1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 165 // If we've been provided with a context instruction, then use that (provided 166 // it has been inserted). 167 if (CxtI && CxtI->getParent()) 168 return CxtI; 169 170 // If the value is really an already-inserted instruction, then use that. 171 CxtI = dyn_cast<Instruction>(V1); 172 if (CxtI && CxtI->getParent()) 173 return CxtI; 174 175 CxtI = dyn_cast<Instruction>(V2); 176 if (CxtI && CxtI->getParent()) 177 return CxtI; 178 179 return nullptr; 180 } 181 182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 183 const APInt &DemandedElts, 184 APInt &DemandedLHS, APInt &DemandedRHS) { 185 // The length of scalable vectors is unknown at compile time, thus we 186 // cannot check their values 187 if (isa<ScalableVectorType>(Shuf->getType())) 188 return false; 189 190 int NumElts = 191 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 192 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 193 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 194 if (DemandedElts.isNullValue()) 195 return true; 196 // Simple case of a shuffle with zeroinitializer. 197 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 198 DemandedLHS.setBit(0); 199 return true; 200 } 201 for (int i = 0; i != NumMaskElts; ++i) { 202 if (!DemandedElts[i]) 203 continue; 204 int M = Shuf->getMaskValue(i); 205 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 206 207 // For undef elements, we don't know anything about the common state of 208 // the shuffle result. 209 if (M == -1) 210 return false; 211 if (M < NumElts) 212 DemandedLHS.setBit(M % NumElts); 213 else 214 DemandedRHS.setBit(M % NumElts); 215 } 216 217 return true; 218 } 219 220 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 221 KnownBits &Known, unsigned Depth, const Query &Q); 222 223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 224 const Query &Q) { 225 // FIXME: We currently have no way to represent the DemandedElts of a scalable 226 // vector 227 if (isa<ScalableVectorType>(V->getType())) { 228 Known.resetAll(); 229 return; 230 } 231 232 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 233 APInt DemandedElts = 234 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 235 computeKnownBits(V, DemandedElts, Known, Depth, Q); 236 } 237 238 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 239 const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, 242 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 243 ::computeKnownBits(V, Known, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 245 } 246 247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 248 KnownBits &Known, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, const DominatorTree *DT, 251 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 252 ::computeKnownBits(V, DemandedElts, Known, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 257 unsigned Depth, const Query &Q); 258 259 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 260 const Query &Q); 261 262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 263 unsigned Depth, AssumptionCache *AC, 264 const Instruction *CxtI, 265 const DominatorTree *DT, 266 OptimizationRemarkEmitter *ORE, 267 bool UseInstrInfo) { 268 return ::computeKnownBits( 269 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 270 } 271 272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 273 const DataLayout &DL, unsigned Depth, 274 AssumptionCache *AC, const Instruction *CxtI, 275 const DominatorTree *DT, 276 OptimizationRemarkEmitter *ORE, 277 bool UseInstrInfo) { 278 return ::computeKnownBits( 279 V, DemandedElts, Depth, 280 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 281 } 282 283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 284 const DataLayout &DL, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT, 286 bool UseInstrInfo) { 287 assert(LHS->getType() == RHS->getType() && 288 "LHS and RHS should have the same type"); 289 assert(LHS->getType()->isIntOrIntVectorTy() && 290 "LHS and RHS should be integers"); 291 // Look for an inverted mask: (X & ~M) op (Y & M). 292 Value *M; 293 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 294 match(RHS, m_c_And(m_Specific(M), m_Value()))) 295 return true; 296 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 297 match(LHS, m_c_And(m_Specific(M), m_Value()))) 298 return true; 299 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 300 KnownBits LHSKnown(IT->getBitWidth()); 301 KnownBits RHSKnown(IT->getBitWidth()); 302 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 303 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 304 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 305 } 306 307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 308 for (const User *U : CxtI->users()) { 309 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 310 if (IC->isEquality()) 311 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 312 if (C->isNullValue()) 313 continue; 314 return false; 315 } 316 return true; 317 } 318 319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 320 const Query &Q); 321 322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 323 bool OrZero, unsigned Depth, 324 AssumptionCache *AC, const Instruction *CxtI, 325 const DominatorTree *DT, bool UseInstrInfo) { 326 return ::isKnownToBeAPowerOfTwo( 327 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 328 } 329 330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 331 unsigned Depth, const Query &Q); 332 333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 334 335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 return ::isKnownNonZero(V, Depth, 339 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 340 } 341 342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 343 unsigned Depth, AssumptionCache *AC, 344 const Instruction *CxtI, const DominatorTree *DT, 345 bool UseInstrInfo) { 346 KnownBits Known = 347 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 348 return Known.isNonNegative(); 349 } 350 351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 352 AssumptionCache *AC, const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 if (auto *CI = dyn_cast<ConstantInt>(V)) 355 return CI->getValue().isStrictlyPositive(); 356 357 // TODO: We'd doing two recursive queries here. We should factor this such 358 // that only a single query is needed. 359 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 360 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 361 } 362 363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 364 AssumptionCache *AC, const Instruction *CxtI, 365 const DominatorTree *DT, bool UseInstrInfo) { 366 KnownBits Known = 367 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 368 return Known.isNegative(); 369 } 370 371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 372 const Query &Q); 373 374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 375 const DataLayout &DL, AssumptionCache *AC, 376 const Instruction *CxtI, const DominatorTree *DT, 377 bool UseInstrInfo) { 378 return ::isKnownNonEqual(V1, V2, 0, 379 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 380 UseInstrInfo, /*ORE=*/nullptr)); 381 } 382 383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 384 const Query &Q); 385 386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 387 const DataLayout &DL, unsigned Depth, 388 AssumptionCache *AC, const Instruction *CxtI, 389 const DominatorTree *DT, bool UseInstrInfo) { 390 return ::MaskedValueIsZero( 391 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 392 } 393 394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 395 unsigned Depth, const Query &Q); 396 397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 398 const Query &Q) { 399 // FIXME: We currently have no way to represent the DemandedElts of a scalable 400 // vector 401 if (isa<ScalableVectorType>(V->getType())) 402 return 1; 403 404 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 405 APInt DemandedElts = 406 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 407 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 408 } 409 410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 411 unsigned Depth, AssumptionCache *AC, 412 const Instruction *CxtI, 413 const DominatorTree *DT, bool UseInstrInfo) { 414 return ::ComputeNumSignBits( 415 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 416 } 417 418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 419 bool NSW, const APInt &DemandedElts, 420 KnownBits &KnownOut, KnownBits &Known2, 421 unsigned Depth, const Query &Q) { 422 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 423 424 // If one operand is unknown and we have no nowrap information, 425 // the result will be unknown independently of the second operand. 426 if (KnownOut.isUnknown() && !NSW) 427 return; 428 429 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 430 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 431 } 432 433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 434 const APInt &DemandedElts, KnownBits &Known, 435 KnownBits &Known2, unsigned Depth, 436 const Query &Q) { 437 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 438 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 439 440 bool isKnownNegative = false; 441 bool isKnownNonNegative = false; 442 // If the multiplication is known not to overflow, compute the sign bit. 443 if (NSW) { 444 if (Op0 == Op1) { 445 // The product of a number with itself is non-negative. 446 isKnownNonNegative = true; 447 } else { 448 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 449 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 450 bool isKnownNegativeOp1 = Known.isNegative(); 451 bool isKnownNegativeOp0 = Known2.isNegative(); 452 // The product of two numbers with the same sign is non-negative. 453 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 454 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 455 // The product of a negative number and a non-negative number is either 456 // negative or zero. 457 if (!isKnownNonNegative) 458 isKnownNegative = 459 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 460 Known2.isNonZero()) || 461 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 462 } 463 } 464 465 Known = KnownBits::computeForMul(Known, Known2); 466 467 // Only make use of no-wrap flags if we failed to compute the sign bit 468 // directly. This matters if the multiplication always overflows, in 469 // which case we prefer to follow the result of the direct computation, 470 // though as the program is invoking undefined behaviour we can choose 471 // whatever we like here. 472 if (isKnownNonNegative && !Known.isNegative()) 473 Known.makeNonNegative(); 474 else if (isKnownNegative && !Known.isNonNegative()) 475 Known.makeNegative(); 476 } 477 478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 479 KnownBits &Known) { 480 unsigned BitWidth = Known.getBitWidth(); 481 unsigned NumRanges = Ranges.getNumOperands() / 2; 482 assert(NumRanges >= 1); 483 484 Known.Zero.setAllBits(); 485 Known.One.setAllBits(); 486 487 for (unsigned i = 0; i < NumRanges; ++i) { 488 ConstantInt *Lower = 489 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 490 ConstantInt *Upper = 491 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 492 ConstantRange Range(Lower->getValue(), Upper->getValue()); 493 494 // The first CommonPrefixBits of all values in Range are equal. 495 unsigned CommonPrefixBits = 496 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 497 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 498 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 499 Known.One &= UnsignedMax & Mask; 500 Known.Zero &= ~UnsignedMax & Mask; 501 } 502 } 503 504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 505 SmallVector<const Value *, 16> WorkSet(1, I); 506 SmallPtrSet<const Value *, 32> Visited; 507 SmallPtrSet<const Value *, 16> EphValues; 508 509 // The instruction defining an assumption's condition itself is always 510 // considered ephemeral to that assumption (even if it has other 511 // non-ephemeral users). See r246696's test case for an example. 512 if (is_contained(I->operands(), E)) 513 return true; 514 515 while (!WorkSet.empty()) { 516 const Value *V = WorkSet.pop_back_val(); 517 if (!Visited.insert(V).second) 518 continue; 519 520 // If all uses of this value are ephemeral, then so is this value. 521 if (llvm::all_of(V->users(), [&](const User *U) { 522 return EphValues.count(U); 523 })) { 524 if (V == E) 525 return true; 526 527 if (V == I || isSafeToSpeculativelyExecute(V)) { 528 EphValues.insert(V); 529 if (const User *U = dyn_cast<User>(V)) 530 append_range(WorkSet, U->operands()); 531 } 532 } 533 } 534 535 return false; 536 } 537 538 // Is this an intrinsic that cannot be speculated but also cannot trap? 539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 540 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 541 return CI->isAssumeLikeIntrinsic(); 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 // We limit the scan distance between the assume and its context instruction 573 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 574 // it can be adjusted if needed (could be turned into a cl::opt). 575 unsigned ScanLimit = 15; 576 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 577 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 578 return false; 579 580 return !isEphemeralValueOf(Inv, CxtI); 581 } 582 583 // Inv and CxtI are in different blocks. 584 if (DT) { 585 if (DT->dominates(Inv, CxtI)) 586 return true; 587 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 588 // We don't have a DT, but this trivially dominates. 589 return true; 590 } 591 592 return false; 593 } 594 595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 596 // v u> y implies v != 0. 597 if (Pred == ICmpInst::ICMP_UGT) 598 return true; 599 600 // Special-case v != 0 to also handle v != null. 601 if (Pred == ICmpInst::ICMP_NE) 602 return match(RHS, m_Zero()); 603 604 // All other predicates - rely on generic ConstantRange handling. 605 const APInt *C; 606 if (!match(RHS, m_APInt(C))) 607 return false; 608 609 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 610 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 611 } 612 613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 614 // Use of assumptions is context-sensitive. If we don't have a context, we 615 // cannot use them! 616 if (!Q.AC || !Q.CxtI) 617 return false; 618 619 if (Q.CxtI && V->getType()->isPointerTy()) { 620 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 621 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 622 V->getType()->getPointerAddressSpace())) 623 AttrKinds.push_back(Attribute::Dereferenceable); 624 625 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 626 return true; 627 } 628 629 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 630 if (!AssumeVH) 631 continue; 632 CallInst *I = cast<CallInst>(AssumeVH); 633 assert(I->getFunction() == Q.CxtI->getFunction() && 634 "Got assumption for the wrong function!"); 635 if (Q.isExcluded(I)) 636 continue; 637 638 // Warning: This loop can end up being somewhat performance sensitive. 639 // We're running this loop for once for each value queried resulting in a 640 // runtime of ~O(#assumes * #values). 641 642 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 643 "must be an assume intrinsic"); 644 645 Value *RHS; 646 CmpInst::Predicate Pred; 647 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 648 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 649 return false; 650 651 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 652 return true; 653 } 654 655 return false; 656 } 657 658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 659 unsigned Depth, const Query &Q) { 660 // Use of assumptions is context-sensitive. If we don't have a context, we 661 // cannot use them! 662 if (!Q.AC || !Q.CxtI) 663 return; 664 665 unsigned BitWidth = Known.getBitWidth(); 666 667 // Refine Known set if the pointer alignment is set by assume bundles. 668 if (V->getType()->isPointerTy()) { 669 if (RetainedKnowledge RK = getKnowledgeValidInContext( 670 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 671 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 672 } 673 } 674 675 // Note that the patterns below need to be kept in sync with the code 676 // in AssumptionCache::updateAffectedValues. 677 678 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 679 if (!AssumeVH) 680 continue; 681 CallInst *I = cast<CallInst>(AssumeVH); 682 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 683 "Got assumption for the wrong function!"); 684 if (Q.isExcluded(I)) 685 continue; 686 687 // Warning: This loop can end up being somewhat performance sensitive. 688 // We're running this loop for once for each value queried resulting in a 689 // runtime of ~O(#assumes * #values). 690 691 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 692 "must be an assume intrinsic"); 693 694 Value *Arg = I->getArgOperand(0); 695 696 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 assert(BitWidth == 1 && "assume operand is not i1?"); 698 Known.setAllOnes(); 699 return; 700 } 701 if (match(Arg, m_Not(m_Specific(V))) && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllZero(); 705 return; 706 } 707 708 // The remaining tests are all recursive, so bail out if we hit the limit. 709 if (Depth == MaxAnalysisRecursionDepth) 710 continue; 711 712 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 713 if (!Cmp) 714 continue; 715 716 // Note that ptrtoint may change the bitwidth. 717 Value *A, *B; 718 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 719 720 CmpInst::Predicate Pred; 721 uint64_t C; 722 switch (Cmp->getPredicate()) { 723 default: 724 break; 725 case ICmpInst::ICMP_EQ: 726 // assume(v = a) 727 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 731 Known.Zero |= RHSKnown.Zero; 732 Known.One |= RHSKnown.One; 733 // assume(v & b = a) 734 } else if (match(Cmp, 735 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // known bits from the RHS to V. 744 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 745 Known.One |= RHSKnown.One & MaskKnown.One; 746 // assume(~(v & b) = a) 747 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 748 m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 KnownBits MaskKnown = 753 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 754 755 // For those bits in the mask that are known to be one, we can propagate 756 // inverted known bits from the RHS to V. 757 Known.Zero |= RHSKnown.One & MaskKnown.One; 758 Known.One |= RHSKnown.Zero & MaskKnown.One; 759 // assume(v | b = a) 760 } else if (match(Cmp, 761 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate known 769 // bits from the RHS to V. 770 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 771 Known.One |= RHSKnown.One & BKnown.Zero; 772 // assume(~(v | b) = a) 773 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 774 m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate 782 // inverted known bits from the RHS to V. 783 Known.Zero |= RHSKnown.One & BKnown.Zero; 784 Known.One |= RHSKnown.Zero & BKnown.Zero; 785 // assume(v ^ b = a) 786 } else if (match(Cmp, 787 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 789 KnownBits RHSKnown = 790 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 KnownBits BKnown = 792 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 793 794 // For those bits in B that are known to be zero, we can propagate known 795 // bits from the RHS to V. For those bits in B that are known to be one, 796 // we can propagate inverted known bits from the RHS to V. 797 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 798 Known.One |= RHSKnown.One & BKnown.Zero; 799 Known.Zero |= RHSKnown.One & BKnown.One; 800 Known.One |= RHSKnown.Zero & BKnown.One; 801 // assume(~(v ^ b) = a) 802 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 803 m_Value(A))) && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown = 806 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 KnownBits BKnown = 808 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 810 // For those bits in B that are known to be zero, we can propagate 811 // inverted known bits from the RHS to V. For those bits in B that are 812 // known to be one, we can propagate known bits from the RHS to V. 813 Known.Zero |= RHSKnown.One & BKnown.Zero; 814 Known.One |= RHSKnown.Zero & BKnown.Zero; 815 Known.Zero |= RHSKnown.Zero & BKnown.One; 816 Known.One |= RHSKnown.One & BKnown.One; 817 // assume(v << c = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 823 824 // For those bits in RHS that are known, we can propagate them to known 825 // bits in V shifted to the right by C. 826 RHSKnown.Zero.lshrInPlace(C); 827 Known.Zero |= RHSKnown.Zero; 828 RHSKnown.One.lshrInPlace(C); 829 Known.One |= RHSKnown.One; 830 // assume(~(v << c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 RHSKnown.One.lshrInPlace(C); 839 Known.Zero |= RHSKnown.One; 840 RHSKnown.Zero.lshrInPlace(C); 841 Known.One |= RHSKnown.Zero; 842 // assume(v >> c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 Known.Zero |= RHSKnown.Zero << C; 851 Known.One |= RHSKnown.One << C; 852 // assume(~(v >> c) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 856 KnownBits RHSKnown = 857 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 858 // For those bits in RHS that are known, we can propagate them inverted 859 // to known bits in V shifted to the right by C. 860 Known.Zero |= RHSKnown.One << C; 861 Known.One |= RHSKnown.Zero << C; 862 } 863 break; 864 case ICmpInst::ICMP_SGE: 865 // assume(v >=_s c) where c is non-negative 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SGT: 878 // assume(v >_s c) where c is at least -1. 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 885 // We know that the sign bit is zero. 886 Known.makeNonNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLE: 891 // assume(v <=_s c) where c is negative 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_SLT: 904 // assume(v <_s c) where c is non-positive 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 909 910 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 911 // We know that the sign bit is one. 912 Known.makeNegative(); 913 } 914 } 915 break; 916 case ICmpInst::ICMP_ULE: 917 // assume(v <=_u c) 918 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 919 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 920 KnownBits RHSKnown = 921 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 922 923 // Whatever high bits in c are zero are known to be zero. 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 925 } 926 break; 927 case ICmpInst::ICMP_ULT: 928 // assume(v <_u c) 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 933 934 // If the RHS is known zero, then this assumption must be wrong (nothing 935 // is unsigned less than zero). Signal a conflict and get out of here. 936 if (RHSKnown.isZero()) { 937 Known.Zero.setAllBits(); 938 Known.One.setAllBits(); 939 break; 940 } 941 942 // Whatever high bits in c are zero are known to be zero (if c is a power 943 // of 2, then one more). 944 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 946 else 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 } 951 } 952 953 // If assumptions conflict with each other or previous known bits, then we 954 // have a logical fallacy. It's possible that the assumption is not reachable, 955 // so this isn't a real bug. On the other hand, the program may have undefined 956 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 957 // clear out the known bits, try to warn the user, and hope for the best. 958 if (Known.Zero.intersects(Known.One)) { 959 Known.resetAll(); 960 961 if (Q.ORE) 962 Q.ORE->emit([&]() { 963 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 964 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 965 CxtI) 966 << "Detected conflicting code assumptions. Program may " 967 "have undefined behavior, or compiler may have " 968 "internal error."; 969 }); 970 } 971 } 972 973 /// Compute known bits from a shift operator, including those with a 974 /// non-constant shift amount. Known is the output of this function. Known2 is a 975 /// pre-allocated temporary with the same bit width as Known and on return 976 /// contains the known bit of the shift value source. KF is an 977 /// operator-specific function that, given the known-bits and a shift amount, 978 /// compute the implied known-bits of the shift operator's result respectively 979 /// for that shift amount. The results from calling KF are conservatively 980 /// combined for all permitted shift amounts. 981 static void computeKnownBitsFromShiftOperator( 982 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 983 KnownBits &Known2, unsigned Depth, const Query &Q, 984 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 985 unsigned BitWidth = Known.getBitWidth(); 986 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 988 989 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 990 // BitWidth > 64 and any upper bits are known, we'll end up returning the 991 // limit value (which implies all bits are known). 992 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 993 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 994 bool ShiftAmtIsConstant = Known.isConstant(); 995 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 996 997 if (ShiftAmtIsConstant) { 998 Known = KF(Known2, Known); 999 1000 // If the known bits conflict, this must be an overflowing left shift, so 1001 // the shift result is poison. We can return anything we want. Choose 0 for 1002 // the best folding opportunity. 1003 if (Known.hasConflict()) 1004 Known.setAllZero(); 1005 1006 return; 1007 } 1008 1009 // If the shift amount could be greater than or equal to the bit-width of the 1010 // LHS, the value could be poison, but bail out because the check below is 1011 // expensive. 1012 // TODO: Should we just carry on? 1013 if (MaxShiftAmtIsOutOfRange) { 1014 Known.resetAll(); 1015 return; 1016 } 1017 1018 // It would be more-clearly correct to use the two temporaries for this 1019 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1020 Known.resetAll(); 1021 1022 // If we know the shifter operand is nonzero, we can sometimes infer more 1023 // known bits. However this is expensive to compute, so be lazy about it and 1024 // only compute it when absolutely necessary. 1025 Optional<bool> ShifterOperandIsNonZero; 1026 1027 // Early exit if we can't constrain any well-defined shift amount. 1028 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1029 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1032 if (!*ShifterOperandIsNonZero) 1033 return; 1034 } 1035 1036 Known.Zero.setAllBits(); 1037 Known.One.setAllBits(); 1038 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1039 // Combine the shifted known input bits only for those shift amounts 1040 // compatible with its known constraints. 1041 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1042 continue; 1043 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1044 continue; 1045 // If we know the shifter is nonzero, we may be able to infer more known 1046 // bits. This check is sunk down as far as possible to avoid the expensive 1047 // call to isKnownNonZero if the cheaper checks above fail. 1048 if (ShiftAmt == 0) { 1049 if (!ShifterOperandIsNonZero.hasValue()) 1050 ShifterOperandIsNonZero = 1051 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1052 if (*ShifterOperandIsNonZero) 1053 continue; 1054 } 1055 1056 Known = KnownBits::commonBits( 1057 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1058 } 1059 1060 // If the known bits conflict, the result is poison. Return a 0 and hope the 1061 // caller can further optimize that. 1062 if (Known.hasConflict()) 1063 Known.setAllZero(); 1064 } 1065 1066 static void computeKnownBitsFromOperator(const Operator *I, 1067 const APInt &DemandedElts, 1068 KnownBits &Known, unsigned Depth, 1069 const Query &Q) { 1070 unsigned BitWidth = Known.getBitWidth(); 1071 1072 KnownBits Known2(BitWidth); 1073 switch (I->getOpcode()) { 1074 default: break; 1075 case Instruction::Load: 1076 if (MDNode *MD = 1077 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1078 computeKnownBitsFromRangeMetadata(*MD, Known); 1079 break; 1080 case Instruction::And: { 1081 // If either the LHS or the RHS are Zero, the result is zero. 