.getBitWidth();
1805     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1806       Known.resetAll();
1807       return;
1808     }
1809     Known.One.setAllBits();
1810     Known.Zero.setAllBits();
1811     unsigned EltIdx = CIdx->getZExtValue();
1812     // Do we demand the inserted element?
1813     if (DemandedElts[EltIdx]) {
1814       computeKnownBits(Elt, Known, Depth + 1, Q);
1815       // If we don't know any bits, early out.
1816       if (Known.isUnknown())
1817         break;
1818     }
1819     // We don't need the base vector element that has been inserted.
1820     APInt DemandedVecElts = DemandedElts;
1821     DemandedVecElts.clearBit(EltIdx);
1822     if (!!DemandedVecElts) {
1823       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1824       Known.One &= Known2.One;
1825       Known.Zero &= Known2.Zero;
1826     }
1827     break;
1828   }
1829   case Instruction::ExtractElement: {
1830     // Look through extract element. If the index is non-constant or
1831     // out-of-range demand all elements, otherwise just the extracted element.
1832     const Value *Vec = I->getOperand(0);
1833     const Value *Idx = I->getOperand(1);
1834     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1835     if (isa<ScalableVectorType>(Vec->getType())) {
1836       // FIXME: there's probably *something* we can do with scalable vectors
1837       Known.resetAll();
1838       break;
1839     }
1840     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1841     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1842     if (CIdx && CIdx->getValue().ult(NumElts))
1843       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1844     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1845     break;
1846   }
1847   case Instruction::ExtractValue:
1848     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1849       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1850       if (EVI->getNumIndices() != 1) break;
1851       if (EVI->getIndices()[0] == 0) {
1852         switch (II->getIntrinsicID()) {
1853         default: break;
1854         case Intrinsic::uadd_with_overflow:
1855         case Intrinsic::sadd_with_overflow:
1856           computeKnownBitsAddSub(true, II->getArgOperand(0),
1857                                  II->getArgOperand(1), false, DemandedElts,
1858                                  Known, Known2, Depth, Q);
1859           break;
1860         case Intrinsic::usub_with_overflow:
1861         case Intrinsic::ssub_with_overflow:
1862           computeKnownBitsAddSub(false, II->getArgOperand(0),
1863                                  II->getArgOperand(1), false, DemandedElts,
1864                                  Known, Known2, Depth, Q);
1865           break;
1866         case Intrinsic::umul_with_overflow:
1867         case Intrinsic::smul_with_overflow:
1868           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1869                               DemandedElts, Known, Known2, Depth, Q);
1870           break;
1871         }
1872       }
1873     }
1874     break;
1875   case Instruction::Freeze:
1876     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.CxtI, Q.DT, Depth + 1))
1877       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1878     break;
1879   }
1880 }
1881 
1882 /// Determine which bits of V are known to be either zero or one and return
1883 /// them.
1884 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1885                            unsigned Depth, const Query &Q) {
1886   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1887   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1888   return Known;
1889 }
1890 
1891 /// Determine which bits of V are known to be either zero or one and return
1892 /// them.
1893 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1894   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1895   computeKnownBits(V, Known, Depth, Q);
1896   return Known;
1897 }
1898 
1899 /// Determine which bits of V are known to be either zero or one and return
1900 /// them in the Known bit set.
1901 ///
1902 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1903 /// we cannot optimize based on the assumption that it is zero without changing
1904 /// it to be an explicit zero.  If we don't change it to zero, other code could
1905 /// optimized based on the contradictory assumption that it is non-zero.
1906 /// Because instcombine aggressively folds operations with undef args anyway,
1907 /// this won't lose us code quality.
1908 ///
1909 /// This function is defined on values with integer type, values with pointer
1910 /// type, and vectors of integers.  In the case
1911 /// where V is a vector, known zero, and known one values are the
1912 /// same width as the vector element, and the bit is set only if it is true
1913 /// for all of the demanded elements in the vector specified by DemandedElts.
1914 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1915                       KnownBits &Known, unsigned Depth, const Query &Q) {
1916   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1917     // No demanded elts or V is a scalable vector, better to assume we don't
1918     // know anything.
1919     Known.resetAll();
1920     return;
1921   }
1922 
1923   assert(V && "No Value?");
1924   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1925 
1926 #ifndef NDEBUG
1927   Type *Ty = V->getType();
1928   unsigned BitWidth = Known.getBitWidth();
1929 
1930   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1931          "Not integer or pointer type!");
1932 
1933   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1934     assert(
1935         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1936         "DemandedElt width should equal the fixed vector number of elements");
1937   } else {
1938     assert(DemandedElts == APInt(1, 1) &&
1939            "DemandedElt width should be 1 for scalars");
1940   }
1941 
1942   Type *ScalarTy = Ty->getScalarType();
1943   if (ScalarTy->isPointerTy()) {
1944     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1945            "V and Known should have same BitWidth");
1946   } else {
1947     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1948            "V and Known should have same BitWidth");
1949   }
1950 #endif
1951 
1952   const APInt *C;
1953   if (match(V, m_APInt(C))) {
1954     // We know all of the bits for a scalar constant or a splat vector constant!
1955     Known.One = *C;
1956     Known.Zero = ~Known.One;
1957     return;
1958   }
1959   // Null and aggregate-zero are all-zeros.
1960   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1961     Known.setAllZero();
1962     return;
1963   }
1964   // Handle a constant vector by taking the intersection of the known bits of
1965   // each element.
1966   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1967     // We know that CDV must be a vector of integers. Take the intersection of
1968     // each element.
1969     Known.Zero.setAllBits(); Known.One.setAllBits();
1970     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1971       if (!DemandedElts[i])
1972         continue;
1973       APInt Elt = CDV->getElementAsAPInt(i);
1974       Known.Zero &= ~Elt;
1975       Known.One &= Elt;
1976     }
1977     return;
1978   }
1979 
1980   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1981     // We know that CV must be a vector of integers. Take the intersection of
1982     // each element.
1983     Known.Zero.setAllBits(); Known.One.setAllBits();
1984     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1985       if (!DemandedElts[i])
1986         continue;
1987       Constant *Element = CV->getAggregateElement(i);
1988       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1989       if (!ElementCI) {
1990         Known.resetAll();
1991         return;
1992       }
1993       const APInt &Elt = ElementCI->getValue();
1994       Known.Zero &= ~Elt;
1995       Known.One &= Elt;
1996     }
1997     return;
1998   }
1999 
2000   // Start out not knowing anything.
2001   Known.resetAll();
2002 
2003   // We can't imply anything about undefs.
2004   if (isa<UndefValue>(V))
2005     return;
2006 
2007   // There's no point in looking through other users of ConstantData for
2008   // assumptions.  Confirm that we've handled them all.
2009   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2010 
2011   // All recursive calls that increase depth must come after this.
2012   if (Depth == MaxAnalysisRecursionDepth)
2013     return;
2014 
2015   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2016   // the bits of its aliasee.
2017   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2018     if (!GA->isInterposable())
2019       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2020     return;
2021   }
2022 
2023   if (const Operator *I = dyn_cast<Operator>(V))
2024     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2025 
2026   // Aligned pointers have trailing zeros - refine Known.Zero set
2027   if (isa<PointerType>(V->getType())) {
2028     Align Alignment = V->getPointerAlignment(Q.DL);
2029     Known.Zero.setLowBits(countTrailingZeros(Alignment.value()));
2030   }
2031 
2032   // computeKnownBitsFromAssume strictly refines Known.
2033   // Therefore, we run them after computeKnownBitsFromOperator.
2034 
2035   // Check whether a nearby assume intrinsic can determine some known bits.
2036   computeKnownBitsFromAssume(V, Known, Depth, Q);
2037 
2038   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2039 }
2040 
2041 /// Return true if the given value is known to have exactly one
2042 /// bit set when defined. For vectors return true if every element is known to
2043 /// be a power of two when defined. Supports values with integer or pointer
2044 /// types and vectors of integers.
2045 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2046                             const Query &Q) {
2047   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2048 
2049   // Attempt to match against constants.
2050   if (OrZero && match(V, m_Power2OrZero()))
2051       return true;
2052   if (match(V, m_Power2()))
2053       return true;
2054 
2055   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2056   // it is shifted off the end then the result is undefined.
2057   if (match(V, m_Shl(m_One(), m_Value())))
2058     return true;
2059 
2060   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2061   // the bottom.  If it is shifted off the bottom then the result is undefined.
2062   if (match(V, m_LShr(m_SignMask(), m_Value())))
2063     return true;
2064 
2065   // The remaining tests are all recursive, so bail out if we hit the limit.
2066   if (Depth++ == MaxAnalysisRecursionDepth)
2067     return false;
2068 
2069   Value *X = nullptr, *Y = nullptr;
2070   // A shift left or a logical shift right of a power of two is a power of two
2071   // or zero.
2072   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2073                  match(V, m_LShr(m_Value(X), m_Value()))))
2074     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2075 
2076   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2077     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2078 
2079   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2080     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2081            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2082 
2083   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2084     // A power of two and'd with anything is a power of two or zero.
2085     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2086         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2087       return true;
2088     // X & (-X) is always a power of two or zero.
2089     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2090       return true;
2091     return false;
2092   }
2093 
2094   // Adding a power-of-two or zero to the same power-of-two or zero yields
2095   // either the original power-of-two, a larger power-of-two or zero.
2096   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2097     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2098     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2099         Q.IIQ.hasNoSignedWrap(VOBO)) {
2100       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2101           match(X, m_And(m_Value(), m_Specific(Y))))
2102         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2103           return true;
2104       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2105           match(Y, m_And(m_Value(), m_Specific(X))))
2106         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2107           return true;
2108 
2109       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2110       KnownBits LHSBits(BitWidth);
2111       computeKnownBits(X, LHSBits, Depth, Q);
2112 
2113       KnownBits RHSBits(BitWidth);
2114       computeKnownBits(Y, RHSBits, Depth, Q);
2115       // If i8 V is a power of two or zero:
2116       //  ZeroBits: 1 1 1 0 1 1 1 1
2117       // ~ZeroBits: 0 0 0 1 0 0 0 0
2118       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2119         // If OrZero isn't set, we cannot give back a zero result.
2120         // Make sure either the LHS or RHS has a bit set.
2121         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2122           return true;
2123     }
2124   }
2125 
2126   // An exact divide or right shift can only shift off zero bits, so the result
2127   // is a power of two only if the first operand is a power of two and not
2128   // copying a sign bit (sdiv int_min, 2).
2129   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2130       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2131     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2132                                   Depth, Q);
2133   }
2134 
2135   return false;
2136 }
2137 
2138 /// Test whether a GEP's result is known to be non-null.
2139 ///
2140 /// Uses properties inherent in a GEP to try to determine whether it is known
2141 /// to be non-null.
2142 ///
2143 /// Currently this routine does not support vector GEPs.
2144 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2145                               const Query &Q) {
2146   const Function *F = nullptr;
2147   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2148     F = I->getFunction();
2149 
2150   if (!GEP->isInBounds() ||
2151       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2152     return false;
2153 
2154   // FIXME: Support vector-GEPs.
2155   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2156 
2157   // If the base pointer is non-null, we cannot walk to a null address with an
2158   // inbounds GEP in address space zero.
2159   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2160     return true;
2161 
2162   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2163   // If so, then the GEP cannot produce a null pointer, as doing so would
2164   // inherently violate the inbounds contract within address space zero.
2165   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2166        GTI != GTE; ++GTI) {
2167     // Struct types are easy -- they must always be indexed by a constant.
2168     if (StructType *STy = GTI.getStructTypeOrNull()) {
2169       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2170       unsigned ElementIdx = OpC->getZExtValue();
2171       const StructLayout *SL = Q.DL.getStructLayout(STy);
2172       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2173       if (ElementOffset > 0)
2174         return true;
2175       continue;
2176     }
2177 
2178     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2179     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2180       continue;
2181 
2182     // Fast path the constant operand case both for efficiency and so we don't
2183     // increment Depth when just zipping down an all-constant GEP.
2184     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2185       if (!OpC->isZero())
2186         return true;
2187       continue;
2188     }
2189 
2190     // We post-increment Depth here because while isKnownNonZero increments it
2191     // as well, when we pop back up that increment won't persist. We don't want
2192     // to recurse 10k times just because we have 10k GEP operands. We don't
2193     // bail completely out because we want to handle constant GEPs regardless
2194     // of depth.
2195     if (Depth++ >= MaxAnalysisRecursionDepth)
2196       continue;
2197 
2198     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2199       return true;
2200   }
2201 
2202   return false;
2203 }
2204 
2205 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2206                                                   const Instruction *CtxI,
2207                                                   const DominatorTree *DT) {
2208   if (isa<Constant>(V))
2209     return false;
2210 
2211   if (!CtxI || !DT)
2212     return false;
2213 
2214   unsigned NumUsesExplored = 0;
2215   for (auto *U : V->users()) {
2216     // Avoid massive lists
2217     if (NumUsesExplored >= DomConditionsMaxUses)
2218       break;
2219     NumUsesExplored++;
2220 
2221     // If the value is used as an argument to a call or invoke, then argument
2222     // attributes may provide an answer about null-ness.
2223     if (const auto *CB = dyn_cast<CallBase>(U))
2224       if (auto *CalledFunc = CB->getCalledFunction())
2225         for (const Argument &Arg : CalledFunc->args())
2226           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2227               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2228             return true;
2229 
2230     // If the value is used as a load/store, then the pointer must be non null.
2231     if (V == getLoadStorePointerOperand(U)) {
2232       const Instruction *I = cast<Instruction>(U);
2233       if (!NullPointerIsDefined(I->getFunction(),
2234                                 V->getType()->getPointerAddressSpace()) &&
2235           DT->dominates(I, CtxI))
2236         return true;
2237     }
2238 
2239     // Consider only compare instructions uniquely controlling a branch
2240     CmpInst::Predicate Pred;
2241     if (!match(const_cast<User *>(U),
2242                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2243         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2244       continue;
2245 
2246     SmallVector<const User *, 4> WorkList;
2247     SmallPtrSet<const User *, 4> Visited;
2248     for (auto *CmpU : U->users()) {
2249       assert(WorkList.empty() && "Should be!");
2250       if (Visited.insert(CmpU).second)
2251         WorkList.push_back(CmpU);
2252 
2253       while (!WorkList.empty()) {
2254         auto *Curr = WorkList.pop_back_val();
2255 
2256         // If a user is an AND, add all its users to the work list. We only
2257         // propagate "pred != null" condition through AND because it is only
2258         // correct to assume that all conditions of AND are met in true branch.
2259         // TODO: Support similar logic of OR and EQ predicate?
2260         if (Pred == ICmpInst::ICMP_NE)
2261           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2262             if (BO->getOpcode() == Instruction::And) {
2263               for (auto *BOU : BO->users())
2264                 if (Visited.insert(BOU).second)
2265                   WorkList.push_back(BOU);
2266               continue;
2267             }
2268 
2269         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2270           assert(BI->isConditional() && "uses a comparison!");
2271 
2272           BasicBlock *NonNullSuccessor =
2273               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2274           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2275           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2276             return true;
2277         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2278                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2279           return true;
2280         }
2281       }
2282     }
2283   }
2284 
2285   return false;
2286 }
2287 
2288 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2289 /// ensure that the value it's attached to is never Value?  'RangeType' is
2290 /// is the type of the value described by the range.
2291 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2292   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2293   assert(NumRanges >= 1);
2294   for (unsigned i = 0; i < NumRanges; ++i) {
2295     ConstantInt *Lower =
2296         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2297     ConstantInt *Upper =
2298         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2299     ConstantRange Range(Lower->getValue(), Upper->getValue());
2300     if (Range.contains(Value))
2301       return false;
2302   }
2303   return true;
2304 }
2305 
2306 /// Return true if the given value is known to be non-zero when defined. For
2307 /// vectors, return true if every demanded element is known to be non-zero when
2308 /// defined. For pointers, if the context instruction and dominator tree are
2309 /// specified, perform context-sensitive analysis and return true if the
2310 /// pointer couldn't possibly be null at the specified instruction.
2311 /// Supports values with integer or pointer type and vectors of integers.
2312 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2313                     const Query &Q) {
2314   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2315   // vector
2316   if (isa<ScalableVectorType>(V->getType()))
2317     return false;
2318 
2319   if (auto *C = dyn_cast<Constant>(V)) {
2320     if (C->isNullValue())
2321       return false;
2322     if (isa<ConstantInt>(C))
2323       // Must be non-zero due to null test above.
2324       return true;
2325 
2326     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2327       // See the comment for IntToPtr/PtrToInt instructions below.
2328       if (CE->getOpcode() == Instruction::IntToPtr ||
2329           CE->getOpcode() == Instruction::PtrToInt)
2330         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2331             Q.DL.getTypeSizeInBits(CE->getType()))
2332           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2333     }
2334 
2335     // For constant vectors, check that all elements are undefined or known
2336     // non-zero to determine that the whole vector is known non-zero.
2337     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2338       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2339         if (!DemandedElts[i])
2340           continue;
2341         Constant *Elt = C->getAggregateElement(i);
2342         if (!Elt || Elt->isNullValue())
2343           return false;
2344         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2345           return false;
2346       }
2347       return true;
2348     }
2349 
2350     // A global variable in address space 0 is non null unless extern weak
2351     // or an absolute symbol reference. Other address spaces may have null as a
2352     // valid address for a global, so we can't assume anything.
2353     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2354       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2355           GV->getType()->getAddressSpace() == 0)
2356         return true;
2357     } else
2358       return false;
2359   }
2360 
2361   if (auto *I = dyn_cast<Instruction>(V)) {
2362     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2363       // If the possible ranges don't contain zero, then the value is
2364       // definitely non-zero.
2365       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2366         const APInt ZeroValue(Ty->getBitWidth(), 0);
2367         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2368           return true;
2369       }
2370     }
2371   }
2372 
2373   if (isKnownNonZeroFromAssume(V, Q))
2374     return true;
2375 
2376   // Some of the tests below are recursive, so bail out if we hit the limit.
2377   if (Depth++ >= MaxAnalysisRecursionDepth)
2378     return false;
2379 
2380   // Check for pointer simplifications.
2381 
2382   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2383     // Alloca never returns null, malloc might.
2384     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2385       return true;
2386 
2387     // A byval, inalloca may not be null in a non-default addres space. A
2388     // nonnull argument is assumed never 0.
2389     if (const Argument *A = dyn_cast<Argument>(V)) {
2390       if (((A->hasPassPointeeByValueCopyAttr() &&
2391             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2392            A->hasNonNullAttr()))
2393         return true;
2394     }
2395 
2396     // A Load tagged with nonnull metadata is never null.
2397     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2398       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2399         return true;
2400 
2401     if (const auto *Call = dyn_cast<CallBase>(V)) {
2402       if (Call->isReturnNonNull())
2403         return true;
2404       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2405         return isKnownNonZero(RP, Depth, Q);
2406     }
2407   }
2408 
2409   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2410     return true;
2411 
2412   // Check for recursive pointer simplifications.
