1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = Shuf->getType()->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 178 if (DemandedElts.isNullValue()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 // FIXME: We currently have no way to represent the DemandedElts of a scalable 210 // vector 211 if (isa<ScalableVectorType>(V->getType())) { 212 Known.resetAll(); 213 return; 214 } 215 216 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 217 APInt DemandedElts = 218 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 219 computeKnownBits(V, DemandedElts, Known, Depth, Q); 220 } 221 222 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 223 const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, const Instruction *CxtI, 225 const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 232 KnownBits &Known, const DataLayout &DL, 233 unsigned Depth, AssumptionCache *AC, 234 const Instruction *CxtI, const DominatorTree *DT, 235 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 236 ::computeKnownBits(V, DemandedElts, Known, Depth, 237 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 238 } 239 240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 241 unsigned Depth, const Query &Q); 242 243 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 257 const DataLayout &DL, unsigned Depth, 258 AssumptionCache *AC, const Instruction *CxtI, 259 const DominatorTree *DT, 260 OptimizationRemarkEmitter *ORE, 261 bool UseInstrInfo) { 262 return ::computeKnownBits( 263 V, DemandedElts, Depth, 264 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 265 } 266 267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 268 const DataLayout &DL, AssumptionCache *AC, 269 const Instruction *CxtI, const DominatorTree *DT, 270 bool UseInstrInfo) { 271 assert(LHS->getType() == RHS->getType() && 272 "LHS and RHS should have the same type"); 273 assert(LHS->getType()->isIntOrIntVectorTy() && 274 "LHS and RHS should be integers"); 275 // Look for an inverted mask: (X & ~M) op (Y & M). 276 Value *M; 277 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 278 match(RHS, m_c_And(m_Specific(M), m_Value()))) 279 return true; 280 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(LHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 284 KnownBits LHSKnown(IT->getBitWidth()); 285 KnownBits RHSKnown(IT->getBitWidth()); 286 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 287 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 288 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 289 } 290 291 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 292 for (const User *U : CxtI->users()) { 293 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 294 if (IC->isEquality()) 295 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 296 if (C->isNullValue()) 297 continue; 298 return false; 299 } 300 return true; 301 } 302 303 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 304 const Query &Q); 305 306 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 307 bool OrZero, unsigned Depth, 308 AssumptionCache *AC, const Instruction *CxtI, 309 const DominatorTree *DT, bool UseInstrInfo) { 310 return ::isKnownToBeAPowerOfTwo( 311 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 312 } 313 314 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 315 unsigned Depth, const Query &Q); 316 317 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 318 319 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 320 AssumptionCache *AC, const Instruction *CxtI, 321 const DominatorTree *DT, bool UseInstrInfo) { 322 return ::isKnownNonZero(V, Depth, 323 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 324 } 325 326 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 327 unsigned Depth, AssumptionCache *AC, 328 const Instruction *CxtI, const DominatorTree *DT, 329 bool UseInstrInfo) { 330 KnownBits Known = 331 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 332 return Known.isNonNegative(); 333 } 334 335 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 if (auto *CI = dyn_cast<ConstantInt>(V)) 339 return CI->getValue().isStrictlyPositive(); 340 341 // TODO: We'd doing two recursive queries here. We should factor this such 342 // that only a single query is needed. 343 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 344 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 345 } 346 347 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 348 AssumptionCache *AC, const Instruction *CxtI, 349 const DominatorTree *DT, bool UseInstrInfo) { 350 KnownBits Known = 351 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 352 return Known.isNegative(); 353 } 354 355 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 356 357 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 358 const DataLayout &DL, AssumptionCache *AC, 359 const Instruction *CxtI, const DominatorTree *DT, 360 bool UseInstrInfo) { 361 return ::isKnownNonEqual(V1, V2, 362 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 363 UseInstrInfo, /*ORE=*/nullptr)); 364 } 365 366 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 367 const Query &Q); 368 369 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 370 const DataLayout &DL, unsigned Depth, 371 AssumptionCache *AC, const Instruction *CxtI, 372 const DominatorTree *DT, bool UseInstrInfo) { 373 return ::MaskedValueIsZero( 374 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 375 } 376 377 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 378 unsigned Depth, const Query &Q); 379 380 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 381 const Query &Q) { 382 // FIXME: We currently have no way to represent the DemandedElts of a scalable 383 // vector 384 if (isa<ScalableVectorType>(V->getType())) 385 return 1; 386 387 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 388 APInt DemandedElts = 389 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 390 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 391 } 392 393 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 394 unsigned Depth, AssumptionCache *AC, 395 const Instruction *CxtI, 396 const DominatorTree *DT, bool UseInstrInfo) { 397 return ::ComputeNumSignBits( 398 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 399 } 400 401 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 402 bool NSW, const APInt &DemandedElts, 403 KnownBits &KnownOut, KnownBits &Known2, 404 unsigned Depth, const Query &Q) { 405 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 406 407 // If one operand is unknown and we have no nowrap information, 408 // the result will be unknown independently of the second operand. 409 if (KnownOut.isUnknown() && !NSW) 410 return; 411 412 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 413 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 414 } 415 416 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 417 const APInt &DemandedElts, KnownBits &Known, 418 KnownBits &Known2, unsigned Depth, 419 const Query &Q) { 420 unsigned BitWidth = Known.getBitWidth(); 421 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 422 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 423 424 bool isKnownNegative = false; 425 bool isKnownNonNegative = false; 426 // If the multiplication is known not to overflow, compute the sign bit. 427 if (NSW) { 428 if (Op0 == Op1) { 429 // The product of a number with itself is non-negative. 430 isKnownNonNegative = true; 431 } else { 432 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 433 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 434 bool isKnownNegativeOp1 = Known.isNegative(); 435 bool isKnownNegativeOp0 = Known2.isNegative(); 436 // The product of two numbers with the same sign is non-negative. 437 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 438 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 439 // The product of a negative number and a non-negative number is either 440 // negative or zero. 441 if (!isKnownNonNegative) 442 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 443 isKnownNonZero(Op0, Depth, Q)) || 444 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 445 isKnownNonZero(Op1, Depth, Q)); 446 } 447 } 448 449 assert(!Known.hasConflict() && !Known2.hasConflict()); 450 // Compute a conservative estimate for high known-0 bits. 451 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 452 Known2.countMinLeadingZeros(), 453 BitWidth) - BitWidth; 454 LeadZ = std::min(LeadZ, BitWidth); 455 456 // The result of the bottom bits of an integer multiply can be 457 // inferred by looking at the bottom bits of both operands and 458 // multiplying them together. 459 // We can infer at least the minimum number of known trailing bits 460 // of both operands. Depending on number of trailing zeros, we can 461 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 462 // a and b are divisible by m and n respectively. 463 // We then calculate how many of those bits are inferrable and set 464 // the output. For example, the i8 mul: 465 // a = XXXX1100 (12) 466 // b = XXXX1110 (14) 467 // We know the bottom 3 bits are zero since the first can be divided by 468 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 469 // Applying the multiplication to the trimmed arguments gets: 470 // XX11 (3) 471 // X111 (7) 472 // ------- 473 // XX11 474 // XX11 475 // XX11 476 // XX11 477 // ------- 478 // XXXXX01 479 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 480 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 481 // The proof for this can be described as: 482 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 483 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 484 // umin(countTrailingZeros(C2), C6) + 485 // umin(C5 - umin(countTrailingZeros(C1), C5), 486 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 487 // %aa = shl i8 %a, C5 488 // %bb = shl i8 %b, C6 489 // %aaa = or i8 %aa, C1 490 // %bbb = or i8 %bb, C2 491 // %mul = mul i8 %aaa, %bbb 492 // %mask = and i8 %mul, C7 493 // => 494 // %mask = i8 ((C1*C2)&C7) 495 // Where C5, C6 describe the known bits of %a, %b 496 // C1, C2 describe the known bottom bits of %a, %b. 497 // C7 describes the mask of the known bits of the result. 498 APInt Bottom0 = Known.One; 499 APInt Bottom1 = Known2.One; 500 501 // How many times we'd be able to divide each argument by 2 (shr by 1). 502 // This gives us the number of trailing zeros on the multiplication result. 503 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 504 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 505 unsigned TrailZero0 = Known.countMinTrailingZeros(); 506 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 507 unsigned TrailZ = TrailZero0 + TrailZero1; 508 509 // Figure out the fewest known-bits operand. 510 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 511 TrailBitsKnown1 - TrailZero1); 512 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 513 514 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 515 Bottom1.getLoBits(TrailBitsKnown1); 516 517 Known.resetAll(); 518 Known.Zero.setHighBits(LeadZ); 519 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 520 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 521 522 // Only make use of no-wrap flags if we failed to compute the sign bit 523 // directly. This matters if the multiplication always overflows, in 524 // which case we prefer to follow the result of the direct computation, 525 // though as the program is invoking undefined behaviour we can choose 526 // whatever we like here. 527 if (isKnownNonNegative && !Known.isNegative()) 528 Known.makeNonNegative(); 529 else if (isKnownNegative && !Known.isNonNegative()) 530 Known.makeNegative(); 531 } 532 533 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 534 KnownBits &Known) { 535 unsigned BitWidth = Known.getBitWidth(); 536 unsigned NumRanges = Ranges.getNumOperands() / 2; 537 assert(NumRanges >= 1); 538 539 Known.Zero.setAllBits(); 540 Known.One.setAllBits(); 541 542 for (unsigned i = 0; i < NumRanges; ++i) { 543 ConstantInt *Lower = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 545 ConstantInt *Upper = 546 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 547 ConstantRange Range(Lower->getValue(), Upper->getValue()); 548 549 // The first CommonPrefixBits of all values in Range are equal. 550 unsigned CommonPrefixBits = 551 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 552 553 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 554 Known.One &= Range.getUnsignedMax() & Mask; 555 Known.Zero &= ~Range.getUnsignedMax() & Mask; 556 } 557 } 558 559 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 560 SmallVector<const Value *, 16> WorkSet(1, I); 561 SmallPtrSet<const Value *, 32> Visited; 562 SmallPtrSet<const Value *, 16> EphValues; 563 564 // The instruction defining an assumption's condition itself is always 565 // considered ephemeral to that assumption (even if it has other 566 // non-ephemeral users). See r246696's test case for an example. 567 if (is_contained(I->operands(), E)) 568 return true; 569 570 while (!WorkSet.empty()) { 571 const Value *V = WorkSet.pop_back_val(); 572 if (!Visited.insert(V).second) 573 continue; 574 575 // If all uses of this value are ephemeral, then so is this value. 576 if (llvm::all_of(V->users(), [&](const User *U) { 577 return EphValues.count(U); 578 })) { 579 if (V == E) 580 return true; 581 582 if (V == I || isSafeToSpeculativelyExecute(V)) { 583 EphValues.insert(V); 584 if (const User *U = dyn_cast<User>(V)) 585 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 586 J != JE; ++J) 587 WorkSet.push_back(*J); 588 } 589 } 590 } 591 592 return false; 593 } 594 595 // Is this an intrinsic that cannot be speculated but also cannot trap? 596 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 597 if (const CallInst *CI = dyn_cast<CallInst>(I)) 598 if (Function *F = CI->getCalledFunction()) 599 switch (F->getIntrinsicID()) { 600 default: break; 601 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 602 case Intrinsic::assume: 603 case Intrinsic::sideeffect: 604 case Intrinsic::dbg_declare: 605 case Intrinsic::dbg_value: 606 case Intrinsic::dbg_label: 607 case Intrinsic::invariant_start: 608 case Intrinsic::invariant_end: 609 case Intrinsic::lifetime_start: 610 case Intrinsic::lifetime_end: 611 case Intrinsic::objectsize: 612 case Intrinsic::ptr_annotation: 613 case Intrinsic::var_annotation: 614 return true; 615 } 616 617 return false; 618 } 619 620 bool llvm::isValidAssumeForContext(const Instruction *Inv, 621 const Instruction *CxtI, 622 const DominatorTree *DT) { 623 // There are two restrictions on the use of an assume: 624 // 1. The assume must dominate the context (or the control flow must 625 // reach the assume whenever it reaches the context). 626 // 2. The context must not be in the assume's set of ephemeral values 627 // (otherwise we will use the assume to prove that the condition 628 // feeding the assume is trivially true, thus causing the removal of 629 // the assume). 630 631 if (Inv->getParent() == CxtI->getParent()) { 632 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 633 // in the BB. 634 if (Inv->comesBefore(CxtI)) 635 return true; 636 637 // Don't let an assume affect itself - this would cause the problems 638 // `isEphemeralValueOf` is trying to prevent, and it would also make 639 // the loop below go out of bounds. 640 if (Inv == CxtI) 641 return false; 642 643 // The context comes first, but they're both in the same block. 644 // Make sure there is nothing in between that might interrupt 645 // the control flow, not even CxtI itself. 646 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 647 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 648 return false; 649 650 return !isEphemeralValueOf(Inv, CxtI); 651 } 652 653 // Inv and CxtI are in different blocks. 654 if (DT) { 655 if (DT->dominates(Inv, CxtI)) 656 return true; 657 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 658 // We don't have a DT, but this trivially dominates. 659 return true; 660 } 661 662 return false; 663 } 664 665 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return false; 670 671 // Note that the patterns below need to be kept in sync with the code 672 // in AssumptionCache::updateAffectedValues. 673 674 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 675 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 676 677 Value *RHS; 678 CmpInst::Predicate Pred; 679 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 680 return false; 681 // assume(v u> y) -> assume(v != 0) 682 if (Pred == ICmpInst::ICMP_UGT) 683 return true; 684 685 // assume(v != 0) 686 // We special-case this one to ensure that we handle `assume(v != null)`. 687 if (Pred == ICmpInst::ICMP_NE) 688 return match(RHS, m_Zero()); 689 690 // All other predicates - rely on generic ConstantRange handling. 691 ConstantInt *CI; 692 if (!match(RHS, m_ConstantInt(CI))) 693 return false; 694 ConstantRange RHSRange(CI->getValue()); 695 ConstantRange TrueValues = 696 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 697 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 698 }; 699 700 if (Q.CxtI && V->getType()->isPointerTy()) { 701 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 702 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 703 V->getType()->getPointerAddressSpace())) 704 AttrKinds.push_back(Attribute::Dereferenceable); 705 706 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 707 return true; 708 } 709 710 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 711 if (!AssumeVH) 712 continue; 713 CallInst *I = cast<CallInst>(AssumeVH); 714 assert(I->getFunction() == Q.CxtI->getFunction() && 715 "Got assumption for the wrong function!"); 716 if (Q.isExcluded(I)) 717 continue; 718 719 // Warning: This loop can end up being somewhat performance sensitive. 720 // We're running this loop for once for each value queried resulting in a 721 // runtime of ~O(#assumes * #values). 722 723 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 724 "must be an assume intrinsic"); 725 726 Value *Arg = I->getArgOperand(0); 727 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 728 if (!Cmp) 729 continue; 730 731 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 732 return true; 733 } 734 735 return false; 736 } 737 738 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 739 unsigned Depth, const Query &Q) { 740 // Use of assumptions is context-sensitive. If we don't have a context, we 741 // cannot use them! 742 if (!Q.AC || !Q.CxtI) 743 return; 744 745 unsigned BitWidth = Known.getBitWidth(); 746 747 // Note that the patterns below need to be kept in sync with the code 748 // in AssumptionCache::updateAffectedValues. 749 750 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 751 if (!AssumeVH) 752 continue; 753 CallInst *I = cast<CallInst>(AssumeVH); 754 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 755 "Got assumption for the wrong function!"); 756 if (Q.isExcluded(I)) 757 continue; 758 759 // Warning: This loop can end up being somewhat performance sensitive. 760 // We're running this loop for once for each value queried resulting in a 761 // runtime of ~O(#assumes * #values). 762 763 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 764 "must be an assume intrinsic"); 765 766 Value *Arg = I->getArgOperand(0); 767 768 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 assert(BitWidth == 1 && "assume operand is not i1?"); 770 Known.setAllOnes(); 771 return; 772 } 773 if (match(Arg, m_Not(m_Specific(V))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 assert(BitWidth == 1 && "assume operand is not i1?"); 776 Known.setAllZero(); 777 return; 778 } 779 780 // The remaining tests are all recursive, so bail out if we hit the limit. 781 if (Depth == MaxDepth) 782 continue; 783 784 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 785 if (!Cmp) 786 continue; 787 788 // Note that ptrtoint may change the bitwidth. 789 Value *A, *B; 790 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 791 792 CmpInst::Predicate Pred; 793 uint64_t C; 794 switch (Cmp->getPredicate()) { 795 default: 796 break; 797 case ICmpInst::ICMP_EQ: 798 // assume(v = a) 799 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown = 802 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 803 Known.Zero |= RHSKnown.Zero; 804 Known.One |= RHSKnown.One; 805 // assume(v & b = a) 806 } else if (match(Cmp, 807 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 808 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 809 KnownBits RHSKnown = 810 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 KnownBits MaskKnown = 812 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 814 // For those bits in the mask that are known to be one, we can propagate 815 // known bits from the RHS to V. 816 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 817 Known.One |= RHSKnown.One & MaskKnown.One; 818 // assume(~(v & b) = a) 819 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 820 m_Value(A))) && 821 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 822 KnownBits RHSKnown = 823 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 KnownBits MaskKnown = 825 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 826 827 // For those bits in the mask that are known to be one, we can propagate 828 // inverted known bits from the RHS to V. 829 Known.Zero |= RHSKnown.One & MaskKnown.One; 830 Known.One |= RHSKnown.Zero & MaskKnown.One; 831 // assume(v | b = a) 832 } else if (match(Cmp, 833 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 834 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 835 KnownBits RHSKnown = 836 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 KnownBits BKnown = 838 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 839 840 // For those bits in B that are known to be zero, we can propagate known 841 // bits from the RHS to V. 842 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 843 Known.One |= RHSKnown.One & BKnown.Zero; 844 // assume(~(v | b) = a) 845 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 846 m_Value(A))) && 847 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 848 KnownBits RHSKnown = 849 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 KnownBits BKnown = 851 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 852 853 // For those bits in B that are known to be zero, we can propagate 854 // inverted known bits from the RHS to V. 855 Known.Zero |= RHSKnown.One & BKnown.Zero; 856 Known.One |= RHSKnown.Zero & BKnown.Zero; 857 // assume(v ^ b = a) 858 } else if (match(Cmp, 859 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 860 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 861 KnownBits RHSKnown = 862 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 KnownBits BKnown = 864 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 865 866 // For those bits in B that are known to be zero, we can propagate known 867 // bits from the RHS to V. For those bits in B that are known to be one, 868 // we can propagate inverted known bits from the RHS to V. 869 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 870 Known.One |= RHSKnown.One & BKnown.Zero; 871 Known.Zero |= RHSKnown.One & BKnown.One; 872 Known.One |= RHSKnown.Zero & BKnown.One; 873 // assume(~(v ^ b) = a) 874 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 875 m_Value(A))) && 876 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 877 KnownBits RHSKnown = 878 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 KnownBits BKnown = 880 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 881 882 // For those bits in B that are known to be zero, we can propagate 883 // inverted known bits from the RHS to V. For those bits in B that are 884 // known to be one, we can propagate known bits from the RHS to V. 885 Known.Zero |= RHSKnown.One & BKnown.Zero; 886 Known.One |= RHSKnown.Zero & BKnown.Zero; 887 Known.Zero |= RHSKnown.Zero & BKnown.One; 888 Known.One |= RHSKnown.One & BKnown.One; 889 // assume(v << c = a) 890 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 891 m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 895 896 // For those bits in RHS that are known, we can propagate them to known 897 // bits in V shifted to the right by C. 898 RHSKnown.Zero.lshrInPlace(C); 899 Known.Zero |= RHSKnown.Zero; 900 RHSKnown.One.lshrInPlace(C); 901 Known.One |= RHSKnown.One; 902 // assume(~(v << c) = a) 903 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 904 m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 908 // For those bits in RHS that are known, we can propagate them inverted 909 // to known bits in V shifted to the right by C. 910 RHSKnown.One.lshrInPlace(C); 911 Known.Zero |= RHSKnown.One; 912 RHSKnown.Zero.lshrInPlace(C); 913 Known.One |= RHSKnown.Zero; 914 // assume(v >> c = a) 915 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 916 m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 920 // For those bits in RHS that are known, we can propagate them to known 921 // bits in V shifted to the right by C. 922 Known.Zero |= RHSKnown.Zero << C; 923 Known.One |= RHSKnown.One << C; 924 // assume(~(v >> c) = a) 925 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 926 m_Value(A))) && 927 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 928 KnownBits RHSKnown = 929 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 930 // For those bits in RHS that are known, we can propagate them inverted 931 // to known bits in V shifted to the right by C. 932 Known.Zero |= RHSKnown.One << C; 933 Known.One |= RHSKnown.Zero << C; 934 } 935 break; 936 case ICmpInst::ICMP_SGE: 937 // assume(v >=_s c) where c is non-negative 938 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 939 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 940 KnownBits RHSKnown = 941 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 942 943 if (RHSKnown.isNonNegative()) { 944 // We know that the sign bit is zero. 945 Known.makeNonNegative(); 946 } 947 } 948 break; 949 case ICmpInst::ICMP_SGT: 950 // assume(v >_s c) where c is at least -1. 951 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 952 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 953 KnownBits RHSKnown = 954 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 955 956 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 957 // We know that the sign bit is zero. 958 Known.makeNonNegative(); 959 } 960 } 961 break; 962 case ICmpInst::ICMP_SLE: 963 // assume(v <=_s c) where c is negative 964 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 965 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 966 KnownBits RHSKnown = 967 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 968 969 if (RHSKnown.isNegative()) { 970 // We know that the sign bit is one. 971 Known.makeNegative(); 972 } 973 } 974 break; 975 case ICmpInst::ICMP_SLT: 976 // assume(v <_s c) where c is non-positive 977 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 978 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 979 KnownBits RHSKnown = 980 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 981 982 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 983 // We know that the sign bit is one. 984 Known.makeNegative(); 985 } 986 } 987 break; 988 case ICmpInst::ICMP_ULE: 989 // assume(v <=_u c) 990 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 991 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 992 KnownBits RHSKnown = 993 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 994 995 // Whatever high bits in c are zero are known to be zero. 996 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 997 } 998 break; 999 case ICmpInst::ICMP_ULT: 1000 // assume(v <_u c) 1001 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1002 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1003 KnownBits RHSKnown = 1004 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1005 1006 // If the RHS is known zero, then this assumption must be wrong (nothing 1007 // is unsigned less than zero). Signal a conflict and get out of here. 1008 if (RHSKnown.isZero()) { 1009 Known.Zero.setAllBits(); 1010 Known.One.setAllBits(); 1011 break; 1012 } 1013 1014 // Whatever high bits in c are zero are known to be zero (if c is a power 1015 // of 2, then one more). 