1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/IR/CallSite.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/MathExtras.h" 34 #include <cstring> 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 const unsigned MaxDepth = 6; 39 40 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 41 /// unknown returns 0). For vector types, returns the element type's bitwidth. 42 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 43 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 44 return BitWidth; 45 46 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 47 } 48 49 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 50 APInt &KnownZero, APInt &KnownOne, 51 APInt &KnownZero2, APInt &KnownOne2, 52 const DataLayout *TD, unsigned Depth) { 53 if (!Add) { 54 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 55 // We know that the top bits of C-X are clear if X contains less bits 56 // than C (i.e. no wrap-around can happen). For example, 20-X is 57 // positive if we can prove that X is >= 0 and < 16. 58 if (!CLHS->getValue().isNegative()) { 59 unsigned BitWidth = KnownZero.getBitWidth(); 60 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 61 // NLZ can't be BitWidth with no sign bit 62 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 63 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 64 65 // If all of the MaskV bits are known to be zero, then we know the 66 // output top bits are zero, because we now know that the output is 67 // from [0-C]. 68 if ((KnownZero2 & MaskV) == MaskV) { 69 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 70 // Top bits known zero. 71 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 72 } 73 } 74 } 75 } 76 77 unsigned BitWidth = KnownZero.getBitWidth(); 78 79 // If one of the operands has trailing zeros, then the bits that the 80 // other operand has in those bit positions will be preserved in the 81 // result. For an add, this works with either operand. For a subtract, 82 // this only works if the known zeros are in the right operand. 83 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 84 llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 85 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 86 87 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 88 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 89 90 // Determine which operand has more trailing zeros, and use that 91 // many bits from the other operand. 92 if (LHSKnownZeroOut > RHSKnownZeroOut) { 93 if (Add) { 94 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 95 KnownZero |= KnownZero2 & Mask; 96 KnownOne |= KnownOne2 & Mask; 97 } else { 98 // If the known zeros are in the left operand for a subtract, 99 // fall back to the minimum known zeros in both operands. 100 KnownZero |= APInt::getLowBitsSet(BitWidth, 101 std::min(LHSKnownZeroOut, 102 RHSKnownZeroOut)); 103 } 104 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 105 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 106 KnownZero |= LHSKnownZero & Mask; 107 KnownOne |= LHSKnownOne & Mask; 108 } 109 110 // Are we still trying to solve for the sign bit? 111 if (!KnownZero.isNegative() && !KnownOne.isNegative()) { 112 if (NSW) { 113 if (Add) { 114 // Adding two positive numbers can't wrap into negative 115 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 116 KnownZero |= APInt::getSignBit(BitWidth); 117 // and adding two negative numbers can't wrap into positive. 118 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 119 KnownOne |= APInt::getSignBit(BitWidth); 120 } else { 121 // Subtracting a negative number from a positive one can't wrap 122 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 123 KnownZero |= APInt::getSignBit(BitWidth); 124 // neither can subtracting a positive number from a negative one. 125 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 126 KnownOne |= APInt::getSignBit(BitWidth); 127 } 128 } 129 } 130 } 131 132 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 133 APInt &KnownZero, APInt &KnownOne, 134 APInt &KnownZero2, APInt &KnownOne2, 135 const DataLayout *TD, unsigned Depth) { 136 unsigned BitWidth = KnownZero.getBitWidth(); 137 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1); 138 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 139 140 bool isKnownNegative = false; 141 bool isKnownNonNegative = false; 142 // If the multiplication is known not to overflow, compute the sign bit. 143 if (NSW) { 144 if (Op0 == Op1) { 145 // The product of a number with itself is non-negative. 146 isKnownNonNegative = true; 147 } else { 148 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 149 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 150 bool isKnownNegativeOp1 = KnownOne.isNegative(); 151 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 152 // The product of two numbers with the same sign is non-negative. 153 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 154 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 155 // The product of a negative number and a non-negative number is either 156 // negative or zero. 157 if (!isKnownNonNegative) 158 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 159 isKnownNonZero(Op0, TD, Depth)) || 160 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 161 isKnownNonZero(Op1, TD, Depth)); 162 } 163 } 164 165 // If low bits are zero in either operand, output low known-0 bits. 166 // Also compute a conserative estimate for high known-0 bits. 167 // More trickiness is possible, but this is sufficient for the 168 // interesting case of alignment computation. 169 KnownOne.clearAllBits(); 170 unsigned TrailZ = KnownZero.countTrailingOnes() + 171 KnownZero2.countTrailingOnes(); 172 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 173 KnownZero2.countLeadingOnes(), 174 BitWidth) - BitWidth; 175 176 TrailZ = std::min(TrailZ, BitWidth); 177 LeadZ = std::min(LeadZ, BitWidth); 178 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 179 APInt::getHighBitsSet(BitWidth, LeadZ); 180 181 // Only make use of no-wrap flags if we failed to compute the sign bit 182 // directly. This matters if the multiplication always overflows, in 183 // which case we prefer to follow the result of the direct computation, 184 // though as the program is invoking undefined behaviour we can choose 185 // whatever we like here. 186 if (isKnownNonNegative && !KnownOne.isNegative()) 187 KnownZero.setBit(BitWidth - 1); 188 else if (isKnownNegative && !KnownZero.isNegative()) 189 KnownOne.setBit(BitWidth - 1); 190 } 191 192 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 193 APInt &KnownZero) { 194 unsigned BitWidth = KnownZero.getBitWidth(); 195 unsigned NumRanges = Ranges.getNumOperands() / 2; 196 assert(NumRanges >= 1); 197 198 // Use the high end of the ranges to find leading zeros. 199 unsigned MinLeadingZeros = BitWidth; 200 for (unsigned i = 0; i < NumRanges; ++i) { 201 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 202 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 203 ConstantRange Range(Lower->getValue(), Upper->getValue()); 204 if (Range.isWrappedSet()) 205 MinLeadingZeros = 0; // -1 has no zeros 206 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 207 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 208 } 209 210 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 211 } 212 213 /// Determine which bits of V are known to be either zero or one and return 214 /// them in the KnownZero/KnownOne bit sets. 215 /// 216 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 217 /// we cannot optimize based on the assumption that it is zero without changing 218 /// it to be an explicit zero. If we don't change it to zero, other code could 219 /// optimized based on the contradictory assumption that it is non-zero. 220 /// Because instcombine aggressively folds operations with undef args anyway, 221 /// this won't lose us code quality. 