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known &= Known2; 1086 1087 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1088 // here we handle the more general case of adding any odd number by 1089 // matching the form add(x, add(x, y)) where y is odd. 1090 // TODO: This could be generalized to clearing any bit set in y where the 1091 // following bit is known to be unset in y. 1092 Value *X = nullptr, *Y = nullptr; 1093 if (!Known.Zero[0] && !Known.One[0] && 1094 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1095 Known2.resetAll(); 1096 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1097 if (Known2.countMinTrailingOnes() > 0) 1098 Known.Zero.setBit(0); 1099 } 1100 break; 1101 } 1102 case Instruction::Or: 1103 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1104 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1105 1106 Known |= Known2; 1107 break; 1108 case Instruction::Xor: 1109 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1111 1112 Known ^= Known2; 1113 break; 1114 case Instruction::Mul: { 1115 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1116 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1117 Known, Known2, Depth, Q); 1118 break; 1119 } 1120 case Instruction::UDiv: { 1121 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1123 Known = KnownBits::udiv(Known, Known2); 1124 break; 1125 } 1126 case Instruction::Select: { 1127 const Value *LHS = nullptr, *RHS = nullptr; 1128 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1129 if (SelectPatternResult::isMinOrMax(SPF)) { 1130 computeKnownBits(RHS, Known, Depth + 1, Q); 1131 computeKnownBits(LHS, Known2, Depth + 1, Q); 1132 switch (SPF) { 1133 default: 1134 llvm_unreachable("Unhandled select pattern flavor!"); 1135 case SPF_SMAX: 1136 Known = KnownBits::smax(Known, Known2); 1137 break; 1138 case SPF_SMIN: 1139 Known = KnownBits::smin(Known, Known2); 1140 break; 1141 case SPF_UMAX: 1142 Known = KnownBits::umax(Known, Known2); 1143 break; 1144 case SPF_UMIN: 1145 Known = KnownBits::umin(Known, Known2); 1146 break; 1147 } 1148 break; 1149 } 1150 1151 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1152 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1153 1154 // Only known if known in both the LHS and RHS. 1155 Known = KnownBits::commonBits(Known, Known2); 1156 1157 if (SPF == SPF_ABS) { 1158 // RHS from matchSelectPattern returns the negation part of abs pattern. 1159 // If the negate has an NSW flag we can assume the sign bit of the result 1160 // will be 0 because that makes abs(INT_MIN) undefined. 1161 if (match(RHS, m_Neg(m_Specific(LHS))) && 1162 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1163 Known.Zero.setSignBit(); 1164 } 1165 1166 break; 1167 } 1168 case Instruction::FPTrunc: 1169 case Instruction::FPExt: 1170 case Instruction::FPToUI: 1171 case Instruction::FPToSI: 1172 case Instruction::SIToFP: 1173 case Instruction::UIToFP: 1174 break; // Can't work with floating point. 1175 case Instruction::PtrToInt: 1176 case Instruction::IntToPtr: 1177 // Fall through and handle them the same as zext/trunc. 1178 LLVM_FALLTHROUGH; 1179 case Instruction::ZExt: 1180 case Instruction::Trunc: { 1181 Type *SrcTy = I->getOperand(0)->getType(); 1182 1183 unsigned SrcBitWidth; 1184 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1185 // which fall through here. 1186 Type *ScalarTy = SrcTy->getScalarType(); 1187 SrcBitWidth = ScalarTy->isPointerTy() ? 1188 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1189 Q.DL.getTypeSizeInBits(ScalarTy); 1190 1191 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1192 Known = Known.anyextOrTrunc(SrcBitWidth); 1193 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1194 Known = Known.zextOrTrunc(BitWidth); 1195 break; 1196 } 1197 case Instruction::BitCast: { 1198 Type *SrcTy = I->getOperand(0)->getType(); 1199 if (SrcTy->isIntOrPtrTy() && 1200 // TODO: For now, not handling conversions like: 1201 // (bitcast i64 %x to <2 x i32>) 1202 !I->getType()->isVectorTy()) { 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 break; 1205 } 1206 break; 1207 } 1208 case Instruction::SExt: { 1209 // Compute the bits in the result that are not present in the input. 1210 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1211 1212 Known = Known.trunc(SrcBitWidth); 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 // If the sign bit of the input is known set or clear, then we know the 1215 // top bits of the result. 1216 Known = Known.sext(BitWidth); 1217 break; 1218 } 1219 case Instruction::Shl: { 1220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1221 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1222 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1223 // If this shift has "nsw" keyword, then the result is either a poison 1224 // value or has the same sign bit as the first operand. 1225 if (NSW) { 1226 if (KnownVal.Zero.isSignBitSet()) 1227 Result.Zero.setSignBit(); 1228 if (KnownVal.One.isSignBitSet()) 1229 Result.One.setSignBit(); 1230 } 1231 return Result; 1232 }; 1233 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1234 KF); 1235 // Trailing zeros of a right-shifted constant never decrease. 1236 const APInt *C; 1237 if (match(I->getOperand(0), m_APInt(C))) 1238 Known.Zero.setLowBits(C->countTrailingZeros()); 1239 break; 1240 } 1241 case Instruction::LShr: { 1242 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1243 return KnownBits::lshr(KnownVal, KnownAmt); 1244 }; 1245 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1246 KF); 1247 // Leading zeros of a left-shifted constant never decrease. 1248 const APInt *C; 1249 if (match(I->getOperand(0), m_APInt(C))) 1250 Known.Zero.setHighBits(C->countLeadingZeros()); 1251 break; 1252 } 1253 case Instruction::AShr: { 1254 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1255 return KnownBits::ashr(KnownVal, KnownAmt); 1256 }; 1257 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1258 KF); 1259 break; 1260 } 1261 case Instruction::Sub: { 1262 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1263 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1264 DemandedElts, Known, Known2, Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 DemandedElts, Known, Known2, Depth, Q); 1271 break; 1272 } 1273 case Instruction::SRem: 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 Known = KnownBits::srem(Known, Known2); 1277 break; 1278 1279 case Instruction::URem: 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1282 Known = KnownBits::urem(Known, Known2); 1283 break; 1284 case Instruction::Alloca: 1285 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1286 break; 1287 case Instruction::GetElementPtr: { 1288 // Analyze all of the subscripts of this getelementptr instruction 1289 // to determine if we can prove known low zero bits. 1290 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1291 // Accumulate the constant indices in a separate variable 1292 // to minimize the number of calls to computeForAddSub. 1293 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1294 1295 gep_type_iterator GTI = gep_type_begin(I); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor = 1351 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1352 } 1353 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 // Note that inbounds does *not* guarantee nsw for the addition, as only 1361 // the offset is signed, while the base address is unsigned. 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1364 } 1365 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1366 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1367 Known = KnownBits::computeForAddSub( 1368 /*Add=*/true, /*NSW=*/false, Known, Index); 1369 } 1370 break; 1371 } 1372 case Instruction::PHI: { 1373 const PHINode *P = cast<PHINode>(I); 1374 BinaryOperator *BO = nullptr; 1375 Value *R = nullptr, *L = nullptr; 1376 if (matchSimpleRecurrence(P, BO, R, L)) { 1377 // Handle the case of a simple two-predecessor recurrence PHI. 1378 // There's a lot more that could theoretically be done here, but 1379 // this is sufficient to catch some interesting cases. 1380 unsigned Opcode = BO->getOpcode(); 1381 1382 // If this is a shift recurrence, we know the bits being shifted in. 1383 // We can combine that with information about the start value of the 1384 // recurrence to conclude facts about the result. 1385 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1386 Opcode == Instruction::Shl) && 1387 BO->getOperand(0) == I) { 1388 1389 // We have matched a recurrence of the form: 1390 // %iv = [R, %entry], [%iv.next, %backedge] 1391 // %iv.next = shift_op %iv, L 1392 1393 // Recurse with the phi context to avoid concern about whether facts 1394 // inferred hold at original context instruction. TODO: It may be 1395 // correct to use the original context. IF warranted, explore and 1396 // add sufficient tests to cover. 1397 Query RecQ = Q; 1398 RecQ.CxtI = P; 1399 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1400 switch (Opcode) { 1401 case Instruction::Shl: 1402 // A shl recurrence will only increase the tailing zeros 1403 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1404 break; 1405 case Instruction::LShr: 1406 // A lshr recurrence will preserve the leading zeros of the 1407 // start value 1408 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1409 break; 1410 case Instruction::AShr: 1411 // An ashr recurrence will extend the initial sign bit 1412 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1413 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1414 break; 1415 }; 1416 } 1417 1418 // Check for operations that have the property that if 1419 // both their operands have low zero bits, the result 1420 // will have low zero bits. 1421 if (Opcode == Instruction::Add || 1422 Opcode == Instruction::Sub || 1423 Opcode == Instruction::And || 1424 Opcode == Instruction::Or || 1425 Opcode == Instruction::Mul) { 1426 // Change the context instruction to the "edge" that flows into the 1427 // phi. This is important because that is where the value is actually 1428 // "evaluated" even though it is used later somewhere else. (see also 1429 // D69571). 1430 Query RecQ = Q; 1431 1432 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1433 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1434 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1435 1436 // Ok, we have a PHI of the form L op= R. Check for low 1437 // zero bits. 1438 RecQ.CxtI = RInst; 1439 computeKnownBits(R, Known2, Depth + 1, RecQ); 1440 1441 // We need to take the minimum number of known bits 1442 KnownBits Known3(BitWidth); 1443 RecQ.CxtI = LInst; 1444 computeKnownBits(L, Known3, Depth + 1, RecQ); 1445 1446 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1447 Known3.countMinTrailingZeros())); 1448 1449 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1450 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1451 // If initial value of recurrence is nonnegative, and we are adding 1452 // a nonnegative number with nsw, the result can only be nonnegative 1453 // or poison value regardless of the number of times we execute the 1454 // add in phi recurrence. If initial value is negative and we are 1455 // adding a negative number with nsw, the result can only be 1456 // negative or poison value. Similar arguments apply to sub and mul. 1457 // 1458 // (add non-negative, non-negative) --> non-negative 1459 // (add negative, negative) --> negative 1460 if (Opcode == Instruction::Add) { 1461 if (Known2.isNonNegative() && Known3.isNonNegative()) 1462 Known.makeNonNegative(); 1463 else if (Known2.isNegative() && Known3.isNegative()) 1464 Known.makeNegative(); 1465 } 1466 1467 // (sub nsw non-negative, negative) --> non-negative 1468 // (sub nsw negative, non-negative) --> negative 1469 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1470 if (Known2.isNonNegative() && Known3.isNegative()) 1471 Known.makeNonNegative(); 1472 else if (Known2.isNegative() && Known3.isNonNegative()) 1473 Known.makeNegative(); 1474 } 1475 1476 // (mul nsw non-negative, non-negative) --> non-negative 1477 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1478 Known3.isNonNegative()) 1479 Known.makeNonNegative(); 1480 } 1481 1482 break; 1483 } 1484 } 1485 1486 // Unreachable blocks may have zero-operand PHI nodes. 1487 if (P->getNumIncomingValues() == 0) 1488 break; 1489 1490 // Otherwise take the unions of the known bit sets of the operands, 1491 // taking conservative care to avoid excessive recursion. 1492 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1493 // Skip if every incoming value references to ourself. 1494 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1495 break; 1496 1497 Known.Zero.setAllBits(); 1498 Known.One.setAllBits(); 1499 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1500 Value *IncValue = P->getIncomingValue(u); 1501 // Skip direct self references. 1502 if (IncValue == P) continue; 1503 1504 // Change the context instruction to the "edge" that flows into the 1505 // phi. This is important because that is where the value is actually 1506 // "evaluated" even though it is used later somewhere else. (see also 1507 // D69571). 1508 Query RecQ = Q; 1509 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1510 1511 Known2 = KnownBits(BitWidth); 1512 // Recurse, but cap the recursion to one level, because we don't 1513 // want to waste time spinning around in loops. 1514 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1515 Known = KnownBits::commonBits(Known, Known2); 1516 // If all bits have been ruled out, there's no need to check 1517 // more operands. 1518 if (Known.isUnknown()) 1519 break; 1520 } 1521 } 1522 break; 1523 } 1524 case Instruction::Call: 1525 case Instruction::Invoke: 1526 // If range metadata is attached to this call, set known bits from that, 1527 // and then intersect with known bits based on other properties of the 1528 // function. 1529 if (MDNode *MD = 1530 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1531 computeKnownBitsFromRangeMetadata(*MD, Known); 1532 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1533 computeKnownBits(RV, Known2, Depth + 1, Q); 1534 Known.Zero |= Known2.Zero; 1535 Known.One |= Known2.One; 1536 } 1537 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1538 switch (II->getIntrinsicID()) { 1539 default: break; 1540 case Intrinsic::abs: { 1541 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1542 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1543 Known = Known2.abs(IntMinIsPoison); 1544 break; 1545 } 1546 case Intrinsic::bitreverse: 1547 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1548 Known.Zero |= Known2.Zero.reverseBits(); 1549 Known.One |= Known2.One.reverseBits(); 1550 break; 1551 case Intrinsic::bswap: 1552 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1553 Known.Zero |= Known2.Zero.byteSwap(); 1554 Known.One |= Known2.One.byteSwap(); 1555 break; 1556 case Intrinsic::ctlz: { 1557 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1558 // If we have a known 1, its position is our upper bound. 1559 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1560 // If this call is undefined for 0, the result will be less than 2^n. 1561 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1562 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1563 unsigned LowBits = Log2_32(PossibleLZ)+1; 1564 Known.Zero.setBitsFrom(LowBits); 1565 break; 1566 } 1567 case Intrinsic::cttz: { 1568 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1569 // If we have a known 1, its position is our upper bound. 1570 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1571 // If this call is undefined for 0, the result will be less than 2^n. 1572 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1573 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1574 unsigned LowBits = Log2_32(PossibleTZ)+1; 1575 Known.Zero.setBitsFrom(LowBits); 1576 break; 1577 } 1578 case Intrinsic::ctpop: { 1579 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1580 // We can bound the space the count needs. Also, bits known to be zero 1581 // can't contribute to the population. 1582 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1583 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1584 Known.Zero.setBitsFrom(LowBits); 1585 // TODO: we could bound KnownOne using the lower bound on the number 1586 // of bits which might be set provided by popcnt KnownOne2. 1587 break; 1588 } 1589 case Intrinsic::fshr: 1590 case Intrinsic::fshl: { 1591 const APInt *SA; 1592 if (!match(I->getOperand(2), m_APInt(SA))) 1593 break; 1594 1595 // Normalize to funnel shift left. 1596 uint64_t ShiftAmt = SA->urem(BitWidth); 1597 if (II->getIntrinsicID() == Intrinsic::fshr) 1598 ShiftAmt = BitWidth - ShiftAmt; 1599 1600 KnownBits Known3(BitWidth); 1601 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1602 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1603 1604 Known.Zero = 1605 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1606 Known.One = 1607 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1608 break; 1609 } 1610 case Intrinsic::uadd_sat: 1611 case Intrinsic::usub_sat: { 1612 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1613 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1614 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1615 1616 // Add: Leading ones of either operand are preserved. 1617 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1618 // as leading zeros in the result. 1619 unsigned LeadingKnown; 1620 if (IsAdd) 1621 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1622 Known2.countMinLeadingOnes()); 1623 else 1624 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1625 Known2.countMinLeadingOnes()); 1626 1627 Known = KnownBits::computeForAddSub( 1628 IsAdd, /* NSW */ false, Known, Known2); 1629 1630 // We select between the operation result and all-ones/zero 1631 // respectively, so we can preserve known ones/zeros. 1632 if (IsAdd) { 1633 Known.One.setHighBits(LeadingKnown); 1634 Known.Zero.clearAllBits(); 1635 } else { 1636 Known.Zero.setHighBits(LeadingKnown); 1637 Known.One.clearAllBits(); 1638 } 1639 break; 1640 } 1641 case Intrinsic::umin: 1642 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1644 Known = KnownBits::umin(Known, Known2); 1645 break; 1646 case Intrinsic::umax: 1647 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1648 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1649 Known = KnownBits::umax(Known, Known2); 1650 break; 1651 case Intrinsic::smin: 1652 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1653 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1654 Known = KnownBits::smin(Known, Known2); 1655 break; 1656 case Intrinsic::smax: 1657 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1658 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1659 Known = KnownBits::smax(Known, Known2); 1660 break; 1661 case Intrinsic::x86_sse42_crc32_64_64: 1662 Known.Zero.setBitsFrom(32); 1663 break; 1664 } 1665 } 1666 break; 1667 case Instruction::ShuffleVector: { 1668 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1669 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1670 if (!Shuf) { 1671 Known.resetAll(); 1672 return; 1673 } 1674 // For undef elements, we don't know anything about the common state of 1675 // the shuffle result. 1676 APInt DemandedLHS, DemandedRHS; 1677 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1678 Known.resetAll(); 1679 return; 1680 } 1681 Known.One.setAllBits(); 1682 Known.Zero.setAllBits(); 1683 if (!!DemandedLHS) { 1684 const Value *LHS = Shuf->getOperand(0); 1685 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1686 // If we don't know any bits, early out. 1687 if (Known.isUnknown()) 1688 break; 1689 } 1690 if (!!DemandedRHS) { 1691 const Value *RHS = Shuf->getOperand(1); 1692 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1693 Known = KnownBits::commonBits(Known, Known2); 1694 } 1695 break; 1696 } 1697 case Instruction::InsertElement: { 1698 const Value *Vec = I->getOperand(0); 1699 const Value *Elt = I->getOperand(1); 1700 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1701 // Early out if the index is non-constant or out-of-range. 1702 unsigned NumElts = DemandedElts.getBitWidth(); 1703 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1704 Known.resetAll(); 1705 return; 1706 } 1707 Known.One.setAllBits(); 1708 Known.Zero.setAllBits(); 1709 unsigned EltIdx = CIdx->getZExtValue(); 1710 // Do we demand the inserted element? 1711 if (DemandedElts[EltIdx]) { 1712 computeKnownBits(Elt, Known, Depth + 1, Q); 1713 // If we don't know any bits, early out. 1714 if (Known.isUnknown()) 1715 break; 1716 } 1717 // We don't need the base vector element that has been inserted. 1718 APInt DemandedVecElts = DemandedElts; 1719 DemandedVecElts.clearBit(EltIdx); 1720 if (!!DemandedVecElts) { 1721 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1722 Known = KnownBits::commonBits(Known, Known2); 1723 } 1724 break; 1725 } 1726 case Instruction::ExtractElement: { 1727 // Look through extract element. If the index is non-constant or 1728 // out-of-range demand all elements, otherwise just the extracted element. 1729 const Value *Vec = I->getOperand(0); 1730 const Value *Idx = I->getOperand(1); 1731 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1732 if (isa<ScalableVectorType>(Vec->getType())) { 1733 // FIXME: there's probably *something* we can do with scalable vectors 1734 Known.resetAll(); 1735 break; 1736 } 1737 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1738 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1739 if (CIdx && CIdx->getValue().ult(NumElts)) 1740 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1741 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1742 break; 1743 } 1744 case Instruction::ExtractValue: 1745 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1746 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1747 if (EVI->getNumIndices() != 1) break; 1748 if (EVI->getIndices()[0] == 0) { 1749 switch (II->getIntrinsicID()) { 1750 default: break; 1751 case Intrinsic::uadd_with_overflow: 1752 case Intrinsic::sadd_with_overflow: 1753 computeKnownBitsAddSub(true, II->getArgOperand(0), 1754 II->getArgOperand(1), false, DemandedElts, 1755 Known, Known2, Depth, Q); 1756 break; 1757 case Intrinsic::usub_with_overflow: 1758 case Intrinsic::ssub_with_overflow: 1759 computeKnownBitsAddSub(false, II->getArgOperand(0), 1760 II->getArgOperand(1), false, DemandedElts, 1761 Known, Known2, Depth, Q); 1762 break; 1763 case Intrinsic::umul_with_overflow: 1764 case Intrinsic::smul_with_overflow: 1765 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1766 DemandedElts, Known, Known2, Depth, Q); 1767 break; 1768 } 1769 } 1770 } 1771 break; 1772 case Instruction::Freeze: 1773 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1774 Depth + 1)) 1775 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1776 break; 1777 } 1778 } 1779 1780 /// Determine which bits of V are known to be either zero or one and return 1781 /// them. 1782 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1783 unsigned Depth, const Query &Q) { 1784 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1785 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1786 return Known; 1787 } 1788 1789 /// Determine which bits of V are known to be either zero or one and return 1790 /// them. 1791 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1792 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1793 computeKnownBits(V, Known, Depth, Q); 1794 return Known; 1795 } 1796 1797 /// Determine which bits of V are known to be either zero or one and return 1798 /// them in the Known bit set. 1799 /// 1800 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1801 /// we cannot optimize based on the assumption that it is zero without changing 1802 /// it to be an explicit zero. If we don't change it to zero, other code could 1803 /// optimized based on the contradictory assumption that it is non-zero. 1804 /// Because instcombine aggressively folds operations with undef args anyway, 1805 /// this won't lose us code quality. 1806 /// 1807 /// This function is defined on values with integer type, values with pointer 1808 /// type, and vectors of integers. In the case 1809 /// where V is a vector, known zero, and known one values are the 1810 /// same width as the vector element, and the bit is set only if it is true 1811 /// for all of the demanded elements in the vector specified by DemandedElts. 1812 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1813 KnownBits &Known, unsigned Depth, const Query &Q) { 1814 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1815 // No demanded elts or V is a scalable vector, better to assume we don't 1816 // know anything. 1817 Known.resetAll(); 1818 return; 1819 } 1820 1821 assert(V && "No Value?"); 1822 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1823 1824 #ifndef NDEBUG 1825 Type *Ty = V->getType(); 1826 unsigned BitWidth = Known.getBitWidth(); 1827 1828 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1829 "Not integer or pointer type!"); 1830 1831 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1832 assert( 1833 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1834 "DemandedElt width should equal the fixed vector number of elements"); 1835 } else { 1836 assert(DemandedElts == APInt(1, 1) && 1837 "DemandedElt width should be 1 for scalars"); 1838 } 1839 1840 Type *ScalarTy = Ty->getScalarType(); 1841 if (ScalarTy->isPointerTy()) { 1842 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1843 "V and Known should have same BitWidth"); 1844 } else { 1845 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1846 "V and Known should have same BitWidth"); 1847 } 1848 #endif 1849 1850 const APInt *C; 1851 if (match(V, m_APInt(C))) { 1852 // We know all of the bits for a scalar constant or a splat vector constant! 1853 Known = KnownBits::makeConstant(*C); 1854 return; 1855 } 1856 // Null and aggregate-zero are all-zeros. 1857 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1858 Known.setAllZero(); 1859 return; 1860 } 1861 // Handle a constant vector by taking the intersection of the known bits of 1862 // each element. 1863 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1864 // We know that CDV must be a vector of integers. Take the intersection of 1865 // each element. 1866 Known.Zero.setAllBits(); Known.One.setAllBits(); 1867 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1868 if (!DemandedElts[i]) 1869 continue; 1870 APInt Elt = CDV->getElementAsAPInt(i); 1871 Known.Zero &= ~Elt; 1872 Known.One &= Elt; 1873 } 1874 return; 1875 } 1876 1877 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1878 // We know that CV must be a vector of integers. Take the intersection of 1879 // each element. 1880 Known.Zero.setAllBits(); Known.One.setAllBits(); 1881 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1882 if (!DemandedElts[i]) 1883 continue; 1884 Constant *Element = CV->getAggregateElement(i); 1885 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1886 if (!ElementCI) { 1887 Known.resetAll(); 1888 return; 1889 } 1890 const APInt &Elt = ElementCI->getValue(); 1891 Known.Zero &= ~Elt; 1892 Known.One &= Elt; 1893 } 1894 return; 1895 } 1896 1897 // Start out not knowing anything. 1898 Known.resetAll(); 1899 1900 // We can't imply anything about undefs. 1901 if (isa<UndefValue>(V)) 1902 return; 1903 1904 // There's no point in looking through other users of ConstantData for 1905 // assumptions. Confirm that we've handled them all. 1906 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1907 1908 // All recursive calls that increase depth must come after this. 1909 if (Depth == MaxAnalysisRecursionDepth) 1910 return; 1911 1912 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1913 // the bits of its aliasee. 1914 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1915 if (!GA->isInterposable()) 1916 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1917 return; 1918 } 1919 1920 if (const Operator *I = dyn_cast<Operator>(V)) 1921 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1922 1923 // Aligned pointers have trailing zeros - refine Known.Zero set 1924 if (isa<PointerType>(V->getType())) { 1925 Align Alignment = V->getPointerAlignment(Q.DL); 1926 Known.Zero.setLowBits(Log2(Alignment)); 1927 } 1928 1929 // computeKnownBitsFromAssume strictly refines Known. 1930 // Therefore, we run them after computeKnownBitsFromOperator. 1931 1932 // Check whether a nearby assume intrinsic can determine some known bits. 1933 computeKnownBitsFromAssume(V, Known, Depth, Q); 1934 1935 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1936 } 1937 1938 /// Return true if the given value is known to have exactly one 1939 /// bit set when defined. For vectors return true if every element is known to 1940 /// be a power of two when defined. Supports values with integer or pointer 1941 /// types and vectors of integers. 1942 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1943 const Query &Q) { 1944 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1945 1946 // Attempt to match against constants. 1947 if (OrZero && match(V, m_Power2OrZero())) 1948 return true; 1949 if (match(V, m_Power2())) 1950 return true; 1951 1952 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1953 // it is shifted off the end then the result is undefined. 1954 if (match(V, m_Shl(m_One(), m_Value()))) 1955 return true; 1956 1957 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1958 // the bottom. If it is shifted off the bottom then the result is undefined. 