2413   if (V->getType()->isPointerTy()) {
2414     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2415     // do not alter the value, or at least not the nullness property of the
2416     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2417     //
2418     // Note that we have to take special care to avoid looking through
2419     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2420     // as casts that can alter the value, e.g., AddrSpaceCasts.
2421     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2422       return isGEPKnownNonNull(GEP, Depth, Q);
2423 
2424     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2425       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2426 
2427     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2428       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2429           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2430         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2431   }
2432 
2433   // Similar to int2ptr above, we can look through ptr2int here if the cast
2434   // is a no-op or an extend and not a truncate.
2435   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2436     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2437         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2438       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2439 
2440   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2441 
2442   // X | Y != 0 if X != 0 or Y != 0.
2443   Value *X = nullptr, *Y = nullptr;
2444   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2445     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2446            isKnownNonZero(Y, DemandedElts, Depth, Q);
2447 
2448   // ext X != 0 if X != 0.
2449   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2450     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2451 
2452   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2453   // if the lowest bit is shifted off the end.
2454   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2455     // shl nuw can't remove any non-zero bits.
2456     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2457     if (Q.IIQ.hasNoUnsignedWrap(BO))
2458       return isKnownNonZero(X, Depth, Q);
2459 
2460     KnownBits Known(BitWidth);
2461     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2462     if (Known.One[0])
2463       return true;
2464   }
2465   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2466   // defined if the sign bit is shifted off the end.
2467   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2468     // shr exact can only shift out zero bits.
2469     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2470     if (BO->isExact())
2471       return isKnownNonZero(X, Depth, Q);
2472 
2473     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2474     if (Known.isNegative())
2475       return true;
2476 
2477     // If the shifter operand is a constant, and all of the bits shifted
2478     // out are known to be zero, and X is known non-zero then at least one
2479     // non-zero bit must remain.
2480     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2481       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2482       // Is there a known one in the portion not shifted out?
2483       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2484         return true;
2485       // Are all the bits to be shifted out known zero?
2486       if (Known.countMinTrailingZeros() >= ShiftVal)
2487         return isKnownNonZero(X, DemandedElts, Depth, Q);
2488     }
2489   }
2490   // div exact can only produce a zero if the dividend is zero.
2491   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2492     return isKnownNonZero(X, DemandedElts, Depth, Q);
2493   }
2494   // X + Y.
2495   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2496     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2497     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2498 
2499     // If X and Y are both non-negative (as signed values) then their sum is not
2500     // zero unless both X and Y are zero.
2501     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2502       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2503           isKnownNonZero(Y, DemandedElts, Depth, Q))
2504         return true;
2505 
2506     // If X and Y are both negative (as signed values) then their sum is not
2507     // zero unless both X and Y equal INT_MIN.
2508     if (XKnown.isNegative() && YKnown.isNegative()) {
2509       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2510       // The sign bit of X is set.  If some other bit is set then X is not equal
2511       // to INT_MIN.
2512       if (XKnown.One.intersects(Mask))
2513         return true;
2514       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2515       // to INT_MIN.
2516       if (YKnown.One.intersects(Mask))
2517         return true;
2518     }
2519 
2520     // The sum of a non-negative number and a power of two is not zero.
2521     if (XKnown.isNonNegative() &&
2522         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2523       return true;
2524     if (YKnown.isNonNegative() &&
2525         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2526       return true;
2527   }
2528   // X * Y.
2529   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2530     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2531     // If X and Y are non-zero then so is X * Y as long as the multiplication
2532     // does not overflow.
2533     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2534         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2535         isKnownNonZero(Y, DemandedElts, Depth, Q))
2536       return true;
2537   }
2538   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2539   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2540     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2541         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2542       return true;
2543   }
2544   // PHI
2545   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2546     // Try and detect a recurrence that monotonically increases from a
2547     // starting value, as these are common as induction variables.
2548     if (PN->getNumIncomingValues() == 2) {
2549       Value *Start = PN->getIncomingValue(0);
2550       Value *Induction = PN->getIncomingValue(1);
2551       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2552         std::swap(Start, Induction);
2553       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2554         if (!C->isZero() && !C->isNegative()) {
2555           ConstantInt *X;
2556           if (Q.IIQ.UseInstrInfo &&
2557               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2558                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2559               !X->isNegative())
2560             return true;
2561         }
2562       }
2563     }
2564     // Check if all incoming values are non-zero using recursion.
2565     Query RecQ = Q;
2566     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2567     return llvm::all_of(PN->operands(), [&](const Use &U) {
2568       if (U.get() == PN)
2569         return true;
2570       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2571       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2572     });
2573   }
2574   // ExtractElement
2575   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2576     const Value *Vec = EEI->getVectorOperand();
2577     const Value *Idx = EEI->getIndexOperand();
2578     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2579     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2580       unsigned NumElts = VecTy->getNumElements();
2581       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2582       if (CIdx && CIdx->getValue().ult(NumElts))
2583         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2584       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2585     }
2586   }
2587   // Freeze
2588   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2589     auto *Op = FI->getOperand(0);
2590     if (isKnownNonZero(Op, Depth, Q) &&
2591         isGuaranteedNotToBePoison(Op, Q.CxtI, Q.DT, Depth))
2592       return true;
2593   }
2594 
2595   KnownBits Known(BitWidth);
2596   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2597   return Known.One != 0;
2598 }
2599 
2600 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2601   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2602   // vector
2603   if (isa<ScalableVectorType>(V->getType()))
2604     return false;
2605 
2606   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2607   APInt DemandedElts =
2608       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2609   return isKnownNonZero(V, DemandedElts, Depth, Q);
2610 }
2611 
2612 /// Return true if V2 == V1 + X, where X is known non-zero.
2613 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2614   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2615   if (!BO || BO->getOpcode() != Instruction::Add)
2616     return false;
2617   Value *Op = nullptr;
2618   if (V2 == BO->getOperand(0))
2619     Op = BO->getOperand(1);
2620   else if (V2 == BO->getOperand(1))
2621     Op = BO->getOperand(0);
2622   else
2623     return false;
2624   return isKnownNonZero(Op, 0, Q);
2625 }
2626 
2627 /// Return true if it is known that V1 != V2.
2628 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2629   if (V1 == V2)
2630     return false;
2631   if (V1->getType() != V2->getType())
2632     // We can't look through casts yet.
2633     return false;
2634   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2635     return true;
2636 
2637   if (V1->getType()->isIntOrIntVectorTy()) {
2638     // Are any known bits in V1 contradictory to known bits in V2? If V1
2639     // has a known zero where V2 has a known one, they must not be equal.
2640     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2641     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2642 
2643     if (Known1.Zero.intersects(Known2.One) ||
2644         Known2.Zero.intersects(Known1.One))
2645       return true;
2646   }
2647   return false;
2648 }
2649 
2650 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2651 /// simplify operations downstream. Mask is known to be zero for bits that V
2652 /// cannot have.
2653 ///
2654 /// This function is defined on values with integer type, values with pointer
2655 /// type, and vectors of integers.  In the case
2656 /// where V is a vector, the mask, known zero, and known one values are the
2657 /// same width as the vector element, and the bit is set only if it is true
2658 /// for all of the elements in the vector.
2659 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2660                        const Query &Q) {
2661   KnownBits Known(Mask.getBitWidth());
2662   computeKnownBits(V, Known, Depth, Q);
2663   return Mask.isSubsetOf(Known.Zero);
2664 }
2665 
2666 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2667 // Returns the input and lower/upper bounds.
2668 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2669                                 const APInt *&CLow, const APInt *&CHigh) {
2670   assert(isa<Operator>(Select) &&
2671          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2672          "Input should be a Select!");
2673 
2674   const Value *LHS = nullptr, *RHS = nullptr;
2675   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2676   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2677     return false;
2678 
2679   if (!match(RHS, m_APInt(CLow)))
2680     return false;
2681 
2682   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2683   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2684   if (getInverseMinMaxFlavor(SPF) != SPF2)
2685     return false;
2686 
2687   if (!match(RHS2, m_APInt(CHigh)))
2688     return false;
2689 
2690   if (SPF == SPF_SMIN)
2691     std::swap(CLow, CHigh);
2692 
2693   In = LHS2;
2694   return CLow->sle(*CHigh);
2695 }
2696 
2697 /// For vector constants, loop over the elements and find the constant with the
2698 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2699 /// or if any element was not analyzed; otherwise, return the count for the
2700 /// element with the minimum number of sign bits.
2701 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2702                                                  const APInt &DemandedElts,
2703                                                  unsigned TyBits) {
2704   const auto *CV = dyn_cast<Constant>(V);
2705   if (!CV || !isa<FixedVectorType>(CV->getType()))
2706     return 0;
2707 
2708   unsigned MinSignBits = TyBits;
2709   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2710   for (unsigned i = 0; i != NumElts; ++i) {
2711     if (!DemandedElts[i])
2712       continue;
2713     // If we find a non-ConstantInt, bail out.
2714     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2715     if (!Elt)
2716       return 0;
2717 
2718     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2719   }
2720 
2721   return MinSignBits;
2722 }
2723 
2724 static unsigned ComputeNumSignBitsImpl(const Value *V,
2725                                        const APInt &DemandedElts,
2726                                        unsigned Depth, const Query &Q);
2727 
2728 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2729                                    unsigned Depth, const Query &Q) {
2730   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2731   assert(Result > 0 && "At least one sign bit needs to be present!");
2732   return Result;
2733 }
2734 
2735 /// Return the number of times the sign bit of the register is replicated into
2736 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2737 /// (itself), but other cases can give us information. For example, immediately
2738 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2739 /// other, so we return 3. For vectors, return the number of sign bits for the
2740 /// vector element with the minimum number of known sign bits of the demanded
2741 /// elements in the vector specified by DemandedElts.
2742 static unsigned ComputeNumSignBitsImpl(const Value *V,
2743                                        const APInt &DemandedElts,
2744                                        unsigned Depth, const Query &Q) {
2745   Type *Ty = V->getType();
2746 
2747   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2748   // vector
2749   if (isa<ScalableVectorType>(Ty))
2750     return 1;
2751 
2752 #ifndef NDEBUG
2753   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2754 
2755   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2756     assert(
2757         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2758         "DemandedElt width should equal the fixed vector number of elements");
2759   } else {
2760     assert(DemandedElts == APInt(1, 1) &&
2761            "DemandedElt width should be 1 for scalars");
2762   }
2763 #endif
2764 
2765   // We return the minimum number of sign bits that are guaranteed to be present
2766   // in V, so for undef we have to conservatively return 1.  We don't have the
2767   // same behavior for poison though -- that's a FIXME today.
2768 
2769   Type *ScalarTy = Ty->getScalarType();
2770   unsigned TyBits = ScalarTy->isPointerTy() ?
2771     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2772     Q.DL.getTypeSizeInBits(ScalarTy);
2773 
2774   unsigned Tmp, Tmp2;
2775   unsigned FirstAnswer = 1;
2776 
2777   // Note that ConstantInt is handled by the general computeKnownBits case
2778   // below.
2779 
2780   if (Depth == MaxAnalysisRecursionDepth)
2781     return 1;
2782 
2783   if (auto *U = dyn_cast<Operator>(V)) {
2784     switch (Operator::getOpcode(V)) {
2785     default: break;
2786     case Instruction::SExt:
2787       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2788       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2789 
2790     case Instruction::SDiv: {
2791       const APInt *Denominator;
2792       // sdiv X, C -> adds log(C) sign bits.
2793       if (match(U->getOperand(1), m_APInt(Denominator))) {
2794 
2795         // Ignore non-positive denominator.
2796         if (!Denominator->isStrictlyPositive())
2797           break;
2798 
2799         // Calculate the incoming numerator bits.
2800         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2801 
2802         // Add floor(log(C)) bits to the numerator bits.
2803         return std::min(TyBits, NumBits + Denominator->logBase2());
2804       }
2805       break;
2806     }
2807 
2808     case Instruction::SRem: {
2809       const APInt *Denominator;
2810       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2811       // positive constant.  This let us put a lower bound on the number of sign
2812       // bits.
2813       if (match(U->getOperand(1), m_APInt(Denominator))) {
2814 
2815         // Ignore non-positive denominator.
2816         if (!Denominator->isStrictlyPositive())
2817           break;
2818 
2819         // Calculate the incoming numerator bits. SRem by a positive constant
2820         // can't lower the number of sign bits.
2821         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2822 
2823         // Calculate the leading sign bit constraints by examining the
2824         // denominator.  Given that the denominator is positive, there are two
2825         // cases:
2826         //
2827         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2828         //     (1 << ceilLogBase2(C)).
2829         //
2830         //  2. the numerator is negative. Then the result range is (-C,0] and
2831         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2832         //
2833         // Thus a lower bound on the number of sign bits is `TyBits -
2834         // ceilLogBase2(C)`.
2835 
2836         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2837         return std::max(NumrBits, ResBits);
2838       }
2839       break;
2840     }
2841 
2842     case Instruction::AShr: {
2843       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2844       // ashr X, C   -> adds C sign bits.  Vectors too.
2845       const APInt *ShAmt;
2846       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2847         if (ShAmt->uge(TyBits))
2848           break; // Bad shift.
2849         unsigned ShAmtLimited = ShAmt->getZExtValue();
2850         Tmp += ShAmtLimited;
2851         if (Tmp > TyBits) Tmp = TyBits;
2852       }
2853       return Tmp;
2854     }
2855     case Instruction::Shl: {
2856       const APInt *ShAmt;
2857       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2858         // shl destroys sign bits.
2859         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2860         if (ShAmt->uge(TyBits) ||   // Bad shift.
2861             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2862         Tmp2 = ShAmt->getZExtValue();
2863         return Tmp - Tmp2;
2864       }
2865       break;
2866     }
2867     case Instruction::And:
2868     case Instruction::Or:
2869     case Instruction::Xor: // NOT is handled here.
2870       // Logical binary ops preserve the number of sign bits at the worst.
2871       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2872       if (Tmp != 1) {
2873         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2874         FirstAnswer = std::min(Tmp, Tmp2);
2875         // We computed what we know about the sign bits as our first
2876         // answer. Now proceed to the generic code that uses
2877         // computeKnownBits, and pick whichever answer is better.
2878       }
2879       break;
2880 
2881     case Instruction::Select: {
2882       // If we have a clamp pattern, we know that the number of sign bits will
2883       // be the minimum of the clamp min/max range.
2884       const Value *X;
2885       const APInt *CLow, *CHigh;
2886       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2887         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2888 
2889       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2890       if (Tmp == 1) break;
2891       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2892       return std::min(Tmp, Tmp2);
2893     }
2894 
2895     case Instruction::Add:
2896       // Add can have at most one carry bit.  Thus we know that the output
2897       // is, at worst, one more bit than the inputs.
2898       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2899       if (Tmp == 1) break;
2900 
2901       // Special case decrementing a value (ADD X, -1):
2902       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2903         if (CRHS->isAllOnesValue()) {
2904           KnownBits Known(TyBits);
2905           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2906 
2907           // If the input is known to be 0 or 1, the output is 0/-1, which is
2908           // all sign bits set.
2909           if ((Known.Zero | 1).isAllOnesValue())
2910             return TyBits;
2911 
2912           // If we are subtracting one from a positive number, there is no carry
2913           // out of the result.
2914           if (Known.isNonNegative())
2915             return Tmp;
2916         }
2917 
2918       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2919       if (Tmp2 == 1) break;
2920       return std::min(Tmp, Tmp2) - 1;
2921 
2922     case Instruction::Sub:
2923       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2924       if (Tmp2 == 1) break;
2925 
2926       // Handle NEG.
2927       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2928         if (CLHS->isNullValue()) {
2929           KnownBits Known(TyBits);
2930           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2931           // If the input is known to be 0 or 1, the output is 0/-1, which is
2932           // all sign bits set.
2933           if ((Known.Zero | 1).isAllOnesValue())
2934             return TyBits;
2935 
2936           // If the input is known to be positive (the sign bit is known clear),
2937           // the output of the NEG has the same number of sign bits as the
2938           // input.
2939           if (Known.isNonNegative())
2940             return Tmp2;
2941 
2942           // Otherwise, we treat this like a SUB.
2943         }
2944 
2945       // Sub can have at most one carry bit.  Thus we know that the output
2946       // is, at worst, one more bit than the inputs.
2947       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2948       if (Tmp == 1) break;
2949       return std::min(Tmp, Tmp2) - 1;
2950 
2951     case Instruction::Mul: {
2952       // The output of the Mul can be at most twice the valid bits in the
2953       // inputs.
2954       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2955       if (SignBitsOp0 == 1) break;
2956       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2957       if (SignBitsOp1 == 1) break;
2958       unsigned OutValidBits =
2959           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2960       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2961     }
2962 
2963     case Instruction::PHI: {
2964       const PHINode *PN = cast<PHINode>(U);
2965       unsigned NumIncomingValues = PN->getNumIncomingValues();
2966       // Don't analyze large in-degree PHIs.
2967       if (NumIncomingValues > 4) break;
2968       // Unreachable blocks may have zero-operand PHI nodes.
2969       if (NumIncomingValues == 0) break;
2970 
2971       // Take the minimum of all incoming values.  This can't infinitely loop
2972       // because of our depth threshold.
2973       Query RecQ = Q;
2974       Tmp = TyBits;
2975       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
2976         if (Tmp == 1) return Tmp;
2977         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
2978         Tmp = std::min(
2979             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
2980       }
2981       return Tmp;
2982     }
2983 
2984     case Instruction::Trunc:
2985       // FIXME: it's tricky to do anything useful for this, but it is an
2986       // important case for targets like X86.
2987       break;
2988 
2989     case Instruction::ExtractElement:
2990       // Look through extract element. At the moment we keep this simple and
2991       // skip tracking the specific element. But at least we might find
2992       // information valid for all elements of the vector (for example if vector
2993       // is sign extended, shifted, etc).
2994       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2995 
2996     case Instruction::ShuffleVector: {
2997       // Collect the minimum number of sign bits that are shared by every vector
2998       // element referenced by the shuffle.
2999       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3000       if (!Shuf) {
3001         // FIXME: Add support for shufflevector constant expressions.
3002         return 1;
3003       }
3004       APInt DemandedLHS, DemandedRHS;
3005       // For undef elements, we don't know anything about the common state of
3006       // the shuffle result.
3007       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3008         return 1;
3009       Tmp = std::numeric_limits<unsigned>::max();
3010       if (!!DemandedLHS) {
3011         const Value *LHS = Shuf->getOperand(0);
3012         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3013       }
3014       // If we don't know anything, early out and try computeKnownBits
3015       // fall-back.
3016       if (Tmp == 1)
3017         break;
3018       if (!!DemandedRHS) {
3019         const Value *RHS = Shuf->getOperand(1);
3020         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3021         Tmp = std::min(Tmp, Tmp2);
3022       }
3023       // If we don't know anything, early out and try computeKnownBits
3024       // fall-back.