222 /// 223 /// This function is defined on values with integer type, values with pointer 224 /// type (but only if TD is non-null), and vectors of integers. In the case 225 /// where V is a vector, known zero, and known one values are the 226 /// same width as the vector element, and the bit is set only if it is true 227 /// for all of the elements in the vector. 228 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 229 const DataLayout *TD, unsigned Depth) { 230 assert(V && "No Value?"); 231 assert(Depth <= MaxDepth && "Limit Search Depth"); 232 unsigned BitWidth = KnownZero.getBitWidth(); 233 234 assert((V->getType()->isIntOrIntVectorTy() || 235 V->getType()->getScalarType()->isPointerTy()) && 236 "Not integer or pointer type!"); 237 assert((!TD || 238 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 239 (!V->getType()->isIntOrIntVectorTy() || 240 V->getType()->getScalarSizeInBits() == BitWidth) && 241 KnownZero.getBitWidth() == BitWidth && 242 KnownOne.getBitWidth() == BitWidth && 243 "V, KnownOne and KnownZero should have same BitWidth"); 244 245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 246 // We know all of the bits for a constant! 247 KnownOne = CI->getValue(); 248 KnownZero = ~KnownOne; 249 return; 250 } 251 // Null and aggregate-zero are all-zeros. 252 if (isa<ConstantPointerNull>(V) || 253 isa<ConstantAggregateZero>(V)) { 254 KnownOne.clearAllBits(); 255 KnownZero = APInt::getAllOnesValue(BitWidth); 256 return; 257 } 258 // Handle a constant vector by taking the intersection of the known bits of 259 // each element. There is no real need to handle ConstantVector here, because 260 // we don't handle undef in any particularly useful way. 261 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 262 // We know that CDS must be a vector of integers. Take the intersection of 263 // each element. 264 KnownZero.setAllBits(); KnownOne.setAllBits(); 265 APInt Elt(KnownZero.getBitWidth(), 0); 266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 267 Elt = CDS->getElementAsInteger(i); 268 KnownZero &= ~Elt; 269 KnownOne &= Elt; 270 } 271 return; 272 } 273 274 // The address of an aligned GlobalValue has trailing zeros. 275 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 276 unsigned Align = GV->getAlignment(); 277 if (Align == 0 && TD) { 278 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 279 Type *ObjectType = GVar->getType()->getElementType(); 280 if (ObjectType->isSized()) { 281 // If the object is defined in the current Module, we'll be giving 282 // it the preferred alignment. Otherwise, we have to assume that it 283 // may only have the minimum ABI alignment. 284 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 285 Align = TD->getPreferredAlignment(GVar); 286 else 287 Align = TD->getABITypeAlignment(ObjectType); 288 } 289 } 290 } 291 if (Align > 0) 292 KnownZero = APInt::getLowBitsSet(BitWidth, 293 countTrailingZeros(Align)); 294 else 295 KnownZero.clearAllBits(); 296 KnownOne.clearAllBits(); 297 return; 298 } 299 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 300 // the bits of its aliasee. 301 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 302 if (GA->mayBeOverridden()) { 303 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 304 } else { 305 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 306 } 307 return; 308 } 309 310 if (Argument *A = dyn_cast<Argument>(V)) { 311 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 312 313 if (!Align && TD && A->hasStructRetAttr()) { 314 // An sret parameter has at least the ABI alignment of the return type. 315 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 316 if (EltTy->isSized()) 317 Align = TD->getABITypeAlignment(EltTy); 318 } 319 320 if (Align) 321 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 322 return; 323 } 324 325 // Start out not knowing anything. 326 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 327 328 if (Depth == MaxDepth) 329 return; // Limit search depth. 330 331 Operator *I = dyn_cast<Operator>(V); 332 if (!I) return; 333 334 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 335 switch (I->getOpcode()) { 336 default: break; 337 case Instruction::Load: 338 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 339 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 340 break; 341 case Instruction::And: { 342 // If either the LHS or the RHS are Zero, the result is zero. 343 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 344 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 345 346 // Output known-1 bits are only known if set in both the LHS & RHS. 347 KnownOne &= KnownOne2; 348 // Output known-0 are known to be clear if zero in either the LHS | RHS. 349 KnownZero |= KnownZero2; 350 break; 351 } 352 case Instruction::Or: { 353 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 354 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 355 356 // Output known-0 bits are only known if clear in both the LHS & RHS. 357 KnownZero &= KnownZero2; 358 // Output known-1 are known to be set if set in either the LHS | RHS. 359 KnownOne |= KnownOne2; 360 break; 361 } 362 case Instruction::Xor: { 363 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 364 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 365 366 // Output known-0 bits are known if clear or set in both the LHS & RHS. 367 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 368 // Output known-1 are known to be set if set in only one of the LHS, RHS. 369 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 370 KnownZero = KnownZeroOut; 371 break; 372 } 373 case Instruction::Mul: { 374 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 375 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, 376 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 377 break; 378 } 379 case Instruction::UDiv: { 380 // For the purposes of computing leading zeros we can conservatively 381 // treat a udiv as a logical right shift by the power of 2 known to 382 // be less than the denominator. 383 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 384 unsigned LeadZ = KnownZero2.countLeadingOnes(); 385 386 KnownOne2.clearAllBits(); 387 KnownZero2.clearAllBits(); 388 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 389 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 390 if (RHSUnknownLeadingOnes != BitWidth) 391 LeadZ = std::min(BitWidth, 392 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 393 394 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 395 break; 396 } 397 case Instruction::Select: 398 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 399 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 400 Depth+1); 401 402 // Only known if known in both the LHS and RHS. 403 KnownOne &= KnownOne2; 404 KnownZero &= KnownZero2; 405 break; 406 case Instruction::FPTrunc: 407 case Instruction::FPExt: 408 case Instruction::FPToUI: 409 case Instruction::FPToSI: 410 case Instruction::SIToFP: 411 case Instruction::UIToFP: 412 break; // Can't work with floating point. 413 case Instruction::PtrToInt: 414 case Instruction::IntToPtr: 415 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 416 // We can't handle these if we don't know the pointer size. 417 if (!TD) break; 418 // FALL THROUGH and handle them the same as zext/trunc. 419 case Instruction::ZExt: 420 case Instruction::Trunc: { 421 Type *SrcTy = I->getOperand(0)->getType(); 422 423 unsigned SrcBitWidth; 424 // Note that we handle pointer operands here because of inttoptr/ptrtoint 425 // which fall through here. 426 if(TD) { 427 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 428 } else { 429 SrcBitWidth = SrcTy->getScalarSizeInBits(); 430 if (!SrcBitWidth) break; 431 } 432 433 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 434 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 435 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 436 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 437 KnownZero = KnownZero.zextOrTrunc(BitWidth); 438 KnownOne = KnownOne.zextOrTrunc(BitWidth); 439 // Any top bits are known to be zero. 440 if (BitWidth > SrcBitWidth) 441 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 442 break; 443 } 444 case Instruction::BitCast: { 445 Type *SrcTy = I->getOperand(0)->getType(); 446 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 447 // TODO: For now, not handling conversions like: 448 // (bitcast i64 %x to <2 x i32>) 449 !I->getType()->isVectorTy()) { 450 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 451 break; 452 } 453 break; 454 } 455 case Instruction::SExt: { 456 // Compute the bits in the result that are not present in the input. 