1016 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1018 else 1019 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1020 } 1021 break; 1022 } 1023 } 1024 1025 // If assumptions conflict with each other or previous known bits, then we 1026 // have a logical fallacy. It's possible that the assumption is not reachable, 1027 // so this isn't a real bug. On the other hand, the program may have undefined 1028 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1029 // clear out the known bits, try to warn the user, and hope for the best. 1030 if (Known.Zero.intersects(Known.One)) { 1031 Known.resetAll(); 1032 1033 if (Q.ORE) 1034 Q.ORE->emit([&]() { 1035 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1036 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1037 CxtI) 1038 << "Detected conflicting code assumptions. Program may " 1039 "have undefined behavior, or compiler may have " 1040 "internal error."; 1041 }); 1042 } 1043 } 1044 1045 /// Compute known bits from a shift operator, including those with a 1046 /// non-constant shift amount. Known is the output of this function. Known2 is a 1047 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1048 /// operator-specific functions that, given the known-zero or known-one bits 1049 /// respectively, and a shift amount, compute the implied known-zero or 1050 /// known-one bits of the shift operator's result respectively for that shift 1051 /// amount. The results from calling KZF and KOF are conservatively combined for 1052 /// all permitted shift amounts. 1053 static void computeKnownBitsFromShiftOperator( 1054 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1055 KnownBits &Known2, unsigned Depth, const Query &Q, 1056 function_ref<APInt(const APInt &, unsigned)> KZF, 1057 function_ref<APInt(const APInt &, unsigned)> KOF) { 1058 unsigned BitWidth = Known.getBitWidth(); 1059 1060 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1061 if (Known.isConstant()) { 1062 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1063 1064 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1065 Known.Zero = KZF(Known.Zero, ShiftAmt); 1066 Known.One = KOF(Known.One, ShiftAmt); 1067 // If the known bits conflict, this must be an overflowing left shift, so 1068 // the shift result is poison. We can return anything we want. Choose 0 for 1069 // the best folding opportunity. 1070 if (Known.hasConflict()) 1071 Known.setAllZero(); 1072 1073 return; 1074 } 1075 1076 // If the shift amount could be greater than or equal to the bit-width of the 1077 // LHS, the value could be poison, but bail out because the check below is 1078 // expensive. 1079 // TODO: Should we just carry on? 1080 if (Known.getMaxValue().uge(BitWidth)) { 1081 Known.resetAll(); 1082 return; 1083 } 1084 1085 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1086 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1087 // limit value (which implies all bits are known). 1088 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1089 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1090 1091 // It would be more-clearly correct to use the two temporaries for this 1092 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1093 Known.resetAll(); 1094 1095 // If we know the shifter operand is nonzero, we can sometimes infer more 1096 // known bits. However this is expensive to compute, so be lazy about it and 1097 // only compute it when absolutely necessary. 1098 Optional<bool> ShifterOperandIsNonZero; 1099 1100 // Early exit if we can't constrain any well-defined shift amount. 1101 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1102 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1103 ShifterOperandIsNonZero = 1104 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1105 if (!*ShifterOperandIsNonZero) 1106 return; 1107 } 1108 1109 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1110 1111 Known.Zero.setAllBits(); 1112 Known.One.setAllBits(); 1113 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1114 // Combine the shifted known input bits only for those shift amounts 1115 // compatible with its known constraints. 1116 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1117 continue; 1118 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1119 continue; 1120 // If we know the shifter is nonzero, we may be able to infer more known 1121 // bits. This check is sunk down as far as possible to avoid the expensive 1122 // call to isKnownNonZero if the cheaper checks above fail. 1123 if (ShiftAmt == 0) { 1124 if (!ShifterOperandIsNonZero.hasValue()) 1125 ShifterOperandIsNonZero = 1126 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1127 if (*ShifterOperandIsNonZero) 1128 continue; 1129 } 1130 1131 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1132 Known.One &= KOF(Known2.One, ShiftAmt); 1133 } 1134 1135 // If the known bits conflict, the result is poison. Return a 0 and hope the 1136 // caller can further optimize that. 1137 if (Known.hasConflict()) 1138 Known.setAllZero(); 1139 } 1140 1141 static void computeKnownBitsFromOperator(const Operator *I, 1142 const APInt &DemandedElts, 1143 KnownBits &Known, unsigned Depth, 1144 const Query &Q) { 1145 unsigned BitWidth = Known.getBitWidth(); 1146 1147 KnownBits Known2(BitWidth); 1148 switch (I->getOpcode()) { 1149 default: break; 1150 case Instruction::Load: 1151 if (MDNode *MD = 1152 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1153 computeKnownBitsFromRangeMetadata(*MD, Known); 1154 break; 1155 case Instruction::And: { 1156 // If either the LHS or the RHS are Zero, the result is zero. 1157 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1158 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1159 1160 Known &= Known2; 1161 1162 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1163 // here we handle the more general case of adding any odd number by 1164 // matching the form add(x, add(x, y)) where y is odd. 1165 // TODO: This could be generalized to clearing any bit set in y where the 1166 // following bit is known to be unset in y. 1167 Value *X = nullptr, *Y = nullptr; 1168 if (!Known.Zero[0] && !Known.One[0] && 1169 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1170 Known2.resetAll(); 1171 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1172 if (Known2.countMinTrailingOnes() > 0) 1173 Known.Zero.setBit(0); 1174 } 1175 break; 1176 } 1177 case Instruction::Or: 1178 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1179 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1180 1181 Known |= Known2; 1182 break; 1183 case Instruction::Xor: 1184 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1185 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1186 1187 Known ^= Known2; 1188 break; 1189 case Instruction::Mul: { 1190 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1191 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1192 Known, Known2, Depth, Q); 1193 break; 1194 } 1195 case Instruction::UDiv: { 1196 // For the purposes of computing leading zeros we can conservatively 1197 // treat a udiv as a logical right shift by the power of 2 known to 1198 // be less than the denominator. 1199 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1200 unsigned LeadZ = Known2.countMinLeadingZeros(); 1201 1202 Known2.resetAll(); 1203 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1204 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1205 if (RHSMaxLeadingZeros != BitWidth) 1206 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1207 1208 Known.Zero.setHighBits(LeadZ); 1209 break; 1210 } 1211 case Instruction::Select: { 1212 const Value *LHS = nullptr, *RHS = nullptr; 1213 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1214 if (SelectPatternResult::isMinOrMax(SPF)) { 1215 computeKnownBits(RHS, Known, Depth + 1, Q); 1216 computeKnownBits(LHS, Known2, Depth + 1, Q); 1217 } else { 1218 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1219 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1220 } 1221 1222 unsigned MaxHighOnes = 0; 1223 unsigned MaxHighZeros = 0; 1224 if (SPF == SPF_SMAX) { 1225 // If both sides are negative, the result is negative. 1226 if (Known.isNegative() && Known2.isNegative()) 1227 // We can derive a lower bound on the result by taking the max of the 1228 // leading one bits. 1229 MaxHighOnes = 1230 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1231 // If either side is non-negative, the result is non-negative. 1232 else if (Known.isNonNegative() || Known2.isNonNegative()) 1233 MaxHighZeros = 1; 1234 } else if (SPF == SPF_SMIN) { 1235 // If both sides are non-negative, the result is non-negative. 1236 if (Known.isNonNegative() && Known2.isNonNegative()) 1237 // We can derive an upper bound on the result by taking the max of the 1238 // leading zero bits. 1239 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1240 Known2.countMinLeadingZeros()); 1241 // If either side is negative, the result is negative. 1242 else if (Known.isNegative() || Known2.isNegative()) 1243 MaxHighOnes = 1; 1244 } else if (SPF == SPF_UMAX) { 1245 // We can derive a lower bound on the result by taking the max of the 1246 // leading one bits. 1247 MaxHighOnes = 1248 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1249 } else if (SPF == SPF_UMIN) { 1250 // We can derive an upper bound on the result by taking the max of the 1251 // leading zero bits. 1252 MaxHighZeros = 1253 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1254 } else if (SPF == SPF_ABS) { 1255 // RHS from matchSelectPattern returns the negation part of abs pattern. 1256 // If the negate has an NSW flag we can assume the sign bit of the result 1257 // will be 0 because that makes abs(INT_MIN) undefined. 1258 if (match(RHS, m_Neg(m_Specific(LHS))) && 1259 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1260 MaxHighZeros = 1; 1261 } 1262 1263 // Only known if known in both the LHS and RHS. 1264 Known.One &= Known2.One; 1265 Known.Zero &= Known2.Zero; 1266 if (MaxHighOnes > 0) 1267 Known.One.setHighBits(MaxHighOnes); 1268 if (MaxHighZeros > 0) 1269 Known.Zero.setHighBits(MaxHighZeros); 1270 break; 1271 } 1272 case Instruction::FPTrunc: 1273 case Instruction::FPExt: 1274 case Instruction::FPToUI: 1275 case Instruction::FPToSI: 1276 case Instruction::SIToFP: 1277 case Instruction::UIToFP: 1278 break; // Can't work with floating point. 1279 case Instruction::PtrToInt: 1280 case Instruction::IntToPtr: 1281 // Fall through and handle them the same as zext/trunc. 1282 LLVM_FALLTHROUGH; 1283 case Instruction::ZExt: 1284 case Instruction::Trunc: { 1285 Type *SrcTy = I->getOperand(0)->getType(); 1286 1287 unsigned SrcBitWidth; 1288 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1289 // which fall through here. 1290 Type *ScalarTy = SrcTy->getScalarType(); 1291 SrcBitWidth = ScalarTy->isPointerTy() ? 1292 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1293 Q.DL.getTypeSizeInBits(ScalarTy); 1294 1295 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1296 Known = Known.anyextOrTrunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 Known = Known.zextOrTrunc(BitWidth); 1299 break; 1300 } 1301 case Instruction::BitCast: { 1302 Type *SrcTy = I->getOperand(0)->getType(); 1303 if (SrcTy->isIntOrPtrTy() && 1304 // TODO: For now, not handling conversions like: 1305 // (bitcast i64 %x to <2 x i32>) 1306 !I->getType()->isVectorTy()) { 1307 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1308 break; 1309 } 1310 break; 1311 } 1312 case Instruction::SExt: { 1313 // Compute the bits in the result that are not present in the input. 1314 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1315 1316 Known = Known.trunc(SrcBitWidth); 1317 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1318 // If the sign bit of the input is known set or clear, then we know the 1319 // top bits of the result. 1320 Known = Known.sext(BitWidth); 1321 break; 1322 } 1323 case Instruction::Shl: { 1324 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1325 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1326 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1327 APInt KZResult = KnownZero << ShiftAmt; 1328 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1329 // If this shift has "nsw" keyword, then the result is either a poison 1330 // value or has the same sign bit as the first operand. 1331 if (NSW && KnownZero.isSignBitSet()) 1332 KZResult.setSignBit(); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1337 APInt KOResult = KnownOne << ShiftAmt; 1338 if (NSW && KnownOne.isSignBitSet()) 1339 KOResult.setSignBit(); 1340 return KOResult; 1341 }; 1342 1343 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1344 KZF, KOF); 1345 break; 1346 } 1347 case Instruction::LShr: { 1348 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1349 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1350 APInt KZResult = KnownZero.lshr(ShiftAmt); 1351 // High bits known zero. 1352 KZResult.setHighBits(ShiftAmt); 1353 return KZResult; 1354 }; 1355 1356 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1357 return KnownOne.lshr(ShiftAmt); 1358 }; 1359 1360 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1361 KZF, KOF); 1362 break; 1363 } 1364 case Instruction::AShr: { 1365 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1366 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1367 return KnownZero.ashr(ShiftAmt); 1368 }; 1369 1370 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1371 return KnownOne.ashr(ShiftAmt); 1372 }; 1373 1374 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1375 KZF, KOF); 1376 break; 1377 } 1378 case Instruction::Sub: { 1379 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1380 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1381 DemandedElts, Known, Known2, Depth, Q); 1382 break; 1383 } 1384 case Instruction::Add: { 1385 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1386 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1387 DemandedElts, Known, Known2, Depth, Q); 1388 break; 1389 } 1390 case Instruction::SRem: 1391 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1392 APInt RA = Rem->getValue().abs(); 1393 if (RA.isPowerOf2()) { 1394 APInt LowBits = RA - 1; 1395 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1396 1397 // The low bits of the first operand are unchanged by the srem. 1398 Known.Zero = Known2.Zero & LowBits; 1399 Known.One = Known2.One & LowBits; 1400 1401 // If the first operand is non-negative or has all low bits zero, then 1402 // the upper bits are all zero. 1403 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1404 Known.Zero |= ~LowBits; 1405 1406 // If the first operand is negative and not all low bits are zero, then 1407 // the upper bits are all one. 1408 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1409 Known.One |= ~LowBits; 1410 1411 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1412 break; 1413 } 1414 } 1415 1416 // The sign bit is the LHS's sign bit, except when the result of the 1417 // remainder is zero. 1418 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1419 // If it's known zero, our sign bit is also zero. 1420 if (Known2.isNonNegative()) 1421 Known.makeNonNegative(); 1422 1423 break; 1424 case Instruction::URem: { 1425 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1426 const APInt &RA = Rem->getValue(); 1427 if (RA.isPowerOf2()) { 1428 APInt LowBits = (RA - 1); 1429 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1430 Known.Zero |= ~LowBits; 1431 Known.One &= LowBits; 1432 break; 1433 } 1434 } 1435 1436 // Since the result is less than or equal to either operand, any leading 1437 // zero bits in either operand must also exist in the result. 1438 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1439 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1440 1441 unsigned Leaders = 1442 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1443 Known.resetAll(); 1444 Known.Zero.setHighBits(Leaders); 1445 break; 1446 } 1447 1448 case Instruction::Alloca: { 1449 const AllocaInst *AI = cast<AllocaInst>(I); 1450 unsigned Align = AI->getAlignment(); 1451 if (Align == 0) 1452 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1453 1454 if (Align > 0) 1455 Known.Zero.setLowBits(countTrailingZeros(Align)); 1456 break; 1457 } 1458 case Instruction::GetElementPtr: { 1459 // Analyze all of the subscripts of this getelementptr instruction 1460 // to determine if we can prove known low zero bits. 1461 KnownBits LocalKnown(BitWidth); 1462 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1463 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1464 1465 gep_type_iterator GTI = gep_type_begin(I); 1466 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1467 // TrailZ can only become smaller, short-circuit if we hit zero. 1468 if (TrailZ == 0) 1469 break; 1470 1471 Value *Index = I->getOperand(i); 1472 if (StructType *STy = GTI.getStructTypeOrNull()) { 1473 // Handle struct member offset arithmetic. 1474 1475 // Handle case when index is vector zeroinitializer 1476 Constant *CIndex = cast<Constant>(Index); 1477 if (CIndex->isZeroValue()) 1478 continue; 1479 1480 if (CIndex->getType()->isVectorTy()) 1481 Index = CIndex->getSplatValue(); 1482 1483 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1484 const StructLayout *SL = Q.DL.getStructLayout(STy); 1485 uint64_t Offset = SL->getElementOffset(Idx); 1486 TrailZ = std::min<unsigned>(TrailZ, 1487 countTrailingZeros(Offset)); 1488 } else { 1489 // Handle array index arithmetic. 1490 Type *IndexedTy = GTI.getIndexedType(); 1491 if (!IndexedTy->isSized()) { 1492 TrailZ = 0; 1493 break; 1494 } 1495 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1496 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1497 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1498 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1499 TrailZ = std::min(TrailZ, 1500 unsigned(countTrailingZeros(TypeSize) + 1501 LocalKnown.countMinTrailingZeros())); 1502 } 1503 } 1504 1505 Known.Zero.setLowBits(TrailZ); 1506 break; 1507 } 1508 case Instruction::PHI: { 1509 const PHINode *P = cast<PHINode>(I); 1510 // Handle the case of a simple two-predecessor recurrence PHI. 1511 // There's a lot more that could theoretically be done here, but 1512 // this is sufficient to catch some interesting cases. 1513 if (P->getNumIncomingValues() == 2) { 1514 for (unsigned i = 0; i != 2; ++i) { 1515 Value *L = P->getIncomingValue(i); 1516 Value *R = P->getIncomingValue(!i); 1517 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1518 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1519 Operator *LU = dyn_cast<Operator>(L); 1520 if (!LU) 1521 continue; 1522 unsigned Opcode = LU->getOpcode(); 1523 // Check for operations that have the property that if 1524 // both their operands have low zero bits, the result 1525 // will have low zero bits. 1526 if (Opcode == Instruction::Add || 1527 Opcode == Instruction::Sub || 1528 Opcode == Instruction::And || 1529 Opcode == Instruction::Or || 1530 Opcode == Instruction::Mul) { 1531 Value *LL = LU->getOperand(0); 1532 Value *LR = LU->getOperand(1); 1533 // Find a recurrence. 1534 if (LL == I) 1535 L = LR; 1536 else if (LR == I) 1537 L = LL; 1538 else 1539 continue; // Check for recurrence with L and R flipped. 1540 1541 // Change the context instruction to the "edge" that flows into the 1542 // phi. This is important because that is where the value is actually 1543 // "evaluated" even though it is used later somewhere else. (see also 1544 // D69571). 1545 Query RecQ = Q; 1546 1547 // Ok, we have a PHI of the form L op= R. Check for low 1548 // zero bits. 1549 RecQ.CxtI = RInst; 1550 computeKnownBits(R, Known2, Depth + 1, RecQ); 1551 1552 // We need to take the minimum number of known bits 1553 KnownBits Known3(BitWidth); 1554 RecQ.CxtI = LInst; 1555 computeKnownBits(L, Known3, Depth + 1, RecQ); 1556 1557 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1558 Known3.countMinTrailingZeros())); 1559 1560 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1561 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1562 // If initial value of recurrence is nonnegative, and we are adding 1563 // a nonnegative number with nsw, the result can only be nonnegative 1564 // or poison value regardless of the number of times we execute the 1565 // add in phi recurrence. If initial value is negative and we are 1566 // adding a negative number with nsw, the result can only be 1567 // negative or poison value. Similar arguments apply to sub and mul. 1568 // 1569 // (add non-negative, non-negative) --> non-negative 1570 // (add negative, negative) --> negative 1571 if (Opcode == Instruction::Add) { 1572 if (Known2.isNonNegative() && Known3.isNonNegative()) 1573 Known.makeNonNegative(); 1574 else if (Known2.isNegative() && Known3.isNegative()) 1575 Known.makeNegative(); 1576 } 1577 1578 // (sub nsw non-negative, negative) --> non-negative 1579 // (sub nsw negative, non-negative) --> negative 1580 else if (Opcode == Instruction::Sub && LL == I) { 1581 if (Known2.isNonNegative() && Known3.isNegative()) 1582 Known.makeNonNegative(); 1583 else if (Known2.isNegative() && Known3.isNonNegative()) 1584 Known.makeNegative(); 1585 } 1586 1587 // (mul nsw non-negative, non-negative) --> non-negative 1588 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1589 Known3.isNonNegative()) 1590 Known.makeNonNegative(); 1591 } 1592 1593 break; 1594 } 1595 } 1596 } 1597 1598 // Unreachable blocks may have zero-operand PHI nodes. 1599 if (P->getNumIncomingValues() == 0) 1600 break; 1601 1602 // Otherwise take the unions of the known bit sets of the operands, 1603 // taking conservative care to avoid excessive recursion. 1604 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1605 // Skip if every incoming value references to ourself. 1606 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1607 break; 1608 1609 Known.Zero.setAllBits(); 1610 Known.One.setAllBits(); 1611 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1612 Value *IncValue = P->getIncomingValue(u); 1613 // Skip direct self references. 1614 if (IncValue == P) continue; 1615 1616 // Change the context instruction to the "edge" that flows into the 1617 // phi. This is important because that is where the value is actually 1618 // "evaluated" even though it is used later somewhere else. (see also 1619 // D69571). 1620 Query RecQ = Q; 1621 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1622 1623 Known2 = KnownBits(BitWidth); 1624 // Recurse, but cap the recursion to one level, because we don't 1625 // want to waste time spinning around in loops. 1626 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1627 Known.Zero &= Known2.Zero; 1628 Known.One &= Known2.One; 1629 // If all bits have been ruled out, there's no need to check 1630 // more operands. 1631 if (!Known.Zero && !Known.One) 1632 break; 1633 } 1634 } 1635 break; 1636 } 1637 case Instruction::Call: 1638 case Instruction::Invoke: 1639 // If range metadata is attached to this call, set known bits from that, 1640 // and then intersect with known bits based on other properties of the 1641 // function. 1642 if (MDNode *MD = 1643 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1644 computeKnownBitsFromRangeMetadata(*MD, Known); 1645 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1646 computeKnownBits(RV, Known2, Depth + 1, Q); 1647 Known.Zero |= Known2.Zero; 1648 Known.One |= Known2.One; 1649 } 1650 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1651 switch (II->getIntrinsicID()) { 1652 default: break; 1653 case Intrinsic::bitreverse: 1654 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1655 Known.Zero |= Known2.Zero.reverseBits(); 1656 Known.One |= Known2.One.reverseBits(); 1657 break; 1658 case Intrinsic::bswap: 1659 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1660 Known.Zero |= Known2.Zero.byteSwap(); 1661 Known.One |= Known2.One.byteSwap(); 1662 break; 1663 case Intrinsic::ctlz: { 1664 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1665 // If we have a known 1, its position is our upper bound. 1666 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1667 // If this call is undefined for 0, the result will be less than 2^n. 1668 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1669 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1670 unsigned LowBits = Log2_32(PossibleLZ)+1; 1671 Known.Zero.setBitsFrom(LowBits); 1672 break; 1673 } 1674 case Intrinsic::cttz: { 1675 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1676 // If we have a known 1, its position is our upper bound. 1677 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1678 // If this call is undefined for 0, the result will be less than 2^n. 1679 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1680 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1681 unsigned LowBits = Log2_32(PossibleTZ)+1; 1682 Known.Zero.setBitsFrom(LowBits); 1683 break; 1684 } 1685 case Intrinsic::ctpop: { 1686 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1687 // We can bound the space the count needs. Also, bits known to be zero 1688 // can't contribute to the population. 1689 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1690 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1691 Known.Zero.setBitsFrom(LowBits); 1692 // TODO: we could bound KnownOne using the lower bound on the number 1693 // of bits which might be set provided by popcnt KnownOne2. 1694 break; 1695 } 1696 case Intrinsic::fshr: 1697 case Intrinsic::fshl: { 1698 const APInt *SA; 1699 if (!match(I->getOperand(2), m_APInt(SA))) 1700 break; 1701 1702 // Normalize to funnel shift left. 1703 uint64_t ShiftAmt = SA->urem(BitWidth); 1704 if (II->getIntrinsicID() == Intrinsic::fshr) 1705 ShiftAmt = BitWidth - ShiftAmt; 1706 1707 KnownBits Known3(BitWidth); 1708 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1709 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1710 1711 Known.Zero = 1712 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1713 Known.One = 1714 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1715 break; 1716 } 1717 case Intrinsic::uadd_sat: 1718 case Intrinsic::usub_sat: { 1719 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1720 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1721 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1722 1723 // Add: Leading ones of either operand are preserved. 1724 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1725 // as leading zeros in the result. 1726 unsigned LeadingKnown; 1727 if (IsAdd) 1728 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1729 Known2.countMinLeadingOnes()); 1730 else 1731 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1732 Known2.countMinLeadingOnes()); 1733 1734 Known = KnownBits::computeForAddSub( 1735 IsAdd, /* NSW */ false, Known, Known2); 1736 1737 // We select between the operation result and all-ones/zero 1738 // respectively, so we can preserve known ones/zeros. 1739 if (IsAdd) { 1740 Known.One.setHighBits(LeadingKnown); 1741 Known.Zero.clearAllBits(); 1742 } else { 1743 Known.Zero.setHighBits(LeadingKnown); 1744 Known.One.clearAllBits(); 1745 } 1746 break; 1747 } 1748 case Intrinsic::x86_sse42_crc32_64_64: 1749 Known.Zero.setBitsFrom(32); 1750 break; 1751 } 1752 } 1753 break; 1754 case Instruction::ShuffleVector: { 1755 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1756 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1757 if (!Shuf) { 1758 Known.resetAll(); 1759 return; 1760 } 1761 // For undef elements, we don't know anything about the common state of 1762 // the shuffle result. 