1959 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1960 return true; 1961 1962 // The remaining tests are all recursive, so bail out if we hit the limit. 1963 if (Depth++ == MaxAnalysisRecursionDepth) 1964 return false; 1965 1966 Value *X = nullptr, *Y = nullptr; 1967 // A shift left or a logical shift right of a power of two is a power of two 1968 // or zero. 1969 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1970 match(V, m_LShr(m_Value(X), m_Value())))) 1971 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1972 1973 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1974 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1975 1976 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1977 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1978 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1979 1980 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1981 // A power of two and'd with anything is a power of two or zero. 1982 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1983 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1984 return true; 1985 // X & (-X) is always a power of two or zero. 1986 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1987 return true; 1988 return false; 1989 } 1990 1991 // Adding a power-of-two or zero to the same power-of-two or zero yields 1992 // either the original power-of-two, a larger power-of-two or zero. 1993 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1994 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1995 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1996 Q.IIQ.hasNoSignedWrap(VOBO)) { 1997 if (match(X, m_And(m_Specific(Y), m_Value())) || 1998 match(X, m_And(m_Value(), m_Specific(Y)))) 1999 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2000 return true; 2001 if (match(Y, m_And(m_Specific(X), m_Value())) || 2002 match(Y, m_And(m_Value(), m_Specific(X)))) 2003 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2004 return true; 2005 2006 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2007 KnownBits LHSBits(BitWidth); 2008 computeKnownBits(X, LHSBits, Depth, Q); 2009 2010 KnownBits RHSBits(BitWidth); 2011 computeKnownBits(Y, RHSBits, Depth, Q); 2012 // If i8 V is a power of two or zero: 2013 // ZeroBits: 1 1 1 0 1 1 1 1 2014 // ~ZeroBits: 0 0 0 1 0 0 0 0 2015 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2016 // If OrZero isn't set, we cannot give back a zero result. 2017 // Make sure either the LHS or RHS has a bit set. 2018 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2019 return true; 2020 } 2021 } 2022 2023 // An exact divide or right shift can only shift off zero bits, so the result 2024 // is a power of two only if the first operand is a power of two and not 2025 // copying a sign bit (sdiv int_min, 2). 2026 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2027 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2028 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2029 Depth, Q); 2030 } 2031 2032 return false; 2033 } 2034 2035 /// Test whether a GEP's result is known to be non-null. 2036 /// 2037 /// Uses properties inherent in a GEP to try to determine whether it is known 2038 /// to be non-null. 2039 /// 2040 /// Currently this routine does not support vector GEPs. 2041 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2042 const Query &Q) { 2043 const Function *F = nullptr; 2044 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2045 F = I->getFunction(); 2046 2047 if (!GEP->isInBounds() || 2048 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2049 return false; 2050 2051 // FIXME: Support vector-GEPs. 2052 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2053 2054 // If the base pointer is non-null, we cannot walk to a null address with an 2055 // inbounds GEP in address space zero. 2056 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2057 return true; 2058 2059 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2060 // If so, then the GEP cannot produce a null pointer, as doing so would 2061 // inherently violate the inbounds contract within address space zero. 2062 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2063 GTI != GTE; ++GTI) { 2064 // Struct types are easy -- they must always be indexed by a constant. 2065 if (StructType *STy = GTI.getStructTypeOrNull()) { 2066 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2067 unsigned ElementIdx = OpC->getZExtValue(); 2068 const StructLayout *SL = Q.DL.getStructLayout(STy); 2069 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2070 if (ElementOffset > 0) 2071 return true; 2072 continue; 2073 } 2074 2075 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2076 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2077 continue; 2078 2079 // Fast path the constant operand case both for efficiency and so we don't 2080 // increment Depth when just zipping down an all-constant GEP. 2081 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2082 if (!OpC->isZero()) 2083 return true; 2084 continue; 2085 } 2086 2087 // We post-increment Depth here because while isKnownNonZero increments it 2088 // as well, when we pop back up that increment won't persist. We don't want 2089 // to recurse 10k times just because we have 10k GEP operands. We don't 2090 // bail completely out because we want to handle constant GEPs regardless 2091 // of depth. 2092 if (Depth++ >= MaxAnalysisRecursionDepth) 2093 continue; 2094 2095 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2096 return true; 2097 } 2098 2099 return false; 2100 } 2101 2102 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2103 const Instruction *CtxI, 2104 const DominatorTree *DT) { 2105 if (isa<Constant>(V)) 2106 return false; 2107 2108 if (!CtxI || !DT) 2109 return false; 2110 2111 unsigned NumUsesExplored = 0; 2112 for (auto *U : V->users()) { 2113 // Avoid massive lists 2114 if (NumUsesExplored >= DomConditionsMaxUses) 2115 break; 2116 NumUsesExplored++; 2117 2118 // If the value is used as an argument to a call or invoke, then argument 2119 // attributes may provide an answer about null-ness. 2120 if (const auto *CB = dyn_cast<CallBase>(U)) 2121 if (auto *CalledFunc = CB->getCalledFunction()) 2122 for (const Argument &Arg : CalledFunc->args()) 2123 if (CB->getArgOperand(Arg.getArgNo()) == V && 2124 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2125 DT->dominates(CB, CtxI)) 2126 return true; 2127 2128 // If the value is used as a load/store, then the pointer must be non null. 2129 if (V == getLoadStorePointerOperand(U)) { 2130 const Instruction *I = cast<Instruction>(U); 2131 if (!NullPointerIsDefined(I->getFunction(), 2132 V->getType()->getPointerAddressSpace()) && 2133 DT->dominates(I, CtxI)) 2134 return true; 2135 } 2136 2137 // Consider only compare instructions uniquely controlling a branch 2138 Value *RHS; 2139 CmpInst::Predicate Pred; 2140 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2141 continue; 2142 2143 bool NonNullIfTrue; 2144 if (cmpExcludesZero(Pred, RHS)) 2145 NonNullIfTrue = true; 2146 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2147 NonNullIfTrue = false; 2148 else 2149 continue; 2150 2151 SmallVector<const User *, 4> WorkList; 2152 SmallPtrSet<const User *, 4> Visited; 2153 for (auto *CmpU : U->users()) { 2154 assert(WorkList.empty() && "Should be!"); 2155 if (Visited.insert(CmpU).second) 2156 WorkList.push_back(CmpU); 2157 2158 while (!WorkList.empty()) { 2159 auto *Curr = WorkList.pop_back_val(); 2160 2161 // If a user is an AND, add all its users to the work list. We only 2162 // propagate "pred != null" condition through AND because it is only 2163 // correct to assume that all conditions of AND are met in true branch. 2164 // TODO: Support similar logic of OR and EQ predicate? 2165 if (NonNullIfTrue) 2166 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2167 for (auto *CurrU : Curr->users()) 2168 if (Visited.insert(CurrU).second) 2169 WorkList.push_back(CurrU); 2170 continue; 2171 } 2172 2173 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2174 assert(BI->isConditional() && "uses a comparison!"); 2175 2176 BasicBlock *NonNullSuccessor = 2177 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2178 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2179 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2180 return true; 2181 } else if (NonNullIfTrue && isGuard(Curr) && 2182 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2183 return true; 2184 } 2185 } 2186 } 2187 } 2188 2189 return false; 2190 } 2191 2192 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2193 /// ensure that the value it's attached to is never Value? 'RangeType' is 2194 /// is the type of the value described by the range. 2195 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2196 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2197 assert(NumRanges >= 1); 2198 for (unsigned i = 0; i < NumRanges; ++i) { 2199 ConstantInt *Lower = 2200 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2201 ConstantInt *Upper = 2202 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2203 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2204 if (Range.contains(Value)) 2205 return false; 2206 } 2207 return true; 2208 } 2209 2210 /// Return true if the given value is known to be non-zero when defined. For 2211 /// vectors, return true if every demanded element is known to be non-zero when 2212 /// defined. For pointers, if the context instruction and dominator tree are 2213 /// specified, perform context-sensitive analysis and return true if the 2214 /// pointer couldn't possibly be null at the specified instruction. 2215 /// Supports values with integer or pointer type and vectors of integers. 2216 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2217 const Query &Q) { 2218 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2219 // vector 2220 if (isa<ScalableVectorType>(V->getType())) 2221 return false; 2222 2223 if (auto *C = dyn_cast<Constant>(V)) { 2224 if (C->isNullValue()) 2225 return false; 2226 if (isa<ConstantInt>(C)) 2227 // Must be non-zero due to null test above. 2228 return true; 2229 2230 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2231 // See the comment for IntToPtr/PtrToInt instructions below. 2232 if (CE->getOpcode() == Instruction::IntToPtr || 2233 CE->getOpcode() == Instruction::PtrToInt) 2234 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2235 .getFixedSize() <= 2236 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2237 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2238 } 2239 2240 // For constant vectors, check that all elements are undefined or known 2241 // non-zero to determine that the whole vector is known non-zero. 2242 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2243 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2244 if (!DemandedElts[i]) 2245 continue; 2246 Constant *Elt = C->getAggregateElement(i); 2247 if (!Elt || Elt->isNullValue()) 2248 return false; 2249 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2250 return false; 2251 } 2252 return true; 2253 } 2254 2255 // A global variable in address space 0 is non null unless extern weak 2256 // or an absolute symbol reference. Other address spaces may have null as a 2257 // valid address for a global, so we can't assume anything. 2258 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2259 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2260 GV->getType()->getAddressSpace() == 0) 2261 return true; 2262 } else 2263 return false; 2264 } 2265 2266 if (auto *I = dyn_cast<Instruction>(V)) { 2267 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2268 // If the possible ranges don't contain zero, then the value is 2269 // definitely non-zero. 2270 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2271 const APInt ZeroValue(Ty->getBitWidth(), 0); 2272 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2273 return true; 2274 } 2275 } 2276 } 2277 2278 if (isKnownNonZeroFromAssume(V, Q)) 2279 return true; 2280 2281 // Some of the tests below are recursive, so bail out if we hit the limit. 2282 if (Depth++ >= MaxAnalysisRecursionDepth) 2283 return false; 2284 2285 // Check for pointer simplifications. 2286 2287 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2288 // Alloca never returns null, malloc might. 2289 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2290 return true; 2291 2292 // A byval, inalloca may not be null in a non-default addres space. A 2293 // nonnull argument is assumed never 0. 2294 if (const Argument *A = dyn_cast<Argument>(V)) { 2295 if (((A->hasPassPointeeByValueCopyAttr() && 2296 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2297 A->hasNonNullAttr())) 2298 return true; 2299 } 2300 2301 // A Load tagged with nonnull metadata is never null. 2302 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2303 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2304 return true; 2305 2306 if (const auto *Call = dyn_cast<CallBase>(V)) { 2307 if (Call->isReturnNonNull()) 2308 return true; 2309 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2310 return isKnownNonZero(RP, Depth, Q); 2311 } 2312 } 2313 2314 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2315 return true; 2316 2317 // Check for recursive pointer simplifications. 2318 if (V->getType()->isPointerTy()) { 2319 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2320 // do not alter the value, or at least not the nullness property of the 2321 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2322 // 2323 // Note that we have to take special care to avoid looking through 2324 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2325 // as casts that can alter the value, e.g., AddrSpaceCasts. 2326 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2327 return isGEPKnownNonNull(GEP, Depth, Q); 2328 2329 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2330 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2331 2332 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2333 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2334 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2335 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2336 } 2337 2338 // Similar to int2ptr above, we can look through ptr2int here if the cast 2339 // is a no-op or an extend and not a truncate. 2340 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2341 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2342 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2343 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2344 2345 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2346 2347 // X | Y != 0 if X != 0 or Y != 0. 2348 Value *X = nullptr, *Y = nullptr; 2349 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2350 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2351 isKnownNonZero(Y, DemandedElts, Depth, Q); 2352 2353 // ext X != 0 if X != 0. 2354 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2355 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2356 2357 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2358 // if the lowest bit is shifted off the end. 2359 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2360 // shl nuw can't remove any non-zero bits. 2361 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2362 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2363 return isKnownNonZero(X, Depth, Q); 2364 2365 KnownBits Known(BitWidth); 2366 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2367 if (Known.One[0]) 2368 return true; 2369 } 2370 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2371 // defined if the sign bit is shifted off the end. 2372 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2373 // shr exact can only shift out zero bits. 2374 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2375 if (BO->isExact()) 2376 return isKnownNonZero(X, Depth, Q); 2377 2378 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2379 if (Known.isNegative()) 2380 return true; 2381 2382 // If the shifter operand is a constant, and all of the bits shifted 2383 // out are known to be zero, and X is known non-zero then at least one 2384 // non-zero bit must remain. 2385 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2386 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2387 // Is there a known one in the portion not shifted out? 2388 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2389 return true; 2390 // Are all the bits to be shifted out known zero? 2391 if (Known.countMinTrailingZeros() >= ShiftVal) 2392 return isKnownNonZero(X, DemandedElts, Depth, Q); 2393 } 2394 } 2395 // div exact can only produce a zero if the dividend is zero. 2396 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2397 return isKnownNonZero(X, DemandedElts, Depth, Q); 2398 } 2399 // X + Y. 2400 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2401 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2402 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2403 2404 // If X and Y are both non-negative (as signed values) then their sum is not 2405 // zero unless both X and Y are zero. 2406 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2407 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2408 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2409 return true; 2410 2411 // If X and Y are both negative (as signed values) then their sum is not 2412 // zero unless both X and Y equal INT_MIN. 2413 if (XKnown.isNegative() && YKnown.isNegative()) { 2414 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2415 // The sign bit of X is set. If some other bit is set then X is not equal 2416 // to INT_MIN. 2417 if (XKnown.One.intersects(Mask)) 2418 return true; 2419 // The sign bit of Y is set. If some other bit is set then Y is not equal 2420 // to INT_MIN. 2421 if (YKnown.One.intersects(Mask)) 2422 return true; 2423 } 2424 2425 // The sum of a non-negative number and a power of two is not zero. 2426 if (XKnown.isNonNegative() && 2427 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2428 return true; 2429 if (YKnown.isNonNegative() && 2430 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2431 return true; 2432 } 2433 // X * Y. 2434 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2435 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2436 // If X and Y are non-zero then so is X * Y as long as the multiplication 2437 // does not overflow. 2438 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2439 isKnownNonZero(X, DemandedElts, Depth, Q) && 2440 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2441 return true; 2442 } 2443 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2444 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2445 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2446 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2447 return true; 2448 } 2449 // PHI 2450 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2451 // Try and detect a recurrence that monotonically increases from a 2452 // starting value, as these are common as induction variables. 2453 if (PN->getNumIncomingValues() == 2) { 2454 Value *Start = PN->getIncomingValue(0); 2455 Value *Induction = PN->getIncomingValue(1); 2456 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2457 std::swap(Start, Induction); 2458 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2459 if (!C->isZero() && !C->isNegative()) { 2460 ConstantInt *X; 2461 if (Q.IIQ.UseInstrInfo && 2462 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2463 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2464 !X->isNegative()) 2465 return true; 2466 } 2467 } 2468 } 2469 // Check if all incoming values are non-zero using recursion. 2470 Query RecQ = Q; 2471 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2472 return llvm::all_of(PN->operands(), [&](const Use &U) { 2473 if (U.get() == PN) 2474 return true; 2475 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2476 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2477 }); 2478 } 2479 // ExtractElement 2480 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2481 const Value *Vec = EEI->getVectorOperand(); 2482 const Value *Idx = EEI->getIndexOperand(); 2483 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2484 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2485 unsigned NumElts = VecTy->getNumElements(); 2486 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2487 if (CIdx && CIdx->getValue().ult(NumElts)) 2488 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2489 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2490 } 2491 } 2492 // Freeze 2493 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2494 auto *Op = FI->getOperand(0); 2495 if (isKnownNonZero(Op, Depth, Q) && 2496 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2497 return true; 2498 } 2499 2500 KnownBits Known(BitWidth); 2501 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2502 return Known.One != 0; 2503 } 2504 2505 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2506 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2507 // vector 2508 if (isa<ScalableVectorType>(V->getType())) 2509 return false; 2510 2511 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2512 APInt DemandedElts = 2513 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2514 return isKnownNonZero(V, DemandedElts, Depth, Q); 2515 } 2516 2517 /// Return true if V2 == V1 + X, where X is known non-zero. 2518 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2519 const Query &Q) { 2520 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2521 if (!BO || BO->getOpcode() != Instruction::Add) 2522 return false; 2523 Value *Op = nullptr; 2524 if (V2 == BO->getOperand(0)) 2525 Op = BO->getOperand(1); 2526 else if (V2 == BO->getOperand(1)) 2527 Op = BO->getOperand(0); 2528 else 2529 return false; 2530 return isKnownNonZero(Op, Depth + 1, Q); 2531 } 2532 2533 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2534 /// the multiplication is nuw or nsw. 2535 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2536 const Query &Q) { 2537 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2538 const APInt *C; 2539 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2540 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2541 !C->isNullValue() && !C->isOneValue() && 2542 isKnownNonZero(V1, Depth + 1, Q); 2543 } 2544 return false; 2545 } 2546 2547 /// Return true if it is known that V1 != V2. 2548 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2549 const Query &Q) { 2550 if (V1 == V2) 2551 return false; 2552 if (V1->getType() != V2->getType()) 2553 // We can't look through casts yet. 2554 return false; 2555 2556 if (Depth >= MaxAnalysisRecursionDepth) 2557 return false; 2558 2559 // See if we can recurse through (exactly one of) our operands. This 2560 // requires our operation be 1-to-1 and map every input value to exactly 2561 // one output value. Such an operation is invertible. 2562 auto *O1 = dyn_cast<Operator>(V1); 2563 auto *O2 = dyn_cast<Operator>(V2); 2564 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2565 switch (O1->getOpcode()) { 2566 default: break; 2567 case Instruction::Add: 2568 case Instruction::Sub: 2569 // Assume operand order has been canonicalized 2570 if (O1->getOperand(0) == O2->getOperand(0)) 2571 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2572 Depth + 1, Q); 2573 if (O1->getOperand(1) == O2->getOperand(1)) 2574 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2575 Depth + 1, Q); 2576 break; 2577 case Instruction::Mul: { 2578 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2579 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2580 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2581 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2582 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2583 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2584 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2585 break; 2586 2587 // Assume operand order has been canonicalized 2588 if (O1->getOperand(1) == O2->getOperand(1) && 2589 isa<ConstantInt>(O1->getOperand(1)) && 2590 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2591 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2592 Depth + 1, Q); 2593 break; 2594 } 2595 case Instruction::SExt: 2596 case Instruction::ZExt: 2597 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2598 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2599 Depth + 1, Q); 2600 break; 2601 }; 2602 } 2603 2604 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2605 return true; 2606 2607 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2608 return true; 2609 2610 if (V1->getType()->isIntOrIntVectorTy()) { 2611 // Are any known bits in V1 contradictory to known bits in V2? If V1 2612 // has a known zero where V2 has a known one, they must not be equal. 2613 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2614 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2615 2616 if (Known1.Zero.intersects(Known2.One) || 2617 Known2.Zero.intersects(Known1.One)) 2618 return true; 2619 } 2620 return false; 2621 } 2622 2623 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2624 /// simplify operations downstream. Mask is known to be zero for bits that V 2625 /// cannot have. 2626 /// 2627 /// This function is defined on values with integer type, values with pointer 2628 /// type, and vectors of integers. In the case 2629 /// where V is a vector, the mask, known zero, and known one values are the 2630 /// same width as the vector element, and the bit is set only if it is true 2631 /// for all of the elements in the vector. 2632 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2633 const Query &Q) { 2634 KnownBits Known(Mask.getBitWidth()); 2635 computeKnownBits(V, Known, Depth, Q); 2636 return Mask.isSubsetOf(Known.Zero); 2637 } 2638 2639 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2640 // Returns the input and lower/upper bounds. 2641 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2642 const APInt *&CLow, const APInt *&CHigh) { 2643 assert(isa<Operator>(Select) && 2644 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2645 "Input should be a Select!"); 2646 2647 const Value *LHS = nullptr, *RHS = nullptr; 2648 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2649 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2650 return false; 2651 2652 if (!match(RHS, m_APInt(CLow))) 2653 return false; 2654 2655 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2656 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2657 if (getInverseMinMaxFlavor(SPF) != SPF2) 2658 return false; 2659 2660 if (!match(RHS2, m_APInt(CHigh))) 2661 return false; 2662 2663 if (SPF == SPF_SMIN) 2664 std::swap(CLow, CHigh); 2665 2666 In = LHS2; 2667 return CLow->sle(*CHigh); 2668 } 2669 2670 /// For vector constants, loop over the elements and find the constant with the 2671 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2672 /// or if any element was not analyzed; otherwise, return the count for the 2673 /// element with the minimum number of sign bits. 2674 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2675 const APInt &DemandedElts, 2676 unsigned TyBits) { 2677 const auto *CV = dyn_cast<Constant>(V); 2678 if (!CV || !isa<FixedVectorType>(CV->getType())) 2679 return 0; 2680 2681 unsigned MinSignBits = TyBits; 2682 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2683 for (unsigned i = 0; i != NumElts; ++i) { 2684 if (!DemandedElts[i]) 2685 continue; 2686 // If we find a non-ConstantInt, bail out. 2687 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2688 if (!Elt) 2689 return 0; 2690 2691 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2692 } 2693 2694 return MinSignBits; 2695 } 2696 2697 static unsigned ComputeNumSignBitsImpl(const Value *V, 2698 const APInt &DemandedElts, 2699 unsigned Depth, const Query &Q); 2700 2701 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2702 unsigned Depth, const Query &Q) { 2703 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2704 assert(Result > 0 && "At least one sign bit needs to be present!"); 2705 return Result; 2706 } 2707 2708 /// Return the number of times the sign bit of the register is replicated into 2709 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2710 /// (itself), but other cases can give us information. For example, immediately 2711 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2712 /// other, so we return 3. For vectors, return the number of sign bits for the 2713 /// vector element with the minimum number of known sign bits of the demanded 2714 /// elements in the vector specified by DemandedElts. 