457 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 458 459 KnownZero = KnownZero.trunc(SrcBitWidth); 460 KnownOne = KnownOne.trunc(SrcBitWidth); 461 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 462 KnownZero = KnownZero.zext(BitWidth); 463 KnownOne = KnownOne.zext(BitWidth); 464 465 // If the sign bit of the input is known set or clear, then we know the 466 // top bits of the result. 467 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 468 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 469 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 470 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 471 break; 472 } 473 case Instruction::Shl: 474 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 475 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 476 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 477 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 478 KnownZero <<= ShiftAmt; 479 KnownOne <<= ShiftAmt; 480 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 481 break; 482 } 483 break; 484 case Instruction::LShr: 485 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 486 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 487 // Compute the new bits that are at the top now. 488 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 489 490 // Unsigned shift right. 491 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 492 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 493 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 494 // high bits known zero. 495 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 496 break; 497 } 498 break; 499 case Instruction::AShr: 500 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 501 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 502 // Compute the new bits that are at the top now. 503 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 504 505 // Signed shift right. 506 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 507 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 508 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 509 510 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 511 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 512 KnownZero |= HighBits; 513 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 514 KnownOne |= HighBits; 515 break; 516 } 517 break; 518 case Instruction::Sub: { 519 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 520 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 521 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 522 Depth); 523 break; 524 } 525 case Instruction::Add: { 526 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 527 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 528 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 529 Depth); 530 break; 531 } 532 case Instruction::SRem: 533 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 534 APInt RA = Rem->getValue().abs(); 535 if (RA.isPowerOf2()) { 536 APInt LowBits = RA - 1; 537 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 538 539 // The low bits of the first operand are unchanged by the srem. 540 KnownZero = KnownZero2 & LowBits; 541 KnownOne = KnownOne2 & LowBits; 542 543 // If the first operand is non-negative or has all low bits zero, then 544 // the upper bits are all zero. 545 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 546 KnownZero |= ~LowBits; 547 548 // If the first operand is negative and not all low bits are zero, then 549 // the upper bits are all one. 550 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 551 KnownOne |= ~LowBits; 552 553 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 554 } 555 } 556 557 // The sign bit is the LHS's sign bit, except when the result of the 558 // remainder is zero. 559 if (KnownZero.isNonNegative()) { 560 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 561 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 562 Depth+1); 563 // If it's known zero, our sign bit is also zero. 564 if (LHSKnownZero.isNegative()) 565 KnownZero.setBit(BitWidth - 1); 566 } 567 568 break; 569 case Instruction::URem: { 570 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 571 APInt RA = Rem->getValue(); 572 if (RA.isPowerOf2()) { 573 APInt LowBits = (RA - 1); 574 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, 575 Depth+1); 576 KnownZero |= ~LowBits; 577 KnownOne &= LowBits; 578 break; 579 } 580 } 581 582 // Since the result is less than or equal to either operand, any leading 583 // zero bits in either operand must also exist in the result. 584 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 585 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 586 587 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 588 KnownZero2.countLeadingOnes()); 589 KnownOne.clearAllBits(); 590 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 591 break; 592 } 593 594 case Instruction::Alloca: { 595 AllocaInst *AI = cast<AllocaInst>(V); 596 unsigned Align = AI->getAlignment(); 597 if (Align == 0 && TD) 598 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 599 600 if (Align > 0) 601 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 602 break; 603 } 604 case Instruction::GetElementPtr: { 605 // Analyze all of the subscripts of this getelementptr instruction 606 // to determine if we can prove known low zero bits. 607 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 608 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 609 Depth+1); 610 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 611 612 gep_type_iterator GTI = gep_type_begin(I); 613 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 614 Value *Index = I->getOperand(i); 615 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 616 // Handle struct member offset arithmetic. 617 if (!TD) { 618 TrailZ = 0; 619 break; 620 } 621 622 // Handle case when index is vector zeroinitializer 623 Constant *CIndex = cast<Constant>(Index); 624 if (CIndex->isZeroValue()) 625 continue; 626 627 if (CIndex->getType()->isVectorTy()) 628 Index = CIndex->getSplatValue(); 629 630 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 631 const StructLayout *SL = TD->getStructLayout(STy); 632 uint64_t Offset = SL->getElementOffset(Idx); 633 TrailZ = std::min<unsigned>(TrailZ, 634 countTrailingZeros(Offset)); 635 } else { 636 // Handle array index arithmetic. 637 Type *IndexedTy = GTI.getIndexedType(); 638 if (!IndexedTy->isSized()) { 639 TrailZ = 0; 640 break; 641 } 642 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 643 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 644 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 645 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 646 TrailZ = std::min(TrailZ, 647 unsigned(countTrailingZeros(TypeSize) + 648 LocalKnownZero.countTrailingOnes())); 649 } 650 } 651 652 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 653 break; 654 } 655 case Instruction::PHI: { 656 PHINode *P = cast<PHINode>(I); 657 // Handle the case of a simple two-predecessor recurrence PHI. 658 // There's a lot more that could theoretically be done here, but 659 // this is sufficient to catch some interesting cases. 660 if (P->getNumIncomingValues() == 2) { 661 for (unsigned i = 0; i != 2; ++i) { 662 Value *L = P->getIncomingValue(i); 663 Value *R = P->getIncomingValue(!i); 664 Operator *LU = dyn_cast<Operator>(L); 665 if (!LU) 666 continue; 667 unsigned Opcode = LU->getOpcode(); 668 // Check for operations that have the property that if 669 // both their operands have low zero bits, the result 670 // will have low zero bits. 671 if (Opcode == Instruction::Add || 672 Opcode == Instruction::Sub || 673 Opcode == Instruction::And || 674 Opcode == Instruction::Or || 675 Opcode == Instruction::Mul) { 676 Value *LL = LU->getOperand(0); 677 Value *LR = LU->getOperand(1); 678 // Find a recurrence. 