1763 APInt DemandedLHS, DemandedRHS; 1764 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1765 Known.resetAll(); 1766 return; 1767 } 1768 Known.One.setAllBits(); 1769 Known.Zero.setAllBits(); 1770 if (!!DemandedLHS) { 1771 const Value *LHS = Shuf->getOperand(0); 1772 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1773 // If we don't know any bits, early out. 1774 if (Known.isUnknown()) 1775 break; 1776 } 1777 if (!!DemandedRHS) { 1778 const Value *RHS = Shuf->getOperand(1); 1779 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1780 Known.One &= Known2.One; 1781 Known.Zero &= Known2.Zero; 1782 } 1783 break; 1784 } 1785 case Instruction::InsertElement: { 1786 const Value *Vec = I->getOperand(0); 1787 const Value *Elt = I->getOperand(1); 1788 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1789 // Early out if the index is non-constant or out-of-range. 1790 unsigned NumElts = DemandedElts.getBitWidth(); 1791 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1792 Known.resetAll(); 1793 return; 1794 } 1795 Known.One.setAllBits(); 1796 Known.Zero.setAllBits(); 1797 unsigned EltIdx = CIdx->getZExtValue(); 1798 // Do we demand the inserted element? 1799 if (DemandedElts[EltIdx]) { 1800 computeKnownBits(Elt, Known, Depth + 1, Q); 1801 // If we don't know any bits, early out. 1802 if (Known.isUnknown()) 1803 break; 1804 } 1805 // We don't need the base vector element that has been inserted. 1806 APInt DemandedVecElts = DemandedElts; 1807 DemandedVecElts.clearBit(EltIdx); 1808 if (!!DemandedVecElts) { 1809 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1810 Known.One &= Known2.One; 1811 Known.Zero &= Known2.Zero; 1812 } 1813 break; 1814 } 1815 case Instruction::ExtractElement: { 1816 // Look through extract element. If the index is non-constant or 1817 // out-of-range demand all elements, otherwise just the extracted element. 1818 const Value *Vec = I->getOperand(0); 1819 const Value *Idx = I->getOperand(1); 1820 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1821 if (isa<ScalableVectorType>(Vec->getType())) { 1822 // FIXME: there's probably *something* we can do with scalable vectors 1823 Known.resetAll(); 1824 break; 1825 } 1826 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1827 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1828 if (CIdx && CIdx->getValue().ult(NumElts)) 1829 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1830 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1831 break; 1832 } 1833 case Instruction::ExtractValue: 1834 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1835 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1836 if (EVI->getNumIndices() != 1) break; 1837 if (EVI->getIndices()[0] == 0) { 1838 switch (II->getIntrinsicID()) { 1839 default: break; 1840 case Intrinsic::uadd_with_overflow: 1841 case Intrinsic::sadd_with_overflow: 1842 computeKnownBitsAddSub(true, II->getArgOperand(0), 1843 II->getArgOperand(1), false, DemandedElts, 1844 Known, Known2, Depth, Q); 1845 break; 1846 case Intrinsic::usub_with_overflow: 1847 case Intrinsic::ssub_with_overflow: 1848 computeKnownBitsAddSub(false, II->getArgOperand(0), 1849 II->getArgOperand(1), false, DemandedElts, 1850 Known, Known2, Depth, Q); 1851 break; 1852 case Intrinsic::umul_with_overflow: 1853 case Intrinsic::smul_with_overflow: 1854 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1855 DemandedElts, Known, Known2, Depth, Q); 1856 break; 1857 } 1858 } 1859 } 1860 break; 1861 } 1862 } 1863 1864 /// Determine which bits of V are known to be either zero or one and return 1865 /// them. 1866 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1867 unsigned Depth, const Query &Q) { 1868 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1869 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1870 return Known; 1871 } 1872 1873 /// Determine which bits of V are known to be either zero or one and return 1874 /// them. 1875 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1876 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1877 computeKnownBits(V, Known, Depth, Q); 1878 return Known; 1879 } 1880 1881 /// Determine which bits of V are known to be either zero or one and return 1882 /// them in the Known bit set. 1883 /// 1884 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1885 /// we cannot optimize based on the assumption that it is zero without changing 1886 /// it to be an explicit zero. If we don't change it to zero, other code could 1887 /// optimized based on the contradictory assumption that it is non-zero. 1888 /// Because instcombine aggressively folds operations with undef args anyway, 1889 /// this won't lose us code quality. 1890 /// 1891 /// This function is defined on values with integer type, values with pointer 1892 /// type, and vectors of integers. In the case 1893 /// where V is a vector, known zero, and known one values are the 1894 /// same width as the vector element, and the bit is set only if it is true 1895 /// for all of the demanded elements in the vector specified by DemandedElts. 1896 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1897 KnownBits &Known, unsigned Depth, const Query &Q) { 1898 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1899 // No demanded elts or V is a scalable vector, better to assume we don't 1900 // know anything. 1901 Known.resetAll(); 1902 return; 1903 } 1904 1905 assert(V && "No Value?"); 1906 assert(Depth <= MaxDepth && "Limit Search Depth"); 1907 1908 #ifndef NDEBUG 1909 Type *Ty = V->getType(); 1910 unsigned BitWidth = Known.getBitWidth(); 1911 1912 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1913 "Not integer or pointer type!"); 1914 1915 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1916 assert( 1917 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1918 "DemandedElt width should equal the fixed vector number of elements"); 1919 } else { 1920 assert(DemandedElts == APInt(1, 1) && 1921 "DemandedElt width should be 1 for scalars"); 1922 } 1923 1924 Type *ScalarTy = Ty->getScalarType(); 1925 if (ScalarTy->isPointerTy()) { 1926 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1927 "V and Known should have same BitWidth"); 1928 } else { 1929 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1930 "V and Known should have same BitWidth"); 1931 } 1932 #endif 1933 1934 const APInt *C; 1935 if (match(V, m_APInt(C))) { 1936 // We know all of the bits for a scalar constant or a splat vector constant! 1937 Known.One = *C; 1938 Known.Zero = ~Known.One; 1939 return; 1940 } 1941 // Null and aggregate-zero are all-zeros. 1942 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1943 Known.setAllZero(); 1944 return; 1945 } 1946 // Handle a constant vector by taking the intersection of the known bits of 1947 // each element. 1948 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1949 // We know that CDV must be a vector of integers. Take the intersection of 1950 // each element. 1951 Known.Zero.setAllBits(); Known.One.setAllBits(); 1952 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1953 if (!DemandedElts[i]) 1954 continue; 1955 APInt Elt = CDV->getElementAsAPInt(i); 1956 Known.Zero &= ~Elt; 1957 Known.One &= Elt; 1958 } 1959 return; 1960 } 1961 1962 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1963 // We know that CV must be a vector of integers. Take the intersection of 1964 // each element. 1965 Known.Zero.setAllBits(); Known.One.setAllBits(); 1966 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1967 if (!DemandedElts[i]) 1968 continue; 1969 Constant *Element = CV->getAggregateElement(i); 1970 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1971 if (!ElementCI) { 1972 Known.resetAll(); 1973 return; 1974 } 1975 const APInt &Elt = ElementCI->getValue(); 1976 Known.Zero &= ~Elt; 1977 Known.One &= Elt; 1978 } 1979 return; 1980 } 1981 1982 // Start out not knowing anything. 1983 Known.resetAll(); 1984 1985 // We can't imply anything about undefs. 1986 if (isa<UndefValue>(V)) 1987 return; 1988 1989 // There's no point in looking through other users of ConstantData for 1990 // assumptions. Confirm that we've handled them all. 1991 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1992 1993 // Limit search depth. 1994 // All recursive calls that increase depth must come after this. 1995 if (Depth == MaxDepth) 1996 return; 1997 1998 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1999 // the bits of its aliasee. 2000 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2001 if (!GA->isInterposable()) 2002 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2003 return; 2004 } 2005 2006 if (const Operator *I = dyn_cast<Operator>(V)) 2007 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2008 2009 // Aligned pointers have trailing zeros - refine Known.Zero set 2010 if (isa<PointerType>(V->getType())) { 2011 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 2012 if (Align) 2013 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 2014 } 2015 2016 // computeKnownBitsFromAssume strictly refines Known. 2017 // Therefore, we run them after computeKnownBitsFromOperator. 2018 2019 // Check whether a nearby assume intrinsic can determine some known bits. 2020 computeKnownBitsFromAssume(V, Known, Depth, Q); 2021 2022 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2023 } 2024 2025 /// Return true if the given value is known to have exactly one 2026 /// bit set when defined. For vectors return true if every element is known to 2027 /// be a power of two when defined. Supports values with integer or pointer 2028 /// types and vectors of integers. 2029 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2030 const Query &Q) { 2031 assert(Depth <= MaxDepth && "Limit Search Depth"); 2032 2033 // Attempt to match against constants. 2034 if (OrZero && match(V, m_Power2OrZero())) 2035 return true; 2036 if (match(V, m_Power2())) 2037 return true; 2038 2039 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2040 // it is shifted off the end then the result is undefined. 2041 if (match(V, m_Shl(m_One(), m_Value()))) 2042 return true; 2043 2044 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2045 // the bottom. If it is shifted off the bottom then the result is undefined. 2046 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2047 return true; 2048 2049 // The remaining tests are all recursive, so bail out if we hit the limit. 2050 if (Depth++ == MaxDepth) 2051 return false; 2052 2053 Value *X = nullptr, *Y = nullptr; 2054 // A shift left or a logical shift right of a power of two is a power of two 2055 // or zero. 2056 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2057 match(V, m_LShr(m_Value(X), m_Value())))) 2058 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2059 2060 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2061 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2062 2063 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2064 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2065 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2066 2067 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2068 // A power of two and'd with anything is a power of two or zero. 2069 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2070 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2071 return true; 2072 // X & (-X) is always a power of two or zero. 2073 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2074 return true; 2075 return false; 2076 } 2077 2078 // Adding a power-of-two or zero to the same power-of-two or zero yields 2079 // either the original power-of-two, a larger power-of-two or zero. 2080 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2081 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2082 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2083 Q.IIQ.hasNoSignedWrap(VOBO)) { 2084 if (match(X, m_And(m_Specific(Y), m_Value())) || 2085 match(X, m_And(m_Value(), m_Specific(Y)))) 2086 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2087 return true; 2088 if (match(Y, m_And(m_Specific(X), m_Value())) || 2089 match(Y, m_And(m_Value(), m_Specific(X)))) 2090 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2091 return true; 2092 2093 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2094 KnownBits LHSBits(BitWidth); 2095 computeKnownBits(X, LHSBits, Depth, Q); 2096 2097 KnownBits RHSBits(BitWidth); 2098 computeKnownBits(Y, RHSBits, Depth, Q); 2099 // If i8 V is a power of two or zero: 2100 // ZeroBits: 1 1 1 0 1 1 1 1 2101 // ~ZeroBits: 0 0 0 1 0 0 0 0 2102 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2103 // If OrZero isn't set, we cannot give back a zero result. 2104 // Make sure either the LHS or RHS has a bit set. 2105 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2106 return true; 2107 } 2108 } 2109 2110 // An exact divide or right shift can only shift off zero bits, so the result 2111 // is a power of two only if the first operand is a power of two and not 2112 // copying a sign bit (sdiv int_min, 2). 2113 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2114 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2115 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2116 Depth, Q); 2117 } 2118 2119 return false; 2120 } 2121 2122 /// Test whether a GEP's result is known to be non-null. 2123 /// 2124 /// Uses properties inherent in a GEP to try to determine whether it is known 2125 /// to be non-null. 2126 /// 2127 /// Currently this routine does not support vector GEPs. 2128 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2129 const Query &Q) { 2130 const Function *F = nullptr; 2131 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2132 F = I->getFunction(); 2133 2134 if (!GEP->isInBounds() || 2135 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2136 return false; 2137 2138 // FIXME: Support vector-GEPs. 2139 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2140 2141 // If the base pointer is non-null, we cannot walk to a null address with an 2142 // inbounds GEP in address space zero. 2143 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2144 return true; 2145 2146 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2147 // If so, then the GEP cannot produce a null pointer, as doing so would 2148 // inherently violate the inbounds contract within address space zero. 2149 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2150 GTI != GTE; ++GTI) { 2151 // Struct types are easy -- they must always be indexed by a constant. 2152 if (StructType *STy = GTI.getStructTypeOrNull()) { 2153 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2154 unsigned ElementIdx = OpC->getZExtValue(); 2155 const StructLayout *SL = Q.DL.getStructLayout(STy); 2156 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2157 if (ElementOffset > 0) 2158 return true; 2159 continue; 2160 } 2161 2162 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2163 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2164 continue; 2165 2166 // Fast path the constant operand case both for efficiency and so we don't 2167 // increment Depth when just zipping down an all-constant GEP. 2168 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2169 if (!OpC->isZero()) 2170 return true; 2171 continue; 2172 } 2173 2174 // We post-increment Depth here because while isKnownNonZero increments it 2175 // as well, when we pop back up that increment won't persist. We don't want 2176 // to recurse 10k times just because we have 10k GEP operands. We don't 2177 // bail completely out because we want to handle constant GEPs regardless 2178 // of depth. 2179 if (Depth++ >= MaxDepth) 2180 continue; 2181 2182 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2183 return true; 2184 } 2185 2186 return false; 2187 } 2188 2189 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2190 const Instruction *CtxI, 2191 const DominatorTree *DT) { 2192 if (isa<Constant>(V)) 2193 return false; 2194 2195 if (!CtxI || !DT) 2196 return false; 2197 2198 unsigned NumUsesExplored = 0; 2199 for (auto *U : V->users()) { 2200 // Avoid massive lists 2201 if (NumUsesExplored >= DomConditionsMaxUses) 2202 break; 2203 NumUsesExplored++; 2204 2205 // If the value is used as an argument to a call or invoke, then argument 2206 // attributes may provide an answer about null-ness. 2207 if (const auto *CB = dyn_cast<CallBase>(U)) 2208 if (auto *CalledFunc = CB->getCalledFunction()) 2209 for (const Argument &Arg : CalledFunc->args()) 2210 if (CB->getArgOperand(Arg.getArgNo()) == V && 2211 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2212 return true; 2213 2214 // If the value is used as a load/store, then the pointer must be non null. 2215 if (V == getLoadStorePointerOperand(U)) { 2216 const Instruction *I = cast<Instruction>(U); 2217 if (!NullPointerIsDefined(I->getFunction(), 2218 V->getType()->getPointerAddressSpace()) && 2219 DT->dominates(I, CtxI)) 2220 return true; 2221 } 2222 2223 // Consider only compare instructions uniquely controlling a branch 2224 CmpInst::Predicate Pred; 2225 if (!match(const_cast<User *>(U), 2226 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2227 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2228 continue; 2229 2230 SmallVector<const User *, 4> WorkList; 2231 SmallPtrSet<const User *, 4> Visited; 2232 for (auto *CmpU : U->users()) { 2233 assert(WorkList.empty() && "Should be!"); 2234 if (Visited.insert(CmpU).second) 2235 WorkList.push_back(CmpU); 2236 2237 while (!WorkList.empty()) { 2238 auto *Curr = WorkList.pop_back_val(); 2239 2240 // If a user is an AND, add all its users to the work list. We only 2241 // propagate "pred != null" condition through AND because it is only 2242 // correct to assume that all conditions of AND are met in true branch. 2243 // TODO: Support similar logic of OR and EQ predicate? 2244 if (Pred == ICmpInst::ICMP_NE) 2245 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2246 if (BO->getOpcode() == Instruction::And) { 2247 for (auto *BOU : BO->users()) 2248 if (Visited.insert(BOU).second) 2249 WorkList.push_back(BOU); 2250 continue; 2251 } 2252 2253 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2254 assert(BI->isConditional() && "uses a comparison!"); 2255 2256 BasicBlock *NonNullSuccessor = 2257 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2258 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2259 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2260 return true; 2261 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2262 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2263 return true; 2264 } 2265 } 2266 } 2267 } 2268 2269 return false; 2270 } 2271 2272 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2273 /// ensure that the value it's attached to is never Value? 'RangeType' is 2274 /// is the type of the value described by the range. 2275 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2276 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2277 assert(NumRanges >= 1); 2278 for (unsigned i = 0; i < NumRanges; ++i) { 2279 ConstantInt *Lower = 2280 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2281 ConstantInt *Upper = 2282 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2283 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2284 if (Range.contains(Value)) 2285 return false; 2286 } 2287 return true; 2288 } 2289 2290 /// Return true if the given value is known to be non-zero when defined. For 2291 /// vectors, return true if every demanded element is known to be non-zero when 2292 /// defined. For pointers, if the context instruction and dominator tree are 2293 /// specified, perform context-sensitive analysis and return true if the 2294 /// pointer couldn't possibly be null at the specified instruction. 2295 /// Supports values with integer or pointer type and vectors of integers. 2296 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2297 const Query &Q) { 2298 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2299 // vector 2300 if (isa<ScalableVectorType>(V->getType())) 2301 return false; 2302 2303 if (auto *C = dyn_cast<Constant>(V)) { 2304 if (C->isNullValue()) 2305 return false; 2306 if (isa<ConstantInt>(C)) 2307 // Must be non-zero due to null test above. 2308 return true; 2309 2310 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2311 // See the comment for IntToPtr/PtrToInt instructions below. 2312 if (CE->getOpcode() == Instruction::IntToPtr || 2313 CE->getOpcode() == Instruction::PtrToInt) 2314 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2315 Q.DL.getTypeSizeInBits(CE->getType())) 2316 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2317 } 2318 2319 // For constant vectors, check that all elements are undefined or known 2320 // non-zero to determine that the whole vector is known non-zero. 2321 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2322 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2323 if (!DemandedElts[i]) 2324 continue; 2325 Constant *Elt = C->getAggregateElement(i); 2326 if (!Elt || Elt->isNullValue()) 2327 return false; 2328 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2329 return false; 2330 } 2331 return true; 2332 } 2333 2334 // A global variable in address space 0 is non null unless extern weak 2335 // or an absolute symbol reference. Other address spaces may have null as a 2336 // valid address for a global, so we can't assume anything. 2337 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2338 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2339 GV->getType()->getAddressSpace() == 0) 2340 return true; 2341 } else 2342 return false; 2343 } 2344 2345 if (auto *I = dyn_cast<Instruction>(V)) { 2346 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2347 // If the possible ranges don't contain zero, then the value is 2348 // definitely non-zero. 2349 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2350 const APInt ZeroValue(Ty->getBitWidth(), 0); 2351 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2352 return true; 2353 } 2354 } 2355 } 2356 2357 if (isKnownNonZeroFromAssume(V, Q)) 2358 return true; 2359 2360 // Some of the tests below are recursive, so bail out if we hit the limit. 2361 if (Depth++ >= MaxDepth) 2362 return false; 2363 2364 // Check for pointer simplifications. 2365 if (V->getType()->isPointerTy()) { 2366 // Alloca never returns null, malloc might. 2367 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2368 return true; 2369 2370 // A byval, inalloca, or nonnull argument is never null. 2371 if (const Argument *A = dyn_cast<Argument>(V)) 2372 if (A->hasPassPointeeByValueAttr() || A->hasNonNullAttr()) 2373 return true; 2374 2375 // A Load tagged with nonnull metadata is never null. 2376 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2377 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2378 return true; 2379 2380 if (const auto *Call = dyn_cast<CallBase>(V)) { 2381 if (Call->isReturnNonNull()) 2382 return true; 2383 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2384 return isKnownNonZero(RP, Depth, Q); 2385 } 2386 } 2387 2388 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2389 return true; 2390 2391 // Check for recursive pointer simplifications. 2392 if (V->getType()->isPointerTy()) { 2393 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2394 // do not alter the value, or at least not the nullness property of the 2395 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2396 // 2397 // Note that we have to take special care to avoid looking through 2398 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2399 // as casts that can alter the value, e.g., AddrSpaceCasts. 2400 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2401 if (isGEPKnownNonNull(GEP, Depth, Q)) 2402 return true; 2403 2404 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2405 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2406 2407 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2408 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2409 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2410 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2411 } 2412 2413 // Similar to int2ptr above, we can look through ptr2int here if the cast 2414 // is a no-op or an extend and not a truncate. 2415 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2416 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2417 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2418 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2419 2420 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2421 2422 // X | Y != 0 if X != 0 or Y != 0. 2423 Value *X = nullptr, *Y = nullptr; 2424 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2425 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2426 isKnownNonZero(Y, DemandedElts, Depth, Q); 2427 2428 // ext X != 0 if X != 0. 2429 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2430 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2431 2432 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2433 // if the lowest bit is shifted off the end. 2434 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2435 // shl nuw can't remove any non-zero bits. 2436 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2437 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2438 return isKnownNonZero(X, Depth, Q); 2439 2440 KnownBits Known(BitWidth); 2441 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2442 if (Known.One[0]) 2443 return true; 2444 } 2445 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2446 // defined if the sign bit is shifted off the end. 2447 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2448 // shr exact can only shift out zero bits. 2449 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2450 if (BO->isExact()) 2451 return isKnownNonZero(X, Depth, Q); 2452 2453 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2454 if (Known.isNegative()) 2455 return true; 2456 2457 // If the shifter operand is a constant, and all of the bits shifted 2458 // out are known to be zero, and X is known non-zero then at least one 2459 // non-zero bit must remain. 2460 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2461 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2462 // Is there a known one in the portion not shifted out? 2463 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2464 return true; 2465 // Are all the bits to be shifted out known zero? 2466 if (Known.countMinTrailingZeros() >= ShiftVal) 2467 return isKnownNonZero(X, DemandedElts, Depth, Q); 2468 } 2469 } 2470 // div exact can only produce a zero if the dividend is zero. 2471 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2472 return isKnownNonZero(X, DemandedElts, Depth, Q); 2473 } 2474 // X + Y. 2475 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2476 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2477 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2478 2479 // If X and Y are both non-negative (as signed values) then their sum is not 2480 // zero unless both X and Y are zero. 2481 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2482 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2483 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2484 return true; 2485 2486 // If X and Y are both negative (as signed values) then their sum is not 2487 // zero unless both X and Y equal INT_MIN. 2488 if (XKnown.isNegative() && YKnown.isNegative()) { 2489 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2490 // The sign bit of X is set. If some other bit is set then X is not equal 2491 // to INT_MIN. 2492 if (XKnown.One.intersects(Mask)) 2493 return true; 2494 // The sign bit of Y is set. If some other bit is set then Y is not equal 2495 // to INT_MIN. 2496 if (YKnown.One.intersects(Mask)) 2497 return true; 2498 } 2499 2500 // The sum of a non-negative number and a power of two is not zero. 2501 if (XKnown.isNonNegative() && 2502 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2503 return true; 2504 if (YKnown.isNonNegative() && 2505 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2506 return true; 2507 } 2508 // X * Y. 2509 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2510 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2511 // If X and Y are non-zero then so is X * Y as long as the multiplication 2512 // does not overflow. 