1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include <algorithm> 43 #include <array> 44 #include <cstring> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 const unsigned MaxDepth = 6; 49 50 // Controls the number of uses of the value searched for possible 51 // dominating comparisons. 52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 53 cl::Hidden, cl::init(20)); 54 55 // This optimization is known to cause performance regressions is some cases, 56 // keep it under a temporary flag for now. 57 static cl::opt<bool> 58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 59 cl::Hidden, cl::init(true)); 60 61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 62 /// 0). For vector types, returns the element type's bitwidth. 63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 64 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 65 return BitWidth; 66 67 return DL.getPointerTypeSizeInBits(Ty); 68 } 69 70 namespace { 71 // Simplifying using an assume can only be done in a particular control-flow 72 // context (the context instruction provides that context). If an assume and 73 // the context instruction are not in the same block then the DT helps in 74 // figuring out if we can use it. 75 struct Query { 76 const DataLayout &DL; 77 AssumptionCache *AC; 78 const Instruction *CxtI; 79 const DominatorTree *DT; 80 // Unlike the other analyses, this may be a nullptr because not all clients 81 // provide it currently. 82 OptimizationRemarkEmitter *ORE; 83 84 /// Set of assumptions that should be excluded from further queries. 85 /// This is because of the potential for mutual recursion to cause 86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 87 /// classic case of this is assume(x = y), which will attempt to determine 88 /// bits in x from bits in y, which will attempt to determine bits in y from 89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 92 /// on. 93 std::array<const Value *, MaxDepth> Excluded; 94 unsigned NumExcluded; 95 96 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 97 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 99 100 Query(const Query &Q, const Value *NewExcl) 101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 102 NumExcluded(Q.NumExcluded) { 103 Excluded = Q.Excluded; 104 Excluded[NumExcluded++] = NewExcl; 105 assert(NumExcluded <= Excluded.size()); 106 } 107 108 bool isExcluded(const Value *Value) const { 109 if (NumExcluded == 0) 110 return false; 111 auto End = Excluded.begin() + NumExcluded; 112 return std::find(Excluded.begin(), End, Value) != End; 113 } 114 }; 115 } // end anonymous namespace 116 117 // Given the provided Value and, potentially, a context instruction, return 118 // the preferred context instruction (if any). 119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 120 // If we've been provided with a context instruction, then use that (provided 121 // it has been inserted). 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 // If the value is really an already-inserted instruction, then use that. 126 CxtI = dyn_cast<Instruction>(V); 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 return nullptr; 131 } 132 133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 134 unsigned Depth, const Query &Q); 135 136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 137 const DataLayout &DL, unsigned Depth, 138 AssumptionCache *AC, const Instruction *CxtI, 139 const DominatorTree *DT, 140 OptimizationRemarkEmitter *ORE) { 141 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 143 } 144 145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 146 const DataLayout &DL, 147 AssumptionCache *AC, const Instruction *CxtI, 148 const DominatorTree *DT) { 149 assert(LHS->getType() == RHS->getType() && 150 "LHS and RHS should have the same type"); 151 assert(LHS->getType()->isIntOrIntVectorTy() && 152 "LHS and RHS should be integers"); 153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 159 } 160 161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 162 unsigned Depth, const Query &Q); 163 164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT) { 168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 173 const Query &Q); 174 175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 176 bool OrZero, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT) { 180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 181 Query(DL, AC, safeCxtI(V, CxtI), DT)); 182 } 183 184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 185 186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 190 } 191 192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 193 unsigned Depth, 194 AssumptionCache *AC, const Instruction *CxtI, 195 const DominatorTree *DT) { 196 bool NonNegative, Negative; 197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 198 return NonNegative; 199 } 200 201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 if (auto *CI = dyn_cast<ConstantInt>(V)) 205 return CI->getValue().isStrictlyPositive(); 206 207 // TODO: We'd doing two recursive queries here. We should factor this such 208 // that only a single query is needed. 209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 211 } 212 213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT) { 216 bool NonNegative, Negative; 217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 218 return Negative; 219 } 220 221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 222 223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 224 const DataLayout &DL, 225 AssumptionCache *AC, const Instruction *CxtI, 226 const DominatorTree *DT) { 227 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 228 safeCxtI(V1, safeCxtI(V2, CxtI)), 229 DT)); 230 } 231 232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 233 const Query &Q); 234 235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 236 const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, const DominatorTree *DT) { 239 return ::MaskedValueIsZero(V, Mask, Depth, 240 Query(DL, AC, safeCxtI(V, CxtI), DT)); 241 } 242 243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT) { 250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 251 } 252 253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 254 bool NSW, 255 APInt &KnownZero, APInt &KnownOne, 256 APInt &KnownZero2, APInt &KnownOne2, 257 unsigned Depth, const Query &Q) { 258 if (!Add) { 259 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 260 // We know that the top bits of C-X are clear if X contains less bits 261 // than C (i.e. no wrap-around can happen). For example, 20-X is 262 // positive if we can prove that X is >= 0 and < 16. 263 if (!CLHS->getValue().isNegative()) { 264 unsigned BitWidth = KnownZero.getBitWidth(); 265 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 266 // NLZ can't be BitWidth with no sign bit 267 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 268 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 269 270 // If all of the MaskV bits are known to be zero, then we know the 271 // output top bits are zero, because we now know that the output is 272 // from [0-C]. 273 if ((KnownZero2 & MaskV) == MaskV) { 274 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 275 // Top bits known zero. 276 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 277 } 278 } 279 } 280 } 281 282 unsigned BitWidth = KnownZero.getBitWidth(); 283 284 // If an initial sequence of bits in the result is not needed, the 285 // corresponding bits in the operands are not needed. 286 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 287 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 288 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 289 290 // Carry in a 1 for a subtract, rather than a 0. 291 APInt CarryIn(BitWidth, 0); 292 if (!Add) { 293 // Sum = LHS + ~RHS + 1 294 std::swap(KnownZero2, KnownOne2); 295 CarryIn.setBit(0); 296 } 297 298 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 299 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 300 301 // Compute known bits of the carry. 302 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 303 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 304 305 // Compute set of known bits (where all three relevant bits are known). 306 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 307 APInt RHSKnown = KnownZero2 | KnownOne2; 308 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 309 APInt Known = LHSKnown & RHSKnown & CarryKnown; 310 311 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 312 "known bits of sum differ"); 313 314 // Compute known bits of the result. 315 KnownZero = ~PossibleSumOne & Known; 316 KnownOne = PossibleSumOne & Known; 317 318 // Are we still trying to solve for the sign bit? 319 if (!Known.isNegative()) { 320 if (NSW) { 321 // Adding two non-negative numbers, or subtracting a negative number from 322 // a non-negative one, can't wrap into negative. 323 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 324 KnownZero |= APInt::getSignBit(BitWidth); 325 // Adding two negative numbers, or subtracting a non-negative number from 326 // a negative one, can't wrap into non-negative. 327 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 328 KnownOne |= APInt::getSignBit(BitWidth); 329 } 330 } 331 } 332 333 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 334 APInt &KnownZero, APInt &KnownOne, 335 APInt &KnownZero2, APInt &KnownOne2, 336 unsigned Depth, const Query &Q) { 337 unsigned BitWidth = KnownZero.getBitWidth(); 338 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 339 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 340 341 bool isKnownNegative = false; 342 bool isKnownNonNegative = false; 343 // If the multiplication is known not to overflow, compute the sign bit. 344 if (NSW) { 345 if (Op0 == Op1) { 346 // The product of a number with itself is non-negative. 347 isKnownNonNegative = true; 348 } else { 349 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 350 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 351 bool isKnownNegativeOp1 = KnownOne.isNegative(); 352 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 353 // The product of two numbers with the same sign is non-negative. 354 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 355 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 356 // The product of a negative number and a non-negative number is either 357 // negative or zero. 358 if (!isKnownNonNegative) 359 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 360 isKnownNonZero(Op0, Depth, Q)) || 361 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 362 isKnownNonZero(Op1, Depth, Q)); 363 } 364 } 365 366 // If low bits are zero in either operand, output low known-0 bits. 367 // Also compute a conservative estimate for high known-0 bits. 368 // More trickiness is possible, but this is sufficient for the 369 // interesting case of alignment computation. 370 KnownOne.clearAllBits(); 371 unsigned TrailZ = KnownZero.countTrailingOnes() + 372 KnownZero2.countTrailingOnes(); 373 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 374 KnownZero2.countLeadingOnes(), 375 BitWidth) - BitWidth; 376 377 TrailZ = std::min(TrailZ, BitWidth); 378 LeadZ = std::min(LeadZ, BitWidth); 379 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 380 APInt::getHighBitsSet(BitWidth, LeadZ); 381 382 // Only make use of no-wrap flags if we failed to compute the sign bit 383 // directly. This matters if the multiplication always overflows, in 384 // which case we prefer to follow the result of the direct computation, 385 // though as the program is invoking undefined behaviour we can choose 386 // whatever we like here. 387 if (isKnownNonNegative && !KnownOne.isNegative()) 388 KnownZero.setBit(BitWidth - 1); 389 else if (isKnownNegative && !KnownZero.isNegative()) 390 KnownOne.setBit(BitWidth - 1); 391 } 392 393 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 394 APInt &KnownZero, 395 APInt &KnownOne) { 396 unsigned BitWidth = KnownZero.getBitWidth(); 397 unsigned NumRanges = Ranges.getNumOperands() / 2; 398 assert(NumRanges >= 1); 399 400 KnownZero.setAllBits(); 401 KnownOne.setAllBits(); 402 403 for (unsigned i = 0; i < NumRanges; ++i) { 404 ConstantInt *Lower = 405 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 406 ConstantInt *Upper = 407 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 408 ConstantRange Range(Lower->getValue(), Upper->getValue()); 409 410 // The first CommonPrefixBits of all values in Range are equal. 411 unsigned CommonPrefixBits = 412 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 413 414 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 415 KnownOne &= Range.getUnsignedMax() & Mask; 416 KnownZero &= ~Range.getUnsignedMax() & Mask; 417 } 418 } 419 420 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 421 SmallVector<const Value *, 16> WorkSet(1, I); 422 SmallPtrSet<const Value *, 32> Visited; 423 SmallPtrSet<const Value *, 16> EphValues; 424 425 // The instruction defining an assumption's condition itself is always 426 // considered ephemeral to that assumption (even if it has other 427 // non-ephemeral users). See r246696's test case for an example. 428 if (is_contained(I->operands(), E)) 429 return true; 430 431 while (!WorkSet.empty()) { 432 const Value *V = WorkSet.pop_back_val(); 433 if (!Visited.insert(V).second) 434 continue; 435 436 // If all uses of this value are ephemeral, then so is this value. 437 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 438 if (V == E) 439 return true; 440 441 EphValues.insert(V); 442 if (const User *U = dyn_cast<User>(V)) 443 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 444 J != JE; ++J) { 445 if (isSafeToSpeculativelyExecute(*J)) 446 WorkSet.push_back(*J); 447 } 448 } 449 } 450 451 return false; 452 } 453 454 // Is this an intrinsic that cannot be speculated but also cannot trap? 455 static bool isAssumeLikeIntrinsic(const Instruction *I) { 456 if (const CallInst *CI = dyn_cast<CallInst>(I)) 457 if (Function *F = CI->getCalledFunction()) 458 switch (F->getIntrinsicID()) { 459 default: break; 460 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 461 case Intrinsic::assume: 462 case Intrinsic::dbg_declare: 463 case Intrinsic::dbg_value: 464 case Intrinsic::invariant_start: 465 case Intrinsic::invariant_end: 466 case Intrinsic::lifetime_start: 467 case Intrinsic::lifetime_end: 468 case Intrinsic::objectsize: 469 case Intrinsic::ptr_annotation: 470 case Intrinsic::var_annotation: 471 return true; 472 } 473 474 return false; 475 } 476 477 bool llvm::isValidAssumeForContext(const Instruction *Inv, 478 const Instruction *CxtI, 479 const DominatorTree *DT) { 480 481 // There are two restrictions on the use of an assume: 482 // 1. The assume must dominate the context (or the control flow must 483 // reach the assume whenever it reaches the context). 484 // 2. The context must not be in the assume's set of ephemeral values 485 // (otherwise we will use the assume to prove that the condition 486 // feeding the assume is trivially true, thus causing the removal of 487 // the assume). 488 489 if (DT) { 490 if (DT->dominates(Inv, CxtI)) 491 return true; 492 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 493 // We don't have a DT, but this trivially dominates. 494 return true; 495 } 496 497 // With or without a DT, the only remaining case we will check is if the 498 // instructions are in the same BB. Give up if that is not the case. 499 if (Inv->getParent() != CxtI->getParent()) 500 return false; 501 502 // If we have a dom tree, then we now know that the assume doens't dominate 503 // the other instruction. If we don't have a dom tree then we can check if 504 // the assume is first in the BB. 505 if (!DT) { 506 // Search forward from the assume until we reach the context (or the end 507 // of the block); the common case is that the assume will come first. 508 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 509 IE = Inv->getParent()->end(); I != IE; ++I) 510 if (&*I == CxtI) 511 return true; 512 } 513 514 // The context comes first, but they're both in the same block. Make sure 515 // there is nothing in between that might interrupt the control flow. 516 for (BasicBlock::const_iterator I = 517 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 518 I != IE; ++I) 519 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 520 return false; 521 522 return !isEphemeralValueOf(Inv, CxtI); 523 } 524 525 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 526 APInt &KnownOne, unsigned Depth, 527 const Query &Q) { 528 // Use of assumptions is context-sensitive. If we don't have a context, we 529 // cannot use them! 530 if (!Q.AC || !Q.CxtI) 531 return; 532 533 unsigned BitWidth = KnownZero.getBitWidth(); 534 535 // Note that the patterns below need to be kept in sync with the code 536 // in AssumptionCache::updateAffectedValues. 537 538 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 539 if (!AssumeVH) 540 continue; 541 CallInst *I = cast<CallInst>(AssumeVH); 542 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 543 "Got assumption for the wrong function!"); 544 if (Q.isExcluded(I)) 545 continue; 546 547 // Warning: This loop can end up being somewhat performance sensetive. 548 // We're running this loop for once for each value queried resulting in a 549 // runtime of ~O(#assumes * #values). 550 551 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 552 "must be an assume intrinsic"); 553 554 Value *Arg = I->getArgOperand(0); 555 556 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 557 assert(BitWidth == 1 && "assume operand is not i1?"); 558 KnownZero.clearAllBits(); 559 KnownOne.setAllBits(); 560 return; 561 } 562 if (match(Arg, m_Not(m_Specific(V))) && 563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 564 assert(BitWidth == 1 && "assume operand is not i1?"); 565 KnownZero.setAllBits(); 566 KnownOne.clearAllBits(); 567 return; 568 } 569 570 // The remaining tests are all recursive, so bail out if we hit the limit. 