679 if (LL == I) 680 L = LR; 681 else if (LR == I) 682 L = LL; 683 else 684 break; 685 // Ok, we have a PHI of the form L op= R. Check for low 686 // zero bits. 687 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1); 688 689 // We need to take the minimum number of known bits 690 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 691 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1); 692 693 KnownZero = APInt::getLowBitsSet(BitWidth, 694 std::min(KnownZero2.countTrailingOnes(), 695 KnownZero3.countTrailingOnes())); 696 break; 697 } 698 } 699 } 700 701 // Unreachable blocks may have zero-operand PHI nodes. 702 if (P->getNumIncomingValues() == 0) 703 break; 704 705 // Otherwise take the unions of the known bit sets of the operands, 706 // taking conservative care to avoid excessive recursion. 707 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 708 // Skip if every incoming value references to ourself. 709 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 710 break; 711 712 KnownZero = APInt::getAllOnesValue(BitWidth); 713 KnownOne = APInt::getAllOnesValue(BitWidth); 714 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 715 // Skip direct self references. 716 if (P->getIncomingValue(i) == P) continue; 717 718 KnownZero2 = APInt(BitWidth, 0); 719 KnownOne2 = APInt(BitWidth, 0); 720 // Recurse, but cap the recursion to one level, because we don't 721 // want to waste time spinning around in loops. 722 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 723 MaxDepth-1); 724 KnownZero &= KnownZero2; 725 KnownOne &= KnownOne2; 726 // If all bits have been ruled out, there's no need to check 727 // more operands. 728 if (!KnownZero && !KnownOne) 729 break; 730 } 731 } 732 break; 733 } 734 case Instruction::Call: 735 case Instruction::Invoke: 736 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 737 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 738 // If a range metadata is attached to this IntrinsicInst, intersect the 739 // explicit range specified by the metadata and the implicit range of 740 // the intrinsic. 741 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 742 switch (II->getIntrinsicID()) { 743 default: break; 744 case Intrinsic::ctlz: 745 case Intrinsic::cttz: { 746 unsigned LowBits = Log2_32(BitWidth)+1; 747 // If this call is undefined for 0, the result will be less than 2^n. 748 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 749 LowBits -= 1; 750 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 751 break; 752 } 753 case Intrinsic::ctpop: { 754 unsigned LowBits = Log2_32(BitWidth)+1; 755 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 756 break; 757 } 758 case Intrinsic::x86_sse42_crc32_64_64: 759 KnownZero |= APInt::getHighBitsSet(64, 32); 760 break; 761 } 762 } 763 break; 764 case Instruction::ExtractValue: 765 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 766 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 767 if (EVI->getNumIndices() != 1) break; 768 if (EVI->getIndices()[0] == 0) { 769 switch (II->getIntrinsicID()) { 770 default: break; 771 case Intrinsic::uadd_with_overflow: 772 case Intrinsic::sadd_with_overflow: 773 computeKnownBitsAddSub(true, II->getArgOperand(0), 774 II->getArgOperand(1), false, KnownZero, 775 KnownOne, KnownZero2, KnownOne2, TD, Depth); 776 break; 777 case Intrinsic::usub_with_overflow: 778 case Intrinsic::ssub_with_overflow: 779 computeKnownBitsAddSub(false, II->getArgOperand(0), 780 II->getArgOperand(1), false, KnownZero, 781 KnownOne, KnownZero2, KnownOne2, TD, Depth); 782 break; 783 case Intrinsic::umul_with_overflow: 784 case Intrinsic::smul_with_overflow: 785 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), 786 false, KnownZero, KnownOne, 787 KnownZero2, KnownOne2, TD, Depth); 788 break; 789 } 790 } 791 } 792 } 793 794 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 795 } 796 797 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 798 /// one. Convenience wrapper around computeKnownBits. 799 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 800 const DataLayout *TD, unsigned Depth) { 801 unsigned BitWidth = getBitWidth(V->getType(), TD); 802 if (!BitWidth) { 803 KnownZero = false; 804 KnownOne = false; 805 return; 806 } 807 APInt ZeroBits(BitWidth, 0); 808 APInt OneBits(BitWidth, 0); 809 computeKnownBits(V, ZeroBits, OneBits, TD, Depth); 810 KnownOne = OneBits[BitWidth - 1]; 811 KnownZero = ZeroBits[BitWidth - 1]; 812 } 813 814 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one 815 /// bit set when defined. For vectors return true if every element is known to 816 /// be a power of two when defined. Supports values with integer or pointer 817 /// types and vectors of integers. 818 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { 819 if (Constant *C = dyn_cast<Constant>(V)) { 820 if (C->isNullValue()) 821 return OrZero; 822 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 823 return CI->getValue().isPowerOf2(); 824 // TODO: Handle vector constants. 825 } 826 827 // 1 << X is clearly a power of two if the one is not shifted off the end. If 828 // it is shifted off the end then the result is undefined. 829 if (match(V, m_Shl(m_One(), m_Value()))) 830 return true; 831 832 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 833 // bottom. If it is shifted off the bottom then the result is undefined. 834 if (match(V, m_LShr(m_SignBit(), m_Value()))) 835 return true; 836 837 // The remaining tests are all recursive, so bail out if we hit the limit. 838 if (Depth++ == MaxDepth) 839 return false; 840 841 Value *X = nullptr, *Y = nullptr; 842 // A shift of a power of two is a power of two or zero. 843 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 844 match(V, m_Shr(m_Value(X), m_Value())))) 845 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); 846 847 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 848 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); 849 850 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 851 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && 852 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); 853 854 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 855 // A power of two and'd with anything is a power of two or zero. 856 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || 857 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) 858 return true; 859 // X & (-X) is always a power of two or zero. 860 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 861 return true; 862 return false; 863 } 864 865 // Adding a power-of-two or zero to the same power-of-two or zero yields 866 // either the original power-of-two, a larger power-of-two or zero. 867 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 868 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 869 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 870 if (match(X, m_And(m_Specific(Y), m_Value())) || 871 match(X, m_And(m_Value(), m_Specific(Y)))) 872 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth)) 873 return true; 874 if (match(Y, m_And(m_Specific(X), m_Value())) || 875 match(Y, m_And(m_Value(), m_Specific(X)))) 876 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth)) 877 return true; 878 879 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 880 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 881 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth); 882 883 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 884 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth); 885 // If i8 V is a power of two or zero: 886 // ZeroBits: 1 1 1 0 1 1 1 1 887 // ~ZeroBits: 0 0 0 1 0 0 0 0 888 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 889 // If OrZero isn't set, we cannot give back a zero result. 