1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 357 const DataLayout &DL, AssumptionCache *AC, 358 const Instruction *CxtI, const DominatorTree *DT, 359 bool UseInstrInfo) { 360 return ::isKnownNonEqual(V1, V2, 0, 361 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 362 UseInstrInfo, /*ORE=*/nullptr)); 363 } 364 365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 366 const Query &Q); 367 368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 369 const DataLayout &DL, unsigned Depth, 370 AssumptionCache *AC, const Instruction *CxtI, 371 const DominatorTree *DT, bool UseInstrInfo) { 372 return ::MaskedValueIsZero( 373 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 374 } 375 376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 377 unsigned Depth, const Query &Q); 378 379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 380 const Query &Q) { 381 // FIXME: We currently have no way to represent the DemandedElts of a scalable 382 // vector 383 if (isa<ScalableVectorType>(V->getType())) 384 return 1; 385 386 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 387 APInt DemandedElts = 388 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 389 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 390 } 391 392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 393 unsigned Depth, AssumptionCache *AC, 394 const Instruction *CxtI, 395 const DominatorTree *DT, bool UseInstrInfo) { 396 return ::ComputeNumSignBits( 397 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 398 } 399 400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 401 bool NSW, const APInt &DemandedElts, 402 KnownBits &KnownOut, KnownBits &Known2, 403 unsigned Depth, const Query &Q) { 404 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 405 406 // If one operand is unknown and we have no nowrap information, 407 // the result will be unknown independently of the second operand. 408 if (KnownOut.isUnknown() && !NSW) 409 return; 410 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 413 } 414 415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 416 const APInt &DemandedElts, KnownBits &Known, 417 KnownBits &Known2, unsigned Depth, 418 const Query &Q) { 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = 441 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 442 Known2.isNonZero()) || 443 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 444 } 445 } 446 447 Known = KnownBits::computeForMul(Known, Known2); 448 449 // Only make use of no-wrap flags if we failed to compute the sign bit 450 // directly. This matters if the multiplication always overflows, in 451 // which case we prefer to follow the result of the direct computation, 452 // though as the program is invoking undefined behaviour we can choose 453 // whatever we like here. 454 if (isKnownNonNegative && !Known.isNegative()) 455 Known.makeNonNegative(); 456 else if (isKnownNegative && !Known.isNonNegative()) 457 Known.makeNegative(); 458 } 459 460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 461 KnownBits &Known) { 462 unsigned BitWidth = Known.getBitWidth(); 463 unsigned NumRanges = Ranges.getNumOperands() / 2; 464 assert(NumRanges >= 1); 465 466 Known.Zero.setAllBits(); 467 Known.One.setAllBits(); 468 469 for (unsigned i = 0; i < NumRanges; ++i) { 470 ConstantInt *Lower = 471 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 472 ConstantInt *Upper = 473 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 474 ConstantRange Range(Lower->getValue(), Upper->getValue()); 475 476 // The first CommonPrefixBits of all values in Range are equal. 477 unsigned CommonPrefixBits = 478 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 479 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 480 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 481 Known.One &= UnsignedMax & Mask; 482 Known.Zero &= ~UnsignedMax & Mask; 483 } 484 } 485 486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 487 SmallVector<const Value *, 16> WorkSet(1, I); 488 SmallPtrSet<const Value *, 32> Visited; 489 SmallPtrSet<const Value *, 16> EphValues; 490 491 // The instruction defining an assumption's condition itself is always 492 // considered ephemeral to that assumption (even if it has other 493 // non-ephemeral users). See r246696's test case for an example. 494 if (is_contained(I->operands(), E)) 495 return true; 496 497 while (!WorkSet.empty()) { 498 const Value *V = WorkSet.pop_back_val(); 499 if (!Visited.insert(V).second) 500 continue; 501 502 // If all uses of this value are ephemeral, then so is this value. 503 if (llvm::all_of(V->users(), [&](const User *U) { 504 return EphValues.count(U); 505 })) { 506 if (V == E) 507 return true; 508 509 if (V == I || isSafeToSpeculativelyExecute(V)) { 510 EphValues.insert(V); 511 if (const User *U = dyn_cast<User>(V)) 512 append_range(WorkSet, U->operands()); 513 } 514 } 515 } 516 517 return false; 518 } 519 520 // Is this an intrinsic that cannot be speculated but also cannot trap? 521 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 522 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 523 return CI->isAssumeLikeIntrinsic(); 524 525 return false; 526 } 527 528 bool llvm::isValidAssumeForContext(const Instruction *Inv, 529 const Instruction *CxtI, 530 const DominatorTree *DT) { 531 // There are two restrictions on the use of an assume: 532 // 1. The assume must dominate the context (or the control flow must 533 // reach the assume whenever it reaches the context). 534 // 2. The context must not be in the assume's set of ephemeral values 535 // (otherwise we will use the assume to prove that the condition 536 // feeding the assume is trivially true, thus causing the removal of 537 // the assume). 538 539 if (Inv->getParent() == CxtI->getParent()) { 540 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 541 // in the BB. 542 if (Inv->comesBefore(CxtI)) 543 return true; 544 545 // Don't let an assume affect itself - this would cause the problems 546 // `isEphemeralValueOf` is trying to prevent, and it would also make 547 // the loop below go out of bounds. 548 if (Inv == CxtI) 549 return false; 550 551 // The context comes first, but they're both in the same block. 552 // Make sure there is nothing in between that might interrupt 553 // the control flow, not even CxtI itself. 554 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 555 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 556 return false; 557 558 return !isEphemeralValueOf(Inv, CxtI); 559 } 560 561 // Inv and CxtI are in different blocks. 562 if (DT) { 563 if (DT->dominates(Inv, CxtI)) 564 return true; 565 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 566 // We don't have a DT, but this trivially dominates. 567 return true; 568 } 569 570 return false; 571 } 572 573 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 574 // v u> y implies v != 0. 575 if (Pred == ICmpInst::ICMP_UGT) 576 return true; 577 578 // Special-case v != 0 to also handle v != null. 579 if (Pred == ICmpInst::ICMP_NE) 580 return match(RHS, m_Zero()); 581 582 // All other predicates - rely on generic ConstantRange handling. 583 const APInt *C; 584 if (!match(RHS, m_APInt(C))) 585 return false; 586 587 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 588 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 if (Q.CxtI && V->getType()->isPointerTy()) { 598 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 599 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 600 V->getType()->getPointerAddressSpace())) 601 AttrKinds.push_back(Attribute::Dereferenceable); 602 603 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 604 return true; 605 } 606 607 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 608 if (!AssumeVH) 609 continue; 610 CallInst *I = cast<CallInst>(AssumeVH); 611 assert(I->getFunction() == Q.CxtI->getFunction() && 612 "Got assumption for the wrong function!"); 613 if (Q.isExcluded(I)) 614 continue; 615 616 // Warning: This loop can end up being somewhat performance sensitive. 617 // We're running this loop for once for each value queried resulting in a 618 // runtime of ~O(#assumes * #values). 619 620 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 621 "must be an assume intrinsic"); 622 623 Value *RHS; 624 CmpInst::Predicate Pred; 625 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 626 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 627 return false; 628 629 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 630 return true; 631 } 632 633 return false; 634 } 635 636 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 637 unsigned Depth, const Query &Q) { 638 // Use of assumptions is context-sensitive. If we don't have a context, we 639 // cannot use them! 640 if (!Q.AC || !Q.CxtI) 641 return; 642 643 unsigned BitWidth = Known.getBitWidth(); 644 645 // Refine Known set if the pointer alignment is set by assume bundles. 646 if (V->getType()->isPointerTy()) { 647 if (RetainedKnowledge RK = getKnowledgeValidInContext( 648 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 649 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 650 } 651 } 652 653 // Note that the patterns below need to be kept in sync with the code 654 // in AssumptionCache::updateAffectedValues. 655 656 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 657 if (!AssumeVH) 658 continue; 659 CallInst *I = cast<CallInst>(AssumeVH); 660 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 661 "Got assumption for the wrong function!"); 662 if (Q.isExcluded(I)) 663 continue; 664 665 // Warning: This loop can end up being somewhat performance sensitive. 666 // We're running this loop for once for each value queried resulting in a 667 // runtime of ~O(#assumes * #values). 668 669 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 670 "must be an assume intrinsic"); 671 672 Value *Arg = I->getArgOperand(0); 673 674 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 675 assert(BitWidth == 1 && "assume operand is not i1?"); 676 Known.setAllOnes(); 677 return; 678 } 679 if (match(Arg, m_Not(m_Specific(V))) && 680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 681 assert(BitWidth == 1 && "assume operand is not i1?"); 682 Known.setAllZero(); 683 return; 684 } 685 686 // The remaining tests are all recursive, so bail out if we hit the limit. 687 if (Depth == MaxAnalysisRecursionDepth) 688 continue; 689 690 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 691 if (!Cmp) 692 continue; 693 694 // Note that ptrtoint may change the bitwidth. 695 Value *A, *B; 696 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 697 698 CmpInst::Predicate Pred; 699 uint64_t C; 700 switch (Cmp->getPredicate()) { 701 default: 702 break; 703 case ICmpInst::ICMP_EQ: 704 // assume(v = a) 705 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 KnownBits RHSKnown = 708 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 709 Known.Zero |= RHSKnown.Zero; 710 Known.One |= RHSKnown.One; 711 // assume(v & b = a) 712 } else if (match(Cmp, 713 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 714 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 715 KnownBits RHSKnown = 716 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 717 KnownBits MaskKnown = 718 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 719 720 // For those bits in the mask that are known to be one, we can propagate 721 // known bits from the RHS to V. 722 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 723 Known.One |= RHSKnown.One & MaskKnown.One; 724 // assume(~(v & b) = a) 725 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 726 m_Value(A))) && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 KnownBits RHSKnown = 729 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 730 KnownBits MaskKnown = 731 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 732 733 // For those bits in the mask that are known to be one, we can propagate 734 // inverted known bits from the RHS to V. 735 Known.Zero |= RHSKnown.One & MaskKnown.One; 736 Known.One |= RHSKnown.Zero & MaskKnown.One; 737 // assume(v | b = a) 738 } else if (match(Cmp, 739 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 KnownBits RHSKnown = 742 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 743 KnownBits BKnown = 744 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 746 // For those bits in B that are known to be zero, we can propagate known 747 // bits from the RHS to V. 748 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 749 Known.One |= RHSKnown.One & BKnown.Zero; 750 // assume(~(v | b) = a) 751 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 752 m_Value(A))) && 753 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 754 KnownBits RHSKnown = 755 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 756 KnownBits BKnown = 757 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 759 // For those bits in B that are known to be zero, we can propagate 760 // inverted known bits from the RHS to V. 761 Known.Zero |= RHSKnown.One & BKnown.Zero; 762 Known.One |= RHSKnown.Zero & BKnown.Zero; 763 // assume(v ^ b = a) 764 } else if (match(Cmp, 765 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 KnownBits RHSKnown = 768 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 769 KnownBits BKnown = 770 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 772 // For those bits in B that are known to be zero, we can propagate known 773 // bits from the RHS to V. For those bits in B that are known to be one, 774 // we can propagate inverted known bits from the RHS to V. 775 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 776 Known.One |= RHSKnown.One & BKnown.Zero; 777 Known.Zero |= RHSKnown.One & BKnown.One; 778 Known.One |= RHSKnown.Zero & BKnown.One; 779 // assume(~(v ^ b) = a) 780 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 781 m_Value(A))) && 782 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 783 KnownBits RHSKnown = 784 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 785 KnownBits BKnown = 786 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 787 788 // For those bits in B that are known to be zero, we can propagate 789 // inverted known bits from the RHS to V. For those bits in B that are 790 // known to be one, we can propagate known bits from the RHS to V. 791 Known.Zero |= RHSKnown.One & BKnown.Zero; 792 Known.One |= RHSKnown.Zero & BKnown.Zero; 793 Known.Zero |= RHSKnown.Zero & BKnown.One; 794 Known.One |= RHSKnown.One & BKnown.One; 795 // assume(v << c = a) 796 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 797 m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 802 // For those bits in RHS that are known, we can propagate them to known 803 // bits in V shifted to the right by C. 804 RHSKnown.Zero.lshrInPlace(C); 805 Known.Zero |= RHSKnown.Zero; 806 RHSKnown.One.lshrInPlace(C); 807 Known.One |= RHSKnown.One; 808 // assume(~(v << c) = a) 809 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 810 m_Value(A))) && 811 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 812 KnownBits RHSKnown = 813 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 814 // For those bits in RHS that are known, we can propagate them inverted 815 // to known bits in V shifted to the right by C. 816 RHSKnown.One.lshrInPlace(C); 817 Known.Zero |= RHSKnown.One; 818 RHSKnown.Zero.lshrInPlace(C); 819 Known.One |= RHSKnown.Zero; 820 // assume(v >> c = a) 821 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 822 m_Value(A))) && 823 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 824 KnownBits RHSKnown = 825 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 826 // For those bits in RHS that are known, we can propagate them to known 827 // bits in V shifted to the right by C. 828 Known.Zero |= RHSKnown.Zero << C; 829 Known.One |= RHSKnown.One << C; 830 // assume(~(v >> c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 Known.Zero |= RHSKnown.One << C; 839 Known.One |= RHSKnown.Zero << C; 840 } 841 break; 842 case ICmpInst::ICMP_SGE: 843 // assume(v >=_s c) where c is non-negative 844 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 849 if (RHSKnown.isNonNegative()) { 850 // We know that the sign bit is zero. 851 Known.makeNonNegative(); 852 } 853 } 854 break; 855 case ICmpInst::ICMP_SGT: 856 // assume(v >_s c) where c is at least -1. 857 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 861 862 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 863 // We know that the sign bit is zero. 864 Known.makeNonNegative(); 865 } 866 } 867 break; 868 case ICmpInst::ICMP_SLE: 869 // assume(v <=_s c) where c is negative 870 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 871 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 872 KnownBits RHSKnown = 873 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 874 875 if (RHSKnown.isNegative()) { 876 // We know that the sign bit is one. 877 Known.makeNegative(); 878 } 879 } 880 break; 881 case ICmpInst::ICMP_SLT: 882 // assume(v <_s c) where c is non-positive 883 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 884 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 885 KnownBits RHSKnown = 886 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 887 888 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 889 // We know that the sign bit is one. 890 Known.makeNegative(); 891 } 892 } 893 break; 894 case ICmpInst::ICMP_ULE: 895 // assume(v <=_u c) 896 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 897 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 898 KnownBits RHSKnown = 899 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 900 901 // Whatever high bits in c are zero are known to be zero. 902 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 903 } 904 break; 905 case ICmpInst::ICMP_ULT: 906 // assume(v <_u c) 907 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 908 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 909 KnownBits RHSKnown = 910 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 911 912 // If the RHS is known zero, then this assumption must be wrong (nothing 913 // is unsigned less than zero). Signal a conflict and get out of here. 914 if (RHSKnown.isZero()) { 915 Known.Zero.setAllBits(); 916 Known.One.setAllBits(); 917 break; 918 } 919 920 // Whatever high bits in c are zero are known to be zero (if c is a power 921 // of 2, then one more). 922 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 923 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 924 else 925 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 926 } 927 break; 928 } 929 } 930 931 // If assumptions conflict with each other or previous known bits, then we 932 // have a logical fallacy. It's possible that the assumption is not reachable, 933 // so this isn't a real bug. On the other hand, the program may have undefined 934 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 935 // clear out the known bits, try to warn the user, and hope for the best. 936 if (Known.Zero.intersects(Known.One)) { 937 Known.resetAll(); 938 939 if (Q.ORE) 940 Q.ORE->emit([&]() { 941 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 942 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 943 CxtI) 944 << "Detected conflicting code assumptions. Program may " 945 "have undefined behavior, or compiler may have " 946 "internal error."; 947 }); 948 } 949 } 950 951 /// Compute known bits from a shift operator, including those with a 952 /// non-constant shift amount. Known is the output of this function. Known2 is a 953 /// pre-allocated temporary with the same bit width as Known and on return 954 /// contains the known bit of the shift value source. KF is an 955 /// operator-specific function that, given the known-bits and a shift amount, 956 /// compute the implied known-bits of the shift operator's result respectively 957 /// for that shift amount. The results from calling KF are conservatively 958 /// combined for all permitted shift amounts. 959 static void computeKnownBitsFromShiftOperator( 960 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 961 KnownBits &Known2, unsigned Depth, const Query &Q, 962 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 963 unsigned BitWidth = Known.getBitWidth(); 964 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 965 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 966 967 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 968 // BitWidth > 64 and any upper bits are known, we'll end up returning the 969 // limit value (which implies all bits are known). 970 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 971 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 972 bool ShiftAmtIsConstant = Known.isConstant(); 973 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 974 975 if (ShiftAmtIsConstant) { 976 Known = KF(Known2, Known); 977 978 // If the known bits conflict, this must be an overflowing left shift, so 979 // the shift result is poison. We can return anything we want. Choose 0 for 980 // the best folding opportunity. 981 if (Known.hasConflict()) 982 Known.setAllZero(); 983 984 return; 985 } 986 987 // If the shift amount could be greater than or equal to the bit-width of the 988 // LHS, the value could be poison, but bail out because the check below is 989 // expensive. 990 // TODO: Should we just carry on? 991 if (MaxShiftAmtIsOutOfRange) { 992 Known.resetAll(); 993 return; 994 } 995 996 // It would be more-clearly correct to use the two temporaries for this 997 // calculation. Reusing the APInts here to prevent unnecessary allocations. 998 Known.resetAll(); 999 1000 // If we know the shifter operand is nonzero, we can sometimes infer more 1001 // known bits. However this is expensive to compute, so be lazy about it and 1002 // only compute it when absolutely necessary. 1003 Optional<bool> ShifterOperandIsNonZero; 1004 1005 // Early exit if we can't constrain any well-defined shift amount. 1006 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1007 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1008 ShifterOperandIsNonZero = 1009 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1010 if (!*ShifterOperandIsNonZero) 1011 return; 1012 } 1013 1014 Known.Zero.setAllBits(); 1015 Known.One.setAllBits(); 1016 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1017 // Combine the shifted known input bits only for those shift amounts 1018 // compatible with its known constraints. 1019 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1020 continue; 1021 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1022 continue; 1023 // If we know the shifter is nonzero, we may be able to infer more known 1024 // bits. This check is sunk down as far as possible to avoid the expensive 1025 // call to isKnownNonZero if the cheaper checks above fail. 1026 if (ShiftAmt == 0) { 1027 if (!ShifterOperandIsNonZero.hasValue()) 1028 ShifterOperandIsNonZero = 1029 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1030 if (*ShifterOperandIsNonZero) 1031 continue; 1032 } 1033 1034 Known = KnownBits::commonBits( 1035 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1036 } 1037 1038 // If the known bits conflict, the result is poison. Return a 0 and hope the 1039 // caller can further optimize that. 1040 if (Known.hasConflict()) 1041 Known.setAllZero(); 1042 } 1043 1044 static void computeKnownBitsFromOperator(const Operator *I, 1045 const APInt &DemandedElts, 1046 KnownBits &Known, unsigned Depth, 1047 const Query &Q) { 1048 unsigned BitWidth = Known.getBitWidth(); 1049 1050 KnownBits Known2(BitWidth); 1051 switch (I->getOpcode()) { 1052 default: break; 1053 case Instruction::Load: 1054 if (MDNode *MD = 1055 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1056 computeKnownBitsFromRangeMetadata(*MD, Known); 1057 break; 1058 case Instruction::And: { 1059 // If either the LHS or the RHS are Zero, the result is zero. 1060 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1061 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1062 1063 Known &= Known2; 1064 1065 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1066 // here we handle the more general case of adding any odd number by 1067 // matching the form add(x, add(x, y)) where y is odd. 1068 // TODO: This could be generalized to clearing any bit set in y where the 1069 // following bit is known to be unset in y. 1070 Value *X = nullptr, *Y = nullptr; 1071 if (!Known.Zero[0] && !Known.One[0] && 1072 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1073 Known2.resetAll(); 1074 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1075 if (Known2.countMinTrailingOnes() > 0) 1076 Known.Zero.setBit(0); 1077 } 1078 break; 1079 } 1080 case Instruction::Or: 1081 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1082 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1083 1084 Known |= Known2; 1085 break; 1086 case Instruction::Xor: 1087 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1088 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1089 1090 Known ^= Known2; 1091 break; 1092 case Instruction::Mul: { 1093 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1094 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1095 Known, Known2, Depth, Q); 1096 break; 1097 } 1098 case Instruction::UDiv: { 1099 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1100 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1101 Known = KnownBits::udiv(Known, Known2); 1102 break; 1103 } 1104 case Instruction::Select: { 1105 const Value *LHS = nullptr, *RHS = nullptr; 1106 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1107 if (SelectPatternResult::isMinOrMax(SPF)) { 1108 computeKnownBits(RHS, Known, Depth + 1, Q); 1109 computeKnownBits(LHS, Known2, Depth + 1, Q); 1110 switch (SPF) { 1111 default: 1112 llvm_unreachable("Unhandled select pattern flavor!"); 1113 case SPF_SMAX: 1114 Known = KnownBits::smax(Known, Known2); 1115 break; 1116 case SPF_SMIN: 1117 Known = KnownBits::smin(Known, Known2); 1118 break; 1119 case SPF_UMAX: 1120 Known = KnownBits::umax(Known, Known2); 1121 break; 1122 case SPF_UMIN: 1123 Known = KnownBits::umin(Known, Known2); 1124 break; 1125 } 1126 break; 1127 } 1128 1129 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1130 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1131 1132 // Only known if known in both the LHS and RHS. 1133 Known = KnownBits::commonBits(Known, Known2); 1134 1135 if (SPF == SPF_ABS) { 1136 // RHS from matchSelectPattern returns the negation part of abs pattern. 1137 // If the negate has an NSW flag we can assume the sign bit of the result 1138 // will be 0 because that makes abs(INT_MIN) undefined. 1139 if (match(RHS, m_Neg(m_Specific(LHS))) && 1140 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1141 Known.Zero.setSignBit(); 1142 } 1143 1144 break; 1145 } 1146 case Instruction::FPTrunc: 1147 case Instruction::FPExt: 1148 case Instruction::FPToUI: 1149 case Instruction::FPToSI: 1150 case Instruction::SIToFP: 1151 case Instruction::UIToFP: 1152 break; // Can't work with floating point. 1153 case Instruction::PtrToInt: 1154 case Instruction::IntToPtr: 1155 // Fall through and handle them the same as zext/trunc. 1156 LLVM_FALLTHROUGH; 1157 case Instruction::ZExt: 1158 case Instruction::Trunc: { 1159 Type *SrcTy = I->getOperand(0)->getType(); 1160 1161 unsigned SrcBitWidth; 1162 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1163 // which fall through here. 1164 Type *ScalarTy = SrcTy->getScalarType(); 1165 SrcBitWidth = ScalarTy->isPointerTy() ? 1166 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1167 Q.DL.getTypeSizeInBits(ScalarTy); 1168 1169 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1170 Known = Known.anyextOrTrunc(SrcBitWidth); 1171 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1172 Known = Known.zextOrTrunc(BitWidth); 1173 break; 1174 } 1175 case Instruction::BitCast: { 1176 Type *SrcTy = I->getOperand(0)->getType(); 1177 if (SrcTy->isIntOrPtrTy() && 1178 // TODO: For now, not handling conversions like: 1179 // (bitcast i64 %x to <2 x i32>) 1180 !I->getType()->isVectorTy()) { 1181 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1182 break; 1183 } 1184 break; 1185 } 1186 case Instruction::SExt: { 1187 // Compute the bits in the result that are not present in the input. 1188 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1189 1190 Known = Known.trunc(SrcBitWidth); 1191 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1192 // If the sign bit of the input is known set or clear, then we know the 1193 // top bits of the result. 