571 if (Depth == MaxDepth) 572 continue; 573 574 Value *A, *B; 575 auto m_V = m_CombineOr(m_Specific(V), 576 m_CombineOr(m_PtrToInt(m_Specific(V)), 577 m_BitCast(m_Specific(V)))); 578 579 CmpInst::Predicate Pred; 580 ConstantInt *C; 581 // assume(v = a) 582 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 583 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 586 KnownZero |= RHSKnownZero; 587 KnownOne |= RHSKnownOne; 588 // assume(v & b = a) 589 } else if (match(Arg, 590 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 591 Pred == ICmpInst::ICMP_EQ && 592 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 593 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 594 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 595 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 596 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 597 598 // For those bits in the mask that are known to be one, we can propagate 599 // known bits from the RHS to V. 600 KnownZero |= RHSKnownZero & MaskKnownOne; 601 KnownOne |= RHSKnownOne & MaskKnownOne; 602 // assume(~(v & b) = a) 603 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 604 m_Value(A))) && 605 Pred == ICmpInst::ICMP_EQ && 606 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 607 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 608 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 609 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 610 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 611 612 // For those bits in the mask that are known to be one, we can propagate 613 // inverted known bits from the RHS to V. 614 KnownZero |= RHSKnownOne & MaskKnownOne; 615 KnownOne |= RHSKnownZero & MaskKnownOne; 616 // assume(v | b = a) 617 } else if (match(Arg, 618 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 619 Pred == ICmpInst::ICMP_EQ && 620 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 622 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 623 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 624 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 625 626 // For those bits in B that are known to be zero, we can propagate known 627 // bits from the RHS to V. 628 KnownZero |= RHSKnownZero & BKnownZero; 629 KnownOne |= RHSKnownOne & BKnownZero; 630 // assume(~(v | b) = a) 631 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 632 m_Value(A))) && 633 Pred == ICmpInst::ICMP_EQ && 634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 635 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 636 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 637 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 638 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 639 640 // For those bits in B that are known to be zero, we can propagate 641 // inverted known bits from the RHS to V. 642 KnownZero |= RHSKnownOne & BKnownZero; 643 KnownOne |= RHSKnownZero & BKnownZero; 644 // assume(v ^ b = a) 645 } else if (match(Arg, 646 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 647 Pred == ICmpInst::ICMP_EQ && 648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 649 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 650 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 651 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 652 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 653 654 // For those bits in B that are known to be zero, we can propagate known 655 // bits from the RHS to V. For those bits in B that are known to be one, 656 // we can propagate inverted known bits from the RHS to V. 657 KnownZero |= RHSKnownZero & BKnownZero; 658 KnownOne |= RHSKnownOne & BKnownZero; 659 KnownZero |= RHSKnownOne & BKnownOne; 660 KnownOne |= RHSKnownZero & BKnownOne; 661 // assume(~(v ^ b) = a) 662 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 663 m_Value(A))) && 664 Pred == ICmpInst::ICMP_EQ && 665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 666 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 667 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 668 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 669 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 670 671 // For those bits in B that are known to be zero, we can propagate 672 // inverted known bits from the RHS to V. For those bits in B that are 673 // known to be one, we can propagate known bits from the RHS to V. 674 KnownZero |= RHSKnownOne & BKnownZero; 675 KnownOne |= RHSKnownZero & BKnownZero; 676 KnownZero |= RHSKnownZero & BKnownOne; 677 KnownOne |= RHSKnownOne & BKnownOne; 678 // assume(v << c = a) 679 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 680 m_Value(A))) && 681 Pred == ICmpInst::ICMP_EQ && 682 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 683 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 684 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 685 // For those bits in RHS that are known, we can propagate them to known 686 // bits in V shifted to the right by C. 687 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 688 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 689 // assume(~(v << c) = a) 690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 691 m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 695 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 696 // For those bits in RHS that are known, we can propagate them inverted 697 // to known bits in V shifted to the right by C. 698 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 699 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 700 // assume(v >> c = a) 701 } else if (match(Arg, 702 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 703 m_AShr(m_V, m_ConstantInt(C))), 704 m_Value(A))) && 705 Pred == ICmpInst::ICMP_EQ && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 708 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 709 // For those bits in RHS that are known, we can propagate them to known 710 // bits in V shifted to the right by C. 711 KnownZero |= RHSKnownZero << C->getZExtValue(); 712 KnownOne |= RHSKnownOne << C->getZExtValue(); 713 // assume(~(v >> c) = a) 714 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 715 m_LShr(m_V, m_ConstantInt(C)), 716 m_AShr(m_V, m_ConstantInt(C)))), 717 m_Value(A))) && 718 Pred == ICmpInst::ICMP_EQ && 719 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 720 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 721 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 722 // For those bits in RHS that are known, we can propagate them inverted 723 // to known bits in V shifted to the right by C. 724 KnownZero |= RHSKnownOne << C->getZExtValue(); 725 KnownOne |= RHSKnownZero << C->getZExtValue(); 726 // assume(v >=_s c) where c is non-negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SGE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 732 733 if (RHSKnownZero.isNegative()) { 734 // We know that the sign bit is zero. 735 KnownZero |= APInt::getSignBit(BitWidth); 736 } 737 // assume(v >_s c) where c is at least -1. 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SGT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 743 744 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 745 // We know that the sign bit is zero. 746 KnownZero |= APInt::getSignBit(BitWidth); 747 } 748 // assume(v <=_s c) where c is negative 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_SLE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 754 755 if (RHSKnownOne.isNegative()) { 756 // We know that the sign bit is one. 757 KnownOne |= APInt::getSignBit(BitWidth); 758 } 759 // assume(v <_s c) where c is non-positive 760 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 761 Pred == ICmpInst::ICMP_SLT && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 764 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 765 766 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 767 // We know that the sign bit is one. 768 KnownOne |= APInt::getSignBit(BitWidth); 769 } 770 // assume(v <=_u c) 771 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 772 Pred == ICmpInst::ICMP_ULE && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 775 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 776 777 // Whatever high bits in c are zero are known to be zero. 778 KnownZero |= 779 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 780 // assume(v <_u c) 781 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 782 Pred == ICmpInst::ICMP_ULT && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 786 787 // Whatever high bits in c are zero are known to be zero (if c is a power 788 // of 2, then one more). 789 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 790 KnownZero |= 791 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 792 else 793 KnownZero |= 794 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 795 } 796 } 797 798 // If assumptions conflict with each other or previous known bits, then we 799 // have a logical fallacy. It's possible that the assumption is not reachable, 800 // so this isn't a real bug. On the other hand, the program may have undefined 801 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 802 // clear out the known bits, try to warn the user, and hope for the best. 803 if ((KnownZero & KnownOne) != 0) { 804 KnownZero.clearAllBits(); 805 KnownOne.clearAllBits(); 806 807 if (Q.ORE) { 808 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 809 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 810 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 811 "have undefined behavior, or compiler may have " 812 "internal error."); 813 } 814 } 815 } 816 817 // Compute known bits from a shift operator, including those with a 818 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 819 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 820 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 821 // functors that, given the known-zero or known-one bits respectively, and a 822 // shift amount, compute the implied known-zero or known-one bits of the shift 823 // operator's result respectively for that shift amount. The results from calling 824 // KZF and KOF are conservatively combined for all permitted shift amounts. 825 static void computeKnownBitsFromShiftOperator( 826 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 827 APInt &KnownOne2, unsigned Depth, const Query &Q, 828 function_ref<APInt(const APInt &, unsigned)> KZF, 829 function_ref<APInt(const APInt &, unsigned)> KOF) { 830 unsigned BitWidth = KnownZero.getBitWidth(); 831 832 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 833 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 834 835 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 836 KnownZero = KZF(KnownZero, ShiftAmt); 837 KnownOne = KOF(KnownOne, ShiftAmt); 838 // If there is conflict between KnownZero and KnownOne, this must be an 839 // overflowing left shift, so the shift result is undefined. Clear KnownZero 840 // and KnownOne bits so that other code could propagate this undef. 841 if ((KnownZero & KnownOne) != 0) { 842 KnownZero.clearAllBits(); 843 KnownOne.clearAllBits(); 844 } 845 846 return; 847 } 848 849 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 850 851 // Note: We cannot use KnownZero.getLimitedValue() here, because if 852 // BitWidth > 64 and any upper bits are known, we'll end up returning the 853 // limit value (which implies all bits are known). 854 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 855 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 856 857 // It would be more-clearly correct to use the two temporaries for this 858 // calculation. Reusing the APInts here to prevent unnecessary allocations. 859 KnownZero.clearAllBits(); 860 KnownOne.clearAllBits(); 861 862 // If we know the shifter operand is nonzero, we can sometimes infer more 863 // known bits. However this is expensive to compute, so be lazy about it and 864 // only compute it when absolutely necessary. 865 Optional<bool> ShifterOperandIsNonZero; 866 867 // Early exit if we can't constrain any well-defined shift amount. 868 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 869 ShifterOperandIsNonZero = 870 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 871 if (!*ShifterOperandIsNonZero) 872 return; 873 } 874 875 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 876 877 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 878 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 879 // Combine the shifted known input bits only for those shift amounts 880 // compatible with its known constraints. 881 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 882 continue; 883 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 884 continue; 885 // If we know the shifter is nonzero, we may be able to infer more known 886 // bits. This check is sunk down as far as possible to avoid the expensive 887 // call to isKnownNonZero if the cheaper checks above fail. 888 if (ShiftAmt == 0) { 889 if (!ShifterOperandIsNonZero.hasValue()) 890 ShifterOperandIsNonZero = 891 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 892 if (*ShifterOperandIsNonZero) 893 continue; 894 } 895 896 KnownZero &= KZF(KnownZero2, ShiftAmt); 897 KnownOne &= KOF(KnownOne2, ShiftAmt); 898 } 899 900 // If there are no compatible shift amounts, then we've proven that the shift 901 // amount must be >= the BitWidth, and the result is undefined. We could 902 // return anything we'd like, but we need to make sure the sets of known bits 903 // stay disjoint (it should be better for some other code to actually 904 // propagate the undef than to pick a value here using known bits). 905 if ((KnownZero & KnownOne) != 0) { 906 KnownZero.clearAllBits(); 907 KnownOne.clearAllBits(); 908 } 909 } 910 911 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 912 APInt &KnownOne, unsigned Depth, 913 const Query &Q) { 914 unsigned BitWidth = KnownZero.getBitWidth(); 915 916 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 917 switch (I->getOpcode()) { 918 default: break; 919 case Instruction::Load: 920 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 921 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 922 break; 923 case Instruction::And: { 924 // If either the LHS or the RHS are Zero, the result is zero. 925 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 926 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 927 928 // Output known-1 bits are only known if set in both the LHS & RHS. 929 KnownOne &= KnownOne2; 930 // Output known-0 are known to be clear if zero in either the LHS | RHS. 931 KnownZero |= KnownZero2; 932 933 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 934 // here we handle the more general case of adding any odd number by 935 // matching the form add(x, add(x, y)) where y is odd. 936 // TODO: This could be generalized to clearing any bit set in y where the 937 // following bit is known to be unset in y. 938 Value *Y = nullptr; 939 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 940 m_Value(Y))) || 941 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 942 m_Value(Y)))) { 943 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 944 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 945 if (KnownOne3.countTrailingOnes() > 0) 946 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 947 } 948 break; 949 } 950 case Instruction::Or: { 951 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 952 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 953 954 // Output known-0 bits are only known if clear in both the LHS & RHS. 955 KnownZero &= KnownZero2; 956 // Output known-1 are known to be set if set in either the LHS | RHS. 957 KnownOne |= KnownOne2; 958 break; 959 } 960 case Instruction::Xor: { 961 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 962 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 963 964 // Output known-0 bits are known if clear or set in both the LHS & RHS. 965 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 966 // Output known-1 are known to be set if set in only one of the LHS, RHS. 967 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 968 KnownZero = KnownZeroOut; 969 break; 970 } 971 case Instruction::Mul: { 972 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 973 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 974 KnownOne, KnownZero2, KnownOne2, Depth, Q); 975 break; 976 } 977 case Instruction::UDiv: { 978 // For the purposes of computing leading zeros we can conservatively 979 // treat a udiv as a logical right shift by the power of 2 known to 980 // be less than the denominator. 981 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 982 unsigned LeadZ = KnownZero2.countLeadingOnes(); 983 984 KnownOne2.clearAllBits(); 985 KnownZero2.clearAllBits(); 986 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 987 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 988 if (RHSUnknownLeadingOnes != BitWidth) 989 LeadZ = std::min(BitWidth, 990 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 991 992 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 993 break; 994 } 995 case Instruction::Select: { 996 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 997 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 998 999 const Value *LHS; 1000 const Value *RHS; 1001 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1002 if (SelectPatternResult::isMinOrMax(SPF)) { 1003 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 1004 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 1005 } else { 1006 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 1007 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1008 } 1009 1010 unsigned MaxHighOnes = 0; 1011 unsigned MaxHighZeros = 0; 1012 if (SPF == SPF_SMAX) { 1013 // If both sides are negative, the result is negative. 1014 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 1015 // We can derive a lower bound on the result by taking the max of the 1016 // leading one bits. 1017 MaxHighOnes = 1018 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1019 // If either side is non-negative, the result is non-negative. 1020 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 1021 MaxHighZeros = 1; 1022 } else if (SPF == SPF_SMIN) { 1023 // If both sides are non-negative, the result is non-negative. 1024 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 1025 // We can derive an upper bound on the result by taking the max of the 1026 // leading zero bits. 1027 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1028 KnownZero2.countLeadingOnes()); 1029 // If either side is negative, the result is negative. 1030 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 1031 MaxHighOnes = 1; 1032 } else if (SPF == SPF_UMAX) { 1033 // We can derive a lower bound on the result by taking the max of the 1034 // leading one bits. 1035 MaxHighOnes = 1036 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1037 } else if (SPF == SPF_UMIN) { 1038 // We can derive an upper bound on the result by taking the max of the 1039 // leading zero bits. 1040 MaxHighZeros = 1041 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1042 } 1043 1044 // Only known if known in both the LHS and RHS. 1045 KnownOne &= KnownOne2; 1046 KnownZero &= KnownZero2; 1047 if (MaxHighOnes > 0) 1048 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1049 if (MaxHighZeros > 0) 1050 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1051 break; 1052 } 1053 case Instruction::FPTrunc: 1054 case Instruction::FPExt: 1055 case Instruction::FPToUI: 1056 case Instruction::FPToSI: 1057 case Instruction::SIToFP: 1058 case Instruction::UIToFP: 1059 break; // Can't work with floating point. 1060 case Instruction::PtrToInt: 1061 case Instruction::IntToPtr: 1062 // Fall through and handle them the same as zext/trunc. 1063 LLVM_FALLTHROUGH; 1064 case Instruction::ZExt: 1065 case Instruction::Trunc: { 1066 Type *SrcTy = I->getOperand(0)->getType(); 1067 1068 unsigned SrcBitWidth; 1069 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1070 // which fall through here. 1071 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1072 1073 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1074 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1075 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1076 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1077 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1078 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1079 // Any top bits are known to be zero. 1080 if (BitWidth > SrcBitWidth) 1081 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1082 break; 1083 } 1084 case Instruction::BitCast: { 1085 Type *SrcTy = I->getOperand(0)->getType(); 1086 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1087 // TODO: For now, not handling conversions like: 1088 // (bitcast i64 %x to <2 x i32>) 1089 !I->getType()->isVectorTy()) { 1090 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1091 break; 1092 } 1093 break; 1094 } 1095 case Instruction::SExt: { 1096 // Compute the bits in the result that are not present in the input. 1097 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1098 1099 KnownZero = KnownZero.trunc(SrcBitWidth); 1100 KnownOne = KnownOne.trunc(SrcBitWidth); 1101 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1102 KnownZero = KnownZero.zext(BitWidth); 1103 KnownOne = KnownOne.zext(BitWidth); 1104 1105 // If the sign bit of the input is known set or clear, then we know the 1106 // top bits of the result. 1107 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1108 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1109 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1110 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1111 break; 1112 } 1113 case Instruction::Shl: { 1114 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1115 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1116 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1117 APInt KZResult = 1118 (KnownZero << ShiftAmt) | 1119 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1120 // If this shift has "nsw" keyword, then the result is either a poison 1121 // value or has the same sign bit as the first operand. 