2513 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2514 isKnownNonZero(X, DemandedElts, Depth, Q) && 2515 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2516 return true; 2517 } 2518 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2519 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2520 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2521 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2522 return true; 2523 } 2524 // PHI 2525 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2526 // Try and detect a recurrence that monotonically increases from a 2527 // starting value, as these are common as induction variables. 2528 if (PN->getNumIncomingValues() == 2) { 2529 Value *Start = PN->getIncomingValue(0); 2530 Value *Induction = PN->getIncomingValue(1); 2531 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2532 std::swap(Start, Induction); 2533 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2534 if (!C->isZero() && !C->isNegative()) { 2535 ConstantInt *X; 2536 if (Q.IIQ.UseInstrInfo && 2537 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2538 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2539 !X->isNegative()) 2540 return true; 2541 } 2542 } 2543 } 2544 // Check if all incoming values are non-zero constant. 2545 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2546 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2547 }); 2548 if (AllNonZeroConstants) 2549 return true; 2550 } 2551 // ExtractElement 2552 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2553 const Value *Vec = EEI->getVectorOperand(); 2554 const Value *Idx = EEI->getIndexOperand(); 2555 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2556 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 2557 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2558 if (CIdx && CIdx->getValue().ult(NumElts)) 2559 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2560 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2561 } 2562 2563 KnownBits Known(BitWidth); 2564 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2565 return Known.One != 0; 2566 } 2567 2568 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2569 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2570 // vector 2571 if (isa<ScalableVectorType>(V->getType())) 2572 return false; 2573 2574 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2575 APInt DemandedElts = 2576 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2577 return isKnownNonZero(V, DemandedElts, Depth, Q); 2578 } 2579 2580 /// Return true if V2 == V1 + X, where X is known non-zero. 2581 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2582 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2583 if (!BO || BO->getOpcode() != Instruction::Add) 2584 return false; 2585 Value *Op = nullptr; 2586 if (V2 == BO->getOperand(0)) 2587 Op = BO->getOperand(1); 2588 else if (V2 == BO->getOperand(1)) 2589 Op = BO->getOperand(0); 2590 else 2591 return false; 2592 return isKnownNonZero(Op, 0, Q); 2593 } 2594 2595 /// Return true if it is known that V1 != V2. 2596 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2597 if (V1 == V2) 2598 return false; 2599 if (V1->getType() != V2->getType()) 2600 // We can't look through casts yet. 2601 return false; 2602 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2603 return true; 2604 2605 if (V1->getType()->isIntOrIntVectorTy()) { 2606 // Are any known bits in V1 contradictory to known bits in V2? If V1 2607 // has a known zero where V2 has a known one, they must not be equal. 2608 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2609 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2610 2611 if (Known1.Zero.intersects(Known2.One) || 2612 Known2.Zero.intersects(Known1.One)) 2613 return true; 2614 } 2615 return false; 2616 } 2617 2618 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2619 /// simplify operations downstream. Mask is known to be zero for bits that V 2620 /// cannot have. 2621 /// 2622 /// This function is defined on values with integer type, values with pointer 2623 /// type, and vectors of integers. In the case 2624 /// where V is a vector, the mask, known zero, and known one values are the 2625 /// same width as the vector element, and the bit is set only if it is true 2626 /// for all of the elements in the vector. 2627 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2628 const Query &Q) { 2629 KnownBits Known(Mask.getBitWidth()); 2630 computeKnownBits(V, Known, Depth, Q); 2631 return Mask.isSubsetOf(Known.Zero); 2632 } 2633 2634 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2635 // Returns the input and lower/upper bounds. 2636 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2637 const APInt *&CLow, const APInt *&CHigh) { 2638 assert(isa<Operator>(Select) && 2639 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2640 "Input should be a Select!"); 2641 2642 const Value *LHS = nullptr, *RHS = nullptr; 2643 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2644 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2645 return false; 2646 2647 if (!match(RHS, m_APInt(CLow))) 2648 return false; 2649 2650 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2651 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2652 if (getInverseMinMaxFlavor(SPF) != SPF2) 2653 return false; 2654 2655 if (!match(RHS2, m_APInt(CHigh))) 2656 return false; 2657 2658 if (SPF == SPF_SMIN) 2659 std::swap(CLow, CHigh); 2660 2661 In = LHS2; 2662 return CLow->sle(*CHigh); 2663 } 2664 2665 /// For vector constants, loop over the elements and find the constant with the 2666 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2667 /// or if any element was not analyzed; otherwise, return the count for the 2668 /// element with the minimum number of sign bits. 2669 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2670 const APInt &DemandedElts, 2671 unsigned TyBits) { 2672 const auto *CV = dyn_cast<Constant>(V); 2673 if (!CV || !isa<FixedVectorType>(CV->getType())) 2674 return 0; 2675 2676 unsigned MinSignBits = TyBits; 2677 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2678 for (unsigned i = 0; i != NumElts; ++i) { 2679 if (!DemandedElts[i]) 2680 continue; 2681 // If we find a non-ConstantInt, bail out. 2682 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2683 if (!Elt) 2684 return 0; 2685 2686 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2687 } 2688 2689 return MinSignBits; 2690 } 2691 2692 static unsigned ComputeNumSignBitsImpl(const Value *V, 2693 const APInt &DemandedElts, 2694 unsigned Depth, const Query &Q); 2695 2696 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2697 unsigned Depth, const Query &Q) { 2698 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2699 assert(Result > 0 && "At least one sign bit needs to be present!"); 2700 return Result; 2701 } 2702 2703 /// Return the number of times the sign bit of the register is replicated into 2704 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2705 /// (itself), but other cases can give us information. For example, immediately 2706 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2707 /// other, so we return 3. For vectors, return the number of sign bits for the 2708 /// vector element with the minimum number of known sign bits of the demanded 2709 /// elements in the vector specified by DemandedElts. 2710 static unsigned ComputeNumSignBitsImpl(const Value *V, 2711 const APInt &DemandedElts, 2712 unsigned Depth, const Query &Q) { 2713 Type *Ty = V->getType(); 2714 2715 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2716 // vector 2717 if (isa<ScalableVectorType>(Ty)) 2718 return 1; 2719 2720 #ifndef NDEBUG 2721 assert(Depth <= MaxDepth && "Limit Search Depth"); 2722 2723 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2724 assert( 2725 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2726 "DemandedElt width should equal the fixed vector number of elements"); 2727 } else { 2728 assert(DemandedElts == APInt(1, 1) && 2729 "DemandedElt width should be 1 for scalars"); 2730 } 2731 #endif 2732 2733 // We return the minimum number of sign bits that are guaranteed to be present 2734 // in V, so for undef we have to conservatively return 1. We don't have the 2735 // same behavior for poison though -- that's a FIXME today. 2736 2737 Type *ScalarTy = Ty->getScalarType(); 2738 unsigned TyBits = ScalarTy->isPointerTy() ? 2739 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2740 Q.DL.getTypeSizeInBits(ScalarTy); 2741 2742 unsigned Tmp, Tmp2; 2743 unsigned FirstAnswer = 1; 2744 2745 // Note that ConstantInt is handled by the general computeKnownBits case 2746 // below. 2747 2748 if (Depth == MaxDepth) 2749 return 1; // Limit search depth. 2750 2751 if (auto *U = dyn_cast<Operator>(V)) { 2752 switch (Operator::getOpcode(V)) { 2753 default: break; 2754 case Instruction::SExt: 2755 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2756 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2757 2758 case Instruction::SDiv: { 2759 const APInt *Denominator; 2760 // sdiv X, C -> adds log(C) sign bits. 2761 if (match(U->getOperand(1), m_APInt(Denominator))) { 2762 2763 // Ignore non-positive denominator. 2764 if (!Denominator->isStrictlyPositive()) 2765 break; 2766 2767 // Calculate the incoming numerator bits. 2768 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2769 2770 // Add floor(log(C)) bits to the numerator bits. 2771 return std::min(TyBits, NumBits + Denominator->logBase2()); 2772 } 2773 break; 2774 } 2775 2776 case Instruction::SRem: { 2777 const APInt *Denominator; 2778 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2779 // positive constant. This let us put a lower bound on the number of sign 2780 // bits. 2781 if (match(U->getOperand(1), m_APInt(Denominator))) { 2782 2783 // Ignore non-positive denominator. 2784 if (!Denominator->isStrictlyPositive()) 2785 break; 2786 2787 // Calculate the incoming numerator bits. SRem by a positive constant 2788 // can't lower the number of sign bits. 2789 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2790 2791 // Calculate the leading sign bit constraints by examining the 2792 // denominator. Given that the denominator is positive, there are two 2793 // cases: 2794 // 2795 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2796 // (1 << ceilLogBase2(C)). 2797 // 2798 // 2. the numerator is negative. Then the result range is (-C,0] and 2799 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2800 // 2801 // Thus a lower bound on the number of sign bits is `TyBits - 2802 // ceilLogBase2(C)`. 2803 2804 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2805 return std::max(NumrBits, ResBits); 2806 } 2807 break; 2808 } 2809 2810 case Instruction::AShr: { 2811 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2812 // ashr X, C -> adds C sign bits. Vectors too. 2813 const APInt *ShAmt; 2814 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2815 if (ShAmt->uge(TyBits)) 2816 break; // Bad shift. 2817 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2818 Tmp += ShAmtLimited; 2819 if (Tmp > TyBits) Tmp = TyBits; 2820 } 2821 return Tmp; 2822 } 2823 case Instruction::Shl: { 2824 const APInt *ShAmt; 2825 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2826 // shl destroys sign bits. 2827 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2828 if (ShAmt->uge(TyBits) || // Bad shift. 2829 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2830 Tmp2 = ShAmt->getZExtValue(); 2831 return Tmp - Tmp2; 2832 } 2833 break; 2834 } 2835 case Instruction::And: 2836 case Instruction::Or: 2837 case Instruction::Xor: // NOT is handled here. 2838 // Logical binary ops preserve the number of sign bits at the worst. 2839 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2840 if (Tmp != 1) { 2841 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2842 FirstAnswer = std::min(Tmp, Tmp2); 2843 // We computed what we know about the sign bits as our first 2844 // answer. Now proceed to the generic code that uses 2845 // computeKnownBits, and pick whichever answer is better. 2846 } 2847 break; 2848 2849 case Instruction::Select: { 2850 // If we have a clamp pattern, we know that the number of sign bits will 2851 // be the minimum of the clamp min/max range. 2852 const Value *X; 2853 const APInt *CLow, *CHigh; 2854 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2855 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2856 2857 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2858 if (Tmp == 1) break; 2859 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2860 return std::min(Tmp, Tmp2); 2861 } 2862 2863 case Instruction::Add: 2864 // Add can have at most one carry bit. Thus we know that the output 2865 // is, at worst, one more bit than the inputs. 2866 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2867 if (Tmp == 1) break; 2868 2869 // Special case decrementing a value (ADD X, -1): 2870 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2871 if (CRHS->isAllOnesValue()) { 2872 KnownBits Known(TyBits); 2873 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2874 2875 // If the input is known to be 0 or 1, the output is 0/-1, which is 2876 // all sign bits set. 2877 if ((Known.Zero | 1).isAllOnesValue()) 2878 return TyBits; 2879 2880 // If we are subtracting one from a positive number, there is no carry 2881 // out of the result. 2882 if (Known.isNonNegative()) 2883 return Tmp; 2884 } 2885 2886 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2887 if (Tmp2 == 1) break; 2888 return std::min(Tmp, Tmp2) - 1; 2889 2890 case Instruction::Sub: 2891 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2892 if (Tmp2 == 1) break; 2893 2894 // Handle NEG. 2895 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2896 if (CLHS->isNullValue()) { 2897 KnownBits Known(TyBits); 2898 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2899 // If the input is known to be 0 or 1, the output is 0/-1, which is 2900 // all sign bits set. 2901 if ((Known.Zero | 1).isAllOnesValue()) 2902 return TyBits; 2903 2904 // If the input is known to be positive (the sign bit is known clear), 2905 // the output of the NEG has the same number of sign bits as the 2906 // input. 2907 if (Known.isNonNegative()) 2908 return Tmp2; 2909 2910 // Otherwise, we treat this like a SUB. 2911 } 2912 2913 // Sub can have at most one carry bit. Thus we know that the output 2914 // is, at worst, one more bit than the inputs. 2915 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2916 if (Tmp == 1) break; 2917 return std::min(Tmp, Tmp2) - 1; 2918 2919 case Instruction::Mul: { 2920 // The output of the Mul can be at most twice the valid bits in the 2921 // inputs. 2922 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2923 if (SignBitsOp0 == 1) break; 2924 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2925 if (SignBitsOp1 == 1) break; 2926 unsigned OutValidBits = 2927 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2928 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2929 } 2930 2931 case Instruction::PHI: { 2932 const PHINode *PN = cast<PHINode>(U); 2933 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2934 // Don't analyze large in-degree PHIs. 2935 if (NumIncomingValues > 4) break; 2936 // Unreachable blocks may have zero-operand PHI nodes. 2937 if (NumIncomingValues == 0) break; 2938 2939 // Take the minimum of all incoming values. This can't infinitely loop 2940 // because of our depth threshold. 2941 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2942 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2943 if (Tmp == 1) return Tmp; 2944 Tmp = std::min( 2945 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2946 } 2947 return Tmp; 2948 } 2949 2950 case Instruction::Trunc: 2951 // FIXME: it's tricky to do anything useful for this, but it is an 2952 // important case for targets like X86. 2953 break; 2954 2955 case Instruction::ExtractElement: 2956 // Look through extract element. At the moment we keep this simple and 2957 // skip tracking the specific element. But at least we might find 2958 // information valid for all elements of the vector (for example if vector 2959 // is sign extended, shifted, etc). 2960 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2961 2962 case Instruction::ShuffleVector: { 2963 // Collect the minimum number of sign bits that are shared by every vector 2964 // element referenced by the shuffle. 2965 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2966 if (!Shuf) { 2967 // FIXME: Add support for shufflevector constant expressions. 2968 return 1; 2969 } 2970 APInt DemandedLHS, DemandedRHS; 2971 // For undef elements, we don't know anything about the common state of 2972 // the shuffle result. 2973 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2974 return 1; 2975 Tmp = std::numeric_limits<unsigned>::max(); 2976 if (!!DemandedLHS) { 2977 const Value *LHS = Shuf->getOperand(0); 2978 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2979 } 2980 // If we don't know anything, early out and try computeKnownBits 2981 // fall-back. 2982 if (Tmp == 1) 2983 break; 2984 if (!!DemandedRHS) { 2985 const Value *RHS = Shuf->getOperand(1); 2986 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2987 Tmp = std::min(Tmp, Tmp2); 2988 } 2989 // If we don't know anything, early out and try computeKnownBits 2990 // fall-back. 2991 if (Tmp == 1) 2992 break; 2993 assert(Tmp <= Ty->getScalarSizeInBits() && 2994 "Failed to determine minimum sign bits"); 2995 return Tmp; 2996 } 2997 } 2998 } 2999 3000 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3001 // use this information. 3002 3003 // If we can examine all elements of a vector constant successfully, we're 3004 // done (we can't do any better than that). If not, keep trying. 3005 if (unsigned VecSignBits = 3006 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3007 return VecSignBits; 3008 3009 KnownBits Known(TyBits); 3010 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3011 3012 // If we know that the sign bit is either zero or one, determine the number of 3013 // identical bits in the top of the input value. 3014 return std::max(FirstAnswer, Known.countMinSignBits()); 3015 } 3016 3017 /// This function computes the integer multiple of Base that equals V. 3018 /// If successful, it returns true and returns the multiple in 3019 /// Multiple. If unsuccessful, it returns false. It looks 3020 /// through SExt instructions only if LookThroughSExt is true. 3021 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3022 bool LookThroughSExt, unsigned Depth) { 3023 assert(V && "No Value?"); 3024 assert(Depth <= MaxDepth && "Limit Search Depth"); 3025 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3026 3027 Type *T = V->getType(); 3028 3029 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3030 3031 if (Base == 0) 3032 return false; 3033 3034 if (Base == 1) { 3035 Multiple = V; 3036 return true; 3037 } 3038 3039 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3040 Constant *BaseVal = ConstantInt::get(T, Base); 3041 if (CO && CO == BaseVal) { 3042 // Multiple is 1. 3043 Multiple = ConstantInt::get(T, 1); 3044 return true; 3045 } 3046 3047 if (CI && CI->getZExtValue() % Base == 0) { 3048 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3049 return true; 3050 } 3051 3052 if (Depth == MaxDepth) return false; // Limit search depth. 3053 3054 Operator *I = dyn_cast<Operator>(V); 3055 if (!I) return false; 3056 3057 switch (I->getOpcode()) { 3058 default: break; 3059 case Instruction::SExt: 3060 if (!LookThroughSExt) return false; 3061 // otherwise fall through to ZExt 3062 LLVM_FALLTHROUGH; 3063 case Instruction::ZExt: 3064 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3065 LookThroughSExt, Depth+1); 3066 case Instruction::Shl: 3067 case Instruction::Mul: { 3068 Value *Op0 = I->getOperand(0); 3069 Value *Op1 = I->getOperand(1); 3070 3071 if (I->getOpcode() == Instruction::Shl) { 3072 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3073 if (!Op1CI) return false; 3074 // Turn Op0 << Op1 into Op0 * 2^Op1 3075 APInt Op1Int = Op1CI->getValue(); 3076 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3077 APInt API(Op1Int.getBitWidth(), 0); 3078 API.setBit(BitToSet); 3079 Op1 = ConstantInt::get(V->getContext(), API); 3080 } 3081 3082 Value *Mul0 = nullptr; 3083 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3084 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3085 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3086 if (Op1C->getType()->getPrimitiveSizeInBits() < 3087 MulC->getType()->getPrimitiveSizeInBits()) 3088 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3089 if (Op1C->getType()->getPrimitiveSizeInBits() > 3090 MulC->getType()->getPrimitiveSizeInBits()) 3091 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3092 3093 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3094 Multiple = ConstantExpr::getMul(MulC, Op1C); 3095 return true; 3096 } 3097 3098 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3099 if (Mul0CI->getValue() == 1) { 3100 // V == Base * Op1, so return Op1 3101 Multiple = Op1; 3102 return true; 3103 } 3104 } 3105 3106 Value *Mul1 = nullptr; 3107 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3108 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3109 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3110 if (Op0C->getType()->getPrimitiveSizeInBits() < 3111 MulC->getType()->getPrimitiveSizeInBits()) 3112 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3113 if (Op0C->getType()->getPrimitiveSizeInBits() > 3114 MulC->getType()->getPrimitiveSizeInBits()) 3115 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3116 3117 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3118 Multiple = ConstantExpr::getMul(MulC, Op0C); 3119 return true; 3120 } 3121 3122 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3123 if (Mul1CI->getValue() == 1) { 3124 // V == Base * Op0, so return Op0 3125 Multiple = Op0; 3126 return true; 3127 } 3128 } 3129 } 3130 } 3131 3132 // We could not determine if V is a multiple of Base. 3133 return false; 3134 } 3135 3136 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3137 const TargetLibraryInfo *TLI) { 3138 const Function *F = CB.getCalledFunction(); 3139 if (!F) 3140 return Intrinsic::not_intrinsic; 3141 3142 if (F->isIntrinsic()) 3143 return F->getIntrinsicID(); 3144 3145 if (!TLI) 3146 return Intrinsic::not_intrinsic; 3147 3148 LibFunc Func; 3149 // We're going to make assumptions on the semantics of the functions, check 3150 // that the target knows that it's available in this environment and it does 3151 // not have local linkage. 3152 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3153 return Intrinsic::not_intrinsic; 3154 3155 if (!CB.onlyReadsMemory()) 3156 return Intrinsic::not_intrinsic; 3157 3158 // Otherwise check if we have a call to a function that can be turned into a 3159 // vector intrinsic. 3160 switch (Func) { 3161 default: 3162 break; 3163 case LibFunc_sin: 3164 case LibFunc_sinf: 3165 case LibFunc_sinl: 3166 return Intrinsic::sin; 3167 case LibFunc_cos: 3168 case LibFunc_cosf: 3169 case LibFunc_cosl: 3170 return Intrinsic::cos; 3171 case LibFunc_exp: 3172 case LibFunc_expf: 3173 case LibFunc_expl: 3174 return Intrinsic::exp; 3175 case LibFunc_exp2: 3176 case LibFunc_exp2f: 3177 case LibFunc_exp2l: 3178 return Intrinsic::exp2; 3179 case LibFunc_log: 3180 case LibFunc_logf: 3181 case LibFunc_logl: 3182 return Intrinsic::log; 3183 case LibFunc_log10: 3184 case LibFunc_log10f: 3185 case LibFunc_log10l: 3186 return Intrinsic::log10; 3187 case LibFunc_log2: 3188 case LibFunc_log2f: 3189 case LibFunc_log2l: 3190 return Intrinsic::log2; 3191 case LibFunc_fabs: 3192 case LibFunc_fabsf: 3193 case LibFunc_fabsl: 3194 return Intrinsic::fabs; 3195 case LibFunc_fmin: 3196 case LibFunc_fminf: 3197 case LibFunc_fminl: 3198 return Intrinsic::minnum; 3199 case LibFunc_fmax: 3200 case LibFunc_fmaxf: 3201 case LibFunc_fmaxl: 3202 return Intrinsic::maxnum; 3203 case LibFunc_copysign: 3204 case LibFunc_copysignf: 3205 case LibFunc_copysignl: 3206 return Intrinsic::copysign; 3207 case LibFunc_floor: 3208 case LibFunc_floorf: 3209 case LibFunc_floorl: 3210 return Intrinsic::floor; 3211 case LibFunc_ceil: 3212 case LibFunc_ceilf: 3213 case LibFunc_ceill: 3214 return Intrinsic::ceil; 3215 case LibFunc_trunc: 3216 case LibFunc_truncf: 3217 case LibFunc_truncl: 3218 return Intrinsic::trunc; 3219 case LibFunc_rint: 3220 case LibFunc_rintf: 3221 case LibFunc_rintl: 3222 return Intrinsic::rint; 3223 case LibFunc_nearbyint: 3224 case LibFunc_nearbyintf: 3225 case LibFunc_nearbyintl: 3226 return Intrinsic::nearbyint; 3227 case LibFunc_round: 3228 case LibFunc_roundf: 3229 case LibFunc_roundl: 3230 return Intrinsic::round; 3231 case LibFunc_pow: 3232 case LibFunc_powf: 3233 case LibFunc_powl: 3234 return Intrinsic::pow; 3235 case LibFunc_sqrt: 3236 case LibFunc_sqrtf: 3237 case LibFunc_sqrtl: 3238 return Intrinsic::sqrt; 3239 } 3240 3241 return Intrinsic::not_intrinsic; 3242 } 3243 3244 /// Return true if we can prove that the specified FP value is never equal to 3245 /// -0.0. 3246 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3247 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3248 /// the same as +0.0 in floating-point ops. 3249 /// 3250 /// NOTE: this function will need to be revisited when we support non-default 3251 /// rounding modes! 3252 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3253 unsigned Depth) { 3254 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3255 return !CFP->getValueAPF().isNegZero(); 3256 3257 // Limit search depth. 3258 if (Depth == MaxDepth) 3259 return false; 3260 3261 auto *Op = dyn_cast<Operator>(V); 3262 if (!Op) 3263 return false; 3264 3265 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3266 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3267 return true; 3268 3269 // sitofp and uitofp turn into +0.0 for zero. 3270 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3271 return true; 3272 3273 if (auto *Call = dyn_cast<CallInst>(Op)) { 3274 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3275 switch (IID) { 3276 default: 3277 break; 3278 // sqrt(-0.0) = -0.0, no other negative results are possible. 3279 case Intrinsic::sqrt: 3280 case Intrinsic::canonicalize: 3281 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3282 // fabs(x) != -0.0 3283 case Intrinsic::fabs: 3284 return true; 3285 } 3286 } 3287 3288 return false; 3289 } 3290 3291 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3292 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3293 /// bit despite comparing equal. 3294 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3295 const TargetLibraryInfo *TLI, 3296 bool SignBitOnly, 3297 unsigned Depth) { 3298 // TODO: This function does not do the right thing when SignBitOnly is true 3299 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3300 // which flips the sign bits of NaNs. See 3301 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3302 3303 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3304 return !CFP->getValueAPF().isNegative() || 3305 (!SignBitOnly && CFP->getValueAPF().isZero()); 3306 } 3307 3308 // Handle vector of constants. 3309 if (auto *CV = dyn_cast<Constant>(V)) { 3310 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3311 unsigned NumElts = CVFVTy->getNumElements(); 3312 for (unsigned i = 0; i != NumElts; ++i) { 3313 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3314 if (!CFP) 3315 return false; 3316 if (CFP->getValueAPF().isNegative() && 3317 (SignBitOnly || !CFP->getValueAPF().isZero())) 3318 return false; 3319 } 3320 3321 // All non-negative ConstantFPs. 3322 return true; 3323 } 3324 } 3325 3326 if (Depth == MaxDepth) 3327 return false; // Limit search depth. 3328 3329 const Operator *I = dyn_cast<Operator>(V); 3330 if (!I) 3331 return false; 3332 3333 switch (I->getOpcode()) { 3334 default: 3335 break; 3336 // Unsigned integers are always nonnegative. 