3025       if (Tmp == 1)
3026         break;
3027       assert(Tmp <= Ty->getScalarSizeInBits() &&
3028              "Failed to determine minimum sign bits");
3029       return Tmp;
3030     }
3031     case Instruction::Call: {
3032       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3033         switch (II->getIntrinsicID()) {
3034         default: break;
3035         case Intrinsic::abs:
3036           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3037           if (Tmp == 1) break;
3038 
3039           // Absolute value reduces number of sign bits by at most 1.
3040           return Tmp - 1;
3041         }
3042       }
3043     }
3044     }
3045   }
3046 
3047   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3048   // use this information.
3049 
3050   // If we can examine all elements of a vector constant successfully, we're
3051   // done (we can't do any better than that). If not, keep trying.
3052   if (unsigned VecSignBits =
3053           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3054     return VecSignBits;
3055 
3056   KnownBits Known(TyBits);
3057   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3058 
3059   // If we know that the sign bit is either zero or one, determine the number of
3060   // identical bits in the top of the input value.
3061   return std::max(FirstAnswer, Known.countMinSignBits());
3062 }
3063 
3064 /// This function computes the integer multiple of Base that equals V.
3065 /// If successful, it returns true and returns the multiple in
3066 /// Multiple. If unsuccessful, it returns false. It looks
3067 /// through SExt instructions only if LookThroughSExt is true.
3068 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3069                            bool LookThroughSExt, unsigned Depth) {
3070   assert(V && "No Value?");
3071   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3072   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3073 
3074   Type *T = V->getType();
3075 
3076   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3077 
3078   if (Base == 0)
3079     return false;
3080 
3081   if (Base == 1) {
3082     Multiple = V;
3083     return true;
3084   }
3085 
3086   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3087   Constant *BaseVal = ConstantInt::get(T, Base);
3088   if (CO && CO == BaseVal) {
3089     // Multiple is 1.
3090     Multiple = ConstantInt::get(T, 1);
3091     return true;
3092   }
3093 
3094   if (CI && CI->getZExtValue() % Base == 0) {
3095     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3096     return true;
3097   }
3098 
3099   if (Depth == MaxAnalysisRecursionDepth) return false;
3100 
3101   Operator *I = dyn_cast<Operator>(V);
3102   if (!I) return false;
3103 
3104   switch (I->getOpcode()) {
3105   default: break;
3106   case Instruction::SExt:
3107     if (!LookThroughSExt) return false;
3108     // otherwise fall through to ZExt
3109     LLVM_FALLTHROUGH;
3110   case Instruction::ZExt:
3111     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3112                            LookThroughSExt, Depth+1);
3113   case Instruction::Shl:
3114   case Instruction::Mul: {
3115     Value *Op0 = I->getOperand(0);
3116     Value *Op1 = I->getOperand(1);
3117 
3118     if (I->getOpcode() == Instruction::Shl) {
3119       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3120       if (!Op1CI) return false;
3121       // Turn Op0 << Op1 into Op0 * 2^Op1
3122       APInt Op1Int = Op1CI->getValue();
3123       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3124       APInt API(Op1Int.getBitWidth(), 0);
3125       API.setBit(BitToSet);
3126       Op1 = ConstantInt::get(V->getContext(), API);
3127     }
3128 
3129     Value *Mul0 = nullptr;
3130     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3131       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3132         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3133           if (Op1C->getType()->getPrimitiveSizeInBits() <
3134               MulC->getType()->getPrimitiveSizeInBits())
3135             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3136           if (Op1C->getType()->getPrimitiveSizeInBits() >
3137               MulC->getType()->getPrimitiveSizeInBits())
3138             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3139 
3140           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3141           Multiple = ConstantExpr::getMul(MulC, Op1C);
3142           return true;
3143         }
3144 
3145       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3146         if (Mul0CI->getValue() == 1) {
3147           // V == Base * Op1, so return Op1
3148           Multiple = Op1;
3149           return true;
3150         }
3151     }
3152 
3153     Value *Mul1 = nullptr;
3154     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3155       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3156         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3157           if (Op0C->getType()->getPrimitiveSizeInBits() <
3158               MulC->getType()->getPrimitiveSizeInBits())
3159             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3160           if (Op0C->getType()->getPrimitiveSizeInBits() >
3161               MulC->getType()->getPrimitiveSizeInBits())
3162             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3163 
3164           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3165           Multiple = ConstantExpr::getMul(MulC, Op0C);
3166           return true;
3167         }
3168 
3169       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3170         if (Mul1CI->getValue() == 1) {
3171           // V == Base * Op0, so return Op0
3172           Multiple = Op0;
3173           return true;
3174         }
3175     }
3176   }
3177   }
3178 
3179   // We could not determine if V is a multiple of Base.
3180   return false;
3181 }
3182 
3183 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3184                                             const TargetLibraryInfo *TLI) {
3185   const Function *F = CB.getCalledFunction();
3186   if (!F)
3187     return Intrinsic::not_intrinsic;
3188 
3189   if (F->isIntrinsic())
3190     return F->getIntrinsicID();
3191 
3192   // We are going to infer semantics of a library function based on mapping it
3193   // to an LLVM intrinsic. Check that the library function is available from
3194   // this callbase and in this environment.
3195   LibFunc Func;
3196   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3197       !CB.onlyReadsMemory())
3198     return Intrinsic::not_intrinsic;
3199 
3200   switch (Func) {
3201   default:
3202     break;
3203   case LibFunc_sin:
3204   case LibFunc_sinf:
3205   case LibFunc_sinl:
3206     return Intrinsic::sin;
3207   case LibFunc_cos:
3208   case LibFunc_cosf:
3209   case LibFunc_cosl:
3210     return Intrinsic::cos;
3211   case LibFunc_exp:
3212   case LibFunc_expf:
3213   case LibFunc_expl:
3214     return Intrinsic::exp;
3215   case LibFunc_exp2:
3216   case LibFunc_exp2f:
3217   case LibFunc_exp2l:
3218     return Intrinsic::exp2;
3219   case LibFunc_log:
3220   case LibFunc_logf:
3221   case LibFunc_logl:
3222     return Intrinsic::log;
3223   case LibFunc_log10:
3224   case LibFunc_log10f:
3225   case LibFunc_log10l:
3226     return Intrinsic::log10;
3227   case LibFunc_log2:
3228   case LibFunc_log2f:
3229   case LibFunc_log2l:
3230     return Intrinsic::log2;
3231   case LibFunc_fabs:
3232   case LibFunc_fabsf:
3233   case LibFunc_fabsl:
3234     return Intrinsic::fabs;
3235   case LibFunc_fmin:
3236   case LibFunc_fminf:
3237   case LibFunc_fminl:
3238     return Intrinsic::minnum;
3239   case LibFunc_fmax:
3240   case LibFunc_fmaxf:
3241   case LibFunc_fmaxl:
3242     return Intrinsic::maxnum;
3243   case LibFunc_copysign:
3244   case LibFunc_copysignf:
3245   case LibFunc_copysignl:
3246     return Intrinsic::copysign;
3247   case LibFunc_floor:
3248   case LibFunc_floorf:
3249   case LibFunc_floorl:
3250     return Intrinsic::floor;
3251   case LibFunc_ceil:
3252   case LibFunc_ceilf:
3253   case LibFunc_ceill:
3254     return Intrinsic::ceil;
3255   case LibFunc_trunc:
3256   case LibFunc_truncf:
3257   case LibFunc_truncl:
3258     return Intrinsic::trunc;
3259   case LibFunc_rint:
3260   case LibFunc_rintf:
3261   case LibFunc_rintl:
3262     return Intrinsic::rint;
3263   case LibFunc_nearbyint:
3264   case LibFunc_nearbyintf:
3265   case LibFunc_nearbyintl:
3266     return Intrinsic::nearbyint;
3267   case LibFunc_round:
3268   case LibFunc_roundf:
3269   case LibFunc_roundl:
3270     return Intrinsic::round;
3271   case LibFunc_roundeven:
3272   case LibFunc_roundevenf:
3273   case LibFunc_roundevenl:
3274     return Intrinsic::roundeven;
3275   case LibFunc_pow:
3276   case LibFunc_powf:
3277   case LibFunc_powl:
3278     return Intrinsic::pow;
3279   case LibFunc_sqrt:
3280   case LibFunc_sqrtf:
3281   case LibFunc_sqrtl:
3282     return Intrinsic::sqrt;
3283   }
3284 
3285   return Intrinsic::not_intrinsic;
3286 }
3287 
3288 /// Return true if we can prove that the specified FP value is never equal to
3289 /// -0.0.
3290 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3291 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3292 ///       the same as +0.0 in floating-point ops.
3293 ///
3294 /// NOTE: this function will need to be revisited when we support non-default
3295 /// rounding modes!
3296 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3297                                 unsigned Depth) {
3298   if (auto *CFP = dyn_cast<ConstantFP>(V))
3299     return !CFP->getValueAPF().isNegZero();
3300 
3301   if (Depth == MaxAnalysisRecursionDepth)
3302     return false;
3303 
3304   auto *Op = dyn_cast<Operator>(V);
3305   if (!Op)
3306     return false;
3307 
3308   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3309   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3310     return true;
3311 
3312   // sitofp and uitofp turn into +0.0 for zero.
3313   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3314     return true;
3315 
3316   if (auto *Call = dyn_cast<CallInst>(Op)) {
3317     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3318     switch (IID) {
3319     default:
3320       break;
3321     // sqrt(-0.0) = -0.0, no other negative results are possible.
3322     case Intrinsic::sqrt:
3323     case Intrinsic::canonicalize:
3324       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3325     // fabs(x) != -0.0
3326     case Intrinsic::fabs:
3327       return true;
3328     }
3329   }
3330 
3331   return false;
3332 }
3333 
3334 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3335 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3336 /// bit despite comparing equal.
3337 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3338                                             const TargetLibraryInfo *TLI,
3339                                             bool SignBitOnly,
3340                                             unsigned Depth) {
3341   // TODO: This function does not do the right thing when SignBitOnly is true
3342   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3343   // which flips the sign bits of NaNs.  See
3344   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3345 
3346   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3347     return !CFP->getValueAPF().isNegative() ||
3348            (!SignBitOnly && CFP->getValueAPF().isZero());
3349   }
3350 
3351   // Handle vector of constants.
3352   if (auto *CV = dyn_cast<Constant>(V)) {
3353     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3354       unsigned NumElts = CVFVTy->getNumElements();
3355       for (unsigned i = 0; i != NumElts; ++i) {
3356         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3357         if (!CFP)
3358           return false;
3359         if (CFP->getValueAPF().isNegative() &&
3360             (SignBitOnly || !CFP->getValueAPF().isZero()))
3361           return false;
3362       }
3363 
3364       // All non-negative ConstantFPs.
3365       return true;
3366     }
3367   }
3368 
3369   if (Depth == MaxAnalysisRecursionDepth)
3370     return false;
3371 
3372   const Operator *I = dyn_cast<Operator>(V);
3373   if (!I)
3374     return false;
3375 
3376   switch (I->getOpcode()) {
3377   default:
3378     break;
3379   // Unsigned integers are always nonnegative.
3380   case Instruction::UIToFP:
3381     return true;
3382   case Instruction::FMul:
3383   case Instruction::FDiv:
3384     // X * X is always non-negative or a NaN.
3385     // X / X is always exactly 1.0 or a NaN.
3386     if (I->getOperand(0) == I->getOperand(1) &&
3387         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3388       return true;
3389 
3390     LLVM_FALLTHROUGH;
3391   case Instruction::FAdd:
3392   case Instruction::FRem:
3393     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3394                                            Depth + 1) &&
3395            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3396                                            Depth + 1);
3397   case Instruction::Select:
3398     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3399                                            Depth + 1) &&
3400            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3401                                            Depth + 1);
3402   case Instruction::FPExt:
3403   case Instruction::FPTrunc:
3404     // Widening/narrowing never change sign.
3405     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3406                                            Depth + 1);
3407   case Instruction::ExtractElement:
3408     // Look through extract element. At the moment we keep this simple and skip
3409     // tracking the specific element. But at least we might find information
3410     // valid for all elements of the vector.
3411     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3412                                            Depth + 1);
3413   case Instruction::Call:
3414     const auto *CI = cast<CallInst>(I);
3415     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3416     switch (IID) {
3417     default:
3418       break;
3419     case Intrinsic::maxnum: {
3420       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3421       auto isPositiveNum = [&](Value *V) {
3422         if (SignBitOnly) {
3423           // With SignBitOnly, this is tricky because the result of
3424           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3425           // a constant strictly greater than 0.0.
3426           const APFloat *C;
3427           return match(V, m_APFloat(C)) &&
3428                  *C > APFloat::getZero(C->getSemantics());
3429         }
3430 
3431         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3432         // maxnum can't be ordered-less-than-zero.
3433         return isKnownNeverNaN(V, TLI) &&
3434                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3435       };
3436 
3437       // TODO: This could be improved. We could also check that neither operand
3438       //       has its sign bit set (and at least 1 is not-NAN?).
3439       return isPositiveNum(V0) || isPositiveNum(V1);
3440     }
3441 
3442     case Intrinsic::maximum:
3443       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3444                                              Depth + 1) ||
3445              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3446                                              Depth + 1);
3447     case Intrinsic::minnum:
3448     case Intrinsic::minimum:
3449       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3450                                              Depth + 1) &&
3451              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3452                                              Depth + 1);
3453     case Intrinsic::exp:
3454     case Intrinsic::exp2:
3455     case Intrinsic::fabs:
3456       return true;
3457 
3458     case Intrinsic::sqrt:
3459       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3460       if (!SignBitOnly)
3461         return true;
3462       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3463                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3464 
3465     case Intrinsic::powi:
3466       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3467         // powi(x,n) is non-negative if n is even.
3468         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3469           return true;
3470       }
3471       // TODO: This is not correct.  Given that exp is an integer, here are the
3472       // ways that pow can return a negative value:
3473       //
3474       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3475       //   pow(-0, exp)   --> -inf if exp is negative odd.
3476       //   pow(-0, exp)   --> -0 if exp is positive odd.
3477       //   pow(-inf, exp) --> -0 if exp is negative odd.
3478       //   pow(-inf, exp) --> -inf if exp is positive odd.
3479       //
3480       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3481       // but we must return false if x == -0.  Unfortunately we do not currently
3482       // have a way of expressing this constraint.  See details in
3483       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3484       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3485                                              Depth + 1);
3486 
3487     case Intrinsic::fma:
3488     case Intrinsic::fmuladd:
3489       // x*x+y is non-negative if y is non-negative.
3490       return I->getOperand(0) == I->getOperand(1) &&
3491              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3492              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3493                                              Depth + 1);
3494     }
3495     break;
3496   }
3497   return false;
3498 }
3499 
3500 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3501                                        const TargetLibraryInfo *TLI) {
3502   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3503 }
3504 
3505 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3506   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3507 }
3508 
3509 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3510                                 unsigned Depth) {
3511   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3512 
3513   // If we're told that infinities won't happen, assume they won't.
3514   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3515     if (FPMathOp->hasNoInfs())
3516       return true;
3517 
3518   // Handle scalar constants.
3519   if (auto *CFP = dyn_cast<ConstantFP>(V))
3520     return !CFP->isInfinity();
3521 
3522   if (Depth == MaxAnalysisRecursionDepth)
3523     return false;
3524 
3525   if (auto *Inst = dyn_cast<Instruction>(V)) {
3526     switch (Inst->getOpcode()) {
3527     case Instruction::Select: {
3528       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3529              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3530     }
3531     case Instruction::SIToFP:
3532     case Instruction::UIToFP: {
3533       // Get width of largest magnitude integer (remove a bit if signed).
3534       // This still works for a signed minimum value because the largest FP
3535       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3536       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3537       if (Inst->getOpcode() == Instruction::SIToFP)
3538         --IntSize;
3539 
3540       // If the exponent of the largest finite FP value can hold the largest
3541       // integer, the result of the cast must be finite.
3542       Type *FPTy = Inst->getType()->getScalarType();
3543       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3544     }
3545     default:
3546       break;
3547     }
3548   }
3549 
3550   // try to handle fixed width vector constants
3551   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3552   if (VFVTy && isa<Constant>(V)) {
3553     // For vectors, verify that each element is not infinity.
3554     unsigned NumElts = VFVTy->getNumElements();
3555     for (unsigned i = 0; i != NumElts; ++i) {
3556       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3557       if (!Elt)
3558         return false;
3559       if (isa<UndefValue>(Elt))
3560         continue;
3561       auto *CElt = dyn_cast<ConstantFP>(Elt);
3562       if (!CElt || CElt->isInfinity())
3563         return false;
3564     }
3565     // All elements were confirmed non-infinity or undefined.
3566     return true;
3567   }
3568 
3569   // was not able to prove that V never contains infinity
3570   return false;
3571 }
3572 
3573 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3574                            unsigned Depth) {
3575   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3576 
3577   // If we're told that NaNs won't happen, assume they won't.
3578   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3579     if (FPMathOp->hasNoNaNs())
3580       return true;
3581 
3582   // Handle scalar constants.
3583   if (auto *CFP = dyn_cast<ConstantFP>(V))
3584     return !CFP->isNaN();
3585 
3586   if (Depth == MaxAnalysisRecursionDepth)
3587     return false;
3588 
3589   if (auto *Inst = dyn_cast<Instruction>(V)) {
3590     switch (Inst->getOpcode()) {
3591     case Instruction::FAdd:
3592     case Instruction::FSub:
3593       // Adding positive and negative infinity produces NaN.
3594       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3595              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3596              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3597               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3598 
3599     case Instruction::FMul:
3600       // Zero multiplied with infinity produces NaN.
3601       // FIXME: If neither side can be zero fmul never produces NaN.
3602       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3603              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3604              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3605              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3606 
3607     case Instruction::FDiv:
3608     case Instruction::FRem:
3609       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3610       return false;
3611 
3612     case Instruction::Select: {
3613       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3614              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3615     }
3616     case Instruction::SIToFP:
3617     case Instruction::UIToFP:
3618       return true;
3619     case Instruction::FPTrunc:
3620     case Instruction::FPExt:
3621       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3622     default:
3623       break;
3624     }
3625   }
3626 
3627   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3628     switch (II->getIntrinsicID()) {
3629     case Intrinsic::canonicalize:
3630     case Intrinsic::fabs:
3631     case Intrinsic::copysign:
3632     case Intrinsic::exp:
3633     case Intrinsic::exp2:
3634     case Intrinsic::floor:
3635     case Intrinsic::ceil:
3636     case Intrinsic::trunc:
3637     case Intrinsic::rint:
3638     case Intrinsic::nearbyint:
3639     case Intrinsic::round:
3640     case Intrinsic::roundeven:
3641       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3642     case Intrinsic::sqrt:
3643       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3644              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3645     case Intrinsic::minnum:
3646     case Intrinsic::maxnum:
3647       // If either operand is not NaN, the result is not NaN.
3648       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3649              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3650     default:
3651       return false;
3652     }
3653   }
3654 
3655   // Try to handle fixed width vector constants
3656   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3657   if (VFVTy && isa<Constant>(V)) {
3658     // For vectors, verify that each element is not NaN.