1122 if (NSW && KnownZero.isNegative()) 1123 KZResult.setBit(BitWidth - 1); 1124 return KZResult; 1125 }; 1126 1127 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1128 APInt KOResult = KnownOne << ShiftAmt; 1129 if (NSW && KnownOne.isNegative()) 1130 KOResult.setBit(BitWidth - 1); 1131 return KOResult; 1132 }; 1133 1134 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1135 KnownZero2, KnownOne2, Depth, Q, KZF, 1136 KOF); 1137 break; 1138 } 1139 case Instruction::LShr: { 1140 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1141 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1142 return APIntOps::lshr(KnownZero, ShiftAmt) | 1143 // High bits known zero. 1144 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1145 }; 1146 1147 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1148 return APIntOps::lshr(KnownOne, ShiftAmt); 1149 }; 1150 1151 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1152 KnownZero2, KnownOne2, Depth, Q, KZF, 1153 KOF); 1154 break; 1155 } 1156 case Instruction::AShr: { 1157 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1158 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1159 return APIntOps::ashr(KnownZero, ShiftAmt); 1160 }; 1161 1162 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1163 return APIntOps::ashr(KnownOne, ShiftAmt); 1164 }; 1165 1166 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1167 KnownZero2, KnownOne2, Depth, Q, KZF, 1168 KOF); 1169 break; 1170 } 1171 case Instruction::Sub: { 1172 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1173 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1174 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1175 Q); 1176 break; 1177 } 1178 case Instruction::Add: { 1179 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1180 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1181 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1182 Q); 1183 break; 1184 } 1185 case Instruction::SRem: 1186 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1187 APInt RA = Rem->getValue().abs(); 1188 if (RA.isPowerOf2()) { 1189 APInt LowBits = RA - 1; 1190 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1191 Q); 1192 1193 // The low bits of the first operand are unchanged by the srem. 1194 KnownZero = KnownZero2 & LowBits; 1195 KnownOne = KnownOne2 & LowBits; 1196 1197 // If the first operand is non-negative or has all low bits zero, then 1198 // the upper bits are all zero. 1199 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1200 KnownZero |= ~LowBits; 1201 1202 // If the first operand is negative and not all low bits are zero, then 1203 // the upper bits are all one. 1204 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1205 KnownOne |= ~LowBits; 1206 1207 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1208 } 1209 } 1210 1211 // The sign bit is the LHS's sign bit, except when the result of the 1212 // remainder is zero. 1213 if (KnownZero.isNonNegative()) { 1214 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1215 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1216 Q); 1217 // If it's known zero, our sign bit is also zero. 1218 if (LHSKnownZero.isNegative()) 1219 KnownZero.setBit(BitWidth - 1); 1220 } 1221 1222 break; 1223 case Instruction::URem: { 1224 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1225 const APInt &RA = Rem->getValue(); 1226 if (RA.isPowerOf2()) { 1227 APInt LowBits = (RA - 1); 1228 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1229 KnownZero |= ~LowBits; 1230 KnownOne &= LowBits; 1231 break; 1232 } 1233 } 1234 1235 // Since the result is less than or equal to either operand, any leading 1236 // zero bits in either operand must also exist in the result. 1237 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1238 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1239 1240 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1241 KnownZero2.countLeadingOnes()); 1242 KnownOne.clearAllBits(); 1243 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1244 break; 1245 } 1246 1247 case Instruction::Alloca: { 1248 const AllocaInst *AI = cast<AllocaInst>(I); 1249 unsigned Align = AI->getAlignment(); 1250 if (Align == 0) 1251 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1252 1253 if (Align > 0) 1254 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1255 break; 1256 } 1257 case Instruction::GetElementPtr: { 1258 // Analyze all of the subscripts of this getelementptr instruction 1259 // to determine if we can prove known low zero bits. 1260 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1261 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1262 Q); 1263 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1264 1265 gep_type_iterator GTI = gep_type_begin(I); 1266 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1267 Value *Index = I->getOperand(i); 1268 if (StructType *STy = GTI.getStructTypeOrNull()) { 1269 // Handle struct member offset arithmetic. 1270 1271 // Handle case when index is vector zeroinitializer 1272 Constant *CIndex = cast<Constant>(Index); 1273 if (CIndex->isZeroValue()) 1274 continue; 1275 1276 if (CIndex->getType()->isVectorTy()) 1277 Index = CIndex->getSplatValue(); 1278 1279 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1280 const StructLayout *SL = Q.DL.getStructLayout(STy); 1281 uint64_t Offset = SL->getElementOffset(Idx); 1282 TrailZ = std::min<unsigned>(TrailZ, 1283 countTrailingZeros(Offset)); 1284 } else { 1285 // Handle array index arithmetic. 1286 Type *IndexedTy = GTI.getIndexedType(); 1287 if (!IndexedTy->isSized()) { 1288 TrailZ = 0; 1289 break; 1290 } 1291 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1292 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1293 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1294 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1295 TrailZ = std::min(TrailZ, 1296 unsigned(countTrailingZeros(TypeSize) + 1297 LocalKnownZero.countTrailingOnes())); 1298 } 1299 } 1300 1301 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1302 break; 1303 } 1304 case Instruction::PHI: { 1305 const PHINode *P = cast<PHINode>(I); 1306 // Handle the case of a simple two-predecessor recurrence PHI. 1307 // There's a lot more that could theoretically be done here, but 1308 // this is sufficient to catch some interesting cases. 1309 if (P->getNumIncomingValues() == 2) { 1310 for (unsigned i = 0; i != 2; ++i) { 1311 Value *L = P->getIncomingValue(i); 1312 Value *R = P->getIncomingValue(!i); 1313 Operator *LU = dyn_cast<Operator>(L); 1314 if (!LU) 1315 continue; 1316 unsigned Opcode = LU->getOpcode(); 1317 // Check for operations that have the property that if 1318 // both their operands have low zero bits, the result 1319 // will have low zero bits. 1320 if (Opcode == Instruction::Add || 1321 Opcode == Instruction::Sub || 1322 Opcode == Instruction::And || 1323 Opcode == Instruction::Or || 1324 Opcode == Instruction::Mul) { 1325 Value *LL = LU->getOperand(0); 1326 Value *LR = LU->getOperand(1); 1327 // Find a recurrence. 1328 if (LL == I) 1329 L = LR; 1330 else if (LR == I) 1331 L = LL; 1332 else 1333 break; 1334 // Ok, we have a PHI of the form L op= R. Check for low 1335 // zero bits. 1336 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1337 1338 // We need to take the minimum number of known bits 1339 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1340 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1341 1342 KnownZero = APInt::getLowBitsSet( 1343 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1344 KnownZero3.countTrailingOnes())); 1345 1346 if (DontImproveNonNegativePhiBits) 1347 break; 1348 1349 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1350 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1351 // If initial value of recurrence is nonnegative, and we are adding 1352 // a nonnegative number with nsw, the result can only be nonnegative 1353 // or poison value regardless of the number of times we execute the 1354 // add in phi recurrence. If initial value is negative and we are 1355 // adding a negative number with nsw, the result can only be 1356 // negative or poison value. Similar arguments apply to sub and mul. 1357 // 1358 // (add non-negative, non-negative) --> non-negative 1359 // (add negative, negative) --> negative 1360 if (Opcode == Instruction::Add) { 1361 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1362 KnownZero.setBit(BitWidth - 1); 1363 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1364 KnownOne.setBit(BitWidth - 1); 1365 } 1366 1367 // (sub nsw non-negative, negative) --> non-negative 1368 // (sub nsw negative, non-negative) --> negative 1369 else if (Opcode == Instruction::Sub && LL == I) { 1370 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1371 KnownZero.setBit(BitWidth - 1); 1372 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1373 KnownOne.setBit(BitWidth - 1); 1374 } 1375 1376 // (mul nsw non-negative, non-negative) --> non-negative 1377 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1378 KnownZero3.isNegative()) 1379 KnownZero.setBit(BitWidth - 1); 1380 } 1381 1382 break; 1383 } 1384 } 1385 } 1386 1387 // Unreachable blocks may have zero-operand PHI nodes. 1388 if (P->getNumIncomingValues() == 0) 1389 break; 1390 1391 // Otherwise take the unions of the known bit sets of the operands, 1392 // taking conservative care to avoid excessive recursion. 1393 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1394 // Skip if every incoming value references to ourself. 1395 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1396 break; 1397 1398 KnownZero = APInt::getAllOnesValue(BitWidth); 1399 KnownOne = APInt::getAllOnesValue(BitWidth); 1400 for (Value *IncValue : P->incoming_values()) { 1401 // Skip direct self references. 1402 if (IncValue == P) continue; 1403 1404 KnownZero2 = APInt(BitWidth, 0); 1405 KnownOne2 = APInt(BitWidth, 0); 1406 // Recurse, but cap the recursion to one level, because we don't 1407 // want to waste time spinning around in loops. 1408 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1409 KnownZero &= KnownZero2; 1410 KnownOne &= KnownOne2; 1411 // If all bits have been ruled out, there's no need to check 1412 // more operands. 1413 if (!KnownZero && !KnownOne) 1414 break; 1415 } 1416 } 1417 break; 1418 } 1419 case Instruction::Call: 1420 case Instruction::Invoke: 1421 // If range metadata is attached to this call, set known bits from that, 1422 // and then intersect with known bits based on other properties of the 1423 // function. 1424 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1425 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1426 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1427 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1428 KnownZero |= KnownZero2; 1429 KnownOne |= KnownOne2; 1430 } 1431 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1432 switch (II->getIntrinsicID()) { 1433 default: break; 1434 case Intrinsic::bitreverse: 1435 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1436 KnownZero = KnownZero2.reverseBits(); 1437 KnownOne = KnownOne2.reverseBits(); 1438 break; 1439 case Intrinsic::bswap: 1440 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1441 KnownZero |= KnownZero2.byteSwap(); 1442 KnownOne |= KnownOne2.byteSwap(); 1443 break; 1444 case Intrinsic::ctlz: 1445 case Intrinsic::cttz: { 1446 unsigned LowBits = Log2_32(BitWidth)+1; 1447 // If this call is undefined for 0, the result will be less than 2^n. 1448 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1449 LowBits -= 1; 1450 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1451 break; 1452 } 1453 case Intrinsic::ctpop: { 1454 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1455 // We can bound the space the count needs. Also, bits known to be zero 1456 // can't contribute to the population. 1457 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1458 unsigned LeadingZeros = 1459 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1460 assert(LeadingZeros <= BitWidth); 1461 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1462 KnownOne &= ~KnownZero; 1463 // TODO: we could bound KnownOne using the lower bound on the number 1464 // of bits which might be set provided by popcnt KnownOne2. 1465 break; 1466 } 1467 case Intrinsic::x86_sse42_crc32_64_64: 1468 KnownZero |= APInt::getHighBitsSet(64, 32); 1469 break; 1470 } 1471 } 1472 break; 1473 case Instruction::ExtractElement: 1474 // Look through extract element. At the moment we keep this simple and skip 1475 // tracking the specific element. But at least we might find information 1476 // valid for all elements of the vector (for example if vector is sign 1477 // extended, shifted, etc). 1478 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1479 break; 1480 case Instruction::ExtractValue: 1481 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1482 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1483 if (EVI->getNumIndices() != 1) break; 1484 if (EVI->getIndices()[0] == 0) { 1485 switch (II->getIntrinsicID()) { 1486 default: break; 1487 case Intrinsic::uadd_with_overflow: 1488 case Intrinsic::sadd_with_overflow: 1489 computeKnownBitsAddSub(true, II->getArgOperand(0), 1490 II->getArgOperand(1), false, KnownZero, 1491 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1492 break; 1493 case Intrinsic::usub_with_overflow: 1494 case Intrinsic::ssub_with_overflow: 1495 computeKnownBitsAddSub(false, II->getArgOperand(0), 1496 II->getArgOperand(1), false, KnownZero, 1497 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1498 break; 1499 case Intrinsic::umul_with_overflow: 1500 case Intrinsic::smul_with_overflow: 1501 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1502 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1503 Q); 1504 break; 1505 } 1506 } 1507 } 1508 } 1509 } 1510 1511 /// Determine which bits of V are known to be either zero or one and return 1512 /// them in the KnownZero/KnownOne bit sets. 1513 /// 1514 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1515 /// we cannot optimize based on the assumption that it is zero without changing 1516 /// it to be an explicit zero. If we don't change it to zero, other code could 1517 /// optimized based on the contradictory assumption that it is non-zero. 1518 /// Because instcombine aggressively folds operations with undef args anyway, 1519 /// this won't lose us code quality. 1520 /// 1521 /// This function is defined on values with integer type, values with pointer 1522 /// type, and vectors of integers. In the case 1523 /// where V is a vector, known zero, and known one values are the 1524 /// same width as the vector element, and the bit is set only if it is true 1525 /// for all of the elements in the vector. 1526 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1527 unsigned Depth, const Query &Q) { 1528 assert(V && "No Value?"); 1529 assert(Depth <= MaxDepth && "Limit Search Depth"); 1530 unsigned BitWidth = KnownZero.getBitWidth(); 1531 1532 assert((V->getType()->isIntOrIntVectorTy() || 1533 V->getType()->getScalarType()->isPointerTy()) && 1534 "Not integer or pointer type!"); 1535 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1536 (!V->getType()->isIntOrIntVectorTy() || 1537 V->getType()->getScalarSizeInBits() == BitWidth) && 1538 KnownZero.getBitWidth() == BitWidth && 1539 KnownOne.getBitWidth() == BitWidth && 1540 "V, KnownOne and KnownZero should have same BitWidth"); 1541 1542 const APInt *C; 1543 if (match(V, m_APInt(C))) { 1544 // We know all of the bits for a scalar constant or a splat vector constant! 1545 KnownOne = *C; 1546 KnownZero = ~KnownOne; 1547 return; 1548 } 1549 // Null and aggregate-zero are all-zeros. 1550 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1551 KnownOne.clearAllBits(); 1552 KnownZero = APInt::getAllOnesValue(BitWidth); 1553 return; 1554 } 1555 // Handle a constant vector by taking the intersection of the known bits of 1556 // each element. 1557 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1558 // We know that CDS must be a vector of integers. Take the intersection of 1559 // each element. 1560 KnownZero.setAllBits(); KnownOne.setAllBits(); 1561 APInt Elt(KnownZero.getBitWidth(), 0); 1562 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1563 Elt = CDS->getElementAsInteger(i); 1564 KnownZero &= ~Elt; 1565 KnownOne &= Elt; 1566 } 1567 return; 1568 } 1569 1570 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1571 // We know that CV must be a vector of integers. Take the intersection of 1572 // each element. 1573 KnownZero.setAllBits(); KnownOne.setAllBits(); 1574 APInt Elt(KnownZero.getBitWidth(), 0); 1575 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1576 Constant *Element = CV->getAggregateElement(i); 1577 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1578 if (!ElementCI) { 1579 KnownZero.clearAllBits(); 1580 KnownOne.clearAllBits(); 1581 return; 1582 } 1583 Elt = ElementCI->getValue(); 1584 KnownZero &= ~Elt; 1585 KnownOne &= Elt; 1586 } 1587 return; 1588 } 1589 1590 // Start out not knowing anything. 1591 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1592 1593 // We can't imply anything about undefs. 1594 if (isa<UndefValue>(V)) 1595 return; 1596 1597 // There's no point in looking through other users of ConstantData for 1598 // assumptions. Confirm that we've handled them all. 1599 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1600 1601 // Limit search depth. 1602 // All recursive calls that increase depth must come after this. 1603 if (Depth == MaxDepth) 1604 return; 1605 1606 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1607 // the bits of its aliasee. 1608 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1609 if (!GA->isInterposable()) 1610 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1611 return; 1612 } 1613 1614 if (const Operator *I = dyn_cast<Operator>(V)) 1615 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1616 1617 // Aligned pointers have trailing zeros - refine KnownZero set 1618 if (V->getType()->isPointerTy()) { 1619 unsigned Align = V->getPointerAlignment(Q.DL); 1620 if (Align) 1621 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1622 } 1623 1624 // computeKnownBitsFromAssume strictly refines KnownZero and 1625 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1626 1627 // Check whether a nearby assume intrinsic can determine some known bits. 1628 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1629 1630 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1631 } 1632 1633 /// Determine whether the sign bit is known to be zero or one. 1634 /// Convenience wrapper around computeKnownBits. 1635 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1636 unsigned Depth, const Query &Q) { 1637 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1638 if (!BitWidth) { 1639 KnownZero = false; 1640 KnownOne = false; 1641 return; 1642 } 1643 APInt ZeroBits(BitWidth, 0); 1644 APInt OneBits(BitWidth, 0); 1645 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1646 KnownOne = OneBits[BitWidth - 1]; 1647 KnownZero = ZeroBits[BitWidth - 1]; 1648 } 1649 1650 /// Return true if the given value is known to have exactly one 1651 /// bit set when defined. For vectors return true if every element is known to 1652 /// be a power of two when defined. Supports values with integer or pointer 1653 /// types and vectors of integers. 1654 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1655 const Query &Q) { 1656 if (const Constant *C = dyn_cast<Constant>(V)) { 1657 if (C->isNullValue()) 1658 return OrZero; 1659 1660 const APInt *ConstIntOrConstSplatInt; 1661 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1662 return ConstIntOrConstSplatInt->isPowerOf2(); 1663 } 1664 1665 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1666 // it is shifted off the end then the result is undefined. 