1194 Known = Known.sext(BitWidth); 1195 break; 1196 } 1197 case Instruction::Shl: { 1198 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1199 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1200 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1201 // If this shift has "nsw" keyword, then the result is either a poison 1202 // value or has the same sign bit as the first operand. 1203 if (NSW) { 1204 if (KnownVal.Zero.isSignBitSet()) 1205 Result.Zero.setSignBit(); 1206 if (KnownVal.One.isSignBitSet()) 1207 Result.One.setSignBit(); 1208 } 1209 return Result; 1210 }; 1211 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1212 KF); 1213 // Trailing zeros of a right-shifted constant never decrease. 1214 const APInt *C; 1215 if (match(I->getOperand(0), m_APInt(C))) 1216 Known.Zero.setLowBits(C->countTrailingZeros()); 1217 break; 1218 } 1219 case Instruction::LShr: { 1220 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1221 return KnownBits::lshr(KnownVal, KnownAmt); 1222 }; 1223 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1224 KF); 1225 // Leading zeros of a left-shifted constant never decrease. 1226 const APInt *C; 1227 if (match(I->getOperand(0), m_APInt(C))) 1228 Known.Zero.setHighBits(C->countLeadingZeros()); 1229 break; 1230 } 1231 case Instruction::AShr: { 1232 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1233 return KnownBits::ashr(KnownVal, KnownAmt); 1234 }; 1235 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1236 KF); 1237 break; 1238 } 1239 case Instruction::Sub: { 1240 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1241 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1242 DemandedElts, Known, Known2, Depth, Q); 1243 break; 1244 } 1245 case Instruction::Add: { 1246 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1247 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1248 DemandedElts, Known, Known2, Depth, Q); 1249 break; 1250 } 1251 case Instruction::SRem: 1252 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1253 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1254 Known = KnownBits::srem(Known, Known2); 1255 break; 1256 1257 case Instruction::URem: 1258 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1259 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1260 Known = KnownBits::urem(Known, Known2); 1261 break; 1262 case Instruction::Alloca: 1263 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1264 break; 1265 case Instruction::GetElementPtr: { 1266 // Analyze all of the subscripts of this getelementptr instruction 1267 // to determine if we can prove known low zero bits. 1268 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1269 // Accumulate the constant indices in a separate variable 1270 // to minimize the number of calls to computeForAddSub. 1271 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1272 1273 gep_type_iterator GTI = gep_type_begin(I); 1274 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1275 // TrailZ can only become smaller, short-circuit if we hit zero. 1276 if (Known.isUnknown()) 1277 break; 1278 1279 Value *Index = I->getOperand(i); 1280 1281 // Handle case when index is zero. 1282 Constant *CIndex = dyn_cast<Constant>(Index); 1283 if (CIndex && CIndex->isZeroValue()) 1284 continue; 1285 1286 if (StructType *STy = GTI.getStructTypeOrNull()) { 1287 // Handle struct member offset arithmetic. 1288 1289 assert(CIndex && 1290 "Access to structure field must be known at compile time"); 1291 1292 if (CIndex->getType()->isVectorTy()) 1293 Index = CIndex->getSplatValue(); 1294 1295 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1296 const StructLayout *SL = Q.DL.getStructLayout(STy); 1297 uint64_t Offset = SL->getElementOffset(Idx); 1298 AccConstIndices += Offset; 1299 continue; 1300 } 1301 1302 // Handle array index arithmetic. 1303 Type *IndexedTy = GTI.getIndexedType(); 1304 if (!IndexedTy->isSized()) { 1305 Known.resetAll(); 1306 break; 1307 } 1308 1309 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1310 KnownBits IndexBits(IndexBitWidth); 1311 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1312 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1313 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1314 KnownBits ScalingFactor(IndexBitWidth); 1315 // Multiply by current sizeof type. 1316 // &A[i] == A + i * sizeof(*A[i]). 1317 if (IndexTypeSize.isScalable()) { 1318 // For scalable types the only thing we know about sizeof is 1319 // that this is a multiple of the minimum size. 1320 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1321 } else if (IndexBits.isConstant()) { 1322 APInt IndexConst = IndexBits.getConstant(); 1323 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1324 IndexConst *= ScalingFactor; 1325 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1326 continue; 1327 } else { 1328 ScalingFactor = 1329 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1330 } 1331 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1332 1333 // If the offsets have a different width from the pointer, according 1334 // to the language reference we need to sign-extend or truncate them 1335 // to the width of the pointer. 1336 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1337 1338 // Note that inbounds does *not* guarantee nsw for the addition, as only 1339 // the offset is signed, while the base address is unsigned. 1340 Known = KnownBits::computeForAddSub( 1341 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1342 } 1343 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1344 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1345 Known = KnownBits::computeForAddSub( 1346 /*Add=*/true, /*NSW=*/false, Known, Index); 1347 } 1348 break; 1349 } 1350 case Instruction::PHI: { 1351 const PHINode *P = cast<PHINode>(I); 1352 // Handle the case of a simple two-predecessor recurrence PHI. 1353 // There's a lot more that could theoretically be done here, but 1354 // this is sufficient to catch some interesting cases. 1355 if (P->getNumIncomingValues() == 2) { 1356 for (unsigned i = 0; i != 2; ++i) { 1357 Value *L = P->getIncomingValue(i); 1358 Value *R = P->getIncomingValue(!i); 1359 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1360 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1361 Operator *LU = dyn_cast<Operator>(L); 1362 if (!LU) 1363 continue; 1364 unsigned Opcode = LU->getOpcode(); 1365 1366 1367 // If this is a shift recurrence, we know the bits being shifted in. 1368 // We can combine that with information about the start value of the 1369 // recurrence to conclude facts about the result. 1370 if (Opcode == Instruction::LShr || 1371 Opcode == Instruction::AShr || 1372 Opcode == Instruction::Shl) { 1373 Value *LL = LU->getOperand(0); 1374 Value *LR = LU->getOperand(1); 1375 // Find a recurrence. 1376 if (LL == I) 1377 L = LR; 1378 else 1379 continue; // Check for recurrence with L and R flipped. 1380 1381 // We have matched a recurrence of the form: 1382 // %iv = [R, %entry], [%iv.next, %backedge] 1383 // %iv.next = shift_op %iv, L 1384 1385 // Recurse with the phi context to avoid concern about whether facts 1386 // inferred hold at original context instruction. TODO: It may be 1387 // correct to use the original context. IF warranted, explore and 1388 // add sufficient tests to cover. 1389 Query RecQ = Q; 1390 RecQ.CxtI = P; 1391 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1392 switch (Opcode) { 1393 case Instruction::Shl: 1394 // A shl recurrence will only increase the tailing zeros 1395 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1396 break; 1397 case Instruction::LShr: 1398 // A lshr recurrence will preserve the leading zeros of the 1399 // start value 1400 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1401 break; 1402 case Instruction::AShr: 1403 // An ashr recurrence will extend the initial sign bit 1404 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1405 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1406 break; 1407 }; 1408 } 1409 1410 // Check for operations that have the property that if 1411 // both their operands have low zero bits, the result 1412 // will have low zero bits. 1413 if (Opcode == Instruction::Add || 1414 Opcode == Instruction::Sub || 1415 Opcode == Instruction::And || 1416 Opcode == Instruction::Or || 1417 Opcode == Instruction::Mul) { 1418 Value *LL = LU->getOperand(0); 1419 Value *LR = LU->getOperand(1); 1420 // Find a recurrence. 1421 if (LL == I) 1422 L = LR; 1423 else if (LR == I) 1424 L = LL; 1425 else 1426 continue; // Check for recurrence with L and R flipped. 1427 1428 // Change the context instruction to the "edge" that flows into the 1429 // phi. This is important because that is where the value is actually 1430 // "evaluated" even though it is used later somewhere else. (see also 1431 // D69571). 1432 Query RecQ = Q; 1433 1434 // Ok, we have a PHI of the form L op= R. Check for low 1435 // zero bits. 1436 RecQ.CxtI = RInst; 1437 computeKnownBits(R, Known2, Depth + 1, RecQ); 1438 1439 // We need to take the minimum number of known bits 1440 KnownBits Known3(BitWidth); 1441 RecQ.CxtI = LInst; 1442 computeKnownBits(L, Known3, Depth + 1, RecQ); 1443 1444 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1445 Known3.countMinTrailingZeros())); 1446 1447 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1448 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1449 // If initial value of recurrence is nonnegative, and we are adding 1450 // a nonnegative number with nsw, the result can only be nonnegative 1451 // or poison value regardless of the number of times we execute the 1452 // add in phi recurrence. If initial value is negative and we are 1453 // adding a negative number with nsw, the result can only be 1454 // negative or poison value. Similar arguments apply to sub and mul. 1455 // 1456 // (add non-negative, non-negative) --> non-negative 1457 // (add negative, negative) --> negative 1458 if (Opcode == Instruction::Add) { 1459 if (Known2.isNonNegative() && Known3.isNonNegative()) 1460 Known.makeNonNegative(); 1461 else if (Known2.isNegative() && Known3.isNegative()) 1462 Known.makeNegative(); 1463 } 1464 1465 // (sub nsw non-negative, negative) --> non-negative 1466 // (sub nsw negative, non-negative) --> negative 1467 else if (Opcode == Instruction::Sub && LL == I) { 1468 if (Known2.isNonNegative() && Known3.isNegative()) 1469 Known.makeNonNegative(); 1470 else if (Known2.isNegative() && Known3.isNonNegative()) 1471 Known.makeNegative(); 1472 } 1473 1474 // (mul nsw non-negative, non-negative) --> non-negative 1475 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1476 Known3.isNonNegative()) 1477 Known.makeNonNegative(); 1478 } 1479 1480 break; 1481 } 1482 } 1483 } 1484 1485 // Unreachable blocks may have zero-operand PHI nodes. 1486 if (P->getNumIncomingValues() == 0) 1487 break; 1488 1489 // Otherwise take the unions of the known bit sets of the operands, 1490 // taking conservative care to avoid excessive recursion. 1491 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1492 // Skip if every incoming value references to ourself. 1493 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1494 break; 1495 1496 Known.Zero.setAllBits(); 1497 Known.One.setAllBits(); 1498 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1499 Value *IncValue = P->getIncomingValue(u); 1500 // Skip direct self references. 1501 if (IncValue == P) continue; 1502 1503 // Change the context instruction to the "edge" that flows into the 1504 // phi. This is important because that is where the value is actually 1505 // "evaluated" even though it is used later somewhere else. (see also 1506 // D69571). 1507 Query RecQ = Q; 1508 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1509 1510 Known2 = KnownBits(BitWidth); 1511 // Recurse, but cap the recursion to one level, because we don't 1512 // want to waste time spinning around in loops. 1513 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1514 Known = KnownBits::commonBits(Known, Known2); 1515 // If all bits have been ruled out, there's no need to check 1516 // more operands. 1517 if (Known.isUnknown()) 1518 break; 1519 } 1520 } 1521 break; 1522 } 1523 case Instruction::Call: 1524 case Instruction::Invoke: 1525 // If range metadata is attached to this call, set known bits from that, 1526 // and then intersect with known bits based on other properties of the 1527 // function. 1528 if (MDNode *MD = 1529 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1530 computeKnownBitsFromRangeMetadata(*MD, Known); 1531 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1532 computeKnownBits(RV, Known2, Depth + 1, Q); 1533 Known.Zero |= Known2.Zero; 1534 Known.One |= Known2.One; 1535 } 1536 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1537 switch (II->getIntrinsicID()) { 1538 default: break; 1539 case Intrinsic::abs: { 1540 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1541 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1542 Known = Known2.abs(IntMinIsPoison); 1543 break; 1544 } 1545 case Intrinsic::bitreverse: 1546 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1547 Known.Zero |= Known2.Zero.reverseBits(); 1548 Known.One |= Known2.One.reverseBits(); 1549 break; 1550 case Intrinsic::bswap: 1551 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1552 Known.Zero |= Known2.Zero.byteSwap(); 1553 Known.One |= Known2.One.byteSwap(); 1554 break; 1555 case Intrinsic::ctlz: { 1556 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1557 // If we have a known 1, its position is our upper bound. 1558 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1559 // If this call is undefined for 0, the result will be less than 2^n. 1560 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1561 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1562 unsigned LowBits = Log2_32(PossibleLZ)+1; 1563 Known.Zero.setBitsFrom(LowBits); 1564 break; 1565 } 1566 case Intrinsic::cttz: { 1567 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1568 // If we have a known 1, its position is our upper bound. 1569 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1570 // If this call is undefined for 0, the result will be less than 2^n. 1571 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1572 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1573 unsigned LowBits = Log2_32(PossibleTZ)+1; 1574 Known.Zero.setBitsFrom(LowBits); 1575 break; 1576 } 1577 case Intrinsic::ctpop: { 1578 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1579 // We can bound the space the count needs. Also, bits known to be zero 1580 // can't contribute to the population. 1581 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1582 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1583 Known.Zero.setBitsFrom(LowBits); 1584 // TODO: we could bound KnownOne using the lower bound on the number 1585 // of bits which might be set provided by popcnt KnownOne2. 1586 break; 1587 } 1588 case Intrinsic::fshr: 1589 case Intrinsic::fshl: { 1590 const APInt *SA; 1591 if (!match(I->getOperand(2), m_APInt(SA))) 1592 break; 1593 1594 // Normalize to funnel shift left. 1595 uint64_t ShiftAmt = SA->urem(BitWidth); 1596 if (II->getIntrinsicID() == Intrinsic::fshr) 1597 ShiftAmt = BitWidth - ShiftAmt; 1598 1599 KnownBits Known3(BitWidth); 1600 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1601 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1602 1603 Known.Zero = 1604 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1605 Known.One = 1606 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1607 break; 1608 } 1609 case Intrinsic::uadd_sat: 1610 case Intrinsic::usub_sat: { 1611 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1612 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1613 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1614 1615 // Add: Leading ones of either operand are preserved. 1616 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1617 // as leading zeros in the result. 1618 unsigned LeadingKnown; 1619 if (IsAdd) 1620 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1621 Known2.countMinLeadingOnes()); 1622 else 1623 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1624 Known2.countMinLeadingOnes()); 1625 1626 Known = KnownBits::computeForAddSub( 1627 IsAdd, /* NSW */ false, Known, Known2); 1628 1629 // We select between the operation result and all-ones/zero 1630 // respectively, so we can preserve known ones/zeros. 1631 if (IsAdd) { 1632 Known.One.setHighBits(LeadingKnown); 1633 Known.Zero.clearAllBits(); 1634 } else { 1635 Known.Zero.setHighBits(LeadingKnown); 1636 Known.One.clearAllBits(); 1637 } 1638 break; 1639 } 1640 case Intrinsic::umin: 1641 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1642 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1643 Known = KnownBits::umin(Known, Known2); 1644 break; 1645 case Intrinsic::umax: 1646 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1647 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1648 Known = KnownBits::umax(Known, Known2); 1649 break; 1650 case Intrinsic::smin: 1651 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1652 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1653 Known = KnownBits::smin(Known, Known2); 1654 break; 1655 case Intrinsic::smax: 1656 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1657 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1658 Known = KnownBits::smax(Known, Known2); 1659 break; 1660 case Intrinsic::x86_sse42_crc32_64_64: 1661 Known.Zero.setBitsFrom(32); 1662 break; 1663 } 1664 } 1665 break; 1666 case Instruction::ShuffleVector: { 1667 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1668 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1669 if (!Shuf) { 1670 Known.resetAll(); 1671 return; 1672 } 1673 // For undef elements, we don't know anything about the common state of 1674 // the shuffle result. 1675 APInt DemandedLHS, DemandedRHS; 1676 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1677 Known.resetAll(); 1678 return; 1679 } 1680 Known.One.setAllBits(); 1681 Known.Zero.setAllBits(); 1682 if (!!DemandedLHS) { 1683 const Value *LHS = Shuf->getOperand(0); 1684 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1685 // If we don't know any bits, early out. 1686 if (Known.isUnknown()) 1687 break; 1688 } 1689 if (!!DemandedRHS) { 1690 const Value *RHS = Shuf->getOperand(1); 1691 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1692 Known = KnownBits::commonBits(Known, Known2); 1693 } 1694 break; 1695 } 1696 case Instruction::InsertElement: { 1697 const Value *Vec = I->getOperand(0); 1698 const Value *Elt = I->getOperand(1); 1699 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1700 // Early out if the index is non-constant or out-of-range. 1701 unsigned NumElts = DemandedElts.getBitWidth(); 1702 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1703 Known.resetAll(); 1704 return; 1705 } 1706 Known.One.setAllBits(); 1707 Known.Zero.setAllBits(); 1708 unsigned EltIdx = CIdx->getZExtValue(); 1709 // Do we demand the inserted element? 1710 if (DemandedElts[EltIdx]) { 1711 computeKnownBits(Elt, Known, Depth + 1, Q); 1712 // If we don't know any bits, early out. 1713 if (Known.isUnknown()) 1714 break; 1715 } 1716 // We don't need the base vector element that has been inserted. 1717 APInt DemandedVecElts = DemandedElts; 1718 DemandedVecElts.clearBit(EltIdx); 1719 if (!!DemandedVecElts) { 1720 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1721 Known = KnownBits::commonBits(Known, Known2); 1722 } 1723 break; 1724 } 1725 case Instruction::ExtractElement: { 1726 // Look through extract element. If the index is non-constant or 1727 // out-of-range demand all elements, otherwise just the extracted element. 1728 const Value *Vec = I->getOperand(0); 1729 const Value *Idx = I->getOperand(1); 1730 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1731 if (isa<ScalableVectorType>(Vec->getType())) { 1732 // FIXME: there's probably *something* we can do with scalable vectors 1733 Known.resetAll(); 1734 break; 1735 } 1736 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1737 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1738 if (CIdx && CIdx->getValue().ult(NumElts)) 1739 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1740 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1741 break; 1742 } 1743 case Instruction::ExtractValue: 1744 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1745 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1746 if (EVI->getNumIndices() != 1) break; 1747 if (EVI->getIndices()[0] == 0) { 1748 switch (II->getIntrinsicID()) { 1749 default: break; 1750 case Intrinsic::uadd_with_overflow: 1751 case Intrinsic::sadd_with_overflow: 1752 computeKnownBitsAddSub(true, II->getArgOperand(0), 1753 II->getArgOperand(1), false, DemandedElts, 1754 Known, Known2, Depth, Q); 1755 break; 1756 case Intrinsic::usub_with_overflow: 1757 case Intrinsic::ssub_with_overflow: 1758 computeKnownBitsAddSub(false, II->getArgOperand(0), 1759 II->getArgOperand(1), false, DemandedElts, 1760 Known, Known2, Depth, Q); 1761 break; 1762 case Intrinsic::umul_with_overflow: 1763 case Intrinsic::smul_with_overflow: 1764 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1765 DemandedElts, Known, Known2, Depth, Q); 1766 break; 1767 } 1768 } 1769 } 1770 break; 1771 case Instruction::Freeze: 1772 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1773 Depth + 1)) 1774 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1775 break; 1776 } 1777 } 1778 1779 /// Determine which bits of V are known to be either zero or one and return 1780 /// them. 1781 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1782 unsigned Depth, const Query &Q) { 1783 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1784 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1785 return Known; 1786 } 1787 1788 /// Determine which bits of V are known to be either zero or one and return 1789 /// them. 1790 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1791 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1792 computeKnownBits(V, Known, Depth, Q); 1793 return Known; 1794 } 1795 1796 /// Determine which bits of V are known to be either zero or one and return 1797 /// them in the Known bit set. 1798 /// 1799 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1800 /// we cannot optimize based on the assumption that it is zero without changing 1801 /// it to be an explicit zero. If we don't change it to zero, other code could 1802 /// optimized based on the contradictory assumption that it is non-zero. 1803 /// Because instcombine aggressively folds operations with undef args anyway, 1804 /// this won't lose us code quality. 1805 /// 1806 /// This function is defined on values with integer type, values with pointer 1807 /// type, and vectors of integers. In the case 1808 /// where V is a vector, known zero, and known one values are the 1809 /// same width as the vector element, and the bit is set only if it is true 1810 /// for all of the demanded elements in the vector specified by DemandedElts. 1811 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1812 KnownBits &Known, unsigned Depth, const Query &Q) { 1813 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1814 // No demanded elts or V is a scalable vector, better to assume we don't 1815 // know anything. 1816 Known.resetAll(); 1817 return; 1818 } 1819 1820 assert(V && "No Value?"); 1821 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1822 1823 #ifndef NDEBUG 1824 Type *Ty = V->getType(); 1825 unsigned BitWidth = Known.getBitWidth(); 1826 1827 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1828 "Not integer or pointer type!"); 1829 1830 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1831 assert( 1832 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1833 "DemandedElt width should equal the fixed vector number of elements"); 1834 } else { 1835 assert(DemandedElts == APInt(1, 1) && 1836 "DemandedElt width should be 1 for scalars"); 1837 } 1838 1839 Type *ScalarTy = Ty->getScalarType(); 1840 if (ScalarTy->isPointerTy()) { 1841 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1842 "V and Known should have same BitWidth"); 1843 } else { 1844 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1845 "V and Known should have same BitWidth"); 1846 } 1847 #endif 1848 1849 const APInt *C; 1850 if (match(V, m_APInt(C))) { 1851 // We know all of the bits for a scalar constant or a splat vector constant! 1852 Known = KnownBits::makeConstant(*C); 1853 return; 1854 } 1855 // Null and aggregate-zero are all-zeros. 1856 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1857 Known.setAllZero(); 1858 return; 1859 } 1860 // Handle a constant vector by taking the intersection of the known bits of 1861 // each element. 1862 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1863 // We know that CDV must be a vector of integers. Take the intersection of 1864 // each element. 1865 Known.Zero.setAllBits(); Known.One.setAllBits(); 1866 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1867 if (!DemandedElts[i]) 1868 continue; 1869 APInt Elt = CDV->getElementAsAPInt(i); 1870 Known.Zero &= ~Elt; 1871 Known.One &= Elt; 1872 } 1873 return; 1874 } 1875 1876 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1877 // We know that CV must be a vector of integers. Take the intersection of 1878 // each element. 1879 Known.Zero.setAllBits(); Known.One.setAllBits(); 1880 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1881 if (!DemandedElts[i]) 1882 continue; 1883 Constant *Element = CV->getAggregateElement(i); 1884 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1885 if (!ElementCI) { 1886 Known.resetAll(); 1887 return; 1888 } 1889 const APInt &Elt = ElementCI->getValue(); 1890 Known.Zero &= ~Elt; 1891 Known.One &= Elt; 1892 } 1893 return; 1894 } 1895 1896 // Start out not knowing anything. 1897 Known.resetAll(); 1898 1899 // We can't imply anything about undefs. 1900 if (isa<UndefValue>(V)) 1901 return; 1902 1903 // There's no point in looking through other users of ConstantData for 1904 // assumptions. Confirm that we've handled them all. 1905 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1906 1907 // All recursive calls that increase depth must come after this. 1908 if (Depth == MaxAnalysisRecursionDepth) 1909 return; 1910 1911 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1912 // the bits of its aliasee. 1913 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1914 if (!GA->isInterposable()) 1915 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1916 return; 1917 } 1918 1919 if (const Operator *I = dyn_cast<Operator>(V)) 1920 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1921 1922 // Aligned pointers have trailing zeros - refine Known.Zero set 1923 if (isa<PointerType>(V->getType())) { 1924 Align Alignment = V->getPointerAlignment(Q.DL); 1925 Known.Zero.setLowBits(Log2(Alignment)); 1926 } 1927 1928 // computeKnownBitsFromAssume strictly refines Known. 1929 // Therefore, we run them after computeKnownBitsFromOperator. 1930 1931 // Check whether a nearby assume intrinsic can determine some known bits. 1932 computeKnownBitsFromAssume(V, Known, Depth, Q); 1933 1934 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1935 } 1936 1937 /// Return true if the given value is known to have exactly one 1938 /// bit set when defined. For vectors return true if every element is known to 1939 /// be a power of two when defined. Supports values with integer or pointer 1940 /// types and vectors of integers. 1941 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1942 const Query &Q) { 1943 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1944 1945 // Attempt to match against constants. 1946 if (OrZero && match(V, m_Power2OrZero())) 1947 return true; 1948 if (match(V, m_Power2())) 1949 return true; 1950 1951 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1952 // it is shifted off the end then the result is undefined. 1953 if (match(V, m_Shl(m_One(), m_Value()))) 1954 return true; 1955 1956 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1957 // the bottom. If it is shifted off the bottom then the result is undefined. 1958 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1959 return true; 1960 1961 // The remaining tests are all recursive, so bail out if we hit the limit. 