3337 case Instruction::UIToFP: 3338 return true; 3339 case Instruction::FMul: 3340 // x*x is always non-negative or a NaN. 3341 if (I->getOperand(0) == I->getOperand(1) && 3342 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3343 return true; 3344 3345 LLVM_FALLTHROUGH; 3346 case Instruction::FAdd: 3347 case Instruction::FDiv: 3348 case Instruction::FRem: 3349 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3350 Depth + 1) && 3351 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3352 Depth + 1); 3353 case Instruction::Select: 3354 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3355 Depth + 1) && 3356 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3357 Depth + 1); 3358 case Instruction::FPExt: 3359 case Instruction::FPTrunc: 3360 // Widening/narrowing never change sign. 3361 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3362 Depth + 1); 3363 case Instruction::ExtractElement: 3364 // Look through extract element. At the moment we keep this simple and skip 3365 // tracking the specific element. But at least we might find information 3366 // valid for all elements of the vector. 3367 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3368 Depth + 1); 3369 case Instruction::Call: 3370 const auto *CI = cast<CallInst>(I); 3371 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3372 switch (IID) { 3373 default: 3374 break; 3375 case Intrinsic::maxnum: 3376 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3377 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3378 SignBitOnly, Depth + 1)) || 3379 (isKnownNeverNaN(I->getOperand(1), TLI) && 3380 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3381 SignBitOnly, Depth + 1)); 3382 3383 case Intrinsic::maximum: 3384 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3385 Depth + 1) || 3386 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3387 Depth + 1); 3388 case Intrinsic::minnum: 3389 case Intrinsic::minimum: 3390 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3391 Depth + 1) && 3392 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3393 Depth + 1); 3394 case Intrinsic::exp: 3395 case Intrinsic::exp2: 3396 case Intrinsic::fabs: 3397 return true; 3398 3399 case Intrinsic::sqrt: 3400 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3401 if (!SignBitOnly) 3402 return true; 3403 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3404 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3405 3406 case Intrinsic::powi: 3407 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3408 // powi(x,n) is non-negative if n is even. 3409 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3410 return true; 3411 } 3412 // TODO: This is not correct. Given that exp is an integer, here are the 3413 // ways that pow can return a negative value: 3414 // 3415 // pow(x, exp) --> negative if exp is odd and x is negative. 3416 // pow(-0, exp) --> -inf if exp is negative odd. 3417 // pow(-0, exp) --> -0 if exp is positive odd. 3418 // pow(-inf, exp) --> -0 if exp is negative odd. 3419 // pow(-inf, exp) --> -inf if exp is positive odd. 3420 // 3421 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3422 // but we must return false if x == -0. Unfortunately we do not currently 3423 // have a way of expressing this constraint. See details in 3424 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3425 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3426 Depth + 1); 3427 3428 case Intrinsic::fma: 3429 case Intrinsic::fmuladd: 3430 // x*x+y is non-negative if y is non-negative. 3431 return I->getOperand(0) == I->getOperand(1) && 3432 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3433 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3434 Depth + 1); 3435 } 3436 break; 3437 } 3438 return false; 3439 } 3440 3441 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3442 const TargetLibraryInfo *TLI) { 3443 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3444 } 3445 3446 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3447 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3448 } 3449 3450 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3451 unsigned Depth) { 3452 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3453 3454 // If we're told that infinities won't happen, assume they won't. 3455 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3456 if (FPMathOp->hasNoInfs()) 3457 return true; 3458 3459 // Handle scalar constants. 3460 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3461 return !CFP->isInfinity(); 3462 3463 if (Depth == MaxDepth) 3464 return false; 3465 3466 if (auto *Inst = dyn_cast<Instruction>(V)) { 3467 switch (Inst->getOpcode()) { 3468 case Instruction::Select: { 3469 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3470 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3471 } 3472 case Instruction::UIToFP: 3473 // If the input type fits into the floating type the result is finite. 3474 return ilogb(APFloat::getLargest( 3475 Inst->getType()->getScalarType()->getFltSemantics())) >= 3476 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3477 default: 3478 break; 3479 } 3480 } 3481 3482 // try to handle fixed width vector constants 3483 if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) { 3484 // For vectors, verify that each element is not infinity. 3485 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3486 for (unsigned i = 0; i != NumElts; ++i) { 3487 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3488 if (!Elt) 3489 return false; 3490 if (isa<UndefValue>(Elt)) 3491 continue; 3492 auto *CElt = dyn_cast<ConstantFP>(Elt); 3493 if (!CElt || CElt->isInfinity()) 3494 return false; 3495 } 3496 // All elements were confirmed non-infinity or undefined. 3497 return true; 3498 } 3499 3500 // was not able to prove that V never contains infinity 3501 return false; 3502 } 3503 3504 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3505 unsigned Depth) { 3506 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3507 3508 // If we're told that NaNs won't happen, assume they won't. 3509 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3510 if (FPMathOp->hasNoNaNs()) 3511 return true; 3512 3513 // Handle scalar constants. 3514 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3515 return !CFP->isNaN(); 3516 3517 if (Depth == MaxDepth) 3518 return false; 3519 3520 if (auto *Inst = dyn_cast<Instruction>(V)) { 3521 switch (Inst->getOpcode()) { 3522 case Instruction::FAdd: 3523 case Instruction::FSub: 3524 // Adding positive and negative infinity produces NaN. 3525 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3526 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3527 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3528 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3529 3530 case Instruction::FMul: 3531 // Zero multiplied with infinity produces NaN. 3532 // FIXME: If neither side can be zero fmul never produces NaN. 3533 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3534 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3535 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3536 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3537 3538 case Instruction::FDiv: 3539 case Instruction::FRem: 3540 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3541 return false; 3542 3543 case Instruction::Select: { 3544 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3545 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3546 } 3547 case Instruction::SIToFP: 3548 case Instruction::UIToFP: 3549 return true; 3550 case Instruction::FPTrunc: 3551 case Instruction::FPExt: 3552 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3553 default: 3554 break; 3555 } 3556 } 3557 3558 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3559 switch (II->getIntrinsicID()) { 3560 case Intrinsic::canonicalize: 3561 case Intrinsic::fabs: 3562 case Intrinsic::copysign: 3563 case Intrinsic::exp: 3564 case Intrinsic::exp2: 3565 case Intrinsic::floor: 3566 case Intrinsic::ceil: 3567 case Intrinsic::trunc: 3568 case Intrinsic::rint: 3569 case Intrinsic::nearbyint: 3570 case Intrinsic::round: 3571 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3572 case Intrinsic::sqrt: 3573 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3574 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3575 case Intrinsic::minnum: 3576 case Intrinsic::maxnum: 3577 // If either operand is not NaN, the result is not NaN. 3578 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3579 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3580 default: 3581 return false; 3582 } 3583 } 3584 3585 // Try to handle fixed width vector constants 3586 if (isa<FixedVectorType>(V->getType()) && isa<Constant>(V)) { 3587 // For vectors, verify that each element is not NaN. 3588 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3589 for (unsigned i = 0; i != NumElts; ++i) { 3590 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3591 if (!Elt) 3592 return false; 3593 if (isa<UndefValue>(Elt)) 3594 continue; 3595 auto *CElt = dyn_cast<ConstantFP>(Elt); 3596 if (!CElt || CElt->isNaN()) 3597 return false; 3598 } 3599 // All elements were confirmed not-NaN or undefined. 3600 return true; 3601 } 3602 3603 // Was not able to prove that V never contains NaN 3604 return false; 3605 } 3606 3607 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3608 3609 // All byte-wide stores are splatable, even of arbitrary variables. 3610 if (V->getType()->isIntegerTy(8)) 3611 return V; 3612 3613 LLVMContext &Ctx = V->getContext(); 3614 3615 // Undef don't care. 3616 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3617 if (isa<UndefValue>(V)) 3618 return UndefInt8; 3619 3620 // Return Undef for zero-sized type. 3621 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3622 return UndefInt8; 3623 3624 Constant *C = dyn_cast<Constant>(V); 3625 if (!C) { 3626 // Conceptually, we could handle things like: 3627 // %a = zext i8 %X to i16 3628 // %b = shl i16 %a, 8 3629 // %c = or i16 %a, %b 3630 // but until there is an example that actually needs this, it doesn't seem 3631 // worth worrying about. 3632 return nullptr; 3633 } 3634 3635 // Handle 'null' ConstantArrayZero etc. 3636 if (C->isNullValue()) 3637 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3638 3639 // Constant floating-point values can be handled as integer values if the 3640 // corresponding integer value is "byteable". An important case is 0.0. 3641 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3642 Type *Ty = nullptr; 3643 if (CFP->getType()->isHalfTy()) 3644 Ty = Type::getInt16Ty(Ctx); 3645 else if (CFP->getType()->isFloatTy()) 3646 Ty = Type::getInt32Ty(Ctx); 3647 else if (CFP->getType()->isDoubleTy()) 3648 Ty = Type::getInt64Ty(Ctx); 3649 // Don't handle long double formats, which have strange constraints. 3650 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3651 : nullptr; 3652 } 3653 3654 // We can handle constant integers that are multiple of 8 bits. 3655 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3656 if (CI->getBitWidth() % 8 == 0) { 3657 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3658 if (!CI->getValue().isSplat(8)) 3659 return nullptr; 3660 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3661 } 3662 } 3663 3664 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3665 if (CE->getOpcode() == Instruction::IntToPtr) { 3666 auto PS = DL.getPointerSizeInBits( 3667 cast<PointerType>(CE->getType())->getAddressSpace()); 3668 return isBytewiseValue( 3669 ConstantExpr::getIntegerCast(CE->getOperand(0), 3670 Type::getIntNTy(Ctx, PS), false), 3671 DL); 3672 } 3673 } 3674 3675 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3676 if (LHS == RHS) 3677 return LHS; 3678 if (!LHS || !RHS) 3679 return nullptr; 3680 if (LHS == UndefInt8) 3681 return RHS; 3682 if (RHS == UndefInt8) 3683 return LHS; 3684 return nullptr; 3685 }; 3686 3687 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3688 Value *Val = UndefInt8; 3689 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3690 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3691 return nullptr; 3692 return Val; 3693 } 3694 3695 if (isa<ConstantAggregate>(C)) { 3696 Value *Val = UndefInt8; 3697 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3698 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3699 return nullptr; 3700 return Val; 3701 } 3702 3703 // Don't try to handle the handful of other constants. 3704 return nullptr; 3705 } 3706 3707 // This is the recursive version of BuildSubAggregate. It takes a few different 3708 // arguments. Idxs is the index within the nested struct From that we are 3709 // looking at now (which is of type IndexedType). IdxSkip is the number of 3710 // indices from Idxs that should be left out when inserting into the resulting 3711 // struct. To is the result struct built so far, new insertvalue instructions 3712 // build on that. 3713 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3714 SmallVectorImpl<unsigned> &Idxs, 3715 unsigned IdxSkip, 3716 Instruction *InsertBefore) { 3717 StructType *STy = dyn_cast<StructType>(IndexedType); 3718 if (STy) { 3719 // Save the original To argument so we can modify it 3720 Value *OrigTo = To; 3721 // General case, the type indexed by Idxs is a struct 3722 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3723 // Process each struct element recursively 3724 Idxs.push_back(i); 3725 Value *PrevTo = To; 3726 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3727 InsertBefore); 3728 Idxs.pop_back(); 3729 if (!To) { 3730 // Couldn't find any inserted value for this index? Cleanup 3731 while (PrevTo != OrigTo) { 3732 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3733 PrevTo = Del->getAggregateOperand(); 3734 Del->eraseFromParent(); 3735 } 3736 // Stop processing elements 3737 break; 3738 } 3739 } 3740 // If we successfully found a value for each of our subaggregates 3741 if (To) 3742 return To; 3743 } 3744 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3745 // the struct's elements had a value that was inserted directly. In the latter 3746 // case, perhaps we can't determine each of the subelements individually, but 3747 // we might be able to find the complete struct somewhere. 3748 3749 // Find the value that is at that particular spot 3750 Value *V = FindInsertedValue(From, Idxs); 3751 3752 if (!V) 3753 return nullptr; 3754 3755 // Insert the value in the new (sub) aggregate 3756 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3757 "tmp", InsertBefore); 3758 } 3759 3760 // This helper takes a nested struct and extracts a part of it (which is again a 3761 // struct) into a new value. For example, given the struct: 3762 // { a, { b, { c, d }, e } } 3763 // and the indices "1, 1" this returns 3764 // { c, d }. 3765 // 3766 // It does this by inserting an insertvalue for each element in the resulting 3767 // struct, as opposed to just inserting a single struct. This will only work if 3768 // each of the elements of the substruct are known (ie, inserted into From by an 3769 // insertvalue instruction somewhere). 3770 // 3771 // All inserted insertvalue instructions are inserted before InsertBefore 3772 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3773 Instruction *InsertBefore) { 3774 assert(InsertBefore && "Must have someplace to insert!"); 3775 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3776 idx_range); 3777 Value *To = UndefValue::get(IndexedType); 3778 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3779 unsigned IdxSkip = Idxs.size(); 3780 3781 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3782 } 3783 3784 /// Given an aggregate and a sequence of indices, see if the scalar value 3785 /// indexed is already around as a register, for example if it was inserted 3786 /// directly into the aggregate. 3787 /// 3788 /// If InsertBefore is not null, this function will duplicate (modified) 3789 /// insertvalues when a part of a nested struct is extracted. 3790 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3791 Instruction *InsertBefore) { 3792 // Nothing to index? Just return V then (this is useful at the end of our 3793 // recursion). 3794 if (idx_range.empty()) 3795 return V; 3796 // We have indices, so V should have an indexable type. 3797 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3798 "Not looking at a struct or array?"); 3799 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3800 "Invalid indices for type?"); 3801 3802 if (Constant *C = dyn_cast<Constant>(V)) { 3803 C = C->getAggregateElement(idx_range[0]); 3804 if (!C) return nullptr; 3805 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3806 } 3807 3808 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3809 // Loop the indices for the insertvalue instruction in parallel with the 3810 // requested indices 3811 const unsigned *req_idx = idx_range.begin(); 3812 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3813 i != e; ++i, ++req_idx) { 3814 if (req_idx == idx_range.end()) { 3815 // We can't handle this without inserting insertvalues 3816 if (!InsertBefore) 3817 return nullptr; 3818 3819 // The requested index identifies a part of a nested aggregate. Handle 3820 // this specially. For example, 3821 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3822 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3823 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3824 // This can be changed into 3825 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3826 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3827 // which allows the unused 0,0 element from the nested struct to be 3828 // removed. 3829 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3830 InsertBefore); 3831 } 3832 3833 // This insert value inserts something else than what we are looking for. 3834 // See if the (aggregate) value inserted into has the value we are 3835 // looking for, then. 3836 if (*req_idx != *i) 3837 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3838 InsertBefore); 3839 } 3840 // If we end up here, the indices of the insertvalue match with those 3841 // requested (though possibly only partially). Now we recursively look at 3842 // the inserted value, passing any remaining indices. 3843 return FindInsertedValue(I->getInsertedValueOperand(), 3844 makeArrayRef(req_idx, idx_range.end()), 3845 InsertBefore); 3846 } 3847 3848 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3849 // If we're extracting a value from an aggregate that was extracted from 3850 // something else, we can extract from that something else directly instead. 3851 // However, we will need to chain I's indices with the requested indices. 3852 3853 // Calculate the number of indices required 3854 unsigned size = I->getNumIndices() + idx_range.size(); 3855 // Allocate some space to put the new indices in 3856 SmallVector<unsigned, 5> Idxs; 3857 Idxs.reserve(size); 3858 // Add indices from the extract value instruction 3859 Idxs.append(I->idx_begin(), I->idx_end()); 3860 3861 // Add requested indices 3862 Idxs.append(idx_range.begin(), idx_range.end()); 3863 3864 assert(Idxs.size() == size 3865 && "Number of indices added not correct?"); 3866 3867 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3868 } 3869 // Otherwise, we don't know (such as, extracting from a function return value 3870 // or load instruction) 3871 return nullptr; 3872 } 3873 3874 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3875 unsigned CharSize) { 3876 // Make sure the GEP has exactly three arguments. 3877 if (GEP->getNumOperands() != 3) 3878 return false; 3879 3880 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3881 // CharSize. 3882 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3883 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3884 return false; 3885 3886 // Check to make sure that the first operand of the GEP is an integer and 3887 // has value 0 so that we are sure we're indexing into the initializer. 3888 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3889 if (!FirstIdx || !FirstIdx->isZero()) 3890 return false; 3891 3892 return true; 3893 } 3894 3895 bool llvm::getConstantDataArrayInfo(const Value *V, 3896 ConstantDataArraySlice &Slice, 3897 unsigned ElementSize, uint64_t Offset) { 3898 assert(V); 3899 3900 // Look through bitcast instructions and geps. 3901 V = V->stripPointerCasts(); 3902 3903 // If the value is a GEP instruction or constant expression, treat it as an 3904 // offset. 3905 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3906 // The GEP operator should be based on a pointer to string constant, and is 3907 // indexing into the string constant. 3908 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3909 return false; 3910 3911 // If the second index isn't a ConstantInt, then this is a variable index 3912 // into the array. If this occurs, we can't say anything meaningful about 3913 // the string. 3914 uint64_t StartIdx = 0; 3915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3916 StartIdx = CI->getZExtValue(); 3917 else 3918 return false; 3919 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3920 StartIdx + Offset); 3921 } 3922 3923 // The GEP instruction, constant or instruction, must reference a global 3924 // variable that is a constant and is initialized. The referenced constant 3925 // initializer is the array that we'll use for optimization. 3926 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3927 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3928 return false; 3929 3930 const ConstantDataArray *Array; 3931 ArrayType *ArrayTy; 3932 if (GV->getInitializer()->isNullValue()) { 3933 Type *GVTy = GV->getValueType(); 3934 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3935 // A zeroinitializer for the array; there is no ConstantDataArray. 3936 Array = nullptr; 3937 } else { 3938 const DataLayout &DL = GV->getParent()->getDataLayout(); 3939 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3940 uint64_t Length = SizeInBytes / (ElementSize / 8); 3941 if (Length <= Offset) 3942 return false; 3943 3944 Slice.Array = nullptr; 3945 Slice.Offset = 0; 3946 Slice.Length = Length - Offset; 3947 return true; 3948 } 3949 } else { 3950 // This must be a ConstantDataArray. 3951 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3952 if (!Array) 3953 return false; 3954 ArrayTy = Array->getType(); 3955 } 3956 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3957 return false; 3958 3959 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3960 if (Offset > NumElts) 3961 return false; 3962 3963 Slice.Array = Array; 3964 Slice.Offset = Offset; 3965 Slice.Length = NumElts - Offset; 3966 return true; 3967 } 3968 3969 /// This function computes the length of a null-terminated C string pointed to 3970 /// by V. If successful, it returns true and returns the string in Str. 3971 /// If unsuccessful, it returns false. 3972 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3973 uint64_t Offset, bool TrimAtNul) { 3974 ConstantDataArraySlice Slice; 3975 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3976 return false; 3977 3978 if (Slice.Array == nullptr) { 3979 if (TrimAtNul) { 3980 Str = StringRef(); 3981 return true; 3982 } 3983 if (Slice.Length == 1) { 3984 Str = StringRef("", 1); 3985 return true; 3986 } 3987 // We cannot instantiate a StringRef as we do not have an appropriate string 3988 // of 0s at hand. 3989 return false; 3990 } 3991 3992 // Start out with the entire array in the StringRef. 3993 Str = Slice.Array->getAsString(); 3994 // Skip over 'offset' bytes. 3995 Str = Str.substr(Slice.Offset); 3996 3997 if (TrimAtNul) { 3998 // Trim off the \0 and anything after it. If the array is not nul 3999 // terminated, we just return the whole end of string. The client may know 4000 // some other way that the string is length-bound. 4001 Str = Str.substr(0, Str.find('\0')); 4002 } 4003 return true; 4004 } 4005 4006 // These next two are very similar to the above, but also look through PHI 4007 // nodes. 4008 // TODO: See if we can integrate these two together. 4009 4010 /// If we can compute the length of the string pointed to by 4011 /// the specified pointer, return 'len+1'. If we can't, return 0. 4012 static uint64_t GetStringLengthH(const Value *V, 4013 SmallPtrSetImpl<const PHINode*> &PHIs, 4014 unsigned CharSize) { 4015 // Look through noop bitcast instructions. 4016 V = V->stripPointerCasts(); 4017 4018 // If this is a PHI node, there are two cases: either we have already seen it 4019 // or we haven't. 4020 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4021 if (!PHIs.insert(PN).second) 4022 return ~0ULL; // already in the set. 4023 4024 // If it was new, see if all the input strings are the same length. 4025 uint64_t LenSoFar = ~0ULL; 4026 for (Value *IncValue : PN->incoming_values()) { 4027 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4028 if (Len == 0) return 0; // Unknown length -> unknown. 4029 4030 if (Len == ~0ULL) continue; 4031 4032 if (Len != LenSoFar && LenSoFar != ~0ULL) 4033 return 0; // Disagree -> unknown. 4034 LenSoFar = Len; 4035 } 4036 4037 // Success, all agree. 4038 return LenSoFar; 4039 } 4040 4041 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4042 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4043 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4044 if (Len1 == 0) return 0; 4045 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4046 if (Len2 == 0) return 0; 4047 if (Len1 == ~0ULL) return Len2; 4048 if (Len2 == ~0ULL) return Len1; 4049 if (Len1 != Len2) return 0; 4050 return Len1; 4051 } 4052 4053 // Otherwise, see if we can read the string. 4054 ConstantDataArraySlice Slice; 4055 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4056 return 0; 4057 4058 if (Slice.Array == nullptr) 4059 return 1; 4060 4061 // Search for nul characters 4062 unsigned NullIndex = 0; 4063 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4064 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4065 break; 4066 } 4067 4068 return NullIndex + 1; 4069 } 4070 4071 /// If we can compute the length of the string pointed to by 4072 /// the specified pointer, return 'len+1'. If we can't, return 0. 4073 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4074 if (!V->getType()->isPointerTy()) 4075 return 0; 4076 4077 SmallPtrSet<const PHINode*, 32> PHIs; 4078 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4079 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4080 // an empty string as a length. 4081 return Len == ~0ULL ? 1 : Len; 4082 } 4083 4084 const Value * 4085 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4086 bool MustPreserveNullness) { 4087 assert(Call && 4088 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4089 if (const Value *RV = Call->getReturnedArgOperand()) 4090 return RV; 4091 // This can be used only as a aliasing property. 4092 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4093 Call, MustPreserveNullness)) 4094 return Call->getArgOperand(0); 4095 return nullptr; 4096 } 4097 4098 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4099 const CallBase *Call, bool MustPreserveNullness) { 4100 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4101 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4102 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4103 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4104 (!MustPreserveNullness && 4105 Call->getIntrinsicID() == Intrinsic::ptrmask); 4106 } 4107 4108 /// \p PN defines a loop-variant pointer to an object. Check if the 4109 /// previous iteration of the loop was referring to the same object as \p PN. 4110 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4111 const LoopInfo *LI) { 4112 // Find the loop-defined value. 4113 Loop *L = LI->getLoopFor(PN->getParent()); 4114 if (PN->getNumIncomingValues() != 2) 4115 return true; 4116 4117 // Find the value from previous iteration. 