1667 if (match(V, m_Shl(m_One(), m_Value()))) 1668 return true; 1669 1670 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1671 // bottom. If it is shifted off the bottom then the result is undefined. 1672 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1673 return true; 1674 1675 // The remaining tests are all recursive, so bail out if we hit the limit. 1676 if (Depth++ == MaxDepth) 1677 return false; 1678 1679 Value *X = nullptr, *Y = nullptr; 1680 // A shift left or a logical shift right of a power of two is a power of two 1681 // or zero. 1682 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1683 match(V, m_LShr(m_Value(X), m_Value())))) 1684 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1685 1686 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1687 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1688 1689 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1690 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1691 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1692 1693 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1694 // A power of two and'd with anything is a power of two or zero. 1695 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1696 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1697 return true; 1698 // X & (-X) is always a power of two or zero. 1699 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1700 return true; 1701 return false; 1702 } 1703 1704 // Adding a power-of-two or zero to the same power-of-two or zero yields 1705 // either the original power-of-two, a larger power-of-two or zero. 1706 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1707 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1708 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1709 if (match(X, m_And(m_Specific(Y), m_Value())) || 1710 match(X, m_And(m_Value(), m_Specific(Y)))) 1711 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1712 return true; 1713 if (match(Y, m_And(m_Specific(X), m_Value())) || 1714 match(Y, m_And(m_Value(), m_Specific(X)))) 1715 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1716 return true; 1717 1718 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1719 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1720 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1721 1722 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1723 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1724 // If i8 V is a power of two or zero: 1725 // ZeroBits: 1 1 1 0 1 1 1 1 1726 // ~ZeroBits: 0 0 0 1 0 0 0 0 1727 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1728 // If OrZero isn't set, we cannot give back a zero result. 1729 // Make sure either the LHS or RHS has a bit set. 1730 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1731 return true; 1732 } 1733 } 1734 1735 // An exact divide or right shift can only shift off zero bits, so the result 1736 // is a power of two only if the first operand is a power of two and not 1737 // copying a sign bit (sdiv int_min, 2). 1738 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1739 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1740 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1741 Depth, Q); 1742 } 1743 1744 return false; 1745 } 1746 1747 /// \brief Test whether a GEP's result is known to be non-null. 1748 /// 1749 /// Uses properties inherent in a GEP to try to determine whether it is known 1750 /// to be non-null. 1751 /// 1752 /// Currently this routine does not support vector GEPs. 1753 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1754 const Query &Q) { 1755 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1756 return false; 1757 1758 // FIXME: Support vector-GEPs. 1759 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1760 1761 // If the base pointer is non-null, we cannot walk to a null address with an 1762 // inbounds GEP in address space zero. 1763 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1764 return true; 1765 1766 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1767 // If so, then the GEP cannot produce a null pointer, as doing so would 1768 // inherently violate the inbounds contract within address space zero. 1769 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1770 GTI != GTE; ++GTI) { 1771 // Struct types are easy -- they must always be indexed by a constant. 1772 if (StructType *STy = GTI.getStructTypeOrNull()) { 1773 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1774 unsigned ElementIdx = OpC->getZExtValue(); 1775 const StructLayout *SL = Q.DL.getStructLayout(STy); 1776 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1777 if (ElementOffset > 0) 1778 return true; 1779 continue; 1780 } 1781 1782 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1783 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1784 continue; 1785 1786 // Fast path the constant operand case both for efficiency and so we don't 1787 // increment Depth when just zipping down an all-constant GEP. 1788 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1789 if (!OpC->isZero()) 1790 return true; 1791 continue; 1792 } 1793 1794 // We post-increment Depth here because while isKnownNonZero increments it 1795 // as well, when we pop back up that increment won't persist. We don't want 1796 // to recurse 10k times just because we have 10k GEP operands. We don't 1797 // bail completely out because we want to handle constant GEPs regardless 1798 // of depth. 1799 if (Depth++ >= MaxDepth) 1800 continue; 1801 1802 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1803 return true; 1804 } 1805 1806 return false; 1807 } 1808 1809 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1810 /// ensure that the value it's attached to is never Value? 'RangeType' is 1811 /// is the type of the value described by the range. 1812 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1813 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1814 assert(NumRanges >= 1); 1815 for (unsigned i = 0; i < NumRanges; ++i) { 1816 ConstantInt *Lower = 1817 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1818 ConstantInt *Upper = 1819 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1820 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1821 if (Range.contains(Value)) 1822 return false; 1823 } 1824 return true; 1825 } 1826 1827 /// Return true if the given value is known to be non-zero when defined. For 1828 /// vectors, return true if every element is known to be non-zero when 1829 /// defined. For pointers, if the context instruction and dominator tree are 1830 /// specified, perform context-sensitive analysis and return true if the 1831 /// pointer couldn't possibly be null at the specified instruction. 1832 /// Supports values with integer or pointer type and vectors of integers. 1833 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1834 if (auto *C = dyn_cast<Constant>(V)) { 1835 if (C->isNullValue()) 1836 return false; 1837 if (isa<ConstantInt>(C)) 1838 // Must be non-zero due to null test above. 1839 return true; 1840 1841 // For constant vectors, check that all elements are undefined or known 1842 // non-zero to determine that the whole vector is known non-zero. 1843 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1844 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1845 Constant *Elt = C->getAggregateElement(i); 1846 if (!Elt || Elt->isNullValue()) 1847 return false; 1848 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1849 return false; 1850 } 1851 return true; 1852 } 1853 1854 return false; 1855 } 1856 1857 if (auto *I = dyn_cast<Instruction>(V)) { 1858 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1859 // If the possible ranges don't contain zero, then the value is 1860 // definitely non-zero. 1861 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1862 const APInt ZeroValue(Ty->getBitWidth(), 0); 1863 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1864 return true; 1865 } 1866 } 1867 } 1868 1869 // The remaining tests are all recursive, so bail out if we hit the limit. 1870 if (Depth++ >= MaxDepth) 1871 return false; 1872 1873 // Check for pointer simplifications. 1874 if (V->getType()->isPointerTy()) { 1875 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1876 return true; 1877 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1878 if (isGEPKnownNonNull(GEP, Depth, Q)) 1879 return true; 1880 } 1881 1882 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1883 1884 // X | Y != 0 if X != 0 or Y != 0. 1885 Value *X = nullptr, *Y = nullptr; 1886 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1887 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1888 1889 // ext X != 0 if X != 0. 1890 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1891 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1892 1893 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1894 // if the lowest bit is shifted off the end. 1895 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1896 // shl nuw can't remove any non-zero bits. 1897 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1898 if (BO->hasNoUnsignedWrap()) 1899 return isKnownNonZero(X, Depth, Q); 1900 1901 APInt KnownZero(BitWidth, 0); 1902 APInt KnownOne(BitWidth, 0); 1903 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1904 if (KnownOne[0]) 1905 return true; 1906 } 1907 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1908 // defined if the sign bit is shifted off the end. 1909 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1910 // shr exact can only shift out zero bits. 1911 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1912 if (BO->isExact()) 1913 return isKnownNonZero(X, Depth, Q); 1914 1915 bool XKnownNonNegative, XKnownNegative; 1916 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1917 if (XKnownNegative) 1918 return true; 1919 1920 // If the shifter operand is a constant, and all of the bits shifted 1921 // out are known to be zero, and X is known non-zero then at least one 1922 // non-zero bit must remain. 1923 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1924 APInt KnownZero(BitWidth, 0); 1925 APInt KnownOne(BitWidth, 0); 1926 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1927 1928 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1929 // Is there a known one in the portion not shifted out? 1930 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1931 return true; 1932 // Are all the bits to be shifted out known zero? 1933 if (KnownZero.countTrailingOnes() >= ShiftVal) 1934 return isKnownNonZero(X, Depth, Q); 1935 } 1936 } 1937 // div exact can only produce a zero if the dividend is zero. 1938 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1939 return isKnownNonZero(X, Depth, Q); 1940 } 1941 // X + Y. 1942 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1943 bool XKnownNonNegative, XKnownNegative; 1944 bool YKnownNonNegative, YKnownNegative; 1945 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1946 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1947 1948 // If X and Y are both non-negative (as signed values) then their sum is not 1949 // zero unless both X and Y are zero. 1950 if (XKnownNonNegative && YKnownNonNegative) 1951 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1952 return true; 1953 1954 // If X and Y are both negative (as signed values) then their sum is not 1955 // zero unless both X and Y equal INT_MIN. 1956 if (BitWidth && XKnownNegative && YKnownNegative) { 1957 APInt KnownZero(BitWidth, 0); 1958 APInt KnownOne(BitWidth, 0); 1959 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1960 // The sign bit of X is set. If some other bit is set then X is not equal 1961 // to INT_MIN. 1962 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1963 if ((KnownOne & Mask) != 0) 1964 return true; 1965 // The sign bit of Y is set. If some other bit is set then Y is not equal 1966 // to INT_MIN. 1967 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1968 if ((KnownOne & Mask) != 0) 1969 return true; 1970 } 1971 1972 // The sum of a non-negative number and a power of two is not zero. 1973 if (XKnownNonNegative && 1974 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1975 return true; 1976 if (YKnownNonNegative && 1977 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1978 return true; 1979 } 1980 // X * Y. 1981 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1982 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1983 // If X and Y are non-zero then so is X * Y as long as the multiplication 1984 // does not overflow. 1985 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1986 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1987 return true; 1988 } 1989 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1990 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1991 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1992 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1993 return true; 1994 } 1995 // PHI 1996 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1997 // Try and detect a recurrence that monotonically increases from a 1998 // starting value, as these are common as induction variables. 1999 if (PN->getNumIncomingValues() == 2) { 2000 Value *Start = PN->getIncomingValue(0); 2001 Value *Induction = PN->getIncomingValue(1); 2002 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2003 std::swap(Start, Induction); 2004 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2005 if (!C->isZero() && !C->isNegative()) { 2006 ConstantInt *X; 2007 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2008 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2009 !X->isNegative()) 2010 return true; 2011 } 2012 } 2013 } 2014 // Check if all incoming values are non-zero constant. 2015 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 2016 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 2017 }); 2018 if (AllNonZeroConstants) 2019 return true; 2020 } 2021 2022 if (!BitWidth) return false; 2023 APInt KnownZero(BitWidth, 0); 2024 APInt KnownOne(BitWidth, 0); 2025 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2026 return KnownOne != 0; 2027 } 2028 2029 /// Return true if V2 == V1 + X, where X is known non-zero. 2030 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2031 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2032 if (!BO || BO->getOpcode() != Instruction::Add) 2033 return false; 2034 Value *Op = nullptr; 2035 if (V2 == BO->getOperand(0)) 2036 Op = BO->getOperand(1); 2037 else if (V2 == BO->getOperand(1)) 2038 Op = BO->getOperand(0); 2039 else 2040 return false; 2041 return isKnownNonZero(Op, 0, Q); 2042 } 2043 2044 /// Return true if it is known that V1 != V2. 2045 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2046 if (V1->getType()->isVectorTy() || V1 == V2) 2047 return false; 2048 if (V1->getType() != V2->getType()) 2049 // We can't look through casts yet. 2050 return false; 2051 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2052 return true; 2053 2054 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2055 // Are any known bits in V1 contradictory to known bits in V2? If V1 2056 // has a known zero where V2 has a known one, they must not be equal. 2057 auto BitWidth = Ty->getBitWidth(); 2058 APInt KnownZero1(BitWidth, 0); 2059 APInt KnownOne1(BitWidth, 0); 2060 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2061 APInt KnownZero2(BitWidth, 0); 2062 APInt KnownOne2(BitWidth, 0); 2063 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2064 2065 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2066 if (OppositeBits.getBoolValue()) 2067 return true; 2068 } 2069 return false; 2070 } 2071 2072 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2073 /// simplify operations downstream. Mask is known to be zero for bits that V 2074 /// cannot have. 2075 /// 2076 /// This function is defined on values with integer type, values with pointer 2077 /// type, and vectors of integers. In the case 2078 /// where V is a vector, the mask, known zero, and known one values are the 2079 /// same width as the vector element, and the bit is set only if it is true 2080 /// for all of the elements in the vector. 2081 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2082 const Query &Q) { 2083 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2084 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2085 return (KnownZero & Mask) == Mask; 2086 } 2087 2088 /// For vector constants, loop over the elements and find the constant with the 2089 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2090 /// or if any element was not analyzed; otherwise, return the count for the 2091 /// element with the minimum number of sign bits. 2092 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2093 unsigned TyBits) { 2094 const auto *CV = dyn_cast<Constant>(V); 2095 if (!CV || !CV->getType()->isVectorTy()) 2096 return 0; 2097 2098 unsigned MinSignBits = TyBits; 2099 unsigned NumElts = CV->getType()->getVectorNumElements(); 2100 for (unsigned i = 0; i != NumElts; ++i) { 2101 // If we find a non-ConstantInt, bail out. 2102 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2103 if (!Elt) 2104 return 0; 2105 2106 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2107 APInt EltVal = Elt->getValue(); 2108 if (EltVal.isNegative()) 2109 EltVal = ~EltVal; 2110 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2111 } 2112 2113 return MinSignBits; 2114 } 2115 2116 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2117 const Query &Q); 2118 2119 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2120 const Query &Q) { 2121 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2122 assert(Result > 0 && "At least one sign bit needs to be present!"); 2123 return Result; 2124 } 2125 2126 /// Return the number of times the sign bit of the register is replicated into 2127 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2128 /// (itself), but other cases can give us information. For example, immediately 2129 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2130 /// other, so we return 3. For vectors, return the number of sign bits for the 2131 /// vector element with the mininum number of known sign bits. 2132 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2133 const Query &Q) { 2134 2135 // We return the minimum number of sign bits that are guaranteed to be present 2136 // in V, so for undef we have to conservatively return 1. We don't have the 2137 // same behavior for poison though -- that's a FIXME today. 2138 2139 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2140 unsigned Tmp, Tmp2; 2141 unsigned FirstAnswer = 1; 2142 2143 // Note that ConstantInt is handled by the general computeKnownBits case 2144 // below. 2145 2146 if (Depth == MaxDepth) 2147 return 1; // Limit search depth. 2148 2149 const Operator *U = dyn_cast<Operator>(V); 2150 switch (Operator::getOpcode(V)) { 2151 default: break; 2152 case Instruction::SExt: 2153 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2154 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2155 2156 case Instruction::SDiv: { 2157 const APInt *Denominator; 2158 // sdiv X, C -> adds log(C) sign bits. 2159 if (match(U->getOperand(1), m_APInt(Denominator))) { 2160 2161 // Ignore non-positive denominator. 2162 if (!Denominator->isStrictlyPositive()) 2163 break; 2164 2165 // Calculate the incoming numerator bits. 2166 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2167 2168 // Add floor(log(C)) bits to the numerator bits. 2169 return std::min(TyBits, NumBits + Denominator->logBase2()); 2170 } 2171 break; 2172 } 2173 2174 case Instruction::SRem: { 2175 const APInt *Denominator; 2176 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2177 // positive constant. This let us put a lower bound on the number of sign 2178 // bits. 2179 if (match(U->getOperand(1), m_APInt(Denominator))) { 2180 2181 // Ignore non-positive denominator. 2182 if (!Denominator->isStrictlyPositive()) 2183 break; 2184 2185 // Calculate the incoming numerator bits. SRem by a positive constant 2186 // can't lower the number of sign bits. 2187 unsigned NumrBits = 2188 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2189 2190 // Calculate the leading sign bit constraints by examining the 2191 // denominator. Given that the denominator is positive, there are two 2192 // cases: 2193 // 2194 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2195 // (1 << ceilLogBase2(C)). 