890 // Make sure either the LHS or RHS has a bit set. 891 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 892 return true; 893 } 894 } 895 896 // An exact divide or right shift can only shift off zero bits, so the result 897 // is a power of two only if the first operand is a power of two and not 898 // copying a sign bit (sdiv int_min, 2). 899 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 900 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 901 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth); 902 } 903 904 return false; 905 } 906 907 /// \brief Test whether a GEP's result is known to be non-null. 908 /// 909 /// Uses properties inherent in a GEP to try to determine whether it is known 910 /// to be non-null. 911 /// 912 /// Currently this routine does not support vector GEPs. 913 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 914 unsigned Depth) { 915 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 916 return false; 917 918 // FIXME: Support vector-GEPs. 919 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 920 921 // If the base pointer is non-null, we cannot walk to a null address with an 922 // inbounds GEP in address space zero. 923 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) 924 return true; 925 926 // Past this, if we don't have DataLayout, we can't do much. 927 if (!DL) 928 return false; 929 930 // Walk the GEP operands and see if any operand introduces a non-zero offset. 931 // If so, then the GEP cannot produce a null pointer, as doing so would 932 // inherently violate the inbounds contract within address space zero. 933 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 934 GTI != GTE; ++GTI) { 935 // Struct types are easy -- they must always be indexed by a constant. 936 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 937 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 938 unsigned ElementIdx = OpC->getZExtValue(); 939 const StructLayout *SL = DL->getStructLayout(STy); 940 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 941 if (ElementOffset > 0) 942 return true; 943 continue; 944 } 945 946 // If we have a zero-sized type, the index doesn't matter. Keep looping. 947 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 948 continue; 949 950 // Fast path the constant operand case both for efficiency and so we don't 951 // increment Depth when just zipping down an all-constant GEP. 952 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 953 if (!OpC->isZero()) 954 return true; 955 continue; 956 } 957 958 // We post-increment Depth here because while isKnownNonZero increments it 959 // as well, when we pop back up that increment won't persist. We don't want 960 // to recurse 10k times just because we have 10k GEP operands. We don't 961 // bail completely out because we want to handle constant GEPs regardless 962 // of depth. 963 if (Depth++ >= MaxDepth) 964 continue; 965 966 if (isKnownNonZero(GTI.getOperand(), DL, Depth)) 967 return true; 968 } 969 970 return false; 971 } 972 973 /// isKnownNonZero - Return true if the given value is known to be non-zero 974 /// when defined. For vectors return true if every element is known to be 975 /// non-zero when defined. Supports values with integer or pointer type and 976 /// vectors of integers. 977 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 978 if (Constant *C = dyn_cast<Constant>(V)) { 979 if (C->isNullValue()) 980 return false; 981 if (isa<ConstantInt>(C)) 982 // Must be non-zero due to null test above. 983 return true; 984 // TODO: Handle vectors 985 return false; 986 } 987 988 // The remaining tests are all recursive, so bail out if we hit the limit. 989 if (Depth++ >= MaxDepth) 990 return false; 991 992 // Check for pointer simplifications. 993 if (V->getType()->isPointerTy()) { 994 if (isKnownNonNull(V)) 995 return true; 996 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 997 if (isGEPKnownNonNull(GEP, TD, Depth)) 998 return true; 999 } 1000 1001 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 1002 1003 // X | Y != 0 if X != 0 or Y != 0. 1004 Value *X = nullptr, *Y = nullptr; 1005 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1006 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 1007 1008 // ext X != 0 if X != 0. 1009 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1010 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 1011 1012 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1013 // if the lowest bit is shifted off the end. 1014 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1015 // shl nuw can't remove any non-zero bits. 1016 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1017 if (BO->hasNoUnsignedWrap()) 1018 return isKnownNonZero(X, TD, Depth); 1019 1020 APInt KnownZero(BitWidth, 0); 1021 APInt KnownOne(BitWidth, 0); 1022 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1023 if (KnownOne[0]) 1024 return true; 1025 } 1026 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1027 // defined if the sign bit is shifted off the end. 1028 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1029 // shr exact can only shift out zero bits. 1030 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1031 if (BO->isExact()) 1032 return isKnownNonZero(X, TD, Depth); 1033 1034 bool XKnownNonNegative, XKnownNegative; 1035 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1036 if (XKnownNegative) 1037 return true; 1038 } 1039 // div exact can only produce a zero if the dividend is zero. 1040 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1041 return isKnownNonZero(X, TD, Depth); 1042 } 1043 // X + Y. 1044 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1045 bool XKnownNonNegative, XKnownNegative; 1046 bool YKnownNonNegative, YKnownNegative; 1047 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1048 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 1049 1050 // If X and Y are both non-negative (as signed values) then their sum is not 1051 // zero unless both X and Y are zero. 1052 if (XKnownNonNegative && YKnownNonNegative) 1053 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 1054 return true; 1055 1056 // If X and Y are both negative (as signed values) then their sum is not 1057 // zero unless both X and Y equal INT_MIN. 1058 if (BitWidth && XKnownNegative && YKnownNegative) { 1059 APInt KnownZero(BitWidth, 0); 1060 APInt KnownOne(BitWidth, 0); 1061 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1062 // The sign bit of X is set. If some other bit is set then X is not equal 1063 // to INT_MIN. 1064 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1065 if ((KnownOne & Mask) != 0) 1066 return true; 1067 // The sign bit of Y is set. If some other bit is set then Y is not equal 1068 // to INT_MIN. 1069 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth); 1070 if ((KnownOne & Mask) != 0) 1071 return true; 1072 } 1073 1074 // The sum of a non-negative number and a power of two is not zero. 1075 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) 1076 return true; 1077 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) 1078 return true; 1079 } 1080 // X * Y. 1081 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1082 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1083 // If X and Y are non-zero then so is X * Y as long as the multiplication 1084 // does not overflow. 1085 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1086 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 1087 return true; 1088 } 1089 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1090 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1091 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 1092 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 1093 return true; 1094 } 1095 1096 if (!BitWidth) return false; 1097 APInt KnownZero(BitWidth, 0); 1098 APInt KnownOne(BitWidth, 0); 1099 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1100 return KnownOne != 0; 1101 } 1102 1103 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1104 /// this predicate to simplify operations downstream. Mask is known to be zero 1105 /// for bits that V cannot have. 1106 /// 1107 /// This function is defined on values with integer type, values with pointer 1108 /// type (but only if TD is non-null), and vectors of integers. In the case 1109 /// where V is a vector, the mask, known zero, and known one values are the 1110 /// same width as the vector element, and the bit is set only if it is true 1111 /// for all of the elements in the vector. 