4118 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4119 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4120 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4121 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4122 return true; 4123 4124 // If a new pointer is loaded in the loop, the pointer references a different 4125 // object in every iteration. E.g.: 4126 // for (i) 4127 // int *p = a[i]; 4128 // ... 4129 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4130 if (!L->isLoopInvariant(Load->getPointerOperand())) 4131 return false; 4132 return true; 4133 } 4134 4135 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4136 unsigned MaxLookup) { 4137 if (!V->getType()->isPointerTy()) 4138 return V; 4139 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4140 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4141 V = GEP->getPointerOperand(); 4142 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4143 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4144 V = cast<Operator>(V)->getOperand(0); 4145 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4146 if (GA->isInterposable()) 4147 return V; 4148 V = GA->getAliasee(); 4149 } else if (isa<AllocaInst>(V)) { 4150 // An alloca can't be further simplified. 4151 return V; 4152 } else { 4153 if (auto *Call = dyn_cast<CallBase>(V)) { 4154 // CaptureTracking can know about special capturing properties of some 4155 // intrinsics like launder.invariant.group, that can't be expressed with 4156 // the attributes, but have properties like returning aliasing pointer. 4157 // Because some analysis may assume that nocaptured pointer is not 4158 // returned from some special intrinsic (because function would have to 4159 // be marked with returns attribute), it is crucial to use this function 4160 // because it should be in sync with CaptureTracking. Not using it may 4161 // cause weird miscompilations where 2 aliasing pointers are assumed to 4162 // noalias. 4163 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4164 V = RP; 4165 continue; 4166 } 4167 } 4168 4169 // See if InstructionSimplify knows any relevant tricks. 4170 if (Instruction *I = dyn_cast<Instruction>(V)) 4171 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4172 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4173 V = Simplified; 4174 continue; 4175 } 4176 4177 return V; 4178 } 4179 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4180 } 4181 return V; 4182 } 4183 4184 void llvm::GetUnderlyingObjects(const Value *V, 4185 SmallVectorImpl<const Value *> &Objects, 4186 const DataLayout &DL, LoopInfo *LI, 4187 unsigned MaxLookup) { 4188 SmallPtrSet<const Value *, 4> Visited; 4189 SmallVector<const Value *, 4> Worklist; 4190 Worklist.push_back(V); 4191 do { 4192 const Value *P = Worklist.pop_back_val(); 4193 P = GetUnderlyingObject(P, DL, MaxLookup); 4194 4195 if (!Visited.insert(P).second) 4196 continue; 4197 4198 if (auto *SI = dyn_cast<SelectInst>(P)) { 4199 Worklist.push_back(SI->getTrueValue()); 4200 Worklist.push_back(SI->getFalseValue()); 4201 continue; 4202 } 4203 4204 if (auto *PN = dyn_cast<PHINode>(P)) { 4205 // If this PHI changes the underlying object in every iteration of the 4206 // loop, don't look through it. Consider: 4207 // int **A; 4208 // for (i) { 4209 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4210 // Curr = A[i]; 4211 // *Prev, *Curr; 4212 // 4213 // Prev is tracking Curr one iteration behind so they refer to different 4214 // underlying objects. 4215 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4216 isSameUnderlyingObjectInLoop(PN, LI)) 4217 for (Value *IncValue : PN->incoming_values()) 4218 Worklist.push_back(IncValue); 4219 continue; 4220 } 4221 4222 Objects.push_back(P); 4223 } while (!Worklist.empty()); 4224 } 4225 4226 /// This is the function that does the work of looking through basic 4227 /// ptrtoint+arithmetic+inttoptr sequences. 4228 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4229 do { 4230 if (const Operator *U = dyn_cast<Operator>(V)) { 4231 // If we find a ptrtoint, we can transfer control back to the 4232 // regular getUnderlyingObjectFromInt. 4233 if (U->getOpcode() == Instruction::PtrToInt) 4234 return U->getOperand(0); 4235 // If we find an add of a constant, a multiplied value, or a phi, it's 4236 // likely that the other operand will lead us to the base 4237 // object. We don't have to worry about the case where the 4238 // object address is somehow being computed by the multiply, 4239 // because our callers only care when the result is an 4240 // identifiable object. 4241 if (U->getOpcode() != Instruction::Add || 4242 (!isa<ConstantInt>(U->getOperand(1)) && 4243 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4244 !isa<PHINode>(U->getOperand(1)))) 4245 return V; 4246 V = U->getOperand(0); 4247 } else { 4248 return V; 4249 } 4250 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4251 } while (true); 4252 } 4253 4254 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4255 /// ptrtoint+arithmetic+inttoptr sequences. 4256 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4257 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4258 SmallVectorImpl<Value *> &Objects, 4259 const DataLayout &DL) { 4260 SmallPtrSet<const Value *, 16> Visited; 4261 SmallVector<const Value *, 4> Working(1, V); 4262 do { 4263 V = Working.pop_back_val(); 4264 4265 SmallVector<const Value *, 4> Objs; 4266 GetUnderlyingObjects(V, Objs, DL); 4267 4268 for (const Value *V : Objs) { 4269 if (!Visited.insert(V).second) 4270 continue; 4271 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4272 const Value *O = 4273 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4274 if (O->getType()->isPointerTy()) { 4275 Working.push_back(O); 4276 continue; 4277 } 4278 } 4279 // If GetUnderlyingObjects fails to find an identifiable object, 4280 // getUnderlyingObjectsForCodeGen also fails for safety. 4281 if (!isIdentifiedObject(V)) { 4282 Objects.clear(); 4283 return false; 4284 } 4285 Objects.push_back(const_cast<Value *>(V)); 4286 } 4287 } while (!Working.empty()); 4288 return true; 4289 } 4290 4291 /// Return true if the only users of this pointer are lifetime markers. 4292 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4293 for (const User *U : V->users()) { 4294 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4295 if (!II) return false; 4296 4297 if (!II->isLifetimeStartOrEnd()) 4298 return false; 4299 } 4300 return true; 4301 } 4302 4303 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4304 if (!LI.isUnordered()) 4305 return true; 4306 const Function &F = *LI.getFunction(); 4307 // Speculative load may create a race that did not exist in the source. 4308 return F.hasFnAttribute(Attribute::SanitizeThread) || 4309 // Speculative load may load data from dirty regions. 4310 F.hasFnAttribute(Attribute::SanitizeAddress) || 4311 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4312 } 4313 4314 4315 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4316 const Instruction *CtxI, 4317 const DominatorTree *DT) { 4318 const Operator *Inst = dyn_cast<Operator>(V); 4319 if (!Inst) 4320 return false; 4321 4322 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4323 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4324 if (C->canTrap()) 4325 return false; 4326 4327 switch (Inst->getOpcode()) { 4328 default: 4329 return true; 4330 case Instruction::UDiv: 4331 case Instruction::URem: { 4332 // x / y is undefined if y == 0. 4333 const APInt *V; 4334 if (match(Inst->getOperand(1), m_APInt(V))) 4335 return *V != 0; 4336 return false; 4337 } 4338 case Instruction::SDiv: 4339 case Instruction::SRem: { 4340 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4341 const APInt *Numerator, *Denominator; 4342 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4343 return false; 4344 // We cannot hoist this division if the denominator is 0. 4345 if (*Denominator == 0) 4346 return false; 4347 // It's safe to hoist if the denominator is not 0 or -1. 4348 if (*Denominator != -1) 4349 return true; 4350 // At this point we know that the denominator is -1. It is safe to hoist as 4351 // long we know that the numerator is not INT_MIN. 4352 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4353 return !Numerator->isMinSignedValue(); 4354 // The numerator *might* be MinSignedValue. 4355 return false; 4356 } 4357 case Instruction::Load: { 4358 const LoadInst *LI = cast<LoadInst>(Inst); 4359 if (mustSuppressSpeculation(*LI)) 4360 return false; 4361 const DataLayout &DL = LI->getModule()->getDataLayout(); 4362 return isDereferenceableAndAlignedPointer( 4363 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4364 DL, CtxI, DT); 4365 } 4366 case Instruction::Call: { 4367 auto *CI = cast<const CallInst>(Inst); 4368 const Function *Callee = CI->getCalledFunction(); 4369 4370 // The called function could have undefined behavior or side-effects, even 4371 // if marked readnone nounwind. 4372 return Callee && Callee->isSpeculatable(); 4373 } 4374 case Instruction::VAArg: 4375 case Instruction::Alloca: 4376 case Instruction::Invoke: 4377 case Instruction::CallBr: 4378 case Instruction::PHI: 4379 case Instruction::Store: 4380 case Instruction::Ret: 4381 case Instruction::Br: 4382 case Instruction::IndirectBr: 4383 case Instruction::Switch: 4384 case Instruction::Unreachable: 4385 case Instruction::Fence: 4386 case Instruction::AtomicRMW: 4387 case Instruction::AtomicCmpXchg: 4388 case Instruction::LandingPad: 4389 case Instruction::Resume: 4390 case Instruction::CatchSwitch: 4391 case Instruction::CatchPad: 4392 case Instruction::CatchRet: 4393 case Instruction::CleanupPad: 4394 case Instruction::CleanupRet: 4395 return false; // Misc instructions which have effects 4396 } 4397 } 4398 4399 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4400 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4401 } 4402 4403 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4404 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4405 switch (OR) { 4406 case ConstantRange::OverflowResult::MayOverflow: 4407 return OverflowResult::MayOverflow; 4408 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4409 return OverflowResult::AlwaysOverflowsLow; 4410 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4411 return OverflowResult::AlwaysOverflowsHigh; 4412 case ConstantRange::OverflowResult::NeverOverflows: 4413 return OverflowResult::NeverOverflows; 4414 } 4415 llvm_unreachable("Unknown OverflowResult"); 4416 } 4417 4418 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4419 static ConstantRange computeConstantRangeIncludingKnownBits( 4420 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4421 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4422 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4423 KnownBits Known = computeKnownBits( 4424 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4425 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4426 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4427 ConstantRange::PreferredRangeType RangeType = 4428 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4429 return CR1.intersectWith(CR2, RangeType); 4430 } 4431 4432 OverflowResult llvm::computeOverflowForUnsignedMul( 4433 const Value *LHS, const Value *RHS, const DataLayout &DL, 4434 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4435 bool UseInstrInfo) { 4436 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4437 nullptr, UseInstrInfo); 4438 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4439 nullptr, UseInstrInfo); 4440 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4441 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4442 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4443 } 4444 4445 OverflowResult 4446 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4447 const DataLayout &DL, AssumptionCache *AC, 4448 const Instruction *CxtI, 4449 const DominatorTree *DT, bool UseInstrInfo) { 4450 // Multiplying n * m significant bits yields a result of n + m significant 4451 // bits. If the total number of significant bits does not exceed the 4452 // result bit width (minus 1), there is no overflow. 4453 // This means if we have enough leading sign bits in the operands 4454 // we can guarantee that the result does not overflow. 4455 // Ref: "Hacker's Delight" by Henry Warren 4456 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4457 4458 // Note that underestimating the number of sign bits gives a more 4459 // conservative answer. 4460 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4461 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4462 4463 // First handle the easy case: if we have enough sign bits there's 4464 // definitely no overflow. 4465 if (SignBits > BitWidth + 1) 4466 return OverflowResult::NeverOverflows; 4467 4468 // There are two ambiguous cases where there can be no overflow: 4469 // SignBits == BitWidth + 1 and 4470 // SignBits == BitWidth 4471 // The second case is difficult to check, therefore we only handle the 4472 // first case. 4473 if (SignBits == BitWidth + 1) { 4474 // It overflows only when both arguments are negative and the true 4475 // product is exactly the minimum negative number. 4476 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4477 // For simplicity we just check if at least one side is not negative. 4478 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4479 nullptr, UseInstrInfo); 4480 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4481 nullptr, UseInstrInfo); 4482 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4483 return OverflowResult::NeverOverflows; 4484 } 4485 return OverflowResult::MayOverflow; 4486 } 4487 4488 OverflowResult llvm::computeOverflowForUnsignedAdd( 4489 const Value *LHS, const Value *RHS, const DataLayout &DL, 4490 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4491 bool UseInstrInfo) { 4492 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4493 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4494 nullptr, UseInstrInfo); 4495 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4496 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4497 nullptr, UseInstrInfo); 4498 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4499 } 4500 4501 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4502 const Value *RHS, 4503 const AddOperator *Add, 4504 const DataLayout &DL, 4505 AssumptionCache *AC, 4506 const Instruction *CxtI, 4507 const DominatorTree *DT) { 4508 if (Add && Add->hasNoSignedWrap()) { 4509 return OverflowResult::NeverOverflows; 4510 } 4511 4512 // If LHS and RHS each have at least two sign bits, the addition will look 4513 // like 4514 // 4515 // XX..... + 4516 // YY..... 4517 // 4518 // If the carry into the most significant position is 0, X and Y can't both 4519 // be 1 and therefore the carry out of the addition is also 0. 4520 // 4521 // If the carry into the most significant position is 1, X and Y can't both 4522 // be 0 and therefore the carry out of the addition is also 1. 4523 // 4524 // Since the carry into the most significant position is always equal to 4525 // the carry out of the addition, there is no signed overflow. 4526 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4527 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4528 return OverflowResult::NeverOverflows; 4529 4530 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4531 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4532 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4533 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4534 OverflowResult OR = 4535 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4536 if (OR != OverflowResult::MayOverflow) 4537 return OR; 4538 4539 // The remaining code needs Add to be available. Early returns if not so. 4540 if (!Add) 4541 return OverflowResult::MayOverflow; 4542 4543 // If the sign of Add is the same as at least one of the operands, this add 4544 // CANNOT overflow. If this can be determined from the known bits of the 4545 // operands the above signedAddMayOverflow() check will have already done so. 4546 // The only other way to improve on the known bits is from an assumption, so 4547 // call computeKnownBitsFromAssume() directly. 4548 bool LHSOrRHSKnownNonNegative = 4549 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4550 bool LHSOrRHSKnownNegative = 4551 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4552 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4553 KnownBits AddKnown(LHSRange.getBitWidth()); 4554 computeKnownBitsFromAssume( 4555 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4556 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4557 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4558 return OverflowResult::NeverOverflows; 4559 } 4560 4561 return OverflowResult::MayOverflow; 4562 } 4563 4564 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4565 const Value *RHS, 4566 const DataLayout &DL, 4567 AssumptionCache *AC, 4568 const Instruction *CxtI, 4569 const DominatorTree *DT) { 4570 // Checking for conditions implied by dominating conditions may be expensive. 4571 // Limit it to usub_with_overflow calls for now. 4572 if (match(CxtI, 4573 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4574 if (auto C = 4575 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4576 if (*C) 4577 return OverflowResult::NeverOverflows; 4578 return OverflowResult::AlwaysOverflowsLow; 4579 } 4580 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4581 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4582 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4583 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4584 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4585 } 4586 4587 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4588 const Value *RHS, 4589 const DataLayout &DL, 4590 AssumptionCache *AC, 4591 const Instruction *CxtI, 4592 const DominatorTree *DT) { 4593 // If LHS and RHS each have at least two sign bits, the subtraction 4594 // cannot overflow. 4595 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4596 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4597 return OverflowResult::NeverOverflows; 4598 4599 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4600 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4601 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4602 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4603 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4604 } 4605 4606 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4607 const DominatorTree &DT) { 4608 SmallVector<const BranchInst *, 2> GuardingBranches; 4609 SmallVector<const ExtractValueInst *, 2> Results; 4610 4611 for (const User *U : WO->users()) { 4612 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4613 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4614 4615 if (EVI->getIndices()[0] == 0) 4616 Results.push_back(EVI); 4617 else { 4618 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4619 4620 for (const auto *U : EVI->users()) 4621 if (const auto *B = dyn_cast<BranchInst>(U)) { 4622 assert(B->isConditional() && "How else is it using an i1?"); 4623 GuardingBranches.push_back(B); 4624 } 4625 } 4626 } else { 4627 // We are using the aggregate directly in a way we don't want to analyze 4628 // here (storing it to a global, say). 4629 return false; 4630 } 4631 } 4632 4633 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4634 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4635 if (!NoWrapEdge.isSingleEdge()) 4636 return false; 4637 4638 // Check if all users of the add are provably no-wrap. 4639 for (const auto *Result : Results) { 4640 // If the extractvalue itself is not executed on overflow, the we don't 4641 // need to check each use separately, since domination is transitive. 4642 if (DT.dominates(NoWrapEdge, Result->getParent())) 4643 continue; 4644 4645 for (auto &RU : Result->uses()) 4646 if (!DT.dominates(NoWrapEdge, RU)) 4647 return false; 4648 } 4649 4650 return true; 4651 }; 4652 4653 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4654 } 4655 4656 bool llvm::canCreatePoison(const Instruction *I) { 4657 // See whether I has flags that may create poison 4658 if (isa<OverflowingBinaryOperator>(I) && 4659 (I->hasNoSignedWrap() || I->hasNoUnsignedWrap())) 4660 return true; 4661 if (isa<PossiblyExactOperator>(I) && I->isExact()) 4662 return true; 4663 if (auto *FP = dyn_cast<FPMathOperator>(I)) { 4664 auto FMF = FP->getFastMathFlags(); 4665 if (FMF.noNaNs() || FMF.noInfs()) 4666 return true; 4667 } 4668 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4669 if (GEP->isInBounds()) 4670 return true; 4671 4672 unsigned Opcode = I->getOpcode(); 4673 4674 // Check whether opcode is a poison-generating operation 4675 switch (Opcode) { 4676 case Instruction::Shl: 4677 case Instruction::AShr: 4678 case Instruction::LShr: { 4679 // Shifts return poison if shiftwidth is larger than the bitwidth. 4680 if (auto *C = dyn_cast<Constant>(I->getOperand(1))) { 4681 SmallVector<Constant *, 4> ShiftAmounts; 4682 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4683 unsigned NumElts = FVTy->getNumElements(); 4684 for (unsigned i = 0; i < NumElts; ++i) 4685 ShiftAmounts.push_back(C->getAggregateElement(i)); 4686 } else if (isa<ScalableVectorType>(C->getType())) 4687 return true; // Can't tell, just return true to be safe 4688 else 4689 ShiftAmounts.push_back(C); 4690 4691 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4692 auto *CI = dyn_cast<ConstantInt>(C); 4693 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4694 }); 4695 return !Safe; 4696 } 4697 return true; 4698 } 4699 case Instruction::FPToSI: 4700 case Instruction::FPToUI: 4701 // fptosi/ui yields poison if the resulting value does not fit in the 4702 // destination type. 4703 return true; 4704 case Instruction::Call: 4705 case Instruction::CallBr: 4706 case Instruction::Invoke: 4707 // Function calls can return a poison value even if args are non-poison 4708 // values. 4709 return true; 4710 case Instruction::InsertElement: 4711 case Instruction::ExtractElement: { 4712 // If index exceeds the length of the vector, it returns poison 4713 auto *VTy = cast<VectorType>(I->getOperand(0)->getType()); 4714 unsigned IdxOp = I->getOpcode() == Instruction::InsertElement ? 2 : 1; 4715 auto *Idx = dyn_cast<ConstantInt>(I->getOperand(IdxOp)); 4716 if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min) 4717 return true; 4718 return false; 4719 } 4720 case Instruction::FNeg: 4721 case Instruction::PHI: 4722 case Instruction::Select: 4723 case Instruction::URem: 4724 case Instruction::SRem: 4725 case Instruction::ShuffleVector: 4726 case Instruction::ExtractValue: 4727 case Instruction::InsertValue: 4728 case Instruction::Freeze: 4729 case Instruction::ICmp: 4730 case Instruction::FCmp: 4731 case Instruction::GetElementPtr: 4732 return false; 4733 default: 4734 if (isa<CastInst>(I)) 4735 return false; 4736 else if (isa<BinaryOperator>(I)) 4737 return false; 4738 // Be conservative and return true. 4739 return true; 4740 } 4741 } 4742 4743 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4744 const Instruction *CtxI, 4745 const DominatorTree *DT, 4746 unsigned Depth) { 4747 if (Depth >= MaxDepth) 4748 return false; 4749 4750 // If the value is a freeze instruction, then it can never 4751 // be undef or poison. 4752 if (isa<FreezeInst>(V)) 4753 return true; 4754 // TODO: Some instructions are guaranteed to return neither undef 4755 // nor poison if their arguments are not poison/undef. 4756 4757 if (auto *C = dyn_cast<Constant>(V)) { 4758 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4759 // possibility of poison. 4760 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4761 return false; 4762 4763 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4764 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4765 return true; 4766 4767 if (C->getType()->isVectorTy()) 4768 return !C->containsUndefElement() && !C->containsConstantExpression(); 4769 4770 // TODO: Recursively analyze aggregates or other constants. 4771 return false; 4772 } 4773 4774 // Strip cast operations from a pointer value. 4775 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4776 // inbounds with zero offset. To guarantee that the result isn't poison, the 4777 // stripped pointer is checked as it has to be pointing into an allocated 4778 // object or be null `null` to ensure `inbounds` getelement pointers with a 4779 // zero offset could not produce poison. 4780 // It can strip off addrspacecast that do not change bit representation as 4781 // well. We believe that such addrspacecast is equivalent to no-op. 4782 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4783 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4784 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4785 return true; 4786 4787 auto OpCheck = [&](const Value *V) { 4788 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4789 }; 4790 4791 if (auto *I = dyn_cast<Instruction>(V)) { 4792 switch (I->getOpcode()) { 4793 case Instruction::GetElementPtr: { 4794 auto *GEPI = dyn_cast<GetElementPtrInst>(I); 4795 if (!GEPI->isInBounds() && llvm::all_of(GEPI->operands(), OpCheck)) 4796 return true; 4797 break; 4798 } 4799 case Instruction::FCmp: { 4800 auto *FI = dyn_cast<FCmpInst>(I); 4801 if (FI->getFastMathFlags().none() && 4802 llvm::all_of(FI->operands(), OpCheck)) 4803 return true; 4804 break; 4805 } 4806 case Instruction::BitCast: 4807 case Instruction::PHI: 4808 case Instruction::ICmp: 4809 if (llvm::all_of(I->operands(), OpCheck)) 4810 return true; 4811 break; 4812 default: 4813 break; 4814 } 4815 4816 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4817 // Note: once we have an agreement that poison is a value-wise concept, 4818 // we can remove the isIntegerTy(1) constraint. 4819 return true; 4820 } 4821 4822 // CxtI may be null or a cloned instruction. 4823 if (!CtxI || !CtxI->getParent() || !DT) 4824 return false; 4825 4826 auto *DNode = DT->getNode(CtxI->getParent()); 4827 if (!DNode) 4828 // Unreachable block 4829 return false; 4830 4831 // If V is used as a branch condition before reaching CtxI, V cannot be 4832 // undef or poison. 4833 // br V, BB1, BB2 4834 // BB1: 4835 // CtxI ; V cannot be undef or poison here 4836 auto *Dominator = DNode->getIDom(); 4837 while (Dominator) { 4838 auto *TI = Dominator->getBlock()->getTerminator(); 4839 4840 if (auto BI = dyn_cast<BranchInst>(TI)) { 4841 if (BI->isConditional() && BI->getCondition() == V) 4842 return true; 4843 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4844 if (SI->getCondition() == V) 4845 return true; 4846 } 4847 4848 Dominator = Dominator->getIDom(); 4849 } 4850 4851 return false; 4852 } 4853 4854 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4855 const DataLayout &DL, 4856 AssumptionCache *AC, 4857 const Instruction *CxtI, 4858 const DominatorTree *DT) { 4859 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4860 Add, DL, AC, CxtI, DT); 4861 } 4862 4863 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4864 const Value *RHS, 4865 const DataLayout &DL, 4866 AssumptionCache *AC, 4867 const Instruction *CxtI, 4868 const DominatorTree *DT) { 4869 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4870 } 4871 4872 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4873 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4874 // of time because it's possible for another thread to interfere with it for an 4875 // arbitrary length of time, but programs aren't allowed to rely on that. 4876 4877 // If there is no successor, then execution can't transfer to it. 4878 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4879 return !CRI->unwindsToCaller(); 4880 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4881 return !CatchSwitch->unwindsToCaller(); 4882 if (isa<ResumeInst>(I)) 4883 return false; 4884 if (isa<ReturnInst>(I)) 4885 return false; 4886 if (isa<UnreachableInst>(I)) 4887 return false; 4888 4889 // Calls can throw, or contain an infinite loop, or kill the process. 