2196 // 2197 // 2. the numerator is negative. Then the result range is (-C,0] and 2198 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2199 // 2200 // Thus a lower bound on the number of sign bits is `TyBits - 2201 // ceilLogBase2(C)`. 2202 2203 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2204 return std::max(NumrBits, ResBits); 2205 } 2206 break; 2207 } 2208 2209 case Instruction::AShr: { 2210 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2211 // ashr X, C -> adds C sign bits. Vectors too. 2212 const APInt *ShAmt; 2213 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2214 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2215 if (ShAmtLimited >= TyBits) 2216 break; // Bad shift. 2217 Tmp += ShAmtLimited; 2218 if (Tmp > TyBits) Tmp = TyBits; 2219 } 2220 return Tmp; 2221 } 2222 case Instruction::Shl: { 2223 const APInt *ShAmt; 2224 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2225 // shl destroys sign bits. 2226 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2227 Tmp2 = ShAmt->getZExtValue(); 2228 if (Tmp2 >= TyBits || // Bad shift. 2229 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2230 return Tmp - Tmp2; 2231 } 2232 break; 2233 } 2234 case Instruction::And: 2235 case Instruction::Or: 2236 case Instruction::Xor: // NOT is handled here. 2237 // Logical binary ops preserve the number of sign bits at the worst. 2238 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2239 if (Tmp != 1) { 2240 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2241 FirstAnswer = std::min(Tmp, Tmp2); 2242 // We computed what we know about the sign bits as our first 2243 // answer. Now proceed to the generic code that uses 2244 // computeKnownBits, and pick whichever answer is better. 2245 } 2246 break; 2247 2248 case Instruction::Select: 2249 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2250 if (Tmp == 1) return 1; // Early out. 2251 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2252 return std::min(Tmp, Tmp2); 2253 2254 case Instruction::Add: 2255 // Add can have at most one carry bit. Thus we know that the output 2256 // is, at worst, one more bit than the inputs. 2257 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2258 if (Tmp == 1) return 1; // Early out. 2259 2260 // Special case decrementing a value (ADD X, -1): 2261 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2262 if (CRHS->isAllOnesValue()) { 2263 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2264 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2265 2266 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2267 // sign bits set. 2268 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2269 return TyBits; 2270 2271 // If we are subtracting one from a positive number, there is no carry 2272 // out of the result. 2273 if (KnownZero.isNegative()) 2274 return Tmp; 2275 } 2276 2277 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2278 if (Tmp2 == 1) return 1; 2279 return std::min(Tmp, Tmp2)-1; 2280 2281 case Instruction::Sub: 2282 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2283 if (Tmp2 == 1) return 1; 2284 2285 // Handle NEG. 2286 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2287 if (CLHS->isNullValue()) { 2288 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2289 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2290 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2291 // sign bits set. 2292 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2293 return TyBits; 2294 2295 // If the input is known to be positive (the sign bit is known clear), 2296 // the output of the NEG has the same number of sign bits as the input. 2297 if (KnownZero.isNegative()) 2298 return Tmp2; 2299 2300 // Otherwise, we treat this like a SUB. 2301 } 2302 2303 // Sub can have at most one carry bit. Thus we know that the output 2304 // is, at worst, one more bit than the inputs. 2305 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2306 if (Tmp == 1) return 1; // Early out. 2307 return std::min(Tmp, Tmp2)-1; 2308 2309 case Instruction::PHI: { 2310 const PHINode *PN = cast<PHINode>(U); 2311 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2312 // Don't analyze large in-degree PHIs. 2313 if (NumIncomingValues > 4) break; 2314 // Unreachable blocks may have zero-operand PHI nodes. 2315 if (NumIncomingValues == 0) break; 2316 2317 // Take the minimum of all incoming values. This can't infinitely loop 2318 // because of our depth threshold. 2319 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2320 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2321 if (Tmp == 1) return Tmp; 2322 Tmp = std::min( 2323 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2324 } 2325 return Tmp; 2326 } 2327 2328 case Instruction::Trunc: 2329 // FIXME: it's tricky to do anything useful for this, but it is an important 2330 // case for targets like X86. 2331 break; 2332 2333 case Instruction::ExtractElement: 2334 // Look through extract element. At the moment we keep this simple and skip 2335 // tracking the specific element. But at least we might find information 2336 // valid for all elements of the vector (for example if vector is sign 2337 // extended, shifted, etc). 2338 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2339 } 2340 2341 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2342 // use this information. 2343 2344 // If we can examine all elements of a vector constant successfully, we're 2345 // done (we can't do any better than that). If not, keep trying. 2346 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2347 return VecSignBits; 2348 2349 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2350 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2351 2352 // If we know that the sign bit is either zero or one, determine the number of 2353 // identical bits in the top of the input value. 2354 if (KnownZero.isNegative()) 2355 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2356 2357 if (KnownOne.isNegative()) 2358 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2359 2360 // computeKnownBits gave us no extra information about the top bits. 2361 return FirstAnswer; 2362 } 2363 2364 /// This function computes the integer multiple of Base that equals V. 2365 /// If successful, it returns true and returns the multiple in 2366 /// Multiple. If unsuccessful, it returns false. It looks 2367 /// through SExt instructions only if LookThroughSExt is true. 2368 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2369 bool LookThroughSExt, unsigned Depth) { 2370 const unsigned MaxDepth = 6; 2371 2372 assert(V && "No Value?"); 2373 assert(Depth <= MaxDepth && "Limit Search Depth"); 2374 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2375 2376 Type *T = V->getType(); 2377 2378 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2379 2380 if (Base == 0) 2381 return false; 2382 2383 if (Base == 1) { 2384 Multiple = V; 2385 return true; 2386 } 2387 2388 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2389 Constant *BaseVal = ConstantInt::get(T, Base); 2390 if (CO && CO == BaseVal) { 2391 // Multiple is 1. 2392 Multiple = ConstantInt::get(T, 1); 2393 return true; 2394 } 2395 2396 if (CI && CI->getZExtValue() % Base == 0) { 2397 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2398 return true; 2399 } 2400 2401 if (Depth == MaxDepth) return false; // Limit search depth. 2402 2403 Operator *I = dyn_cast<Operator>(V); 2404 if (!I) return false; 2405 2406 switch (I->getOpcode()) { 2407 default: break; 2408 case Instruction::SExt: 2409 if (!LookThroughSExt) return false; 2410 // otherwise fall through to ZExt 2411 case Instruction::ZExt: 2412 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2413 LookThroughSExt, Depth+1); 2414 case Instruction::Shl: 2415 case Instruction::Mul: { 2416 Value *Op0 = I->getOperand(0); 2417 Value *Op1 = I->getOperand(1); 2418 2419 if (I->getOpcode() == Instruction::Shl) { 2420 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2421 if (!Op1CI) return false; 2422 // Turn Op0 << Op1 into Op0 * 2^Op1 2423 APInt Op1Int = Op1CI->getValue(); 2424 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2425 APInt API(Op1Int.getBitWidth(), 0); 2426 API.setBit(BitToSet); 2427 Op1 = ConstantInt::get(V->getContext(), API); 2428 } 2429 2430 Value *Mul0 = nullptr; 2431 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2432 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2433 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2434 if (Op1C->getType()->getPrimitiveSizeInBits() < 2435 MulC->getType()->getPrimitiveSizeInBits()) 2436 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2437 if (Op1C->getType()->getPrimitiveSizeInBits() > 2438 MulC->getType()->getPrimitiveSizeInBits()) 2439 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2440 2441 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2442 Multiple = ConstantExpr::getMul(MulC, Op1C); 2443 return true; 2444 } 2445 2446 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2447 if (Mul0CI->getValue() == 1) { 2448 // V == Base * Op1, so return Op1 2449 Multiple = Op1; 2450 return true; 2451 } 2452 } 2453 2454 Value *Mul1 = nullptr; 2455 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2456 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2457 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2458 if (Op0C->getType()->getPrimitiveSizeInBits() < 2459 MulC->getType()->getPrimitiveSizeInBits()) 2460 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2461 if (Op0C->getType()->getPrimitiveSizeInBits() > 2462 MulC->getType()->getPrimitiveSizeInBits()) 2463 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2464 2465 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2466 Multiple = ConstantExpr::getMul(MulC, Op0C); 2467 return true; 2468 } 2469 2470 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2471 if (Mul1CI->getValue() == 1) { 2472 // V == Base * Op0, so return Op0 2473 Multiple = Op0; 2474 return true; 2475 } 2476 } 2477 } 2478 } 2479 2480 // We could not determine if V is a multiple of Base. 2481 return false; 2482 } 2483 2484 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2485 const TargetLibraryInfo *TLI) { 2486 const Function *F = ICS.getCalledFunction(); 2487 if (!F) 2488 return Intrinsic::not_intrinsic; 2489 2490 if (F->isIntrinsic()) 2491 return F->getIntrinsicID(); 2492 2493 if (!TLI) 2494 return Intrinsic::not_intrinsic; 2495 2496 LibFunc Func; 2497 // We're going to make assumptions on the semantics of the functions, check 2498 // that the target knows that it's available in this environment and it does 2499 // not have local linkage. 2500 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2501 return Intrinsic::not_intrinsic; 2502 2503 if (!ICS.onlyReadsMemory()) 2504 return Intrinsic::not_intrinsic; 2505 2506 // Otherwise check if we have a call to a function that can be turned into a 2507 // vector intrinsic. 2508 switch (Func) { 2509 default: 2510 break; 2511 case LibFunc_sin: 2512 case LibFunc_sinf: 2513 case LibFunc_sinl: 2514 return Intrinsic::sin; 2515 case LibFunc_cos: 2516 case LibFunc_cosf: 2517 case LibFunc_cosl: 2518 return Intrinsic::cos; 2519 case LibFunc_exp: 2520 case LibFunc_expf: 2521 case LibFunc_expl: 2522 return Intrinsic::exp; 2523 case LibFunc_exp2: 2524 case LibFunc_exp2f: 2525 case LibFunc_exp2l: 2526 return Intrinsic::exp2; 2527 case LibFunc_log: 2528 case LibFunc_logf: 2529 case LibFunc_logl: 2530 return Intrinsic::log; 2531 case LibFunc_log10: 2532 case LibFunc_log10f: 2533 case LibFunc_log10l: 2534 return Intrinsic::log10; 2535 case LibFunc_log2: 2536 case LibFunc_log2f: 2537 case LibFunc_log2l: 2538 return Intrinsic::log2; 2539 case LibFunc_fabs: 2540 case LibFunc_fabsf: 2541 case LibFunc_fabsl: 2542 return Intrinsic::fabs; 2543 case LibFunc_fmin: 2544 case LibFunc_fminf: 2545 case LibFunc_fminl: 2546 return Intrinsic::minnum; 2547 case LibFunc_fmax: 2548 case LibFunc_fmaxf: 2549 case LibFunc_fmaxl: 2550 return Intrinsic::maxnum; 2551 case LibFunc_copysign: 2552 case LibFunc_copysignf: 2553 case LibFunc_copysignl: 2554 return Intrinsic::copysign; 2555 case LibFunc_floor: 2556 case LibFunc_floorf: 2557 case LibFunc_floorl: 2558 return Intrinsic::floor; 2559 case LibFunc_ceil: 2560 case LibFunc_ceilf: 2561 case LibFunc_ceill: 2562 return Intrinsic::ceil; 2563 case LibFunc_trunc: 2564 case LibFunc_truncf: 2565 case LibFunc_truncl: 2566 return Intrinsic::trunc; 2567 case LibFunc_rint: 2568 case LibFunc_rintf: 2569 case LibFunc_rintl: 2570 return Intrinsic::rint; 2571 case LibFunc_nearbyint: 2572 case LibFunc_nearbyintf: 2573 case LibFunc_nearbyintl: 2574 return Intrinsic::nearbyint; 2575 case LibFunc_round: 2576 case LibFunc_roundf: 2577 case LibFunc_roundl: 2578 return Intrinsic::round; 2579 case LibFunc_pow: 2580 case LibFunc_powf: 2581 case LibFunc_powl: 2582 return Intrinsic::pow; 2583 case LibFunc_sqrt: 2584 case LibFunc_sqrtf: 2585 case LibFunc_sqrtl: 2586 if (ICS->hasNoNaNs()) 2587 return Intrinsic::sqrt; 2588 return Intrinsic::not_intrinsic; 2589 } 2590 2591 return Intrinsic::not_intrinsic; 2592 } 2593 2594 /// Return true if we can prove that the specified FP value is never equal to 2595 /// -0.0. 2596 /// 2597 /// NOTE: this function will need to be revisited when we support non-default 2598 /// rounding modes! 2599 /// 2600 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2601 unsigned Depth) { 2602 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2603 return !CFP->getValueAPF().isNegZero(); 2604 2605 if (Depth == MaxDepth) 2606 return false; // Limit search depth. 2607 2608 const Operator *I = dyn_cast<Operator>(V); 2609 if (!I) return false; 2610 2611 // Check if the nsz fast-math flag is set 2612 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2613 if (FPO->hasNoSignedZeros()) 2614 return true; 2615 2616 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2617 if (I->getOpcode() == Instruction::FAdd) 2618 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2619 if (CFP->isNullValue()) 2620 return true; 2621 2622 // sitofp and uitofp turn into +0.0 for zero. 2623 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2624 return true; 2625 2626 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2627 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2628 switch (IID) { 2629 default: 2630 break; 2631 // sqrt(-0.0) = -0.0, no other negative results are possible. 2632 case Intrinsic::sqrt: 2633 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2634 // fabs(x) != -0.0 2635 case Intrinsic::fabs: 2636 return true; 2637 } 2638 } 2639 2640 return false; 2641 } 2642 2643 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2644 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2645 /// bit despite comparing equal. 2646 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2647 const TargetLibraryInfo *TLI, 2648 bool SignBitOnly, 2649 unsigned Depth) { 2650 // TODO: This function does not do the right thing when SignBitOnly is true 2651 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2652 // which flips the sign bits of NaNs. See 2653 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2654 2655 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2656 return !CFP->getValueAPF().isNegative() || 2657 (!SignBitOnly && CFP->getValueAPF().isZero()); 2658 } 2659 2660 if (Depth == MaxDepth) 2661 return false; // Limit search depth. 2662 2663 const Operator *I = dyn_cast<Operator>(V); 2664 if (!I) 2665 return false; 2666 2667 switch (I->getOpcode()) { 2668 default: 2669 break; 2670 // Unsigned integers are always nonnegative. 2671 case Instruction::UIToFP: 2672 return true; 2673 case Instruction::FMul: 2674 // x*x is always non-negative or a NaN. 2675 if (I->getOperand(0) == I->getOperand(1) && 2676 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2677 return true; 2678 2679 LLVM_FALLTHROUGH; 2680 case Instruction::FAdd: 2681 case Instruction::FDiv: 2682 case Instruction::FRem: 2683 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2684 Depth + 1) && 2685 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2686 Depth + 1); 2687 case Instruction::Select: 2688 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2689 Depth + 1) && 2690 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2691 Depth + 1); 2692 case Instruction::FPExt: 2693 case Instruction::FPTrunc: 2694 // Widening/narrowing never change sign. 2695 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2696 Depth + 1); 2697 case Instruction::Call: 2698 const auto *CI = cast<CallInst>(I); 2699 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2700 switch (IID) { 2701 default: 2702 break; 2703 case Intrinsic::maxnum: 2704 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2705 Depth + 1) || 2706 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2707 Depth + 1); 2708 case Intrinsic::minnum: 2709 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2710 Depth + 1) && 2711 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2712 Depth + 1); 2713 case Intrinsic::exp: 2714 case Intrinsic::exp2: 2715 case Intrinsic::fabs: 2716 return true; 2717 2718 case Intrinsic::sqrt: 2719 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2720 if (!SignBitOnly) 2721 return true; 2722 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2723 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2724 2725 case Intrinsic::powi: 2726 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2727 // powi(x,n) is non-negative if n is even. 2728 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2729 return true; 2730 } 2731 // TODO: This is not correct. Given that exp is an integer, here are the 2732 // ways that pow can return a negative value: 2733 // 2734 // pow(x, exp) --> negative if exp is odd and x is negative. 2735 // pow(-0, exp) --> -inf if exp is negative odd. 2736 // pow(-0, exp) --> -0 if exp is positive odd. 2737 // pow(-inf, exp) --> -0 if exp is negative odd. 2738 // pow(-inf, exp) --> -inf if exp is positive odd. 2739 // 2740 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2741 // but we must return false if x == -0. Unfortunately we do not currently 2742 // have a way of expressing this constraint. See details in 2743 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2744 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2745 Depth + 1); 2746 2747 case Intrinsic::fma: 2748 case Intrinsic::fmuladd: 2749 // x*x+y is non-negative if y is non-negative. 2750 return I->getOperand(0) == I->getOperand(1) && 2751 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2752 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2753 Depth + 1); 2754 } 2755 break; 2756 } 2757 return false; 2758 } 2759 2760 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2761 const TargetLibraryInfo *TLI) { 2762 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2763 } 2764 2765 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2766 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2767 } 2768 2769 /// If the specified value can be set by repeating the same byte in memory, 2770 /// return the i8 value that it is represented with. This is 2771 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2772 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2773 /// byte store (e.g. i16 0x1234), return null. 2774 Value *llvm::isBytewiseValue(Value *V) { 2775 // All byte-wide stores are splatable, even of arbitrary variables. 2776 if (V->getType()->isIntegerTy(8)) return V; 2777 2778 // Handle 'null' ConstantArrayZero etc. 2779 if (Constant *C = dyn_cast<Constant>(V)) 2780 if (C->isNullValue()) 2781 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2782 2783 // Constant float and double values can be handled as integer values if the 2784 // corresponding integer value is "byteable". An important case is 0.0. 