1962 if (Depth++ == MaxAnalysisRecursionDepth) 1963 return false; 1964 1965 Value *X = nullptr, *Y = nullptr; 1966 // A shift left or a logical shift right of a power of two is a power of two 1967 // or zero. 1968 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1969 match(V, m_LShr(m_Value(X), m_Value())))) 1970 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1971 1972 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1973 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1974 1975 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1976 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1977 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1978 1979 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1980 // A power of two and'd with anything is a power of two or zero. 1981 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1982 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1983 return true; 1984 // X & (-X) is always a power of two or zero. 1985 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1986 return true; 1987 return false; 1988 } 1989 1990 // Adding a power-of-two or zero to the same power-of-two or zero yields 1991 // either the original power-of-two, a larger power-of-two or zero. 1992 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1993 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1994 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1995 Q.IIQ.hasNoSignedWrap(VOBO)) { 1996 if (match(X, m_And(m_Specific(Y), m_Value())) || 1997 match(X, m_And(m_Value(), m_Specific(Y)))) 1998 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1999 return true; 2000 if (match(Y, m_And(m_Specific(X), m_Value())) || 2001 match(Y, m_And(m_Value(), m_Specific(X)))) 2002 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2003 return true; 2004 2005 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2006 KnownBits LHSBits(BitWidth); 2007 computeKnownBits(X, LHSBits, Depth, Q); 2008 2009 KnownBits RHSBits(BitWidth); 2010 computeKnownBits(Y, RHSBits, Depth, Q); 2011 // If i8 V is a power of two or zero: 2012 // ZeroBits: 1 1 1 0 1 1 1 1 2013 // ~ZeroBits: 0 0 0 1 0 0 0 0 2014 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2015 // If OrZero isn't set, we cannot give back a zero result. 2016 // Make sure either the LHS or RHS has a bit set. 2017 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2018 return true; 2019 } 2020 } 2021 2022 // An exact divide or right shift can only shift off zero bits, so the result 2023 // is a power of two only if the first operand is a power of two and not 2024 // copying a sign bit (sdiv int_min, 2). 2025 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2026 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2027 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2028 Depth, Q); 2029 } 2030 2031 return false; 2032 } 2033 2034 /// Test whether a GEP's result is known to be non-null. 2035 /// 2036 /// Uses properties inherent in a GEP to try to determine whether it is known 2037 /// to be non-null. 2038 /// 2039 /// Currently this routine does not support vector GEPs. 2040 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2041 const Query &Q) { 2042 const Function *F = nullptr; 2043 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2044 F = I->getFunction(); 2045 2046 if (!GEP->isInBounds() || 2047 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2048 return false; 2049 2050 // FIXME: Support vector-GEPs. 2051 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2052 2053 // If the base pointer is non-null, we cannot walk to a null address with an 2054 // inbounds GEP in address space zero. 2055 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2056 return true; 2057 2058 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2059 // If so, then the GEP cannot produce a null pointer, as doing so would 2060 // inherently violate the inbounds contract within address space zero. 2061 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2062 GTI != GTE; ++GTI) { 2063 // Struct types are easy -- they must always be indexed by a constant. 2064 if (StructType *STy = GTI.getStructTypeOrNull()) { 2065 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2066 unsigned ElementIdx = OpC->getZExtValue(); 2067 const StructLayout *SL = Q.DL.getStructLayout(STy); 2068 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2069 if (ElementOffset > 0) 2070 return true; 2071 continue; 2072 } 2073 2074 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2075 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2076 continue; 2077 2078 // Fast path the constant operand case both for efficiency and so we don't 2079 // increment Depth when just zipping down an all-constant GEP. 2080 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2081 if (!OpC->isZero()) 2082 return true; 2083 continue; 2084 } 2085 2086 // We post-increment Depth here because while isKnownNonZero increments it 2087 // as well, when we pop back up that increment won't persist. We don't want 2088 // to recurse 10k times just because we have 10k GEP operands. We don't 2089 // bail completely out because we want to handle constant GEPs regardless 2090 // of depth. 2091 if (Depth++ >= MaxAnalysisRecursionDepth) 2092 continue; 2093 2094 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2095 return true; 2096 } 2097 2098 return false; 2099 } 2100 2101 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2102 const Instruction *CtxI, 2103 const DominatorTree *DT) { 2104 if (isa<Constant>(V)) 2105 return false; 2106 2107 if (!CtxI || !DT) 2108 return false; 2109 2110 unsigned NumUsesExplored = 0; 2111 for (auto *U : V->users()) { 2112 // Avoid massive lists 2113 if (NumUsesExplored >= DomConditionsMaxUses) 2114 break; 2115 NumUsesExplored++; 2116 2117 // If the value is used as an argument to a call or invoke, then argument 2118 // attributes may provide an answer about null-ness. 2119 if (const auto *CB = dyn_cast<CallBase>(U)) 2120 if (auto *CalledFunc = CB->getCalledFunction()) 2121 for (const Argument &Arg : CalledFunc->args()) 2122 if (CB->getArgOperand(Arg.getArgNo()) == V && 2123 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2124 DT->dominates(CB, CtxI)) 2125 return true; 2126 2127 // If the value is used as a load/store, then the pointer must be non null. 2128 if (V == getLoadStorePointerOperand(U)) { 2129 const Instruction *I = cast<Instruction>(U); 2130 if (!NullPointerIsDefined(I->getFunction(), 2131 V->getType()->getPointerAddressSpace()) && 2132 DT->dominates(I, CtxI)) 2133 return true; 2134 } 2135 2136 // Consider only compare instructions uniquely controlling a branch 2137 Value *RHS; 2138 CmpInst::Predicate Pred; 2139 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2140 continue; 2141 2142 bool NonNullIfTrue; 2143 if (cmpExcludesZero(Pred, RHS)) 2144 NonNullIfTrue = true; 2145 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2146 NonNullIfTrue = false; 2147 else 2148 continue; 2149 2150 SmallVector<const User *, 4> WorkList; 2151 SmallPtrSet<const User *, 4> Visited; 2152 for (auto *CmpU : U->users()) { 2153 assert(WorkList.empty() && "Should be!"); 2154 if (Visited.insert(CmpU).second) 2155 WorkList.push_back(CmpU); 2156 2157 while (!WorkList.empty()) { 2158 auto *Curr = WorkList.pop_back_val(); 2159 2160 // If a user is an AND, add all its users to the work list. We only 2161 // propagate "pred != null" condition through AND because it is only 2162 // correct to assume that all conditions of AND are met in true branch. 2163 // TODO: Support similar logic of OR and EQ predicate? 2164 if (NonNullIfTrue) 2165 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2166 for (auto *CurrU : Curr->users()) 2167 if (Visited.insert(CurrU).second) 2168 WorkList.push_back(CurrU); 2169 continue; 2170 } 2171 2172 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2173 assert(BI->isConditional() && "uses a comparison!"); 2174 2175 BasicBlock *NonNullSuccessor = 2176 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2177 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2178 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2179 return true; 2180 } else if (NonNullIfTrue && isGuard(Curr) && 2181 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2182 return true; 2183 } 2184 } 2185 } 2186 } 2187 2188 return false; 2189 } 2190 2191 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2192 /// ensure that the value it's attached to is never Value? 'RangeType' is 2193 /// is the type of the value described by the range. 2194 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2195 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2196 assert(NumRanges >= 1); 2197 for (unsigned i = 0; i < NumRanges; ++i) { 2198 ConstantInt *Lower = 2199 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2200 ConstantInt *Upper = 2201 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2202 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2203 if (Range.contains(Value)) 2204 return false; 2205 } 2206 return true; 2207 } 2208 2209 /// Return true if the given value is known to be non-zero when defined. For 2210 /// vectors, return true if every demanded element is known to be non-zero when 2211 /// defined. For pointers, if the context instruction and dominator tree are 2212 /// specified, perform context-sensitive analysis and return true if the 2213 /// pointer couldn't possibly be null at the specified instruction. 2214 /// Supports values with integer or pointer type and vectors of integers. 2215 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2216 const Query &Q) { 2217 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2218 // vector 2219 if (isa<ScalableVectorType>(V->getType())) 2220 return false; 2221 2222 if (auto *C = dyn_cast<Constant>(V)) { 2223 if (C->isNullValue()) 2224 return false; 2225 if (isa<ConstantInt>(C)) 2226 // Must be non-zero due to null test above. 2227 return true; 2228 2229 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2230 // See the comment for IntToPtr/PtrToInt instructions below. 2231 if (CE->getOpcode() == Instruction::IntToPtr || 2232 CE->getOpcode() == Instruction::PtrToInt) 2233 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2234 .getFixedSize() <= 2235 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2236 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2237 } 2238 2239 // For constant vectors, check that all elements are undefined or known 2240 // non-zero to determine that the whole vector is known non-zero. 2241 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2242 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2243 if (!DemandedElts[i]) 2244 continue; 2245 Constant *Elt = C->getAggregateElement(i); 2246 if (!Elt || Elt->isNullValue()) 2247 return false; 2248 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2249 return false; 2250 } 2251 return true; 2252 } 2253 2254 // A global variable in address space 0 is non null unless extern weak 2255 // or an absolute symbol reference. Other address spaces may have null as a 2256 // valid address for a global, so we can't assume anything. 2257 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2258 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2259 GV->getType()->getAddressSpace() == 0) 2260 return true; 2261 } else 2262 return false; 2263 } 2264 2265 if (auto *I = dyn_cast<Instruction>(V)) { 2266 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2267 // If the possible ranges don't contain zero, then the value is 2268 // definitely non-zero. 2269 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2270 const APInt ZeroValue(Ty->getBitWidth(), 0); 2271 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2272 return true; 2273 } 2274 } 2275 } 2276 2277 if (isKnownNonZeroFromAssume(V, Q)) 2278 return true; 2279 2280 // Some of the tests below are recursive, so bail out if we hit the limit. 2281 if (Depth++ >= MaxAnalysisRecursionDepth) 2282 return false; 2283 2284 // Check for pointer simplifications. 2285 2286 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2287 // Alloca never returns null, malloc might. 2288 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2289 return true; 2290 2291 // A byval, inalloca may not be null in a non-default addres space. A 2292 // nonnull argument is assumed never 0. 2293 if (const Argument *A = dyn_cast<Argument>(V)) { 2294 if (((A->hasPassPointeeByValueCopyAttr() && 2295 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2296 A->hasNonNullAttr())) 2297 return true; 2298 } 2299 2300 // A Load tagged with nonnull metadata is never null. 2301 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2302 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2303 return true; 2304 2305 if (const auto *Call = dyn_cast<CallBase>(V)) { 2306 if (Call->isReturnNonNull()) 2307 return true; 2308 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2309 return isKnownNonZero(RP, Depth, Q); 2310 } 2311 } 2312 2313 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2314 return true; 2315 2316 // Check for recursive pointer simplifications. 2317 if (V->getType()->isPointerTy()) { 2318 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2319 // do not alter the value, or at least not the nullness property of the 2320 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2321 // 2322 // Note that we have to take special care to avoid looking through 2323 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2324 // as casts that can alter the value, e.g., AddrSpaceCasts. 2325 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2326 return isGEPKnownNonNull(GEP, Depth, Q); 2327 2328 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2329 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2330 2331 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2332 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2333 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2334 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2335 } 2336 2337 // Similar to int2ptr above, we can look through ptr2int here if the cast 2338 // is a no-op or an extend and not a truncate. 2339 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2340 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2341 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2342 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2343 2344 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2345 2346 // X | Y != 0 if X != 0 or Y != 0. 2347 Value *X = nullptr, *Y = nullptr; 2348 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2349 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2350 isKnownNonZero(Y, DemandedElts, Depth, Q); 2351 2352 // ext X != 0 if X != 0. 2353 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2354 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2355 2356 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2357 // if the lowest bit is shifted off the end. 2358 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2359 // shl nuw can't remove any non-zero bits. 2360 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2361 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2362 return isKnownNonZero(X, Depth, Q); 2363 2364 KnownBits Known(BitWidth); 2365 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2366 if (Known.One[0]) 2367 return true; 2368 } 2369 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2370 // defined if the sign bit is shifted off the end. 2371 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2372 // shr exact can only shift out zero bits. 2373 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2374 if (BO->isExact()) 2375 return isKnownNonZero(X, Depth, Q); 2376 2377 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2378 if (Known.isNegative()) 2379 return true; 2380 2381 // If the shifter operand is a constant, and all of the bits shifted 2382 // out are known to be zero, and X is known non-zero then at least one 2383 // non-zero bit must remain. 2384 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2385 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2386 // Is there a known one in the portion not shifted out? 2387 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2388 return true; 2389 // Are all the bits to be shifted out known zero? 2390 if (Known.countMinTrailingZeros() >= ShiftVal) 2391 return isKnownNonZero(X, DemandedElts, Depth, Q); 2392 } 2393 } 2394 // div exact can only produce a zero if the dividend is zero. 2395 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2396 return isKnownNonZero(X, DemandedElts, Depth, Q); 2397 } 2398 // X + Y. 2399 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2400 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2401 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2402 2403 // If X and Y are both non-negative (as signed values) then their sum is not 2404 // zero unless both X and Y are zero. 2405 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2406 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2407 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2408 return true; 2409 2410 // If X and Y are both negative (as signed values) then their sum is not 2411 // zero unless both X and Y equal INT_MIN. 2412 if (XKnown.isNegative() && YKnown.isNegative()) { 2413 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2414 // The sign bit of X is set. If some other bit is set then X is not equal 2415 // to INT_MIN. 2416 if (XKnown.One.intersects(Mask)) 2417 return true; 2418 // The sign bit of Y is set. If some other bit is set then Y is not equal 2419 // to INT_MIN. 2420 if (YKnown.One.intersects(Mask)) 2421 return true; 2422 } 2423 2424 // The sum of a non-negative number and a power of two is not zero. 2425 if (XKnown.isNonNegative() && 2426 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2427 return true; 2428 if (YKnown.isNonNegative() && 2429 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2430 return true; 2431 } 2432 // X * Y. 2433 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2434 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2435 // If X and Y are non-zero then so is X * Y as long as the multiplication 2436 // does not overflow. 2437 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2438 isKnownNonZero(X, DemandedElts, Depth, Q) && 2439 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2440 return true; 2441 } 2442 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2443 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2444 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2445 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2446 return true; 2447 } 2448 // PHI 2449 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2450 // Try and detect a recurrence that monotonically increases from a 2451 // starting value, as these are common as induction variables. 2452 if (PN->getNumIncomingValues() == 2) { 2453 Value *Start = PN->getIncomingValue(0); 2454 Value *Induction = PN->getIncomingValue(1); 2455 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2456 std::swap(Start, Induction); 2457 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2458 if (!C->isZero() && !C->isNegative()) { 2459 ConstantInt *X; 2460 if (Q.IIQ.UseInstrInfo && 2461 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2462 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2463 !X->isNegative()) 2464 return true; 2465 } 2466 } 2467 } 2468 // Check if all incoming values are non-zero using recursion. 2469 Query RecQ = Q; 2470 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2471 return llvm::all_of(PN->operands(), [&](const Use &U) { 2472 if (U.get() == PN) 2473 return true; 2474 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2475 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2476 }); 2477 } 2478 // ExtractElement 2479 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2480 const Value *Vec = EEI->getVectorOperand(); 2481 const Value *Idx = EEI->getIndexOperand(); 2482 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2483 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2484 unsigned NumElts = VecTy->getNumElements(); 2485 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2486 if (CIdx && CIdx->getValue().ult(NumElts)) 2487 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2488 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2489 } 2490 } 2491 // Freeze 2492 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2493 auto *Op = FI->getOperand(0); 2494 if (isKnownNonZero(Op, Depth, Q) && 2495 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2496 return true; 2497 } 2498 2499 KnownBits Known(BitWidth); 2500 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2501 return Known.One != 0; 2502 } 2503 2504 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2505 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2506 // vector 2507 if (isa<ScalableVectorType>(V->getType())) 2508 return false; 2509 2510 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2511 APInt DemandedElts = 2512 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2513 return isKnownNonZero(V, DemandedElts, Depth, Q); 2514 } 2515 2516 /// Return true if V2 == V1 + X, where X is known non-zero. 2517 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2518 const Query &Q) { 2519 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2520 if (!BO || BO->getOpcode() != Instruction::Add) 2521 return false; 2522 Value *Op = nullptr; 2523 if (V2 == BO->getOperand(0)) 2524 Op = BO->getOperand(1); 2525 else if (V2 == BO->getOperand(1)) 2526 Op = BO->getOperand(0); 2527 else 2528 return false; 2529 return isKnownNonZero(Op, Depth + 1, Q); 2530 } 2531 2532 2533 /// Return true if it is known that V1 != V2. 2534 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2535 const Query &Q) { 2536 if (V1 == V2) 2537 return false; 2538 if (V1->getType() != V2->getType()) 2539 // We can't look through casts yet. 2540 return false; 2541 2542 if (Depth >= MaxAnalysisRecursionDepth) 2543 return false; 2544 2545 // See if we can recurse through (exactly one of) our operands. This 2546 // requires our operation be 1-to-1 and map every input value to exactly 2547 // one output value. Such an operation is invertible. 2548 auto *O1 = dyn_cast<Operator>(V1); 2549 auto *O2 = dyn_cast<Operator>(V2); 2550 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2551 switch (O1->getOpcode()) { 2552 default: break; 2553 case Instruction::Add: 2554 case Instruction::Sub: 2555 // Assume operand order has been canonicalized 2556 if (O1->getOperand(0) == O2->getOperand(0)) 2557 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2558 Depth + 1, Q); 2559 if (O1->getOperand(1) == O2->getOperand(1)) 2560 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2561 Depth + 1, Q); 2562 break; 2563 case Instruction::Mul: { 2564 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2565 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2566 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2567 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2568 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2569 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2570 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2571 break; 2572 2573 // Assume operand order has been canonicalized 2574 if (O1->getOperand(1) == O2->getOperand(1) && 2575 isa<ConstantInt>(O1->getOperand(1)) && 2576 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2577 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2578 Depth + 1, Q); 2579 break; 2580 } 2581 case Instruction::SExt: 2582 case Instruction::ZExt: 2583 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2584 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2585 Depth + 1, Q); 2586 break; 2587 }; 2588 } 2589 2590 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2591 return true; 2592 2593 if (V1->getType()->isIntOrIntVectorTy()) { 2594 // Are any known bits in V1 contradictory to known bits in V2? If V1 2595 // has a known zero where V2 has a known one, they must not be equal. 2596 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2597 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2598 2599 if (Known1.Zero.intersects(Known2.One) || 2600 Known2.Zero.intersects(Known1.One)) 2601 return true; 2602 } 2603 return false; 2604 } 2605 2606 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2607 /// simplify operations downstream. Mask is known to be zero for bits that V 2608 /// cannot have. 2609 /// 2610 /// This function is defined on values with integer type, values with pointer 2611 /// type, and vectors of integers. In the case 2612 /// where V is a vector, the mask, known zero, and known one values are the 2613 /// same width as the vector element, and the bit is set only if it is true 2614 /// for all of the elements in the vector. 2615 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2616 const Query &Q) { 2617 KnownBits Known(Mask.getBitWidth()); 2618 computeKnownBits(V, Known, Depth, Q); 2619 return Mask.isSubsetOf(Known.Zero); 2620 } 2621 2622 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2623 // Returns the input and lower/upper bounds. 2624 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2625 const APInt *&CLow, const APInt *&CHigh) { 2626 assert(isa<Operator>(Select) && 2627 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2628 "Input should be a Select!"); 2629 2630 const Value *LHS = nullptr, *RHS = nullptr; 2631 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2632 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2633 return false; 2634 2635 if (!match(RHS, m_APInt(CLow))) 2636 return false; 2637 2638 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2639 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2640 if (getInverseMinMaxFlavor(SPF) != SPF2) 2641 return false; 2642 2643 if (!match(RHS2, m_APInt(CHigh))) 2644 return false; 2645 2646 if (SPF == SPF_SMIN) 2647 std::swap(CLow, CHigh); 2648 2649 In = LHS2; 2650 return CLow->sle(*CHigh); 2651 } 2652 2653 /// For vector constants, loop over the elements and find the constant with the 2654 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2655 /// or if any element was not analyzed; otherwise, return the count for the 2656 /// element with the minimum number of sign bits. 2657 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2658 const APInt &DemandedElts, 2659 unsigned TyBits) { 2660 const auto *CV = dyn_cast<Constant>(V); 2661 if (!CV || !isa<FixedVectorType>(CV->getType())) 2662 return 0; 2663 2664 unsigned MinSignBits = TyBits; 2665 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2666 for (unsigned i = 0; i != NumElts; ++i) { 2667 if (!DemandedElts[i]) 2668 continue; 2669 // If we find a non-ConstantInt, bail out. 2670 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2671 if (!Elt) 2672 return 0; 2673 2674 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2675 } 2676 2677 return MinSignBits; 2678 } 2679 2680 static unsigned ComputeNumSignBitsImpl(const Value *V, 2681 const APInt &DemandedElts, 2682 unsigned Depth, const Query &Q); 2683 2684 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2685 unsigned Depth, const Query &Q) { 2686 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2687 assert(Result > 0 && "At least one sign bit needs to be present!"); 2688 return Result; 2689 } 2690 2691 /// Return the number of times the sign bit of the register is replicated into 2692 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2693 /// (itself), but other cases can give us information. For example, immediately 2694 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2695 /// other, so we return 3. For vectors, return the number of sign bits for the 2696 /// vector element with the minimum number of known sign bits of the demanded 2697 /// elements in the vector specified by DemandedElts. 2698 static unsigned ComputeNumSignBitsImpl(const Value *V, 2699 const APInt &DemandedElts, 2700 unsigned Depth, const Query &Q) { 2701 Type *Ty = V->getType(); 2702 2703 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2704 // vector 2705 if (isa<ScalableVectorType>(Ty)) 2706 return 1; 2707 2708 #ifndef NDEBUG 2709 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2710 2711 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2712 assert( 2713 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2714 "DemandedElt width should equal the fixed vector number of elements"); 2715 } else { 2716 assert(DemandedElts == APInt(1, 1) && 2717 "DemandedElt width should be 1 for scalars"); 2718 } 2719 #endif 2720 2721 // We return the minimum number of sign bits that are guaranteed to be present 2722 // in V, so for undef we have to conservatively return 1. We don't have the 2723 // same behavior for poison though -- that's a FIXME today. 