2715 static unsigned ComputeNumSignBitsImpl(const Value *V, 2716 const APInt &DemandedElts, 2717 unsigned Depth, const Query &Q) { 2718 Type *Ty = V->getType(); 2719 2720 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2721 // vector 2722 if (isa<ScalableVectorType>(Ty)) 2723 return 1; 2724 2725 #ifndef NDEBUG 2726 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2727 2728 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2729 assert( 2730 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2731 "DemandedElt width should equal the fixed vector number of elements"); 2732 } else { 2733 assert(DemandedElts == APInt(1, 1) && 2734 "DemandedElt width should be 1 for scalars"); 2735 } 2736 #endif 2737 2738 // We return the minimum number of sign bits that are guaranteed to be present 2739 // in V, so for undef we have to conservatively return 1. We don't have the 2740 // same behavior for poison though -- that's a FIXME today. 2741 2742 Type *ScalarTy = Ty->getScalarType(); 2743 unsigned TyBits = ScalarTy->isPointerTy() ? 2744 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2745 Q.DL.getTypeSizeInBits(ScalarTy); 2746 2747 unsigned Tmp, Tmp2; 2748 unsigned FirstAnswer = 1; 2749 2750 // Note that ConstantInt is handled by the general computeKnownBits case 2751 // below. 2752 2753 if (Depth == MaxAnalysisRecursionDepth) 2754 return 1; 2755 2756 if (auto *U = dyn_cast<Operator>(V)) { 2757 switch (Operator::getOpcode(V)) { 2758 default: break; 2759 case Instruction::SExt: 2760 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2761 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2762 2763 case Instruction::SDiv: { 2764 const APInt *Denominator; 2765 // sdiv X, C -> adds log(C) sign bits. 2766 if (match(U->getOperand(1), m_APInt(Denominator))) { 2767 2768 // Ignore non-positive denominator. 2769 if (!Denominator->isStrictlyPositive()) 2770 break; 2771 2772 // Calculate the incoming numerator bits. 2773 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2774 2775 // Add floor(log(C)) bits to the numerator bits. 2776 return std::min(TyBits, NumBits + Denominator->logBase2()); 2777 } 2778 break; 2779 } 2780 2781 case Instruction::SRem: { 2782 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2783 2784 const APInt *Denominator; 2785 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2786 // positive constant. This let us put a lower bound on the number of sign 2787 // bits. 2788 if (match(U->getOperand(1), m_APInt(Denominator))) { 2789 2790 // Ignore non-positive denominator. 2791 if (Denominator->isStrictlyPositive()) { 2792 // Calculate the leading sign bit constraints by examining the 2793 // denominator. Given that the denominator is positive, there are two 2794 // cases: 2795 // 2796 // 1. The numerator is positive. The result range is [0,C) and 2797 // [0,C) u< (1 << ceilLogBase2(C)). 2798 // 2799 // 2. The numerator is negative. Then the result range is (-C,0] and 2800 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2801 // 2802 // Thus a lower bound on the number of sign bits is `TyBits - 2803 // ceilLogBase2(C)`. 2804 2805 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2806 Tmp = std::max(Tmp, ResBits); 2807 } 2808 } 2809 return Tmp; 2810 } 2811 2812 case Instruction::AShr: { 2813 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2814 // ashr X, C -> adds C sign bits. Vectors too. 2815 const APInt *ShAmt; 2816 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2817 if (ShAmt->uge(TyBits)) 2818 break; // Bad shift. 2819 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2820 Tmp += ShAmtLimited; 2821 if (Tmp > TyBits) Tmp = TyBits; 2822 } 2823 return Tmp; 2824 } 2825 case Instruction::Shl: { 2826 const APInt *ShAmt; 2827 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2828 // shl destroys sign bits. 2829 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2830 if (ShAmt->uge(TyBits) || // Bad shift. 2831 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2832 Tmp2 = ShAmt->getZExtValue(); 2833 return Tmp - Tmp2; 2834 } 2835 break; 2836 } 2837 case Instruction::And: 2838 case Instruction::Or: 2839 case Instruction::Xor: // NOT is handled here. 2840 // Logical binary ops preserve the number of sign bits at the worst. 2841 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2842 if (Tmp != 1) { 2843 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2844 FirstAnswer = std::min(Tmp, Tmp2); 2845 // We computed what we know about the sign bits as our first 2846 // answer. Now proceed to the generic code that uses 2847 // computeKnownBits, and pick whichever answer is better. 2848 } 2849 break; 2850 2851 case Instruction::Select: { 2852 // If we have a clamp pattern, we know that the number of sign bits will 2853 // be the minimum of the clamp min/max range. 2854 const Value *X; 2855 const APInt *CLow, *CHigh; 2856 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2857 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2858 2859 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2860 if (Tmp == 1) break; 2861 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2862 return std::min(Tmp, Tmp2); 2863 } 2864 2865 case Instruction::Add: 2866 // Add can have at most one carry bit. Thus we know that the output 2867 // is, at worst, one more bit than the inputs. 2868 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2869 if (Tmp == 1) break; 2870 2871 // Special case decrementing a value (ADD X, -1): 2872 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2873 if (CRHS->isAllOnesValue()) { 2874 KnownBits Known(TyBits); 2875 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2876 2877 // If the input is known to be 0 or 1, the output is 0/-1, which is 2878 // all sign bits set. 2879 if ((Known.Zero | 1).isAllOnesValue()) 2880 return TyBits; 2881 2882 // If we are subtracting one from a positive number, there is no carry 2883 // out of the result. 2884 if (Known.isNonNegative()) 2885 return Tmp; 2886 } 2887 2888 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2889 if (Tmp2 == 1) break; 2890 return std::min(Tmp, Tmp2) - 1; 2891 2892 case Instruction::Sub: 2893 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2894 if (Tmp2 == 1) break; 2895 2896 // Handle NEG. 2897 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2898 if (CLHS->isNullValue()) { 2899 KnownBits Known(TyBits); 2900 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2901 // If the input is known to be 0 or 1, the output is 0/-1, which is 2902 // all sign bits set. 2903 if ((Known.Zero | 1).isAllOnesValue()) 2904 return TyBits; 2905 2906 // If the input is known to be positive (the sign bit is known clear), 2907 // the output of the NEG has the same number of sign bits as the 2908 // input. 2909 if (Known.isNonNegative()) 2910 return Tmp2; 2911 2912 // Otherwise, we treat this like a SUB. 2913 } 2914 2915 // Sub can have at most one carry bit. Thus we know that the output 2916 // is, at worst, one more bit than the inputs. 2917 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2918 if (Tmp == 1) break; 2919 return std::min(Tmp, Tmp2) - 1; 2920 2921 case Instruction::Mul: { 2922 // The output of the Mul can be at most twice the valid bits in the 2923 // inputs. 2924 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2925 if (SignBitsOp0 == 1) break; 2926 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2927 if (SignBitsOp1 == 1) break; 2928 unsigned OutValidBits = 2929 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2930 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2931 } 2932 2933 case Instruction::PHI: { 2934 const PHINode *PN = cast<PHINode>(U); 2935 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2936 // Don't analyze large in-degree PHIs. 2937 if (NumIncomingValues > 4) break; 2938 // Unreachable blocks may have zero-operand PHI nodes. 2939 if (NumIncomingValues == 0) break; 2940 2941 // Take the minimum of all incoming values. This can't infinitely loop 2942 // because of our depth threshold. 2943 Query RecQ = Q; 2944 Tmp = TyBits; 2945 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2946 if (Tmp == 1) return Tmp; 2947 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2948 Tmp = std::min( 2949 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2950 } 2951 return Tmp; 2952 } 2953 2954 case Instruction::Trunc: 2955 // FIXME: it's tricky to do anything useful for this, but it is an 2956 // important case for targets like X86. 2957 break; 2958 2959 case Instruction::ExtractElement: 2960 // Look through extract element. At the moment we keep this simple and 2961 // skip tracking the specific element. But at least we might find 2962 // information valid for all elements of the vector (for example if vector 2963 // is sign extended, shifted, etc). 2964 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2965 2966 case Instruction::ShuffleVector: { 2967 // Collect the minimum number of sign bits that are shared by every vector 2968 // element referenced by the shuffle. 2969 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2970 if (!Shuf) { 2971 // FIXME: Add support for shufflevector constant expressions. 2972 return 1; 2973 } 2974 APInt DemandedLHS, DemandedRHS; 2975 // For undef elements, we don't know anything about the common state of 2976 // the shuffle result. 2977 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2978 return 1; 2979 Tmp = std::numeric_limits<unsigned>::max(); 2980 if (!!DemandedLHS) { 2981 const Value *LHS = Shuf->getOperand(0); 2982 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2983 } 2984 // If we don't know anything, early out and try computeKnownBits 2985 // fall-back. 2986 if (Tmp == 1) 2987 break; 2988 if (!!DemandedRHS) { 2989 const Value *RHS = Shuf->getOperand(1); 2990 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2991 Tmp = std::min(Tmp, Tmp2); 2992 } 2993 // If we don't know anything, early out and try computeKnownBits 2994 // fall-back. 2995 if (Tmp == 1) 2996 break; 2997 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2998 return Tmp; 2999 } 3000 case Instruction::Call: { 3001 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3002 switch (II->getIntrinsicID()) { 3003 default: break; 3004 case Intrinsic::abs: 3005 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3006 if (Tmp == 1) break; 3007 3008 // Absolute value reduces number of sign bits by at most 1. 3009 return Tmp - 1; 3010 } 3011 } 3012 } 3013 } 3014 } 3015 3016 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3017 // use this information. 3018 3019 // If we can examine all elements of a vector constant successfully, we're 3020 // done (we can't do any better than that). If not, keep trying. 3021 if (unsigned VecSignBits = 3022 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3023 return VecSignBits; 3024 3025 KnownBits Known(TyBits); 3026 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3027 3028 // If we know that the sign bit is either zero or one, determine the number of 3029 // identical bits in the top of the input value. 3030 return std::max(FirstAnswer, Known.countMinSignBits()); 3031 } 3032 3033 /// This function computes the integer multiple of Base that equals V. 3034 /// If successful, it returns true and returns the multiple in 3035 /// Multiple. If unsuccessful, it returns false. It looks 3036 /// through SExt instructions only if LookThroughSExt is true. 3037 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3038 bool LookThroughSExt, unsigned Depth) { 3039 assert(V && "No Value?"); 3040 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3041 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3042 3043 Type *T = V->getType(); 3044 3045 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3046 3047 if (Base == 0) 3048 return false; 3049 3050 if (Base == 1) { 3051 Multiple = V; 3052 return true; 3053 } 3054 3055 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3056 Constant *BaseVal = ConstantInt::get(T, Base); 3057 if (CO && CO == BaseVal) { 3058 // Multiple is 1. 3059 Multiple = ConstantInt::get(T, 1); 3060 return true; 3061 } 3062 3063 if (CI && CI->getZExtValue() % Base == 0) { 3064 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3065 return true; 3066 } 3067 3068 if (Depth == MaxAnalysisRecursionDepth) return false; 3069 3070 Operator *I = dyn_cast<Operator>(V); 3071 if (!I) return false; 3072 3073 switch (I->getOpcode()) { 3074 default: break; 3075 case Instruction::SExt: 3076 if (!LookThroughSExt) return false; 3077 // otherwise fall through to ZExt 3078 LLVM_FALLTHROUGH; 3079 case Instruction::ZExt: 3080 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3081 LookThroughSExt, Depth+1); 3082 case Instruction::Shl: 3083 case Instruction::Mul: { 3084 Value *Op0 = I->getOperand(0); 3085 Value *Op1 = I->getOperand(1); 3086 3087 if (I->getOpcode() == Instruction::Shl) { 3088 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3089 if (!Op1CI) return false; 3090 // Turn Op0 << Op1 into Op0 * 2^Op1 3091 APInt Op1Int = Op1CI->getValue(); 3092 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3093 APInt API(Op1Int.getBitWidth(), 0); 3094 API.setBit(BitToSet); 3095 Op1 = ConstantInt::get(V->getContext(), API); 3096 } 3097 3098 Value *Mul0 = nullptr; 3099 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3100 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3101 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3102 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3103 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3104 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3105 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3106 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3107 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3108 3109 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3110 Multiple = ConstantExpr::getMul(MulC, Op1C); 3111 return true; 3112 } 3113 3114 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3115 if (Mul0CI->getValue() == 1) { 3116 // V == Base * Op1, so return Op1 3117 Multiple = Op1; 3118 return true; 3119 } 3120 } 3121 3122 Value *Mul1 = nullptr; 3123 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3124 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3125 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3126 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3127 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3128 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3129 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3130 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3131 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3132 3133 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3134 Multiple = ConstantExpr::getMul(MulC, Op0C); 3135 return true; 3136 } 3137 3138 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3139 if (Mul1CI->getValue() == 1) { 3140 // V == Base * Op0, so return Op0 3141 Multiple = Op0; 3142 return true; 3143 } 3144 } 3145 } 3146 } 3147 3148 // We could not determine if V is a multiple of Base. 3149 return false; 3150 } 3151 3152 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3153 const TargetLibraryInfo *TLI) { 3154 const Function *F = CB.getCalledFunction(); 3155 if (!F) 3156 return Intrinsic::not_intrinsic; 3157 3158 if (F->isIntrinsic()) 3159 return F->getIntrinsicID(); 3160 3161 // We are going to infer semantics of a library function based on mapping it 3162 // to an LLVM intrinsic. Check that the library function is available from 3163 // this callbase and in this environment. 3164 LibFunc Func; 3165 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3166 !CB.onlyReadsMemory()) 3167 return Intrinsic::not_intrinsic; 3168 3169 switch (Func) { 3170 default: 3171 break; 3172 case LibFunc_sin: 3173 case LibFunc_sinf: 3174 case LibFunc_sinl: 3175 return Intrinsic::sin; 3176 case LibFunc_cos: 3177 case LibFunc_cosf: 3178 case LibFunc_cosl: 3179 return Intrinsic::cos; 3180 case LibFunc_exp: 3181 case LibFunc_expf: 3182 case LibFunc_expl: 3183 return Intrinsic::exp; 3184 case LibFunc_exp2: 3185 case LibFunc_exp2f: 3186 case LibFunc_exp2l: 3187 return Intrinsic::exp2; 3188 case LibFunc_log: 3189 case LibFunc_logf: 3190 case LibFunc_logl: 3191 return Intrinsic::log; 3192 case LibFunc_log10: 3193 case LibFunc_log10f: 3194 case LibFunc_log10l: 3195 return Intrinsic::log10; 3196 case LibFunc_log2: 3197 case LibFunc_log2f: 3198 case LibFunc_log2l: 3199 return Intrinsic::log2; 3200 case LibFunc_fabs: 3201 case LibFunc_fabsf: 3202 case LibFunc_fabsl: 3203 return Intrinsic::fabs; 3204 case LibFunc_fmin: 3205 case LibFunc_fminf: 3206 case LibFunc_fminl: 3207 return Intrinsic::minnum; 3208 case LibFunc_fmax: 3209 case LibFunc_fmaxf: 3210 case LibFunc_fmaxl: 3211 return Intrinsic::maxnum; 3212 case LibFunc_copysign: 3213 case LibFunc_copysignf: 3214 case LibFunc_copysignl: 3215 return Intrinsic::copysign; 3216 case LibFunc_floor: 3217 case LibFunc_floorf: 3218 case LibFunc_floorl: 3219 return Intrinsic::floor; 3220 case LibFunc_ceil: 3221 case LibFunc_ceilf: 3222 case LibFunc_ceill: 3223 return Intrinsic::ceil; 3224 case LibFunc_trunc: 3225 case LibFunc_truncf: 3226 case LibFunc_truncl: 3227 return Intrinsic::trunc; 3228 case LibFunc_rint: 3229 case LibFunc_rintf: 3230 case LibFunc_rintl: 3231 return Intrinsic::rint; 3232 case LibFunc_nearbyint: 3233 case LibFunc_nearbyintf: 3234 case LibFunc_nearbyintl: 3235 return Intrinsic::nearbyint; 3236 case LibFunc_round: 3237 case LibFunc_roundf: 3238 case LibFunc_roundl: 3239 return Intrinsic::round; 3240 case LibFunc_roundeven: 3241 case LibFunc_roundevenf: 3242 case LibFunc_roundevenl: 3243 return Intrinsic::roundeven; 3244 case LibFunc_pow: 3245 case LibFunc_powf: 3246 case LibFunc_powl: 3247 return Intrinsic::pow; 3248 case LibFunc_sqrt: 3249 case LibFunc_sqrtf: 3250 case LibFunc_sqrtl: 3251 return Intrinsic::sqrt; 3252 } 3253 3254 return Intrinsic::not_intrinsic; 3255 } 3256 3257 /// Return true if we can prove that the specified FP value is never equal to 3258 /// -0.0. 3259 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3260 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3261 /// the same as +0.0 in floating-point ops. 3262 /// 3263 /// NOTE: this function will need to be revisited when we support non-default 3264 /// rounding modes! 3265 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3266 unsigned Depth) { 3267 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3268 return !CFP->getValueAPF().isNegZero(); 3269 3270 if (Depth == MaxAnalysisRecursionDepth) 3271 return false; 3272 3273 auto *Op = dyn_cast<Operator>(V); 3274 if (!Op) 3275 return false; 3276 3277 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3278 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3279 return true; 3280 3281 // sitofp and uitofp turn into +0.0 for zero. 3282 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3283 return true; 3284 3285 if (auto *Call = dyn_cast<CallInst>(Op)) { 3286 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3287 switch (IID) { 3288 default: 3289 break; 3290 // sqrt(-0.0) = -0.0, no other negative results are possible. 3291 case Intrinsic::sqrt: 3292 case Intrinsic::canonicalize: 3293 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3294 // fabs(x) != -0.0 3295 case Intrinsic::fabs: 3296 return true; 3297 } 3298 } 3299 3300 return false; 3301 } 3302 3303 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3304 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3305 /// bit despite comparing equal. 3306 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3307 const TargetLibraryInfo *TLI, 3308 bool SignBitOnly, 3309 unsigned Depth) { 3310 // TODO: This function does not do the right thing when SignBitOnly is true 3311 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3312 // which flips the sign bits of NaNs. See 3313 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3314 3315 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3316 return !CFP->getValueAPF().isNegative() || 3317 (!SignBitOnly && CFP->getValueAPF().isZero()); 3318 } 3319 3320 // Handle vector of constants. 3321 if (auto *CV = dyn_cast<Constant>(V)) { 3322 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3323 unsigned NumElts = CVFVTy->getNumElements(); 3324 for (unsigned i = 0; i != NumElts; ++i) { 3325 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3326 if (!CFP) 3327 return false; 3328 if (CFP->getValueAPF().isNegative() && 3329 (SignBitOnly || !CFP->getValueAPF().isZero())) 3330 return false; 3331 } 3332 3333 // All non-negative ConstantFPs. 3334 return true; 3335 } 3336 } 3337 3338 if (Depth == MaxAnalysisRecursionDepth) 3339 return false; 3340 3341 const Operator *I = dyn_cast<Operator>(V); 3342 if (!I) 3343 return false; 3344 3345 switch (I->getOpcode()) { 3346 default: 3347 break; 3348 // Unsigned integers are always nonnegative. 3349 case Instruction::UIToFP: 3350 return true; 3351 case Instruction::FMul: 3352 case Instruction::FDiv: 3353 // X * X is always non-negative or a NaN. 3354 // X / X is always exactly 1.0 or a NaN. 3355 if (I->getOperand(0) == I->getOperand(1) && 3356 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3357 return true; 3358 3359 LLVM_FALLTHROUGH; 3360 case Instruction::FAdd: 3361 case Instruction::FRem: 3362 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3363 Depth + 1) && 3364 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3365 Depth + 1); 3366 case Instruction::Select: 3367 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3368 Depth + 1) && 3369 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3370 Depth + 1); 3371 case Instruction::FPExt: 3372 case Instruction::FPTrunc: 3373 // Widening/narrowing never change sign. 3374 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3375 Depth + 1); 3376 case Instruction::ExtractElement: 3377 // Look through extract element. At the moment we keep this simple and skip 3378 // tracking the specific element. But at least we might find information 3379 // valid for all elements of the vector. 3380 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3381 Depth + 1); 3382 case Instruction::Call: 3383 const auto *CI = cast<CallInst>(I); 3384 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3385 switch (IID) { 3386 default: 3387 break; 3388 case Intrinsic::maxnum: { 3389 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3390 auto isPositiveNum = [&](Value *V) { 3391 if (SignBitOnly) { 3392 // With SignBitOnly, this is tricky because the result of 3393 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3394 // a constant strictly greater than 0.0. 3395 const APFloat *C; 3396 return match(V, m_APFloat(C)) && 3397 *C > APFloat::getZero(C->getSemantics()); 3398 } 3399 3400 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3401 // maxnum can't be ordered-less-than-zero. 3402 return isKnownNeverNaN(V, TLI) && 3403 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3404 }; 3405 3406 // TODO: This could be improved. We could also check that neither operand 3407 // has its sign bit set (and at least 1 is not-NAN?). 3408 return isPositiveNum(V0) || isPositiveNum(V1); 3409 } 3410 3411 case Intrinsic::maximum: 3412 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3413 Depth + 1) || 3414 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3415 Depth + 1); 3416 case Intrinsic::minnum: 3417 case Intrinsic::minimum: 3418 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3419 Depth + 1) && 3420 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3421 Depth + 1); 3422 case Intrinsic::exp: 3423 case Intrinsic::exp2: 3424 case Intrinsic::fabs: 3425 return true; 3426 3427 case Intrinsic::sqrt: 3428 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3429 if (!SignBitOnly) 3430 return true; 3431 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3432 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3433 3434 case Intrinsic::powi: 3435 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3436 // powi(x,n) is non-negative if n is even. 3437 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3438 return true; 3439 } 3440 // TODO: This is not correct. Given that exp is an integer, here are the 3441 // ways that pow can return a negative value: 3442 // 3443 // pow(x, exp) --> negative if exp is odd and x is negative. 3444 // pow(-0, exp) --> -inf if exp is negative odd. 3445 // pow(-0, exp) --> -0 if exp is positive odd. 3446 // pow(-inf, exp) --> -0 if exp is negative odd. 3447 // pow(-inf, exp) --> -inf if exp is positive odd. 3448 // 3449 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3450 // but we must return false if x == -0. Unfortunately we do not currently 3451 // have a way of expressing this constraint. See details in 3452 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3453 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3454 Depth + 1); 3455 3456 case Intrinsic::fma: 3457 case Intrinsic::fmuladd: 3458 // x*x+y is non-negative if y is non-negative. 3459 return I->getOperand(0) == I->getOperand(1) && 3460 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3461 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3462 Depth + 1); 3463 } 3464 break; 3465 } 3466 return false; 3467 } 3468 3469 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3470 const TargetLibraryInfo *TLI) { 3471 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3472 } 3473 3474 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3475 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3476 } 3477 3478 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3479 unsigned Depth) { 3480 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3481 3482 // If we're told that infinities won't happen, assume they won't. 3483 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3484 if (FPMathOp->hasNoInfs()) 3485 return true; 3486 3487 // Handle scalar constants. 3488 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3489 return !CFP->isInfinity(); 3490 3491 if (Depth == MaxAnalysisRecursionDepth) 3492 return false; 3493 3494 if (auto *Inst = dyn_cast<Instruction>(V)) { 3495 switch (Inst->getOpcode()) { 3496 case Instruction::Select: { 3497 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3498 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3499 } 3500 case Instruction::SIToFP: 3501 case Instruction::UIToFP: { 3502 // Get width of largest magnitude integer (remove a bit if signed). 3503 // This still works for a signed minimum value because the largest FP 3504 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3505 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3506 if (Inst->getOpcode() == Instruction::SIToFP) 3507 --IntSize; 3508 3509 // If the exponent of the largest finite FP value can hold the largest 3510 // integer, the result of the cast must be finite. 3511 Type *FPTy = Inst->getType()->getScalarType(); 3512 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3513 } 3514 default: 3515 break; 3516 } 3517 } 3518 3519 // try to handle fixed width vector constants 3520 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3521 if (VFVTy && isa<Constant>(V)) { 3522 // For vectors, verify that each element is not infinity. 3523 unsigned NumElts = VFVTy->getNumElements(); 3524 for (unsigned i = 0; i != NumElts; ++i) { 3525 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3526 if (!Elt) 3527 return false; 3528 if (isa<UndefValue>(Elt)) 3529 continue; 3530 auto *CElt = dyn_cast<ConstantFP>(Elt); 3531 if (!CElt || CElt->isInfinity()) 3532 return false; 3533 } 3534 // All elements were confirmed non-infinity or undefined. 3535 return true; 3536 } 3537 3538 // was not able to prove that V never contains infinity 3539 return false; 3540 } 3541 3542 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3543 unsigned Depth) { 3544 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3545 3546 // If we're told that NaNs won't happen, assume they won't. 3547 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3548 if (FPMathOp->hasNoNaNs()) 3549 return true; 3550 3551 // Handle scalar constants. 