2785 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2786 if (CFP->getType()->isFloatTy()) 2787 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2788 if (CFP->getType()->isDoubleTy()) 2789 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2790 // Don't handle long double formats, which have strange constraints. 2791 } 2792 2793 // We can handle constant integers that are multiple of 8 bits. 2794 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2795 if (CI->getBitWidth() % 8 == 0) { 2796 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2797 2798 if (!CI->getValue().isSplat(8)) 2799 return nullptr; 2800 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2801 } 2802 } 2803 2804 // A ConstantDataArray/Vector is splatable if all its members are equal and 2805 // also splatable. 2806 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2807 Value *Elt = CA->getElementAsConstant(0); 2808 Value *Val = isBytewiseValue(Elt); 2809 if (!Val) 2810 return nullptr; 2811 2812 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2813 if (CA->getElementAsConstant(I) != Elt) 2814 return nullptr; 2815 2816 return Val; 2817 } 2818 2819 // Conceptually, we could handle things like: 2820 // %a = zext i8 %X to i16 2821 // %b = shl i16 %a, 8 2822 // %c = or i16 %a, %b 2823 // but until there is an example that actually needs this, it doesn't seem 2824 // worth worrying about. 2825 return nullptr; 2826 } 2827 2828 2829 // This is the recursive version of BuildSubAggregate. It takes a few different 2830 // arguments. Idxs is the index within the nested struct From that we are 2831 // looking at now (which is of type IndexedType). IdxSkip is the number of 2832 // indices from Idxs that should be left out when inserting into the resulting 2833 // struct. To is the result struct built so far, new insertvalue instructions 2834 // build on that. 2835 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2836 SmallVectorImpl<unsigned> &Idxs, 2837 unsigned IdxSkip, 2838 Instruction *InsertBefore) { 2839 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2840 if (STy) { 2841 // Save the original To argument so we can modify it 2842 Value *OrigTo = To; 2843 // General case, the type indexed by Idxs is a struct 2844 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2845 // Process each struct element recursively 2846 Idxs.push_back(i); 2847 Value *PrevTo = To; 2848 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2849 InsertBefore); 2850 Idxs.pop_back(); 2851 if (!To) { 2852 // Couldn't find any inserted value for this index? Cleanup 2853 while (PrevTo != OrigTo) { 2854 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2855 PrevTo = Del->getAggregateOperand(); 2856 Del->eraseFromParent(); 2857 } 2858 // Stop processing elements 2859 break; 2860 } 2861 } 2862 // If we successfully found a value for each of our subaggregates 2863 if (To) 2864 return To; 2865 } 2866 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2867 // the struct's elements had a value that was inserted directly. In the latter 2868 // case, perhaps we can't determine each of the subelements individually, but 2869 // we might be able to find the complete struct somewhere. 2870 2871 // Find the value that is at that particular spot 2872 Value *V = FindInsertedValue(From, Idxs); 2873 2874 if (!V) 2875 return nullptr; 2876 2877 // Insert the value in the new (sub) aggregrate 2878 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2879 "tmp", InsertBefore); 2880 } 2881 2882 // This helper takes a nested struct and extracts a part of it (which is again a 2883 // struct) into a new value. For example, given the struct: 2884 // { a, { b, { c, d }, e } } 2885 // and the indices "1, 1" this returns 2886 // { c, d }. 2887 // 2888 // It does this by inserting an insertvalue for each element in the resulting 2889 // struct, as opposed to just inserting a single struct. This will only work if 2890 // each of the elements of the substruct are known (ie, inserted into From by an 2891 // insertvalue instruction somewhere). 2892 // 2893 // All inserted insertvalue instructions are inserted before InsertBefore 2894 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2895 Instruction *InsertBefore) { 2896 assert(InsertBefore && "Must have someplace to insert!"); 2897 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2898 idx_range); 2899 Value *To = UndefValue::get(IndexedType); 2900 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2901 unsigned IdxSkip = Idxs.size(); 2902 2903 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2904 } 2905 2906 /// Given an aggregrate and an sequence of indices, see if 2907 /// the scalar value indexed is already around as a register, for example if it 2908 /// were inserted directly into the aggregrate. 2909 /// 2910 /// If InsertBefore is not null, this function will duplicate (modified) 2911 /// insertvalues when a part of a nested struct is extracted. 2912 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2913 Instruction *InsertBefore) { 2914 // Nothing to index? Just return V then (this is useful at the end of our 2915 // recursion). 2916 if (idx_range.empty()) 2917 return V; 2918 // We have indices, so V should have an indexable type. 2919 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2920 "Not looking at a struct or array?"); 2921 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2922 "Invalid indices for type?"); 2923 2924 if (Constant *C = dyn_cast<Constant>(V)) { 2925 C = C->getAggregateElement(idx_range[0]); 2926 if (!C) return nullptr; 2927 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2928 } 2929 2930 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2931 // Loop the indices for the insertvalue instruction in parallel with the 2932 // requested indices 2933 const unsigned *req_idx = idx_range.begin(); 2934 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2935 i != e; ++i, ++req_idx) { 2936 if (req_idx == idx_range.end()) { 2937 // We can't handle this without inserting insertvalues 2938 if (!InsertBefore) 2939 return nullptr; 2940 2941 // The requested index identifies a part of a nested aggregate. Handle 2942 // this specially. For example, 2943 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2944 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2945 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2946 // This can be changed into 2947 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2948 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2949 // which allows the unused 0,0 element from the nested struct to be 2950 // removed. 2951 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2952 InsertBefore); 2953 } 2954 2955 // This insert value inserts something else than what we are looking for. 2956 // See if the (aggregate) value inserted into has the value we are 2957 // looking for, then. 2958 if (*req_idx != *i) 2959 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2960 InsertBefore); 2961 } 2962 // If we end up here, the indices of the insertvalue match with those 2963 // requested (though possibly only partially). Now we recursively look at 2964 // the inserted value, passing any remaining indices. 2965 return FindInsertedValue(I->getInsertedValueOperand(), 2966 makeArrayRef(req_idx, idx_range.end()), 2967 InsertBefore); 2968 } 2969 2970 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2971 // If we're extracting a value from an aggregate that was extracted from 2972 // something else, we can extract from that something else directly instead. 2973 // However, we will need to chain I's indices with the requested indices. 2974 2975 // Calculate the number of indices required 2976 unsigned size = I->getNumIndices() + idx_range.size(); 2977 // Allocate some space to put the new indices in 2978 SmallVector<unsigned, 5> Idxs; 2979 Idxs.reserve(size); 2980 // Add indices from the extract value instruction 2981 Idxs.append(I->idx_begin(), I->idx_end()); 2982 2983 // Add requested indices 2984 Idxs.append(idx_range.begin(), idx_range.end()); 2985 2986 assert(Idxs.size() == size 2987 && "Number of indices added not correct?"); 2988 2989 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2990 } 2991 // Otherwise, we don't know (such as, extracting from a function return value 2992 // or load instruction) 2993 return nullptr; 2994 } 2995 2996 /// Analyze the specified pointer to see if it can be expressed as a base 2997 /// pointer plus a constant offset. Return the base and offset to the caller. 2998 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2999 const DataLayout &DL) { 3000 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 3001 APInt ByteOffset(BitWidth, 0); 3002 3003 // We walk up the defs but use a visited set to handle unreachable code. In 3004 // that case, we stop after accumulating the cycle once (not that it 3005 // matters). 3006 SmallPtrSet<Value *, 16> Visited; 3007 while (Visited.insert(Ptr).second) { 3008 if (Ptr->getType()->isVectorTy()) 3009 break; 3010 3011 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3012 // If one of the values we have visited is an addrspacecast, then 3013 // the pointer type of this GEP may be different from the type 3014 // of the Ptr parameter which was passed to this function. This 3015 // means when we construct GEPOffset, we need to use the size 3016 // of GEP's pointer type rather than the size of the original 3017 // pointer type. 3018 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 3019 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3020 break; 3021 3022 ByteOffset += GEPOffset.getSExtValue(); 3023 3024 Ptr = GEP->getPointerOperand(); 3025 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3026 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3027 Ptr = cast<Operator>(Ptr)->getOperand(0); 3028 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3029 if (GA->isInterposable()) 3030 break; 3031 Ptr = GA->getAliasee(); 3032 } else { 3033 break; 3034 } 3035 } 3036 Offset = ByteOffset.getSExtValue(); 3037 return Ptr; 3038 } 3039 3040 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 3041 // Make sure the GEP has exactly three arguments. 3042 if (GEP->getNumOperands() != 3) 3043 return false; 3044 3045 // Make sure the index-ee is a pointer to array of i8. 3046 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3047 if (!AT || !AT->getElementType()->isIntegerTy(8)) 3048 return false; 3049 3050 // Check to make sure that the first operand of the GEP is an integer and 3051 // has value 0 so that we are sure we're indexing into the initializer. 3052 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3053 if (!FirstIdx || !FirstIdx->isZero()) 3054 return false; 3055 3056 return true; 3057 } 3058 3059 /// This function computes the length of a null-terminated C string pointed to 3060 /// by V. If successful, it returns true and returns the string in Str. 3061 /// If unsuccessful, it returns false. 3062 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3063 uint64_t Offset, bool TrimAtNul) { 3064 assert(V); 3065 3066 // Look through bitcast instructions and geps. 3067 V = V->stripPointerCasts(); 3068 3069 // If the value is a GEP instruction or constant expression, treat it as an 3070 // offset. 3071 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3072 // The GEP operator should be based on a pointer to string constant, and is 3073 // indexing into the string constant. 3074 if (!isGEPBasedOnPointerToString(GEP)) 3075 return false; 3076 3077 // If the second index isn't a ConstantInt, then this is a variable index 3078 // into the array. If this occurs, we can't say anything meaningful about 3079 // the string. 3080 uint64_t StartIdx = 0; 3081 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3082 StartIdx = CI->getZExtValue(); 3083 else 3084 return false; 3085 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3086 TrimAtNul); 3087 } 3088 3089 // The GEP instruction, constant or instruction, must reference a global 3090 // variable that is a constant and is initialized. The referenced constant 3091 // initializer is the array that we'll use for optimization. 3092 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3093 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3094 return false; 3095 3096 // Handle the all-zeros case. 3097 if (GV->getInitializer()->isNullValue()) { 3098 // This is a degenerate case. The initializer is constant zero so the 3099 // length of the string must be zero. 3100 Str = ""; 3101 return true; 3102 } 3103 3104 // This must be a ConstantDataArray. 3105 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3106 if (!Array || !Array->isString()) 3107 return false; 3108 3109 // Get the number of elements in the array. 3110 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3111 3112 // Start out with the entire array in the StringRef. 3113 Str = Array->getAsString(); 3114 3115 if (Offset > NumElts) 3116 return false; 3117 3118 // Skip over 'offset' bytes. 3119 Str = Str.substr(Offset); 3120 3121 if (TrimAtNul) { 3122 // Trim off the \0 and anything after it. If the array is not nul 3123 // terminated, we just return the whole end of string. The client may know 3124 // some other way that the string is length-bound. 3125 Str = Str.substr(0, Str.find('\0')); 3126 } 3127 return true; 3128 } 3129 3130 // These next two are very similar to the above, but also look through PHI 3131 // nodes. 3132 // TODO: See if we can integrate these two together. 3133 3134 /// If we can compute the length of the string pointed to by 3135 /// the specified pointer, return 'len+1'. If we can't, return 0. 3136 static uint64_t GetStringLengthH(const Value *V, 3137 SmallPtrSetImpl<const PHINode*> &PHIs) { 3138 // Look through noop bitcast instructions. 3139 V = V->stripPointerCasts(); 3140 3141 // If this is a PHI node, there are two cases: either we have already seen it 3142 // or we haven't. 3143 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3144 if (!PHIs.insert(PN).second) 3145 return ~0ULL; // already in the set. 3146 3147 // If it was new, see if all the input strings are the same length. 3148 uint64_t LenSoFar = ~0ULL; 3149 for (Value *IncValue : PN->incoming_values()) { 3150 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3151 if (Len == 0) return 0; // Unknown length -> unknown. 3152 3153 if (Len == ~0ULL) continue; 3154 3155 if (Len != LenSoFar && LenSoFar != ~0ULL) 3156 return 0; // Disagree -> unknown. 3157 LenSoFar = Len; 3158 } 3159 3160 // Success, all agree. 3161 return LenSoFar; 3162 } 3163 3164 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3165 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3166 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3167 if (Len1 == 0) return 0; 3168 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3169 if (Len2 == 0) return 0; 3170 if (Len1 == ~0ULL) return Len2; 3171 if (Len2 == ~0ULL) return Len1; 3172 if (Len1 != Len2) return 0; 3173 return Len1; 3174 } 3175 3176 // Otherwise, see if we can read the string. 3177 StringRef StrData; 3178 if (!getConstantStringInfo(V, StrData)) 3179 return 0; 3180 3181 return StrData.size()+1; 3182 } 3183 3184 /// If we can compute the length of the string pointed to by 3185 /// the specified pointer, return 'len+1'. If we can't, return 0. 3186 uint64_t llvm::GetStringLength(const Value *V) { 3187 if (!V->getType()->isPointerTy()) return 0; 3188 3189 SmallPtrSet<const PHINode*, 32> PHIs; 3190 uint64_t Len = GetStringLengthH(V, PHIs); 3191 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3192 // an empty string as a length. 3193 return Len == ~0ULL ? 1 : Len; 3194 } 3195 3196 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3197 /// previous iteration of the loop was referring to the same object as \p PN. 3198 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3199 const LoopInfo *LI) { 3200 // Find the loop-defined value. 3201 Loop *L = LI->getLoopFor(PN->getParent()); 3202 if (PN->getNumIncomingValues() != 2) 3203 return true; 3204 3205 // Find the value from previous iteration. 3206 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3207 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3208 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3209 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3210 return true; 3211 3212 // If a new pointer is loaded in the loop, the pointer references a different 3213 // object in every iteration. E.g.: 3214 // for (i) 3215 // int *p = a[i]; 3216 // ... 3217 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3218 if (!L->isLoopInvariant(Load->getPointerOperand())) 3219 return false; 3220 return true; 3221 } 3222 3223 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3224 unsigned MaxLookup) { 3225 if (!V->getType()->isPointerTy()) 3226 return V; 3227 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3228 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3229 V = GEP->getPointerOperand(); 3230 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3231 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3232 V = cast<Operator>(V)->getOperand(0); 3233 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3234 if (GA->isInterposable()) 3235 return V; 3236 V = GA->getAliasee(); 3237 } else { 3238 if (auto CS = CallSite(V)) 3239 if (Value *RV = CS.getReturnedArgOperand()) { 3240 V = RV; 3241 continue; 3242 } 3243 3244 // See if InstructionSimplify knows any relevant tricks. 3245 if (Instruction *I = dyn_cast<Instruction>(V)) 3246 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3247 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3248 V = Simplified; 3249 continue; 3250 } 3251 3252 return V; 3253 } 3254 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3255 } 3256 return V; 3257 } 3258 3259 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3260 const DataLayout &DL, LoopInfo *LI, 3261 unsigned MaxLookup) { 3262 SmallPtrSet<Value *, 4> Visited; 3263 SmallVector<Value *, 4> Worklist; 3264 Worklist.push_back(V); 3265 do { 3266 Value *P = Worklist.pop_back_val(); 3267 P = GetUnderlyingObject(P, DL, MaxLookup); 3268 3269 if (!Visited.insert(P).second) 3270 continue; 3271 3272 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3273 Worklist.push_back(SI->getTrueValue()); 3274 Worklist.push_back(SI->getFalseValue()); 3275 continue; 3276 } 3277 3278 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3279 // If this PHI changes the underlying object in every iteration of the 3280 // loop, don't look through it. Consider: 3281 // int **A; 3282 // for (i) { 3283 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3284 // Curr = A[i]; 3285 // *Prev, *Curr; 3286 // 3287 // Prev is tracking Curr one iteration behind so they refer to different 3288 // underlying objects. 3289 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3290 isSameUnderlyingObjectInLoop(PN, LI)) 3291 for (Value *IncValue : PN->incoming_values()) 3292 Worklist.push_back(IncValue); 3293 continue; 3294 } 3295 3296 Objects.push_back(P); 3297 } while (!Worklist.empty()); 3298 } 3299 3300 /// Return true if the only users of this pointer are lifetime markers. 3301 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3302 for (const User *U : V->users()) { 3303 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3304 if (!II) return false; 3305 3306 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3307 II->getIntrinsicID() != Intrinsic::lifetime_end) 3308 return false; 3309 } 3310 return true; 3311 } 3312 3313 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3314 const Instruction *CtxI, 3315 const DominatorTree *DT) { 3316 const Operator *Inst = dyn_cast<Operator>(V); 3317 if (!Inst) 3318 return false; 3319 3320 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3321 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3322 if (C->canTrap()) 3323 return false; 3324 3325 switch (Inst->getOpcode()) { 3326 default: 3327 return true; 3328 case Instruction::UDiv: 3329 case Instruction::URem: { 3330 // x / y is undefined if y == 0. 