1112 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1113 const DataLayout *TD, unsigned Depth) { 1114 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1115 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1116 return (KnownZero & Mask) == Mask; 1117 } 1118 1119 1120 1121 /// ComputeNumSignBits - Return the number of times the sign bit of the 1122 /// register is replicated into the other bits. We know that at least 1 bit 1123 /// is always equal to the sign bit (itself), but other cases can give us 1124 /// information. For example, immediately after an "ashr X, 2", we know that 1125 /// the top 3 bits are all equal to each other, so we return 3. 1126 /// 1127 /// 'Op' must have a scalar integer type. 1128 /// 1129 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1130 unsigned Depth) { 1131 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1132 "ComputeNumSignBits requires a DataLayout object to operate " 1133 "on non-integer values!"); 1134 Type *Ty = V->getType(); 1135 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1136 Ty->getScalarSizeInBits(); 1137 unsigned Tmp, Tmp2; 1138 unsigned FirstAnswer = 1; 1139 1140 // Note that ConstantInt is handled by the general computeKnownBits case 1141 // below. 1142 1143 if (Depth == 6) 1144 return 1; // Limit search depth. 1145 1146 Operator *U = dyn_cast<Operator>(V); 1147 switch (Operator::getOpcode(V)) { 1148 default: break; 1149 case Instruction::SExt: 1150 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1151 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1152 1153 case Instruction::AShr: { 1154 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1155 // ashr X, C -> adds C sign bits. Vectors too. 1156 const APInt *ShAmt; 1157 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1158 Tmp += ShAmt->getZExtValue(); 1159 if (Tmp > TyBits) Tmp = TyBits; 1160 } 1161 return Tmp; 1162 } 1163 case Instruction::Shl: { 1164 const APInt *ShAmt; 1165 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1166 // shl destroys sign bits. 1167 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1168 Tmp2 = ShAmt->getZExtValue(); 1169 if (Tmp2 >= TyBits || // Bad shift. 1170 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1171 return Tmp - Tmp2; 1172 } 1173 break; 1174 } 1175 case Instruction::And: 1176 case Instruction::Or: 1177 case Instruction::Xor: // NOT is handled here. 1178 // Logical binary ops preserve the number of sign bits at the worst. 1179 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1180 if (Tmp != 1) { 1181 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1182 FirstAnswer = std::min(Tmp, Tmp2); 1183 // We computed what we know about the sign bits as our first 1184 // answer. Now proceed to the generic code that uses 1185 // computeKnownBits, and pick whichever answer is better. 1186 } 1187 break; 1188 1189 case Instruction::Select: 1190 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1191 if (Tmp == 1) return 1; // Early out. 1192 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1193 return std::min(Tmp, Tmp2); 1194 1195 case Instruction::Add: 1196 // Add can have at most one carry bit. Thus we know that the output 1197 // is, at worst, one more bit than the inputs. 1198 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1199 if (Tmp == 1) return 1; // Early out. 1200 1201 // Special case decrementing a value (ADD X, -1): 1202 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1203 if (CRHS->isAllOnesValue()) { 1204 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1205 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1206 1207 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1208 // sign bits set. 1209 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1210 return TyBits; 1211 1212 // If we are subtracting one from a positive number, there is no carry 1213 // out of the result. 1214 if (KnownZero.isNegative()) 1215 return Tmp; 1216 } 1217 1218 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1219 if (Tmp2 == 1) return 1; 1220 return std::min(Tmp, Tmp2)-1; 1221 1222 case Instruction::Sub: 1223 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1224 if (Tmp2 == 1) return 1; 1225 1226 // Handle NEG. 1227 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1228 if (CLHS->isNullValue()) { 1229 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1230 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1231 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1232 // sign bits set. 1233 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1234 return TyBits; 1235 1236 // If the input is known to be positive (the sign bit is known clear), 1237 // the output of the NEG has the same number of sign bits as the input. 1238 if (KnownZero.isNegative()) 1239 return Tmp2; 1240 1241 // Otherwise, we treat this like a SUB. 1242 } 1243 1244 // Sub can have at most one carry bit. Thus we know that the output 1245 // is, at worst, one more bit than the inputs. 1246 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1247 if (Tmp == 1) return 1; // Early out. 1248 return std::min(Tmp, Tmp2)-1; 1249 1250 case Instruction::PHI: { 1251 PHINode *PN = cast<PHINode>(U); 1252 // Don't analyze large in-degree PHIs. 1253 if (PN->getNumIncomingValues() > 4) break; 1254 1255 // Take the minimum of all incoming values. This can't infinitely loop 1256 // because of our depth threshold. 1257 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1258 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1259 if (Tmp == 1) return Tmp; 1260 Tmp = std::min(Tmp, 1261 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1262 } 1263 return Tmp; 1264 } 1265 1266 case Instruction::Trunc: 1267 // FIXME: it's tricky to do anything useful for this, but it is an important 1268 // case for targets like X86. 1269 break; 1270 } 1271 1272 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1273 // use this information. 1274 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1275 APInt Mask; 1276 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1277 1278 if (KnownZero.isNegative()) { // sign bit is 0 1279 Mask = KnownZero; 1280 } else if (KnownOne.isNegative()) { // sign bit is 1; 1281 Mask = KnownOne; 1282 } else { 1283 // Nothing known. 1284 return FirstAnswer; 1285 } 1286 1287 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1288 // the number of identical bits in the top of the input value. 1289 Mask = ~Mask; 1290 Mask <<= Mask.getBitWidth()-TyBits; 1291 // Return # leading zeros. We use 'min' here in case Val was zero before 1292 // shifting. We don't want to return '64' as for an i32 "0". 1293 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1294 } 1295 1296 /// ComputeMultiple - This function computes the integer multiple of Base that 1297 /// equals V. If successful, it returns true and returns the multiple in 1298 /// Multiple. If unsuccessful, it returns false. It looks 1299 /// through SExt instructions only if LookThroughSExt is true. 1300 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1301 bool LookThroughSExt, unsigned Depth) { 1302 const unsigned MaxDepth = 6; 1303 1304 assert(V && "No Value?"); 1305 assert(Depth <= MaxDepth && "Limit Search Depth"); 1306 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1307 1308 Type *T = V->getType(); 1309 1310 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1311 1312 if (Base == 0) 1313 return false; 1314 1315 if (Base == 1) { 1316 Multiple = V; 1317 return true; 1318 } 1319 1320 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1321 Constant *BaseVal = ConstantInt::get(T, Base); 1322 if (CO && CO == BaseVal) { 1323 // Multiple is 1. 