2724 2725 Type *ScalarTy = Ty->getScalarType(); 2726 unsigned TyBits = ScalarTy->isPointerTy() ? 2727 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2728 Q.DL.getTypeSizeInBits(ScalarTy); 2729 2730 unsigned Tmp, Tmp2; 2731 unsigned FirstAnswer = 1; 2732 2733 // Note that ConstantInt is handled by the general computeKnownBits case 2734 // below. 2735 2736 if (Depth == MaxAnalysisRecursionDepth) 2737 return 1; 2738 2739 if (auto *U = dyn_cast<Operator>(V)) { 2740 switch (Operator::getOpcode(V)) { 2741 default: break; 2742 case Instruction::SExt: 2743 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2744 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2745 2746 case Instruction::SDiv: { 2747 const APInt *Denominator; 2748 // sdiv X, C -> adds log(C) sign bits. 2749 if (match(U->getOperand(1), m_APInt(Denominator))) { 2750 2751 // Ignore non-positive denominator. 2752 if (!Denominator->isStrictlyPositive()) 2753 break; 2754 2755 // Calculate the incoming numerator bits. 2756 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2757 2758 // Add floor(log(C)) bits to the numerator bits. 2759 return std::min(TyBits, NumBits + Denominator->logBase2()); 2760 } 2761 break; 2762 } 2763 2764 case Instruction::SRem: { 2765 const APInt *Denominator; 2766 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2767 // positive constant. This let us put a lower bound on the number of sign 2768 // bits. 2769 if (match(U->getOperand(1), m_APInt(Denominator))) { 2770 2771 // Ignore non-positive denominator. 2772 if (!Denominator->isStrictlyPositive()) 2773 break; 2774 2775 // Calculate the incoming numerator bits. SRem by a positive constant 2776 // can't lower the number of sign bits. 2777 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2778 2779 // Calculate the leading sign bit constraints by examining the 2780 // denominator. Given that the denominator is positive, there are two 2781 // cases: 2782 // 2783 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2784 // (1 << ceilLogBase2(C)). 2785 // 2786 // 2. the numerator is negative. Then the result range is (-C,0] and 2787 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2788 // 2789 // Thus a lower bound on the number of sign bits is `TyBits - 2790 // ceilLogBase2(C)`. 2791 2792 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2793 return std::max(NumrBits, ResBits); 2794 } 2795 break; 2796 } 2797 2798 case Instruction::AShr: { 2799 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2800 // ashr X, C -> adds C sign bits. Vectors too. 2801 const APInt *ShAmt; 2802 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2803 if (ShAmt->uge(TyBits)) 2804 break; // Bad shift. 2805 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2806 Tmp += ShAmtLimited; 2807 if (Tmp > TyBits) Tmp = TyBits; 2808 } 2809 return Tmp; 2810 } 2811 case Instruction::Shl: { 2812 const APInt *ShAmt; 2813 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2814 // shl destroys sign bits. 2815 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2816 if (ShAmt->uge(TyBits) || // Bad shift. 2817 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2818 Tmp2 = ShAmt->getZExtValue(); 2819 return Tmp - Tmp2; 2820 } 2821 break; 2822 } 2823 case Instruction::And: 2824 case Instruction::Or: 2825 case Instruction::Xor: // NOT is handled here. 2826 // Logical binary ops preserve the number of sign bits at the worst. 2827 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2828 if (Tmp != 1) { 2829 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2830 FirstAnswer = std::min(Tmp, Tmp2); 2831 // We computed what we know about the sign bits as our first 2832 // answer. Now proceed to the generic code that uses 2833 // computeKnownBits, and pick whichever answer is better. 2834 } 2835 break; 2836 2837 case Instruction::Select: { 2838 // If we have a clamp pattern, we know that the number of sign bits will 2839 // be the minimum of the clamp min/max range. 2840 const Value *X; 2841 const APInt *CLow, *CHigh; 2842 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2843 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2844 2845 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2846 if (Tmp == 1) break; 2847 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2848 return std::min(Tmp, Tmp2); 2849 } 2850 2851 case Instruction::Add: 2852 // Add can have at most one carry bit. Thus we know that the output 2853 // is, at worst, one more bit than the inputs. 2854 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2855 if (Tmp == 1) break; 2856 2857 // Special case decrementing a value (ADD X, -1): 2858 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2859 if (CRHS->isAllOnesValue()) { 2860 KnownBits Known(TyBits); 2861 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2862 2863 // If the input is known to be 0 or 1, the output is 0/-1, which is 2864 // all sign bits set. 2865 if ((Known.Zero | 1).isAllOnesValue()) 2866 return TyBits; 2867 2868 // If we are subtracting one from a positive number, there is no carry 2869 // out of the result. 2870 if (Known.isNonNegative()) 2871 return Tmp; 2872 } 2873 2874 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2875 if (Tmp2 == 1) break; 2876 return std::min(Tmp, Tmp2) - 1; 2877 2878 case Instruction::Sub: 2879 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2880 if (Tmp2 == 1) break; 2881 2882 // Handle NEG. 2883 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2884 if (CLHS->isNullValue()) { 2885 KnownBits Known(TyBits); 2886 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2887 // If the input is known to be 0 or 1, the output is 0/-1, which is 2888 // all sign bits set. 2889 if ((Known.Zero | 1).isAllOnesValue()) 2890 return TyBits; 2891 2892 // If the input is known to be positive (the sign bit is known clear), 2893 // the output of the NEG has the same number of sign bits as the 2894 // input. 2895 if (Known.isNonNegative()) 2896 return Tmp2; 2897 2898 // Otherwise, we treat this like a SUB. 2899 } 2900 2901 // Sub can have at most one carry bit. Thus we know that the output 2902 // is, at worst, one more bit than the inputs. 2903 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2904 if (Tmp == 1) break; 2905 return std::min(Tmp, Tmp2) - 1; 2906 2907 case Instruction::Mul: { 2908 // The output of the Mul can be at most twice the valid bits in the 2909 // inputs. 2910 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2911 if (SignBitsOp0 == 1) break; 2912 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2913 if (SignBitsOp1 == 1) break; 2914 unsigned OutValidBits = 2915 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2916 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2917 } 2918 2919 case Instruction::PHI: { 2920 const PHINode *PN = cast<PHINode>(U); 2921 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2922 // Don't analyze large in-degree PHIs. 2923 if (NumIncomingValues > 4) break; 2924 // Unreachable blocks may have zero-operand PHI nodes. 2925 if (NumIncomingValues == 0) break; 2926 2927 // Take the minimum of all incoming values. This can't infinitely loop 2928 // because of our depth threshold. 2929 Query RecQ = Q; 2930 Tmp = TyBits; 2931 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2932 if (Tmp == 1) return Tmp; 2933 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2934 Tmp = std::min( 2935 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2936 } 2937 return Tmp; 2938 } 2939 2940 case Instruction::Trunc: 2941 // FIXME: it's tricky to do anything useful for this, but it is an 2942 // important case for targets like X86. 2943 break; 2944 2945 case Instruction::ExtractElement: 2946 // Look through extract element. At the moment we keep this simple and 2947 // skip tracking the specific element. But at least we might find 2948 // information valid for all elements of the vector (for example if vector 2949 // is sign extended, shifted, etc). 2950 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2951 2952 case Instruction::ShuffleVector: { 2953 // Collect the minimum number of sign bits that are shared by every vector 2954 // element referenced by the shuffle. 2955 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2956 if (!Shuf) { 2957 // FIXME: Add support for shufflevector constant expressions. 2958 return 1; 2959 } 2960 APInt DemandedLHS, DemandedRHS; 2961 // For undef elements, we don't know anything about the common state of 2962 // the shuffle result. 2963 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2964 return 1; 2965 Tmp = std::numeric_limits<unsigned>::max(); 2966 if (!!DemandedLHS) { 2967 const Value *LHS = Shuf->getOperand(0); 2968 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2969 } 2970 // If we don't know anything, early out and try computeKnownBits 2971 // fall-back. 2972 if (Tmp == 1) 2973 break; 2974 if (!!DemandedRHS) { 2975 const Value *RHS = Shuf->getOperand(1); 2976 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2977 Tmp = std::min(Tmp, Tmp2); 2978 } 2979 // If we don't know anything, early out and try computeKnownBits 2980 // fall-back. 2981 if (Tmp == 1) 2982 break; 2983 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2984 return Tmp; 2985 } 2986 case Instruction::Call: { 2987 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2988 switch (II->getIntrinsicID()) { 2989 default: break; 2990 case Intrinsic::abs: 2991 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2992 if (Tmp == 1) break; 2993 2994 // Absolute value reduces number of sign bits by at most 1. 2995 return Tmp - 1; 2996 } 2997 } 2998 } 2999 } 3000 } 3001 3002 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3003 // use this information. 3004 3005 // If we can examine all elements of a vector constant successfully, we're 3006 // done (we can't do any better than that). If not, keep trying. 3007 if (unsigned VecSignBits = 3008 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3009 return VecSignBits; 3010 3011 KnownBits Known(TyBits); 3012 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3013 3014 // If we know that the sign bit is either zero or one, determine the number of 3015 // identical bits in the top of the input value. 3016 return std::max(FirstAnswer, Known.countMinSignBits()); 3017 } 3018 3019 /// This function computes the integer multiple of Base that equals V. 3020 /// If successful, it returns true and returns the multiple in 3021 /// Multiple. If unsuccessful, it returns false. It looks 3022 /// through SExt instructions only if LookThroughSExt is true. 3023 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3024 bool LookThroughSExt, unsigned Depth) { 3025 assert(V && "No Value?"); 3026 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3027 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3028 3029 Type *T = V->getType(); 3030 3031 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3032 3033 if (Base == 0) 3034 return false; 3035 3036 if (Base == 1) { 3037 Multiple = V; 3038 return true; 3039 } 3040 3041 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3042 Constant *BaseVal = ConstantInt::get(T, Base); 3043 if (CO && CO == BaseVal) { 3044 // Multiple is 1. 3045 Multiple = ConstantInt::get(T, 1); 3046 return true; 3047 } 3048 3049 if (CI && CI->getZExtValue() % Base == 0) { 3050 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3051 return true; 3052 } 3053 3054 if (Depth == MaxAnalysisRecursionDepth) return false; 3055 3056 Operator *I = dyn_cast<Operator>(V); 3057 if (!I) return false; 3058 3059 switch (I->getOpcode()) { 3060 default: break; 3061 case Instruction::SExt: 3062 if (!LookThroughSExt) return false; 3063 // otherwise fall through to ZExt 3064 LLVM_FALLTHROUGH; 3065 case Instruction::ZExt: 3066 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3067 LookThroughSExt, Depth+1); 3068 case Instruction::Shl: 3069 case Instruction::Mul: { 3070 Value *Op0 = I->getOperand(0); 3071 Value *Op1 = I->getOperand(1); 3072 3073 if (I->getOpcode() == Instruction::Shl) { 3074 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3075 if (!Op1CI) return false; 3076 // Turn Op0 << Op1 into Op0 * 2^Op1 3077 APInt Op1Int = Op1CI->getValue(); 3078 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3079 APInt API(Op1Int.getBitWidth(), 0); 3080 API.setBit(BitToSet); 3081 Op1 = ConstantInt::get(V->getContext(), API); 3082 } 3083 3084 Value *Mul0 = nullptr; 3085 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3086 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3087 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3088 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3089 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3090 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3091 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3092 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3093 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3094 3095 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3096 Multiple = ConstantExpr::getMul(MulC, Op1C); 3097 return true; 3098 } 3099 3100 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3101 if (Mul0CI->getValue() == 1) { 3102 // V == Base * Op1, so return Op1 3103 Multiple = Op1; 3104 return true; 3105 } 3106 } 3107 3108 Value *Mul1 = nullptr; 3109 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3110 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3111 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3112 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3113 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3114 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3115 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3116 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3117 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3118 3119 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3120 Multiple = ConstantExpr::getMul(MulC, Op0C); 3121 return true; 3122 } 3123 3124 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3125 if (Mul1CI->getValue() == 1) { 3126 // V == Base * Op0, so return Op0 3127 Multiple = Op0; 3128 return true; 3129 } 3130 } 3131 } 3132 } 3133 3134 // We could not determine if V is a multiple of Base. 3135 return false; 3136 } 3137 3138 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3139 const TargetLibraryInfo *TLI) { 3140 const Function *F = CB.getCalledFunction(); 3141 if (!F) 3142 return Intrinsic::not_intrinsic; 3143 3144 if (F->isIntrinsic()) 3145 return F->getIntrinsicID(); 3146 3147 // We are going to infer semantics of a library function based on mapping it 3148 // to an LLVM intrinsic. Check that the library function is available from 3149 // this callbase and in this environment. 3150 LibFunc Func; 3151 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3152 !CB.onlyReadsMemory()) 3153 return Intrinsic::not_intrinsic; 3154 3155 switch (Func) { 3156 default: 3157 break; 3158 case LibFunc_sin: 3159 case LibFunc_sinf: 3160 case LibFunc_sinl: 3161 return Intrinsic::sin; 3162 case LibFunc_cos: 3163 case LibFunc_cosf: 3164 case LibFunc_cosl: 3165 return Intrinsic::cos; 3166 case LibFunc_exp: 3167 case LibFunc_expf: 3168 case LibFunc_expl: 3169 return Intrinsic::exp; 3170 case LibFunc_exp2: 3171 case LibFunc_exp2f: 3172 case LibFunc_exp2l: 3173 return Intrinsic::exp2; 3174 case LibFunc_log: 3175 case LibFunc_logf: 3176 case LibFunc_logl: 3177 return Intrinsic::log; 3178 case LibFunc_log10: 3179 case LibFunc_log10f: 3180 case LibFunc_log10l: 3181 return Intrinsic::log10; 3182 case LibFunc_log2: 3183 case LibFunc_log2f: 3184 case LibFunc_log2l: 3185 return Intrinsic::log2; 3186 case LibFunc_fabs: 3187 case LibFunc_fabsf: 3188 case LibFunc_fabsl: 3189 return Intrinsic::fabs; 3190 case LibFunc_fmin: 3191 case LibFunc_fminf: 3192 case LibFunc_fminl: 3193 return Intrinsic::minnum; 3194 case LibFunc_fmax: 3195 case LibFunc_fmaxf: 3196 case LibFunc_fmaxl: 3197 return Intrinsic::maxnum; 3198 case LibFunc_copysign: 3199 case LibFunc_copysignf: 3200 case LibFunc_copysignl: 3201 return Intrinsic::copysign; 3202 case LibFunc_floor: 3203 case LibFunc_floorf: 3204 case LibFunc_floorl: 3205 return Intrinsic::floor; 3206 case LibFunc_ceil: 3207 case LibFunc_ceilf: 3208 case LibFunc_ceill: 3209 return Intrinsic::ceil; 3210 case LibFunc_trunc: 3211 case LibFunc_truncf: 3212 case LibFunc_truncl: 3213 return Intrinsic::trunc; 3214 case LibFunc_rint: 3215 case LibFunc_rintf: 3216 case LibFunc_rintl: 3217 return Intrinsic::rint; 3218 case LibFunc_nearbyint: 3219 case LibFunc_nearbyintf: 3220 case LibFunc_nearbyintl: 3221 return Intrinsic::nearbyint; 3222 case LibFunc_round: 3223 case LibFunc_roundf: 3224 case LibFunc_roundl: 3225 return Intrinsic::round; 3226 case LibFunc_roundeven: 3227 case LibFunc_roundevenf: 3228 case LibFunc_roundevenl: 3229 return Intrinsic::roundeven; 3230 case LibFunc_pow: 3231 case LibFunc_powf: 3232 case LibFunc_powl: 3233 return Intrinsic::pow; 3234 case LibFunc_sqrt: 3235 case LibFunc_sqrtf: 3236 case LibFunc_sqrtl: 3237 return Intrinsic::sqrt; 3238 } 3239 3240 return Intrinsic::not_intrinsic; 3241 } 3242 3243 /// Return true if we can prove that the specified FP value is never equal to 3244 /// -0.0. 3245 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3246 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3247 /// the same as +0.0 in floating-point ops. 3248 /// 3249 /// NOTE: this function will need to be revisited when we support non-default 3250 /// rounding modes! 3251 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3252 unsigned Depth) { 3253 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3254 return !CFP->getValueAPF().isNegZero(); 3255 3256 if (Depth == MaxAnalysisRecursionDepth) 3257 return false; 3258 3259 auto *Op = dyn_cast<Operator>(V); 3260 if (!Op) 3261 return false; 3262 3263 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3264 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3265 return true; 3266 3267 // sitofp and uitofp turn into +0.0 for zero. 3268 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3269 return true; 3270 3271 if (auto *Call = dyn_cast<CallInst>(Op)) { 3272 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3273 switch (IID) { 3274 default: 3275 break; 3276 // sqrt(-0.0) = -0.0, no other negative results are possible. 3277 case Intrinsic::sqrt: 3278 case Intrinsic::canonicalize: 3279 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3280 // fabs(x) != -0.0 3281 case Intrinsic::fabs: 3282 return true; 3283 } 3284 } 3285 3286 return false; 3287 } 3288 3289 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3290 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3291 /// bit despite comparing equal. 3292 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3293 const TargetLibraryInfo *TLI, 3294 bool SignBitOnly, 3295 unsigned Depth) { 3296 // TODO: This function does not do the right thing when SignBitOnly is true 3297 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3298 // which flips the sign bits of NaNs. See 3299 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3300 3301 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3302 return !CFP->getValueAPF().isNegative() || 3303 (!SignBitOnly && CFP->getValueAPF().isZero()); 3304 } 3305 3306 // Handle vector of constants. 3307 if (auto *CV = dyn_cast<Constant>(V)) { 3308 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3309 unsigned NumElts = CVFVTy->getNumElements(); 3310 for (unsigned i = 0; i != NumElts; ++i) { 3311 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3312 if (!CFP) 3313 return false; 3314 if (CFP->getValueAPF().isNegative() && 3315 (SignBitOnly || !CFP->getValueAPF().isZero())) 3316 return false; 3317 } 3318 3319 // All non-negative ConstantFPs. 3320 return true; 3321 } 3322 } 3323 3324 if (Depth == MaxAnalysisRecursionDepth) 3325 return false; 3326 3327 const Operator *I = dyn_cast<Operator>(V); 3328 if (!I) 3329 return false; 3330 3331 switch (I->getOpcode()) { 3332 default: 3333 break; 3334 // Unsigned integers are always nonnegative. 3335 case Instruction::UIToFP: 3336 return true; 3337 case Instruction::FMul: 3338 case Instruction::FDiv: 3339 // X * X is always non-negative or a NaN. 3340 // X / X is always exactly 1.0 or a NaN. 3341 if (I->getOperand(0) == I->getOperand(1) && 3342 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3343 return true; 3344 3345 LLVM_FALLTHROUGH; 3346 case Instruction::FAdd: 3347 case Instruction::FRem: 3348 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3349 Depth + 1) && 3350 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3351 Depth + 1); 3352 case Instruction::Select: 3353 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3354 Depth + 1) && 3355 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3356 Depth + 1); 3357 case Instruction::FPExt: 3358 case Instruction::FPTrunc: 3359 // Widening/narrowing never change sign. 3360 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3361 Depth + 1); 3362 case Instruction::ExtractElement: 3363 // Look through extract element. At the moment we keep this simple and skip 3364 // tracking the specific element. But at least we might find information 3365 // valid for all elements of the vector. 3366 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3367 Depth + 1); 3368 case Instruction::Call: 3369 const auto *CI = cast<CallInst>(I); 3370 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3371 switch (IID) { 3372 default: 3373 break; 3374 case Intrinsic::maxnum: { 3375 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3376 auto isPositiveNum = [&](Value *V) { 3377 if (SignBitOnly) { 3378 // With SignBitOnly, this is tricky because the result of 3379 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3380 // a constant strictly greater than 0.0. 3381 const APFloat *C; 3382 return match(V, m_APFloat(C)) && 3383 *C > APFloat::getZero(C->getSemantics()); 3384 } 3385 3386 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3387 // maxnum can't be ordered-less-than-zero. 3388 return isKnownNeverNaN(V, TLI) && 3389 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3390 }; 3391 3392 // TODO: This could be improved. We could also check that neither operand 3393 // has its sign bit set (and at least 1 is not-NAN?). 3394 return isPositiveNum(V0) || isPositiveNum(V1); 3395 } 3396 3397 case Intrinsic::maximum: 3398 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3399 Depth + 1) || 3400 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3401 Depth + 1); 3402 case Intrinsic::minnum: 3403 case Intrinsic::minimum: 3404 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3405 Depth + 1) && 3406 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3407 Depth + 1); 3408 case Intrinsic::exp: 3409 case Intrinsic::exp2: 3410 case Intrinsic::fabs: 3411 return true; 3412 3413 case Intrinsic::sqrt: 3414 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3415 if (!SignBitOnly) 3416 return true; 3417 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3418 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3419 3420 case Intrinsic::powi: 3421 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3422 // powi(x,n) is non-negative if n is even. 3423 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3424 return true; 3425 } 3426 // TODO: This is not correct. Given that exp is an integer, here are the 3427 // ways that pow can return a negative value: 3428 // 3429 // pow(x, exp) --> negative if exp is odd and x is negative. 3430 // pow(-0, exp) --> -inf if exp is negative odd. 3431 // pow(-0, exp) --> -0 if exp is positive odd. 3432 // pow(-inf, exp) --> -0 if exp is negative odd. 3433 // pow(-inf, exp) --> -inf if exp is positive odd. 3434 // 3435 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3436 // but we must return false if x == -0. Unfortunately we do not currently 3437 // have a way of expressing this constraint. See details in 3438 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3439 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3440 Depth + 1); 3441 3442 case Intrinsic::fma: 3443 case Intrinsic::fmuladd: 3444 // x*x+y is non-negative if y is non-negative. 3445 return I->getOperand(0) == I->getOperand(1) && 3446 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3447 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3448 Depth + 1); 3449 } 3450 break; 3451 } 3452 return false; 3453 } 3454 3455 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3456 const TargetLibraryInfo *TLI) { 3457 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3458 } 3459 3460 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3461 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3462 } 3463 3464 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3465 unsigned Depth) { 3466 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3467 3468 // If we're told that infinities won't happen, assume they won't. 3469 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3470 if (FPMathOp->hasNoInfs()) 3471 return true; 3472 3473 // Handle scalar constants. 3474 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3475 return !CFP->isInfinity(); 3476 3477 if (Depth == MaxAnalysisRecursionDepth) 3478 return false; 3479 3480 if (auto *Inst = dyn_cast<Instruction>(V)) { 3481 switch (Inst->getOpcode()) { 3482 case Instruction::Select: { 3483 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3484 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3485 } 3486 case Instruction::SIToFP: 3487 case Instruction::UIToFP: { 3488 // Get width of largest magnitude integer (remove a bit if signed). 3489 // This still works for a signed minimum value because the largest FP 3490 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3491 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3492 if (Inst->getOpcode() == Instruction::SIToFP) 3493 --IntSize; 3494 3495 // If the exponent of the largest finite FP value can hold the largest 3496 // integer, the result of the cast must be finite. 3497 Type *FPTy = Inst->getType()->getScalarType(); 3498 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3499 } 3500 default: 3501 break; 3502 } 3503 } 3504 3505 // try to handle fixed width vector constants 3506 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3507 if (VFVTy && isa<Constant>(V)) { 3508 // For vectors, verify that each element is not infinity. 3509 unsigned NumElts = VFVTy->getNumElements(); 3510 for (unsigned i = 0; i != NumElts; ++i) { 3511 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3512 if (!Elt) 3513 return false; 3514 if (isa<UndefValue>(Elt)) 3515 continue; 3516 auto *CElt = dyn_cast<ConstantFP>(Elt); 3517 if (!CElt || CElt->isInfinity()) 3518 return false; 3519 } 3520 // All elements were confirmed non-infinity or undefined. 3521 return true; 3522 } 3523 3524 // was not able to prove that V never contains infinity 3525 return false; 3526 } 3527 3528 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3529 unsigned Depth) { 3530 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3531 3532 // If we're told that NaNs won't happen, assume they won't. 3533 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3534 if (FPMathOp->hasNoNaNs()) 3535 return true; 3536 3537 // Handle scalar constants. 