3552 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3553 return !CFP->isNaN(); 3554 3555 if (Depth == MaxAnalysisRecursionDepth) 3556 return false; 3557 3558 if (auto *Inst = dyn_cast<Instruction>(V)) { 3559 switch (Inst->getOpcode()) { 3560 case Instruction::FAdd: 3561 case Instruction::FSub: 3562 // Adding positive and negative infinity produces NaN. 3563 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3564 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3565 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3566 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3567 3568 case Instruction::FMul: 3569 // Zero multiplied with infinity produces NaN. 3570 // FIXME: If neither side can be zero fmul never produces NaN. 3571 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3572 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3573 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3574 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3575 3576 case Instruction::FDiv: 3577 case Instruction::FRem: 3578 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3579 return false; 3580 3581 case Instruction::Select: { 3582 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3583 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3584 } 3585 case Instruction::SIToFP: 3586 case Instruction::UIToFP: 3587 return true; 3588 case Instruction::FPTrunc: 3589 case Instruction::FPExt: 3590 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3591 default: 3592 break; 3593 } 3594 } 3595 3596 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3597 switch (II->getIntrinsicID()) { 3598 case Intrinsic::canonicalize: 3599 case Intrinsic::fabs: 3600 case Intrinsic::copysign: 3601 case Intrinsic::exp: 3602 case Intrinsic::exp2: 3603 case Intrinsic::floor: 3604 case Intrinsic::ceil: 3605 case Intrinsic::trunc: 3606 case Intrinsic::rint: 3607 case Intrinsic::nearbyint: 3608 case Intrinsic::round: 3609 case Intrinsic::roundeven: 3610 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3611 case Intrinsic::sqrt: 3612 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3613 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3614 case Intrinsic::minnum: 3615 case Intrinsic::maxnum: 3616 // If either operand is not NaN, the result is not NaN. 3617 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3618 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3619 default: 3620 return false; 3621 } 3622 } 3623 3624 // Try to handle fixed width vector constants 3625 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3626 if (VFVTy && isa<Constant>(V)) { 3627 // For vectors, verify that each element is not NaN. 3628 unsigned NumElts = VFVTy->getNumElements(); 3629 for (unsigned i = 0; i != NumElts; ++i) { 3630 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3631 if (!Elt) 3632 return false; 3633 if (isa<UndefValue>(Elt)) 3634 continue; 3635 auto *CElt = dyn_cast<ConstantFP>(Elt); 3636 if (!CElt || CElt->isNaN()) 3637 return false; 3638 } 3639 // All elements were confirmed not-NaN or undefined. 3640 return true; 3641 } 3642 3643 // Was not able to prove that V never contains NaN 3644 return false; 3645 } 3646 3647 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3648 3649 // All byte-wide stores are splatable, even of arbitrary variables. 3650 if (V->getType()->isIntegerTy(8)) 3651 return V; 3652 3653 LLVMContext &Ctx = V->getContext(); 3654 3655 // Undef don't care. 3656 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3657 if (isa<UndefValue>(V)) 3658 return UndefInt8; 3659 3660 // Return Undef for zero-sized type. 3661 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3662 return UndefInt8; 3663 3664 Constant *C = dyn_cast<Constant>(V); 3665 if (!C) { 3666 // Conceptually, we could handle things like: 3667 // %a = zext i8 %X to i16 3668 // %b = shl i16 %a, 8 3669 // %c = or i16 %a, %b 3670 // but until there is an example that actually needs this, it doesn't seem 3671 // worth worrying about. 3672 return nullptr; 3673 } 3674 3675 // Handle 'null' ConstantArrayZero etc. 3676 if (C->isNullValue()) 3677 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3678 3679 // Constant floating-point values can be handled as integer values if the 3680 // corresponding integer value is "byteable". An important case is 0.0. 3681 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3682 Type *Ty = nullptr; 3683 if (CFP->getType()->isHalfTy()) 3684 Ty = Type::getInt16Ty(Ctx); 3685 else if (CFP->getType()->isFloatTy()) 3686 Ty = Type::getInt32Ty(Ctx); 3687 else if (CFP->getType()->isDoubleTy()) 3688 Ty = Type::getInt64Ty(Ctx); 3689 // Don't handle long double formats, which have strange constraints. 3690 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3691 : nullptr; 3692 } 3693 3694 // We can handle constant integers that are multiple of 8 bits. 3695 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3696 if (CI->getBitWidth() % 8 == 0) { 3697 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3698 if (!CI->getValue().isSplat(8)) 3699 return nullptr; 3700 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3701 } 3702 } 3703 3704 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3705 if (CE->getOpcode() == Instruction::IntToPtr) { 3706 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3707 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3708 return isBytewiseValue( 3709 ConstantExpr::getIntegerCast(CE->getOperand(0), 3710 Type::getIntNTy(Ctx, BitWidth), false), 3711 DL); 3712 } 3713 } 3714 } 3715 3716 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3717 if (LHS == RHS) 3718 return LHS; 3719 if (!LHS || !RHS) 3720 return nullptr; 3721 if (LHS == UndefInt8) 3722 return RHS; 3723 if (RHS == UndefInt8) 3724 return LHS; 3725 return nullptr; 3726 }; 3727 3728 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3729 Value *Val = UndefInt8; 3730 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3731 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3732 return nullptr; 3733 return Val; 3734 } 3735 3736 if (isa<ConstantAggregate>(C)) { 3737 Value *Val = UndefInt8; 3738 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3739 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3740 return nullptr; 3741 return Val; 3742 } 3743 3744 // Don't try to handle the handful of other constants. 3745 return nullptr; 3746 } 3747 3748 // This is the recursive version of BuildSubAggregate. It takes a few different 3749 // arguments. Idxs is the index within the nested struct From that we are 3750 // looking at now (which is of type IndexedType). IdxSkip is the number of 3751 // indices from Idxs that should be left out when inserting into the resulting 3752 // struct. To is the result struct built so far, new insertvalue instructions 3753 // build on that. 3754 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3755 SmallVectorImpl<unsigned> &Idxs, 3756 unsigned IdxSkip, 3757 Instruction *InsertBefore) { 3758 StructType *STy = dyn_cast<StructType>(IndexedType); 3759 if (STy) { 3760 // Save the original To argument so we can modify it 3761 Value *OrigTo = To; 3762 // General case, the type indexed by Idxs is a struct 3763 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3764 // Process each struct element recursively 3765 Idxs.push_back(i); 3766 Value *PrevTo = To; 3767 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3768 InsertBefore); 3769 Idxs.pop_back(); 3770 if (!To) { 3771 // Couldn't find any inserted value for this index? Cleanup 3772 while (PrevTo != OrigTo) { 3773 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3774 PrevTo = Del->getAggregateOperand(); 3775 Del->eraseFromParent(); 3776 } 3777 // Stop processing elements 3778 break; 3779 } 3780 } 3781 // If we successfully found a value for each of our subaggregates 3782 if (To) 3783 return To; 3784 } 3785 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3786 // the struct's elements had a value that was inserted directly. In the latter 3787 // case, perhaps we can't determine each of the subelements individually, but 3788 // we might be able to find the complete struct somewhere. 3789 3790 // Find the value that is at that particular spot 3791 Value *V = FindInsertedValue(From, Idxs); 3792 3793 if (!V) 3794 return nullptr; 3795 3796 // Insert the value in the new (sub) aggregate 3797 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3798 "tmp", InsertBefore); 3799 } 3800 3801 // This helper takes a nested struct and extracts a part of it (which is again a 3802 // struct) into a new value. For example, given the struct: 3803 // { a, { b, { c, d }, e } } 3804 // and the indices "1, 1" this returns 3805 // { c, d }. 3806 // 3807 // It does this by inserting an insertvalue for each element in the resulting 3808 // struct, as opposed to just inserting a single struct. This will only work if 3809 // each of the elements of the substruct are known (ie, inserted into From by an 3810 // insertvalue instruction somewhere). 3811 // 3812 // All inserted insertvalue instructions are inserted before InsertBefore 3813 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3814 Instruction *InsertBefore) { 3815 assert(InsertBefore && "Must have someplace to insert!"); 3816 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3817 idx_range); 3818 Value *To = UndefValue::get(IndexedType); 3819 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3820 unsigned IdxSkip = Idxs.size(); 3821 3822 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3823 } 3824 3825 /// Given an aggregate and a sequence of indices, see if the scalar value 3826 /// indexed is already around as a register, for example if it was inserted 3827 /// directly into the aggregate. 3828 /// 3829 /// If InsertBefore is not null, this function will duplicate (modified) 3830 /// insertvalues when a part of a nested struct is extracted. 3831 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3832 Instruction *InsertBefore) { 3833 // Nothing to index? Just return V then (this is useful at the end of our 3834 // recursion). 3835 if (idx_range.empty()) 3836 return V; 3837 // We have indices, so V should have an indexable type. 3838 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3839 "Not looking at a struct or array?"); 3840 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3841 "Invalid indices for type?"); 3842 3843 if (Constant *C = dyn_cast<Constant>(V)) { 3844 C = C->getAggregateElement(idx_range[0]); 3845 if (!C) return nullptr; 3846 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3847 } 3848 3849 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3850 // Loop the indices for the insertvalue instruction in parallel with the 3851 // requested indices 3852 const unsigned *req_idx = idx_range.begin(); 3853 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3854 i != e; ++i, ++req_idx) { 3855 if (req_idx == idx_range.end()) { 3856 // We can't handle this without inserting insertvalues 3857 if (!InsertBefore) 3858 return nullptr; 3859 3860 // The requested index identifies a part of a nested aggregate. Handle 3861 // this specially. For example, 3862 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3863 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3864 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3865 // This can be changed into 3866 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3867 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3868 // which allows the unused 0,0 element from the nested struct to be 3869 // removed. 3870 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3871 InsertBefore); 3872 } 3873 3874 // This insert value inserts something else than what we are looking for. 3875 // See if the (aggregate) value inserted into has the value we are 3876 // looking for, then. 3877 if (*req_idx != *i) 3878 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3879 InsertBefore); 3880 } 3881 // If we end up here, the indices of the insertvalue match with those 3882 // requested (though possibly only partially). Now we recursively look at 3883 // the inserted value, passing any remaining indices. 3884 return FindInsertedValue(I->getInsertedValueOperand(), 3885 makeArrayRef(req_idx, idx_range.end()), 3886 InsertBefore); 3887 } 3888 3889 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3890 // If we're extracting a value from an aggregate that was extracted from 3891 // something else, we can extract from that something else directly instead. 3892 // However, we will need to chain I's indices with the requested indices. 3893 3894 // Calculate the number of indices required 3895 unsigned size = I->getNumIndices() + idx_range.size(); 3896 // Allocate some space to put the new indices in 3897 SmallVector<unsigned, 5> Idxs; 3898 Idxs.reserve(size); 3899 // Add indices from the extract value instruction 3900 Idxs.append(I->idx_begin(), I->idx_end()); 3901 3902 // Add requested indices 3903 Idxs.append(idx_range.begin(), idx_range.end()); 3904 3905 assert(Idxs.size() == size 3906 && "Number of indices added not correct?"); 3907 3908 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3909 } 3910 // Otherwise, we don't know (such as, extracting from a function return value 3911 // or load instruction) 3912 return nullptr; 3913 } 3914 3915 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3916 unsigned CharSize) { 3917 // Make sure the GEP has exactly three arguments. 3918 if (GEP->getNumOperands() != 3) 3919 return false; 3920 3921 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3922 // CharSize. 3923 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3924 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3925 return false; 3926 3927 // Check to make sure that the first operand of the GEP is an integer and 3928 // has value 0 so that we are sure we're indexing into the initializer. 3929 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3930 if (!FirstIdx || !FirstIdx->isZero()) 3931 return false; 3932 3933 return true; 3934 } 3935 3936 bool llvm::getConstantDataArrayInfo(const Value *V, 3937 ConstantDataArraySlice &Slice, 3938 unsigned ElementSize, uint64_t Offset) { 3939 assert(V); 3940 3941 // Look through bitcast instructions and geps. 3942 V = V->stripPointerCasts(); 3943 3944 // If the value is a GEP instruction or constant expression, treat it as an 3945 // offset. 3946 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3947 // The GEP operator should be based on a pointer to string constant, and is 3948 // indexing into the string constant. 3949 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3950 return false; 3951 3952 // If the second index isn't a ConstantInt, then this is a variable index 3953 // into the array. If this occurs, we can't say anything meaningful about 3954 // the string. 3955 uint64_t StartIdx = 0; 3956 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3957 StartIdx = CI->getZExtValue(); 3958 else 3959 return false; 3960 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3961 StartIdx + Offset); 3962 } 3963 3964 // The GEP instruction, constant or instruction, must reference a global 3965 // variable that is a constant and is initialized. The referenced constant 3966 // initializer is the array that we'll use for optimization. 3967 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3968 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3969 return false; 3970 3971 const ConstantDataArray *Array; 3972 ArrayType *ArrayTy; 3973 if (GV->getInitializer()->isNullValue()) { 3974 Type *GVTy = GV->getValueType(); 3975 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3976 // A zeroinitializer for the array; there is no ConstantDataArray. 3977 Array = nullptr; 3978 } else { 3979 const DataLayout &DL = GV->getParent()->getDataLayout(); 3980 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3981 uint64_t Length = SizeInBytes / (ElementSize / 8); 3982 if (Length <= Offset) 3983 return false; 3984 3985 Slice.Array = nullptr; 3986 Slice.Offset = 0; 3987 Slice.Length = Length - Offset; 3988 return true; 3989 } 3990 } else { 3991 // This must be a ConstantDataArray. 3992 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3993 if (!Array) 3994 return false; 3995 ArrayTy = Array->getType(); 3996 } 3997 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3998 return false; 3999 4000 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4001 if (Offset > NumElts) 4002 return false; 4003 4004 Slice.Array = Array; 4005 Slice.Offset = Offset; 4006 Slice.Length = NumElts - Offset; 4007 return true; 4008 } 4009 4010 /// This function computes the length of a null-terminated C string pointed to 4011 /// by V. If successful, it returns true and returns the string in Str. 4012 /// If unsuccessful, it returns false. 4013 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4014 uint64_t Offset, bool TrimAtNul) { 4015 ConstantDataArraySlice Slice; 4016 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4017 return false; 4018 4019 if (Slice.Array == nullptr) { 4020 if (TrimAtNul) { 4021 Str = StringRef(); 4022 return true; 4023 } 4024 if (Slice.Length == 1) { 4025 Str = StringRef("", 1); 4026 return true; 4027 } 4028 // We cannot instantiate a StringRef as we do not have an appropriate string 4029 // of 0s at hand. 4030 return false; 4031 } 4032 4033 // Start out with the entire array in the StringRef. 4034 Str = Slice.Array->getAsString(); 4035 // Skip over 'offset' bytes. 4036 Str = Str.substr(Slice.Offset); 4037 4038 if (TrimAtNul) { 4039 // Trim off the \0 and anything after it. If the array is not nul 4040 // terminated, we just return the whole end of string. The client may know 4041 // some other way that the string is length-bound. 4042 Str = Str.substr(0, Str.find('\0')); 4043 } 4044 return true; 4045 } 4046 4047 // These next two are very similar to the above, but also look through PHI 4048 // nodes. 4049 // TODO: See if we can integrate these two together. 4050 4051 /// If we can compute the length of the string pointed to by 4052 /// the specified pointer, return 'len+1'. If we can't, return 0. 4053 static uint64_t GetStringLengthH(const Value *V, 4054 SmallPtrSetImpl<const PHINode*> &PHIs, 4055 unsigned CharSize) { 4056 // Look through noop bitcast instructions. 4057 V = V->stripPointerCasts(); 4058 4059 // If this is a PHI node, there are two cases: either we have already seen it 4060 // or we haven't. 4061 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4062 if (!PHIs.insert(PN).second) 4063 return ~0ULL; // already in the set. 4064 4065 // If it was new, see if all the input strings are the same length. 4066 uint64_t LenSoFar = ~0ULL; 4067 for (Value *IncValue : PN->incoming_values()) { 4068 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4069 if (Len == 0) return 0; // Unknown length -> unknown. 4070 4071 if (Len == ~0ULL) continue; 4072 4073 if (Len != LenSoFar && LenSoFar != ~0ULL) 4074 return 0; // Disagree -> unknown. 4075 LenSoFar = Len; 4076 } 4077 4078 // Success, all agree. 4079 return LenSoFar; 4080 } 4081 4082 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4083 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4084 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4085 if (Len1 == 0) return 0; 4086 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4087 if (Len2 == 0) return 0; 4088 if (Len1 == ~0ULL) return Len2; 4089 if (Len2 == ~0ULL) return Len1; 4090 if (Len1 != Len2) return 0; 4091 return Len1; 4092 } 4093 4094 // Otherwise, see if we can read the string. 4095 ConstantDataArraySlice Slice; 4096 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4097 return 0; 4098 4099 if (Slice.Array == nullptr) 4100 return 1; 4101 4102 // Search for nul characters 4103 unsigned NullIndex = 0; 4104 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4105 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4106 break; 4107 } 4108 4109 return NullIndex + 1; 4110 } 4111 4112 /// If we can compute the length of the string pointed to by 4113 /// the specified pointer, return 'len+1'. If we can't, return 0. 4114 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4115 if (!V->getType()->isPointerTy()) 4116 return 0; 4117 4118 SmallPtrSet<const PHINode*, 32> PHIs; 4119 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4120 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4121 // an empty string as a length. 4122 return Len == ~0ULL ? 1 : Len; 4123 } 4124 4125 const Value * 4126 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4127 bool MustPreserveNullness) { 4128 assert(Call && 4129 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4130 if (const Value *RV = Call->getReturnedArgOperand()) 4131 return RV; 4132 // This can be used only as a aliasing property. 4133 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4134 Call, MustPreserveNullness)) 4135 return Call->getArgOperand(0); 4136 return nullptr; 4137 } 4138 4139 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4140 const CallBase *Call, bool MustPreserveNullness) { 4141 switch (Call->getIntrinsicID()) { 4142 case Intrinsic::launder_invariant_group: 4143 case Intrinsic::strip_invariant_group: 4144 case Intrinsic::aarch64_irg: 4145 case Intrinsic::aarch64_tagp: 4146 return true; 4147 case Intrinsic::ptrmask: 4148 return !MustPreserveNullness; 4149 default: 4150 return false; 4151 } 4152 } 4153 4154 /// \p PN defines a loop-variant pointer to an object. Check if the 4155 /// previous iteration of the loop was referring to the same object as \p PN. 4156 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4157 const LoopInfo *LI) { 4158 // Find the loop-defined value. 4159 Loop *L = LI->getLoopFor(PN->getParent()); 4160 if (PN->getNumIncomingValues() != 2) 4161 return true; 4162 4163 // Find the value from previous iteration. 4164 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4165 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4166 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4167 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4168 return true; 4169 4170 // If a new pointer is loaded in the loop, the pointer references a different 4171 // object in every iteration. E.g.: 4172 // for (i) 4173 // int *p = a[i]; 4174 // ... 4175 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4176 if (!L->isLoopInvariant(Load->getPointerOperand())) 4177 return false; 4178 return true; 4179 } 4180 4181 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4182 if (!V->getType()->isPointerTy()) 4183 return V; 4184 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4185 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4186 V = GEP->getPointerOperand(); 4187 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4188 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4189 V = cast<Operator>(V)->getOperand(0); 4190 if (!V->getType()->isPointerTy()) 4191 return V; 4192 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4193 if (GA->isInterposable()) 4194 return V; 4195 V = GA->getAliasee(); 4196 } else { 4197 if (auto *PHI = dyn_cast<PHINode>(V)) { 4198 // Look through single-arg phi nodes created by LCSSA. 4199 if (PHI->getNumIncomingValues() == 1) { 4200 V = PHI->getIncomingValue(0); 4201 continue; 4202 } 4203 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4204 // CaptureTracking can know about special capturing properties of some 4205 // intrinsics like launder.invariant.group, that can't be expressed with 4206 // the attributes, but have properties like returning aliasing pointer. 4207 // Because some analysis may assume that nocaptured pointer is not 4208 // returned from some special intrinsic (because function would have to 4209 // be marked with returns attribute), it is crucial to use this function 4210 // because it should be in sync with CaptureTracking. Not using it may 4211 // cause weird miscompilations where 2 aliasing pointers are assumed to 4212 // noalias. 4213 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4214 V = RP; 4215 continue; 4216 } 4217 } 4218 4219 return V; 4220 } 4221 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4222 } 4223 return V; 4224 } 4225 4226 void llvm::getUnderlyingObjects(const Value *V, 4227 SmallVectorImpl<const Value *> &Objects, 4228 LoopInfo *LI, unsigned MaxLookup) { 4229 SmallPtrSet<const Value *, 4> Visited; 4230 SmallVector<const Value *, 4> Worklist; 4231 Worklist.push_back(V); 4232 do { 4233 const Value *P = Worklist.pop_back_val(); 4234 P = getUnderlyingObject(P, MaxLookup); 4235 4236 if (!Visited.insert(P).second) 4237 continue; 4238 4239 if (auto *SI = dyn_cast<SelectInst>(P)) { 4240 Worklist.push_back(SI->getTrueValue()); 4241 Worklist.push_back(SI->getFalseValue()); 4242 continue; 4243 } 4244 4245 if (auto *PN = dyn_cast<PHINode>(P)) { 4246 // If this PHI changes the underlying object in every iteration of the 4247 // loop, don't look through it. Consider: 4248 // int **A; 4249 // for (i) { 4250 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4251 // Curr = A[i]; 4252 // *Prev, *Curr; 4253 // 4254 // Prev is tracking Curr one iteration behind so they refer to different 4255 // underlying objects. 4256 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4257 isSameUnderlyingObjectInLoop(PN, LI)) 4258 append_range(Worklist, PN->incoming_values()); 4259 continue; 4260 } 4261 4262 Objects.push_back(P); 4263 } while (!Worklist.empty()); 4264 } 4265 4266 /// This is the function that does the work of looking through basic 4267 /// ptrtoint+arithmetic+inttoptr sequences. 4268 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4269 do { 4270 if (const Operator *U = dyn_cast<Operator>(V)) { 4271 // If we find a ptrtoint, we can transfer control back to the 4272 // regular getUnderlyingObjectFromInt. 4273 if (U->getOpcode() == Instruction::PtrToInt) 4274 return U->getOperand(0); 4275 // If we find an add of a constant, a multiplied value, or a phi, it's 4276 // likely that the other operand will lead us to the base 4277 // object. We don't have to worry about the case where the 4278 // object address is somehow being computed by the multiply, 4279 // because our callers only care when the result is an 4280 // identifiable object. 4281 if (U->getOpcode() != Instruction::Add || 4282 (!isa<ConstantInt>(U->getOperand(1)) && 4283 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4284 !isa<PHINode>(U->getOperand(1)))) 4285 return V; 4286 V = U->getOperand(0); 4287 } else { 4288 return V; 4289 } 4290 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4291 } while (true); 4292 } 4293 4294 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4295 /// ptrtoint+arithmetic+inttoptr sequences. 4296 /// It returns false if unidentified object is found in getUnderlyingObjects. 4297 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4298 SmallVectorImpl<Value *> &Objects) { 4299 SmallPtrSet<const Value *, 16> Visited; 4300 SmallVector<const Value *, 4> Working(1, V); 4301 do { 4302 V = Working.pop_back_val(); 4303 4304 SmallVector<const Value *, 4> Objs; 4305 getUnderlyingObjects(V, Objs); 4306 4307 for (const Value *V : Objs) { 4308 if (!Visited.insert(V).second) 4309 continue; 4310 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4311 const Value *O = 4312 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4313 if (O->getType()->isPointerTy()) { 4314 Working.push_back(O); 4315 continue; 4316 } 4317 } 4318 // If getUnderlyingObjects fails to find an identifiable object, 4319 // getUnderlyingObjectsForCodeGen also fails for safety. 4320 if (!isIdentifiedObject(V)) { 4321 Objects.clear(); 4322 return false; 4323 } 4324 Objects.push_back(const_cast<Value *>(V)); 4325 } 4326 } while (!Working.empty()); 4327 return true; 4328 } 4329 4330 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4331 AllocaInst *Result = nullptr; 4332 SmallPtrSet<Value *, 4> Visited; 4333 SmallVector<Value *, 4> Worklist; 4334 4335 auto AddWork = [&](Value *V) { 4336 if (Visited.insert(V).second) 4337 Worklist.push_back(V); 4338 }; 4339 4340 AddWork(V); 4341 do { 4342 V = Worklist.pop_back_val(); 4343 assert(Visited.count(V)); 4344 4345 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4346 if (Result && Result != AI) 4347 return nullptr; 4348 Result = AI; 4349 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4350 AddWork(CI->getOperand(0)); 4351 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4352 for (Value *IncValue : PN->incoming_values()) 4353 AddWork(IncValue); 4354 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4355 AddWork(SI->getTrueValue()); 4356 AddWork(SI->getFalseValue()); 4357 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4358 if (OffsetZero && !GEP->hasAllZeroIndices()) 4359 return nullptr; 4360 AddWork(GEP->getPointerOperand()); 4361 } else { 4362 return nullptr; 4363 } 4364 } while (!Worklist.empty()); 4365 4366 return Result; 4367 } 4368 4369 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4370 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4371 for (const User *U : V->users()) { 4372 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4373 if (!II) 4374 return false; 4375 4376 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4377 continue; 4378 4379 if (AllowDroppable && II->isDroppable()) 4380 continue; 4381 4382 return false; 4383 } 4384 return true; 4385 } 4386 4387 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4388 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4389 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4390 } 4391 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4392 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4393 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4394 } 4395 4396 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4397 if (!LI.isUnordered()) 4398 return true; 4399 const Function &F = *LI.getFunction(); 4400 // Speculative load may create a race that did not exist in the source. 4401 return F.hasFnAttribute(Attribute::SanitizeThread) || 4402 // Speculative load may load data from dirty regions. 4403 F.hasFnAttribute(Attribute::SanitizeAddress) || 4404 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4405 } 4406 4407 4408 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4409 const Instruction *CtxI, 4410 const DominatorTree *DT) { 4411 const Operator *Inst = dyn_cast<Operator>(V); 4412 if (!Inst) 4413 return false; 4414 4415 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4416 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4417 if (C->canTrap()) 4418 return false; 4419 4420 switch (Inst->getOpcode()) { 4421 default: 4422 return true; 4423 case Instruction::UDiv: 4424 case Instruction::URem: { 4425 // x / y is undefined if y == 0. 