1324 Multiple = ConstantInt::get(T, 1); 1325 return true; 1326 } 1327 1328 if (CI && CI->getZExtValue() % Base == 0) { 1329 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1330 return true; 1331 } 1332 1333 if (Depth == MaxDepth) return false; // Limit search depth. 1334 1335 Operator *I = dyn_cast<Operator>(V); 1336 if (!I) return false; 1337 1338 switch (I->getOpcode()) { 1339 default: break; 1340 case Instruction::SExt: 1341 if (!LookThroughSExt) return false; 1342 // otherwise fall through to ZExt 1343 case Instruction::ZExt: 1344 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1345 LookThroughSExt, Depth+1); 1346 case Instruction::Shl: 1347 case Instruction::Mul: { 1348 Value *Op0 = I->getOperand(0); 1349 Value *Op1 = I->getOperand(1); 1350 1351 if (I->getOpcode() == Instruction::Shl) { 1352 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1353 if (!Op1CI) return false; 1354 // Turn Op0 << Op1 into Op0 * 2^Op1 1355 APInt Op1Int = Op1CI->getValue(); 1356 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1357 APInt API(Op1Int.getBitWidth(), 0); 1358 API.setBit(BitToSet); 1359 Op1 = ConstantInt::get(V->getContext(), API); 1360 } 1361 1362 Value *Mul0 = nullptr; 1363 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1364 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1365 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1366 if (Op1C->getType()->getPrimitiveSizeInBits() < 1367 MulC->getType()->getPrimitiveSizeInBits()) 1368 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1369 if (Op1C->getType()->getPrimitiveSizeInBits() > 1370 MulC->getType()->getPrimitiveSizeInBits()) 1371 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1372 1373 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1374 Multiple = ConstantExpr::getMul(MulC, Op1C); 1375 return true; 1376 } 1377 1378 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1379 if (Mul0CI->getValue() == 1) { 1380 // V == Base * Op1, so return Op1 1381 Multiple = Op1; 1382 return true; 1383 } 1384 } 1385 1386 Value *Mul1 = nullptr; 1387 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1388 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1389 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1390 if (Op0C->getType()->getPrimitiveSizeInBits() < 1391 MulC->getType()->getPrimitiveSizeInBits()) 1392 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1393 if (Op0C->getType()->getPrimitiveSizeInBits() > 1394 MulC->getType()->getPrimitiveSizeInBits()) 1395 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1396 1397 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1398 Multiple = ConstantExpr::getMul(MulC, Op0C); 1399 return true; 1400 } 1401 1402 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1403 if (Mul1CI->getValue() == 1) { 1404 // V == Base * Op0, so return Op0 1405 Multiple = Op0; 1406 return true; 1407 } 1408 } 1409 } 1410 } 1411 1412 // We could not determine if V is a multiple of Base. 1413 return false; 1414 } 1415 1416 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1417 /// value is never equal to -0.0. 1418 /// 1419 /// NOTE: this function will need to be revisited when we support non-default 1420 /// rounding modes! 1421 /// 1422 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1423 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1424 return !CFP->getValueAPF().isNegZero(); 1425 1426 if (Depth == 6) 1427 return 1; // Limit search depth. 1428 1429 const Operator *I = dyn_cast<Operator>(V); 1430 if (!I) return false; 1431 1432 // Check if the nsz fast-math flag is set 1433 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 1434 if (FPO->hasNoSignedZeros()) 1435 return true; 1436 1437 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1438 if (I->getOpcode() == Instruction::FAdd) 1439 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 1440 if (CFP->isNullValue()) 1441 return true; 1442 1443 // sitofp and uitofp turn into +0.0 for zero. 1444 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1445 return true; 1446 1447 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1448 // sqrt(-0.0) = -0.0, no other negative results are possible. 1449 if (II->getIntrinsicID() == Intrinsic::sqrt) 1450 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1451 1452 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1453 if (const Function *F = CI->getCalledFunction()) { 1454 if (F->isDeclaration()) { 1455 // abs(x) != -0.0 1456 if (F->getName() == "abs") return true; 1457 // fabs[lf](x) != -0.0 1458 if (F->getName() == "fabs") return true; 1459 if (F->getName() == "fabsf") return true; 1460 if (F->getName() == "fabsl") return true; 1461 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1462 F->getName() == "sqrtl") 1463 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1464 } 1465 } 1466 1467 return false; 1468 } 1469 1470 /// isBytewiseValue - If the specified value can be set by repeating the same 1471 /// byte in memory, return the i8 value that it is represented with. This is 1472 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1473 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1474 /// byte store (e.g. i16 0x1234), return null. 1475 Value *llvm::isBytewiseValue(Value *V) { 1476 // All byte-wide stores are splatable, even of arbitrary variables. 1477 if (V->getType()->isIntegerTy(8)) return V; 1478 1479 // Handle 'null' ConstantArrayZero etc. 1480 if (Constant *C = dyn_cast<Constant>(V)) 1481 if (C->isNullValue()) 1482 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1483 1484 // Constant float and double values can be handled as integer values if the 1485 // corresponding integer value is "byteable". An important case is 0.0. 1486 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1487 if (CFP->getType()->isFloatTy()) 1488 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1489 if (CFP->getType()->isDoubleTy()) 1490 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1491 // Don't handle long double formats, which have strange constraints. 1492 } 1493 1494 // We can handle constant integers that are power of two in size and a 1495 // multiple of 8 bits. 1496 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1497 unsigned Width = CI->getBitWidth(); 1498 if (isPowerOf2_32(Width) && Width > 8) { 1499 // We can handle this value if the recursive binary decomposition is the 1500 // same at all levels. 1501 APInt Val = CI->getValue(); 1502 APInt Val2; 1503 while (Val.getBitWidth() != 8) { 1504 unsigned NextWidth = Val.getBitWidth()/2; 1505 Val2 = Val.lshr(NextWidth); 1506 Val2 = Val2.trunc(Val.getBitWidth()/2); 1507 Val = Val.trunc(Val.getBitWidth()/2); 1508 1509 // If the top/bottom halves aren't the same, reject it. 1510 if (Val != Val2) 1511 return nullptr; 1512 } 1513 return ConstantInt::get(V->getContext(), Val); 1514 } 1515 } 1516 1517 // A ConstantDataArray/Vector is splatable if all its members are equal and 1518 // also splatable. 1519 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1520 Value *Elt = CA->getElementAsConstant(0); 1521 Value *Val = isBytewiseValue(Elt); 1522 if (!Val) 1523 return nullptr; 1524 1525 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1526 if (CA->getElementAsConstant(I) != Elt) 1527 return nullptr; 1528 1529 return Val; 1530 } 1531 1532 // Conceptually, we could handle things like: 1533 // %a = zext i8 %X to i16 1534 // %b = shl i16 %a, 8 1535 // %c = or i16 %a, %b 1536 // but until there is an example that actually needs this, it doesn't seem 1537 // worth worrying about. 