3538 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3539 return !CFP->isNaN(); 3540 3541 if (Depth == MaxAnalysisRecursionDepth) 3542 return false; 3543 3544 if (auto *Inst = dyn_cast<Instruction>(V)) { 3545 switch (Inst->getOpcode()) { 3546 case Instruction::FAdd: 3547 case Instruction::FSub: 3548 // Adding positive and negative infinity produces NaN. 3549 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3550 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3551 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3552 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3553 3554 case Instruction::FMul: 3555 // Zero multiplied with infinity produces NaN. 3556 // FIXME: If neither side can be zero fmul never produces NaN. 3557 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3558 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3559 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3560 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3561 3562 case Instruction::FDiv: 3563 case Instruction::FRem: 3564 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3565 return false; 3566 3567 case Instruction::Select: { 3568 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3569 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3570 } 3571 case Instruction::SIToFP: 3572 case Instruction::UIToFP: 3573 return true; 3574 case Instruction::FPTrunc: 3575 case Instruction::FPExt: 3576 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3577 default: 3578 break; 3579 } 3580 } 3581 3582 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3583 switch (II->getIntrinsicID()) { 3584 case Intrinsic::canonicalize: 3585 case Intrinsic::fabs: 3586 case Intrinsic::copysign: 3587 case Intrinsic::exp: 3588 case Intrinsic::exp2: 3589 case Intrinsic::floor: 3590 case Intrinsic::ceil: 3591 case Intrinsic::trunc: 3592 case Intrinsic::rint: 3593 case Intrinsic::nearbyint: 3594 case Intrinsic::round: 3595 case Intrinsic::roundeven: 3596 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3597 case Intrinsic::sqrt: 3598 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3599 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3600 case Intrinsic::minnum: 3601 case Intrinsic::maxnum: 3602 // If either operand is not NaN, the result is not NaN. 3603 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3604 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3605 default: 3606 return false; 3607 } 3608 } 3609 3610 // Try to handle fixed width vector constants 3611 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3612 if (VFVTy && isa<Constant>(V)) { 3613 // For vectors, verify that each element is not NaN. 3614 unsigned NumElts = VFVTy->getNumElements(); 3615 for (unsigned i = 0; i != NumElts; ++i) { 3616 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3617 if (!Elt) 3618 return false; 3619 if (isa<UndefValue>(Elt)) 3620 continue; 3621 auto *CElt = dyn_cast<ConstantFP>(Elt); 3622 if (!CElt || CElt->isNaN()) 3623 return false; 3624 } 3625 // All elements were confirmed not-NaN or undefined. 3626 return true; 3627 } 3628 3629 // Was not able to prove that V never contains NaN 3630 return false; 3631 } 3632 3633 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3634 3635 // All byte-wide stores are splatable, even of arbitrary variables. 3636 if (V->getType()->isIntegerTy(8)) 3637 return V; 3638 3639 LLVMContext &Ctx = V->getContext(); 3640 3641 // Undef don't care. 3642 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3643 if (isa<UndefValue>(V)) 3644 return UndefInt8; 3645 3646 // Return Undef for zero-sized type. 3647 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3648 return UndefInt8; 3649 3650 Constant *C = dyn_cast<Constant>(V); 3651 if (!C) { 3652 // Conceptually, we could handle things like: 3653 // %a = zext i8 %X to i16 3654 // %b = shl i16 %a, 8 3655 // %c = or i16 %a, %b 3656 // but until there is an example that actually needs this, it doesn't seem 3657 // worth worrying about. 3658 return nullptr; 3659 } 3660 3661 // Handle 'null' ConstantArrayZero etc. 3662 if (C->isNullValue()) 3663 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3664 3665 // Constant floating-point values can be handled as integer values if the 3666 // corresponding integer value is "byteable". An important case is 0.0. 3667 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3668 Type *Ty = nullptr; 3669 if (CFP->getType()->isHalfTy()) 3670 Ty = Type::getInt16Ty(Ctx); 3671 else if (CFP->getType()->isFloatTy()) 3672 Ty = Type::getInt32Ty(Ctx); 3673 else if (CFP->getType()->isDoubleTy()) 3674 Ty = Type::getInt64Ty(Ctx); 3675 // Don't handle long double formats, which have strange constraints. 3676 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3677 : nullptr; 3678 } 3679 3680 // We can handle constant integers that are multiple of 8 bits. 3681 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3682 if (CI->getBitWidth() % 8 == 0) { 3683 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3684 if (!CI->getValue().isSplat(8)) 3685 return nullptr; 3686 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3687 } 3688 } 3689 3690 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3691 if (CE->getOpcode() == Instruction::IntToPtr) { 3692 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3693 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3694 return isBytewiseValue( 3695 ConstantExpr::getIntegerCast(CE->getOperand(0), 3696 Type::getIntNTy(Ctx, BitWidth), false), 3697 DL); 3698 } 3699 } 3700 } 3701 3702 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3703 if (LHS == RHS) 3704 return LHS; 3705 if (!LHS || !RHS) 3706 return nullptr; 3707 if (LHS == UndefInt8) 3708 return RHS; 3709 if (RHS == UndefInt8) 3710 return LHS; 3711 return nullptr; 3712 }; 3713 3714 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3715 Value *Val = UndefInt8; 3716 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3717 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3718 return nullptr; 3719 return Val; 3720 } 3721 3722 if (isa<ConstantAggregate>(C)) { 3723 Value *Val = UndefInt8; 3724 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3725 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3726 return nullptr; 3727 return Val; 3728 } 3729 3730 // Don't try to handle the handful of other constants. 3731 return nullptr; 3732 } 3733 3734 // This is the recursive version of BuildSubAggregate. It takes a few different 3735 // arguments. Idxs is the index within the nested struct From that we are 3736 // looking at now (which is of type IndexedType). IdxSkip is the number of 3737 // indices from Idxs that should be left out when inserting into the resulting 3738 // struct. To is the result struct built so far, new insertvalue instructions 3739 // build on that. 3740 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3741 SmallVectorImpl<unsigned> &Idxs, 3742 unsigned IdxSkip, 3743 Instruction *InsertBefore) { 3744 StructType *STy = dyn_cast<StructType>(IndexedType); 3745 if (STy) { 3746 // Save the original To argument so we can modify it 3747 Value *OrigTo = To; 3748 // General case, the type indexed by Idxs is a struct 3749 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3750 // Process each struct element recursively 3751 Idxs.push_back(i); 3752 Value *PrevTo = To; 3753 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3754 InsertBefore); 3755 Idxs.pop_back(); 3756 if (!To) { 3757 // Couldn't find any inserted value for this index? Cleanup 3758 while (PrevTo != OrigTo) { 3759 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3760 PrevTo = Del->getAggregateOperand(); 3761 Del->eraseFromParent(); 3762 } 3763 // Stop processing elements 3764 break; 3765 } 3766 } 3767 // If we successfully found a value for each of our subaggregates 3768 if (To) 3769 return To; 3770 } 3771 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3772 // the struct's elements had a value that was inserted directly. In the latter 3773 // case, perhaps we can't determine each of the subelements individually, but 3774 // we might be able to find the complete struct somewhere. 3775 3776 // Find the value that is at that particular spot 3777 Value *V = FindInsertedValue(From, Idxs); 3778 3779 if (!V) 3780 return nullptr; 3781 3782 // Insert the value in the new (sub) aggregate 3783 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3784 "tmp", InsertBefore); 3785 } 3786 3787 // This helper takes a nested struct and extracts a part of it (which is again a 3788 // struct) into a new value. For example, given the struct: 3789 // { a, { b, { c, d }, e } } 3790 // and the indices "1, 1" this returns 3791 // { c, d }. 3792 // 3793 // It does this by inserting an insertvalue for each element in the resulting 3794 // struct, as opposed to just inserting a single struct. This will only work if 3795 // each of the elements of the substruct are known (ie, inserted into From by an 3796 // insertvalue instruction somewhere). 3797 // 3798 // All inserted insertvalue instructions are inserted before InsertBefore 3799 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3800 Instruction *InsertBefore) { 3801 assert(InsertBefore && "Must have someplace to insert!"); 3802 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3803 idx_range); 3804 Value *To = UndefValue::get(IndexedType); 3805 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3806 unsigned IdxSkip = Idxs.size(); 3807 3808 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3809 } 3810 3811 /// Given an aggregate and a sequence of indices, see if the scalar value 3812 /// indexed is already around as a register, for example if it was inserted 3813 /// directly into the aggregate. 3814 /// 3815 /// If InsertBefore is not null, this function will duplicate (modified) 3816 /// insertvalues when a part of a nested struct is extracted. 3817 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3818 Instruction *InsertBefore) { 3819 // Nothing to index? Just return V then (this is useful at the end of our 3820 // recursion). 3821 if (idx_range.empty()) 3822 return V; 3823 // We have indices, so V should have an indexable type. 3824 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3825 "Not looking at a struct or array?"); 3826 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3827 "Invalid indices for type?"); 3828 3829 if (Constant *C = dyn_cast<Constant>(V)) { 3830 C = C->getAggregateElement(idx_range[0]); 3831 if (!C) return nullptr; 3832 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3833 } 3834 3835 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3836 // Loop the indices for the insertvalue instruction in parallel with the 3837 // requested indices 3838 const unsigned *req_idx = idx_range.begin(); 3839 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3840 i != e; ++i, ++req_idx) { 3841 if (req_idx == idx_range.end()) { 3842 // We can't handle this without inserting insertvalues 3843 if (!InsertBefore) 3844 return nullptr; 3845 3846 // The requested index identifies a part of a nested aggregate. Handle 3847 // this specially. For example, 3848 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3849 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3850 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3851 // This can be changed into 3852 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3853 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3854 // which allows the unused 0,0 element from the nested struct to be 3855 // removed. 3856 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3857 InsertBefore); 3858 } 3859 3860 // This insert value inserts something else than what we are looking for. 3861 // See if the (aggregate) value inserted into has the value we are 3862 // looking for, then. 3863 if (*req_idx != *i) 3864 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3865 InsertBefore); 3866 } 3867 // If we end up here, the indices of the insertvalue match with those 3868 // requested (though possibly only partially). Now we recursively look at 3869 // the inserted value, passing any remaining indices. 3870 return FindInsertedValue(I->getInsertedValueOperand(), 3871 makeArrayRef(req_idx, idx_range.end()), 3872 InsertBefore); 3873 } 3874 3875 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3876 // If we're extracting a value from an aggregate that was extracted from 3877 // something else, we can extract from that something else directly instead. 3878 // However, we will need to chain I's indices with the requested indices. 3879 3880 // Calculate the number of indices required 3881 unsigned size = I->getNumIndices() + idx_range.size(); 3882 // Allocate some space to put the new indices in 3883 SmallVector<unsigned, 5> Idxs; 3884 Idxs.reserve(size); 3885 // Add indices from the extract value instruction 3886 Idxs.append(I->idx_begin(), I->idx_end()); 3887 3888 // Add requested indices 3889 Idxs.append(idx_range.begin(), idx_range.end()); 3890 3891 assert(Idxs.size() == size 3892 && "Number of indices added not correct?"); 3893 3894 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3895 } 3896 // Otherwise, we don't know (such as, extracting from a function return value 3897 // or load instruction) 3898 return nullptr; 3899 } 3900 3901 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3902 unsigned CharSize) { 3903 // Make sure the GEP has exactly three arguments. 3904 if (GEP->getNumOperands() != 3) 3905 return false; 3906 3907 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3908 // CharSize. 3909 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3910 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3911 return false; 3912 3913 // Check to make sure that the first operand of the GEP is an integer and 3914 // has value 0 so that we are sure we're indexing into the initializer. 3915 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3916 if (!FirstIdx || !FirstIdx->isZero()) 3917 return false; 3918 3919 return true; 3920 } 3921 3922 bool llvm::getConstantDataArrayInfo(const Value *V, 3923 ConstantDataArraySlice &Slice, 3924 unsigned ElementSize, uint64_t Offset) { 3925 assert(V); 3926 3927 // Look through bitcast instructions and geps. 3928 V = V->stripPointerCasts(); 3929 3930 // If the value is a GEP instruction or constant expression, treat it as an 3931 // offset. 3932 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3933 // The GEP operator should be based on a pointer to string constant, and is 3934 // indexing into the string constant. 3935 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3936 return false; 3937 3938 // If the second index isn't a ConstantInt, then this is a variable index 3939 // into the array. If this occurs, we can't say anything meaningful about 3940 // the string. 3941 uint64_t StartIdx = 0; 3942 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3943 StartIdx = CI->getZExtValue(); 3944 else 3945 return false; 3946 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3947 StartIdx + Offset); 3948 } 3949 3950 // The GEP instruction, constant or instruction, must reference a global 3951 // variable that is a constant and is initialized. The referenced constant 3952 // initializer is the array that we'll use for optimization. 3953 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3954 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3955 return false; 3956 3957 const ConstantDataArray *Array; 3958 ArrayType *ArrayTy; 3959 if (GV->getInitializer()->isNullValue()) { 3960 Type *GVTy = GV->getValueType(); 3961 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3962 // A zeroinitializer for the array; there is no ConstantDataArray. 3963 Array = nullptr; 3964 } else { 3965 const DataLayout &DL = GV->getParent()->getDataLayout(); 3966 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3967 uint64_t Length = SizeInBytes / (ElementSize / 8); 3968 if (Length <= Offset) 3969 return false; 3970 3971 Slice.Array = nullptr; 3972 Slice.Offset = 0; 3973 Slice.Length = Length - Offset; 3974 return true; 3975 } 3976 } else { 3977 // This must be a ConstantDataArray. 3978 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3979 if (!Array) 3980 return false; 3981 ArrayTy = Array->getType(); 3982 } 3983 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3984 return false; 3985 3986 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3987 if (Offset > NumElts) 3988 return false; 3989 3990 Slice.Array = Array; 3991 Slice.Offset = Offset; 3992 Slice.Length = NumElts - Offset; 3993 return true; 3994 } 3995 3996 /// This function computes the length of a null-terminated C string pointed to 3997 /// by V. If successful, it returns true and returns the string in Str. 3998 /// If unsuccessful, it returns false. 3999 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4000 uint64_t Offset, bool TrimAtNul) { 4001 ConstantDataArraySlice Slice; 4002 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4003 return false; 4004 4005 if (Slice.Array == nullptr) { 4006 if (TrimAtNul) { 4007 Str = StringRef(); 4008 return true; 4009 } 4010 if (Slice.Length == 1) { 4011 Str = StringRef("", 1); 4012 return true; 4013 } 4014 // We cannot instantiate a StringRef as we do not have an appropriate string 4015 // of 0s at hand. 4016 return false; 4017 } 4018 4019 // Start out with the entire array in the StringRef. 4020 Str = Slice.Array->getAsString(); 4021 // Skip over 'offset' bytes. 4022 Str = Str.substr(Slice.Offset); 4023 4024 if (TrimAtNul) { 4025 // Trim off the \0 and anything after it. If the array is not nul 4026 // terminated, we just return the whole end of string. The client may know 4027 // some other way that the string is length-bound. 4028 Str = Str.substr(0, Str.find('\0')); 4029 } 4030 return true; 4031 } 4032 4033 // These next two are very similar to the above, but also look through PHI 4034 // nodes. 4035 // TODO: See if we can integrate these two together. 4036 4037 /// If we can compute the length of the string pointed to by 4038 /// the specified pointer, return 'len+1'. If we can't, return 0. 4039 static uint64_t GetStringLengthH(const Value *V, 4040 SmallPtrSetImpl<const PHINode*> &PHIs, 4041 unsigned CharSize) { 4042 // Look through noop bitcast instructions. 4043 V = V->stripPointerCasts(); 4044 4045 // If this is a PHI node, there are two cases: either we have already seen it 4046 // or we haven't. 4047 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4048 if (!PHIs.insert(PN).second) 4049 return ~0ULL; // already in the set. 4050 4051 // If it was new, see if all the input strings are the same length. 4052 uint64_t LenSoFar = ~0ULL; 4053 for (Value *IncValue : PN->incoming_values()) { 4054 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4055 if (Len == 0) return 0; // Unknown length -> unknown. 4056 4057 if (Len == ~0ULL) continue; 4058 4059 if (Len != LenSoFar && LenSoFar != ~0ULL) 4060 return 0; // Disagree -> unknown. 4061 LenSoFar = Len; 4062 } 4063 4064 // Success, all agree. 4065 return LenSoFar; 4066 } 4067 4068 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4069 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4070 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4071 if (Len1 == 0) return 0; 4072 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4073 if (Len2 == 0) return 0; 4074 if (Len1 == ~0ULL) return Len2; 4075 if (Len2 == ~0ULL) return Len1; 4076 if (Len1 != Len2) return 0; 4077 return Len1; 4078 } 4079 4080 // Otherwise, see if we can read the string. 4081 ConstantDataArraySlice Slice; 4082 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4083 return 0; 4084 4085 if (Slice.Array == nullptr) 4086 return 1; 4087 4088 // Search for nul characters 4089 unsigned NullIndex = 0; 4090 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4091 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4092 break; 4093 } 4094 4095 return NullIndex + 1; 4096 } 4097 4098 /// If we can compute the length of the string pointed to by 4099 /// the specified pointer, return 'len+1'. If we can't, return 0. 4100 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4101 if (!V->getType()->isPointerTy()) 4102 return 0; 4103 4104 SmallPtrSet<const PHINode*, 32> PHIs; 4105 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4106 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4107 // an empty string as a length. 4108 return Len == ~0ULL ? 1 : Len; 4109 } 4110 4111 const Value * 4112 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4113 bool MustPreserveNullness) { 4114 assert(Call && 4115 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4116 if (const Value *RV = Call->getReturnedArgOperand()) 4117 return RV; 4118 // This can be used only as a aliasing property. 4119 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4120 Call, MustPreserveNullness)) 4121 return Call->getArgOperand(0); 4122 return nullptr; 4123 } 4124 4125 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4126 const CallBase *Call, bool MustPreserveNullness) { 4127 switch (Call->getIntrinsicID()) { 4128 case Intrinsic::launder_invariant_group: 4129 case Intrinsic::strip_invariant_group: 4130 case Intrinsic::aarch64_irg: 4131 case Intrinsic::aarch64_tagp: 4132 return true; 4133 case Intrinsic::ptrmask: 4134 return !MustPreserveNullness; 4135 default: 4136 return false; 4137 } 4138 } 4139 4140 /// \p PN defines a loop-variant pointer to an object. Check if the 4141 /// previous iteration of the loop was referring to the same object as \p PN. 4142 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4143 const LoopInfo *LI) { 4144 // Find the loop-defined value. 4145 Loop *L = LI->getLoopFor(PN->getParent()); 4146 if (PN->getNumIncomingValues() != 2) 4147 return true; 4148 4149 // Find the value from previous iteration. 4150 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4151 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4152 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4153 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4154 return true; 4155 4156 // If a new pointer is loaded in the loop, the pointer references a different 4157 // object in every iteration. E.g.: 4158 // for (i) 4159 // int *p = a[i]; 4160 // ... 4161 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4162 if (!L->isLoopInvariant(Load->getPointerOperand())) 4163 return false; 4164 return true; 4165 } 4166 4167 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4168 if (!V->getType()->isPointerTy()) 4169 return V; 4170 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4171 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4172 V = GEP->getPointerOperand(); 4173 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4174 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4175 V = cast<Operator>(V)->getOperand(0); 4176 if (!V->getType()->isPointerTy()) 4177 return V; 4178 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4179 if (GA->isInterposable()) 4180 return V; 4181 V = GA->getAliasee(); 4182 } else { 4183 if (auto *PHI = dyn_cast<PHINode>(V)) { 4184 // Look through single-arg phi nodes created by LCSSA. 4185 if (PHI->getNumIncomingValues() == 1) { 4186 V = PHI->getIncomingValue(0); 4187 continue; 4188 } 4189 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4190 // CaptureTracking can know about special capturing properties of some 4191 // intrinsics like launder.invariant.group, that can't be expressed with 4192 // the attributes, but have properties like returning aliasing pointer. 4193 // Because some analysis may assume that nocaptured pointer is not 4194 // returned from some special intrinsic (because function would have to 4195 // be marked with returns attribute), it is crucial to use this function 4196 // because it should be in sync with CaptureTracking. Not using it may 4197 // cause weird miscompilations where 2 aliasing pointers are assumed to 4198 // noalias. 4199 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4200 V = RP; 4201 continue; 4202 } 4203 } 4204 4205 return V; 4206 } 4207 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4208 } 4209 return V; 4210 } 4211 4212 void llvm::getUnderlyingObjects(const Value *V, 4213 SmallVectorImpl<const Value *> &Objects, 4214 LoopInfo *LI, unsigned MaxLookup) { 4215 SmallPtrSet<const Value *, 4> Visited; 4216 SmallVector<const Value *, 4> Worklist; 4217 Worklist.push_back(V); 4218 do { 4219 const Value *P = Worklist.pop_back_val(); 4220 P = getUnderlyingObject(P, MaxLookup); 4221 4222 if (!Visited.insert(P).second) 4223 continue; 4224 4225 if (auto *SI = dyn_cast<SelectInst>(P)) { 4226 Worklist.push_back(SI->getTrueValue()); 4227 Worklist.push_back(SI->getFalseValue()); 4228 continue; 4229 } 4230 4231 if (auto *PN = dyn_cast<PHINode>(P)) { 4232 // If this PHI changes the underlying object in every iteration of the 4233 // loop, don't look through it. Consider: 4234 // int **A; 4235 // for (i) { 4236 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4237 // Curr = A[i]; 4238 // *Prev, *Curr; 4239 // 4240 // Prev is tracking Curr one iteration behind so they refer to different 4241 // underlying objects. 4242 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4243 isSameUnderlyingObjectInLoop(PN, LI)) 4244 append_range(Worklist, PN->incoming_values()); 4245 continue; 4246 } 4247 4248 Objects.push_back(P); 4249 } while (!Worklist.empty()); 4250 } 4251 4252 /// This is the function that does the work of looking through basic 4253 /// ptrtoint+arithmetic+inttoptr sequences. 4254 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4255 do { 4256 if (const Operator *U = dyn_cast<Operator>(V)) { 4257 // If we find a ptrtoint, we can transfer control back to the 4258 // regular getUnderlyingObjectFromInt. 4259 if (U->getOpcode() == Instruction::PtrToInt) 4260 return U->getOperand(0); 4261 // If we find an add of a constant, a multiplied value, or a phi, it's 4262 // likely that the other operand will lead us to the base 4263 // object. We don't have to worry about the case where the 4264 // object address is somehow being computed by the multiply, 4265 // because our callers only care when the result is an 4266 // identifiable object. 4267 if (U->getOpcode() != Instruction::Add || 4268 (!isa<ConstantInt>(U->getOperand(1)) && 4269 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4270 !isa<PHINode>(U->getOperand(1)))) 4271 return V; 4272 V = U->getOperand(0); 4273 } else { 4274 return V; 4275 } 4276 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4277 } while (true); 4278 } 4279 4280 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4281 /// ptrtoint+arithmetic+inttoptr sequences. 4282 /// It returns false if unidentified object is found in getUnderlyingObjects. 4283 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4284 SmallVectorImpl<Value *> &Objects) { 4285 SmallPtrSet<const Value *, 16> Visited; 4286 SmallVector<const Value *, 4> Working(1, V); 4287 do { 4288 V = Working.pop_back_val(); 4289 4290 SmallVector<const Value *, 4> Objs; 4291 getUnderlyingObjects(V, Objs); 4292 4293 for (const Value *V : Objs) { 4294 if (!Visited.insert(V).second) 4295 continue; 4296 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4297 const Value *O = 4298 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4299 if (O->getType()->isPointerTy()) { 4300 Working.push_back(O); 4301 continue; 4302 } 4303 } 4304 // If getUnderlyingObjects fails to find an identifiable object, 4305 // getUnderlyingObjectsForCodeGen also fails for safety. 4306 if (!isIdentifiedObject(V)) { 4307 Objects.clear(); 4308 return false; 4309 } 4310 Objects.push_back(const_cast<Value *>(V)); 4311 } 4312 } while (!Working.empty()); 4313 return true; 4314 } 4315 4316 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4317 AllocaInst *Result = nullptr; 4318 SmallPtrSet<Value *, 4> Visited; 4319 SmallVector<Value *, 4> Worklist; 4320 4321 auto AddWork = [&](Value *V) { 4322 if (Visited.insert(V).second) 4323 Worklist.push_back(V); 4324 }; 4325 4326 AddWork(V); 4327 do { 4328 V = Worklist.pop_back_val(); 4329 assert(Visited.count(V)); 4330 4331 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4332 if (Result && Result != AI) 4333 return nullptr; 4334 Result = AI; 4335 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4336 AddWork(CI->getOperand(0)); 4337 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4338 for (Value *IncValue : PN->incoming_values()) 4339 AddWork(IncValue); 4340 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4341 AddWork(SI->getTrueValue()); 4342 AddWork(SI->getFalseValue()); 4343 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4344 if (OffsetZero && !GEP->hasAllZeroIndices()) 4345 return nullptr; 4346 AddWork(GEP->getPointerOperand()); 4347 } else { 4348 return nullptr; 4349 } 4350 } while (!Worklist.empty()); 4351 4352 return Result; 4353 } 4354 4355 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4356 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4357 for (const User *U : V->users()) { 4358 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4359 if (!II) 4360 return false; 4361 4362 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4363 continue; 4364 4365 if (AllowDroppable && II->isDroppable()) 4366 continue; 4367 4368 return false; 4369 } 4370 return true; 4371 } 4372 4373 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4374 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4375 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4376 } 4377 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4378 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4379 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4380 } 4381 4382 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4383 if (!LI.isUnordered()) 4384 return true; 4385 const Function &F = *LI.getFunction(); 4386 // Speculative load may create a race that did not exist in the source. 