3659     unsigned NumElts = VFVTy->getNumElements();
3660     for (unsigned i = 0; i != NumElts; ++i) {
3661       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3662       if (!Elt)
3663         return false;
3664       if (isa<UndefValue>(Elt))
3665         continue;
3666       auto *CElt = dyn_cast<ConstantFP>(Elt);
3667       if (!CElt || CElt->isNaN())
3668         return false;
3669     }
3670     // All elements were confirmed not-NaN or undefined.
3671     return true;
3672   }
3673 
3674   // Was not able to prove that V never contains NaN
3675   return false;
3676 }
3677 
3678 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3679 
3680   // All byte-wide stores are splatable, even of arbitrary variables.
3681   if (V->getType()->isIntegerTy(8))
3682     return V;
3683 
3684   LLVMContext &Ctx = V->getContext();
3685 
3686   // Undef don't care.
3687   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3688   if (isa<UndefValue>(V))
3689     return UndefInt8;
3690 
3691   // Return Undef for zero-sized type.
3692   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3693     return UndefInt8;
3694 
3695   Constant *C = dyn_cast<Constant>(V);
3696   if (!C) {
3697     // Conceptually, we could handle things like:
3698     //   %a = zext i8 %X to i16
3699     //   %b = shl i16 %a, 8
3700     //   %c = or i16 %a, %b
3701     // but until there is an example that actually needs this, it doesn't seem
3702     // worth worrying about.
3703     return nullptr;
3704   }
3705 
3706   // Handle 'null' ConstantArrayZero etc.
3707   if (C->isNullValue())
3708     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3709 
3710   // Constant floating-point values can be handled as integer values if the
3711   // corresponding integer value is "byteable".  An important case is 0.0.
3712   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3713     Type *Ty = nullptr;
3714     if (CFP->getType()->isHalfTy())
3715       Ty = Type::getInt16Ty(Ctx);
3716     else if (CFP->getType()->isFloatTy())
3717       Ty = Type::getInt32Ty(Ctx);
3718     else if (CFP->getType()->isDoubleTy())
3719       Ty = Type::getInt64Ty(Ctx);
3720     // Don't handle long double formats, which have strange constraints.
3721     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3722               : nullptr;
3723   }
3724 
3725   // We can handle constant integers that are multiple of 8 bits.
3726   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3727     if (CI->getBitWidth() % 8 == 0) {
3728       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3729       if (!CI->getValue().isSplat(8))
3730         return nullptr;
3731       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3732     }
3733   }
3734 
3735   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3736     if (CE->getOpcode() == Instruction::IntToPtr) {
3737       auto PS = DL.getPointerSizeInBits(
3738           cast<PointerType>(CE->getType())->getAddressSpace());
3739       return isBytewiseValue(
3740           ConstantExpr::getIntegerCast(CE->getOperand(0),
3741                                        Type::getIntNTy(Ctx, PS), false),
3742           DL);
3743     }
3744   }
3745 
3746   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3747     if (LHS == RHS)
3748       return LHS;
3749     if (!LHS || !RHS)
3750       return nullptr;
3751     if (LHS == UndefInt8)
3752       return RHS;
3753     if (RHS == UndefInt8)
3754       return LHS;
3755     return nullptr;
3756   };
3757 
3758   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3759     Value *Val = UndefInt8;
3760     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3761       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3762         return nullptr;
3763     return Val;
3764   }
3765 
3766   if (isa<ConstantAggregate>(C)) {
3767     Value *Val = UndefInt8;
3768     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3769       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3770         return nullptr;
3771     return Val;
3772   }
3773 
3774   // Don't try to handle the handful of other constants.
3775   return nullptr;
3776 }
3777 
3778 // This is the recursive version of BuildSubAggregate. It takes a few different
3779 // arguments. Idxs is the index within the nested struct From that we are
3780 // looking at now (which is of type IndexedType). IdxSkip is the number of
3781 // indices from Idxs that should be left out when inserting into the resulting
3782 // struct. To is the result struct built so far, new insertvalue instructions
3783 // build on that.
3784 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3785                                 SmallVectorImpl<unsigned> &Idxs,
3786                                 unsigned IdxSkip,
3787                                 Instruction *InsertBefore) {
3788   StructType *STy = dyn_cast<StructType>(IndexedType);
3789   if (STy) {
3790     // Save the original To argument so we can modify it
3791     Value *OrigTo = To;
3792     // General case, the type indexed by Idxs is a struct
3793     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3794       // Process each struct element recursively
3795       Idxs.push_back(i);
3796       Value *PrevTo = To;
3797       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3798                              InsertBefore);
3799       Idxs.pop_back();
3800       if (!To) {
3801         // Couldn't find any inserted value for this index? Cleanup
3802         while (PrevTo != OrigTo) {
3803           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3804           PrevTo = Del->getAggregateOperand();
3805           Del->eraseFromParent();
3806         }
3807         // Stop processing elements
3808         break;
3809       }
3810     }
3811     // If we successfully found a value for each of our subaggregates
3812     if (To)
3813       return To;
3814   }
3815   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3816   // the struct's elements had a value that was inserted directly. In the latter
3817   // case, perhaps we can't determine each of the subelements individually, but
3818   // we might be able to find the complete struct somewhere.
3819 
3820   // Find the value that is at that particular spot
3821   Value *V = FindInsertedValue(From, Idxs);
3822 
3823   if (!V)
3824     return nullptr;
3825 
3826   // Insert the value in the new (sub) aggregate
3827   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3828                                  "tmp", InsertBefore);
3829 }
3830 
3831 // This helper takes a nested struct and extracts a part of it (which is again a
3832 // struct) into a new value. For example, given the struct:
3833 // { a, { b, { c, d }, e } }
3834 // and the indices "1, 1" this returns
3835 // { c, d }.
3836 //
3837 // It does this by inserting an insertvalue for each element in the resulting
3838 // struct, as opposed to just inserting a single struct. This will only work if
3839 // each of the elements of the substruct are known (ie, inserted into From by an
3840 // insertvalue instruction somewhere).
3841 //
3842 // All inserted insertvalue instructions are inserted before InsertBefore
3843 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3844                                 Instruction *InsertBefore) {
3845   assert(InsertBefore && "Must have someplace to insert!");
3846   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3847                                                              idx_range);
3848   Value *To = UndefValue::get(IndexedType);
3849   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3850   unsigned IdxSkip = Idxs.size();
3851 
3852   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3853 }
3854 
3855 /// Given an aggregate and a sequence of indices, see if the scalar value
3856 /// indexed is already around as a register, for example if it was inserted
3857 /// directly into the aggregate.
3858 ///
3859 /// If InsertBefore is not null, this function will duplicate (modified)
3860 /// insertvalues when a part of a nested struct is extracted.
3861 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3862                                Instruction *InsertBefore) {
3863   // Nothing to index? Just return V then (this is useful at the end of our
3864   // recursion).
3865   if (idx_range.empty())
3866     return V;
3867   // We have indices, so V should have an indexable type.
3868   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3869          "Not looking at a struct or array?");
3870   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3871          "Invalid indices for type?");
3872 
3873   if (Constant *C = dyn_cast<Constant>(V)) {
3874     C = C->getAggregateElement(idx_range[0]);
3875     if (!C) return nullptr;
3876     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3877   }
3878 
3879   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3880     // Loop the indices for the insertvalue instruction in parallel with the
3881     // requested indices
3882     const unsigned *req_idx = idx_range.begin();
3883     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3884          i != e; ++i, ++req_idx) {
3885       if (req_idx == idx_range.end()) {
3886         // We can't handle this without inserting insertvalues
3887         if (!InsertBefore)
3888           return nullptr;
3889 
3890         // The requested index identifies a part of a nested aggregate. Handle
3891         // this specially. For example,
3892         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3893         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3894         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3895         // This can be changed into
3896         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3897         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3898         // which allows the unused 0,0 element from the nested struct to be
3899         // removed.
3900         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3901                                  InsertBefore);
3902       }
3903 
3904       // This insert value inserts something else than what we are looking for.
3905       // See if the (aggregate) value inserted into has the value we are
3906       // looking for, then.
3907       if (*req_idx != *i)
3908         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3909                                  InsertBefore);
3910     }
3911     // If we end up here, the indices of the insertvalue match with those
3912     // requested (though possibly only partially). Now we recursively look at
3913     // the inserted value, passing any remaining indices.
3914     return FindInsertedValue(I->getInsertedValueOperand(),
3915                              makeArrayRef(req_idx, idx_range.end()),
3916                              InsertBefore);
3917   }
3918 
3919   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3920     // If we're extracting a value from an aggregate that was extracted from
3921     // something else, we can extract from that something else directly instead.
3922     // However, we will need to chain I's indices with the requested indices.
3923 
3924     // Calculate the number of indices required
3925     unsigned size = I->getNumIndices() + idx_range.size();
3926     // Allocate some space to put the new indices in
3927     SmallVector<unsigned, 5> Idxs;
3928     Idxs.reserve(size);
3929     // Add indices from the extract value instruction
3930     Idxs.append(I->idx_begin(), I->idx_end());
3931 
3932     // Add requested indices
3933     Idxs.append(idx_range.begin(), idx_range.end());
3934 
3935     assert(Idxs.size() == size
3936            && "Number of indices added not correct?");
3937 
3938     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3939   }
3940   // Otherwise, we don't know (such as, extracting from a function return value
3941   // or load instruction)
3942   return nullptr;
3943 }
3944 
3945 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3946                                        unsigned CharSize) {
3947   // Make sure the GEP has exactly three arguments.
3948   if (GEP->getNumOperands() != 3)
3949     return false;
3950 
3951   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3952   // CharSize.
3953   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3954   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3955     return false;
3956 
3957   // Check to make sure that the first operand of the GEP is an integer and
3958   // has value 0 so that we are sure we're indexing into the initializer.
3959   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3960   if (!FirstIdx || !FirstIdx->isZero())
3961     return false;
3962 
3963   return true;
3964 }
3965 
3966 bool llvm::getConstantDataArrayInfo(const Value *V,
3967                                     ConstantDataArraySlice &Slice,
3968                                     unsigned ElementSize, uint64_t Offset) {
3969   assert(V);
3970 
3971   // Look through bitcast instructions and geps.
3972   V = V->stripPointerCasts();
3973 
3974   // If the value is a GEP instruction or constant expression, treat it as an
3975   // offset.
3976   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3977     // The GEP operator should be based on a pointer to string constant, and is
3978     // indexing into the string constant.
3979     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3980       return false;
3981 
3982     // If the second index isn't a ConstantInt, then this is a variable index
3983     // into the array.  If this occurs, we can't say anything meaningful about
3984     // the string.
3985     uint64_t StartIdx = 0;
3986     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3987       StartIdx = CI->getZExtValue();
3988     else
3989       return false;
3990     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3991                                     StartIdx + Offset);
3992   }
3993 
3994   // The GEP instruction, constant or instruction, must reference a global
3995   // variable that is a constant and is initialized. The referenced constant
3996   // initializer is the array that we'll use for optimization.
3997   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3998   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3999     return false;
4000 
4001   const ConstantDataArray *Array;
4002   ArrayType *ArrayTy;
4003   if (GV->getInitializer()->isNullValue()) {
4004     Type *GVTy = GV->getValueType();
4005     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4006       // A zeroinitializer for the array; there is no ConstantDataArray.
4007       Array = nullptr;
4008     } else {
4009       const DataLayout &DL = GV->getParent()->getDataLayout();
4010       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4011       uint64_t Length = SizeInBytes / (ElementSize / 8);
4012       if (Length <= Offset)
4013         return false;
4014 
4015       Slice.Array = nullptr;
4016       Slice.Offset = 0;
4017       Slice.Length = Length - Offset;
4018       return true;
4019     }
4020   } else {
4021     // This must be a ConstantDataArray.
4022     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4023     if (!Array)
4024       return false;
4025     ArrayTy = Array->getType();
4026   }
4027   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4028     return false;
4029 
4030   uint64_t NumElts = ArrayTy->getArrayNumElements();
4031   if (Offset > NumElts)
4032     return false;
4033 
4034   Slice.Array = Array;
4035   Slice.Offset = Offset;
4036   Slice.Length = NumElts - Offset;
4037   return true;
4038 }
4039 
4040 /// This function computes the length of a null-terminated C string pointed to
4041 /// by V. If successful, it returns true and returns the string in Str.
4042 /// If unsuccessful, it returns false.
4043 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4044                                  uint64_t Offset, bool TrimAtNul) {
4045   ConstantDataArraySlice Slice;
4046   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4047     return false;
4048 
4049   if (Slice.Array == nullptr) {
4050     if (TrimAtNul) {
4051       Str = StringRef();
4052       return true;
4053     }
4054     if (Slice.Length == 1) {
4055       Str = StringRef("", 1);
4056       return true;
4057     }
4058     // We cannot instantiate a StringRef as we do not have an appropriate string
4059     // of 0s at hand.
4060     return false;
4061   }
4062 
4063   // Start out with the entire array in the StringRef.
4064   Str = Slice.Array->getAsString();
4065   // Skip over 'offset' bytes.
4066   Str = Str.substr(Slice.Offset);
4067 
4068   if (TrimAtNul) {
4069     // Trim off the \0 and anything after it.  If the array is not nul
4070     // terminated, we just return the whole end of string.  The client may know
4071     // some other way that the string is length-bound.
4072     Str = Str.substr(0, Str.find('\0'));
4073   }
4074   return true;
4075 }
4076 
4077 // These next two are very similar to the above, but also look through PHI
4078 // nodes.
4079 // TODO: See if we can integrate these two together.
4080 
4081 /// If we can compute the length of the string pointed to by
4082 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4083 static uint64_t GetStringLengthH(const Value *V,
4084                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4085                                  unsigned CharSize) {
4086   // Look through noop bitcast instructions.
4087   V = V->stripPointerCasts();
4088 
4089   // If this is a PHI node, there are two cases: either we have already seen it
4090   // or we haven't.
4091   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4092     if (!PHIs.insert(PN).second)
4093       return ~0ULL;  // already in the set.
4094 
4095     // If it was new, see if all the input strings are the same length.
4096     uint64_t LenSoFar = ~0ULL;
4097     for (Value *IncValue : PN->incoming_values()) {
4098       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4099       if (Len == 0) return 0; // Unknown length -> unknown.
4100 
4101       if (Len == ~0ULL) continue;
4102 
4103       if (Len != LenSoFar && LenSoFar != ~0ULL)
4104         return 0;    // Disagree -> unknown.
4105       LenSoFar = Len;
4106     }
4107 
4108     // Success, all agree.
4109     return LenSoFar;
4110   }
4111 
4112   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4113   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4114     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4115     if (Len1 == 0) return 0;
4116     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4117     if (Len2 == 0) return 0;
4118     if (Len1 == ~0ULL) return Len2;
4119     if (Len2 == ~0ULL) return Len1;
4120     if (Len1 != Len2) return 0;
4121     return Len1;
4122   }
4123 
4124   // Otherwise, see if we can read the string.
4125   ConstantDataArraySlice Slice;
4126   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4127     return 0;
4128 
4129   if (Slice.Array == nullptr)
4130     return 1;
4131 
4132   // Search for nul characters
4133   unsigned NullIndex = 0;
4134   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4135     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4136       break;
4137   }
4138 
4139   return NullIndex + 1;
4140 }
4141 
4142 /// If we can compute the length of the string pointed to by
4143 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4144 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4145   if (!V->getType()->isPointerTy())
4146     return 0;
4147 
4148   SmallPtrSet<const PHINode*, 32> PHIs;
4149   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4150   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4151   // an empty string as a length.
4152   return Len == ~0ULL ? 1 : Len;
4153 }
4154 
4155 const Value *
4156 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4157                                            bool MustPreserveNullness) {
4158   assert(Call &&
4159          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4160   if (const Value *RV = Call->getReturnedArgOperand())
4161     return RV;
4162   // This can be used only as a aliasing property.
4163   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4164           Call, MustPreserveNullness))
4165     return Call->getArgOperand(0);
4166   return nullptr;
4167 }
4168 
4169 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4170     const CallBase *Call, bool MustPreserveNullness) {
4171   switch (Call->getIntrinsicID()) {
4172   case Intrinsic::launder_invariant_group:
4173   case Intrinsic::strip_invariant_group:
4174   case Intrinsic::aarch64_irg:
4175   case Intrinsic::aarch64_tagp:
4176     return true;
4177   case Intrinsic::ptrmask:
4178     return !MustPreserveNullness;
4179   default:
4180     return false;
4181   }
4182 }
4183 
4184 /// \p PN defines a loop-variant pointer to an object.  Check if the
4185 /// previous iteration of the loop was referring to the same object as \p PN.
4186 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4187                                          const LoopInfo *LI) {
4188   // Find the loop-defined value.
4189   Loop *L = LI->getLoopFor(PN->getParent());
4190   if (PN->getNumIncomingValues() != 2)
4191     return true;
4192 
4193   // Find the value from previous iteration.
4194   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4195   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4196     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4197   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4198     return true;
4199 
4200   // If a new pointer is loaded in the loop, the pointer references a different
4201   // object in every iteration.  E.g.:
4202   //    for (i)
4203   //       int *p = a[i];
4204   //       ...
4205   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4206     if (!L->isLoopInvariant(Load->getPointerOperand()))
4207       return false;
4208   return true;
4209 }
4210 
4211 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4212   if (!V->getType()->isPointerTy())
4213     return V;
4214   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4215     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4216       V = GEP->getPointerOperand();
4217     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4218                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4219       V = cast<Operator>(V)->getOperand(0);
4220       if (!V->getType()->isPointerTy())
4221         return V;
4222     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4223       if (GA->isInterposable())
4224         return V;
4225       V = GA->getAliasee();
4226     } else {
4227       if (auto *PHI = dyn_cast<PHINode>(V)) {
4228         // Look through single-arg phi nodes created by LCSSA.
4229         if (PHI->getNumIncomingValues() == 1) {
4230           V = PHI->getIncomingValue(0);
4231           continue;
4232         }
4233       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4234         // CaptureTracking can know about special capturing properties of some
4235         // intrinsics like launder.invariant.group, that can't be expressed with
4236         // the attributes, but have properties like returning aliasing pointer.
4237         // Because some analysis may assume that nocaptured pointer is not
4238         // returned from some special intrinsic (because function would have to
4239         // be marked with returns attribute), it is crucial to use this function
4240         // because it should be in sync with CaptureTracking. Not using it may
4241         // cause weird miscompilations where 2 aliasing pointers are assumed to
4242         // noalias.