4426 const APInt *V; 4427 if (match(Inst->getOperand(1), m_APInt(V))) 4428 return *V != 0; 4429 return false; 4430 } 4431 case Instruction::SDiv: 4432 case Instruction::SRem: { 4433 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4434 const APInt *Numerator, *Denominator; 4435 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4436 return false; 4437 // We cannot hoist this division if the denominator is 0. 4438 if (*Denominator == 0) 4439 return false; 4440 // It's safe to hoist if the denominator is not 0 or -1. 4441 if (!Denominator->isAllOnesValue()) 4442 return true; 4443 // At this point we know that the denominator is -1. It is safe to hoist as 4444 // long we know that the numerator is not INT_MIN. 4445 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4446 return !Numerator->isMinSignedValue(); 4447 // The numerator *might* be MinSignedValue. 4448 return false; 4449 } 4450 case Instruction::Load: { 4451 const LoadInst *LI = cast<LoadInst>(Inst); 4452 if (mustSuppressSpeculation(*LI)) 4453 return false; 4454 const DataLayout &DL = LI->getModule()->getDataLayout(); 4455 return isDereferenceableAndAlignedPointer( 4456 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4457 DL, CtxI, DT); 4458 } 4459 case Instruction::Call: { 4460 auto *CI = cast<const CallInst>(Inst); 4461 const Function *Callee = CI->getCalledFunction(); 4462 4463 // The called function could have undefined behavior or side-effects, even 4464 // if marked readnone nounwind. 4465 return Callee && Callee->isSpeculatable(); 4466 } 4467 case Instruction::VAArg: 4468 case Instruction::Alloca: 4469 case Instruction::Invoke: 4470 case Instruction::CallBr: 4471 case Instruction::PHI: 4472 case Instruction::Store: 4473 case Instruction::Ret: 4474 case Instruction::Br: 4475 case Instruction::IndirectBr: 4476 case Instruction::Switch: 4477 case Instruction::Unreachable: 4478 case Instruction::Fence: 4479 case Instruction::AtomicRMW: 4480 case Instruction::AtomicCmpXchg: 4481 case Instruction::LandingPad: 4482 case Instruction::Resume: 4483 case Instruction::CatchSwitch: 4484 case Instruction::CatchPad: 4485 case Instruction::CatchRet: 4486 case Instruction::CleanupPad: 4487 case Instruction::CleanupRet: 4488 return false; // Misc instructions which have effects 4489 } 4490 } 4491 4492 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4493 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4494 } 4495 4496 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4497 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4498 switch (OR) { 4499 case ConstantRange::OverflowResult::MayOverflow: 4500 return OverflowResult::MayOverflow; 4501 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4502 return OverflowResult::AlwaysOverflowsLow; 4503 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4504 return OverflowResult::AlwaysOverflowsHigh; 4505 case ConstantRange::OverflowResult::NeverOverflows: 4506 return OverflowResult::NeverOverflows; 4507 } 4508 llvm_unreachable("Unknown OverflowResult"); 4509 } 4510 4511 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4512 static ConstantRange computeConstantRangeIncludingKnownBits( 4513 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4514 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4515 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4516 KnownBits Known = computeKnownBits( 4517 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4518 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4519 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4520 ConstantRange::PreferredRangeType RangeType = 4521 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4522 return CR1.intersectWith(CR2, RangeType); 4523 } 4524 4525 OverflowResult llvm::computeOverflowForUnsignedMul( 4526 const Value *LHS, const Value *RHS, const DataLayout &DL, 4527 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4528 bool UseInstrInfo) { 4529 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4530 nullptr, UseInstrInfo); 4531 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4532 nullptr, UseInstrInfo); 4533 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4534 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4535 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4536 } 4537 4538 OverflowResult 4539 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4540 const DataLayout &DL, AssumptionCache *AC, 4541 const Instruction *CxtI, 4542 const DominatorTree *DT, bool UseInstrInfo) { 4543 // Multiplying n * m significant bits yields a result of n + m significant 4544 // bits. If the total number of significant bits does not exceed the 4545 // result bit width (minus 1), there is no overflow. 4546 // This means if we have enough leading sign bits in the operands 4547 // we can guarantee that the result does not overflow. 4548 // Ref: "Hacker's Delight" by Henry Warren 4549 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4550 4551 // Note that underestimating the number of sign bits gives a more 4552 // conservative answer. 4553 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4554 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4555 4556 // First handle the easy case: if we have enough sign bits there's 4557 // definitely no overflow. 4558 if (SignBits > BitWidth + 1) 4559 return OverflowResult::NeverOverflows; 4560 4561 // There are two ambiguous cases where there can be no overflow: 4562 // SignBits == BitWidth + 1 and 4563 // SignBits == BitWidth 4564 // The second case is difficult to check, therefore we only handle the 4565 // first case. 4566 if (SignBits == BitWidth + 1) { 4567 // It overflows only when both arguments are negative and the true 4568 // product is exactly the minimum negative number. 4569 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4570 // For simplicity we just check if at least one side is not negative. 4571 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4572 nullptr, UseInstrInfo); 4573 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4574 nullptr, UseInstrInfo); 4575 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4576 return OverflowResult::NeverOverflows; 4577 } 4578 return OverflowResult::MayOverflow; 4579 } 4580 4581 OverflowResult llvm::computeOverflowForUnsignedAdd( 4582 const Value *LHS, const Value *RHS, const DataLayout &DL, 4583 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4584 bool UseInstrInfo) { 4585 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4586 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4587 nullptr, UseInstrInfo); 4588 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4589 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4590 nullptr, UseInstrInfo); 4591 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4592 } 4593 4594 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4595 const Value *RHS, 4596 const AddOperator *Add, 4597 const DataLayout &DL, 4598 AssumptionCache *AC, 4599 const Instruction *CxtI, 4600 const DominatorTree *DT) { 4601 if (Add && Add->hasNoSignedWrap()) { 4602 return OverflowResult::NeverOverflows; 4603 } 4604 4605 // If LHS and RHS each have at least two sign bits, the addition will look 4606 // like 4607 // 4608 // XX..... + 4609 // YY..... 4610 // 4611 // If the carry into the most significant position is 0, X and Y can't both 4612 // be 1 and therefore the carry out of the addition is also 0. 4613 // 4614 // If the carry into the most significant position is 1, X and Y can't both 4615 // be 0 and therefore the carry out of the addition is also 1. 4616 // 4617 // Since the carry into the most significant position is always equal to 4618 // the carry out of the addition, there is no signed overflow. 4619 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4620 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4621 return OverflowResult::NeverOverflows; 4622 4623 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4624 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4625 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4626 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4627 OverflowResult OR = 4628 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4629 if (OR != OverflowResult::MayOverflow) 4630 return OR; 4631 4632 // The remaining code needs Add to be available. Early returns if not so. 4633 if (!Add) 4634 return OverflowResult::MayOverflow; 4635 4636 // If the sign of Add is the same as at least one of the operands, this add 4637 // CANNOT overflow. If this can be determined from the known bits of the 4638 // operands the above signedAddMayOverflow() check will have already done so. 4639 // The only other way to improve on the known bits is from an assumption, so 4640 // call computeKnownBitsFromAssume() directly. 4641 bool LHSOrRHSKnownNonNegative = 4642 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4643 bool LHSOrRHSKnownNegative = 4644 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4645 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4646 KnownBits AddKnown(LHSRange.getBitWidth()); 4647 computeKnownBitsFromAssume( 4648 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4649 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4650 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4651 return OverflowResult::NeverOverflows; 4652 } 4653 4654 return OverflowResult::MayOverflow; 4655 } 4656 4657 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4658 const Value *RHS, 4659 const DataLayout &DL, 4660 AssumptionCache *AC, 4661 const Instruction *CxtI, 4662 const DominatorTree *DT) { 4663 // Checking for conditions implied by dominating conditions may be expensive. 4664 // Limit it to usub_with_overflow calls for now. 4665 if (match(CxtI, 4666 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4667 if (auto C = 4668 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4669 if (*C) 4670 return OverflowResult::NeverOverflows; 4671 return OverflowResult::AlwaysOverflowsLow; 4672 } 4673 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4674 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4675 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4676 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4677 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4678 } 4679 4680 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4681 const Value *RHS, 4682 const DataLayout &DL, 4683 AssumptionCache *AC, 4684 const Instruction *CxtI, 4685 const DominatorTree *DT) { 4686 // If LHS and RHS each have at least two sign bits, the subtraction 4687 // cannot overflow. 4688 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4689 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4690 return OverflowResult::NeverOverflows; 4691 4692 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4693 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4694 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4695 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4696 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4697 } 4698 4699 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4700 const DominatorTree &DT) { 4701 SmallVector<const BranchInst *, 2> GuardingBranches; 4702 SmallVector<const ExtractValueInst *, 2> Results; 4703 4704 for (const User *U : WO->users()) { 4705 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4706 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4707 4708 if (EVI->getIndices()[0] == 0) 4709 Results.push_back(EVI); 4710 else { 4711 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4712 4713 for (const auto *U : EVI->users()) 4714 if (const auto *B = dyn_cast<BranchInst>(U)) { 4715 assert(B->isConditional() && "How else is it using an i1?"); 4716 GuardingBranches.push_back(B); 4717 } 4718 } 4719 } else { 4720 // We are using the aggregate directly in a way we don't want to analyze 4721 // here (storing it to a global, say). 4722 return false; 4723 } 4724 } 4725 4726 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4727 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4728 if (!NoWrapEdge.isSingleEdge()) 4729 return false; 4730 4731 // Check if all users of the add are provably no-wrap. 4732 for (const auto *Result : Results) { 4733 // If the extractvalue itself is not executed on overflow, the we don't 4734 // need to check each use separately, since domination is transitive. 4735 if (DT.dominates(NoWrapEdge, Result->getParent())) 4736 continue; 4737 4738 for (auto &RU : Result->uses()) 4739 if (!DT.dominates(NoWrapEdge, RU)) 4740 return false; 4741 } 4742 4743 return true; 4744 }; 4745 4746 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4747 } 4748 4749 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4750 // See whether I has flags that may create poison 4751 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4752 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4753 return true; 4754 } 4755 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4756 if (ExactOp->isExact()) 4757 return true; 4758 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4759 auto FMF = FP->getFastMathFlags(); 4760 if (FMF.noNaNs() || FMF.noInfs()) 4761 return true; 4762 } 4763 4764 unsigned Opcode = Op->getOpcode(); 4765 4766 // Check whether opcode is a poison/undef-generating operation 4767 switch (Opcode) { 4768 case Instruction::Shl: 4769 case Instruction::AShr: 4770 case Instruction::LShr: { 4771 // Shifts return poison if shiftwidth is larger than the bitwidth. 4772 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4773 SmallVector<Constant *, 4> ShiftAmounts; 4774 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4775 unsigned NumElts = FVTy->getNumElements(); 4776 for (unsigned i = 0; i < NumElts; ++i) 4777 ShiftAmounts.push_back(C->getAggregateElement(i)); 4778 } else if (isa<ScalableVectorType>(C->getType())) 4779 return true; // Can't tell, just return true to be safe 4780 else 4781 ShiftAmounts.push_back(C); 4782 4783 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4784 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4785 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4786 }); 4787 return !Safe; 4788 } 4789 return true; 4790 } 4791 case Instruction::FPToSI: 4792 case Instruction::FPToUI: 4793 // fptosi/ui yields poison if the resulting value does not fit in the 4794 // destination type. 4795 return true; 4796 case Instruction::Call: 4797 case Instruction::CallBr: 4798 case Instruction::Invoke: { 4799 const auto *CB = cast<CallBase>(Op); 4800 return !CB->hasRetAttr(Attribute::NoUndef); 4801 } 4802 case Instruction::InsertElement: 4803 case Instruction::ExtractElement: { 4804 // If index exceeds the length of the vector, it returns poison 4805 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4806 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4807 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4808 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4809 return true; 4810 return false; 4811 } 4812 case Instruction::ShuffleVector: { 4813 // shufflevector may return undef. 4814 if (PoisonOnly) 4815 return false; 4816 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4817 ? cast<ConstantExpr>(Op)->getShuffleMask() 4818 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4819 return is_contained(Mask, UndefMaskElem); 4820 } 4821 case Instruction::FNeg: 4822 case Instruction::PHI: 4823 case Instruction::Select: 4824 case Instruction::URem: 4825 case Instruction::SRem: 4826 case Instruction::ExtractValue: 4827 case Instruction::InsertValue: 4828 case Instruction::Freeze: 4829 case Instruction::ICmp: 4830 case Instruction::FCmp: 4831 return false; 4832 case Instruction::GetElementPtr: { 4833 const auto *GEP = cast<GEPOperator>(Op); 4834 return GEP->isInBounds(); 4835 } 4836 default: { 4837 const auto *CE = dyn_cast<ConstantExpr>(Op); 4838 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4839 return false; 4840 else if (Instruction::isBinaryOp(Opcode)) 4841 return false; 4842 // Be conservative and return true. 4843 return true; 4844 } 4845 } 4846 } 4847 4848 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4849 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4850 } 4851 4852 bool llvm::canCreatePoison(const Operator *Op) { 4853 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4854 } 4855 4856 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4857 const Value *V, unsigned Depth) { 4858 if (ValAssumedPoison == V) 4859 return true; 4860 4861 const unsigned MaxDepth = 2; 4862 if (Depth >= MaxDepth) 4863 return false; 4864 4865 if (const auto *I = dyn_cast<Instruction>(V)) { 4866 if (propagatesPoison(cast<Operator>(I))) 4867 return any_of(I->operands(), [=](const Value *Op) { 4868 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4869 }); 4870 4871 // 'select ValAssumedPoison, _, _' is poison. 4872 if (const auto *SI = dyn_cast<SelectInst>(I)) 4873 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 4874 Depth + 1); 4875 // V = extractvalue V0, idx 4876 // V2 = extractvalue V0, idx2 4877 // V0's elements are all poison or not. (e.g., add_with_overflow) 4878 const WithOverflowInst *II; 4879 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 4880 match(ValAssumedPoison, m_ExtractValue(m_Specific(II)))) 4881 return true; 4882 } 4883 return false; 4884 } 4885 4886 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4887 unsigned Depth) { 4888 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4889 return true; 4890 4891 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4892 return true; 4893 4894 const unsigned MaxDepth = 2; 4895 if (Depth >= MaxDepth) 4896 return false; 4897 4898 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 4899 if (I && !canCreatePoison(cast<Operator>(I))) { 4900 return all_of(I->operands(), [=](const Value *Op) { 4901 return impliesPoison(Op, V, Depth + 1); 4902 }); 4903 } 4904 return false; 4905 } 4906 4907 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 4908 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 4909 } 4910 4911 static bool programUndefinedIfUndefOrPoison(const Value *V, 4912 bool PoisonOnly); 4913 4914 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4915 AssumptionCache *AC, 4916 const Instruction *CtxI, 4917 const DominatorTree *DT, 4918 unsigned Depth, bool PoisonOnly) { 4919 if (Depth >= MaxAnalysisRecursionDepth) 4920 return false; 4921 4922 if (isa<MetadataAsValue>(V)) 4923 return false; 4924 4925 if (const auto *A = dyn_cast<Argument>(V)) { 4926 if (A->hasAttribute(Attribute::NoUndef)) 4927 return true; 4928 } 4929 4930 if (auto *C = dyn_cast<Constant>(V)) { 4931 if (isa<UndefValue>(C)) 4932 return PoisonOnly && !isa<PoisonValue>(C); 4933 4934 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4935 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4936 return true; 4937 4938 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4939 return (PoisonOnly ? !C->containsPoisonElement() 4940 : !C->containsUndefOrPoisonElement()) && 4941 !C->containsConstantExpression(); 4942 } 4943 4944 // Strip cast operations from a pointer value. 4945 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4946 // inbounds with zero offset. To guarantee that the result isn't poison, the 4947 // stripped pointer is checked as it has to be pointing into an allocated 4948 // object or be null `null` to ensure `inbounds` getelement pointers with a 4949 // zero offset could not produce poison. 4950 // It can strip off addrspacecast that do not change bit representation as 4951 // well. We believe that such addrspacecast is equivalent to no-op. 4952 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4953 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4954 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4955 return true; 4956 4957 auto OpCheck = [&](const Value *V) { 4958 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4959 PoisonOnly); 4960 }; 4961 4962 if (auto *Opr = dyn_cast<Operator>(V)) { 4963 // If the value is a freeze instruction, then it can never 4964 // be undef or poison. 4965 if (isa<FreezeInst>(V)) 4966 return true; 4967 4968 if (const auto *CB = dyn_cast<CallBase>(V)) { 4969 if (CB->hasRetAttr(Attribute::NoUndef)) 4970 return true; 4971 } 4972 4973 if (const auto *PN = dyn_cast<PHINode>(V)) { 4974 unsigned Num = PN->getNumIncomingValues(); 4975 bool IsWellDefined = true; 4976 for (unsigned i = 0; i < Num; ++i) { 4977 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4978 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4979 DT, Depth + 1, PoisonOnly)) { 4980 IsWellDefined = false; 4981 break; 4982 } 4983 } 4984 if (IsWellDefined) 4985 return true; 4986 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4987 return true; 4988 } 4989 4990 if (auto *I = dyn_cast<LoadInst>(V)) 4991 if (I->getMetadata(LLVMContext::MD_noundef)) 4992 return true; 4993 4994 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4995 return true; 4996 4997 // CxtI may be null or a cloned instruction. 4998 if (!CtxI || !CtxI->getParent() || !DT) 4999 return false; 5000 5001 auto *DNode = DT->getNode(CtxI->getParent()); 5002 if (!DNode) 5003 // Unreachable block 5004 return false; 5005 5006 // If V is used as a branch condition before reaching CtxI, V cannot be 5007 // undef or poison. 5008 // br V, BB1, BB2 5009 // BB1: 5010 // CtxI ; V cannot be undef or poison here 5011 auto *Dominator = DNode->getIDom(); 5012 while (Dominator) { 5013 auto *TI = Dominator->getBlock()->getTerminator(); 5014 5015 Value *Cond = nullptr; 5016 if (auto BI = dyn_cast<BranchInst>(TI)) { 5017 if (BI->isConditional()) 5018 Cond = BI->getCondition(); 5019 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5020 Cond = SI->getCondition(); 5021 } 5022 5023 if (Cond) { 5024 if (Cond == V) 5025 return true; 5026 else if (PoisonOnly && isa<Operator>(Cond)) { 5027 // For poison, we can analyze further 5028 auto *Opr = cast<Operator>(Cond); 5029 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5030 return true; 5031 } 5032 } 5033 5034 Dominator = Dominator->getIDom(); 5035 } 5036 5037 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5038 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5039 return true; 5040 5041 return false; 5042 } 5043 5044 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5045 const Instruction *CtxI, 5046 const DominatorTree *DT, 5047 unsigned Depth) { 5048 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5049 } 5050 5051 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5052 const Instruction *CtxI, 5053 const DominatorTree *DT, unsigned Depth) { 5054 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5055 } 5056 5057 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5058 const DataLayout &DL, 5059 AssumptionCache *AC, 5060 const Instruction *CxtI, 5061 const DominatorTree *DT) { 5062 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5063 Add, DL, AC, CxtI, DT); 5064 } 5065 5066 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5067 const Value *RHS, 5068 const DataLayout &DL, 5069 AssumptionCache *AC, 5070 const Instruction *CxtI, 5071 const DominatorTree *DT) { 5072 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5073 } 5074 5075 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5076 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5077 // of time because it's possible for another thread to interfere with it for an 5078 // arbitrary length of time, but programs aren't allowed to rely on that. 5079 5080 // If there is no successor, then execution can't transfer to it. 5081 if (isa<ReturnInst>(I)) 5082 return false; 5083 if (isa<UnreachableInst>(I)) 5084 return false; 5085 5086 // An instruction that returns without throwing must transfer control flow 5087 // to a successor. 5088 return !I->mayThrow() && I->willReturn(); 5089 } 5090 5091 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5092 // TODO: This is slightly conservative for invoke instruction since exiting 5093 // via an exception *is* normal control for them. 5094 for (const Instruction &I : *BB) 5095 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5096 return false; 5097 return true; 5098 } 5099 5100 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5101 const Loop *L) { 5102 // The loop header is guaranteed to be executed for every iteration. 5103 // 5104 // FIXME: Relax this constraint to cover all basic blocks that are 5105 // guaranteed to be executed at every iteration. 5106 if (I->getParent() != L->getHeader()) return false; 5107 5108 for (const Instruction &LI : *L->getHeader()) { 5109 if (&LI == I) return true; 5110 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5111 } 5112 llvm_unreachable("Instruction not contained in its own parent basic block."); 5113 } 5114 5115 bool llvm::propagatesPoison(const Operator *I) { 5116 switch (I->getOpcode()) { 5117 case Instruction::Freeze: 5118 case Instruction::Select: 5119 case Instruction::PHI: 5120 case Instruction::Call: 5121 case Instruction::Invoke: 5122 return false; 5123 case Instruction::ICmp: 5124 case Instruction::FCmp: 5125 case Instruction::GetElementPtr: 5126 return true; 5127 default: 5128 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5129 return true; 5130 5131 // Be conservative and return false. 5132 return false; 5133 } 5134 } 5135 5136 void llvm::getGuaranteedWellDefinedOps( 5137 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5138 switch (I->getOpcode()) { 5139 case Instruction::Store: 5140 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5141 break; 5142 5143 case Instruction::Load: 5144 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5145 break; 5146 5147 // Since dereferenceable attribute imply noundef, atomic operations 5148 // also implicitly have noundef pointers too 5149 case Instruction::AtomicCmpXchg: 5150 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5151 break; 5152 5153 case Instruction::AtomicRMW: 5154 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5155 break; 5156 5157 case Instruction::Call: 5158 case Instruction::Invoke: { 5159 const CallBase *CB = cast<CallBase>(I); 5160 if (CB->isIndirectCall()) 5161 Operands.insert(CB->getCalledOperand()); 5162 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5163 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5164 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5165 Operands.insert(CB->getArgOperand(i)); 5166 } 5167 break; 5168 } 5169 5170 default: 5171 break; 5172 } 5173 } 5174 5175 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5176 SmallPtrSetImpl<const Value *> &Operands) { 5177 getGuaranteedWellDefinedOps(I, Operands); 5178 switch (I->getOpcode()) { 5179 // Divisors of these operations are allowed to be partially undef. 5180 case Instruction::UDiv: 5181 case Instruction::SDiv: 5182 case Instruction::URem: 5183 case Instruction::SRem: 5184 Operands.insert(I->getOperand(1)); 5185 break; 5186 5187 default: 5188 break; 5189 } 5190 } 5191 5192 bool llvm::mustTriggerUB(const Instruction *I, 5193 const SmallSet<const Value *, 16>& KnownPoison) { 5194 SmallPtrSet<const Value *, 4> NonPoisonOps; 5195 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5196 5197 for (const auto *V : NonPoisonOps) 5198 if (KnownPoison.count(V)) 5199 return true; 5200 5201 return false; 5202 } 5203 5204 static bool programUndefinedIfUndefOrPoison(const Value *V, 5205 bool PoisonOnly) { 5206 // We currently only look for uses of values within the same basic 5207 // block, as that makes it easier to guarantee that the uses will be 5208 // executed given that Inst is executed. 5209 // 5210 // FIXME: Expand this to consider uses beyond the same basic block. To do 5211 // this, look out for the distinction between post-dominance and strong 5212 // post-dominance. 5213 const BasicBlock *BB = nullptr; 5214 BasicBlock::const_iterator Begin; 5215 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5216 BB = Inst->getParent(); 5217 Begin = Inst->getIterator(); 5218 Begin++; 5219 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5220 BB = &Arg->getParent()->getEntryBlock(); 5221 Begin = BB->begin(); 5222 } else { 5223 return false; 5224 } 5225 5226 BasicBlock::const_iterator End = BB->end(); 5227 5228 if (!PoisonOnly) { 5229 // Since undef does not propagate eagerly, be conservative & just check 5230 // whether a value is directly passed to an instruction that must take 5231 // well-defined operands. 