4387 return F.hasFnAttribute(Attribute::SanitizeThread) || 4388 // Speculative load may load data from dirty regions. 4389 F.hasFnAttribute(Attribute::SanitizeAddress) || 4390 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4391 } 4392 4393 4394 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4395 const Instruction *CtxI, 4396 const DominatorTree *DT) { 4397 const Operator *Inst = dyn_cast<Operator>(V); 4398 if (!Inst) 4399 return false; 4400 4401 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4402 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4403 if (C->canTrap()) 4404 return false; 4405 4406 switch (Inst->getOpcode()) { 4407 default: 4408 return true; 4409 case Instruction::UDiv: 4410 case Instruction::URem: { 4411 // x / y is undefined if y == 0. 4412 const APInt *V; 4413 if (match(Inst->getOperand(1), m_APInt(V))) 4414 return *V != 0; 4415 return false; 4416 } 4417 case Instruction::SDiv: 4418 case Instruction::SRem: { 4419 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4420 const APInt *Numerator, *Denominator; 4421 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4422 return false; 4423 // We cannot hoist this division if the denominator is 0. 4424 if (*Denominator == 0) 4425 return false; 4426 // It's safe to hoist if the denominator is not 0 or -1. 4427 if (!Denominator->isAllOnesValue()) 4428 return true; 4429 // At this point we know that the denominator is -1. It is safe to hoist as 4430 // long we know that the numerator is not INT_MIN. 4431 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4432 return !Numerator->isMinSignedValue(); 4433 // The numerator *might* be MinSignedValue. 4434 return false; 4435 } 4436 case Instruction::Load: { 4437 const LoadInst *LI = cast<LoadInst>(Inst); 4438 if (mustSuppressSpeculation(*LI)) 4439 return false; 4440 const DataLayout &DL = LI->getModule()->getDataLayout(); 4441 return isDereferenceableAndAlignedPointer( 4442 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4443 DL, CtxI, DT); 4444 } 4445 case Instruction::Call: { 4446 auto *CI = cast<const CallInst>(Inst); 4447 const Function *Callee = CI->getCalledFunction(); 4448 4449 // The called function could have undefined behavior or side-effects, even 4450 // if marked readnone nounwind. 4451 return Callee && Callee->isSpeculatable(); 4452 } 4453 case Instruction::VAArg: 4454 case Instruction::Alloca: 4455 case Instruction::Invoke: 4456 case Instruction::CallBr: 4457 case Instruction::PHI: 4458 case Instruction::Store: 4459 case Instruction::Ret: 4460 case Instruction::Br: 4461 case Instruction::IndirectBr: 4462 case Instruction::Switch: 4463 case Instruction::Unreachable: 4464 case Instruction::Fence: 4465 case Instruction::AtomicRMW: 4466 case Instruction::AtomicCmpXchg: 4467 case Instruction::LandingPad: 4468 case Instruction::Resume: 4469 case Instruction::CatchSwitch: 4470 case Instruction::CatchPad: 4471 case Instruction::CatchRet: 4472 case Instruction::CleanupPad: 4473 case Instruction::CleanupRet: 4474 return false; // Misc instructions which have effects 4475 } 4476 } 4477 4478 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4479 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4480 } 4481 4482 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4483 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4484 switch (OR) { 4485 case ConstantRange::OverflowResult::MayOverflow: 4486 return OverflowResult::MayOverflow; 4487 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4488 return OverflowResult::AlwaysOverflowsLow; 4489 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4490 return OverflowResult::AlwaysOverflowsHigh; 4491 case ConstantRange::OverflowResult::NeverOverflows: 4492 return OverflowResult::NeverOverflows; 4493 } 4494 llvm_unreachable("Unknown OverflowResult"); 4495 } 4496 4497 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4498 static ConstantRange computeConstantRangeIncludingKnownBits( 4499 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4500 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4501 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4502 KnownBits Known = computeKnownBits( 4503 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4504 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4505 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4506 ConstantRange::PreferredRangeType RangeType = 4507 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4508 return CR1.intersectWith(CR2, RangeType); 4509 } 4510 4511 OverflowResult llvm::computeOverflowForUnsignedMul( 4512 const Value *LHS, const Value *RHS, const DataLayout &DL, 4513 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4514 bool UseInstrInfo) { 4515 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4516 nullptr, UseInstrInfo); 4517 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4518 nullptr, UseInstrInfo); 4519 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4520 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4521 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4522 } 4523 4524 OverflowResult 4525 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4526 const DataLayout &DL, AssumptionCache *AC, 4527 const Instruction *CxtI, 4528 const DominatorTree *DT, bool UseInstrInfo) { 4529 // Multiplying n * m significant bits yields a result of n + m significant 4530 // bits. If the total number of significant bits does not exceed the 4531 // result bit width (minus 1), there is no overflow. 4532 // This means if we have enough leading sign bits in the operands 4533 // we can guarantee that the result does not overflow. 4534 // Ref: "Hacker's Delight" by Henry Warren 4535 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4536 4537 // Note that underestimating the number of sign bits gives a more 4538 // conservative answer. 4539 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4540 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4541 4542 // First handle the easy case: if we have enough sign bits there's 4543 // definitely no overflow. 4544 if (SignBits > BitWidth + 1) 4545 return OverflowResult::NeverOverflows; 4546 4547 // There are two ambiguous cases where there can be no overflow: 4548 // SignBits == BitWidth + 1 and 4549 // SignBits == BitWidth 4550 // The second case is difficult to check, therefore we only handle the 4551 // first case. 4552 if (SignBits == BitWidth + 1) { 4553 // It overflows only when both arguments are negative and the true 4554 // product is exactly the minimum negative number. 4555 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4556 // For simplicity we just check if at least one side is not negative. 4557 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4558 nullptr, UseInstrInfo); 4559 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4560 nullptr, UseInstrInfo); 4561 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4562 return OverflowResult::NeverOverflows; 4563 } 4564 return OverflowResult::MayOverflow; 4565 } 4566 4567 OverflowResult llvm::computeOverflowForUnsignedAdd( 4568 const Value *LHS, const Value *RHS, const DataLayout &DL, 4569 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4570 bool UseInstrInfo) { 4571 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4572 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4573 nullptr, UseInstrInfo); 4574 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4575 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4576 nullptr, UseInstrInfo); 4577 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4578 } 4579 4580 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4581 const Value *RHS, 4582 const AddOperator *Add, 4583 const DataLayout &DL, 4584 AssumptionCache *AC, 4585 const Instruction *CxtI, 4586 const DominatorTree *DT) { 4587 if (Add && Add->hasNoSignedWrap()) { 4588 return OverflowResult::NeverOverflows; 4589 } 4590 4591 // If LHS and RHS each have at least two sign bits, the addition will look 4592 // like 4593 // 4594 // XX..... + 4595 // YY..... 4596 // 4597 // If the carry into the most significant position is 0, X and Y can't both 4598 // be 1 and therefore the carry out of the addition is also 0. 4599 // 4600 // If the carry into the most significant position is 1, X and Y can't both 4601 // be 0 and therefore the carry out of the addition is also 1. 4602 // 4603 // Since the carry into the most significant position is always equal to 4604 // the carry out of the addition, there is no signed overflow. 4605 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4606 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4607 return OverflowResult::NeverOverflows; 4608 4609 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4610 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4611 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4612 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4613 OverflowResult OR = 4614 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4615 if (OR != OverflowResult::MayOverflow) 4616 return OR; 4617 4618 // The remaining code needs Add to be available. Early returns if not so. 4619 if (!Add) 4620 return OverflowResult::MayOverflow; 4621 4622 // If the sign of Add is the same as at least one of the operands, this add 4623 // CANNOT overflow. If this can be determined from the known bits of the 4624 // operands the above signedAddMayOverflow() check will have already done so. 4625 // The only other way to improve on the known bits is from an assumption, so 4626 // call computeKnownBitsFromAssume() directly. 4627 bool LHSOrRHSKnownNonNegative = 4628 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4629 bool LHSOrRHSKnownNegative = 4630 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4631 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4632 KnownBits AddKnown(LHSRange.getBitWidth()); 4633 computeKnownBitsFromAssume( 4634 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4635 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4636 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4637 return OverflowResult::NeverOverflows; 4638 } 4639 4640 return OverflowResult::MayOverflow; 4641 } 4642 4643 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4644 const Value *RHS, 4645 const DataLayout &DL, 4646 AssumptionCache *AC, 4647 const Instruction *CxtI, 4648 const DominatorTree *DT) { 4649 // Checking for conditions implied by dominating conditions may be expensive. 4650 // Limit it to usub_with_overflow calls for now. 4651 if (match(CxtI, 4652 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4653 if (auto C = 4654 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4655 if (*C) 4656 return OverflowResult::NeverOverflows; 4657 return OverflowResult::AlwaysOverflowsLow; 4658 } 4659 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4660 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4661 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4662 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4663 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4664 } 4665 4666 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4667 const Value *RHS, 4668 const DataLayout &DL, 4669 AssumptionCache *AC, 4670 const Instruction *CxtI, 4671 const DominatorTree *DT) { 4672 // If LHS and RHS each have at least two sign bits, the subtraction 4673 // cannot overflow. 4674 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4675 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4676 return OverflowResult::NeverOverflows; 4677 4678 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4679 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4680 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4681 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4682 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4683 } 4684 4685 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4686 const DominatorTree &DT) { 4687 SmallVector<const BranchInst *, 2> GuardingBranches; 4688 SmallVector<const ExtractValueInst *, 2> Results; 4689 4690 for (const User *U : WO->users()) { 4691 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4692 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4693 4694 if (EVI->getIndices()[0] == 0) 4695 Results.push_back(EVI); 4696 else { 4697 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4698 4699 for (const auto *U : EVI->users()) 4700 if (const auto *B = dyn_cast<BranchInst>(U)) { 4701 assert(B->isConditional() && "How else is it using an i1?"); 4702 GuardingBranches.push_back(B); 4703 } 4704 } 4705 } else { 4706 // We are using the aggregate directly in a way we don't want to analyze 4707 // here (storing it to a global, say). 4708 return false; 4709 } 4710 } 4711 4712 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4713 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4714 if (!NoWrapEdge.isSingleEdge()) 4715 return false; 4716 4717 // Check if all users of the add are provably no-wrap. 4718 for (const auto *Result : Results) { 4719 // If the extractvalue itself is not executed on overflow, the we don't 4720 // need to check each use separately, since domination is transitive. 4721 if (DT.dominates(NoWrapEdge, Result->getParent())) 4722 continue; 4723 4724 for (auto &RU : Result->uses()) 4725 if (!DT.dominates(NoWrapEdge, RU)) 4726 return false; 4727 } 4728 4729 return true; 4730 }; 4731 4732 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4733 } 4734 4735 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4736 // See whether I has flags that may create poison 4737 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4738 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4739 return true; 4740 } 4741 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4742 if (ExactOp->isExact()) 4743 return true; 4744 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4745 auto FMF = FP->getFastMathFlags(); 4746 if (FMF.noNaNs() || FMF.noInfs()) 4747 return true; 4748 } 4749 4750 unsigned Opcode = Op->getOpcode(); 4751 4752 // Check whether opcode is a poison/undef-generating operation 4753 switch (Opcode) { 4754 case Instruction::Shl: 4755 case Instruction::AShr: 4756 case Instruction::LShr: { 4757 // Shifts return poison if shiftwidth is larger than the bitwidth. 4758 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4759 SmallVector<Constant *, 4> ShiftAmounts; 4760 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4761 unsigned NumElts = FVTy->getNumElements(); 4762 for (unsigned i = 0; i < NumElts; ++i) 4763 ShiftAmounts.push_back(C->getAggregateElement(i)); 4764 } else if (isa<ScalableVectorType>(C->getType())) 4765 return true; // Can't tell, just return true to be safe 4766 else 4767 ShiftAmounts.push_back(C); 4768 4769 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4770 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4771 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4772 }); 4773 return !Safe; 4774 } 4775 return true; 4776 } 4777 case Instruction::FPToSI: 4778 case Instruction::FPToUI: 4779 // fptosi/ui yields poison if the resulting value does not fit in the 4780 // destination type. 4781 return true; 4782 case Instruction::Call: 4783 case Instruction::CallBr: 4784 case Instruction::Invoke: { 4785 const auto *CB = cast<CallBase>(Op); 4786 return !CB->hasRetAttr(Attribute::NoUndef); 4787 } 4788 case Instruction::InsertElement: 4789 case Instruction::ExtractElement: { 4790 // If index exceeds the length of the vector, it returns poison 4791 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4792 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4793 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4794 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4795 return true; 4796 return false; 4797 } 4798 case Instruction::ShuffleVector: { 4799 // shufflevector may return undef. 4800 if (PoisonOnly) 4801 return false; 4802 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4803 ? cast<ConstantExpr>(Op)->getShuffleMask() 4804 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4805 return is_contained(Mask, UndefMaskElem); 4806 } 4807 case Instruction::FNeg: 4808 case Instruction::PHI: 4809 case Instruction::Select: 4810 case Instruction::URem: 4811 case Instruction::SRem: 4812 case Instruction::ExtractValue: 4813 case Instruction::InsertValue: 4814 case Instruction::Freeze: 4815 case Instruction::ICmp: 4816 case Instruction::FCmp: 4817 return false; 4818 case Instruction::GetElementPtr: { 4819 const auto *GEP = cast<GEPOperator>(Op); 4820 return GEP->isInBounds(); 4821 } 4822 default: { 4823 const auto *CE = dyn_cast<ConstantExpr>(Op); 4824 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4825 return false; 4826 else if (Instruction::isBinaryOp(Opcode)) 4827 return false; 4828 // Be conservative and return true. 4829 return true; 4830 } 4831 } 4832 } 4833 4834 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4835 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4836 } 4837 4838 bool llvm::canCreatePoison(const Operator *Op) { 4839 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4840 } 4841 4842 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4843 const Value *V, unsigned Depth) { 4844 if (ValAssumedPoison == V) 4845 return true; 4846 4847 const unsigned MaxDepth = 2; 4848 if (Depth >= MaxDepth) 4849 return false; 4850 4851 const auto *I = dyn_cast<Instruction>(V); 4852 if (I && propagatesPoison(cast<Operator>(I))) { 4853 return any_of(I->operands(), [=](const Value *Op) { 4854 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4855 }); 4856 } 4857 return false; 4858 } 4859 4860 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4861 unsigned Depth) { 4862 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4863 return true; 4864 4865 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4866 return true; 4867 4868 const unsigned MaxDepth = 2; 4869 if (Depth >= MaxDepth) 4870 return false; 4871 4872 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 4873 if (I && !canCreatePoison(cast<Operator>(I))) { 4874 return all_of(I->operands(), [=](const Value *Op) { 4875 return impliesPoison(Op, V, Depth + 1); 4876 }); 4877 } 4878 return false; 4879 } 4880 4881 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 4882 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 4883 } 4884 4885 static bool programUndefinedIfUndefOrPoison(const Value *V, 4886 bool PoisonOnly); 4887 4888 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4889 AssumptionCache *AC, 4890 const Instruction *CtxI, 4891 const DominatorTree *DT, 4892 unsigned Depth, bool PoisonOnly) { 4893 if (Depth >= MaxAnalysisRecursionDepth) 4894 return false; 4895 4896 if (isa<MetadataAsValue>(V)) 4897 return false; 4898 4899 if (const auto *A = dyn_cast<Argument>(V)) { 4900 if (A->hasAttribute(Attribute::NoUndef)) 4901 return true; 4902 } 4903 4904 if (auto *C = dyn_cast<Constant>(V)) { 4905 if (isa<UndefValue>(C)) 4906 return PoisonOnly && !isa<PoisonValue>(C); 4907 4908 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4909 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4910 return true; 4911 4912 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4913 return (PoisonOnly ? !C->containsPoisonElement() 4914 : !C->containsUndefOrPoisonElement()) && 4915 !C->containsConstantExpression(); 4916 } 4917 4918 // Strip cast operations from a pointer value. 4919 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4920 // inbounds with zero offset. To guarantee that the result isn't poison, the 4921 // stripped pointer is checked as it has to be pointing into an allocated 4922 // object or be null `null` to ensure `inbounds` getelement pointers with a 4923 // zero offset could not produce poison. 4924 // It can strip off addrspacecast that do not change bit representation as 4925 // well. We believe that such addrspacecast is equivalent to no-op. 4926 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4927 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4928 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4929 return true; 4930 4931 auto OpCheck = [&](const Value *V) { 4932 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4933 PoisonOnly); 4934 }; 4935 4936 if (auto *Opr = dyn_cast<Operator>(V)) { 4937 // If the value is a freeze instruction, then it can never 4938 // be undef or poison. 4939 if (isa<FreezeInst>(V)) 4940 return true; 4941 4942 if (const auto *CB = dyn_cast<CallBase>(V)) { 4943 if (CB->hasRetAttr(Attribute::NoUndef)) 4944 return true; 4945 } 4946 4947 if (const auto *PN = dyn_cast<PHINode>(V)) { 4948 unsigned Num = PN->getNumIncomingValues(); 4949 bool IsWellDefined = true; 4950 for (unsigned i = 0; i < Num; ++i) { 4951 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4952 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4953 DT, Depth + 1, PoisonOnly)) { 4954 IsWellDefined = false; 4955 break; 4956 } 4957 } 4958 if (IsWellDefined) 4959 return true; 4960 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4961 return true; 4962 } 4963 4964 if (auto *I = dyn_cast<LoadInst>(V)) 4965 if (I->getMetadata(LLVMContext::MD_noundef)) 4966 return true; 4967 4968 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4969 return true; 4970 4971 // CxtI may be null or a cloned instruction. 4972 if (!CtxI || !CtxI->getParent() || !DT) 4973 return false; 4974 4975 auto *DNode = DT->getNode(CtxI->getParent()); 4976 if (!DNode) 4977 // Unreachable block 4978 return false; 4979 4980 // If V is used as a branch condition before reaching CtxI, V cannot be 4981 // undef or poison. 4982 // br V, BB1, BB2 4983 // BB1: 4984 // CtxI ; V cannot be undef or poison here 4985 auto *Dominator = DNode->getIDom(); 4986 while (Dominator) { 4987 auto *TI = Dominator->getBlock()->getTerminator(); 4988 4989 Value *Cond = nullptr; 4990 if (auto BI = dyn_cast<BranchInst>(TI)) { 4991 if (BI->isConditional()) 4992 Cond = BI->getCondition(); 4993 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4994 Cond = SI->getCondition(); 4995 } 4996 4997 if (Cond) { 4998 if (Cond == V) 4999 return true; 5000 else if (PoisonOnly && isa<Operator>(Cond)) { 5001 // For poison, we can analyze further 5002 auto *Opr = cast<Operator>(Cond); 5003 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5004 return true; 5005 } 5006 } 5007 5008 Dominator = Dominator->getIDom(); 5009 } 5010 5011 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5012 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5013 return true; 5014 5015 return false; 5016 } 5017 5018 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5019 const Instruction *CtxI, 5020 const DominatorTree *DT, 5021 unsigned Depth) { 5022 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5023 } 5024 5025 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5026 const Instruction *CtxI, 5027 const DominatorTree *DT, unsigned Depth) { 5028 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5029 } 5030 5031 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5032 const DataLayout &DL, 5033 AssumptionCache *AC, 5034 const Instruction *CxtI, 5035 const DominatorTree *DT) { 5036 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5037 Add, DL, AC, CxtI, DT); 5038 } 5039 5040 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5041 const Value *RHS, 5042 const DataLayout &DL, 5043 AssumptionCache *AC, 5044 const Instruction *CxtI, 5045 const DominatorTree *DT) { 5046 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5047 } 5048 5049 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5050 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5051 // of time because it's possible for another thread to interfere with it for an 5052 // arbitrary length of time, but programs aren't allowed to rely on that. 5053 5054 // If there is no successor, then execution can't transfer to it. 5055 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5056 return !CRI->unwindsToCaller(); 5057 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5058 return !CatchSwitch->unwindsToCaller(); 5059 if (isa<ResumeInst>(I)) 5060 return false; 5061 if (isa<ReturnInst>(I)) 5062 return false; 5063 if (isa<UnreachableInst>(I)) 5064 return false; 5065 5066 // Calls can throw, or contain an infinite loop, or kill the process. 5067 if (const auto *CB = dyn_cast<CallBase>(I)) { 5068 // Call sites that throw have implicit non-local control flow. 5069 if (!CB->doesNotThrow()) 5070 return false; 5071 5072 // A function which doens't throw and has "willreturn" attribute will 5073 // always return. 5074 if (CB->hasFnAttr(Attribute::WillReturn)) 5075 return true; 5076 5077 // FIXME: Temporarily assume that all side-effect free intrinsics will 5078 // return. Remove this workaround once all intrinsics are appropriately 5079 // annotated. 5080 return isa<IntrinsicInst>(CB) && CB->onlyReadsMemory(); 5081 } 5082 5083 // Other instructions return normally. 5084 return true; 5085 } 5086 5087 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5088 // TODO: This is slightly conservative for invoke instruction since exiting 5089 // via an exception *is* normal control for them. 5090 for (const Instruction &I : *BB) 5091 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5092 return false; 5093 return true; 5094 } 5095 5096 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5097 const Loop *L) { 5098 // The loop header is guaranteed to be executed for every iteration. 5099 // 5100 // FIXME: Relax this constraint to cover all basic blocks that are 5101 // guaranteed to be executed at every iteration. 5102 if (I->getParent() != L->getHeader()) return false; 5103 5104 for (const Instruction &LI : *L->getHeader()) { 5105 if (&LI == I) return true; 5106 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5107 } 5108 llvm_unreachable("Instruction not contained in its own parent basic block."); 5109 } 5110 5111 bool llvm::propagatesPoison(const Operator *I) { 5112 switch (I->getOpcode()) { 5113 case Instruction::Freeze: 5114 case Instruction::Select: 5115 case Instruction::PHI: 5116 case Instruction::Call: 5117 case Instruction::Invoke: 5118 return false; 5119 case Instruction::ICmp: 5120 case Instruction::FCmp: 5121 case Instruction::GetElementPtr: 5122 return true; 5123 default: 5124 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5125 return true; 5126 5127 // Be conservative and return false. 5128 return false; 5129 } 5130 } 5131 5132 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5133 SmallPtrSetImpl<const Value *> &Operands) { 5134 switch (I->getOpcode()) { 5135 case Instruction::Store: 5136 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5137 break; 5138 5139 case Instruction::Load: 5140 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5141 break; 5142 5143 case Instruction::AtomicCmpXchg: 5144 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5145 break; 5146 5147 case Instruction::AtomicRMW: 5148 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5149 break; 5150 5151 case Instruction::UDiv: 5152 case Instruction::SDiv: 5153 case Instruction::URem: 5154 case Instruction::SRem: 5155 Operands.insert(I->getOperand(1)); 5156 break; 5157 5158 case Instruction::Call: 5159 case Instruction::Invoke: { 5160 const CallBase *CB = cast<CallBase>(I); 5161 if (CB->isIndirectCall()) 5162 Operands.insert(CB->getCalledOperand()); 5163 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5164 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5165 Operands.insert(CB->getArgOperand(i)); 5166 } 5167 break; 5168 } 5169 5170 default: 5171 break; 5172 } 5173 } 5174 5175 bool llvm::mustTriggerUB(const Instruction *I, 5176 const SmallSet<const Value *, 16>& KnownPoison) { 5177 SmallPtrSet<const Value *, 4> NonPoisonOps; 5178 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5179 5180 for (const auto *V : NonPoisonOps) 5181 if (KnownPoison.count(V)) 5182 return true; 5183 5184 return false; 5185 } 5186 5187 static bool programUndefinedIfUndefOrPoison(const Value *V, 5188 bool PoisonOnly) { 5189 // We currently only look for uses of values within the same basic 5190 // block, as that makes it easier to guarantee that the uses will be 5191 // executed given that Inst is executed. 5192 // 5193 // FIXME: Expand this to consider uses beyond the same basic block. To do 5194 // this, look out for the distinction between post-dominance and strong 5195 // post-dominance. 