4243         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4244           V = RP;
4245           continue;
4246         }
4247       }
4248 
4249       return V;
4250     }
4251     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4252   }
4253   return V;
4254 }
4255 
4256 void llvm::getUnderlyingObjects(const Value *V,
4257                                 SmallVectorImpl<const Value *> &Objects,
4258                                 LoopInfo *LI, unsigned MaxLookup) {
4259   SmallPtrSet<const Value *, 4> Visited;
4260   SmallVector<const Value *, 4> Worklist;
4261   Worklist.push_back(V);
4262   do {
4263     const Value *P = Worklist.pop_back_val();
4264     P = getUnderlyingObject(P, MaxLookup);
4265 
4266     if (!Visited.insert(P).second)
4267       continue;
4268 
4269     if (auto *SI = dyn_cast<SelectInst>(P)) {
4270       Worklist.push_back(SI->getTrueValue());
4271       Worklist.push_back(SI->getFalseValue());
4272       continue;
4273     }
4274 
4275     if (auto *PN = dyn_cast<PHINode>(P)) {
4276       // If this PHI changes the underlying object in every iteration of the
4277       // loop, don't look through it.  Consider:
4278       //   int **A;
4279       //   for (i) {
4280       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4281       //     Curr = A[i];
4282       //     *Prev, *Curr;
4283       //
4284       // Prev is tracking Curr one iteration behind so they refer to different
4285       // underlying objects.
4286       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4287           isSameUnderlyingObjectInLoop(PN, LI))
4288         for (Value *IncValue : PN->incoming_values())
4289           Worklist.push_back(IncValue);
4290       continue;
4291     }
4292 
4293     Objects.push_back(P);
4294   } while (!Worklist.empty());
4295 }
4296 
4297 /// This is the function that does the work of looking through basic
4298 /// ptrtoint+arithmetic+inttoptr sequences.
4299 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4300   do {
4301     if (const Operator *U = dyn_cast<Operator>(V)) {
4302       // If we find a ptrtoint, we can transfer control back to the
4303       // regular getUnderlyingObjectFromInt.
4304       if (U->getOpcode() == Instruction::PtrToInt)
4305         return U->getOperand(0);
4306       // If we find an add of a constant, a multiplied value, or a phi, it's
4307       // likely that the other operand will lead us to the base
4308       // object. We don't have to worry about the case where the
4309       // object address is somehow being computed by the multiply,
4310       // because our callers only care when the result is an
4311       // identifiable object.
4312       if (U->getOpcode() != Instruction::Add ||
4313           (!isa<ConstantInt>(U->getOperand(1)) &&
4314            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4315            !isa<PHINode>(U->getOperand(1))))
4316         return V;
4317       V = U->getOperand(0);
4318     } else {
4319       return V;
4320     }
4321     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4322   } while (true);
4323 }
4324 
4325 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4326 /// ptrtoint+arithmetic+inttoptr sequences.
4327 /// It returns false if unidentified object is found in getUnderlyingObjects.
4328 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4329                                           SmallVectorImpl<Value *> &Objects) {
4330   SmallPtrSet<const Value *, 16> Visited;
4331   SmallVector<const Value *, 4> Working(1, V);
4332   do {
4333     V = Working.pop_back_val();
4334 
4335     SmallVector<const Value *, 4> Objs;
4336     getUnderlyingObjects(V, Objs);
4337 
4338     for (const Value *V : Objs) {
4339       if (!Visited.insert(V).second)
4340         continue;
4341       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4342         const Value *O =
4343           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4344         if (O->getType()->isPointerTy()) {
4345           Working.push_back(O);
4346           continue;
4347         }
4348       }
4349       // If getUnderlyingObjects fails to find an identifiable object,
4350       // getUnderlyingObjectsForCodeGen also fails for safety.
4351       if (!isIdentifiedObject(V)) {
4352         Objects.clear();
4353         return false;
4354       }
4355       Objects.push_back(const_cast<Value *>(V));
4356     }
4357   } while (!Working.empty());
4358   return true;
4359 }
4360 
4361 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4362   AllocaInst *Result = nullptr;
4363   SmallPtrSet<Value *, 4> Visited;
4364   SmallVector<Value *, 4> Worklist;
4365 
4366   auto AddWork = [&](Value *V) {
4367     if (Visited.insert(V).second)
4368       Worklist.push_back(V);
4369   };
4370 
4371   AddWork(V);
4372   do {
4373     V = Worklist.pop_back_val();
4374     assert(Visited.count(V));
4375 
4376     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4377       if (Result && Result != AI)
4378         return nullptr;
4379       Result = AI;
4380     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4381       AddWork(CI->getOperand(0));
4382     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4383       for (Value *IncValue : PN->incoming_values())
4384         AddWork(IncValue);
4385     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4386       AddWork(SI->getTrueValue());
4387       AddWork(SI->getFalseValue());
4388     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4389       if (OffsetZero && !GEP->hasAllZeroIndices())
4390         return nullptr;
4391       AddWork(GEP->getPointerOperand());
4392     } else {
4393       return nullptr;
4394     }
4395   } while (!Worklist.empty());
4396 
4397   return Result;
4398 }
4399 
4400 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4401     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4402   for (const User *U : V->users()) {
4403     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4404     if (!II)
4405       return false;
4406 
4407     if (AllowLifetime && II->isLifetimeStartOrEnd())
4408       continue;
4409 
4410     if (AllowDroppable && II->isDroppable())
4411       continue;
4412 
4413     return false;
4414   }
4415   return true;
4416 }
4417 
4418 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4419   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4420       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4421 }
4422 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4423   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4424       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4425 }
4426 
4427 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4428   if (!LI.isUnordered())
4429     return true;
4430   const Function &F = *LI.getFunction();
4431   // Speculative load may create a race that did not exist in the source.
4432   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4433     // Speculative load may load data from dirty regions.
4434     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4435     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4436 }
4437 
4438 
4439 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4440                                         const Instruction *CtxI,
4441                                         const DominatorTree *DT) {
4442   const Operator *Inst = dyn_cast<Operator>(V);
4443   if (!Inst)
4444     return false;
4445 
4446   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4447     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4448       if (C->canTrap())
4449         return false;
4450 
4451   switch (Inst->getOpcode()) {
4452   default:
4453     return true;
4454   case Instruction::UDiv:
4455   case Instruction::URem: {
4456     // x / y is undefined if y == 0.
4457     const APInt *V;
4458     if (match(Inst->getOperand(1), m_APInt(V)))
4459       return *V != 0;
4460     return false;
4461   }
4462   case Instruction::SDiv:
4463   case Instruction::SRem: {
4464     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4465     const APInt *Numerator, *Denominator;
4466     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4467       return false;
4468     // We cannot hoist this division if the denominator is 0.
4469     if (*Denominator == 0)
4470       return false;
4471     // It's safe to hoist if the denominator is not 0 or -1.
4472     if (*Denominator != -1)
4473       return true;
4474     // At this point we know that the denominator is -1.  It is safe to hoist as
4475     // long we know that the numerator is not INT_MIN.
4476     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4477       return !Numerator->isMinSignedValue();
4478     // The numerator *might* be MinSignedValue.
4479     return false;
4480   }
4481   case Instruction::Load: {
4482     const LoadInst *LI = cast<LoadInst>(Inst);
4483     if (mustSuppressSpeculation(*LI))
4484       return false;
4485     const DataLayout &DL = LI->getModule()->getDataLayout();
4486     return isDereferenceableAndAlignedPointer(
4487         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4488         DL, CtxI, DT);
4489   }
4490   case Instruction::Call: {
4491     auto *CI = cast<const CallInst>(Inst);
4492     const Function *Callee = CI->getCalledFunction();
4493 
4494     // The called function could have undefined behavior or side-effects, even
4495     // if marked readnone nounwind.
4496     return Callee && Callee->isSpeculatable();
4497   }
4498   case Instruction::VAArg:
4499   case Instruction::Alloca:
4500   case Instruction::Invoke:
4501   case Instruction::CallBr:
4502   case Instruction::PHI:
4503   case Instruction::Store:
4504   case Instruction::Ret:
4505   case Instruction::Br:
4506   case Instruction::IndirectBr:
4507   case Instruction::Switch:
4508   case Instruction::Unreachable:
4509   case Instruction::Fence:
4510   case Instruction::AtomicRMW:
4511   case Instruction::AtomicCmpXchg:
4512   case Instruction::LandingPad:
4513   case Instruction::Resume:
4514   case Instruction::CatchSwitch:
4515   case Instruction::CatchPad:
4516   case Instruction::CatchRet:
4517   case Instruction::CleanupPad:
4518   case Instruction::CleanupRet:
4519     return false; // Misc instructions which have effects
4520   }
4521 }
4522 
4523 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4524   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4525 }
4526 
4527 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4528 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4529   switch (OR) {
4530     case ConstantRange::OverflowResult::MayOverflow:
4531       return OverflowResult::MayOverflow;
4532     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4533       return OverflowResult::AlwaysOverflowsLow;
4534     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4535       return OverflowResult::AlwaysOverflowsHigh;
4536     case ConstantRange::OverflowResult::NeverOverflows:
4537       return OverflowResult::NeverOverflows;
4538   }
4539   llvm_unreachable("Unknown OverflowResult");
4540 }
4541 
4542 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4543 static ConstantRange computeConstantRangeIncludingKnownBits(
4544     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4545     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4546     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4547   KnownBits Known = computeKnownBits(
4548       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4549   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4550   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4551   ConstantRange::PreferredRangeType RangeType =
4552       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4553   return CR1.intersectWith(CR2, RangeType);
4554 }
4555 
4556 OverflowResult llvm::computeOverflowForUnsignedMul(
4557     const Value *LHS, const Value *RHS, const DataLayout &DL,
4558     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4559     bool UseInstrInfo) {
4560   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4561                                         nullptr, UseInstrInfo);
4562   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4563                                         nullptr, UseInstrInfo);
4564   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4565   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4566   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4567 }
4568 
4569 OverflowResult
4570 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4571                                   const DataLayout &DL, AssumptionCache *AC,
4572                                   const Instruction *CxtI,
4573                                   const DominatorTree *DT, bool UseInstrInfo) {
4574   // Multiplying n * m significant bits yields a result of n + m significant
4575   // bits. If the total number of significant bits does not exceed the
4576   // result bit width (minus 1), there is no overflow.
4577   // This means if we have enough leading sign bits in the operands
4578   // we can guarantee that the result does not overflow.
4579   // Ref: "Hacker's Delight" by Henry Warren
4580   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4581 
4582   // Note that underestimating the number of sign bits gives a more
4583   // conservative answer.
4584   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4585                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4586 
4587   // First handle the easy case: if we have enough sign bits there's
4588   // definitely no overflow.
4589   if (SignBits > BitWidth + 1)
4590     return OverflowResult::NeverOverflows;
4591 
4592   // There are two ambiguous cases where there can be no overflow:
4593   //   SignBits == BitWidth + 1    and
4594   //   SignBits == BitWidth
4595   // The second case is difficult to check, therefore we only handle the
4596   // first case.
4597   if (SignBits == BitWidth + 1) {
4598     // It overflows only when both arguments are negative and the true
4599     // product is exactly the minimum negative number.
4600     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4601     // For simplicity we just check if at least one side is not negative.
4602     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4603                                           nullptr, UseInstrInfo);
4604     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4605                                           nullptr, UseInstrInfo);
4606     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4607       return OverflowResult::NeverOverflows;
4608   }
4609   return OverflowResult::MayOverflow;
4610 }
4611 
4612 OverflowResult llvm::computeOverflowForUnsignedAdd(
4613     const Value *LHS, const Value *RHS, const DataLayout &DL,
4614     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4615     bool UseInstrInfo) {
4616   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4617       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4618       nullptr, UseInstrInfo);
4619   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4620       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4621       nullptr, UseInstrInfo);
4622   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4623 }
4624 
4625 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4626                                                   const Value *RHS,
4627                                                   const AddOperator *Add,
4628                                                   const DataLayout &DL,
4629                                                   AssumptionCache *AC,
4630                                                   const Instruction *CxtI,
4631                                                   const DominatorTree *DT) {
4632   if (Add && Add->hasNoSignedWrap()) {
4633     return OverflowResult::NeverOverflows;
4634   }
4635 
4636   // If LHS and RHS each have at least two sign bits, the addition will look
4637   // like
4638   //
4639   // XX..... +
4640   // YY.....
4641   //
4642   // If the carry into the most significant position is 0, X and Y can't both
4643   // be 1 and therefore the carry out of the addition is also 0.
4644   //
4645   // If the carry into the most significant position is 1, X and Y can't both
4646   // be 0 and therefore the carry out of the addition is also 1.
4647   //
4648   // Since the carry into the most significant position is always equal to
4649   // the carry out of the addition, there is no signed overflow.
4650   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4651       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4652     return OverflowResult::NeverOverflows;
4653 
4654   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4655       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4656   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4657       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4658   OverflowResult OR =
4659       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4660   if (OR != OverflowResult::MayOverflow)
4661     return OR;
4662 
4663   // The remaining code needs Add to be available. Early returns if not so.
4664   if (!Add)
4665     return OverflowResult::MayOverflow;
4666 
4667   // If the sign of Add is the same as at least one of the operands, this add
4668   // CANNOT overflow. If this can be determined from the known bits of the
4669   // operands the above signedAddMayOverflow() check will have already done so.
4670   // The only other way to improve on the known bits is from an assumption, so
4671   // call computeKnownBitsFromAssume() directly.
4672   bool LHSOrRHSKnownNonNegative =
4673       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4674   bool LHSOrRHSKnownNegative =
4675       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4676   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4677     KnownBits AddKnown(LHSRange.getBitWidth());
4678     computeKnownBitsFromAssume(
4679         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4680     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4681         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4682       return OverflowResult::NeverOverflows;
4683   }
4684 
4685   return OverflowResult::MayOverflow;
4686 }
4687 
4688 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4689                                                    const Value *RHS,
4690                                                    const DataLayout &DL,
4691                                                    AssumptionCache *AC,
4692                                                    const Instruction *CxtI,
4693                                                    const DominatorTree *DT) {
4694   // Checking for conditions implied by dominating conditions may be expensive.
4695   // Limit it to usub_with_overflow calls for now.
4696   if (match(CxtI,
4697             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4698     if (auto C =
4699             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4700       if (*C)
4701         return OverflowResult::NeverOverflows;
4702       return OverflowResult::AlwaysOverflowsLow;
4703     }
4704   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4705       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4706   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4707       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4708   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4709 }
4710 
4711 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4712                                                  const Value *RHS,
4713                                                  const DataLayout &DL,
4714                                                  AssumptionCache *AC,
4715                                                  const Instruction *CxtI,
4716                                                  const DominatorTree *DT) {
4717   // If LHS and RHS each have at least two sign bits, the subtraction
4718   // cannot overflow.
4719   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4720       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4721     return OverflowResult::NeverOverflows;
4722 
4723   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4724       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4725   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4726       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4727   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4728 }
4729 
4730 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4731                                      const DominatorTree &DT) {
4732   SmallVector<const BranchInst *, 2> GuardingBranches;
4733   SmallVector<const ExtractValueInst *, 2> Results;
4734 
4735   for (const User *U : WO->users()) {
4736     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4737       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4738 
4739       if (EVI->getIndices()[0] == 0)
4740         Results.push_back(EVI);
4741       else {
4742         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4743 
4744         for (const auto *U : EVI->users())
4745           if (const auto *B = dyn_cast<BranchInst>(U)) {
4746             assert(B->isConditional() && "How else is it using an i1?");
4747             GuardingBranches.push_back(B);
4748           }
4749       }
4750     } else {
4751       // We are using the aggregate directly in a way we don't want to analyze
4752       // here (storing it to a global, say).
4753       return false;
4754     }
4755   }
4756 
4757   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4758     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4759     if (!NoWrapEdge.isSingleEdge())
4760       return false;
4761 
4762     // Check if all users of the add are provably no-wrap.
4763     for (const auto *Result : Results) {
4764       // If the extractvalue itself is not executed on overflow, the we don't
4765       // need to check each use separately, since domination is transitive.
4766       if (DT.dominates(NoWrapEdge, Result->getParent()))
4767         continue;
4768 
4769       for (auto &RU : Result->uses())
4770         if (!DT.dominates(NoWrapEdge, RU))
4771           return false;
4772     }
4773 
4774     return true;
4775   };
4776 
4777   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4778 }
4779 
4780 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4781   // See whether I has flags that may create poison
4782   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4783     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4784       return true;
4785   }
4786   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4787     if (ExactOp->isExact())
4788       return true;
4789   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4790     auto FMF = FP->getFastMathFlags();
4791     if (FMF.noNaNs() || FMF.noInfs())
4792       return true;
4793   }
4794 
4795   unsigned Opcode = Op->getOpcode();
4796 
4797   // Check whether opcode is a poison/undef-generating operation
4798   switch (Opcode) {
4799   case Instruction::Shl:
4800   case Instruction::AShr:
4801   case Instruction::LShr: {
4802     // Shifts return poison if shiftwidth is larger than the bitwidth.
4803     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4804       SmallVector<Constant *, 4> ShiftAmounts;
4805       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4806         unsigned NumElts = FVTy->getNumElements();
4807         for (unsigned i = 0; i < NumElts; ++i)
4808           ShiftAmounts.push_back(C->getAggregateElement(i));
4809       } else if (isa<ScalableVectorType>(C->getType()))
4810         return true; // Can't tell, just return true to be safe
4811       else
4812         ShiftAmounts.push_back(C);
4813 
4814       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4815         auto *CI = dyn_cast<ConstantInt>(C);
4816         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4817       });
4818       return !Safe;
4819     }
4820     return true;
4821   }
4822   case Instruction::FPToSI:
4823   case Instruction::FPToUI:
4824     // fptosi/ui yields poison if the resulting value does not fit in the
4825     // destination type.
4826     return true;
4827   case Instruction::Call:
4828   case Instruction::CallBr:
4829   case Instruction::Invoke: {
4830     const auto *CB = cast<CallBase>(Op);
4831     return !CB->hasRetAttr(Attribute::NoUndef);
4832   }
4833   case Instruction::InsertElement:
4834   case Instruction::ExtractElement: {
4835     // If index exceeds the length of the vector, it returns poison
4836     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4837     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4838     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4839     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4840       return true;
4841     return false;
4842   }
4843   case Instruction::ShuffleVector: {
4844     // shufflevector may return undef.
4845     if (PoisonOnly)
4846       return false;
4847     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4848                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4849                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4850     return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; });
4851   }
4852   case Instruction::FNeg:
4853   case Instruction::PHI:
4854   case Instruction::Select:
4855   case Instruction::URem:
4856   case Instruction::SRem:
4857   case Instruction::ExtractValue:
4858   case Instruction::InsertValue:
4859   case Instruction::Freeze:
4860   case Instruction::ICmp:
4861   case Instruction::FCmp:
4862     return false;
4863   case Instruction::GetElementPtr: {
4864     const auto *GEP = cast<GEPOperator>(Op);
4865     return GEP->isInBounds();
4866   }
4867   default: {
4868     const auto *CE = dyn_cast<ConstantExpr>(Op);
4869     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4870       return false;
4871     else if (Instruction::isBinaryOp(Opcode))
4872       return false;
4873     // Be conservative and return true.