5232 5233 for (auto &I : make_range(Begin, End)) { 5234 SmallPtrSet<const Value *, 4> WellDefinedOps; 5235 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5236 for (auto *Op : WellDefinedOps) { 5237 if (Op == V) 5238 return true; 5239 } 5240 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5241 break; 5242 } 5243 return false; 5244 } 5245 5246 // Set of instructions that we have proved will yield poison if Inst 5247 // does. 5248 SmallSet<const Value *, 16> YieldsPoison; 5249 SmallSet<const BasicBlock *, 4> Visited; 5250 5251 YieldsPoison.insert(V); 5252 auto Propagate = [&](const User *User) { 5253 if (propagatesPoison(cast<Operator>(User))) 5254 YieldsPoison.insert(User); 5255 }; 5256 for_each(V->users(), Propagate); 5257 Visited.insert(BB); 5258 5259 unsigned Iter = 0; 5260 while (Iter++ < MaxAnalysisRecursionDepth) { 5261 for (auto &I : make_range(Begin, End)) { 5262 if (mustTriggerUB(&I, YieldsPoison)) 5263 return true; 5264 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5265 return false; 5266 5267 // Mark poison that propagates from I through uses of I. 5268 if (YieldsPoison.count(&I)) 5269 for_each(I.users(), Propagate); 5270 } 5271 5272 if (auto *NextBB = BB->getSingleSuccessor()) { 5273 if (Visited.insert(NextBB).second) { 5274 BB = NextBB; 5275 Begin = BB->getFirstNonPHI()->getIterator(); 5276 End = BB->end(); 5277 continue; 5278 } 5279 } 5280 5281 break; 5282 } 5283 return false; 5284 } 5285 5286 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5287 return ::programUndefinedIfUndefOrPoison(Inst, false); 5288 } 5289 5290 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5291 return ::programUndefinedIfUndefOrPoison(Inst, true); 5292 } 5293 5294 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5295 if (FMF.noNaNs()) 5296 return true; 5297 5298 if (auto *C = dyn_cast<ConstantFP>(V)) 5299 return !C->isNaN(); 5300 5301 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5302 if (!C->getElementType()->isFloatingPointTy()) 5303 return false; 5304 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5305 if (C->getElementAsAPFloat(I).isNaN()) 5306 return false; 5307 } 5308 return true; 5309 } 5310 5311 if (isa<ConstantAggregateZero>(V)) 5312 return true; 5313 5314 return false; 5315 } 5316 5317 static bool isKnownNonZero(const Value *V) { 5318 if (auto *C = dyn_cast<ConstantFP>(V)) 5319 return !C->isZero(); 5320 5321 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5322 if (!C->getElementType()->isFloatingPointTy()) 5323 return false; 5324 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5325 if (C->getElementAsAPFloat(I).isZero()) 5326 return false; 5327 } 5328 return true; 5329 } 5330 5331 return false; 5332 } 5333 5334 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5335 /// Given non-min/max outer cmp/select from the clamp pattern this 5336 /// function recognizes if it can be substitued by a "canonical" min/max 5337 /// pattern. 5338 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5339 Value *CmpLHS, Value *CmpRHS, 5340 Value *TrueVal, Value *FalseVal, 5341 Value *&LHS, Value *&RHS) { 5342 // Try to match 5343 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5344 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5345 // and return description of the outer Max/Min. 5346 5347 // First, check if select has inverse order: 5348 if (CmpRHS == FalseVal) { 5349 std::swap(TrueVal, FalseVal); 5350 Pred = CmpInst::getInversePredicate(Pred); 5351 } 5352 5353 // Assume success now. If there's no match, callers should not use these anyway. 5354 LHS = TrueVal; 5355 RHS = FalseVal; 5356 5357 const APFloat *FC1; 5358 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5359 return {SPF_UNKNOWN, SPNB_NA, false}; 5360 5361 const APFloat *FC2; 5362 switch (Pred) { 5363 case CmpInst::FCMP_OLT: 5364 case CmpInst::FCMP_OLE: 5365 case CmpInst::FCMP_ULT: 5366 case CmpInst::FCMP_ULE: 5367 if (match(FalseVal, 5368 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5369 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5370 *FC1 < *FC2) 5371 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5372 break; 5373 case CmpInst::FCMP_OGT: 5374 case CmpInst::FCMP_OGE: 5375 case CmpInst::FCMP_UGT: 5376 case CmpInst::FCMP_UGE: 5377 if (match(FalseVal, 5378 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5379 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5380 *FC1 > *FC2) 5381 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5382 break; 5383 default: 5384 break; 5385 } 5386 5387 return {SPF_UNKNOWN, SPNB_NA, false}; 5388 } 5389 5390 /// Recognize variations of: 5391 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5392 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5393 Value *CmpLHS, Value *CmpRHS, 5394 Value *TrueVal, Value *FalseVal) { 5395 // Swap the select operands and predicate to match the patterns below. 5396 if (CmpRHS != TrueVal) { 5397 Pred = ICmpInst::getSwappedPredicate(Pred); 5398 std::swap(TrueVal, FalseVal); 5399 } 5400 const APInt *C1; 5401 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5402 const APInt *C2; 5403 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5404 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5405 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5406 return {SPF_SMAX, SPNB_NA, false}; 5407 5408 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5409 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5410 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5411 return {SPF_SMIN, SPNB_NA, false}; 5412 5413 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5414 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5415 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5416 return {SPF_UMAX, SPNB_NA, false}; 5417 5418 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5419 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5420 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5421 return {SPF_UMIN, SPNB_NA, false}; 5422 } 5423 return {SPF_UNKNOWN, SPNB_NA, false}; 5424 } 5425 5426 /// Recognize variations of: 5427 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5428 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5429 Value *CmpLHS, Value *CmpRHS, 5430 Value *TVal, Value *FVal, 5431 unsigned Depth) { 5432 // TODO: Allow FP min/max with nnan/nsz. 5433 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5434 5435 Value *A = nullptr, *B = nullptr; 5436 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5437 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5438 return {SPF_UNKNOWN, SPNB_NA, false}; 5439 5440 Value *C = nullptr, *D = nullptr; 5441 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5442 if (L.Flavor != R.Flavor) 5443 return {SPF_UNKNOWN, SPNB_NA, false}; 5444 5445 // We have something like: x Pred y ? min(a, b) : min(c, d). 5446 // Try to match the compare to the min/max operations of the select operands. 5447 // First, make sure we have the right compare predicate. 5448 switch (L.Flavor) { 5449 case SPF_SMIN: 5450 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5451 Pred = ICmpInst::getSwappedPredicate(Pred); 5452 std::swap(CmpLHS, CmpRHS); 5453 } 5454 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5455 break; 5456 return {SPF_UNKNOWN, SPNB_NA, false}; 5457 case SPF_SMAX: 5458 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5459 Pred = ICmpInst::getSwappedPredicate(Pred); 5460 std::swap(CmpLHS, CmpRHS); 5461 } 5462 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5463 break; 5464 return {SPF_UNKNOWN, SPNB_NA, false}; 5465 case SPF_UMIN: 5466 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5467 Pred = ICmpInst::getSwappedPredicate(Pred); 5468 std::swap(CmpLHS, CmpRHS); 5469 } 5470 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5471 break; 5472 return {SPF_UNKNOWN, SPNB_NA, false}; 5473 case SPF_UMAX: 5474 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5475 Pred = ICmpInst::getSwappedPredicate(Pred); 5476 std::swap(CmpLHS, CmpRHS); 5477 } 5478 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5479 break; 5480 return {SPF_UNKNOWN, SPNB_NA, false}; 5481 default: 5482 return {SPF_UNKNOWN, SPNB_NA, false}; 5483 } 5484 5485 // If there is a common operand in the already matched min/max and the other 5486 // min/max operands match the compare operands (either directly or inverted), 5487 // then this is min/max of the same flavor. 5488 5489 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5490 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5491 if (D == B) { 5492 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5493 match(A, m_Not(m_Specific(CmpRHS))))) 5494 return {L.Flavor, SPNB_NA, false}; 5495 } 5496 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5497 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5498 if (C == B) { 5499 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5500 match(A, m_Not(m_Specific(CmpRHS))))) 5501 return {L.Flavor, SPNB_NA, false}; 5502 } 5503 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5504 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5505 if (D == A) { 5506 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5507 match(B, m_Not(m_Specific(CmpRHS))))) 5508 return {L.Flavor, SPNB_NA, false}; 5509 } 5510 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5511 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5512 if (C == A) { 5513 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5514 match(B, m_Not(m_Specific(CmpRHS))))) 5515 return {L.Flavor, SPNB_NA, false}; 5516 } 5517 5518 return {SPF_UNKNOWN, SPNB_NA, false}; 5519 } 5520 5521 /// If the input value is the result of a 'not' op, constant integer, or vector 5522 /// splat of a constant integer, return the bitwise-not source value. 5523 /// TODO: This could be extended to handle non-splat vector integer constants. 5524 static Value *getNotValue(Value *V) { 5525 Value *NotV; 5526 if (match(V, m_Not(m_Value(NotV)))) 5527 return NotV; 5528 5529 const APInt *C; 5530 if (match(V, m_APInt(C))) 5531 return ConstantInt::get(V->getType(), ~(*C)); 5532 5533 return nullptr; 5534 } 5535 5536 /// Match non-obvious integer minimum and maximum sequences. 5537 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5538 Value *CmpLHS, Value *CmpRHS, 5539 Value *TrueVal, Value *FalseVal, 5540 Value *&LHS, Value *&RHS, 5541 unsigned Depth) { 5542 // Assume success. If there's no match, callers should not use these anyway. 5543 LHS = TrueVal; 5544 RHS = FalseVal; 5545 5546 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5547 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5548 return SPR; 5549 5550 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5551 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5552 return SPR; 5553 5554 // Look through 'not' ops to find disguised min/max. 5555 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5556 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5557 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5558 switch (Pred) { 5559 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5560 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5561 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5562 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5563 default: break; 5564 } 5565 } 5566 5567 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5568 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5569 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5570 switch (Pred) { 5571 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5572 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5573 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5574 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5575 default: break; 5576 } 5577 } 5578 5579 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5580 return {SPF_UNKNOWN, SPNB_NA, false}; 5581 5582 // Z = X -nsw Y 5583 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5584 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5585 if (match(TrueVal, m_Zero()) && 5586 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5587 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5588 5589 // Z = X -nsw Y 5590 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5591 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5592 if (match(FalseVal, m_Zero()) && 5593 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5594 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5595 5596 const APInt *C1; 5597 if (!match(CmpRHS, m_APInt(C1))) 5598 return {SPF_UNKNOWN, SPNB_NA, false}; 5599 5600 // An unsigned min/max can be written with a signed compare. 5601 const APInt *C2; 5602 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5603 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5604 // Is the sign bit set? 5605 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5606 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5607 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5608 C2->isMaxSignedValue()) 5609 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5610 5611 // Is the sign bit clear? 5612 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5613 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5614 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5615 C2->isMinSignedValue()) 5616 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5617 } 5618 5619 return {SPF_UNKNOWN, SPNB_NA, false}; 5620 } 5621 5622 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5623 assert(X && Y && "Invalid operand"); 5624 5625 // X = sub (0, Y) || X = sub nsw (0, Y) 5626 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5627 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5628 return true; 5629 5630 // Y = sub (0, X) || Y = sub nsw (0, X) 5631 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5632 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5633 return true; 5634 5635 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5636 Value *A, *B; 5637 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5638 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5639 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5640 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5641 } 5642 5643 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5644 FastMathFlags FMF, 5645 Value *CmpLHS, Value *CmpRHS, 5646 Value *TrueVal, Value *FalseVal, 5647 Value *&LHS, Value *&RHS, 5648 unsigned Depth) { 5649 if (CmpInst::isFPPredicate(Pred)) { 5650 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5651 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5652 // purpose of identifying min/max. Disregard vector constants with undefined 5653 // elements because those can not be back-propagated for analysis. 5654 Value *OutputZeroVal = nullptr; 5655 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5656 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5657 OutputZeroVal = TrueVal; 5658 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5659 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5660 OutputZeroVal = FalseVal; 5661 5662 if (OutputZeroVal) { 5663 if (match(CmpLHS, m_AnyZeroFP())) 5664 CmpLHS = OutputZeroVal; 5665 if (match(CmpRHS, m_AnyZeroFP())) 5666 CmpRHS = OutputZeroVal; 5667 } 5668 } 5669 5670 LHS = CmpLHS; 5671 RHS = CmpRHS; 5672 5673 // Signed zero may return inconsistent results between implementations. 5674 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5675 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5676 // Therefore, we behave conservatively and only proceed if at least one of the 5677 // operands is known to not be zero or if we don't care about signed zero. 5678 switch (Pred) { 5679 default: break; 5680 // FIXME: Include OGT/OLT/UGT/ULT. 5681 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5682 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5683 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5684 !isKnownNonZero(CmpRHS)) 5685 return {SPF_UNKNOWN, SPNB_NA, false}; 5686 } 5687 5688 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5689 bool Ordered = false; 5690 5691 // When given one NaN and one non-NaN input: 5692 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5693 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5694 // ordered comparison fails), which could be NaN or non-NaN. 5695 // so here we discover exactly what NaN behavior is required/accepted. 5696 if (CmpInst::isFPPredicate(Pred)) { 5697 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5698 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5699 5700 if (LHSSafe && RHSSafe) { 5701 // Both operands are known non-NaN. 5702 NaNBehavior = SPNB_RETURNS_ANY; 5703 } else if (CmpInst::isOrdered(Pred)) { 5704 // An ordered comparison will return false when given a NaN, so it 5705 // returns the RHS. 5706 Ordered = true; 5707 if (LHSSafe) 5708 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5709 NaNBehavior = SPNB_RETURNS_NAN; 5710 else if (RHSSafe) 5711 NaNBehavior = SPNB_RETURNS_OTHER; 5712 else 5713 // Completely unsafe. 5714 return {SPF_UNKNOWN, SPNB_NA, false}; 5715 } else { 5716 Ordered = false; 5717 // An unordered comparison will return true when given a NaN, so it 5718 // returns the LHS. 5719 if (LHSSafe) 5720 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5721 NaNBehavior = SPNB_RETURNS_OTHER; 5722 else if (RHSSafe) 5723 NaNBehavior = SPNB_RETURNS_NAN; 5724 else 5725 // Completely unsafe. 5726 return {SPF_UNKNOWN, SPNB_NA, false}; 5727 } 5728 } 5729 5730 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5731 std::swap(CmpLHS, CmpRHS); 5732 Pred = CmpInst::getSwappedPredicate(Pred); 5733 if (NaNBehavior == SPNB_RETURNS_NAN) 5734 NaNBehavior = SPNB_RETURNS_OTHER; 5735 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5736 NaNBehavior = SPNB_RETURNS_NAN; 5737 Ordered = !Ordered; 5738 } 5739 5740 // ([if]cmp X, Y) ? X : Y 5741 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5742 switch (Pred) { 5743 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5744 case ICmpInst::ICMP_UGT: 5745 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5746 case ICmpInst::ICMP_SGT: 5747 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5748 case ICmpInst::ICMP_ULT: 5749 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5750 case ICmpInst::ICMP_SLT: 5751 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5752 case FCmpInst::FCMP_UGT: 5753 case FCmpInst::FCMP_UGE: 5754 case FCmpInst::FCMP_OGT: 5755 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5756 case FCmpInst::FCMP_ULT: 5757 case FCmpInst::FCMP_ULE: 5758 case FCmpInst::FCMP_OLT: 5759 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5760 } 5761 } 5762 5763 if (isKnownNegation(TrueVal, FalseVal)) { 5764 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5765 // match against either LHS or sext(LHS). 5766 auto MaybeSExtCmpLHS = 5767 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5768 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5769 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5770 if (match(TrueVal, MaybeSExtCmpLHS)) { 5771 // Set the return values. If the compare uses the negated value (-X >s 0), 5772 // swap the return values because the negated value is always 'RHS'. 5773 LHS = TrueVal; 5774 RHS = FalseVal; 5775 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5776 std::swap(LHS, RHS); 5777 5778 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5779 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5780 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5781 return {SPF_ABS, SPNB_NA, false}; 5782 5783 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5784 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5785 return {SPF_ABS, SPNB_NA, false}; 5786 5787 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5788 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5789 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5790 return {SPF_NABS, SPNB_NA, false}; 5791 } 5792 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5793 // Set the return values. If the compare uses the negated value (-X >s 0), 5794 // swap the return values because the negated value is always 'RHS'. 5795 LHS = FalseVal; 5796 RHS = TrueVal; 5797 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5798 std::swap(LHS, RHS); 5799 5800 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5801 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5802 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5803 return {SPF_NABS, SPNB_NA, false}; 5804 5805 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5806 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5807 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5808 return {SPF_ABS, SPNB_NA, false}; 5809 } 5810 } 5811 5812 if (CmpInst::isIntPredicate(Pred)) 5813 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5814 5815 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5816 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5817 // semantics than minNum. Be conservative in such case. 5818 if (NaNBehavior != SPNB_RETURNS_ANY || 5819 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5820 !isKnownNonZero(CmpRHS))) 5821 return {SPF_UNKNOWN, SPNB_NA, false}; 5822 5823 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5824 } 5825 5826 /// Helps to match a select pattern in case of a type mismatch. 5827 /// 5828 /// The function processes the case when type of true and false values of a 5829 /// select instruction differs from type of the cmp instruction operands because 5830 /// of a cast instruction. The function checks if it is legal to move the cast 5831 /// operation after "select". If yes, it returns the new second value of 5832 /// "select" (with the assumption that cast is moved): 5833 /// 1. As operand of cast instruction when both values of "select" are same cast 5834 /// instructions. 5835 /// 2. As restored constant (by applying reverse cast operation) when the first 5836 /// value of the "select" is a cast operation and the second value is a 5837 /// constant. 5838 /// NOTE: We return only the new second value because the first value could be 5839 /// accessed as operand of cast instruction. 5840 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5841 Instruction::CastOps *CastOp) { 5842 auto *Cast1 = dyn_cast<CastInst>(V1); 5843 if (!Cast1) 5844 return nullptr; 5845 5846 *CastOp = Cast1->getOpcode(); 5847 Type *SrcTy = Cast1->getSrcTy(); 5848 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5849 // If V1 and V2 are both the same cast from the same type, look through V1. 5850 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5851 return Cast2->getOperand(0); 5852 return nullptr; 5853 } 5854 5855 auto *C = dyn_cast<Constant>(V2); 5856 if (!C) 5857 return nullptr; 5858 5859 Constant *CastedTo = nullptr; 5860 switch (*CastOp) { 5861 case Instruction::ZExt: 5862 if (CmpI->isUnsigned()) 5863 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5864 break; 5865 case Instruction::SExt: 5866 if (CmpI->isSigned()) 5867 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5868 break; 5869 case Instruction::Trunc: 5870 Constant *CmpConst; 5871 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5872 CmpConst->getType() == SrcTy) { 5873 // Here we have the following case: 5874 // 5875 // %cond = cmp iN %x, CmpConst 5876 // %tr = trunc iN %x to iK 5877 // %narrowsel = select i1 %cond, iK %t, iK C 5878 // 5879 // We can always move trunc after select operation: 5880 // 5881 // %cond = cmp iN %x, CmpConst 5882 // %widesel = select i1 %cond, iN %x, iN CmpConst 5883 // %tr = trunc iN %widesel to iK 5884 // 5885 // Note that C could be extended in any way because we don't care about 5886 // upper bits after truncation. It can't be abs pattern, because it would 5887 // look like: 5888 // 5889 // select i1 %cond, x, -x. 5890 // 5891 // So only min/max pattern could be matched. Such match requires widened C 5892 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5893 // CmpConst == C is checked below. 5894 CastedTo = CmpConst; 5895 } else { 5896 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5897 } 5898 break; 5899 case Instruction::FPTrunc: 5900 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5901 break; 5902 case Instruction::FPExt: 5903 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5904 break; 5905 case Instruction::FPToUI: 5906 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5907 break; 5908 case Instruction::FPToSI: 5909 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5910 break; 5911 case Instruction::UIToFP: 5912 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5913 break; 5914 case Instruction::SIToFP: 5915 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5916 break; 5917 default: 5918 break; 5919 } 5920 5921 if (!CastedTo) 5922 return nullptr; 5923 5924 // Make sure the cast doesn't lose any information. 5925 Constant *CastedBack = 5926 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5927 if (CastedBack != C) 5928 return nullptr; 5929 5930 return CastedTo; 5931 } 5932 5933 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5934 Instruction::CastOps *CastOp, 5935 unsigned Depth) { 5936 if (Depth >= MaxAnalysisRecursionDepth) 5937 return {SPF_UNKNOWN, SPNB_NA, false}; 5938 5939 SelectInst *SI = dyn_cast<SelectInst>(V); 5940 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5941 5942 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5943 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5944 5945 Value *TrueVal = SI->getTrueValue(); 5946 Value *FalseVal = SI->getFalseValue(); 5947 5948 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5949 CastOp, Depth); 5950 } 5951 5952 SelectPatternResult llvm::matchDecomposedSelectPattern( 5953 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5954 Instruction::CastOps *CastOp, unsigned Depth) { 5955 CmpInst::Predicate Pred = CmpI->getPredicate(); 5956 Value *CmpLHS = CmpI->getOperand(0); 5957 Value *CmpRHS = CmpI->getOperand(1); 5958 FastMathFlags FMF; 5959 if (isa<FPMathOperator>(CmpI)) 5960 FMF = CmpI->getFastMathFlags(); 5961 5962 // Bail out early. 5963 if (CmpI->isEquality()) 5964 return {SPF_UNKNOWN, SPNB_NA, false}; 5965 5966 // Deal with type mismatches. 5967 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5968 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5969 // If this is a potential fmin/fmax with a cast to integer, then ignore 5970 // -0.0 because there is no corresponding integer value. 5971 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5972 FMF.setNoSignedZeros(); 5973 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5974 cast<CastInst>(TrueVal)->getOperand(0), C, 5975 LHS, RHS, Depth); 5976 } 5977 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5978 // If this is a potential fmin/fmax with a cast to integer, then ignore 5979 // -0.0 because there is no corresponding integer value. 5980 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5981 FMF.setNoSignedZeros(); 5982 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5983 C, cast<CastInst>(FalseVal)->getOperand(0), 5984 LHS, RHS, Depth); 5985 } 5986 } 5987 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5988 LHS, RHS, Depth); 5989 } 5990 5991 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5992 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5993 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5994 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5995 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5996 if (SPF == SPF_FMINNUM) 5997 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5998 if (SPF == SPF_FMAXNUM) 5999 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6000 llvm_unreachable("unhandled!"); 6001 } 6002 6003 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6004 if (SPF == SPF_SMIN) return SPF_SMAX; 6005 if (SPF == SPF_UMIN) return SPF_UMAX; 6006 if (SPF == SPF_SMAX) return SPF_SMIN; 6007 if (SPF == SPF_UMAX) return SPF_UMIN; 6008 llvm_unreachable("unhandled!"); 6009 } 6010 6011 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6012 switch (MinMaxID) { 6013 case Intrinsic::smax: return Intrinsic::smin; 6014 case Intrinsic::smin: return Intrinsic::smax; 6015 case Intrinsic::umax: return Intrinsic::umin; 6016 case Intrinsic::umin: return Intrinsic::umax; 6017 default: llvm_unreachable("Unexpected intrinsic"); 6018 } 6019 } 6020 6021 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6022 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6023 } 6024 6025 std::pair<Intrinsic::ID, bool> 6026 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6027 // Check if VL contains select instructions that can be folded into a min/max 6028 // vector intrinsic and return the intrinsic if it is possible. 