5196 const BasicBlock *BB = nullptr; 5197 BasicBlock::const_iterator Begin; 5198 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5199 BB = Inst->getParent(); 5200 Begin = Inst->getIterator(); 5201 Begin++; 5202 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5203 BB = &Arg->getParent()->getEntryBlock(); 5204 Begin = BB->begin(); 5205 } else { 5206 return false; 5207 } 5208 5209 BasicBlock::const_iterator End = BB->end(); 5210 5211 if (!PoisonOnly) { 5212 // Be conservative & just check whether a value is passed to a noundef 5213 // argument. 5214 // Instructions that raise UB with a poison operand are well-defined 5215 // or have unclear semantics when the input is partially undef. 5216 // For example, 'udiv x, (undef | 1)' isn't UB. 5217 5218 for (auto &I : make_range(Begin, End)) { 5219 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5220 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5221 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5222 CB->getArgOperand(i) == V) 5223 return true; 5224 } 5225 } 5226 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5227 break; 5228 } 5229 return false; 5230 } 5231 5232 // Set of instructions that we have proved will yield poison if Inst 5233 // does. 5234 SmallSet<const Value *, 16> YieldsPoison; 5235 SmallSet<const BasicBlock *, 4> Visited; 5236 5237 YieldsPoison.insert(V); 5238 auto Propagate = [&](const User *User) { 5239 if (propagatesPoison(cast<Operator>(User))) 5240 YieldsPoison.insert(User); 5241 }; 5242 for_each(V->users(), Propagate); 5243 Visited.insert(BB); 5244 5245 unsigned Iter = 0; 5246 while (Iter++ < MaxAnalysisRecursionDepth) { 5247 for (auto &I : make_range(Begin, End)) { 5248 if (mustTriggerUB(&I, YieldsPoison)) 5249 return true; 5250 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5251 return false; 5252 5253 // Mark poison that propagates from I through uses of I. 5254 if (YieldsPoison.count(&I)) 5255 for_each(I.users(), Propagate); 5256 } 5257 5258 if (auto *NextBB = BB->getSingleSuccessor()) { 5259 if (Visited.insert(NextBB).second) { 5260 BB = NextBB; 5261 Begin = BB->getFirstNonPHI()->getIterator(); 5262 End = BB->end(); 5263 continue; 5264 } 5265 } 5266 5267 break; 5268 } 5269 return false; 5270 } 5271 5272 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5273 return ::programUndefinedIfUndefOrPoison(Inst, false); 5274 } 5275 5276 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5277 return ::programUndefinedIfUndefOrPoison(Inst, true); 5278 } 5279 5280 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5281 if (FMF.noNaNs()) 5282 return true; 5283 5284 if (auto *C = dyn_cast<ConstantFP>(V)) 5285 return !C->isNaN(); 5286 5287 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5288 if (!C->getElementType()->isFloatingPointTy()) 5289 return false; 5290 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5291 if (C->getElementAsAPFloat(I).isNaN()) 5292 return false; 5293 } 5294 return true; 5295 } 5296 5297 if (isa<ConstantAggregateZero>(V)) 5298 return true; 5299 5300 return false; 5301 } 5302 5303 static bool isKnownNonZero(const Value *V) { 5304 if (auto *C = dyn_cast<ConstantFP>(V)) 5305 return !C->isZero(); 5306 5307 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5308 if (!C->getElementType()->isFloatingPointTy()) 5309 return false; 5310 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5311 if (C->getElementAsAPFloat(I).isZero()) 5312 return false; 5313 } 5314 return true; 5315 } 5316 5317 return false; 5318 } 5319 5320 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5321 /// Given non-min/max outer cmp/select from the clamp pattern this 5322 /// function recognizes if it can be substitued by a "canonical" min/max 5323 /// pattern. 5324 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5325 Value *CmpLHS, Value *CmpRHS, 5326 Value *TrueVal, Value *FalseVal, 5327 Value *&LHS, Value *&RHS) { 5328 // Try to match 5329 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5330 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5331 // and return description of the outer Max/Min. 5332 5333 // First, check if select has inverse order: 5334 if (CmpRHS == FalseVal) { 5335 std::swap(TrueVal, FalseVal); 5336 Pred = CmpInst::getInversePredicate(Pred); 5337 } 5338 5339 // Assume success now. If there's no match, callers should not use these anyway. 5340 LHS = TrueVal; 5341 RHS = FalseVal; 5342 5343 const APFloat *FC1; 5344 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5345 return {SPF_UNKNOWN, SPNB_NA, false}; 5346 5347 const APFloat *FC2; 5348 switch (Pred) { 5349 case CmpInst::FCMP_OLT: 5350 case CmpInst::FCMP_OLE: 5351 case CmpInst::FCMP_ULT: 5352 case CmpInst::FCMP_ULE: 5353 if (match(FalseVal, 5354 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5355 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5356 *FC1 < *FC2) 5357 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5358 break; 5359 case CmpInst::FCMP_OGT: 5360 case CmpInst::FCMP_OGE: 5361 case CmpInst::FCMP_UGT: 5362 case CmpInst::FCMP_UGE: 5363 if (match(FalseVal, 5364 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5365 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5366 *FC1 > *FC2) 5367 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5368 break; 5369 default: 5370 break; 5371 } 5372 5373 return {SPF_UNKNOWN, SPNB_NA, false}; 5374 } 5375 5376 /// Recognize variations of: 5377 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5378 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5379 Value *CmpLHS, Value *CmpRHS, 5380 Value *TrueVal, Value *FalseVal) { 5381 // Swap the select operands and predicate to match the patterns below. 5382 if (CmpRHS != TrueVal) { 5383 Pred = ICmpInst::getSwappedPredicate(Pred); 5384 std::swap(TrueVal, FalseVal); 5385 } 5386 const APInt *C1; 5387 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5388 const APInt *C2; 5389 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5390 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5391 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5392 return {SPF_SMAX, SPNB_NA, false}; 5393 5394 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5395 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5396 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5397 return {SPF_SMIN, SPNB_NA, false}; 5398 5399 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5400 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5401 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5402 return {SPF_UMAX, SPNB_NA, false}; 5403 5404 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5405 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5406 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5407 return {SPF_UMIN, SPNB_NA, false}; 5408 } 5409 return {SPF_UNKNOWN, SPNB_NA, false}; 5410 } 5411 5412 /// Recognize variations of: 5413 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5414 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5415 Value *CmpLHS, Value *CmpRHS, 5416 Value *TVal, Value *FVal, 5417 unsigned Depth) { 5418 // TODO: Allow FP min/max with nnan/nsz. 5419 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5420 5421 Value *A = nullptr, *B = nullptr; 5422 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5423 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5424 return {SPF_UNKNOWN, SPNB_NA, false}; 5425 5426 Value *C = nullptr, *D = nullptr; 5427 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5428 if (L.Flavor != R.Flavor) 5429 return {SPF_UNKNOWN, SPNB_NA, false}; 5430 5431 // We have something like: x Pred y ? min(a, b) : min(c, d). 5432 // Try to match the compare to the min/max operations of the select operands. 5433 // First, make sure we have the right compare predicate. 5434 switch (L.Flavor) { 5435 case SPF_SMIN: 5436 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5437 Pred = ICmpInst::getSwappedPredicate(Pred); 5438 std::swap(CmpLHS, CmpRHS); 5439 } 5440 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5441 break; 5442 return {SPF_UNKNOWN, SPNB_NA, false}; 5443 case SPF_SMAX: 5444 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5445 Pred = ICmpInst::getSwappedPredicate(Pred); 5446 std::swap(CmpLHS, CmpRHS); 5447 } 5448 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5449 break; 5450 return {SPF_UNKNOWN, SPNB_NA, false}; 5451 case SPF_UMIN: 5452 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5453 Pred = ICmpInst::getSwappedPredicate(Pred); 5454 std::swap(CmpLHS, CmpRHS); 5455 } 5456 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5457 break; 5458 return {SPF_UNKNOWN, SPNB_NA, false}; 5459 case SPF_UMAX: 5460 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5461 Pred = ICmpInst::getSwappedPredicate(Pred); 5462 std::swap(CmpLHS, CmpRHS); 5463 } 5464 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5465 break; 5466 return {SPF_UNKNOWN, SPNB_NA, false}; 5467 default: 5468 return {SPF_UNKNOWN, SPNB_NA, false}; 5469 } 5470 5471 // If there is a common operand in the already matched min/max and the other 5472 // min/max operands match the compare operands (either directly or inverted), 5473 // then this is min/max of the same flavor. 5474 5475 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5476 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5477 if (D == B) { 5478 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5479 match(A, m_Not(m_Specific(CmpRHS))))) 5480 return {L.Flavor, SPNB_NA, false}; 5481 } 5482 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5483 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5484 if (C == B) { 5485 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5486 match(A, m_Not(m_Specific(CmpRHS))))) 5487 return {L.Flavor, SPNB_NA, false}; 5488 } 5489 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5490 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5491 if (D == A) { 5492 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5493 match(B, m_Not(m_Specific(CmpRHS))))) 5494 return {L.Flavor, SPNB_NA, false}; 5495 } 5496 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5497 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5498 if (C == A) { 5499 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5500 match(B, m_Not(m_Specific(CmpRHS))))) 5501 return {L.Flavor, SPNB_NA, false}; 5502 } 5503 5504 return {SPF_UNKNOWN, SPNB_NA, false}; 5505 } 5506 5507 /// If the input value is the result of a 'not' op, constant integer, or vector 5508 /// splat of a constant integer, return the bitwise-not source value. 5509 /// TODO: This could be extended to handle non-splat vector integer constants. 5510 static Value *getNotValue(Value *V) { 5511 Value *NotV; 5512 if (match(V, m_Not(m_Value(NotV)))) 5513 return NotV; 5514 5515 const APInt *C; 5516 if (match(V, m_APInt(C))) 5517 return ConstantInt::get(V->getType(), ~(*C)); 5518 5519 return nullptr; 5520 } 5521 5522 /// Match non-obvious integer minimum and maximum sequences. 5523 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5524 Value *CmpLHS, Value *CmpRHS, 5525 Value *TrueVal, Value *FalseVal, 5526 Value *&LHS, Value *&RHS, 5527 unsigned Depth) { 5528 // Assume success. If there's no match, callers should not use these anyway. 5529 LHS = TrueVal; 5530 RHS = FalseVal; 5531 5532 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5533 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5534 return SPR; 5535 5536 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5537 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5538 return SPR; 5539 5540 // Look through 'not' ops to find disguised min/max. 5541 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5542 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5543 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5544 switch (Pred) { 5545 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5546 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5547 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5548 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5549 default: break; 5550 } 5551 } 5552 5553 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5554 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5555 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5556 switch (Pred) { 5557 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5558 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5559 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5560 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5561 default: break; 5562 } 5563 } 5564 5565 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5566 return {SPF_UNKNOWN, SPNB_NA, false}; 5567 5568 // Z = X -nsw Y 5569 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5570 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5571 if (match(TrueVal, m_Zero()) && 5572 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5573 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5574 5575 // Z = X -nsw Y 5576 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5577 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5578 if (match(FalseVal, m_Zero()) && 5579 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5580 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5581 5582 const APInt *C1; 5583 if (!match(CmpRHS, m_APInt(C1))) 5584 return {SPF_UNKNOWN, SPNB_NA, false}; 5585 5586 // An unsigned min/max can be written with a signed compare. 5587 const APInt *C2; 5588 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5589 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5590 // Is the sign bit set? 5591 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5592 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5593 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5594 C2->isMaxSignedValue()) 5595 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5596 5597 // Is the sign bit clear? 5598 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5599 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5600 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5601 C2->isMinSignedValue()) 5602 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5603 } 5604 5605 return {SPF_UNKNOWN, SPNB_NA, false}; 5606 } 5607 5608 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5609 assert(X && Y && "Invalid operand"); 5610 5611 // X = sub (0, Y) || X = sub nsw (0, Y) 5612 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5613 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5614 return true; 5615 5616 // Y = sub (0, X) || Y = sub nsw (0, X) 5617 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5618 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5619 return true; 5620 5621 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5622 Value *A, *B; 5623 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5624 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5625 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5626 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5627 } 5628 5629 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5630 FastMathFlags FMF, 5631 Value *CmpLHS, Value *CmpRHS, 5632 Value *TrueVal, Value *FalseVal, 5633 Value *&LHS, Value *&RHS, 5634 unsigned Depth) { 5635 if (CmpInst::isFPPredicate(Pred)) { 5636 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5637 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5638 // purpose of identifying min/max. Disregard vector constants with undefined 5639 // elements because those can not be back-propagated for analysis. 5640 Value *OutputZeroVal = nullptr; 5641 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5642 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5643 OutputZeroVal = TrueVal; 5644 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5645 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5646 OutputZeroVal = FalseVal; 5647 5648 if (OutputZeroVal) { 5649 if (match(CmpLHS, m_AnyZeroFP())) 5650 CmpLHS = OutputZeroVal; 5651 if (match(CmpRHS, m_AnyZeroFP())) 5652 CmpRHS = OutputZeroVal; 5653 } 5654 } 5655 5656 LHS = CmpLHS; 5657 RHS = CmpRHS; 5658 5659 // Signed zero may return inconsistent results between implementations. 5660 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5661 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5662 // Therefore, we behave conservatively and only proceed if at least one of the 5663 // operands is known to not be zero or if we don't care about signed zero. 5664 switch (Pred) { 5665 default: break; 5666 // FIXME: Include OGT/OLT/UGT/ULT. 5667 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5668 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5669 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5670 !isKnownNonZero(CmpRHS)) 5671 return {SPF_UNKNOWN, SPNB_NA, false}; 5672 } 5673 5674 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5675 bool Ordered = false; 5676 5677 // When given one NaN and one non-NaN input: 5678 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5679 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5680 // ordered comparison fails), which could be NaN or non-NaN. 5681 // so here we discover exactly what NaN behavior is required/accepted. 5682 if (CmpInst::isFPPredicate(Pred)) { 5683 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5684 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5685 5686 if (LHSSafe && RHSSafe) { 5687 // Both operands are known non-NaN. 5688 NaNBehavior = SPNB_RETURNS_ANY; 5689 } else if (CmpInst::isOrdered(Pred)) { 5690 // An ordered comparison will return false when given a NaN, so it 5691 // returns the RHS. 5692 Ordered = true; 5693 if (LHSSafe) 5694 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5695 NaNBehavior = SPNB_RETURNS_NAN; 5696 else if (RHSSafe) 5697 NaNBehavior = SPNB_RETURNS_OTHER; 5698 else 5699 // Completely unsafe. 5700 return {SPF_UNKNOWN, SPNB_NA, false}; 5701 } else { 5702 Ordered = false; 5703 // An unordered comparison will return true when given a NaN, so it 5704 // returns the LHS. 5705 if (LHSSafe) 5706 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5707 NaNBehavior = SPNB_RETURNS_OTHER; 5708 else if (RHSSafe) 5709 NaNBehavior = SPNB_RETURNS_NAN; 5710 else 5711 // Completely unsafe. 5712 return {SPF_UNKNOWN, SPNB_NA, false}; 5713 } 5714 } 5715 5716 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5717 std::swap(CmpLHS, CmpRHS); 5718 Pred = CmpInst::getSwappedPredicate(Pred); 5719 if (NaNBehavior == SPNB_RETURNS_NAN) 5720 NaNBehavior = SPNB_RETURNS_OTHER; 5721 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5722 NaNBehavior = SPNB_RETURNS_NAN; 5723 Ordered = !Ordered; 5724 } 5725 5726 // ([if]cmp X, Y) ? X : Y 5727 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5728 switch (Pred) { 5729 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5730 case ICmpInst::ICMP_UGT: 5731 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5732 case ICmpInst::ICMP_SGT: 5733 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5734 case ICmpInst::ICMP_ULT: 5735 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5736 case ICmpInst::ICMP_SLT: 5737 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5738 case FCmpInst::FCMP_UGT: 5739 case FCmpInst::FCMP_UGE: 5740 case FCmpInst::FCMP_OGT: 5741 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5742 case FCmpInst::FCMP_ULT: 5743 case FCmpInst::FCMP_ULE: 5744 case FCmpInst::FCMP_OLT: 5745 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5746 } 5747 } 5748 5749 if (isKnownNegation(TrueVal, FalseVal)) { 5750 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5751 // match against either LHS or sext(LHS). 5752 auto MaybeSExtCmpLHS = 5753 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5754 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5755 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5756 if (match(TrueVal, MaybeSExtCmpLHS)) { 5757 // Set the return values. If the compare uses the negated value (-X >s 0), 5758 // swap the return values because the negated value is always 'RHS'. 5759 LHS = TrueVal; 5760 RHS = FalseVal; 5761 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5762 std::swap(LHS, RHS); 5763 5764 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5765 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5766 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5767 return {SPF_ABS, SPNB_NA, false}; 5768 5769 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5770 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5771 return {SPF_ABS, SPNB_NA, false}; 5772 5773 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5774 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5775 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5776 return {SPF_NABS, SPNB_NA, false}; 5777 } 5778 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5779 // Set the return values. If the compare uses the negated value (-X >s 0), 5780 // swap the return values because the negated value is always 'RHS'. 5781 LHS = FalseVal; 5782 RHS = TrueVal; 5783 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5784 std::swap(LHS, RHS); 5785 5786 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5787 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5788 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5789 return {SPF_NABS, SPNB_NA, false}; 5790 5791 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5792 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5793 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5794 return {SPF_ABS, SPNB_NA, false}; 5795 } 5796 } 5797 5798 if (CmpInst::isIntPredicate(Pred)) 5799 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5800 5801 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5802 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5803 // semantics than minNum. Be conservative in such case. 5804 if (NaNBehavior != SPNB_RETURNS_ANY || 5805 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5806 !isKnownNonZero(CmpRHS))) 5807 return {SPF_UNKNOWN, SPNB_NA, false}; 5808 5809 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5810 } 5811 5812 /// Helps to match a select pattern in case of a type mismatch. 5813 /// 5814 /// The function processes the case when type of true and false values of a 5815 /// select instruction differs from type of the cmp instruction operands because 5816 /// of a cast instruction. The function checks if it is legal to move the cast 5817 /// operation after "select". If yes, it returns the new second value of 5818 /// "select" (with the assumption that cast is moved): 5819 /// 1. As operand of cast instruction when both values of "select" are same cast 5820 /// instructions. 5821 /// 2. As restored constant (by applying reverse cast operation) when the first 5822 /// value of the "select" is a cast operation and the second value is a 5823 /// constant. 5824 /// NOTE: We return only the new second value because the first value could be 5825 /// accessed as operand of cast instruction. 5826 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5827 Instruction::CastOps *CastOp) { 5828 auto *Cast1 = dyn_cast<CastInst>(V1); 5829 if (!Cast1) 5830 return nullptr; 5831 5832 *CastOp = Cast1->getOpcode(); 5833 Type *SrcTy = Cast1->getSrcTy(); 5834 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5835 // If V1 and V2 are both the same cast from the same type, look through V1. 5836 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5837 return Cast2->getOperand(0); 5838 return nullptr; 5839 } 5840 5841 auto *C = dyn_cast<Constant>(V2); 5842 if (!C) 5843 return nullptr; 5844 5845 Constant *CastedTo = nullptr; 5846 switch (*CastOp) { 5847 case Instruction::ZExt: 5848 if (CmpI->isUnsigned()) 5849 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5850 break; 5851 case Instruction::SExt: 5852 if (CmpI->isSigned()) 5853 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5854 break; 5855 case Instruction::Trunc: 5856 Constant *CmpConst; 5857 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5858 CmpConst->getType() == SrcTy) { 5859 // Here we have the following case: 5860 // 5861 // %cond = cmp iN %x, CmpConst 5862 // %tr = trunc iN %x to iK 5863 // %narrowsel = select i1 %cond, iK %t, iK C 5864 // 5865 // We can always move trunc after select operation: 5866 // 5867 // %cond = cmp iN %x, CmpConst 5868 // %widesel = select i1 %cond, iN %x, iN CmpConst 5869 // %tr = trunc iN %widesel to iK 5870 // 5871 // Note that C could be extended in any way because we don't care about 5872 // upper bits after truncation. It can't be abs pattern, because it would 5873 // look like: 5874 // 5875 // select i1 %cond, x, -x. 5876 // 5877 // So only min/max pattern could be matched. Such match requires widened C 5878 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5879 // CmpConst == C is checked below. 5880 CastedTo = CmpConst; 5881 } else { 5882 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5883 } 5884 break; 5885 case Instruction::FPTrunc: 5886 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5887 break; 5888 case Instruction::FPExt: 5889 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5890 break; 5891 case Instruction::FPToUI: 5892 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5893 break; 5894 case Instruction::FPToSI: 5895 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5896 break; 5897 case Instruction::UIToFP: 5898 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5899 break; 5900 case Instruction::SIToFP: 5901 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5902 break; 5903 default: 5904 break; 5905 } 5906 5907 if (!CastedTo) 5908 return nullptr; 5909 5910 // Make sure the cast doesn't lose any information. 5911 Constant *CastedBack = 5912 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5913 if (CastedBack != C) 5914 return nullptr; 5915 5916 return CastedTo; 5917 } 5918 5919 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5920 Instruction::CastOps *CastOp, 5921 unsigned Depth) { 5922 if (Depth >= MaxAnalysisRecursionDepth) 5923 return {SPF_UNKNOWN, SPNB_NA, false}; 5924 5925 SelectInst *SI = dyn_cast<SelectInst>(V); 5926 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5927 5928 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5929 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5930 5931 Value *TrueVal = SI->getTrueValue(); 5932 Value *FalseVal = SI->getFalseValue(); 5933 5934 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5935 CastOp, Depth); 5936 } 5937 5938 SelectPatternResult llvm::matchDecomposedSelectPattern( 5939 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5940 Instruction::CastOps *CastOp, unsigned Depth) { 5941 CmpInst::Predicate Pred = CmpI->getPredicate(); 5942 Value *CmpLHS = CmpI->getOperand(0); 5943 Value *CmpRHS = CmpI->getOperand(1); 5944 FastMathFlags FMF; 5945 if (isa<FPMathOperator>(CmpI)) 5946 FMF = CmpI->getFastMathFlags(); 5947 5948 // Bail out early. 5949 if (CmpI->isEquality()) 5950 return {SPF_UNKNOWN, SPNB_NA, false}; 5951 5952 // Deal with type mismatches. 5953 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5954 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5955 // If this is a potential fmin/fmax with a cast to integer, then ignore 5956 // -0.0 because there is no corresponding integer value. 5957 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5958 FMF.setNoSignedZeros(); 5959 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5960 cast<CastInst>(TrueVal)->getOperand(0), C, 5961 LHS, RHS, Depth); 5962 } 5963 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5964 // If this is a potential fmin/fmax with a cast to integer, then ignore 5965 // -0.0 because there is no corresponding integer value. 5966 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5967 FMF.setNoSignedZeros(); 5968 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5969 C, cast<CastInst>(FalseVal)->getOperand(0), 5970 LHS, RHS, Depth); 5971 } 5972 } 5973 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5974 LHS, RHS, Depth); 5975 } 5976 5977 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5978 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5979 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5980 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5981 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5982 if (SPF == SPF_FMINNUM) 5983 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5984 if (SPF == SPF_FMAXNUM) 5985 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5986 llvm_unreachable("unhandled!"); 5987 } 5988 5989 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5990 if (SPF == SPF_SMIN) return SPF_SMAX; 5991 if (SPF == SPF_UMIN) return SPF_UMAX; 5992 if (SPF == SPF_SMAX) return SPF_SMIN; 5993 if (SPF == SPF_UMAX) return SPF_UMIN; 5994 llvm_unreachable("unhandled!"); 5995 } 5996 5997 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5998 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5999 } 6000 6001 std::pair<Intrinsic::ID, bool> 6002 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6003 // Check if VL contains select instructions that can be folded into a min/max 6004 // vector intrinsic and return the intrinsic if it is possible. 