4890 if (const auto *CB = dyn_cast<CallBase>(I)) { 4891 // Call sites that throw have implicit non-local control flow. 4892 if (!CB->doesNotThrow()) 4893 return false; 4894 4895 // A function which doens't throw and has "willreturn" attribute will 4896 // always return. 4897 if (CB->hasFnAttr(Attribute::WillReturn)) 4898 return true; 4899 4900 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4901 // etc. and thus not return. However, LLVM already assumes that 4902 // 4903 // - Thread exiting actions are modeled as writes to memory invisible to 4904 // the program. 4905 // 4906 // - Loops that don't have side effects (side effects are volatile/atomic 4907 // stores and IO) always terminate (see http://llvm.org/PR965). 4908 // Furthermore IO itself is also modeled as writes to memory invisible to 4909 // the program. 4910 // 4911 // We rely on those assumptions here, and use the memory effects of the call 4912 // target as a proxy for checking that it always returns. 4913 4914 // FIXME: This isn't aggressive enough; a call which only writes to a global 4915 // is guaranteed to return. 4916 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4917 } 4918 4919 // Other instructions return normally. 4920 return true; 4921 } 4922 4923 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4924 // TODO: This is slightly conservative for invoke instruction since exiting 4925 // via an exception *is* normal control for them. 4926 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4927 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4928 return false; 4929 return true; 4930 } 4931 4932 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4933 const Loop *L) { 4934 // The loop header is guaranteed to be executed for every iteration. 4935 // 4936 // FIXME: Relax this constraint to cover all basic blocks that are 4937 // guaranteed to be executed at every iteration. 4938 if (I->getParent() != L->getHeader()) return false; 4939 4940 for (const Instruction &LI : *L->getHeader()) { 4941 if (&LI == I) return true; 4942 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4943 } 4944 llvm_unreachable("Instruction not contained in its own parent basic block."); 4945 } 4946 4947 bool llvm::propagatesPoison(const Instruction *I) { 4948 switch (I->getOpcode()) { 4949 case Instruction::Freeze: 4950 case Instruction::Select: 4951 case Instruction::PHI: 4952 case Instruction::Call: 4953 case Instruction::Invoke: 4954 return false; 4955 case Instruction::ICmp: 4956 case Instruction::FCmp: 4957 case Instruction::GetElementPtr: 4958 return true; 4959 default: 4960 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 4961 return true; 4962 4963 // Be conservative and return false. 4964 return false; 4965 } 4966 } 4967 4968 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) { 4969 switch (I->getOpcode()) { 4970 case Instruction::Store: 4971 return cast<StoreInst>(I)->getPointerOperand(); 4972 4973 case Instruction::Load: 4974 return cast<LoadInst>(I)->getPointerOperand(); 4975 4976 case Instruction::AtomicCmpXchg: 4977 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4978 4979 case Instruction::AtomicRMW: 4980 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4981 4982 case Instruction::UDiv: 4983 case Instruction::SDiv: 4984 case Instruction::URem: 4985 case Instruction::SRem: 4986 return I->getOperand(1); 4987 4988 case Instruction::Call: 4989 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4990 switch (II->getIntrinsicID()) { 4991 case Intrinsic::assume: 4992 return II->getArgOperand(0); 4993 default: 4994 return nullptr; 4995 } 4996 } 4997 return nullptr; 4998 4999 default: 5000 return nullptr; 5001 } 5002 } 5003 5004 bool llvm::mustTriggerUB(const Instruction *I, 5005 const SmallSet<const Value *, 16>& KnownPoison) { 5006 auto *NotPoison = getGuaranteedNonPoisonOp(I); 5007 return (NotPoison && KnownPoison.count(NotPoison)); 5008 } 5009 5010 5011 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 5012 // We currently only look for uses of poison values within the same basic 5013 // block, as that makes it easier to guarantee that the uses will be 5014 // executed given that PoisonI is executed. 5015 // 5016 // FIXME: Expand this to consider uses beyond the same basic block. To do 5017 // this, look out for the distinction between post-dominance and strong 5018 // post-dominance. 5019 const BasicBlock *BB = PoisonI->getParent(); 5020 5021 // Set of instructions that we have proved will yield poison if PoisonI 5022 // does. 5023 SmallSet<const Value *, 16> YieldsPoison; 5024 SmallSet<const BasicBlock *, 4> Visited; 5025 YieldsPoison.insert(PoisonI); 5026 Visited.insert(PoisonI->getParent()); 5027 5028 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 5029 5030 unsigned Iter = 0; 5031 while (Iter++ < MaxDepth) { 5032 for (auto &I : make_range(Begin, End)) { 5033 if (&I != PoisonI) { 5034 if (mustTriggerUB(&I, YieldsPoison)) 5035 return true; 5036 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5037 return false; 5038 } 5039 5040 // Mark poison that propagates from I through uses of I. 5041 if (YieldsPoison.count(&I)) { 5042 for (const User *User : I.users()) { 5043 const Instruction *UserI = cast<Instruction>(User); 5044 if (propagatesPoison(UserI)) 5045 YieldsPoison.insert(User); 5046 } 5047 } 5048 } 5049 5050 if (auto *NextBB = BB->getSingleSuccessor()) { 5051 if (Visited.insert(NextBB).second) { 5052 BB = NextBB; 5053 Begin = BB->getFirstNonPHI()->getIterator(); 5054 End = BB->end(); 5055 continue; 5056 } 5057 } 5058 5059 break; 5060 } 5061 return false; 5062 } 5063 5064 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5065 if (FMF.noNaNs()) 5066 return true; 5067 5068 if (auto *C = dyn_cast<ConstantFP>(V)) 5069 return !C->isNaN(); 5070 5071 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5072 if (!C->getElementType()->isFloatingPointTy()) 5073 return false; 5074 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5075 if (C->getElementAsAPFloat(I).isNaN()) 5076 return false; 5077 } 5078 return true; 5079 } 5080 5081 if (isa<ConstantAggregateZero>(V)) 5082 return true; 5083 5084 return false; 5085 } 5086 5087 static bool isKnownNonZero(const Value *V) { 5088 if (auto *C = dyn_cast<ConstantFP>(V)) 5089 return !C->isZero(); 5090 5091 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5092 if (!C->getElementType()->isFloatingPointTy()) 5093 return false; 5094 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5095 if (C->getElementAsAPFloat(I).isZero()) 5096 return false; 5097 } 5098 return true; 5099 } 5100 5101 return false; 5102 } 5103 5104 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5105 /// Given non-min/max outer cmp/select from the clamp pattern this 5106 /// function recognizes if it can be substitued by a "canonical" min/max 5107 /// pattern. 5108 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5109 Value *CmpLHS, Value *CmpRHS, 5110 Value *TrueVal, Value *FalseVal, 5111 Value *&LHS, Value *&RHS) { 5112 // Try to match 5113 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5114 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5115 // and return description of the outer Max/Min. 5116 5117 // First, check if select has inverse order: 5118 if (CmpRHS == FalseVal) { 5119 std::swap(TrueVal, FalseVal); 5120 Pred = CmpInst::getInversePredicate(Pred); 5121 } 5122 5123 // Assume success now. If there's no match, callers should not use these anyway. 5124 LHS = TrueVal; 5125 RHS = FalseVal; 5126 5127 const APFloat *FC1; 5128 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5129 return {SPF_UNKNOWN, SPNB_NA, false}; 5130 5131 const APFloat *FC2; 5132 switch (Pred) { 5133 case CmpInst::FCMP_OLT: 5134 case CmpInst::FCMP_OLE: 5135 case CmpInst::FCMP_ULT: 5136 case CmpInst::FCMP_ULE: 5137 if (match(FalseVal, 5138 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5139 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5140 *FC1 < *FC2) 5141 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5142 break; 5143 case CmpInst::FCMP_OGT: 5144 case CmpInst::FCMP_OGE: 5145 case CmpInst::FCMP_UGT: 5146 case CmpInst::FCMP_UGE: 5147 if (match(FalseVal, 5148 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5149 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5150 *FC1 > *FC2) 5151 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5152 break; 5153 default: 5154 break; 5155 } 5156 5157 return {SPF_UNKNOWN, SPNB_NA, false}; 5158 } 5159 5160 /// Recognize variations of: 5161 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5162 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5163 Value *CmpLHS, Value *CmpRHS, 5164 Value *TrueVal, Value *FalseVal) { 5165 // Swap the select operands and predicate to match the patterns below. 5166 if (CmpRHS != TrueVal) { 5167 Pred = ICmpInst::getSwappedPredicate(Pred); 5168 std::swap(TrueVal, FalseVal); 5169 } 5170 const APInt *C1; 5171 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5172 const APInt *C2; 5173 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5174 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5175 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5176 return {SPF_SMAX, SPNB_NA, false}; 5177 5178 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5179 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5180 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5181 return {SPF_SMIN, SPNB_NA, false}; 5182 5183 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5184 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5185 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5186 return {SPF_UMAX, SPNB_NA, false}; 5187 5188 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5189 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5190 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5191 return {SPF_UMIN, SPNB_NA, false}; 5192 } 5193 return {SPF_UNKNOWN, SPNB_NA, false}; 5194 } 5195 5196 /// Recognize variations of: 5197 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5198 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5199 Value *CmpLHS, Value *CmpRHS, 5200 Value *TVal, Value *FVal, 5201 unsigned Depth) { 5202 // TODO: Allow FP min/max with nnan/nsz. 5203 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5204 5205 Value *A = nullptr, *B = nullptr; 5206 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5207 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5208 return {SPF_UNKNOWN, SPNB_NA, false}; 5209 5210 Value *C = nullptr, *D = nullptr; 5211 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5212 if (L.Flavor != R.Flavor) 5213 return {SPF_UNKNOWN, SPNB_NA, false}; 5214 5215 // We have something like: x Pred y ? min(a, b) : min(c, d). 5216 // Try to match the compare to the min/max operations of the select operands. 5217 // First, make sure we have the right compare predicate. 5218 switch (L.Flavor) { 5219 case SPF_SMIN: 5220 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5221 Pred = ICmpInst::getSwappedPredicate(Pred); 5222 std::swap(CmpLHS, CmpRHS); 5223 } 5224 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5225 break; 5226 return {SPF_UNKNOWN, SPNB_NA, false}; 5227 case SPF_SMAX: 5228 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5229 Pred = ICmpInst::getSwappedPredicate(Pred); 5230 std::swap(CmpLHS, CmpRHS); 5231 } 5232 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5233 break; 5234 return {SPF_UNKNOWN, SPNB_NA, false}; 5235 case SPF_UMIN: 5236 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5237 Pred = ICmpInst::getSwappedPredicate(Pred); 5238 std::swap(CmpLHS, CmpRHS); 5239 } 5240 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5241 break; 5242 return {SPF_UNKNOWN, SPNB_NA, false}; 5243 case SPF_UMAX: 5244 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5245 Pred = ICmpInst::getSwappedPredicate(Pred); 5246 std::swap(CmpLHS, CmpRHS); 5247 } 5248 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5249 break; 5250 return {SPF_UNKNOWN, SPNB_NA, false}; 5251 default: 5252 return {SPF_UNKNOWN, SPNB_NA, false}; 5253 } 5254 5255 // If there is a common operand in the already matched min/max and the other 5256 // min/max operands match the compare operands (either directly or inverted), 5257 // then this is min/max of the same flavor. 5258 5259 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5260 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5261 if (D == B) { 5262 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5263 match(A, m_Not(m_Specific(CmpRHS))))) 5264 return {L.Flavor, SPNB_NA, false}; 5265 } 5266 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5267 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5268 if (C == B) { 5269 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5270 match(A, m_Not(m_Specific(CmpRHS))))) 5271 return {L.Flavor, SPNB_NA, false}; 5272 } 5273 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5274 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5275 if (D == A) { 5276 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5277 match(B, m_Not(m_Specific(CmpRHS))))) 5278 return {L.Flavor, SPNB_NA, false}; 5279 } 5280 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5281 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5282 if (C == A) { 5283 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5284 match(B, m_Not(m_Specific(CmpRHS))))) 5285 return {L.Flavor, SPNB_NA, false}; 5286 } 5287 5288 return {SPF_UNKNOWN, SPNB_NA, false}; 5289 } 5290 5291 /// If the input value is the result of a 'not' op, constant integer, or vector 5292 /// splat of a constant integer, return the bitwise-not source value. 5293 /// TODO: This could be extended to handle non-splat vector integer constants. 5294 static Value *getNotValue(Value *V) { 5295 Value *NotV; 5296 if (match(V, m_Not(m_Value(NotV)))) 5297 return NotV; 5298 5299 const APInt *C; 5300 if (match(V, m_APInt(C))) 5301 return ConstantInt::get(V->getType(), ~(*C)); 5302 5303 return nullptr; 5304 } 5305 5306 /// Match non-obvious integer minimum and maximum sequences. 5307 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5308 Value *CmpLHS, Value *CmpRHS, 5309 Value *TrueVal, Value *FalseVal, 5310 Value *&LHS, Value *&RHS, 5311 unsigned Depth) { 5312 // Assume success. If there's no match, callers should not use these anyway. 5313 LHS = TrueVal; 5314 RHS = FalseVal; 5315 5316 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5317 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5318 return SPR; 5319 5320 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5321 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5322 return SPR; 5323 5324 // Look through 'not' ops to find disguised min/max. 5325 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5326 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5327 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5328 switch (Pred) { 5329 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5330 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5331 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5332 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5333 default: break; 5334 } 5335 } 5336 5337 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5338 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5339 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5340 switch (Pred) { 5341 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5342 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5343 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5344 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5345 default: break; 5346 } 5347 } 5348 5349 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5350 return {SPF_UNKNOWN, SPNB_NA, false}; 5351 5352 // Z = X -nsw Y 5353 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5354 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5355 if (match(TrueVal, m_Zero()) && 5356 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5357 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5358 5359 // Z = X -nsw Y 5360 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5361 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5362 if (match(FalseVal, m_Zero()) && 5363 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5364 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5365 5366 const APInt *C1; 5367 if (!match(CmpRHS, m_APInt(C1))) 5368 return {SPF_UNKNOWN, SPNB_NA, false}; 5369 5370 // An unsigned min/max can be written with a signed compare. 5371 const APInt *C2; 5372 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5373 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5374 // Is the sign bit set? 5375 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5376 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5377 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5378 C2->isMaxSignedValue()) 5379 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5380 5381 // Is the sign bit clear? 5382 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5383 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5384 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5385 C2->isMinSignedValue()) 5386 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5387 } 5388 5389 return {SPF_UNKNOWN, SPNB_NA, false}; 5390 } 5391 5392 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5393 assert(X && Y && "Invalid operand"); 5394 5395 // X = sub (0, Y) || X = sub nsw (0, Y) 5396 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5397 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5398 return true; 5399 5400 // Y = sub (0, X) || Y = sub nsw (0, X) 5401 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5402 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5403 return true; 5404 5405 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5406 Value *A, *B; 5407 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5408 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5409 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5410 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5411 } 5412 5413 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5414 FastMathFlags FMF, 5415 Value *CmpLHS, Value *CmpRHS, 5416 Value *TrueVal, Value *FalseVal, 5417 Value *&LHS, Value *&RHS, 5418 unsigned Depth) { 5419 if (CmpInst::isFPPredicate(Pred)) { 5420 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5421 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5422 // purpose of identifying min/max. Disregard vector constants with undefined 5423 // elements because those can not be back-propagated for analysis. 5424 Value *OutputZeroVal = nullptr; 5425 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5426 !cast<Constant>(TrueVal)->containsUndefElement()) 5427 OutputZeroVal = TrueVal; 5428 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5429 !cast<Constant>(FalseVal)->containsUndefElement()) 5430 OutputZeroVal = FalseVal; 5431 5432 if (OutputZeroVal) { 5433 if (match(CmpLHS, m_AnyZeroFP())) 5434 CmpLHS = OutputZeroVal; 5435 if (match(CmpRHS, m_AnyZeroFP())) 5436 CmpRHS = OutputZeroVal; 5437 } 5438 } 5439 5440 LHS = CmpLHS; 5441 RHS = CmpRHS; 5442 5443 // Signed zero may return inconsistent results between implementations. 5444 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5445 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5446 // Therefore, we behave conservatively and only proceed if at least one of the 5447 // operands is known to not be zero or if we don't care about signed zero. 5448 switch (Pred) { 5449 default: break; 5450 // FIXME: Include OGT/OLT/UGT/ULT. 5451 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5452 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5453 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5454 !isKnownNonZero(CmpRHS)) 5455 return {SPF_UNKNOWN, SPNB_NA, false}; 5456 } 5457 5458 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5459 bool Ordered = false; 5460 5461 // When given one NaN and one non-NaN input: 5462 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5463 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5464 // ordered comparison fails), which could be NaN or non-NaN. 5465 // so here we discover exactly what NaN behavior is required/accepted. 5466 if (CmpInst::isFPPredicate(Pred)) { 5467 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5468 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5469 5470 if (LHSSafe && RHSSafe) { 5471 // Both operands are known non-NaN. 5472 NaNBehavior = SPNB_RETURNS_ANY; 5473 } else if (CmpInst::isOrdered(Pred)) { 5474 // An ordered comparison will return false when given a NaN, so it 5475 // returns the RHS. 5476 Ordered = true; 5477 if (LHSSafe) 5478 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5479 NaNBehavior = SPNB_RETURNS_NAN; 5480 else if (RHSSafe) 5481 NaNBehavior = SPNB_RETURNS_OTHER; 5482 else 5483 // Completely unsafe. 5484 return {SPF_UNKNOWN, SPNB_NA, false}; 5485 } else { 5486 Ordered = false; 5487 // An unordered comparison will return true when given a NaN, so it 5488 // returns the LHS. 5489 if (LHSSafe) 5490 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5491 NaNBehavior = SPNB_RETURNS_OTHER; 5492 else if (RHSSafe) 5493 NaNBehavior = SPNB_RETURNS_NAN; 5494 else 5495 // Completely unsafe. 5496 return {SPF_UNKNOWN, SPNB_NA, false}; 5497 } 5498 } 5499 5500 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5501 std::swap(CmpLHS, CmpRHS); 5502 Pred = CmpInst::getSwappedPredicate(Pred); 5503 if (NaNBehavior == SPNB_RETURNS_NAN) 5504 NaNBehavior = SPNB_RETURNS_OTHER; 5505 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5506 NaNBehavior = SPNB_RETURNS_NAN; 5507 Ordered = !Ordered; 5508 } 5509 5510 // ([if]cmp X, Y) ? X : Y 5511 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5512 switch (Pred) { 5513 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5514 case ICmpInst::ICMP_UGT: 5515 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5516 case ICmpInst::ICMP_SGT: 5517 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5518 case ICmpInst::ICMP_ULT: 5519 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5520 case ICmpInst::ICMP_SLT: 5521 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5522 case FCmpInst::FCMP_UGT: 5523 case FCmpInst::FCMP_UGE: 5524 case FCmpInst::FCMP_OGT: 5525 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5526 case FCmpInst::FCMP_ULT: 5527 case FCmpInst::FCMP_ULE: 5528 case FCmpInst::FCMP_OLT: 5529 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5530 } 5531 } 5532 5533 if (isKnownNegation(TrueVal, FalseVal)) { 5534 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5535 // match against either LHS or sext(LHS). 5536 auto MaybeSExtCmpLHS = 5537 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5538 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5539 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5540 if (match(TrueVal, MaybeSExtCmpLHS)) { 5541 // Set the return values. If the compare uses the negated value (-X >s 0), 5542 // swap the return values because the negated value is always 'RHS'. 5543 LHS = TrueVal; 5544 RHS = FalseVal; 5545 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5546 std::swap(LHS, RHS); 5547 5548 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5549 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5550 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5551 return {SPF_ABS, SPNB_NA, false}; 5552 5553 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5554 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5555 return {SPF_ABS, SPNB_NA, false}; 5556 5557 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5558 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5559 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5560 return {SPF_NABS, SPNB_NA, false}; 5561 } 5562 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5563 // Set the return values. If the compare uses the negated value (-X >s 0), 5564 // swap the return values because the negated value is always 'RHS'. 5565 LHS = FalseVal; 5566 RHS = TrueVal; 5567 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5568 std::swap(LHS, RHS); 5569 5570 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5571 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5572 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5573 return {SPF_NABS, SPNB_NA, false}; 5574 5575 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5576 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5577 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5578 return {SPF_ABS, SPNB_NA, false}; 5579 } 5580 } 5581 5582 if (CmpInst::isIntPredicate(Pred)) 5583 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5584 5585 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5586 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5587 // semantics than minNum. Be conservative in such case. 5588 if (NaNBehavior != SPNB_RETURNS_ANY || 5589 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5590 !isKnownNonZero(CmpRHS))) 5591 return {SPF_UNKNOWN, SPNB_NA, false}; 5592 5593 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5594 } 5595 5596 /// Helps to match a select pattern in case of a type mismatch. 5597 /// 5598 /// The function processes the case when type of true and false values of a 5599 /// select instruction differs from type of the cmp instruction operands because 5600 /// of a cast instruction. The function checks if it is legal to move the cast 5601 /// operation after "select". If yes, it returns the new second value of 5602 /// "select" (with the assumption that cast is moved): 5603 /// 1. As operand of cast instruction when both values of "select" are same cast 5604 /// instructions. 5605 /// 2. As restored constant (by applying reverse cast operation) when the first 5606 /// value of the "select" is a cast operation and the second value is a 5607 /// constant. 5608 /// NOTE: We return only the new second value because the first value could be 5609 /// accessed as operand of cast instruction. 5610 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5611 Instruction::CastOps *CastOp) { 5612 auto *Cast1 = dyn_cast<CastInst>(V1); 5613 if (!Cast1) 5614 return nullptr; 5615 5616 *CastOp = Cast1->getOpcode(); 5617 Type *SrcTy = Cast1->getSrcTy(); 5618 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5619 // If V1 and V2 are both the same cast from the same type, look through V1. 5620 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5621 return Cast2->getOperand(0); 5622 return nullptr; 5623 } 5624 5625 auto *C = dyn_cast<Constant>(V2); 5626 if (!C) 5627 return nullptr; 5628 5629 Constant *CastedTo = nullptr; 5630 switch (*CastOp) { 5631 case Instruction::ZExt: 5632 if (CmpI->isUnsigned()) 5633 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5634 break; 5635 case Instruction::SExt: 5636 if (CmpI->isSigned()) 5637 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5638 break; 5639 case Instruction::Trunc: 5640 Constant *CmpConst; 5641 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5642 CmpConst->getType() == SrcTy) { 5643 // Here we have the following case: 5644 // 5645 // %cond = cmp iN %x, CmpConst 5646 // %tr = trunc iN %x to iK 5647 // %narrowsel = select i1 %cond, iK %t, iK C 5648 // 5649 // We can always move trunc after select operation: 5650 // 5651 // %cond = cmp iN %x, CmpConst 5652 // %widesel = select i1 %cond, iN %x, iN CmpConst 5653 // %tr = trunc iN %widesel to iK 5654 // 5655 // Note that C could be extended in any way because we don't care about 5656 // upper bits after truncation. It can't be abs pattern, because it would 5657 // look like: 5658 // 5659 // select i1 %cond, x, -x. 5660 // 5661 // So only min/max pattern could be matched. Such match requires widened C 5662 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5663 // CmpConst == C is checked below. 