3331 const APInt *V; 3332 if (match(Inst->getOperand(1), m_APInt(V))) 3333 return *V != 0; 3334 return false; 3335 } 3336 case Instruction::SDiv: 3337 case Instruction::SRem: { 3338 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3339 const APInt *Numerator, *Denominator; 3340 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3341 return false; 3342 // We cannot hoist this division if the denominator is 0. 3343 if (*Denominator == 0) 3344 return false; 3345 // It's safe to hoist if the denominator is not 0 or -1. 3346 if (*Denominator != -1) 3347 return true; 3348 // At this point we know that the denominator is -1. It is safe to hoist as 3349 // long we know that the numerator is not INT_MIN. 3350 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3351 return !Numerator->isMinSignedValue(); 3352 // The numerator *might* be MinSignedValue. 3353 return false; 3354 } 3355 case Instruction::Load: { 3356 const LoadInst *LI = cast<LoadInst>(Inst); 3357 if (!LI->isUnordered() || 3358 // Speculative load may create a race that did not exist in the source. 3359 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3360 // Speculative load may load data from dirty regions. 3361 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3362 return false; 3363 const DataLayout &DL = LI->getModule()->getDataLayout(); 3364 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3365 LI->getAlignment(), DL, CtxI, DT); 3366 } 3367 case Instruction::Call: { 3368 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3369 switch (II->getIntrinsicID()) { 3370 // These synthetic intrinsics have no side-effects and just mark 3371 // information about their operands. 3372 // FIXME: There are other no-op synthetic instructions that potentially 3373 // should be considered at least *safe* to speculate... 3374 case Intrinsic::dbg_declare: 3375 case Intrinsic::dbg_value: 3376 return true; 3377 3378 case Intrinsic::bitreverse: 3379 case Intrinsic::bswap: 3380 case Intrinsic::ctlz: 3381 case Intrinsic::ctpop: 3382 case Intrinsic::cttz: 3383 case Intrinsic::objectsize: 3384 case Intrinsic::sadd_with_overflow: 3385 case Intrinsic::smul_with_overflow: 3386 case Intrinsic::ssub_with_overflow: 3387 case Intrinsic::uadd_with_overflow: 3388 case Intrinsic::umul_with_overflow: 3389 case Intrinsic::usub_with_overflow: 3390 return true; 3391 // These intrinsics are defined to have the same behavior as libm 3392 // functions except for setting errno. 3393 case Intrinsic::sqrt: 3394 case Intrinsic::fma: 3395 case Intrinsic::fmuladd: 3396 return true; 3397 // These intrinsics are defined to have the same behavior as libm 3398 // functions, and the corresponding libm functions never set errno. 3399 case Intrinsic::trunc: 3400 case Intrinsic::copysign: 3401 case Intrinsic::fabs: 3402 case Intrinsic::minnum: 3403 case Intrinsic::maxnum: 3404 return true; 3405 // These intrinsics are defined to have the same behavior as libm 3406 // functions, which never overflow when operating on the IEEE754 types 3407 // that we support, and never set errno otherwise. 3408 case Intrinsic::ceil: 3409 case Intrinsic::floor: 3410 case Intrinsic::nearbyint: 3411 case Intrinsic::rint: 3412 case Intrinsic::round: 3413 return true; 3414 // These intrinsics do not correspond to any libm function, and 3415 // do not set errno. 3416 case Intrinsic::powi: 3417 return true; 3418 // TODO: are convert_{from,to}_fp16 safe? 3419 // TODO: can we list target-specific intrinsics here? 3420 default: break; 3421 } 3422 } 3423 return false; // The called function could have undefined behavior or 3424 // side-effects, even if marked readnone nounwind. 3425 } 3426 case Instruction::VAArg: 3427 case Instruction::Alloca: 3428 case Instruction::Invoke: 3429 case Instruction::PHI: 3430 case Instruction::Store: 3431 case Instruction::Ret: 3432 case Instruction::Br: 3433 case Instruction::IndirectBr: 3434 case Instruction::Switch: 3435 case Instruction::Unreachable: 3436 case Instruction::Fence: 3437 case Instruction::AtomicRMW: 3438 case Instruction::AtomicCmpXchg: 3439 case Instruction::LandingPad: 3440 case Instruction::Resume: 3441 case Instruction::CatchSwitch: 3442 case Instruction::CatchPad: 3443 case Instruction::CatchRet: 3444 case Instruction::CleanupPad: 3445 case Instruction::CleanupRet: 3446 return false; // Misc instructions which have effects 3447 } 3448 } 3449 3450 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3451 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3452 } 3453 3454 /// Return true if we know that the specified value is never null. 3455 bool llvm::isKnownNonNull(const Value *V) { 3456 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3457 3458 // Alloca never returns null, malloc might. 3459 if (isa<AllocaInst>(V)) return true; 3460 3461 // A byval, inalloca, or nonnull argument is never null. 3462 if (const Argument *A = dyn_cast<Argument>(V)) 3463 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3464 3465 // A global variable in address space 0 is non null unless extern weak 3466 // or an absolute symbol reference. Other address spaces may have null as a 3467 // valid address for a global, so we can't assume anything. 3468 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3469 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3470 GV->getType()->getAddressSpace() == 0; 3471 3472 // A Load tagged with nonnull metadata is never null. 3473 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3474 return LI->getMetadata(LLVMContext::MD_nonnull); 3475 3476 if (auto CS = ImmutableCallSite(V)) 3477 if (CS.isReturnNonNull()) 3478 return true; 3479 3480 return false; 3481 } 3482 3483 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3484 const Instruction *CtxI, 3485 const DominatorTree *DT) { 3486 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3487 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3488 assert(CtxI && "Context instruction required for analysis"); 3489 assert(DT && "Dominator tree required for analysis"); 3490 3491 unsigned NumUsesExplored = 0; 3492 for (auto *U : V->users()) { 3493 // Avoid massive lists 3494 if (NumUsesExplored >= DomConditionsMaxUses) 3495 break; 3496 NumUsesExplored++; 3497 3498 // If the value is used as an argument to a call or invoke, then argument 3499 // attributes may provide an answer about null-ness. 3500 if (auto CS = ImmutableCallSite(U)) 3501 if (auto *CalledFunc = CS.getCalledFunction()) 3502 for (const Argument &Arg : CalledFunc->args()) 3503 if (CS.getArgOperand(Arg.getArgNo()) == V && 3504 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3505 return true; 3506 3507 // Consider only compare instructions uniquely controlling a branch 3508 CmpInst::Predicate Pred; 3509 if (!match(const_cast<User *>(U), 3510 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3511 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3512 continue; 3513 3514 for (auto *CmpU : U->users()) { 3515 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3516 assert(BI->isConditional() && "uses a comparison!"); 3517 3518 BasicBlock *NonNullSuccessor = 3519 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3520 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3521 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3522 return true; 3523 } else if (Pred == ICmpInst::ICMP_NE && 3524 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3525 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3526 return true; 3527 } 3528 } 3529 } 3530 3531 return false; 3532 } 3533 3534 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3535 const DominatorTree *DT) { 3536 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3537 return false; 3538 3539 if (isKnownNonNull(V)) 3540 return true; 3541 3542 if (!CtxI || !DT) 3543 return false; 3544 3545 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3546 } 3547 3548 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3549 const Value *RHS, 3550 const DataLayout &DL, 3551 AssumptionCache *AC, 3552 const Instruction *CxtI, 3553 const DominatorTree *DT) { 3554 // Multiplying n * m significant bits yields a result of n + m significant 3555 // bits. If the total number of significant bits does not exceed the 3556 // result bit width (minus 1), there is no overflow. 3557 // This means if we have enough leading zero bits in the operands 3558 // we can guarantee that the result does not overflow. 3559 // Ref: "Hacker's Delight" by Henry Warren 3560 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3561 APInt LHSKnownZero(BitWidth, 0); 3562 APInt LHSKnownOne(BitWidth, 0); 3563 APInt RHSKnownZero(BitWidth, 0); 3564 APInt RHSKnownOne(BitWidth, 0); 3565 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3566 DT); 3567 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3568 DT); 3569 // Note that underestimating the number of zero bits gives a more 3570 // conservative answer. 3571 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3572 RHSKnownZero.countLeadingOnes(); 3573 // First handle the easy case: if we have enough zero bits there's 3574 // definitely no overflow. 3575 if (ZeroBits >= BitWidth) 3576 return OverflowResult::NeverOverflows; 3577 3578 // Get the largest possible values for each operand. 3579 APInt LHSMax = ~LHSKnownZero; 3580 APInt RHSMax = ~RHSKnownZero; 3581 3582 // We know the multiply operation doesn't overflow if the maximum values for 3583 // each operand will not overflow after we multiply them together. 3584 bool MaxOverflow; 3585 LHSMax.umul_ov(RHSMax, MaxOverflow); 3586 if (!MaxOverflow) 3587 return OverflowResult::NeverOverflows; 3588 3589 // We know it always overflows if multiplying the smallest possible values for 3590 // the operands also results in overflow. 3591 bool MinOverflow; 3592 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3593 if (MinOverflow) 3594 return OverflowResult::AlwaysOverflows; 3595 3596 return OverflowResult::MayOverflow; 3597 } 3598 3599 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3600 const Value *RHS, 3601 const DataLayout &DL, 3602 AssumptionCache *AC, 3603 const Instruction *CxtI, 3604 const DominatorTree *DT) { 3605 bool LHSKnownNonNegative, LHSKnownNegative; 3606 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3607 AC, CxtI, DT); 3608 if (LHSKnownNonNegative || LHSKnownNegative) { 3609 bool RHSKnownNonNegative, RHSKnownNegative; 3610 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3611 AC, CxtI, DT); 3612 3613 if (LHSKnownNegative && RHSKnownNegative) { 3614 // The sign bit is set in both cases: this MUST overflow. 3615 // Create a simple add instruction, and insert it into the struct. 3616 return OverflowResult::AlwaysOverflows; 3617 } 3618 3619 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3620 // The sign bit is clear in both cases: this CANNOT overflow. 3621 // Create a simple add instruction, and insert it into the struct. 3622 return OverflowResult::NeverOverflows; 3623 } 3624 } 3625 3626 return OverflowResult::MayOverflow; 3627 } 3628 3629 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3630 const Value *RHS, 3631 const AddOperator *Add, 3632 const DataLayout &DL, 3633 AssumptionCache *AC, 3634 const Instruction *CxtI, 3635 const DominatorTree *DT) { 3636 if (Add && Add->hasNoSignedWrap()) { 3637 return OverflowResult::NeverOverflows; 3638 } 3639 3640 bool LHSKnownNonNegative, LHSKnownNegative; 3641 bool RHSKnownNonNegative, RHSKnownNegative; 3642 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3643 AC, CxtI, DT); 3644 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3645 AC, CxtI, DT); 3646 3647 if ((LHSKnownNonNegative && RHSKnownNegative) || 3648 (LHSKnownNegative && RHSKnownNonNegative)) { 3649 // The sign bits are opposite: this CANNOT overflow. 3650 return OverflowResult::NeverOverflows; 3651 } 3652 3653 // The remaining code needs Add to be available. Early returns if not so. 3654 if (!Add) 3655 return OverflowResult::MayOverflow; 3656 3657 // If the sign of Add is the same as at least one of the operands, this add 3658 // CANNOT overflow. This is particularly useful when the sum is 3659 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3660 // operands. 3661 bool LHSOrRHSKnownNonNegative = 3662 (LHSKnownNonNegative || RHSKnownNonNegative); 3663 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3664 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3665 bool AddKnownNonNegative, AddKnownNegative; 3666 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3667 /*Depth=*/0, AC, CxtI, DT); 3668 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3669 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3670 return OverflowResult::NeverOverflows; 3671 } 3672 } 3673 3674 return OverflowResult::MayOverflow; 3675 } 3676 3677 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3678 const DominatorTree &DT) { 3679 #ifndef NDEBUG 3680 auto IID = II->getIntrinsicID(); 3681 assert((IID == Intrinsic::sadd_with_overflow || 3682 IID == Intrinsic::uadd_with_overflow || 3683 IID == Intrinsic::ssub_with_overflow || 3684 IID == Intrinsic::usub_with_overflow || 3685 IID == Intrinsic::smul_with_overflow || 3686 IID == Intrinsic::umul_with_overflow) && 3687 "Not an overflow intrinsic!"); 3688 #endif 3689 3690 SmallVector<const BranchInst *, 2> GuardingBranches; 3691 SmallVector<const ExtractValueInst *, 2> Results; 3692 3693 for (const User *U : II->users()) { 3694 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3695 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3696 3697 if (EVI->getIndices()[0] == 0) 3698 Results.push_back(EVI); 3699 else { 3700 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3701 3702 for (const auto *U : EVI->users()) 3703 if (const auto *B = dyn_cast<BranchInst>(U)) { 3704 assert(B->isConditional() && "How else is it using an i1?"); 3705 GuardingBranches.push_back(B); 3706 } 3707 } 3708 } else { 3709 // We are using the aggregate directly in a way we don't want to analyze 3710 // here (storing it to a global, say). 3711 return false; 3712 } 3713 } 3714 3715 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3716 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3717 if (!NoWrapEdge.isSingleEdge()) 3718 return false; 3719 3720 // Check if all users of the add are provably no-wrap. 3721 for (const auto *Result : Results) { 3722 // If the extractvalue itself is not executed on overflow, the we don't 3723 // need to check each use separately, since domination is transitive. 3724 if (DT.dominates(NoWrapEdge, Result->getParent())) 3725 continue; 3726 3727 for (auto &RU : Result->uses()) 3728 if (!DT.dominates(NoWrapEdge, RU)) 3729 return false; 3730 } 3731 3732 return true; 3733 }; 3734 3735 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3736 } 3737 3738 3739 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3740 const DataLayout &DL, 3741 AssumptionCache *AC, 3742 const Instruction *CxtI, 3743 const DominatorTree *DT) { 3744 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3745 Add, DL, AC, CxtI, DT); 3746 } 3747 3748 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3749 const Value *RHS, 3750 const DataLayout &DL, 3751 AssumptionCache *AC, 3752 const Instruction *CxtI, 3753 const DominatorTree *DT) { 3754 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3755 } 3756 3757 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3758 // A memory operation returns normally if it isn't volatile. A volatile 3759 // operation is allowed to trap. 3760 // 3761 // An atomic operation isn't guaranteed to return in a reasonable amount of 3762 // time because it's possible for another thread to interfere with it for an 3763 // arbitrary length of time, but programs aren't allowed to rely on that. 3764 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3765 return !LI->isVolatile(); 3766 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3767 return !SI->isVolatile(); 3768 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3769 return !CXI->isVolatile(); 3770 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3771 return !RMWI->isVolatile(); 3772 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3773 return !MII->isVolatile(); 3774 3775 // If there is no successor, then execution can't transfer to it. 3776 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3777 return !CRI->unwindsToCaller(); 3778 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3779 return !CatchSwitch->unwindsToCaller(); 3780 if (isa<ResumeInst>(I)) 3781 return false; 3782 if (isa<ReturnInst>(I)) 3783 return false; 3784 3785 // Calls can throw, or contain an infinite loop, or kill the process. 3786 if (auto CS = ImmutableCallSite(I)) { 3787 // Call sites that throw have implicit non-local control flow. 3788 if (!CS.doesNotThrow()) 3789 return false; 3790 3791 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3792 // etc. and thus not return. However, LLVM already assumes that 3793 // 3794 // - Thread exiting actions are modeled as writes to memory invisible to 3795 // the program. 3796 // 3797 // - Loops that don't have side effects (side effects are volatile/atomic 3798 // stores and IO) always terminate (see http://llvm.org/PR965). 3799 // Furthermore IO itself is also modeled as writes to memory invisible to 3800 // the program. 3801 // 3802 // We rely on those assumptions here, and use the memory effects of the call 3803 // target as a proxy for checking that it always returns. 3804 3805 // FIXME: This isn't aggressive enough; a call which only writes to a global 3806 // is guaranteed to return. 3807 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3808 match(I, m_Intrinsic<Intrinsic::assume>()); 3809 } 3810 3811 // Other instructions return normally. 3812 return true; 3813 } 3814 3815 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3816 const Loop *L) { 3817 // The loop header is guaranteed to be executed for every iteration. 3818 // 3819 // FIXME: Relax this constraint to cover all basic blocks that are 3820 // guaranteed to be executed at every iteration. 3821 if (I->getParent() != L->getHeader()) return false; 3822 3823 for (const Instruction &LI : *L->getHeader()) { 3824 if (&LI == I) return true; 3825 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3826 } 3827 llvm_unreachable("Instruction not contained in its own parent basic block."); 3828 } 3829 3830 bool llvm::propagatesFullPoison(const Instruction *I) { 3831 switch (I->getOpcode()) { 3832 case Instruction::Add: 3833 case Instruction::Sub: 3834 case Instruction::Xor: 3835 case Instruction::Trunc: 3836 case Instruction::BitCast: 3837 case Instruction::AddrSpaceCast: 3838 case Instruction::Mul: 3839 case Instruction::Shl: 3840 case Instruction::GetElementPtr: 3841 // These operations all propagate poison unconditionally. Note that poison 3842 // is not any particular value, so xor or subtraction of poison with 3843 // itself still yields poison, not zero. 3844 return true; 3845 3846 case Instruction::AShr: 3847 case Instruction::SExt: 3848 // For these operations, one bit of the input is replicated across 3849 // multiple output bits. A replicated poison bit is still poison. 3850 return true; 3851 3852 case Instruction::ICmp: 3853 // Comparing poison with any value yields poison. This is why, for 3854 // instance, x s< (x +nsw 1) can be folded to true. 3855 return true; 3856 3857 default: 3858 return false; 3859 } 3860 } 3861 3862 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3863 switch (I->getOpcode()) { 3864 case Instruction::Store: 3865 return cast<StoreInst>(I)->getPointerOperand(); 3866 3867 case Instruction::Load: 3868 return cast<LoadInst>(I)->getPointerOperand(); 3869 3870 case Instruction::AtomicCmpXchg: 3871 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3872 3873 case Instruction::AtomicRMW: 3874 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3875 3876 case Instruction::UDiv: 3877 case Instruction::SDiv: 3878 case Instruction::URem: 3879 case Instruction::SRem: 3880 return I->getOperand(1); 3881 3882 default: 3883 return nullptr; 3884 } 3885 } 3886 3887 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3888 // We currently only look for uses of poison values within the same basic 3889 // block, as that makes it easier to guarantee that the uses will be 3890 // executed given that PoisonI is executed. 