6005 // TODO: Support floating point min/max. 6006 bool AllCmpSingleUse = true; 6007 SelectPatternResult SelectPattern; 6008 SelectPattern.Flavor = SPF_UNKNOWN; 6009 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6010 Value *LHS, *RHS; 6011 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6012 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6013 CurrentPattern.Flavor == SPF_FMINNUM || 6014 CurrentPattern.Flavor == SPF_FMAXNUM || 6015 !I->getType()->isIntOrIntVectorTy()) 6016 return false; 6017 if (SelectPattern.Flavor != SPF_UNKNOWN && 6018 SelectPattern.Flavor != CurrentPattern.Flavor) 6019 return false; 6020 SelectPattern = CurrentPattern; 6021 AllCmpSingleUse &= 6022 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6023 return true; 6024 })) { 6025 switch (SelectPattern.Flavor) { 6026 case SPF_SMIN: 6027 return {Intrinsic::smin, AllCmpSingleUse}; 6028 case SPF_UMIN: 6029 return {Intrinsic::umin, AllCmpSingleUse}; 6030 case SPF_SMAX: 6031 return {Intrinsic::smax, AllCmpSingleUse}; 6032 case SPF_UMAX: 6033 return {Intrinsic::umax, AllCmpSingleUse}; 6034 default: 6035 llvm_unreachable("unexpected select pattern flavor"); 6036 } 6037 } 6038 return {Intrinsic::not_intrinsic, false}; 6039 } 6040 6041 /// Return true if "icmp Pred LHS RHS" is always true. 6042 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6043 const Value *RHS, const DataLayout &DL, 6044 unsigned Depth) { 6045 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6046 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6047 return true; 6048 6049 switch (Pred) { 6050 default: 6051 return false; 6052 6053 case CmpInst::ICMP_SLE: { 6054 const APInt *C; 6055 6056 // LHS s<= LHS +_{nsw} C if C >= 0 6057 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6058 return !C->isNegative(); 6059 return false; 6060 } 6061 6062 case CmpInst::ICMP_ULE: { 6063 const APInt *C; 6064 6065 // LHS u<= LHS +_{nuw} C for any C 6066 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6067 return true; 6068 6069 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6070 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6071 const Value *&X, 6072 const APInt *&CA, const APInt *&CB) { 6073 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6074 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6075 return true; 6076 6077 // If X & C == 0 then (X | C) == X +_{nuw} C 6078 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6079 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6080 KnownBits Known(CA->getBitWidth()); 6081 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6082 /*CxtI*/ nullptr, /*DT*/ nullptr); 6083 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6084 return true; 6085 } 6086 6087 return false; 6088 }; 6089 6090 const Value *X; 6091 const APInt *CLHS, *CRHS; 6092 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6093 return CLHS->ule(*CRHS); 6094 6095 return false; 6096 } 6097 } 6098 } 6099 6100 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6101 /// ALHS ARHS" is true. Otherwise, return None. 6102 static Optional<bool> 6103 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6104 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6105 const DataLayout &DL, unsigned Depth) { 6106 switch (Pred) { 6107 default: 6108 return None; 6109 6110 case CmpInst::ICMP_SLT: 6111 case CmpInst::ICMP_SLE: 6112 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6113 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6114 return true; 6115 return None; 6116 6117 case CmpInst::ICMP_ULT: 6118 case CmpInst::ICMP_ULE: 6119 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6120 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6121 return true; 6122 return None; 6123 } 6124 } 6125 6126 /// Return true if the operands of the two compares match. IsSwappedOps is true 6127 /// when the operands match, but are swapped. 6128 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6129 const Value *BLHS, const Value *BRHS, 6130 bool &IsSwappedOps) { 6131 6132 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6133 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6134 return IsMatchingOps || IsSwappedOps; 6135 } 6136 6137 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6138 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6139 /// Otherwise, return None if we can't infer anything. 6140 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6141 CmpInst::Predicate BPred, 6142 bool AreSwappedOps) { 6143 // Canonicalize the predicate as if the operands were not commuted. 6144 if (AreSwappedOps) 6145 BPred = ICmpInst::getSwappedPredicate(BPred); 6146 6147 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6148 return true; 6149 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6150 return false; 6151 6152 return None; 6153 } 6154 6155 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6156 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6157 /// Otherwise, return None if we can't infer anything. 6158 static Optional<bool> 6159 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6160 const ConstantInt *C1, 6161 CmpInst::Predicate BPred, 6162 const ConstantInt *C2) { 6163 ConstantRange DomCR = 6164 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6165 ConstantRange CR = 6166 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6167 ConstantRange Intersection = DomCR.intersectWith(CR); 6168 ConstantRange Difference = DomCR.difference(CR); 6169 if (Intersection.isEmptySet()) 6170 return false; 6171 if (Difference.isEmptySet()) 6172 return true; 6173 return None; 6174 } 6175 6176 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6177 /// false. Otherwise, return None if we can't infer anything. 6178 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6179 CmpInst::Predicate BPred, 6180 const Value *BLHS, const Value *BRHS, 6181 const DataLayout &DL, bool LHSIsTrue, 6182 unsigned Depth) { 6183 Value *ALHS = LHS->getOperand(0); 6184 Value *ARHS = LHS->getOperand(1); 6185 6186 // The rest of the logic assumes the LHS condition is true. If that's not the 6187 // case, invert the predicate to make it so. 6188 CmpInst::Predicate APred = 6189 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6190 6191 // Can we infer anything when the two compares have matching operands? 6192 bool AreSwappedOps; 6193 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6194 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6195 APred, BPred, AreSwappedOps)) 6196 return Implication; 6197 // No amount of additional analysis will infer the second condition, so 6198 // early exit. 6199 return None; 6200 } 6201 6202 // Can we infer anything when the LHS operands match and the RHS operands are 6203 // constants (not necessarily matching)? 6204 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6205 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6206 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6207 return Implication; 6208 // No amount of additional analysis will infer the second condition, so 6209 // early exit. 6210 return None; 6211 } 6212 6213 if (APred == BPred) 6214 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6215 return None; 6216 } 6217 6218 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6219 /// false. Otherwise, return None if we can't infer anything. We expect the 6220 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6221 static Optional<bool> 6222 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6223 const Value *RHSOp0, const Value *RHSOp1, 6224 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6225 // The LHS must be an 'or', 'and', or a 'select' instruction. 6226 assert((LHS->getOpcode() == Instruction::And || 6227 LHS->getOpcode() == Instruction::Or || 6228 LHS->getOpcode() == Instruction::Select) && 6229 "Expected LHS to be 'and', 'or', or 'select'."); 6230 6231 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6232 6233 // If the result of an 'or' is false, then we know both legs of the 'or' are 6234 // false. Similarly, if the result of an 'and' is true, then we know both 6235 // legs of the 'and' are true. 6236 const Value *ALHS, *ARHS; 6237 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6238 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6239 // FIXME: Make this non-recursion. 6240 if (Optional<bool> Implication = isImpliedCondition( 6241 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6242 return Implication; 6243 if (Optional<bool> Implication = isImpliedCondition( 6244 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6245 return Implication; 6246 return None; 6247 } 6248 return None; 6249 } 6250 6251 Optional<bool> 6252 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6253 const Value *RHSOp0, const Value *RHSOp1, 6254 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6255 // Bail out when we hit the limit. 6256 if (Depth == MaxAnalysisRecursionDepth) 6257 return None; 6258 6259 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6260 // example. 6261 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6262 return None; 6263 6264 Type *OpTy = LHS->getType(); 6265 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6266 6267 // FIXME: Extending the code below to handle vectors. 6268 if (OpTy->isVectorTy()) 6269 return None; 6270 6271 assert(OpTy->isIntegerTy(1) && "implied by above"); 6272 6273 // Both LHS and RHS are icmps. 6274 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6275 if (LHSCmp) 6276 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6277 Depth); 6278 6279 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6280 /// the RHS to be an icmp. 6281 /// FIXME: Add support for and/or/select on the RHS. 6282 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6283 if ((LHSI->getOpcode() == Instruction::And || 6284 LHSI->getOpcode() == Instruction::Or || 6285 LHSI->getOpcode() == Instruction::Select)) 6286 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6287 Depth); 6288 } 6289 return None; 6290 } 6291 6292 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6293 const DataLayout &DL, bool LHSIsTrue, 6294 unsigned Depth) { 6295 // LHS ==> RHS by definition 6296 if (LHS == RHS) 6297 return LHSIsTrue; 6298 6299 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6300 if (RHSCmp) 6301 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6302 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6303 LHSIsTrue, Depth); 6304 return None; 6305 } 6306 6307 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6308 // condition dominating ContextI or nullptr, if no condition is found. 6309 static std::pair<Value *, bool> 6310 getDomPredecessorCondition(const Instruction *ContextI) { 6311 if (!ContextI || !ContextI->getParent()) 6312 return {nullptr, false}; 6313 6314 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6315 // dominator tree (eg, from a SimplifyQuery) instead? 6316 const BasicBlock *ContextBB = ContextI->getParent(); 6317 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6318 if (!PredBB) 6319 return {nullptr, false}; 6320 6321 // We need a conditional branch in the predecessor. 6322 Value *PredCond; 6323 BasicBlock *TrueBB, *FalseBB; 6324 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6325 return {nullptr, false}; 6326 6327 // The branch should get simplified. Don't bother simplifying this condition. 6328 if (TrueBB == FalseBB) 6329 return {nullptr, false}; 6330 6331 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6332 "Predecessor block does not point to successor?"); 6333 6334 // Is this condition implied by the predecessor condition? 6335 return {PredCond, TrueBB == ContextBB}; 6336 } 6337 6338 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6339 const Instruction *ContextI, 6340 const DataLayout &DL) { 6341 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6342 auto PredCond = getDomPredecessorCondition(ContextI); 6343 if (PredCond.first) 6344 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6345 return None; 6346 } 6347 6348 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6349 const Value *LHS, const Value *RHS, 6350 const Instruction *ContextI, 6351 const DataLayout &DL) { 6352 auto PredCond = getDomPredecessorCondition(ContextI); 6353 if (PredCond.first) 6354 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6355 PredCond.second); 6356 return None; 6357 } 6358 6359 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6360 APInt &Upper, const InstrInfoQuery &IIQ) { 6361 unsigned Width = Lower.getBitWidth(); 6362 const APInt *C; 6363 switch (BO.getOpcode()) { 6364 case Instruction::Add: 6365 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6366 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6367 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6368 // 'add nuw x, C' produces [C, UINT_MAX]. 6369 Lower = *C; 6370 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6371 if (C->isNegative()) { 6372 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6373 Lower = APInt::getSignedMinValue(Width); 6374 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6375 } else { 6376 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6377 Lower = APInt::getSignedMinValue(Width) + *C; 6378 Upper = APInt::getSignedMaxValue(Width) + 1; 6379 } 6380 } 6381 } 6382 break; 6383 6384 case Instruction::And: 6385 if (match(BO.getOperand(1), m_APInt(C))) 6386 // 'and x, C' produces [0, C]. 6387 Upper = *C + 1; 6388 break; 6389 6390 case Instruction::Or: 6391 if (match(BO.getOperand(1), m_APInt(C))) 6392 // 'or x, C' produces [C, UINT_MAX]. 6393 Lower = *C; 6394 break; 6395 6396 case Instruction::AShr: 6397 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6398 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6399 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6400 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6401 } else if (match(BO.getOperand(0), m_APInt(C))) { 6402 unsigned ShiftAmount = Width - 1; 6403 if (!C->isNullValue() && IIQ.isExact(&BO)) 6404 ShiftAmount = C->countTrailingZeros(); 6405 if (C->isNegative()) { 6406 // 'ashr C, x' produces [C, C >> (Width-1)] 6407 Lower = *C; 6408 Upper = C->ashr(ShiftAmount) + 1; 6409 } else { 6410 // 'ashr C, x' produces [C >> (Width-1), C] 6411 Lower = C->ashr(ShiftAmount); 6412 Upper = *C + 1; 6413 } 6414 } 6415 break; 6416 6417 case Instruction::LShr: 6418 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6419 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6420 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6421 } else if (match(BO.getOperand(0), m_APInt(C))) { 6422 // 'lshr C, x' produces [C >> (Width-1), C]. 6423 unsigned ShiftAmount = Width - 1; 6424 if (!C->isNullValue() && IIQ.isExact(&BO)) 6425 ShiftAmount = C->countTrailingZeros(); 6426 Lower = C->lshr(ShiftAmount); 6427 Upper = *C + 1; 6428 } 6429 break; 6430 6431 case Instruction::Shl: 6432 if (match(BO.getOperand(0), m_APInt(C))) { 6433 if (IIQ.hasNoUnsignedWrap(&BO)) { 6434 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6435 Lower = *C; 6436 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6437 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6438 if (C->isNegative()) { 6439 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6440 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6441 Lower = C->shl(ShiftAmount); 6442 Upper = *C + 1; 6443 } else { 6444 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6445 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6446 Lower = *C; 6447 Upper = C->shl(ShiftAmount) + 1; 6448 } 6449 } 6450 } 6451 break; 6452 6453 case Instruction::SDiv: 6454 if (match(BO.getOperand(1), m_APInt(C))) { 6455 APInt IntMin = APInt::getSignedMinValue(Width); 6456 APInt IntMax = APInt::getSignedMaxValue(Width); 6457 if (C->isAllOnesValue()) { 6458 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6459 // where C != -1 and C != 0 and C != 1 6460 Lower = IntMin + 1; 6461 Upper = IntMax + 1; 6462 } else if (C->countLeadingZeros() < Width - 1) { 6463 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6464 // where C != -1 and C != 0 and C != 1 6465 Lower = IntMin.sdiv(*C); 6466 Upper = IntMax.sdiv(*C); 6467 if (Lower.sgt(Upper)) 6468 std::swap(Lower, Upper); 6469 Upper = Upper + 1; 6470 assert(Upper != Lower && "Upper part of range has wrapped!"); 6471 } 6472 } else if (match(BO.getOperand(0), m_APInt(C))) { 6473 if (C->isMinSignedValue()) { 6474 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6475 Lower = *C; 6476 Upper = Lower.lshr(1) + 1; 6477 } else { 6478 // 'sdiv C, x' produces [-|C|, |C|]. 6479 Upper = C->abs() + 1; 6480 Lower = (-Upper) + 1; 6481 } 6482 } 6483 break; 6484 6485 case Instruction::UDiv: 6486 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6487 // 'udiv x, C' produces [0, UINT_MAX / C]. 6488 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6489 } else if (match(BO.getOperand(0), m_APInt(C))) { 6490 // 'udiv C, x' produces [0, C]. 6491 Upper = *C + 1; 6492 } 6493 break; 6494 6495 case Instruction::SRem: 6496 if (match(BO.getOperand(1), m_APInt(C))) { 6497 // 'srem x, C' produces (-|C|, |C|). 6498 Upper = C->abs(); 6499 Lower = (-Upper) + 1; 6500 } 6501 break; 6502 6503 case Instruction::URem: 6504 if (match(BO.getOperand(1), m_APInt(C))) 6505 // 'urem x, C' produces [0, C). 6506 Upper = *C; 6507 break; 6508 6509 default: 6510 break; 6511 } 6512 } 6513 6514 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6515 APInt &Upper) { 6516 unsigned Width = Lower.getBitWidth(); 6517 const APInt *C; 6518 switch (II.getIntrinsicID()) { 6519 case Intrinsic::ctpop: 6520 case Intrinsic::ctlz: 6521 case Intrinsic::cttz: 6522 // Maximum of set/clear bits is the bit width. 6523 assert(Lower == 0 && "Expected lower bound to be zero"); 6524 Upper = Width + 1; 6525 break; 6526 case Intrinsic::uadd_sat: 6527 // uadd.sat(x, C) produces [C, UINT_MAX]. 6528 if (match(II.getOperand(0), m_APInt(C)) || 6529 match(II.getOperand(1), m_APInt(C))) 6530 Lower = *C; 6531 break; 6532 case Intrinsic::sadd_sat: 6533 if (match(II.getOperand(0), m_APInt(C)) || 6534 match(II.getOperand(1), m_APInt(C))) { 6535 if (C->isNegative()) { 6536 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6537 Lower = APInt::getSignedMinValue(Width); 6538 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6539 } else { 6540 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6541 Lower = APInt::getSignedMinValue(Width) + *C; 6542 Upper = APInt::getSignedMaxValue(Width) + 1; 6543 } 6544 } 6545 break; 6546 case Intrinsic::usub_sat: 6547 // usub.sat(C, x) produces [0, C]. 6548 if (match(II.getOperand(0), m_APInt(C))) 6549 Upper = *C + 1; 6550 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6551 else if (match(II.getOperand(1), m_APInt(C))) 6552 Upper = APInt::getMaxValue(Width) - *C + 1; 6553 break; 6554 case Intrinsic::ssub_sat: 6555 if (match(II.getOperand(0), m_APInt(C))) { 6556 if (C->isNegative()) { 6557 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6558 Lower = APInt::getSignedMinValue(Width); 6559 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6560 } else { 6561 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6562 Lower = *C - APInt::getSignedMaxValue(Width); 6563 Upper = APInt::getSignedMaxValue(Width) + 1; 6564 } 6565 } else if (match(II.getOperand(1), m_APInt(C))) { 6566 if (C->isNegative()) { 6567 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6568 Lower = APInt::getSignedMinValue(Width) - *C; 6569 Upper = APInt::getSignedMaxValue(Width) + 1; 6570 } else { 6571 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6572 Lower = APInt::getSignedMinValue(Width); 6573 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6574 } 6575 } 6576 break; 6577 case Intrinsic::umin: 6578 case Intrinsic::umax: 6579 case Intrinsic::smin: 6580 case Intrinsic::smax: 6581 if (!match(II.getOperand(0), m_APInt(C)) && 6582 !match(II.getOperand(1), m_APInt(C))) 6583 break; 6584 6585 switch (II.getIntrinsicID()) { 6586 case Intrinsic::umin: 6587 Upper = *C + 1; 6588 break; 6589 case Intrinsic::umax: 6590 Lower = *C; 6591 break; 6592 case Intrinsic::smin: 6593 Lower = APInt::getSignedMinValue(Width); 6594 Upper = *C + 1; 6595 break; 6596 case Intrinsic::smax: 6597 Lower = *C; 6598 Upper = APInt::getSignedMaxValue(Width) + 1; 6599 break; 6600 default: 6601 llvm_unreachable("Must be min/max intrinsic"); 6602 } 6603 break; 6604 case Intrinsic::abs: 6605 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6606 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6607 if (match(II.getOperand(1), m_One())) 6608 Upper = APInt::getSignedMaxValue(Width) + 1; 6609 else 6610 Upper = APInt::getSignedMinValue(Width) + 1; 6611 break; 6612 default: 6613 break; 6614 } 6615 } 6616 6617 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6618 APInt &Upper, const InstrInfoQuery &IIQ) { 6619 const Value *LHS = nullptr, *RHS = nullptr; 6620 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6621 if (R.Flavor == SPF_UNKNOWN) 6622 return; 6623 6624 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6625 6626 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6627 // If the negation part of the abs (in RHS) has the NSW flag, 6628 // then the result of abs(X) is [0..SIGNED_MAX], 6629 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6630 Lower = APInt::getNullValue(BitWidth); 6631 if (match(RHS, m_Neg(m_Specific(LHS))) && 6632 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6633 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6634 else 6635 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6636 return; 6637 } 6638 6639 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6640 // The result of -abs(X) is <= 0. 6641 Lower = APInt::getSignedMinValue(BitWidth); 6642 Upper = APInt(BitWidth, 1); 6643 return; 6644 } 6645 6646 const APInt *C; 6647 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6648 return; 6649 6650 switch (R.Flavor) { 6651 case SPF_UMIN: 6652 Upper = *C + 1; 6653 break; 6654 case SPF_UMAX: 6655 Lower = *C; 6656 break; 6657 case SPF_SMIN: 6658 Lower = APInt::getSignedMinValue(BitWidth); 6659 Upper = *C + 1; 6660 break; 6661 case SPF_SMAX: 6662 Lower = *C; 6663 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6664 break; 6665 default: 6666 break; 6667 } 6668 } 6669 6670 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6671 AssumptionCache *AC, 6672 const Instruction *CtxI, 6673 unsigned Depth) { 6674 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6675 6676 if (Depth == MaxAnalysisRecursionDepth) 6677 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6678 6679 const APInt *C; 6680 if (match(V, m_APInt(C))) 6681 return ConstantRange(*C); 6682 6683 InstrInfoQuery IIQ(UseInstrInfo); 6684 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6685 APInt Lower = APInt(BitWidth, 0); 6686 APInt Upper = APInt(BitWidth, 0); 6687 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6688 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6689 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6690 setLimitsForIntrinsic(*II, Lower, Upper); 6691 else if (auto *SI = dyn_cast<SelectInst>(V)) 6692 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6693 6694 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6695 6696 if (auto *I = dyn_cast<Instruction>(V)) 6697 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6698 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6699 6700 if (CtxI && AC) { 6701 // Try to restrict the range based on information from assumptions. 6702 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6703 if (!AssumeVH) 6704 continue; 6705 CallInst *I = cast<CallInst>(AssumeVH); 6706 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6707 "Got assumption for the wrong function!"); 6708 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6709 "must be an assume intrinsic"); 6710 6711 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6712 continue; 6713 Value *Arg = I->getArgOperand(0); 6714 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6715 // Currently we just use information from comparisons. 6716 if (!Cmp || Cmp->getOperand(0) != V) 6717 continue; 6718 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6719 AC, I, Depth + 1); 6720 CR = CR.intersectWith( 6721 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6722 } 6723 } 6724 6725 return CR; 6726 } 6727 6728 static Optional<int64_t> 6729 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6730 // Skip over the first indices. 6731 gep_type_iterator GTI = gep_type_begin(GEP); 6732 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6733 /*skip along*/; 6734 6735 // Compute the offset implied by the rest of the indices. 6736 int64_t Offset = 0; 6737 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6738 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6739 if (!OpC) 6740 return None; 6741 if (OpC->isZero()) 6742 continue; // No offset. 6743 6744 // Handle struct indices, which add their field offset to the pointer. 6745 if (StructType *STy = GTI.getStructTypeOrNull()) { 6746 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6747 continue; 6748 } 6749 6750 // Otherwise, we have a sequential type like an array or fixed-length 6751 // vector. Multiply the index by the ElementSize. 6752 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6753 if (Size.isScalable()) 6754 return None; 6755 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6756 } 6757 6758 return Offset; 6759 } 6760 6761 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6762 const DataLayout &DL) { 6763 Ptr1 = Ptr1->stripPointerCasts(); 6764 Ptr2 = Ptr2->stripPointerCasts(); 6765 6766 // Handle the trivial case first. 6767 if (Ptr1 == Ptr2) { 6768 return 0; 6769 } 6770 6771 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6772 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6773 6774 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6775 // as in "P" and "gep P, 1". 6776 // Also do this iteratively to handle the the following case: 6777 // Ptr_t1 = GEP Ptr1, c1 6778 // Ptr_t2 = GEP Ptr_t1, c2 6779 // Ptr2 = GEP Ptr_t2, c3 6780 // where we will return c1+c2+c3. 6781 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6782 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6783 // are the same, and return the difference between offsets. 6784 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6785 const Value *Ptr) -> Optional<int64_t> { 6786 const GEPOperator *GEP_T = GEP; 6787 int64_t OffsetVal = 0; 6788 bool HasSameBase = false; 6789 while (GEP_T) { 6790 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6791 if (!Offset) 6792 return None; 6793 OffsetVal += *Offset; 6794 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6795 if (Op0 == Ptr) { 6796 HasSameBase = true; 6797 break; 6798 } 6799 GEP_T = dyn_cast<GEPOperator>(Op0); 6800 } 6801 if (!HasSameBase) 6802 return None; 6803 return OffsetVal; 6804 }; 6805 6806 if (GEP1) { 6807 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6808 if (Offset) 6809 return -*Offset; 6810 } 6811 if (GEP2) { 6812 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6813 if (Offset) 6814 return Offset; 6815 } 6816 6817 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6818 // base. After that base, they may have some number of common (and 6819 // potentially variable) indices. After that they handle some constant 6820 // offset, which determines their offset from each other. At this point, we 6821 // handle no other case. 6822 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6823 return None; 6824 6825 // Skip any common indices and track the GEP types. 6826 unsigned Idx = 1; 6827 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6828 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6829 break; 6830 6831 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6832 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6833 if (!Offset1 || !Offset2) 6834 return None; 6835 return *Offset2 - *Offset1; 6836 } 6837