5664 CastedTo = CmpConst; 5665 } else { 5666 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5667 } 5668 break; 5669 case Instruction::FPTrunc: 5670 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5671 break; 5672 case Instruction::FPExt: 5673 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5674 break; 5675 case Instruction::FPToUI: 5676 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5677 break; 5678 case Instruction::FPToSI: 5679 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5680 break; 5681 case Instruction::UIToFP: 5682 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5683 break; 5684 case Instruction::SIToFP: 5685 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5686 break; 5687 default: 5688 break; 5689 } 5690 5691 if (!CastedTo) 5692 return nullptr; 5693 5694 // Make sure the cast doesn't lose any information. 5695 Constant *CastedBack = 5696 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5697 if (CastedBack != C) 5698 return nullptr; 5699 5700 return CastedTo; 5701 } 5702 5703 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5704 Instruction::CastOps *CastOp, 5705 unsigned Depth) { 5706 if (Depth >= MaxDepth) 5707 return {SPF_UNKNOWN, SPNB_NA, false}; 5708 5709 SelectInst *SI = dyn_cast<SelectInst>(V); 5710 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5711 5712 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5713 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5714 5715 Value *TrueVal = SI->getTrueValue(); 5716 Value *FalseVal = SI->getFalseValue(); 5717 5718 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5719 CastOp, Depth); 5720 } 5721 5722 SelectPatternResult llvm::matchDecomposedSelectPattern( 5723 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5724 Instruction::CastOps *CastOp, unsigned Depth) { 5725 CmpInst::Predicate Pred = CmpI->getPredicate(); 5726 Value *CmpLHS = CmpI->getOperand(0); 5727 Value *CmpRHS = CmpI->getOperand(1); 5728 FastMathFlags FMF; 5729 if (isa<FPMathOperator>(CmpI)) 5730 FMF = CmpI->getFastMathFlags(); 5731 5732 // Bail out early. 5733 if (CmpI->isEquality()) 5734 return {SPF_UNKNOWN, SPNB_NA, false}; 5735 5736 // Deal with type mismatches. 5737 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5738 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5739 // If this is a potential fmin/fmax with a cast to integer, then ignore 5740 // -0.0 because there is no corresponding integer value. 5741 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5742 FMF.setNoSignedZeros(); 5743 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5744 cast<CastInst>(TrueVal)->getOperand(0), C, 5745 LHS, RHS, Depth); 5746 } 5747 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5748 // If this is a potential fmin/fmax with a cast to integer, then ignore 5749 // -0.0 because there is no corresponding integer value. 5750 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5751 FMF.setNoSignedZeros(); 5752 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5753 C, cast<CastInst>(FalseVal)->getOperand(0), 5754 LHS, RHS, Depth); 5755 } 5756 } 5757 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5758 LHS, RHS, Depth); 5759 } 5760 5761 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5762 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5763 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5764 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5765 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5766 if (SPF == SPF_FMINNUM) 5767 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5768 if (SPF == SPF_FMAXNUM) 5769 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5770 llvm_unreachable("unhandled!"); 5771 } 5772 5773 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5774 if (SPF == SPF_SMIN) return SPF_SMAX; 5775 if (SPF == SPF_UMIN) return SPF_UMAX; 5776 if (SPF == SPF_SMAX) return SPF_SMIN; 5777 if (SPF == SPF_UMAX) return SPF_UMIN; 5778 llvm_unreachable("unhandled!"); 5779 } 5780 5781 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5782 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5783 } 5784 5785 /// Return true if "icmp Pred LHS RHS" is always true. 5786 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5787 const Value *RHS, const DataLayout &DL, 5788 unsigned Depth) { 5789 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5790 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5791 return true; 5792 5793 switch (Pred) { 5794 default: 5795 return false; 5796 5797 case CmpInst::ICMP_SLE: { 5798 const APInt *C; 5799 5800 // LHS s<= LHS +_{nsw} C if C >= 0 5801 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5802 return !C->isNegative(); 5803 return false; 5804 } 5805 5806 case CmpInst::ICMP_ULE: { 5807 const APInt *C; 5808 5809 // LHS u<= LHS +_{nuw} C for any C 5810 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5811 return true; 5812 5813 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5814 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5815 const Value *&X, 5816 const APInt *&CA, const APInt *&CB) { 5817 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5818 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5819 return true; 5820 5821 // If X & C == 0 then (X | C) == X +_{nuw} C 5822 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5823 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5824 KnownBits Known(CA->getBitWidth()); 5825 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5826 /*CxtI*/ nullptr, /*DT*/ nullptr); 5827 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5828 return true; 5829 } 5830 5831 return false; 5832 }; 5833 5834 const Value *X; 5835 const APInt *CLHS, *CRHS; 5836 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5837 return CLHS->ule(*CRHS); 5838 5839 return false; 5840 } 5841 } 5842 } 5843 5844 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5845 /// ALHS ARHS" is true. Otherwise, return None. 5846 static Optional<bool> 5847 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5848 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5849 const DataLayout &DL, unsigned Depth) { 5850 switch (Pred) { 5851 default: 5852 return None; 5853 5854 case CmpInst::ICMP_SLT: 5855 case CmpInst::ICMP_SLE: 5856 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5857 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5858 return true; 5859 return None; 5860 5861 case CmpInst::ICMP_ULT: 5862 case CmpInst::ICMP_ULE: 5863 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5864 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5865 return true; 5866 return None; 5867 } 5868 } 5869 5870 /// Return true if the operands of the two compares match. IsSwappedOps is true 5871 /// when the operands match, but are swapped. 5872 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5873 const Value *BLHS, const Value *BRHS, 5874 bool &IsSwappedOps) { 5875 5876 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5877 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5878 return IsMatchingOps || IsSwappedOps; 5879 } 5880 5881 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5882 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5883 /// Otherwise, return None if we can't infer anything. 5884 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5885 CmpInst::Predicate BPred, 5886 bool AreSwappedOps) { 5887 // Canonicalize the predicate as if the operands were not commuted. 5888 if (AreSwappedOps) 5889 BPred = ICmpInst::getSwappedPredicate(BPred); 5890 5891 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5892 return true; 5893 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5894 return false; 5895 5896 return None; 5897 } 5898 5899 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5900 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5901 /// Otherwise, return None if we can't infer anything. 5902 static Optional<bool> 5903 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5904 const ConstantInt *C1, 5905 CmpInst::Predicate BPred, 5906 const ConstantInt *C2) { 5907 ConstantRange DomCR = 5908 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5909 ConstantRange CR = 5910 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5911 ConstantRange Intersection = DomCR.intersectWith(CR); 5912 ConstantRange Difference = DomCR.difference(CR); 5913 if (Intersection.isEmptySet()) 5914 return false; 5915 if (Difference.isEmptySet()) 5916 return true; 5917 return None; 5918 } 5919 5920 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5921 /// false. Otherwise, return None if we can't infer anything. 5922 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5923 CmpInst::Predicate BPred, 5924 const Value *BLHS, const Value *BRHS, 5925 const DataLayout &DL, bool LHSIsTrue, 5926 unsigned Depth) { 5927 Value *ALHS = LHS->getOperand(0); 5928 Value *ARHS = LHS->getOperand(1); 5929 5930 // The rest of the logic assumes the LHS condition is true. If that's not the 5931 // case, invert the predicate to make it so. 5932 CmpInst::Predicate APred = 5933 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5934 5935 // Can we infer anything when the two compares have matching operands? 5936 bool AreSwappedOps; 5937 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5938 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5939 APred, BPred, AreSwappedOps)) 5940 return Implication; 5941 // No amount of additional analysis will infer the second condition, so 5942 // early exit. 5943 return None; 5944 } 5945 5946 // Can we infer anything when the LHS operands match and the RHS operands are 5947 // constants (not necessarily matching)? 5948 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5949 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5950 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5951 return Implication; 5952 // No amount of additional analysis will infer the second condition, so 5953 // early exit. 5954 return None; 5955 } 5956 5957 if (APred == BPred) 5958 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5959 return None; 5960 } 5961 5962 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5963 /// false. Otherwise, return None if we can't infer anything. We expect the 5964 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5965 static Optional<bool> 5966 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5967 const Value *RHSOp0, const Value *RHSOp1, 5968 5969 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5970 // The LHS must be an 'or' or an 'and' instruction. 5971 assert((LHS->getOpcode() == Instruction::And || 5972 LHS->getOpcode() == Instruction::Or) && 5973 "Expected LHS to be 'and' or 'or'."); 5974 5975 assert(Depth <= MaxDepth && "Hit recursion limit"); 5976 5977 // If the result of an 'or' is false, then we know both legs of the 'or' are 5978 // false. Similarly, if the result of an 'and' is true, then we know both 5979 // legs of the 'and' are true. 5980 Value *ALHS, *ARHS; 5981 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5982 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5983 // FIXME: Make this non-recursion. 5984 if (Optional<bool> Implication = isImpliedCondition( 5985 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5986 return Implication; 5987 if (Optional<bool> Implication = isImpliedCondition( 5988 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5989 return Implication; 5990 return None; 5991 } 5992 return None; 5993 } 5994 5995 Optional<bool> 5996 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5997 const Value *RHSOp0, const Value *RHSOp1, 5998 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5999 // Bail out when we hit the limit. 6000 if (Depth == MaxDepth) 6001 return None; 6002 6003 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6004 // example. 6005 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6006 return None; 6007 6008 Type *OpTy = LHS->getType(); 6009 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6010 6011 // FIXME: Extending the code below to handle vectors. 6012 if (OpTy->isVectorTy()) 6013 return None; 6014 6015 assert(OpTy->isIntegerTy(1) && "implied by above"); 6016 6017 // Both LHS and RHS are icmps. 6018 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6019 if (LHSCmp) 6020 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6021 Depth); 6022 6023 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6024 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6025 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6026 if (LHSBO) { 6027 if ((LHSBO->getOpcode() == Instruction::And || 6028 LHSBO->getOpcode() == Instruction::Or)) 6029 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6030 Depth); 6031 } 6032 return None; 6033 } 6034 6035 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6036 const DataLayout &DL, bool LHSIsTrue, 6037 unsigned Depth) { 6038 // LHS ==> RHS by definition 6039 if (LHS == RHS) 6040 return LHSIsTrue; 6041 6042 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6043 if (RHSCmp) 6044 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6045 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6046 LHSIsTrue, Depth); 6047 return None; 6048 } 6049 6050 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6051 // condition dominating ContextI or nullptr, if no condition is found. 6052 static std::pair<Value *, bool> 6053 getDomPredecessorCondition(const Instruction *ContextI) { 6054 if (!ContextI || !ContextI->getParent()) 6055 return {nullptr, false}; 6056 6057 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6058 // dominator tree (eg, from a SimplifyQuery) instead? 6059 const BasicBlock *ContextBB = ContextI->getParent(); 6060 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6061 if (!PredBB) 6062 return {nullptr, false}; 6063 6064 // We need a conditional branch in the predecessor. 6065 Value *PredCond; 6066 BasicBlock *TrueBB, *FalseBB; 6067 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6068 return {nullptr, false}; 6069 6070 // The branch should get simplified. Don't bother simplifying this condition. 6071 if (TrueBB == FalseBB) 6072 return {nullptr, false}; 6073 6074 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6075 "Predecessor block does not point to successor?"); 6076 6077 // Is this condition implied by the predecessor condition? 6078 return {PredCond, TrueBB == ContextBB}; 6079 } 6080 6081 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6082 const Instruction *ContextI, 6083 const DataLayout &DL) { 6084 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6085 auto PredCond = getDomPredecessorCondition(ContextI); 6086 if (PredCond.first) 6087 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6088 return None; 6089 } 6090 6091 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6092 const Value *LHS, const Value *RHS, 6093 const Instruction *ContextI, 6094 const DataLayout &DL) { 6095 auto PredCond = getDomPredecessorCondition(ContextI); 6096 if (PredCond.first) 6097 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6098 PredCond.second); 6099 return None; 6100 } 6101 6102 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6103 APInt &Upper, const InstrInfoQuery &IIQ) { 6104 unsigned Width = Lower.getBitWidth(); 6105 const APInt *C; 6106 switch (BO.getOpcode()) { 6107 case Instruction::Add: 6108 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6109 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6110 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6111 // 'add nuw x, C' produces [C, UINT_MAX]. 6112 Lower = *C; 6113 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6114 if (C->isNegative()) { 6115 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6116 Lower = APInt::getSignedMinValue(Width); 6117 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6118 } else { 6119 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6120 Lower = APInt::getSignedMinValue(Width) + *C; 6121 Upper = APInt::getSignedMaxValue(Width) + 1; 6122 } 6123 } 6124 } 6125 break; 6126 6127 case Instruction::And: 6128 if (match(BO.getOperand(1), m_APInt(C))) 6129 // 'and x, C' produces [0, C]. 6130 Upper = *C + 1; 6131 break; 6132 6133 case Instruction::Or: 6134 if (match(BO.getOperand(1), m_APInt(C))) 6135 // 'or x, C' produces [C, UINT_MAX]. 6136 Lower = *C; 6137 break; 6138 6139 case Instruction::AShr: 6140 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6141 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6142 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6143 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6144 } else if (match(BO.getOperand(0), m_APInt(C))) { 6145 unsigned ShiftAmount = Width - 1; 6146 if (!C->isNullValue() && IIQ.isExact(&BO)) 6147 ShiftAmount = C->countTrailingZeros(); 6148 if (C->isNegative()) { 6149 // 'ashr C, x' produces [C, C >> (Width-1)] 6150 Lower = *C; 6151 Upper = C->ashr(ShiftAmount) + 1; 6152 } else { 6153 // 'ashr C, x' produces [C >> (Width-1), C] 6154 Lower = C->ashr(ShiftAmount); 6155 Upper = *C + 1; 6156 } 6157 } 6158 break; 6159 6160 case Instruction::LShr: 6161 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6162 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6163 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6164 } else if (match(BO.getOperand(0), m_APInt(C))) { 6165 // 'lshr C, x' produces [C >> (Width-1), C]. 6166 unsigned ShiftAmount = Width - 1; 6167 if (!C->isNullValue() && IIQ.isExact(&BO)) 6168 ShiftAmount = C->countTrailingZeros(); 6169 Lower = C->lshr(ShiftAmount); 6170 Upper = *C + 1; 6171 } 6172 break; 6173 6174 case Instruction::Shl: 6175 if (match(BO.getOperand(0), m_APInt(C))) { 6176 if (IIQ.hasNoUnsignedWrap(&BO)) { 6177 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6178 Lower = *C; 6179 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6180 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6181 if (C->isNegative()) { 6182 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6183 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6184 Lower = C->shl(ShiftAmount); 6185 Upper = *C + 1; 6186 } else { 6187 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6188 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6189 Lower = *C; 6190 Upper = C->shl(ShiftAmount) + 1; 6191 } 6192 } 6193 } 6194 break; 6195 6196 case Instruction::SDiv: 6197 if (match(BO.getOperand(1), m_APInt(C))) { 6198 APInt IntMin = APInt::getSignedMinValue(Width); 6199 APInt IntMax = APInt::getSignedMaxValue(Width); 6200 if (C->isAllOnesValue()) { 6201 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6202 // where C != -1 and C != 0 and C != 1 6203 Lower = IntMin + 1; 6204 Upper = IntMax + 1; 6205 } else if (C->countLeadingZeros() < Width - 1) { 6206 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6207 // where C != -1 and C != 0 and C != 1 6208 Lower = IntMin.sdiv(*C); 6209 Upper = IntMax.sdiv(*C); 6210 if (Lower.sgt(Upper)) 6211 std::swap(Lower, Upper); 6212 Upper = Upper + 1; 6213 assert(Upper != Lower && "Upper part of range has wrapped!"); 6214 } 6215 } else if (match(BO.getOperand(0), m_APInt(C))) { 6216 if (C->isMinSignedValue()) { 6217 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6218 Lower = *C; 6219 Upper = Lower.lshr(1) + 1; 6220 } else { 6221 // 'sdiv C, x' produces [-|C|, |C|]. 6222 Upper = C->abs() + 1; 6223 Lower = (-Upper) + 1; 6224 } 6225 } 6226 break; 6227 6228 case Instruction::UDiv: 6229 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6230 // 'udiv x, C' produces [0, UINT_MAX / C]. 6231 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6232 } else if (match(BO.getOperand(0), m_APInt(C))) { 6233 // 'udiv C, x' produces [0, C]. 6234 Upper = *C + 1; 6235 } 6236 break; 6237 6238 case Instruction::SRem: 6239 if (match(BO.getOperand(1), m_APInt(C))) { 6240 // 'srem x, C' produces (-|C|, |C|). 6241 Upper = C->abs(); 6242 Lower = (-Upper) + 1; 6243 } 6244 break; 6245 6246 case Instruction::URem: 6247 if (match(BO.getOperand(1), m_APInt(C))) 6248 // 'urem x, C' produces [0, C). 6249 Upper = *C; 6250 break; 6251 6252 default: 6253 break; 6254 } 6255 } 6256 6257 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6258 APInt &Upper) { 6259 unsigned Width = Lower.getBitWidth(); 6260 const APInt *C; 6261 switch (II.getIntrinsicID()) { 6262 case Intrinsic::uadd_sat: 6263 // uadd.sat(x, C) produces [C, UINT_MAX]. 6264 if (match(II.getOperand(0), m_APInt(C)) || 6265 match(II.getOperand(1), m_APInt(C))) 6266 Lower = *C; 6267 break; 6268 case Intrinsic::sadd_sat: 6269 if (match(II.getOperand(0), m_APInt(C)) || 6270 match(II.getOperand(1), m_APInt(C))) { 6271 if (C->isNegative()) { 6272 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6273 Lower = APInt::getSignedMinValue(Width); 6274 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6275 } else { 6276 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6277 Lower = APInt::getSignedMinValue(Width) + *C; 6278 Upper = APInt::getSignedMaxValue(Width) + 1; 6279 } 6280 } 6281 break; 6282 case Intrinsic::usub_sat: 6283 // usub.sat(C, x) produces [0, C]. 6284 if (match(II.getOperand(0), m_APInt(C))) 6285 Upper = *C + 1; 6286 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6287 else if (match(II.getOperand(1), m_APInt(C))) 6288 Upper = APInt::getMaxValue(Width) - *C + 1; 6289 break; 6290 case Intrinsic::ssub_sat: 6291 if (match(II.getOperand(0), m_APInt(C))) { 6292 if (C->isNegative()) { 6293 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6294 Lower = APInt::getSignedMinValue(Width); 6295 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6296 } else { 6297 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6298 Lower = *C - APInt::getSignedMaxValue(Width); 6299 Upper = APInt::getSignedMaxValue(Width) + 1; 6300 } 6301 } else if (match(II.getOperand(1), m_APInt(C))) { 6302 if (C->isNegative()) { 6303 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6304 Lower = APInt::getSignedMinValue(Width) - *C; 6305 Upper = APInt::getSignedMaxValue(Width) + 1; 6306 } else { 6307 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6308 Lower = APInt::getSignedMinValue(Width); 6309 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6310 } 6311 } 6312 break; 6313 default: 6314 break; 6315 } 6316 } 6317 6318 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6319 APInt &Upper, const InstrInfoQuery &IIQ) { 6320 const Value *LHS = nullptr, *RHS = nullptr; 6321 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6322 if (R.Flavor == SPF_UNKNOWN) 6323 return; 6324 6325 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6326 6327 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6328 // If the negation part of the abs (in RHS) has the NSW flag, 6329 // then the result of abs(X) is [0..SIGNED_MAX], 6330 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6331 Lower = APInt::getNullValue(BitWidth); 6332 if (match(RHS, m_Neg(m_Specific(LHS))) && 6333 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6334 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6335 else 6336 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6337 return; 6338 } 6339 6340 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6341 // The result of -abs(X) is <= 0. 6342 Lower = APInt::getSignedMinValue(BitWidth); 6343 Upper = APInt(BitWidth, 1); 6344 return; 6345 } 6346 6347 const APInt *C; 6348 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6349 return; 6350 6351 switch (R.Flavor) { 6352 case SPF_UMIN: 6353 Upper = *C + 1; 6354 break; 6355 case SPF_UMAX: 6356 Lower = *C; 6357 break; 6358 case SPF_SMIN: 6359 Lower = APInt::getSignedMinValue(BitWidth); 6360 Upper = *C + 1; 6361 break; 6362 case SPF_SMAX: 6363 Lower = *C; 6364 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6365 break; 6366 default: 6367 break; 6368 } 6369 } 6370 6371 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6372 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6373 6374 const APInt *C; 6375 if (match(V, m_APInt(C))) 6376 return ConstantRange(*C); 6377 6378 InstrInfoQuery IIQ(UseInstrInfo); 6379 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6380 APInt Lower = APInt(BitWidth, 0); 6381 APInt Upper = APInt(BitWidth, 0); 6382 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6383 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6384 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6385 setLimitsForIntrinsic(*II, Lower, Upper); 6386 else if (auto *SI = dyn_cast<SelectInst>(V)) 6387 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6388 6389 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6390 6391 if (auto *I = dyn_cast<Instruction>(V)) 6392 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6393 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6394 6395 return CR; 6396 } 6397 6398 static Optional<int64_t> 6399 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6400 // Skip over the first indices. 6401 gep_type_iterator GTI = gep_type_begin(GEP); 6402 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6403 /*skip along*/; 6404 6405 // Compute the offset implied by the rest of the indices. 6406 int64_t Offset = 0; 6407 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6408 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6409 if (!OpC) 6410 return None; 6411 if (OpC->isZero()) 6412 continue; // No offset. 6413 6414 // Handle struct indices, which add their field offset to the pointer. 6415 if (StructType *STy = GTI.getStructTypeOrNull()) { 6416 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6417 continue; 6418 } 6419 6420 // Otherwise, we have a sequential type like an array or fixed-length 6421 // vector. Multiply the index by the ElementSize. 6422 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6423 if (Size.isScalable()) 6424 return None; 6425 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6426 } 6427 6428 return Offset; 6429 } 6430 6431 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6432 const DataLayout &DL) { 6433 Ptr1 = Ptr1->stripPointerCasts(); 6434 Ptr2 = Ptr2->stripPointerCasts(); 6435 6436 // Handle the trivial case first. 6437 if (Ptr1 == Ptr2) { 6438 return 0; 6439 } 6440 6441 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6442 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6443 6444 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6445 // as in "P" and "gep P, 1". 6446 // Also do this iteratively to handle the the following case: 6447 // Ptr_t1 = GEP Ptr1, c1 6448 // Ptr_t2 = GEP Ptr_t1, c2 6449 // Ptr2 = GEP Ptr_t2, c3 6450 // where we will return c1+c2+c3. 6451 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6452 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6453 // are the same, and return the difference between offsets. 6454 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6455 const Value *Ptr) -> Optional<int64_t> { 6456 const GEPOperator *GEP_T = GEP; 6457 int64_t OffsetVal = 0; 6458 bool HasSameBase = false; 6459 while (GEP_T) { 6460 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6461 if (!Offset) 6462 return None; 6463 OffsetVal += *Offset; 6464 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6465 if (Op0 == Ptr) { 6466 HasSameBase = true; 6467 break; 6468 } 6469 GEP_T = dyn_cast<GEPOperator>(Op0); 6470 } 6471 if (!HasSameBase) 6472 return None; 6473 return OffsetVal; 6474 }; 6475 6476 if (GEP1) { 6477 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6478 if (Offset) 6479 return -*Offset; 6480 } 6481 if (GEP2) { 6482 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6483 if (Offset) 6484 return Offset; 6485 } 6486 6487 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6488 // base. After that base, they may have some number of common (and 6489 // potentially variable) indices. After that they handle some constant 6490 // offset, which determines their offset from each other. At this point, we 6491 // handle no other case. 6492 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6493 return None; 6494 6495 // Skip any common indices and track the GEP types. 6496 unsigned Idx = 1; 6497 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6498 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6499 break; 6500 6501 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6502 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6503 if (!Offset1 || !Offset2) 6504 return None; 6505 return *Offset2 - *Offset1; 6506 } 6507