6029 // TODO: Support floating point min/max. 6030 bool AllCmpSingleUse = true; 6031 SelectPatternResult SelectPattern; 6032 SelectPattern.Flavor = SPF_UNKNOWN; 6033 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6034 Value *LHS, *RHS; 6035 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6036 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6037 CurrentPattern.Flavor == SPF_FMINNUM || 6038 CurrentPattern.Flavor == SPF_FMAXNUM || 6039 !I->getType()->isIntOrIntVectorTy()) 6040 return false; 6041 if (SelectPattern.Flavor != SPF_UNKNOWN && 6042 SelectPattern.Flavor != CurrentPattern.Flavor) 6043 return false; 6044 SelectPattern = CurrentPattern; 6045 AllCmpSingleUse &= 6046 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6047 return true; 6048 })) { 6049 switch (SelectPattern.Flavor) { 6050 case SPF_SMIN: 6051 return {Intrinsic::smin, AllCmpSingleUse}; 6052 case SPF_UMIN: 6053 return {Intrinsic::umin, AllCmpSingleUse}; 6054 case SPF_SMAX: 6055 return {Intrinsic::smax, AllCmpSingleUse}; 6056 case SPF_UMAX: 6057 return {Intrinsic::umax, AllCmpSingleUse}; 6058 default: 6059 llvm_unreachable("unexpected select pattern flavor"); 6060 } 6061 } 6062 return {Intrinsic::not_intrinsic, false}; 6063 } 6064 6065 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6066 Value *&Start, Value *&Step) { 6067 // Handle the case of a simple two-predecessor recurrence PHI. 6068 // There's a lot more that could theoretically be done here, but 6069 // this is sufficient to catch some interesting cases. 6070 if (P->getNumIncomingValues() != 2) 6071 return false; 6072 6073 for (unsigned i = 0; i != 2; ++i) { 6074 Value *L = P->getIncomingValue(i); 6075 Value *R = P->getIncomingValue(!i); 6076 Operator *LU = dyn_cast<Operator>(L); 6077 if (!LU) 6078 continue; 6079 unsigned Opcode = LU->getOpcode(); 6080 6081 switch (Opcode) { 6082 default: 6083 continue; 6084 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6085 case Instruction::LShr: 6086 case Instruction::AShr: 6087 case Instruction::Shl: 6088 case Instruction::Add: 6089 case Instruction::Sub: 6090 case Instruction::And: 6091 case Instruction::Or: 6092 case Instruction::Mul: { 6093 Value *LL = LU->getOperand(0); 6094 Value *LR = LU->getOperand(1); 6095 // Find a recurrence. 6096 if (LL == P) 6097 L = LR; 6098 else if (LR == P) 6099 L = LL; 6100 else 6101 continue; // Check for recurrence with L and R flipped. 6102 6103 break; // Match! 6104 } 6105 }; 6106 6107 // We have matched a recurrence of the form: 6108 // %iv = [R, %entry], [%iv.next, %backedge] 6109 // %iv.next = binop %iv, L 6110 // OR 6111 // %iv = [R, %entry], [%iv.next, %backedge] 6112 // %iv.next = binop L, %iv 6113 BO = cast<BinaryOperator>(LU); 6114 Start = R; 6115 Step = L; 6116 return true; 6117 } 6118 return false; 6119 } 6120 6121 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6122 Value *&Start, Value *&Step) { 6123 BinaryOperator *BO = nullptr; 6124 P = dyn_cast<PHINode>(I->getOperand(0)); 6125 if (!P) 6126 P = dyn_cast<PHINode>(I->getOperand(1)); 6127 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6128 } 6129 6130 /// Return true if "icmp Pred LHS RHS" is always true. 6131 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6132 const Value *RHS, const DataLayout &DL, 6133 unsigned Depth) { 6134 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6135 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6136 return true; 6137 6138 switch (Pred) { 6139 default: 6140 return false; 6141 6142 case CmpInst::ICMP_SLE: { 6143 const APInt *C; 6144 6145 // LHS s<= LHS +_{nsw} C if C >= 0 6146 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6147 return !C->isNegative(); 6148 return false; 6149 } 6150 6151 case CmpInst::ICMP_ULE: { 6152 const APInt *C; 6153 6154 // LHS u<= LHS +_{nuw} C for any C 6155 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6156 return true; 6157 6158 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6159 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6160 const Value *&X, 6161 const APInt *&CA, const APInt *&CB) { 6162 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6163 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6164 return true; 6165 6166 // If X & C == 0 then (X | C) == X +_{nuw} C 6167 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6168 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6169 KnownBits Known(CA->getBitWidth()); 6170 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6171 /*CxtI*/ nullptr, /*DT*/ nullptr); 6172 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6173 return true; 6174 } 6175 6176 return false; 6177 }; 6178 6179 const Value *X; 6180 const APInt *CLHS, *CRHS; 6181 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6182 return CLHS->ule(*CRHS); 6183 6184 return false; 6185 } 6186 } 6187 } 6188 6189 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6190 /// ALHS ARHS" is true. Otherwise, return None. 6191 static Optional<bool> 6192 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6193 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6194 const DataLayout &DL, unsigned Depth) { 6195 switch (Pred) { 6196 default: 6197 return None; 6198 6199 case CmpInst::ICMP_SLT: 6200 case CmpInst::ICMP_SLE: 6201 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6202 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6203 return true; 6204 return None; 6205 6206 case CmpInst::ICMP_ULT: 6207 case CmpInst::ICMP_ULE: 6208 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6209 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6210 return true; 6211 return None; 6212 } 6213 } 6214 6215 /// Return true if the operands of the two compares match. IsSwappedOps is true 6216 /// when the operands match, but are swapped. 6217 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6218 const Value *BLHS, const Value *BRHS, 6219 bool &IsSwappedOps) { 6220 6221 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6222 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6223 return IsMatchingOps || IsSwappedOps; 6224 } 6225 6226 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6227 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6228 /// Otherwise, return None if we can't infer anything. 6229 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6230 CmpInst::Predicate BPred, 6231 bool AreSwappedOps) { 6232 // Canonicalize the predicate as if the operands were not commuted. 6233 if (AreSwappedOps) 6234 BPred = ICmpInst::getSwappedPredicate(BPred); 6235 6236 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6237 return true; 6238 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6239 return false; 6240 6241 return None; 6242 } 6243 6244 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6245 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6246 /// Otherwise, return None if we can't infer anything. 6247 static Optional<bool> 6248 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6249 const ConstantInt *C1, 6250 CmpInst::Predicate BPred, 6251 const ConstantInt *C2) { 6252 ConstantRange DomCR = 6253 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6254 ConstantRange CR = 6255 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6256 ConstantRange Intersection = DomCR.intersectWith(CR); 6257 ConstantRange Difference = DomCR.difference(CR); 6258 if (Intersection.isEmptySet()) 6259 return false; 6260 if (Difference.isEmptySet()) 6261 return true; 6262 return None; 6263 } 6264 6265 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6266 /// false. Otherwise, return None if we can't infer anything. 6267 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6268 CmpInst::Predicate BPred, 6269 const Value *BLHS, const Value *BRHS, 6270 const DataLayout &DL, bool LHSIsTrue, 6271 unsigned Depth) { 6272 Value *ALHS = LHS->getOperand(0); 6273 Value *ARHS = LHS->getOperand(1); 6274 6275 // The rest of the logic assumes the LHS condition is true. If that's not the 6276 // case, invert the predicate to make it so. 6277 CmpInst::Predicate APred = 6278 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6279 6280 // Can we infer anything when the two compares have matching operands? 6281 bool AreSwappedOps; 6282 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6283 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6284 APred, BPred, AreSwappedOps)) 6285 return Implication; 6286 // No amount of additional analysis will infer the second condition, so 6287 // early exit. 6288 return None; 6289 } 6290 6291 // Can we infer anything when the LHS operands match and the RHS operands are 6292 // constants (not necessarily matching)? 6293 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6294 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6295 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6296 return Implication; 6297 // No amount of additional analysis will infer the second condition, so 6298 // early exit. 6299 return None; 6300 } 6301 6302 if (APred == BPred) 6303 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6304 return None; 6305 } 6306 6307 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6308 /// false. Otherwise, return None if we can't infer anything. We expect the 6309 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6310 static Optional<bool> 6311 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6312 const Value *RHSOp0, const Value *RHSOp1, 6313 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6314 // The LHS must be an 'or', 'and', or a 'select' instruction. 6315 assert((LHS->getOpcode() == Instruction::And || 6316 LHS->getOpcode() == Instruction::Or || 6317 LHS->getOpcode() == Instruction::Select) && 6318 "Expected LHS to be 'and', 'or', or 'select'."); 6319 6320 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6321 6322 // If the result of an 'or' is false, then we know both legs of the 'or' are 6323 // false. Similarly, if the result of an 'and' is true, then we know both 6324 // legs of the 'and' are true. 6325 const Value *ALHS, *ARHS; 6326 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6327 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6328 // FIXME: Make this non-recursion. 6329 if (Optional<bool> Implication = isImpliedCondition( 6330 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6331 return Implication; 6332 if (Optional<bool> Implication = isImpliedCondition( 6333 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6334 return Implication; 6335 return None; 6336 } 6337 return None; 6338 } 6339 6340 Optional<bool> 6341 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6342 const Value *RHSOp0, const Value *RHSOp1, 6343 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6344 // Bail out when we hit the limit. 6345 if (Depth == MaxAnalysisRecursionDepth) 6346 return None; 6347 6348 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6349 // example. 6350 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6351 return None; 6352 6353 Type *OpTy = LHS->getType(); 6354 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6355 6356 // FIXME: Extending the code below to handle vectors. 6357 if (OpTy->isVectorTy()) 6358 return None; 6359 6360 assert(OpTy->isIntegerTy(1) && "implied by above"); 6361 6362 // Both LHS and RHS are icmps. 6363 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6364 if (LHSCmp) 6365 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6366 Depth); 6367 6368 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6369 /// the RHS to be an icmp. 6370 /// FIXME: Add support for and/or/select on the RHS. 6371 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6372 if ((LHSI->getOpcode() == Instruction::And || 6373 LHSI->getOpcode() == Instruction::Or || 6374 LHSI->getOpcode() == Instruction::Select)) 6375 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6376 Depth); 6377 } 6378 return None; 6379 } 6380 6381 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6382 const DataLayout &DL, bool LHSIsTrue, 6383 unsigned Depth) { 6384 // LHS ==> RHS by definition 6385 if (LHS == RHS) 6386 return LHSIsTrue; 6387 6388 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6389 if (RHSCmp) 6390 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6391 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6392 LHSIsTrue, Depth); 6393 return None; 6394 } 6395 6396 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6397 // condition dominating ContextI or nullptr, if no condition is found. 6398 static std::pair<Value *, bool> 6399 getDomPredecessorCondition(const Instruction *ContextI) { 6400 if (!ContextI || !ContextI->getParent()) 6401 return {nullptr, false}; 6402 6403 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6404 // dominator tree (eg, from a SimplifyQuery) instead? 6405 const BasicBlock *ContextBB = ContextI->getParent(); 6406 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6407 if (!PredBB) 6408 return {nullptr, false}; 6409 6410 // We need a conditional branch in the predecessor. 6411 Value *PredCond; 6412 BasicBlock *TrueBB, *FalseBB; 6413 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6414 return {nullptr, false}; 6415 6416 // The branch should get simplified. Don't bother simplifying this condition. 6417 if (TrueBB == FalseBB) 6418 return {nullptr, false}; 6419 6420 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6421 "Predecessor block does not point to successor?"); 6422 6423 // Is this condition implied by the predecessor condition? 6424 return {PredCond, TrueBB == ContextBB}; 6425 } 6426 6427 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6428 const Instruction *ContextI, 6429 const DataLayout &DL) { 6430 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6431 auto PredCond = getDomPredecessorCondition(ContextI); 6432 if (PredCond.first) 6433 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6434 return None; 6435 } 6436 6437 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6438 const Value *LHS, const Value *RHS, 6439 const Instruction *ContextI, 6440 const DataLayout &DL) { 6441 auto PredCond = getDomPredecessorCondition(ContextI); 6442 if (PredCond.first) 6443 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6444 PredCond.second); 6445 return None; 6446 } 6447 6448 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6449 APInt &Upper, const InstrInfoQuery &IIQ) { 6450 unsigned Width = Lower.getBitWidth(); 6451 const APInt *C; 6452 switch (BO.getOpcode()) { 6453 case Instruction::Add: 6454 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6455 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6456 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6457 // 'add nuw x, C' produces [C, UINT_MAX]. 6458 Lower = *C; 6459 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6460 if (C->isNegative()) { 6461 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6462 Lower = APInt::getSignedMinValue(Width); 6463 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6464 } else { 6465 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6466 Lower = APInt::getSignedMinValue(Width) + *C; 6467 Upper = APInt::getSignedMaxValue(Width) + 1; 6468 } 6469 } 6470 } 6471 break; 6472 6473 case Instruction::And: 6474 if (match(BO.getOperand(1), m_APInt(C))) 6475 // 'and x, C' produces [0, C]. 6476 Upper = *C + 1; 6477 break; 6478 6479 case Instruction::Or: 6480 if (match(BO.getOperand(1), m_APInt(C))) 6481 // 'or x, C' produces [C, UINT_MAX]. 6482 Lower = *C; 6483 break; 6484 6485 case Instruction::AShr: 6486 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6487 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6488 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6489 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6490 } else if (match(BO.getOperand(0), m_APInt(C))) { 6491 unsigned ShiftAmount = Width - 1; 6492 if (!C->isNullValue() && IIQ.isExact(&BO)) 6493 ShiftAmount = C->countTrailingZeros(); 6494 if (C->isNegative()) { 6495 // 'ashr C, x' produces [C, C >> (Width-1)] 6496 Lower = *C; 6497 Upper = C->ashr(ShiftAmount) + 1; 6498 } else { 6499 // 'ashr C, x' produces [C >> (Width-1), C] 6500 Lower = C->ashr(ShiftAmount); 6501 Upper = *C + 1; 6502 } 6503 } 6504 break; 6505 6506 case Instruction::LShr: 6507 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6508 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6509 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6510 } else if (match(BO.getOperand(0), m_APInt(C))) { 6511 // 'lshr C, x' produces [C >> (Width-1), C]. 6512 unsigned ShiftAmount = Width - 1; 6513 if (!C->isNullValue() && IIQ.isExact(&BO)) 6514 ShiftAmount = C->countTrailingZeros(); 6515 Lower = C->lshr(ShiftAmount); 6516 Upper = *C + 1; 6517 } 6518 break; 6519 6520 case Instruction::Shl: 6521 if (match(BO.getOperand(0), m_APInt(C))) { 6522 if (IIQ.hasNoUnsignedWrap(&BO)) { 6523 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6524 Lower = *C; 6525 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6526 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6527 if (C->isNegative()) { 6528 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6529 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6530 Lower = C->shl(ShiftAmount); 6531 Upper = *C + 1; 6532 } else { 6533 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6534 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6535 Lower = *C; 6536 Upper = C->shl(ShiftAmount) + 1; 6537 } 6538 } 6539 } 6540 break; 6541 6542 case Instruction::SDiv: 6543 if (match(BO.getOperand(1), m_APInt(C))) { 6544 APInt IntMin = APInt::getSignedMinValue(Width); 6545 APInt IntMax = APInt::getSignedMaxValue(Width); 6546 if (C->isAllOnesValue()) { 6547 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6548 // where C != -1 and C != 0 and C != 1 6549 Lower = IntMin + 1; 6550 Upper = IntMax + 1; 6551 } else if (C->countLeadingZeros() < Width - 1) { 6552 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6553 // where C != -1 and C != 0 and C != 1 6554 Lower = IntMin.sdiv(*C); 6555 Upper = IntMax.sdiv(*C); 6556 if (Lower.sgt(Upper)) 6557 std::swap(Lower, Upper); 6558 Upper = Upper + 1; 6559 assert(Upper != Lower && "Upper part of range has wrapped!"); 6560 } 6561 } else if (match(BO.getOperand(0), m_APInt(C))) { 6562 if (C->isMinSignedValue()) { 6563 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6564 Lower = *C; 6565 Upper = Lower.lshr(1) + 1; 6566 } else { 6567 // 'sdiv C, x' produces [-|C|, |C|]. 6568 Upper = C->abs() + 1; 6569 Lower = (-Upper) + 1; 6570 } 6571 } 6572 break; 6573 6574 case Instruction::UDiv: 6575 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6576 // 'udiv x, C' produces [0, UINT_MAX / C]. 6577 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6578 } else if (match(BO.getOperand(0), m_APInt(C))) { 6579 // 'udiv C, x' produces [0, C]. 6580 Upper = *C + 1; 6581 } 6582 break; 6583 6584 case Instruction::SRem: 6585 if (match(BO.getOperand(1), m_APInt(C))) { 6586 // 'srem x, C' produces (-|C|, |C|). 6587 Upper = C->abs(); 6588 Lower = (-Upper) + 1; 6589 } 6590 break; 6591 6592 case Instruction::URem: 6593 if (match(BO.getOperand(1), m_APInt(C))) 6594 // 'urem x, C' produces [0, C). 6595 Upper = *C; 6596 break; 6597 6598 default: 6599 break; 6600 } 6601 } 6602 6603 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6604 APInt &Upper) { 6605 unsigned Width = Lower.getBitWidth(); 6606 const APInt *C; 6607 switch (II.getIntrinsicID()) { 6608 case Intrinsic::ctpop: 6609 case Intrinsic::ctlz: 6610 case Intrinsic::cttz: 6611 // Maximum of set/clear bits is the bit width. 6612 assert(Lower == 0 && "Expected lower bound to be zero"); 6613 Upper = Width + 1; 6614 break; 6615 case Intrinsic::uadd_sat: 6616 // uadd.sat(x, C) produces [C, UINT_MAX]. 6617 if (match(II.getOperand(0), m_APInt(C)) || 6618 match(II.getOperand(1), m_APInt(C))) 6619 Lower = *C; 6620 break; 6621 case Intrinsic::sadd_sat: 6622 if (match(II.getOperand(0), m_APInt(C)) || 6623 match(II.getOperand(1), m_APInt(C))) { 6624 if (C->isNegative()) { 6625 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6626 Lower = APInt::getSignedMinValue(Width); 6627 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6628 } else { 6629 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6630 Lower = APInt::getSignedMinValue(Width) + *C; 6631 Upper = APInt::getSignedMaxValue(Width) + 1; 6632 } 6633 } 6634 break; 6635 case Intrinsic::usub_sat: 6636 // usub.sat(C, x) produces [0, C]. 6637 if (match(II.getOperand(0), m_APInt(C))) 6638 Upper = *C + 1; 6639 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6640 else if (match(II.getOperand(1), m_APInt(C))) 6641 Upper = APInt::getMaxValue(Width) - *C + 1; 6642 break; 6643 case Intrinsic::ssub_sat: 6644 if (match(II.getOperand(0), m_APInt(C))) { 6645 if (C->isNegative()) { 6646 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6647 Lower = APInt::getSignedMinValue(Width); 6648 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6649 } else { 6650 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6651 Lower = *C - APInt::getSignedMaxValue(Width); 6652 Upper = APInt::getSignedMaxValue(Width) + 1; 6653 } 6654 } else if (match(II.getOperand(1), m_APInt(C))) { 6655 if (C->isNegative()) { 6656 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6657 Lower = APInt::getSignedMinValue(Width) - *C; 6658 Upper = APInt::getSignedMaxValue(Width) + 1; 6659 } else { 6660 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6661 Lower = APInt::getSignedMinValue(Width); 6662 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6663 } 6664 } 6665 break; 6666 case Intrinsic::umin: 6667 case Intrinsic::umax: 6668 case Intrinsic::smin: 6669 case Intrinsic::smax: 6670 if (!match(II.getOperand(0), m_APInt(C)) && 6671 !match(II.getOperand(1), m_APInt(C))) 6672 break; 6673 6674 switch (II.getIntrinsicID()) { 6675 case Intrinsic::umin: 6676 Upper = *C + 1; 6677 break; 6678 case Intrinsic::umax: 6679 Lower = *C; 6680 break; 6681 case Intrinsic::smin: 6682 Lower = APInt::getSignedMinValue(Width); 6683 Upper = *C + 1; 6684 break; 6685 case Intrinsic::smax: 6686 Lower = *C; 6687 Upper = APInt::getSignedMaxValue(Width) + 1; 6688 break; 6689 default: 6690 llvm_unreachable("Must be min/max intrinsic"); 6691 } 6692 break; 6693 case Intrinsic::abs: 6694 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6695 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6696 if (match(II.getOperand(1), m_One())) 6697 Upper = APInt::getSignedMaxValue(Width) + 1; 6698 else 6699 Upper = APInt::getSignedMinValue(Width) + 1; 6700 break; 6701 default: 6702 break; 6703 } 6704 } 6705 6706 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6707 APInt &Upper, const InstrInfoQuery &IIQ) { 6708 const Value *LHS = nullptr, *RHS = nullptr; 6709 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6710 if (R.Flavor == SPF_UNKNOWN) 6711 return; 6712 6713 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6714 6715 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6716 // If the negation part of the abs (in RHS) has the NSW flag, 6717 // then the result of abs(X) is [0..SIGNED_MAX], 6718 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6719 Lower = APInt::getNullValue(BitWidth); 6720 if (match(RHS, m_Neg(m_Specific(LHS))) && 6721 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6722 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6723 else 6724 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6725 return; 6726 } 6727 6728 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6729 // The result of -abs(X) is <= 0. 6730 Lower = APInt::getSignedMinValue(BitWidth); 6731 Upper = APInt(BitWidth, 1); 6732 return; 6733 } 6734 6735 const APInt *C; 6736 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6737 return; 6738 6739 switch (R.Flavor) { 6740 case SPF_UMIN: 6741 Upper = *C + 1; 6742 break; 6743 case SPF_UMAX: 6744 Lower = *C; 6745 break; 6746 case SPF_SMIN: 6747 Lower = APInt::getSignedMinValue(BitWidth); 6748 Upper = *C + 1; 6749 break; 6750 case SPF_SMAX: 6751 Lower = *C; 6752 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6753 break; 6754 default: 6755 break; 6756 } 6757 } 6758 6759 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6760 AssumptionCache *AC, 6761 const Instruction *CtxI, 6762 unsigned Depth) { 6763 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6764 6765 if (Depth == MaxAnalysisRecursionDepth) 6766 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6767 6768 const APInt *C; 6769 if (match(V, m_APInt(C))) 6770 return ConstantRange(*C); 6771 6772 InstrInfoQuery IIQ(UseInstrInfo); 6773 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6774 APInt Lower = APInt(BitWidth, 0); 6775 APInt Upper = APInt(BitWidth, 0); 6776 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6777 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6778 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6779 setLimitsForIntrinsic(*II, Lower, Upper); 6780 else if (auto *SI = dyn_cast<SelectInst>(V)) 6781 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6782 6783 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6784 6785 if (auto *I = dyn_cast<Instruction>(V)) 6786 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6787 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6788 6789 if (CtxI && AC) { 6790 // Try to restrict the range based on information from assumptions. 6791 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6792 if (!AssumeVH) 6793 continue; 6794 CallInst *I = cast<CallInst>(AssumeVH); 6795 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6796 "Got assumption for the wrong function!"); 6797 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6798 "must be an assume intrinsic"); 6799 6800 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6801 continue; 6802 Value *Arg = I->getArgOperand(0); 6803 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6804 // Currently we just use information from comparisons. 6805 if (!Cmp || Cmp->getOperand(0) != V) 6806 continue; 6807 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6808 AC, I, Depth + 1); 6809 CR = CR.intersectWith( 6810 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6811 } 6812 } 6813 6814 return CR; 6815 } 6816 6817 static Optional<int64_t> 6818 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6819 // Skip over the first indices. 6820 gep_type_iterator GTI = gep_type_begin(GEP); 6821 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6822 /*skip along*/; 6823 6824 // Compute the offset implied by the rest of the indices. 6825 int64_t Offset = 0; 6826 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6827 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6828 if (!OpC) 6829 return None; 6830 if (OpC->isZero()) 6831 continue; // No offset. 6832 6833 // Handle struct indices, which add their field offset to the pointer. 6834 if (StructType *STy = GTI.getStructTypeOrNull()) { 6835 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6836 continue; 6837 } 6838 6839 // Otherwise, we have a sequential type like an array or fixed-length 6840 // vector. Multiply the index by the ElementSize. 6841 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6842 if (Size.isScalable()) 6843 return None; 6844 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6845 } 6846 6847 return Offset; 6848 } 6849 6850 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6851 const DataLayout &DL) { 6852 Ptr1 = Ptr1->stripPointerCasts(); 6853 Ptr2 = Ptr2->stripPointerCasts(); 6854 6855 // Handle the trivial case first. 6856 if (Ptr1 == Ptr2) { 6857 return 0; 6858 } 6859 6860 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6861 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6862 6863 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6864 // as in "P" and "gep P, 1". 6865 // Also do this iteratively to handle the the following case: 6866 // Ptr_t1 = GEP Ptr1, c1 6867 // Ptr_t2 = GEP Ptr_t1, c2 6868 // Ptr2 = GEP Ptr_t2, c3 6869 // where we will return c1+c2+c3. 6870 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6871 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6872 // are the same, and return the difference between offsets. 6873 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6874 const Value *Ptr) -> Optional<int64_t> { 6875 const GEPOperator *GEP_T = GEP; 6876 int64_t OffsetVal = 0; 6877 bool HasSameBase = false; 6878 while (GEP_T) { 6879 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6880 if (!Offset) 6881 return None; 6882 OffsetVal += *Offset; 6883 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6884 if (Op0 == Ptr) { 6885 HasSameBase = true; 6886 break; 6887 } 6888 GEP_T = dyn_cast<GEPOperator>(Op0); 6889 } 6890 if (!HasSameBase) 6891 return None; 6892 return OffsetVal; 6893 }; 6894 6895 if (GEP1) { 6896 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6897 if (Offset) 6898 return -*Offset; 6899 } 6900 if (GEP2) { 6901 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6902 if (Offset) 6903 return Offset; 6904 } 6905 6906 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6907 // base. After that base, they may have some number of common (and 6908 // potentially variable) indices. After that they handle some constant 6909 // offset, which determines their offset from each other. At this point, we 6910 // handle no other case. 6911 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6912 return None; 6913 6914 // Skip any common indices and track the GEP types. 6915 unsigned Idx = 1; 6916 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6917 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6918 break; 6919 6920 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6921 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6922 if (!Offset1 || !Offset2) 6923 return None; 6924 return *Offset2 - *Offset1; 6925 } 6926