4874     return true;
4875   }
4876   }
4877 }
4878 
4879 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4880   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4881 }
4882 
4883 bool llvm::canCreatePoison(const Operator *Op) {
4884   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4885 }
4886 
4887 static bool programUndefinedIfUndefOrPoison(const Value *V,
4888                                             bool PoisonOnly);
4889 
4890 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
4891                                              const Instruction *CtxI,
4892                                              const DominatorTree *DT,
4893                                              unsigned Depth, bool PoisonOnly) {
4894   if (Depth >= MaxAnalysisRecursionDepth)
4895     return false;
4896 
4897   if (isa<MetadataAsValue>(V))
4898     return false;
4899 
4900   if (const auto *A = dyn_cast<Argument>(V)) {
4901     if (A->hasAttribute(Attribute::NoUndef))
4902       return true;
4903   }
4904 
4905   if (auto *C = dyn_cast<Constant>(V)) {
4906     if (isa<UndefValue>(C))
4907       return PoisonOnly;
4908 
4909     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4910         isa<ConstantPointerNull>(C) || isa<Function>(C))
4911       return true;
4912 
4913     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4914       return (PoisonOnly || !C->containsUndefElement()) &&
4915              !C->containsConstantExpression();
4916   }
4917 
4918   // Strip cast operations from a pointer value.
4919   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4920   // inbounds with zero offset. To guarantee that the result isn't poison, the
4921   // stripped pointer is checked as it has to be pointing into an allocated
4922   // object or be null `null` to ensure `inbounds` getelement pointers with a
4923   // zero offset could not produce poison.
4924   // It can strip off addrspacecast that do not change bit representation as
4925   // well. We believe that such addrspacecast is equivalent to no-op.
4926   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4927   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4928       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4929     return true;
4930 
4931   auto OpCheck = [&](const Value *V) {
4932     return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1, PoisonOnly);
4933   };
4934 
4935   if (auto *Opr = dyn_cast<Operator>(V)) {
4936     // If the value is a freeze instruction, then it can never
4937     // be undef or poison.
4938     if (isa<FreezeInst>(V))
4939       return true;
4940 
4941     if (const auto *CB = dyn_cast<CallBase>(V)) {
4942       if (CB->hasRetAttr(Attribute::NoUndef))
4943         return true;
4944     }
4945 
4946     if (const auto *PN = dyn_cast<PHINode>(V)) {
4947       unsigned Num = PN->getNumIncomingValues();
4948       bool IsWellDefined = true;
4949       for (unsigned i = 0; i < Num; ++i) {
4950         auto *TI = PN->getIncomingBlock(i)->getTerminator();
4951         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), TI, DT,
4952                                               Depth + 1, PoisonOnly)) {
4953           IsWellDefined = false;
4954           break;
4955         }
4956       }
4957       if (IsWellDefined)
4958         return true;
4959     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4960       return true;
4961   }
4962 
4963   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
4964     return true;
4965 
4966   // CxtI may be null or a cloned instruction.
4967   if (!CtxI || !CtxI->getParent() || !DT)
4968     return false;
4969 
4970   auto *DNode = DT->getNode(CtxI->getParent());
4971   if (!DNode)
4972     // Unreachable block
4973     return false;
4974 
4975   // If V is used as a branch condition before reaching CtxI, V cannot be
4976   // undef or poison.
4977   //   br V, BB1, BB2
4978   // BB1:
4979   //   CtxI ; V cannot be undef or poison here
4980   auto *Dominator = DNode->getIDom();
4981   while (Dominator) {
4982     auto *TI = Dominator->getBlock()->getTerminator();
4983 
4984     Value *Cond = nullptr;
4985     if (auto BI = dyn_cast<BranchInst>(TI)) {
4986       if (BI->isConditional())
4987         Cond = BI->getCondition();
4988     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4989       Cond = SI->getCondition();
4990     }
4991 
4992     if (Cond) {
4993       if (Cond == V)
4994         return true;
4995       else if (PoisonOnly && isa<Operator>(Cond)) {
4996         // For poison, we can analyze further
4997         auto *Opr = cast<Operator>(Cond);
4998         if (propagatesPoison(Opr) &&
4999             any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; }))
5000           return true;
5001       }
5002     }
5003 
5004     Dominator = Dominator->getIDom();
5005   }
5006 
5007   return false;
5008 }
5009 
5010 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V,
5011                                             const Instruction *CtxI,
5012                                             const DominatorTree *DT,
5013                                             unsigned Depth) {
5014   return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, false);
5015 }
5016 
5017 bool llvm::isGuaranteedNotToBePoison(const Value *V, const Instruction *CtxI,
5018                                      const DominatorTree *DT, unsigned Depth) {
5019   return ::isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth, true);
5020 }
5021 
5022 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5023                                                  const DataLayout &DL,
5024                                                  AssumptionCache *AC,
5025                                                  const Instruction *CxtI,
5026                                                  const DominatorTree *DT) {
5027   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5028                                        Add, DL, AC, CxtI, DT);
5029 }
5030 
5031 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5032                                                  const Value *RHS,
5033                                                  const DataLayout &DL,
5034                                                  AssumptionCache *AC,
5035                                                  const Instruction *CxtI,
5036                                                  const DominatorTree *DT) {
5037   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5038 }
5039 
5040 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5041   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5042   // of time because it's possible for another thread to interfere with it for an
5043   // arbitrary length of time, but programs aren't allowed to rely on that.
5044 
5045   // If there is no successor, then execution can't transfer to it.
5046   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
5047     return !CRI->unwindsToCaller();
5048   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
5049     return !CatchSwitch->unwindsToCaller();
5050   if (isa<ResumeInst>(I))
5051     return false;
5052   if (isa<ReturnInst>(I))
5053     return false;
5054   if (isa<UnreachableInst>(I))
5055     return false;
5056 
5057   // Calls can throw, or contain an infinite loop, or kill the process.
5058   if (const auto *CB = dyn_cast<CallBase>(I)) {
5059     // Call sites that throw have implicit non-local control flow.
5060     if (!CB->doesNotThrow())
5061       return false;
5062 
5063     // A function which doens't throw and has "willreturn" attribute will
5064     // always return.
5065     if (CB->hasFnAttr(Attribute::WillReturn))
5066       return true;
5067 
5068     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
5069     // etc. and thus not return.  However, LLVM already assumes that
5070     //
5071     //  - Thread exiting actions are modeled as writes to memory invisible to
5072     //    the program.
5073     //
5074     //  - Loops that don't have side effects (side effects are volatile/atomic
5075     //    stores and IO) always terminate (see http://llvm.org/PR965).
5076     //    Furthermore IO itself is also modeled as writes to memory invisible to
5077     //    the program.
5078     //
5079     // We rely on those assumptions here, and use the memory effects of the call
5080     // target as a proxy for checking that it always returns.
5081 
5082     // FIXME: This isn't aggressive enough; a call which only writes to a global
5083     // is guaranteed to return.
5084     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5085   }
5086 
5087   // Other instructions return normally.
5088   return true;
5089 }
5090 
5091 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5092   // TODO: This is slightly conservative for invoke instruction since exiting
5093   // via an exception *is* normal control for them.
5094   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5095     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5096       return false;
5097   return true;
5098 }
5099 
5100 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5101                                                   const Loop *L) {
5102   // The loop header is guaranteed to be executed for every iteration.
5103   //
5104   // FIXME: Relax this constraint to cover all basic blocks that are
5105   // guaranteed to be executed at every iteration.
5106   if (I->getParent() != L->getHeader()) return false;
5107 
5108   for (const Instruction &LI : *L->getHeader()) {
5109     if (&LI == I) return true;
5110     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5111   }
5112   llvm_unreachable("Instruction not contained in its own parent basic block.");
5113 }
5114 
5115 bool llvm::propagatesPoison(const Operator *I) {
5116   switch (I->getOpcode()) {
5117   case Instruction::Freeze:
5118   case Instruction::Select:
5119   case Instruction::PHI:
5120   case Instruction::Call:
5121   case Instruction::Invoke:
5122     return false;
5123   case Instruction::ICmp:
5124   case Instruction::FCmp:
5125   case Instruction::GetElementPtr:
5126     return true;
5127   default:
5128     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5129       return true;
5130 
5131     // Be conservative and return false.
5132     return false;
5133   }
5134 }
5135 
5136 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5137                                      SmallPtrSetImpl<const Value *> &Operands) {
5138   switch (I->getOpcode()) {
5139     case Instruction::Store:
5140       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5141       break;
5142 
5143     case Instruction::Load:
5144       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5145       break;
5146 
5147     case Instruction::AtomicCmpXchg:
5148       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5149       break;
5150 
5151     case Instruction::AtomicRMW:
5152       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5153       break;
5154 
5155     case Instruction::UDiv:
5156     case Instruction::SDiv:
5157     case Instruction::URem:
5158     case Instruction::SRem:
5159       Operands.insert(I->getOperand(1));
5160       break;
5161 
5162     case Instruction::Call:
5163     case Instruction::Invoke: {
5164       const CallBase *CB = cast<CallBase>(I);
5165       if (CB->isIndirectCall())
5166         Operands.insert(CB->getCalledOperand());
5167       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5168         if (CB->paramHasAttr(i, Attribute::NoUndef))
5169           Operands.insert(CB->getArgOperand(i));
5170       }
5171       break;
5172     }
5173 
5174     default:
5175       break;
5176   }
5177 }
5178 
5179 bool llvm::mustTriggerUB(const Instruction *I,
5180                          const SmallSet<const Value *, 16>& KnownPoison) {
5181   SmallPtrSet<const Value *, 4> NonPoisonOps;
5182   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5183 
5184   for (const auto *V : NonPoisonOps)
5185     if (KnownPoison.count(V))
5186       return true;
5187 
5188   return false;
5189 }
5190 
5191 static bool programUndefinedIfUndefOrPoison(const Value *V,
5192                                             bool PoisonOnly) {
5193   // We currently only look for uses of values within the same basic
5194   // block, as that makes it easier to guarantee that the uses will be
5195   // executed given that Inst is executed.
5196   //
5197   // FIXME: Expand this to consider uses beyond the same basic block. To do
5198   // this, look out for the distinction between post-dominance and strong
5199   // post-dominance.
5200   const BasicBlock *BB = nullptr;
5201   BasicBlock::const_iterator Begin;
5202   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5203     BB = Inst->getParent();
5204     Begin = Inst->getIterator();
5205     Begin++;
5206   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5207     BB = &Arg->getParent()->getEntryBlock();
5208     Begin = BB->begin();
5209   } else {
5210     return false;
5211   }
5212 
5213   BasicBlock::const_iterator End = BB->end();
5214 
5215   if (!PoisonOnly) {
5216     // Be conservative & just check whether a value is passed to a noundef
5217     // argument.
5218     // Instructions that raise UB with a poison operand are well-defined
5219     // or have unclear semantics when the input is partially undef.
5220     // For example, 'udiv x, (undef | 1)' isn't UB.
5221 
5222     for (auto &I : make_range(Begin, End)) {
5223       if (const auto *CB = dyn_cast<CallBase>(&I)) {
5224         for (unsigned i = 0; i < CB->arg_size(); ++i) {
5225           if (CB->paramHasAttr(i, Attribute::NoUndef) &&
5226               CB->getArgOperand(i) == V)
5227             return true;
5228         }
5229       }
5230       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5231         break;
5232     }
5233     return false;
5234   }
5235 
5236   // Set of instructions that we have proved will yield poison if Inst
5237   // does.
5238   SmallSet<const Value *, 16> YieldsPoison;
5239   SmallSet<const BasicBlock *, 4> Visited;
5240 
5241   YieldsPoison.insert(V);
5242   auto Propagate = [&](const User *User) {
5243     if (propagatesPoison(cast<Operator>(User)))
5244       YieldsPoison.insert(User);
5245   };
5246   for_each(V->users(), Propagate);
5247   Visited.insert(BB);
5248 
5249   unsigned Iter = 0;
5250   while (Iter++ < MaxAnalysisRecursionDepth) {
5251     for (auto &I : make_range(Begin, End)) {
5252       if (mustTriggerUB(&I, YieldsPoison))
5253         return true;
5254       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5255         return false;
5256 
5257       // Mark poison that propagates from I through uses of I.
5258       if (YieldsPoison.count(&I))
5259         for_each(I.users(), Propagate);
5260     }
5261 
5262     if (auto *NextBB = BB->getSingleSuccessor()) {
5263       if (Visited.insert(NextBB).second) {
5264         BB = NextBB;
5265         Begin = BB->getFirstNonPHI()->getIterator();
5266         End = BB->end();
5267         continue;
5268       }
5269     }
5270 
5271     break;
5272   }
5273   return false;
5274 }
5275 
5276 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5277   return ::programUndefinedIfUndefOrPoison(Inst, false);
5278 }
5279 
5280 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5281   return ::programUndefinedIfUndefOrPoison(Inst, true);
5282 }
5283 
5284 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5285   if (FMF.noNaNs())
5286     return true;
5287 
5288   if (auto *C = dyn_cast<ConstantFP>(V))
5289     return !C->isNaN();
5290 
5291   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5292     if (!C->getElementType()->isFloatingPointTy())
5293       return false;
5294     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5295       if (C->getElementAsAPFloat(I).isNaN())
5296         return false;
5297     }
5298     return true;
5299   }
5300 
5301   if (isa<ConstantAggregateZero>(V))
5302     return true;
5303 
5304   return false;
5305 }
5306 
5307 static bool isKnownNonZero(const Value *V) {
5308   if (auto *C = dyn_cast<ConstantFP>(V))
5309     return !C->isZero();
5310 
5311   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5312     if (!C->getElementType()->isFloatingPointTy())
5313       return false;
5314     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5315       if (C->getElementAsAPFloat(I).isZero())
5316         return false;
5317     }
5318     return true;
5319   }
5320 
5321   return false;
5322 }
5323 
5324 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5325 /// Given non-min/max outer cmp/select from the clamp pattern this
5326 /// function recognizes if it can be substitued by a "canonical" min/max
5327 /// pattern.
5328 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5329                                                Value *CmpLHS, Value *CmpRHS,
5330                                                Value *TrueVal, Value *FalseVal,
5331                                                Value *&LHS, Value *&RHS) {
5332   // Try to match
5333   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5334   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5335   // and return description of the outer Max/Min.
5336 
5337   // First, check if select has inverse order:
5338   if (CmpRHS == FalseVal) {
5339     std::swap(TrueVal, FalseVal);
5340     Pred = CmpInst::getInversePredicate(Pred);
5341   }
5342 
5343   // Assume success now. If there's no match, callers should not use these anyway.
5344   LHS = TrueVal;
5345   RHS = FalseVal;
5346 
5347   const APFloat *FC1;
5348   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5349     return {SPF_UNKNOWN, SPNB_NA, false};
5350 
5351   const APFloat *FC2;
5352   switch (Pred) {
5353   case CmpInst::FCMP_OLT:
5354   case CmpInst::FCMP_OLE:
5355   case CmpInst::FCMP_ULT:
5356   case CmpInst::FCMP_ULE:
5357     if (match(FalseVal,
5358               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5359                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5360         *FC1 < *FC2)
5361       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5362     break;
5363   case CmpInst::FCMP_OGT:
5364   case CmpInst::FCMP_OGE:
5365   case CmpInst::FCMP_UGT:
5366   case CmpInst::FCMP_UGE:
5367     if (match(FalseVal,
5368               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5369                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5370         *FC1 > *FC2)
5371       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5372     break;
5373   default:
5374     break;
5375   }
5376 
5377   return {SPF_UNKNOWN, SPNB_NA, false};
5378 }
5379 
5380 /// Recognize variations of:
5381 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5382 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5383                                       Value *CmpLHS, Value *CmpRHS,
5384                                       Value *TrueVal, Value *FalseVal) {
5385   // Swap the select operands and predicate to match the patterns below.
5386   if (CmpRHS != TrueVal) {
5387     Pred = ICmpInst::getSwappedPredicate(Pred);
5388     std::swap(TrueVal, FalseVal);
5389   }
5390   const APInt *C1;
5391   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5392     const APInt *C2;
5393     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5394     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5395         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5396       return {SPF_SMAX, SPNB_NA, false};
5397 
5398     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5399     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5400         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5401       return {SPF_SMIN, SPNB_NA, false};
5402 
5403     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5404     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5405         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5406       return {SPF_UMAX, SPNB_NA, false};
5407 
5408     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5409     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5410         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5411       return {SPF_UMIN, SPNB_NA, false};
5412   }
5413   return {SPF_UNKNOWN, SPNB_NA, false};
5414 }
5415 
5416 /// Recognize variations of:
5417 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5418 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5419                                                Value *CmpLHS, Value *CmpRHS,
5420                                                Value *TVal, Value *FVal,
5421                                                unsigned Depth) {
5422   // TODO: Allow FP min/max with nnan/nsz.
5423   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5424 
5425   Value *A = nullptr, *B = nullptr;
5426   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5427   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5428     return {SPF_UNKNOWN, SPNB_NA, false};
5429 
5430   Value *C = nullptr, *D = nullptr;
5431   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5432   if (L.Flavor != R.Flavor)
5433     return {SPF_UNKNOWN, SPNB_NA, false};
5434 
5435   // We have something like: x Pred y ? min(a, b) : min(c, d).
5436   // Try to match the compare to the min/max operations of the select operands.
5437   // First, make sure we have the right compare predicate.
5438   switch (L.Flavor) {
5439   case SPF_SMIN:
5440     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5441       Pred = ICmpInst::getSwappedPredicate(Pred);
5442       std::swap(CmpLHS, CmpRHS);
5443     }
5444     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5445       break;
5446     return {SPF_UNKNOWN, SPNB_NA, false};
5447   case SPF_SMAX:
5448     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5449       Pred = ICmpInst::getSwappedPredicate(Pred);
5450       std::swap(CmpLHS, CmpRHS);
5451     }
5452     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5453       break;
5454     return {SPF_UNKNOWN, SPNB_NA, false};
5455   case SPF_UMIN:
5456     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5457       Pred = ICmpInst::getSwappedPredicate(Pred);
5458       std::swap(CmpLHS, CmpRHS);
5459     }
5460     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5461       break;
5462     return {SPF_UNKNOWN, SPNB_NA, false};
5463   case SPF_UMAX:
5464     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5465       Pred = ICmpInst::getSwappedPredicate(Pred);
5466       std::swap(CmpLHS, CmpRHS);
5467     }
5468     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5469       break;
5470     return {SPF_UNKNOWN, SPNB_NA, false};
5471   default:
5472     return {SPF_UNKNOWN, SPNB_NA, false};
5473   }
5474 
5475   // If there is a common operand in the already matched min/max and the other
5476   // min/max operands match the compare operands (either directly or inverted),
5477   // then this is min/max of the same flavor.
5478 
5479   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5480   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5481   if (D == B) {
5482     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5483                                          match(A, m_Not(m_Specific(CmpRHS)))))
5484       return {L.Flavor, SPNB_NA, false};
5485   }
5486   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5487   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5488   if (C == B) {
5489     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5490                                          match(A, m_Not(m_Specific(CmpRHS)))))
5491       return {L.Flavor, SPNB_NA, false};
5492   }
5493   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5494   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5495   if (D == A) {
5496     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5497                                          match(B, m_Not(m_Specific(CmpRHS)))))
5498       return {L.Flavor, SPNB_NA, false};
5499   }
5500   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5501   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5502   if (C == A) {
5503     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5504                                          match(B, m_Not(m_Specific(CmpRHS)))))
5505       return {L.Flavor, SPNB_NA, false};
5506   }
5507 
5508   return {SPF_UNKNOWN, SPNB_NA, false};
5509 }
5510 
5511 /// If the input value is the result of a 'not' op, constant integer, or vector
5512 /// splat of a constant integer, return the bitwise-not source value.