3891 // 3892 // FIXME: Expand this to consider uses beyond the same basic block. To do 3893 // this, look out for the distinction between post-dominance and strong 3894 // post-dominance. 3895 const BasicBlock *BB = PoisonI->getParent(); 3896 3897 // Set of instructions that we have proved will yield poison if PoisonI 3898 // does. 3899 SmallSet<const Value *, 16> YieldsPoison; 3900 SmallSet<const BasicBlock *, 4> Visited; 3901 YieldsPoison.insert(PoisonI); 3902 Visited.insert(PoisonI->getParent()); 3903 3904 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3905 3906 unsigned Iter = 0; 3907 while (Iter++ < MaxDepth) { 3908 for (auto &I : make_range(Begin, End)) { 3909 if (&I != PoisonI) { 3910 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3911 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3912 return true; 3913 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3914 return false; 3915 } 3916 3917 // Mark poison that propagates from I through uses of I. 3918 if (YieldsPoison.count(&I)) { 3919 for (const User *User : I.users()) { 3920 const Instruction *UserI = cast<Instruction>(User); 3921 if (propagatesFullPoison(UserI)) 3922 YieldsPoison.insert(User); 3923 } 3924 } 3925 } 3926 3927 if (auto *NextBB = BB->getSingleSuccessor()) { 3928 if (Visited.insert(NextBB).second) { 3929 BB = NextBB; 3930 Begin = BB->getFirstNonPHI()->getIterator(); 3931 End = BB->end(); 3932 continue; 3933 } 3934 } 3935 3936 break; 3937 }; 3938 return false; 3939 } 3940 3941 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3942 if (FMF.noNaNs()) 3943 return true; 3944 3945 if (auto *C = dyn_cast<ConstantFP>(V)) 3946 return !C->isNaN(); 3947 return false; 3948 } 3949 3950 static bool isKnownNonZero(const Value *V) { 3951 if (auto *C = dyn_cast<ConstantFP>(V)) 3952 return !C->isZero(); 3953 return false; 3954 } 3955 3956 /// Match non-obvious integer minimum and maximum sequences. 3957 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3958 Value *CmpLHS, Value *CmpRHS, 3959 Value *TrueVal, Value *FalseVal, 3960 Value *&LHS, Value *&RHS) { 3961 // Assume success. If there's no match, callers should not use these anyway. 3962 LHS = TrueVal; 3963 RHS = FalseVal; 3964 3965 // Recognize variations of: 3966 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3967 const APInt *C1; 3968 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3969 const APInt *C2; 3970 3971 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3972 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3973 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3974 return {SPF_SMAX, SPNB_NA, false}; 3975 3976 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3977 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3978 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3979 return {SPF_SMIN, SPNB_NA, false}; 3980 3981 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3982 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3983 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3984 return {SPF_UMAX, SPNB_NA, false}; 3985 3986 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3987 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3988 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3989 return {SPF_UMIN, SPNB_NA, false}; 3990 } 3991 3992 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3993 return {SPF_UNKNOWN, SPNB_NA, false}; 3994 3995 // Z = X -nsw Y 3996 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3997 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3998 if (match(TrueVal, m_Zero()) && 3999 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4000 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4001 4002 // Z = X -nsw Y 4003 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4004 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4005 if (match(FalseVal, m_Zero()) && 4006 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4007 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4008 4009 if (!match(CmpRHS, m_APInt(C1))) 4010 return {SPF_UNKNOWN, SPNB_NA, false}; 4011 4012 // An unsigned min/max can be written with a signed compare. 4013 const APInt *C2; 4014 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4015 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4016 // Is the sign bit set? 4017 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4018 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4019 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4020 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4021 4022 // Is the sign bit clear? 4023 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4024 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4025 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4026 C2->isMinSignedValue()) 4027 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4028 } 4029 4030 // Look through 'not' ops to find disguised signed min/max. 4031 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4032 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4033 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4034 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4035 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4036 4037 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4038 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4039 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4040 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4041 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4042 4043 return {SPF_UNKNOWN, SPNB_NA, false}; 4044 } 4045 4046 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4047 FastMathFlags FMF, 4048 Value *CmpLHS, Value *CmpRHS, 4049 Value *TrueVal, Value *FalseVal, 4050 Value *&LHS, Value *&RHS) { 4051 LHS = CmpLHS; 4052 RHS = CmpRHS; 4053 4054 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4055 // return inconsistent results between implementations. 4056 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4057 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4058 // Therefore we behave conservatively and only proceed if at least one of the 4059 // operands is known to not be zero, or if we don't care about signed zeroes. 4060 switch (Pred) { 4061 default: break; 4062 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4063 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4064 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4065 !isKnownNonZero(CmpRHS)) 4066 return {SPF_UNKNOWN, SPNB_NA, false}; 4067 } 4068 4069 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4070 bool Ordered = false; 4071 4072 // When given one NaN and one non-NaN input: 4073 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4074 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4075 // ordered comparison fails), which could be NaN or non-NaN. 4076 // so here we discover exactly what NaN behavior is required/accepted. 4077 if (CmpInst::isFPPredicate(Pred)) { 4078 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4079 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4080 4081 if (LHSSafe && RHSSafe) { 4082 // Both operands are known non-NaN. 4083 NaNBehavior = SPNB_RETURNS_ANY; 4084 } else if (CmpInst::isOrdered(Pred)) { 4085 // An ordered comparison will return false when given a NaN, so it 4086 // returns the RHS. 4087 Ordered = true; 4088 if (LHSSafe) 4089 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4090 NaNBehavior = SPNB_RETURNS_NAN; 4091 else if (RHSSafe) 4092 NaNBehavior = SPNB_RETURNS_OTHER; 4093 else 4094 // Completely unsafe. 4095 return {SPF_UNKNOWN, SPNB_NA, false}; 4096 } else { 4097 Ordered = false; 4098 // An unordered comparison will return true when given a NaN, so it 4099 // returns the LHS. 4100 if (LHSSafe) 4101 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4102 NaNBehavior = SPNB_RETURNS_OTHER; 4103 else if (RHSSafe) 4104 NaNBehavior = SPNB_RETURNS_NAN; 4105 else 4106 // Completely unsafe. 4107 return {SPF_UNKNOWN, SPNB_NA, false}; 4108 } 4109 } 4110 4111 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4112 std::swap(CmpLHS, CmpRHS); 4113 Pred = CmpInst::getSwappedPredicate(Pred); 4114 if (NaNBehavior == SPNB_RETURNS_NAN) 4115 NaNBehavior = SPNB_RETURNS_OTHER; 4116 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4117 NaNBehavior = SPNB_RETURNS_NAN; 4118 Ordered = !Ordered; 4119 } 4120 4121 // ([if]cmp X, Y) ? X : Y 4122 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4123 switch (Pred) { 4124 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4125 case ICmpInst::ICMP_UGT: 4126 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4127 case ICmpInst::ICMP_SGT: 4128 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4129 case ICmpInst::ICMP_ULT: 4130 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4131 case ICmpInst::ICMP_SLT: 4132 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4133 case FCmpInst::FCMP_UGT: 4134 case FCmpInst::FCMP_UGE: 4135 case FCmpInst::FCMP_OGT: 4136 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4137 case FCmpInst::FCMP_ULT: 4138 case FCmpInst::FCMP_ULE: 4139 case FCmpInst::FCMP_OLT: 4140 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4141 } 4142 } 4143 4144 const APInt *C1; 4145 if (match(CmpRHS, m_APInt(C1))) { 4146 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4147 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4148 4149 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4150 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4151 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4152 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4153 } 4154 4155 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4156 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4157 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4158 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4159 } 4160 } 4161 } 4162 4163 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4164 } 4165 4166 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4167 Instruction::CastOps *CastOp) { 4168 auto *Cast1 = dyn_cast<CastInst>(V1); 4169 if (!Cast1) 4170 return nullptr; 4171 4172 *CastOp = Cast1->getOpcode(); 4173 Type *SrcTy = Cast1->getSrcTy(); 4174 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4175 // If V1 and V2 are both the same cast from the same type, look through V1. 4176 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4177 return Cast2->getOperand(0); 4178 return nullptr; 4179 } 4180 4181 auto *C = dyn_cast<Constant>(V2); 4182 if (!C) 4183 return nullptr; 4184 4185 Constant *CastedTo = nullptr; 4186 switch (*CastOp) { 4187 case Instruction::ZExt: 4188 if (CmpI->isUnsigned()) 4189 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4190 break; 4191 case Instruction::SExt: 4192 if (CmpI->isSigned()) 4193 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4194 break; 4195 case Instruction::Trunc: 4196 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4197 break; 4198 case Instruction::FPTrunc: 4199 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4200 break; 4201 case Instruction::FPExt: 4202 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4203 break; 4204 case Instruction::FPToUI: 4205 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4206 break; 4207 case Instruction::FPToSI: 4208 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4209 break; 4210 case Instruction::UIToFP: 4211 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4212 break; 4213 case Instruction::SIToFP: 4214 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4215 break; 4216 default: 4217 break; 4218 } 4219 4220 if (!CastedTo) 4221 return nullptr; 4222 4223 // Make sure the cast doesn't lose any information. 4224 Constant *CastedBack = 4225 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4226 if (CastedBack != C) 4227 return nullptr; 4228 4229 return CastedTo; 4230 } 4231 4232 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4233 Instruction::CastOps *CastOp) { 4234 SelectInst *SI = dyn_cast<SelectInst>(V); 4235 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4236 4237 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4238 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4239 4240 CmpInst::Predicate Pred = CmpI->getPredicate(); 4241 Value *CmpLHS = CmpI->getOperand(0); 4242 Value *CmpRHS = CmpI->getOperand(1); 4243 Value *TrueVal = SI->getTrueValue(); 4244 Value *FalseVal = SI->getFalseValue(); 4245 FastMathFlags FMF; 4246 if (isa<FPMathOperator>(CmpI)) 4247 FMF = CmpI->getFastMathFlags(); 4248 4249 // Bail out early. 4250 if (CmpI->isEquality()) 4251 return {SPF_UNKNOWN, SPNB_NA, false}; 4252 4253 // Deal with type mismatches. 4254 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4255 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4256 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4257 cast<CastInst>(TrueVal)->getOperand(0), C, 4258 LHS, RHS); 4259 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4260 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4261 C, cast<CastInst>(FalseVal)->getOperand(0), 4262 LHS, RHS); 4263 } 4264 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4265 LHS, RHS); 4266 } 4267 4268 /// Return true if "icmp Pred LHS RHS" is always true. 4269 static bool isTruePredicate(CmpInst::Predicate Pred, 4270 const Value *LHS, const Value *RHS, 4271 const DataLayout &DL, unsigned Depth, 4272 AssumptionCache *AC, const Instruction *CxtI, 4273 const DominatorTree *DT) { 4274 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4275 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4276 return true; 4277 4278 switch (Pred) { 4279 default: 4280 return false; 4281 4282 case CmpInst::ICMP_SLE: { 4283 const APInt *C; 4284 4285 // LHS s<= LHS +_{nsw} C if C >= 0 4286 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4287 return !C->isNegative(); 4288 return false; 4289 } 4290 4291 case CmpInst::ICMP_ULE: { 4292 const APInt *C; 4293 4294 // LHS u<= LHS +_{nuw} C for any C 4295 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4296 return true; 4297 4298 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4299 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4300 const Value *&X, 4301 const APInt *&CA, const APInt *&CB) { 4302 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4303 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4304 return true; 4305 4306 // If X & C == 0 then (X | C) == X +_{nuw} C 4307 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4308 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4309 unsigned BitWidth = CA->getBitWidth(); 4310 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4311 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4312 4313 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4314 return true; 4315 } 4316 4317 return false; 4318 }; 4319 4320 const Value *X; 4321 const APInt *CLHS, *CRHS; 4322 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4323 return CLHS->ule(*CRHS); 4324 4325 return false; 4326 } 4327 } 4328 } 4329 4330 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4331 /// ALHS ARHS" is true. Otherwise, return None. 4332 static Optional<bool> 4333 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4334 const Value *ARHS, const Value *BLHS, 4335 const Value *BRHS, const DataLayout &DL, 4336 unsigned Depth, AssumptionCache *AC, 4337 const Instruction *CxtI, const DominatorTree *DT) { 4338 switch (Pred) { 4339 default: 4340 return None; 4341 4342 case CmpInst::ICMP_SLT: 4343 case CmpInst::ICMP_SLE: 4344 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4345 DT) && 4346 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4347 return true; 4348 return None; 4349 4350 case CmpInst::ICMP_ULT: 4351 case CmpInst::ICMP_ULE: 4352 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4353 DT) && 4354 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4355 return true; 4356 return None; 4357 } 4358 } 4359 4360 /// Return true if the operands of the two compares match. IsSwappedOps is true 4361 /// when the operands match, but are swapped. 4362 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4363 const Value *BLHS, const Value *BRHS, 4364 bool &IsSwappedOps) { 4365 4366 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4367 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4368 return IsMatchingOps || IsSwappedOps; 4369 } 4370 4371 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4372 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4373 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4374 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4375 const Value *ALHS, 4376 const Value *ARHS, 4377 CmpInst::Predicate BPred, 4378 const Value *BLHS, 4379 const Value *BRHS, 4380 bool IsSwappedOps) { 4381 // Canonicalize the operands so they're matching. 4382 if (IsSwappedOps) { 4383 std::swap(BLHS, BRHS); 4384 BPred = ICmpInst::getSwappedPredicate(BPred); 4385 } 4386 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4387 return true; 4388 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4389 return false; 4390 4391 return None; 4392 } 4393 4394 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4395 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4396 /// C2" is false. Otherwise, return None if we can't infer anything. 4397 static Optional<bool> 4398 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4399 const ConstantInt *C1, 4400 CmpInst::Predicate BPred, 4401 const Value *BLHS, const ConstantInt *C2) { 4402 assert(ALHS == BLHS && "LHS operands must match."); 4403 ConstantRange DomCR = 4404 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4405 ConstantRange CR = 4406 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4407 ConstantRange Intersection = DomCR.intersectWith(CR); 4408 ConstantRange Difference = DomCR.difference(CR); 4409 if (Intersection.isEmptySet()) 4410 return false; 4411 if (Difference.isEmptySet()) 4412 return true; 4413 return None; 4414 } 4415 4416 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4417 const DataLayout &DL, bool InvertAPred, 4418 unsigned Depth, AssumptionCache *AC, 4419 const Instruction *CxtI, 4420 const DominatorTree *DT) { 4421 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4422 if (LHS->getType() != RHS->getType()) 4423 return None; 4424 4425 Type *OpTy = LHS->getType(); 4426 assert(OpTy->getScalarType()->isIntegerTy(1)); 4427 4428 // LHS ==> RHS by definition 4429 if (!InvertAPred && LHS == RHS) 4430 return true; 4431 4432 if (OpTy->isVectorTy()) 4433 // TODO: extending the code below to handle vectors 4434 return None; 4435 assert(OpTy->isIntegerTy(1) && "implied by above"); 4436 4437 ICmpInst::Predicate APred, BPred; 4438 Value *ALHS, *ARHS; 4439 Value *BLHS, *BRHS; 4440 4441 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4442 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4443 return None; 4444 4445 if (InvertAPred) 4446 APred = CmpInst::getInversePredicate(APred); 4447 4448 // Can we infer anything when the two compares have matching operands? 4449 bool IsSwappedOps; 4450 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4451 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4452 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4453 return Implication; 4454 // No amount of additional analysis will infer the second condition, so 4455 // early exit. 4456 return None; 4457 } 4458 4459 // Can we infer anything when the LHS operands match and the RHS operands are 4460 // constants (not necessarily matching)? 4461 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4462 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4463 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4464 cast<ConstantInt>(BRHS))) 4465 return Implication; 4466 // No amount of additional analysis will infer the second condition, so 4467 // early exit. 4468 return None; 4469 } 4470 4471 if (APred == BPred) 4472 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4473 CxtI, DT); 4474 4475 return None; 4476 } 4477