5513 /// TODO: This could be extended to handle non-splat vector integer constants.
5514 static Value *getNotValue(Value *V) {
5515   Value *NotV;
5516   if (match(V, m_Not(m_Value(NotV))))
5517     return NotV;
5518 
5519   const APInt *C;
5520   if (match(V, m_APInt(C)))
5521     return ConstantInt::get(V->getType(), ~(*C));
5522 
5523   return nullptr;
5524 }
5525 
5526 /// Match non-obvious integer minimum and maximum sequences.
5527 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5528                                        Value *CmpLHS, Value *CmpRHS,
5529                                        Value *TrueVal, Value *FalseVal,
5530                                        Value *&LHS, Value *&RHS,
5531                                        unsigned Depth) {
5532   // Assume success. If there's no match, callers should not use these anyway.
5533   LHS = TrueVal;
5534   RHS = FalseVal;
5535 
5536   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5537   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5538     return SPR;
5539 
5540   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5541   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5542     return SPR;
5543 
5544   // Look through 'not' ops to find disguised min/max.
5545   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5546   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5547   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5548     switch (Pred) {
5549     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5550     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5551     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5552     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5553     default: break;
5554     }
5555   }
5556 
5557   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5558   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5559   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5560     switch (Pred) {
5561     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5562     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5563     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5564     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5565     default: break;
5566     }
5567   }
5568 
5569   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5570     return {SPF_UNKNOWN, SPNB_NA, false};
5571 
5572   // Z = X -nsw Y
5573   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5574   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5575   if (match(TrueVal, m_Zero()) &&
5576       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5577     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5578 
5579   // Z = X -nsw Y
5580   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5581   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5582   if (match(FalseVal, m_Zero()) &&
5583       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5584     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5585 
5586   const APInt *C1;
5587   if (!match(CmpRHS, m_APInt(C1)))
5588     return {SPF_UNKNOWN, SPNB_NA, false};
5589 
5590   // An unsigned min/max can be written with a signed compare.
5591   const APInt *C2;
5592   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5593       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5594     // Is the sign bit set?
5595     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5596     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5597     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5598         C2->isMaxSignedValue())
5599       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5600 
5601     // Is the sign bit clear?
5602     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5603     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5604     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5605         C2->isMinSignedValue())
5606       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5607   }
5608 
5609   return {SPF_UNKNOWN, SPNB_NA, false};
5610 }
5611 
5612 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5613   assert(X && Y && "Invalid operand");
5614 
5615   // X = sub (0, Y) || X = sub nsw (0, Y)
5616   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5617       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5618     return true;
5619 
5620   // Y = sub (0, X) || Y = sub nsw (0, X)
5621   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5622       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5623     return true;
5624 
5625   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5626   Value *A, *B;
5627   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5628                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5629          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5630                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5631 }
5632 
5633 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5634                                               FastMathFlags FMF,
5635                                               Value *CmpLHS, Value *CmpRHS,
5636                                               Value *TrueVal, Value *FalseVal,
5637                                               Value *&LHS, Value *&RHS,
5638                                               unsigned Depth) {
5639   if (CmpInst::isFPPredicate(Pred)) {
5640     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5641     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5642     // purpose of identifying min/max. Disregard vector constants with undefined
5643     // elements because those can not be back-propagated for analysis.
5644     Value *OutputZeroVal = nullptr;
5645     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5646         !cast<Constant>(TrueVal)->containsUndefElement())
5647       OutputZeroVal = TrueVal;
5648     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5649              !cast<Constant>(FalseVal)->containsUndefElement())
5650       OutputZeroVal = FalseVal;
5651 
5652     if (OutputZeroVal) {
5653       if (match(CmpLHS, m_AnyZeroFP()))
5654         CmpLHS = OutputZeroVal;
5655       if (match(CmpRHS, m_AnyZeroFP()))
5656         CmpRHS = OutputZeroVal;
5657     }
5658   }
5659 
5660   LHS = CmpLHS;
5661   RHS = CmpRHS;
5662 
5663   // Signed zero may return inconsistent results between implementations.
5664   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5665   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5666   // Therefore, we behave conservatively and only proceed if at least one of the
5667   // operands is known to not be zero or if we don't care about signed zero.
5668   switch (Pred) {
5669   default: break;
5670   // FIXME: Include OGT/OLT/UGT/ULT.
5671   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5672   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5673     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5674         !isKnownNonZero(CmpRHS))
5675       return {SPF_UNKNOWN, SPNB_NA, false};
5676   }
5677 
5678   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5679   bool Ordered = false;
5680 
5681   // When given one NaN and one non-NaN input:
5682   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5683   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5684   //     ordered comparison fails), which could be NaN or non-NaN.
5685   // so here we discover exactly what NaN behavior is required/accepted.
5686   if (CmpInst::isFPPredicate(Pred)) {
5687     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5688     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5689 
5690     if (LHSSafe && RHSSafe) {
5691       // Both operands are known non-NaN.
5692       NaNBehavior = SPNB_RETURNS_ANY;
5693     } else if (CmpInst::isOrdered(Pred)) {
5694       // An ordered comparison will return false when given a NaN, so it
5695       // returns the RHS.
5696       Ordered = true;
5697       if (LHSSafe)
5698         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5699         NaNBehavior = SPNB_RETURNS_NAN;
5700       else if (RHSSafe)
5701         NaNBehavior = SPNB_RETURNS_OTHER;
5702       else
5703         // Completely unsafe.
5704         return {SPF_UNKNOWN, SPNB_NA, false};
5705     } else {
5706       Ordered = false;
5707       // An unordered comparison will return true when given a NaN, so it
5708       // returns the LHS.
5709       if (LHSSafe)
5710         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5711         NaNBehavior = SPNB_RETURNS_OTHER;
5712       else if (RHSSafe)
5713         NaNBehavior = SPNB_RETURNS_NAN;
5714       else
5715         // Completely unsafe.
5716         return {SPF_UNKNOWN, SPNB_NA, false};
5717     }
5718   }
5719 
5720   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5721     std::swap(CmpLHS, CmpRHS);
5722     Pred = CmpInst::getSwappedPredicate(Pred);
5723     if (NaNBehavior == SPNB_RETURNS_NAN)
5724       NaNBehavior = SPNB_RETURNS_OTHER;
5725     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5726       NaNBehavior = SPNB_RETURNS_NAN;
5727     Ordered = !Ordered;
5728   }
5729 
5730   // ([if]cmp X, Y) ? X : Y
5731   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5732     switch (Pred) {
5733     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5734     case ICmpInst::ICMP_UGT:
5735     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5736     case ICmpInst::ICMP_SGT:
5737     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5738     case ICmpInst::ICMP_ULT:
5739     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5740     case ICmpInst::ICMP_SLT:
5741     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5742     case FCmpInst::FCMP_UGT:
5743     case FCmpInst::FCMP_UGE:
5744     case FCmpInst::FCMP_OGT:
5745     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5746     case FCmpInst::FCMP_ULT:
5747     case FCmpInst::FCMP_ULE:
5748     case FCmpInst::FCMP_OLT:
5749     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5750     }
5751   }
5752 
5753   if (isKnownNegation(TrueVal, FalseVal)) {
5754     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5755     // match against either LHS or sext(LHS).
5756     auto MaybeSExtCmpLHS =
5757         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5758     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5759     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5760     if (match(TrueVal, MaybeSExtCmpLHS)) {
5761       // Set the return values. If the compare uses the negated value (-X >s 0),
5762       // swap the return values because the negated value is always 'RHS'.
5763       LHS = TrueVal;
5764       RHS = FalseVal;
5765       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5766         std::swap(LHS, RHS);
5767 
5768       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5769       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5770       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5771         return {SPF_ABS, SPNB_NA, false};
5772 
5773       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5774       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5775         return {SPF_ABS, SPNB_NA, false};
5776 
5777       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5778       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5779       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5780         return {SPF_NABS, SPNB_NA, false};
5781     }
5782     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5783       // Set the return values. If the compare uses the negated value (-X >s 0),
5784       // swap the return values because the negated value is always 'RHS'.
5785       LHS = FalseVal;
5786       RHS = TrueVal;
5787       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5788         std::swap(LHS, RHS);
5789 
5790       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5791       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5792       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5793         return {SPF_NABS, SPNB_NA, false};
5794 
5795       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5796       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5797       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5798         return {SPF_ABS, SPNB_NA, false};
5799     }
5800   }
5801 
5802   if (CmpInst::isIntPredicate(Pred))
5803     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5804 
5805   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5806   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5807   // semantics than minNum. Be conservative in such case.
5808   if (NaNBehavior != SPNB_RETURNS_ANY ||
5809       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5810        !isKnownNonZero(CmpRHS)))
5811     return {SPF_UNKNOWN, SPNB_NA, false};
5812 
5813   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5814 }
5815 
5816 /// Helps to match a select pattern in case of a type mismatch.
5817 ///
5818 /// The function processes the case when type of true and false values of a
5819 /// select instruction differs from type of the cmp instruction operands because
5820 /// of a cast instruction. The function checks if it is legal to move the cast
5821 /// operation after "select". If yes, it returns the new second value of
5822 /// "select" (with the assumption that cast is moved):
5823 /// 1. As operand of cast instruction when both values of "select" are same cast
5824 /// instructions.
5825 /// 2. As restored constant (by applying reverse cast operation) when the first
5826 /// value of the "select" is a cast operation and the second value is a
5827 /// constant.
5828 /// NOTE: We return only the new second value because the first value could be
5829 /// accessed as operand of cast instruction.
5830 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5831                               Instruction::CastOps *CastOp) {
5832   auto *Cast1 = dyn_cast<CastInst>(V1);
5833   if (!Cast1)
5834     return nullptr;
5835 
5836   *CastOp = Cast1->getOpcode();
5837   Type *SrcTy = Cast1->getSrcTy();
5838   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5839     // If V1 and V2 are both the same cast from the same type, look through V1.
5840     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5841       return Cast2->getOperand(0);
5842     return nullptr;
5843   }
5844 
5845   auto *C = dyn_cast<Constant>(V2);
5846   if (!C)
5847     return nullptr;
5848 
5849   Constant *CastedTo = nullptr;
5850   switch (*CastOp) {
5851   case Instruction::ZExt:
5852     if (CmpI->isUnsigned())
5853       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5854     break;
5855   case Instruction::SExt:
5856     if (CmpI->isSigned())
5857       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5858     break;
5859   case Instruction::Trunc:
5860     Constant *CmpConst;
5861     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5862         CmpConst->getType() == SrcTy) {
5863       // Here we have the following case:
5864       //
5865       //   %cond = cmp iN %x, CmpConst
5866       //   %tr = trunc iN %x to iK
5867       //   %narrowsel = select i1 %cond, iK %t, iK C
5868       //
5869       // We can always move trunc after select operation:
5870       //
5871       //   %cond = cmp iN %x, CmpConst
5872       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5873       //   %tr = trunc iN %widesel to iK
5874       //
5875       // Note that C could be extended in any way because we don't care about
5876       // upper bits after truncation. It can't be abs pattern, because it would
5877       // look like:
5878       //
5879       //   select i1 %cond, x, -x.
5880       //
5881       // So only min/max pattern could be matched. Such match requires widened C
5882       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5883       // CmpConst == C is checked below.
5884       CastedTo = CmpConst;
5885     } else {
5886       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5887     }
5888     break;
5889   case Instruction::FPTrunc:
5890     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5891     break;
5892   case Instruction::FPExt:
5893     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5894     break;
5895   case Instruction::FPToUI:
5896     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5897     break;
5898   case Instruction::FPToSI:
5899     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5900     break;
5901   case Instruction::UIToFP:
5902     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5903     break;
5904   case Instruction::SIToFP:
5905     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5906     break;
5907   default:
5908     break;
5909   }
5910 
5911   if (!CastedTo)
5912     return nullptr;
5913 
5914   // Make sure the cast doesn't lose any information.
5915   Constant *CastedBack =
5916       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5917   if (CastedBack != C)
5918     return nullptr;
5919 
5920   return CastedTo;
5921 }
5922 
5923 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5924                                              Instruction::CastOps *CastOp,
5925                                              unsigned Depth) {
5926   if (Depth >= MaxAnalysisRecursionDepth)
5927     return {SPF_UNKNOWN, SPNB_NA, false};
5928 
5929   SelectInst *SI = dyn_cast<SelectInst>(V);
5930   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5931 
5932   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5933   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5934 
5935   Value *TrueVal = SI->getTrueValue();
5936   Value *FalseVal = SI->getFalseValue();
5937 
5938   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5939                                             CastOp, Depth);
5940 }
5941 
5942 SelectPatternResult llvm::matchDecomposedSelectPattern(
5943     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5944     Instruction::CastOps *CastOp, unsigned Depth) {
5945   CmpInst::Predicate Pred = CmpI->getPredicate();
5946   Value *CmpLHS = CmpI->getOperand(0);
5947   Value *CmpRHS = CmpI->getOperand(1);
5948   FastMathFlags FMF;
5949   if (isa<FPMathOperator>(CmpI))
5950     FMF = CmpI->getFastMathFlags();
5951 
5952   // Bail out early.
5953   if (CmpI->isEquality())
5954     return {SPF_UNKNOWN, SPNB_NA, false};
5955 
5956   // Deal with type mismatches.
5957   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5958     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5959       // If this is a potential fmin/fmax with a cast to integer, then ignore
5960       // -0.0 because there is no corresponding integer value.
5961       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5962         FMF.setNoSignedZeros();
5963       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5964                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5965                                   LHS, RHS, Depth);
5966     }
5967     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5968       // If this is a potential fmin/fmax with a cast to integer, then ignore
5969       // -0.0 because there is no corresponding integer value.
5970       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5971         FMF.setNoSignedZeros();
5972       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5973                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5974                                   LHS, RHS, Depth);
5975     }
5976   }
5977   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5978                               LHS, RHS, Depth);
5979 }
5980 
5981 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5982   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5983   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5984   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5985   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5986   if (SPF == SPF_FMINNUM)
5987     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5988   if (SPF == SPF_FMAXNUM)
5989     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5990   llvm_unreachable("unhandled!");
5991 }
5992 
5993 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5994   if (SPF == SPF_SMIN) return SPF_SMAX;
5995   if (SPF == SPF_UMIN) return SPF_UMAX;
5996   if (SPF == SPF_SMAX) return SPF_SMIN;
5997   if (SPF == SPF_UMAX) return SPF_UMIN;
5998   llvm_unreachable("unhandled!");
5999 }
6000 
6001 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6002   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6003 }
6004 
6005 /// Return true if "icmp Pred LHS RHS" is always true.
6006 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6007                             const Value *RHS, const DataLayout &DL,
6008                             unsigned Depth) {
6009   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6010   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6011     return true;
6012 
6013   switch (Pred) {
6014   default:
6015     return false;
6016 
6017   case CmpInst::ICMP_SLE: {
6018     const APInt *C;
6019 
6020     // LHS s<= LHS +_{nsw} C   if C >= 0
6021     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6022       return !C->isNegative();
6023     return false;
6024   }
6025 
6026   case CmpInst::ICMP_ULE: {
6027     const APInt *C;
6028 
6029     // LHS u<= LHS +_{nuw} C   for any C
6030     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6031       return true;
6032 
6033     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6034     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6035                                        const Value *&X,
6036                                        const APInt *&CA, const APInt *&CB) {
6037       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6038           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6039         return true;
6040 
6041       // If X & C == 0 then (X | C) == X +_{nuw} C
6042       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6043           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6044         KnownBits Known(CA->getBitWidth());
6045         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6046                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6047         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6048           return true;
6049       }
6050 
6051       return false;
6052     };
6053 
6054     const Value *X;
6055     const APInt *CLHS, *CRHS;
6056     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6057       return CLHS->ule(*CRHS);
6058 
6059     return false;
6060   }
6061   }
6062 }
6063 
6064 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6065 /// ALHS ARHS" is true.  Otherwise, return None.
6066 static Optional<bool>
6067 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6068                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6069                       const DataLayout &DL, unsigned Depth) {
6070   switch (Pred) {
6071   default:
6072     return None;
6073 
6074   case CmpInst::ICMP_SLT:
6075   case CmpInst::ICMP_SLE:
6076     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6077         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6078       return true;
6079     return None;
6080 
6081   case CmpInst::ICMP_ULT:
6082   case CmpInst::ICMP_ULE:
6083     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6084         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6085       return true;
6086     return None;
6087   }
6088 }
6089 
6090 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6091 /// when the operands match, but are swapped.
6092 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6093                           const Value *BLHS, const Value *BRHS,
6094                           bool &IsSwappedOps) {
6095 
6096   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6097   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6098   return IsMatchingOps || IsSwappedOps;
6099 }
6100 
6101 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6102 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6103 /// Otherwise, return None if we can't infer anything.
6104 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6105                                                     CmpInst::Predicate BPred,
6106                                                     bool AreSwappedOps) {
6107   // Canonicalize the predicate as if the operands were not commuted.
6108   if (AreSwappedOps)
6109     BPred = ICmpInst::getSwappedPredicate(BPred);
6110 
6111   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6112     return true;
6113   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6114     return false;
6115 
6116   return None;
6117 }
6118 
6119 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6120 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6121 /// Otherwise, return None if we can't infer anything.
6122 static Optional<bool>
6123 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6124                                  const ConstantInt *C1,
6125                                  CmpInst::Predicate BPred,
6126                                  const ConstantInt *C2) {
6127   ConstantRange DomCR =
6128       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6129   ConstantRange CR =
6130       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6131   ConstantRange Intersection = DomCR.intersectWith(CR);
6132   ConstantRange Difference = DomCR.difference(CR);
6133   if (Intersection.isEmptySet())
6134     return false;
6135   if (Difference.isEmptySet())
6136     return true;
6137   return None;
6138 }
6139 
6140 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6141 /// false.  Otherwise, return None if we can't infer anything.
6142 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6143                                          CmpInst::Predicate BPred,
6144                                          const Value *BLHS, const Value *BRHS,
6145                                          const DataLayout &DL, bool LHSIsTrue,
6146                                          unsigned Depth) {
6147   Value *ALHS = LHS->getOperand(0);
6148   Value *ARHS = LHS->getOperand(1);
6149 
6150   // The rest of the logic assumes the LHS condition is true.  If that's not the
6151   // case, invert the predicate to make it so.
6152   CmpInst::Predicate APred =
6153       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6154 
6155   // Can we infer anything when the two compares have matching operands?
6156   bool AreSwappedOps;
6157   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6158     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6159             APred, BPred, AreSwappedOps))
6160       return Implication;
6161     // No amount of additional analysis will infer the second condition, so
6162     // early exit.
6163     return None;
6164   }
6165 
6166   // Can we infer anything when the LHS operands match and the RHS operands are
6167   // constants (not necessarily matching)?
6168   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6169     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6170             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6171       return Implication;
6172     // No amount of additional analysis will infer the second condition, so
6173     // early exit.
6174     return None;
6175   }
6176 
6177   if (APred == BPred)
6178     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6179   return None;
6180 }
6181 
6182 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6183 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6184 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6185 static Optional<bool>
6186 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6187                    const Value *RHSOp0, const Value *RHSOp1,
6188 
6189                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6190   // The LHS must be an 'or' or an 'and' instruction.
6191   assert((LHS->getOpcode() == Instruction::And ||
6192           LHS->getOpcode() == Instruction::Or) &&
6193          "Expected LHS to be 'and' or 'or'.");
6194 
6195   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6196 
6197   // If the result of an 'or' is false, then we know both legs of the 'or' are
6198   // false.  Similarly, if the result of an 'and' is true, then we know both
6199   // legs of the 'and' are true.
6200   Value *ALHS, *ARHS;
6201   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6202       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6203     // FIXME: Make this non-recursion.
6204     if (Optional<bool> Implication = isImpliedCondition(
6205             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6206       return Implication;
6207     if (Optional<bool> Implication = isImpliedCondition(
6208             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6209       return Implication;
6210     return None;
6211   }
6212   return None;
6213 }
6214 
6215 Optional<bool>
6216 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6217                          const Value *RHSOp0, const Value *RHSOp1,
6218                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6219   // Bail out when we hit the limit.
6220   if (Depth == MaxAnalysisRecursionDepth)
6221     return None;
6222 
6223   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6224   // example.
6225   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6226     return None;
6227 
6228   Type *OpTy = LHS->getType();
6229   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6230 
6231   // FIXME: Extending the code below to handle vectors.
6232   if (OpTy->isVectorTy())
6233     return None;
6234 
6235   assert(OpTy->isIntegerTy(1) && "implied by above");
6236 
6237   // Both LHS and RHS are icmps.
6238   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6239   if (LHSCmp)
6240     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6241                               Depth);
6242 
6243   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6244   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6245   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6246   if (LHSBO) {
6247     if ((LHSBO->getOpcode() == Instruction::And ||
6248          LHSBO->getOpcode() == Instruction::Or))
6249       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6250                                 Depth);
6251   }
6252   return None;
6253 }
6254 
6255 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6256                                         const DataLayout &DL, bool LHSIsTrue,
6257                                         unsigned Depth) {
6258   // LHS ==> RHS by definition
6259   if (LHS == RHS)
6260     return LHSIsTrue;
6261 
6262   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6263   if (RHSCmp)
6264     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6265                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6266                               LHSIsTrue, Depth);
6267   return None;
6268 }
6269 
6270 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6271 // condition dominating ContextI or nullptr, if no condition is found.
6272 static std::pair<Value *, bool>
6273 getDomPredecessorCondition(const Instruction *ContextI) {
6274   if (!ContextI || !ContextI->getParent())
6275     return {nullptr, false};
6276 
6277   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6278   // dominator tree (eg, from a SimplifyQuery) instead?
6279   const BasicBlock *ContextBB = ContextI->getParent();
6280   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6281   if (!PredBB)
6282     return {nullptr, false};
6283 
6284   // We need a conditional branch in the predecessor.
6285   Value *PredCond;
6286   BasicBlock *TrueBB, *FalseBB;
6287   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6288     return {nullptr, false};
6289 
6290   // The branch should get simplified. Don't bother simplifying this condition.
6291   if (TrueBB == FalseBB)
6292     return {nullptr, false};
6293 
6294   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6295          "Predecessor block does not point to successor?");
6296 
6297   // Is this condition implied by the predecessor condition?
6298   return {PredCond, TrueBB == ContextBB};
6299 }
6300 
6301 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6302                                              const Instruction *ContextI,
6303                                              const DataLayout &DL) {
6304   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6305   auto PredCond = getDomPredecessorCondition(ContextI);
6306   if (PredCond.first)
6307     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6308   return None;
6309 }
6310 
6311 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6312                                              const Value *LHS, const Value *RHS,
6313                                              const Instruction *ContextI,
6314                                              const DataLayout &DL) {
6315   auto PredCond = getDomPredecessorCondition(ContextI);
6316   if (PredCond.first)
6317     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6318                               PredCond.second);
6319   return None;
6320 }
6321 
6322 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6323                               APInt &Upper, const InstrInfoQuery &IIQ) {
6324   unsigned Width = Lower.getBitWidth();
6325   const APInt *C;
6326   switch (BO.getOpcode()) {
6327   case Instruction::Add:
6328     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6329       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6330       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6331         // 'add nuw x, C' produces [C, UINT_MAX].
6332         Lower = *C;
6333       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6334         if (C->isNegative()) {
6335           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6336           Lower = APInt::getSignedMinValue(Width);
6337           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6338         } else {
6339           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6340           Lower = APInt::getSignedMinValue(Width) + *C;
6341           Upper = APInt::getSignedMaxValue(Width) + 1;
6342         }
6343       }
6344     }
6345     break;
6346 
6347   case Instruction::And:
6348     if (match(BO.getOperand(1), m_APInt(C)))
6349       // 'and x, C' produces [0, C].
6350       Upper = *C + 1;
6351     break;
6352 
6353   case Instruction::Or:
6354     if (match(BO.getOperand(1), m_APInt(C)))
6355       // 'or x, C' produces [C, UINT_MAX].
6356       Lower = *C;
6357     break;
6358 
6359   case Instruction::AShr:
6360     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6361       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6362       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6363       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6364     } else if (match(BO.getOperand(0), m_APInt(C))) {
6365       unsigned ShiftAmount = Width - 1;
6366       if (!C->isNullValue() && IIQ.isExact(&BO))
6367         ShiftAmount = C->countTrailingZeros();
6368       if (C->isNegative()) {
6369         // 'ashr C, x' produces [C, C >> (Width-1)]
6370         Lower = *C;
6371         Upper = C->ashr(ShiftAmount) + 1;
6372       } else {
6373         // 'ashr C, x' produces [C >> (Width-1), C]
6374         Lower = C->ashr(ShiftAmount);
6375         Upper = *C + 1;
6376       }
6377     }
6378     break;
6379 
6380   case Instruction::LShr:
6381     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6382       // 'lshr x, C' produces [0, UINT_MAX >> C].
6383       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6384     } else if (match(BO.getOperand(0), m_APInt(C))) {
6385       // 'lshr C, x' produces [C >> (Width-1), C].
6386       unsigned ShiftAmount = Width - 1;
6387       if (!C->isNullValue() && IIQ.isExact(&BO))
6388         ShiftAmount = C->countTrailingZeros();
6389       Lower = C->lshr(ShiftAmount);
6390       Upper = *C + 1;
6391     }
6392     break;
6393 
6394   case Instruction::Shl:
6395     if (match(BO.getOperand(0), m_APInt(C))) {
6396       if (IIQ.hasNoUnsignedWrap(&BO)) {
6397         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6398         Lower = *C;
6399         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6400       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6401         if (C->isNegative()) {
6402           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6403           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6404           Lower = C->shl(ShiftAmount);
6405           Upper = *C + 1;
6406         } else {
6407           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6408           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6409           Lower = *C;
6410           Upper = C->shl(ShiftAmount) + 1;
6411         }
6412       }
6413     }
6414     break;
6415 
6416   case Instruction::SDiv:
6417     if (match(BO.getOperand(1), m_APInt(C))) {
6418       APInt IntMin = APInt::getSignedMinValue(Width);
6419       APInt IntMax = APInt::getSignedMaxValue(Width);
6420       if (C->isAllOnesValue()) {
6421         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6422         //    where C != -1 and C != 0 and C != 1
6423         Lower = IntMin + 1;
6424         Upper = IntMax + 1;
6425       } else if (C->countLeadingZeros() < Width - 1) {
6426         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6427         //    where C != -1 and C != 0 and C != 1
6428         Lower = IntMin.sdiv(*C);
6429         Upper = IntMax.sdiv(*C);
6430         if (Lower.sgt(Upper))
6431           std::swap(Lower, Upper);
6432         Upper = Upper + 1;
6433         assert(Upper != Lower && "Upper part of range has wrapped!");
6434       }
6435     } else if (match(BO.getOperand(0), m_APInt(C))) {
6436       if (C->isMinSignedValue()) {
6437         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6438         Lower = *C;
6439         Upper = Lower.lshr(1) + 1;
6440       } else {
6441         // 'sdiv C, x' produces [-|C|, |C|].
6442         Upper = C->abs() + 1;
6443         Lower = (-Upper) + 1;
6444       }
6445     }
6446     break;
6447 
6448   case Instruction::UDiv:
6449     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6450       // 'udiv x, C' produces [0, UINT_MAX / C].
6451       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6452     } else if (match(BO.getOperand(0), m_APInt(C))) {
6453       // 'udiv C, x' produces [0, C].
6454       Upper = *C + 1;
6455     }
6456     break;
6457 
6458   case Instruction::SRem:
6459     if (match(BO.getOperand(1), m_APInt(C))) {
6460       // 'srem x, C' produces (-|C|, |C|).
6461       Upper = C->abs();
6462       Lower = (-Upper) + 1;
6463     }
6464     break;
6465 
6466   case Instruction::URem:
6467     if (match(BO.getOperand(1), m_APInt(C)))
6468       // 'urem x, C' produces [0, C).
6469       Upper = *C;
6470     break;
6471 
6472   default:
6473     break;
6474   }
6475 }
6476 
6477 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6478                                   APInt &Upper) {
6479   unsigned Width = Lower.getBitWidth();
6480   const APInt *C;
6481   switch (II.getIntrinsicID()) {
6482   case Intrinsic::uadd_sat:
6483     // uadd.sat(x, C) produces [C, UINT_MAX].
6484     if (match(II.getOperand(0), m_APInt(C)) ||
6485         match(II.getOperand(1), m_APInt(C)))
6486       Lower = *C;
6487     break;
6488   case Intrinsic::sadd_sat:
6489     if (match(II.getOperand(0), m_APInt(C)) ||
6490         match(II.getOperand(1), m_APInt(C))) {
6491       if (C->isNegative()) {
6492         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6493         Lower = APInt::getSignedMinValue(Width);
6494         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6495       } else {
6496         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6497         Lower = APInt::getSignedMinValue(Width) + *C;
6498         Upper = APInt::getSignedMaxValue(Width) + 1;
6499       }
6500     }
6501     break;
6502   case Intrinsic::usub_sat:
6503     // usub.sat(C, x) produces [0, C].
6504     if (match(II.getOperand(0), m_APInt(C)))
6505       Upper = *C + 1;
6506     // usub.sat(x, C) produces [0, UINT_MAX - C].
6507     else if (match(II.getOperand(1), m_APInt(C)))
6508       Upper = APInt::getMaxValue(Width) - *C + 1;
6509     break;
6510   case Intrinsic::ssub_sat:
6511     if (match(II.getOperand(0), m_APInt(C))) {
6512       if (C->isNegative()) {
6513         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6514         Lower = APInt::getSignedMinValue(Width);
6515         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6516       } else {
6517         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6518         Lower = *C - APInt::getSignedMaxValue(Width);
6519         Upper = APInt::getSignedMaxValue(Width) + 1;
6520       }
6521     } else if (match(II.getOperand(1), m_APInt(C))) {
6522       if (C->isNegative()) {
6523         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6524         Lower = APInt::getSignedMinValue(Width) - *C;
6525         Upper = APInt::getSignedMaxValue(Width) + 1;
6526       } else {
6527         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6528         Lower = APInt::getSignedMinValue(Width);
6529         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6530       }
6531     }
6532     break;
6533   case Intrinsic::umin:
6534   case Intrinsic::umax:
6535   case Intrinsic::smin:
6536   case Intrinsic::smax:
6537     if (!match(II.getOperand(0), m_APInt(C)) &&
6538         !match(II.getOperand(1), m_APInt(C)))
6539       break;
6540 
6541     switch (II.getIntrinsicID()) {
6542     case Intrinsic::umin:
6543       Upper = *C + 1;
6544       break;
6545     case Intrinsic::umax:
6546       Lower = *C;
6547       break;
6548     case Intrinsic::smin:
6549       Lower = APInt::getSignedMinValue(Width);
6550       Upper = *C + 1;
6551       break;
6552     case Intrinsic::smax:
6553       Lower = *C;
6554       Upper = APInt::getSignedMaxValue(Width) + 1;
6555       break;
6556     default:
6557       llvm_unreachable("Must be min/max intrinsic");
6558     }
6559     break;
6560   case Intrinsic::abs:
6561     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6562     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6563     if (match(II.getOperand(1), m_One()))
6564       Upper = APInt::getSignedMaxValue(Width) + 1;
6565     else
6566       Upper = APInt::getSignedMinValue(Width) + 1;
6567     break;
6568   default:
6569     break;
6570   }
6571 }
6572 
6573 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6574                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6575   const Value *LHS = nullptr, *RHS = nullptr;
6576   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6577   if (R.Flavor == SPF_UNKNOWN)
6578     return;
6579 
6580   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6581 
6582   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6583     // If the negation part of the abs (in RHS) has the NSW flag,
6584     // then the result of abs(X) is [0..SIGNED_MAX],
6585     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6586     Lower = APInt::getNullValue(BitWidth);
6587     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6588         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6589       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6590     else
6591       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6592     return;
6593   }
6594 
6595   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6596     // The result of -abs(X) is <= 0.
6597     Lower = APInt::getSignedMinValue(BitWidth);
6598     Upper = APInt(BitWidth, 1);
6599     return;
6600   }
6601 
6602   const APInt *C;
6603   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6604     return;
6605 
6606   switch (R.Flavor) {
6607     case SPF_UMIN:
6608       Upper = *C + 1;
6609       break;
6610     case SPF_UMAX:
6611       Lower = *C;
6612       break;
6613     case SPF_SMIN:
6614       Lower = APInt::getSignedMinValue(BitWidth);
6615       Upper = *C + 1;
6616       break;
6617     case SPF_SMAX:
6618       Lower = *C;
6619       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6620       break;
6621     default:
6622       break;
6623   }
6624 }
6625 
6626 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6627                                          AssumptionCache *AC,
6628                                          const Instruction *CtxI,
6629                                          unsigned Depth) {
6630   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6631 
6632   if (Depth == MaxAnalysisRecursionDepth)
6633     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6634 
6635   const APInt *C;
6636   if (match(V, m_APInt(C)))
6637     return ConstantRange(*C);
6638 
6639   InstrInfoQuery IIQ(UseInstrInfo);
6640   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6641   APInt Lower = APInt(BitWidth, 0);
6642   APInt Upper = APInt(BitWidth, 0);
6643   if (auto *BO = dyn_cast<BinaryOperator>(V))
6644     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6645   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6646     setLimitsForIntrinsic(*II, Lower, Upper);
6647   else if (auto *SI = dyn_cast<SelectInst>(V))
6648     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6649 
6650   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6651 
6652   if (auto *I = dyn_cast<Instruction>(V))
6653     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6654       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6655 
6656   if (CtxI && AC) {
6657     // Try to restrict the range based on information from assumptions.
6658     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6659       if (!AssumeVH)
6660         continue;
6661       CallInst *I = cast<CallInst>(AssumeVH);
6662       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6663              "Got assumption for the wrong function!");
6664       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6665              "must be an assume intrinsic");
6666 
6667       if (!isValidAssumeForContext(I, CtxI, nullptr))
6668         continue;
6669       Value *Arg = I->getArgOperand(0);
6670       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6671       // Currently we just use information from comparisons.
6672       if (!Cmp || Cmp->getOperand(0) != V)
6673         continue;
6674       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6675                                                AC, I, Depth + 1);
6676       CR = CR.intersectWith(
6677           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6678     }
6679   }
6680 
6681   return CR;
6682 }
6683 
6684 static Optional<int64_t>
6685 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6686   // Skip over the first indices.
6687   gep_type_iterator GTI = gep_type_begin(GEP);
6688   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6689     /*skip along*/;
6690 
6691   // Compute the offset implied by the rest of the indices.
6692   int64_t Offset = 0;
6693   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6694     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6695     if (!OpC)
6696       return None;
6697     if (OpC->isZero())
6698       continue; // No offset.
6699 
6700     // Handle struct indices, which add their field offset to the pointer.
6701     if (StructType *STy = GTI.getStructTypeOrNull()) {
6702       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6703       continue;
6704     }
6705 
6706     // Otherwise, we have a sequential type like an array or fixed-length
6707     // vector. Multiply the index by the ElementSize.
6708     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6709     if (Size.isScalable())
6710       return None;
6711     Offset += Size.getFixedSize() * OpC->getSExtValue();
6712   }
6713 
6714   return Offset;
6715 }
6716 
6717 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6718                                         const DataLayout &DL) {
6719   Ptr1 = Ptr1->stripPointerCasts();
6720   Ptr2 = Ptr2->stripPointerCasts();
6721 
6722   // Handle the trivial case first.
6723   if (Ptr1 == Ptr2) {
6724     return 0;
6725   }
6726 
6727   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6728   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6729 
6730   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6731   // as in "P" and "gep P, 1".
6732   // Also do this iteratively to handle the the following case:
6733   //   Ptr_t1 = GEP Ptr1, c1
6734   //   Ptr_t2 = GEP Ptr_t1, c2
6735   //   Ptr2 = GEP Ptr_t2, c3
6736   // where we will return c1+c2+c3.
6737   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6738   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6739   // are the same, and return the difference between offsets.
6740   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6741                                  const Value *Ptr) -> Optional<int64_t> {
6742     const GEPOperator *GEP_T = GEP;
6743     int64_t OffsetVal = 0;
6744     bool HasSameBase = false;
6745     while (GEP_T) {
6746       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6747       if (!Offset)
6748         return None;
6749       OffsetVal += *Offset;
6750       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6751       if (Op0 == Ptr) {
6752         HasSameBase = true;
6753         break;
6754       }
6755       GEP_T = dyn_cast<GEPOperator>(Op0);
6756     }
6757     if (!HasSameBase)
6758       return None;
6759     return OffsetVal;
6760   };
6761 
6762   if (GEP1) {
6763     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6764     if (Offset)
6765       return -*Offset;
6766   }
6767   if (GEP2) {
6768     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6769     if (Offset)
6770       return Offset;
6771   }
6772 
6773   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6774   // base.  After that base, they may have some number of common (and
6775   // potentially variable) indices.  After that they handle some constant
6776   // offset, which determines their offset from each other.  At this point, we
6777   // handle no other case.
6778   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6779     return None;
6780 
6781   // Skip any common indices and track the GEP types.
6782   unsigned Idx = 1;
6783   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6784     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6785       break;
6786 
6787   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6788   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6789   if (!Offset1 || !Offset2)
6790     return None;
6791   return *Offset2 - *Offset1;
6792 }
6793