1538 return nullptr; 1539 } 1540 1541 1542 // This is the recursive version of BuildSubAggregate. It takes a few different 1543 // arguments. Idxs is the index within the nested struct From that we are 1544 // looking at now (which is of type IndexedType). IdxSkip is the number of 1545 // indices from Idxs that should be left out when inserting into the resulting 1546 // struct. To is the result struct built so far, new insertvalue instructions 1547 // build on that. 1548 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1549 SmallVectorImpl<unsigned> &Idxs, 1550 unsigned IdxSkip, 1551 Instruction *InsertBefore) { 1552 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 1553 if (STy) { 1554 // Save the original To argument so we can modify it 1555 Value *OrigTo = To; 1556 // General case, the type indexed by Idxs is a struct 1557 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1558 // Process each struct element recursively 1559 Idxs.push_back(i); 1560 Value *PrevTo = To; 1561 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1562 InsertBefore); 1563 Idxs.pop_back(); 1564 if (!To) { 1565 // Couldn't find any inserted value for this index? Cleanup 1566 while (PrevTo != OrigTo) { 1567 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1568 PrevTo = Del->getAggregateOperand(); 1569 Del->eraseFromParent(); 1570 } 1571 // Stop processing elements 1572 break; 1573 } 1574 } 1575 // If we successfully found a value for each of our subaggregates 1576 if (To) 1577 return To; 1578 } 1579 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1580 // the struct's elements had a value that was inserted directly. In the latter 1581 // case, perhaps we can't determine each of the subelements individually, but 1582 // we might be able to find the complete struct somewhere. 1583 1584 // Find the value that is at that particular spot 1585 Value *V = FindInsertedValue(From, Idxs); 1586 1587 if (!V) 1588 return nullptr; 1589 1590 // Insert the value in the new (sub) aggregrate 1591 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1592 "tmp", InsertBefore); 1593 } 1594 1595 // This helper takes a nested struct and extracts a part of it (which is again a 1596 // struct) into a new value. For example, given the struct: 1597 // { a, { b, { c, d }, e } } 1598 // and the indices "1, 1" this returns 1599 // { c, d }. 1600 // 1601 // It does this by inserting an insertvalue for each element in the resulting 1602 // struct, as opposed to just inserting a single struct. This will only work if 1603 // each of the elements of the substruct are known (ie, inserted into From by an 1604 // insertvalue instruction somewhere). 1605 // 1606 // All inserted insertvalue instructions are inserted before InsertBefore 1607 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1608 Instruction *InsertBefore) { 1609 assert(InsertBefore && "Must have someplace to insert!"); 1610 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1611 idx_range); 1612 Value *To = UndefValue::get(IndexedType); 1613 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1614 unsigned IdxSkip = Idxs.size(); 1615 1616 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1617 } 1618 1619 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1620 /// the scalar value indexed is already around as a register, for example if it 1621 /// were inserted directly into the aggregrate. 1622 /// 1623 /// If InsertBefore is not null, this function will duplicate (modified) 1624 /// insertvalues when a part of a nested struct is extracted. 1625 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1626 Instruction *InsertBefore) { 1627 // Nothing to index? Just return V then (this is useful at the end of our 1628 // recursion). 1629 if (idx_range.empty()) 1630 return V; 1631 // We have indices, so V should have an indexable type. 1632 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1633 "Not looking at a struct or array?"); 1634 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1635 "Invalid indices for type?"); 1636 1637 if (Constant *C = dyn_cast<Constant>(V)) { 1638 C = C->getAggregateElement(idx_range[0]); 1639 if (!C) return nullptr; 1640 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1641 } 1642 1643 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1644 // Loop the indices for the insertvalue instruction in parallel with the 1645 // requested indices 1646 const unsigned *req_idx = idx_range.begin(); 1647 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1648 i != e; ++i, ++req_idx) { 1649 if (req_idx == idx_range.end()) { 1650 // We can't handle this without inserting insertvalues 1651 if (!InsertBefore) 1652 return nullptr; 1653 1654 // The requested index identifies a part of a nested aggregate. Handle 1655 // this specially. For example, 1656 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1657 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1658 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1659 // This can be changed into 1660 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1661 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1662 // which allows the unused 0,0 element from the nested struct to be 1663 // removed. 1664 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1665 InsertBefore); 1666 } 1667 1668 // This insert value inserts something else than what we are looking for. 1669 // See if the (aggregrate) value inserted into has the value we are 1670 // looking for, then. 1671 if (*req_idx != *i) 1672 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1673 InsertBefore); 1674 } 1675 // If we end up here, the indices of the insertvalue match with those 1676 // requested (though possibly only partially). Now we recursively look at 1677 // the inserted value, passing any remaining indices. 1678 return FindInsertedValue(I->getInsertedValueOperand(), 1679 makeArrayRef(req_idx, idx_range.end()), 1680 InsertBefore); 1681 } 1682 1683 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1684 // If we're extracting a value from an aggregrate that was extracted from 1685 // something else, we can extract from that something else directly instead. 1686 // However, we will need to chain I's indices with the requested indices. 1687 1688 // Calculate the number of indices required 1689 unsigned size = I->getNumIndices() + idx_range.size(); 1690 // Allocate some space to put the new indices in 1691 SmallVector<unsigned, 5> Idxs; 1692 Idxs.reserve(size); 1693 // Add indices from the extract value instruction 1694 Idxs.append(I->idx_begin(), I->idx_end()); 1695 1696 // Add requested indices 1697 Idxs.append(idx_range.begin(), idx_range.end()); 1698 1699 assert(Idxs.size() == size 1700 && "Number of indices added not correct?"); 1701 1702 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1703 } 1704 // Otherwise, we don't know (such as, extracting from a function return value 1705 // or load instruction) 1706 return nullptr; 1707 } 1708 1709 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1710 /// it can be expressed as a base pointer plus a constant offset. Return the 1711 /// base and offset to the caller. 1712 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1713 const DataLayout *DL) { 1714 // Without DataLayout, conservatively assume 64-bit offsets, which is 1715 // the widest we support. 1716 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 1717 APInt ByteOffset(BitWidth, 0); 1718 while (1) { 1719 if (Ptr->getType()->isVectorTy()) 1720 break; 1721 1722 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1723 if (DL) { 1724 APInt GEPOffset(BitWidth, 0); 1725 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 1726 break; 1727 1728 ByteOffset += GEPOffset; 1729 } 1730 1731 Ptr = GEP->getPointerOperand(); 1732 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 1733 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 1734 Ptr = cast<Operator>(Ptr)->getOperand(0); 1735 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1736 if (GA->mayBeOverridden()) 1737 break; 1738 Ptr = GA->getAliasee(); 1739 } else { 1740 break; 1741 } 1742 } 1743 Offset = ByteOffset.getSExtValue(); 1744 return Ptr; 1745 } 1746 1747 1748 /// getConstantStringInfo - This function computes the length of a 1749 /// null-terminated C string pointed to by V. If successful, it returns true 1750 /// and returns the string in Str. If unsuccessful, it returns false. 1751 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1752 uint64_t Offset, bool TrimAtNul) { 1753 assert(V); 1754 1755 // Look through bitcast instructions and geps. 1756 V = V->stripPointerCasts(); 1757 1758 // If the value is a GEP instructionor constant expression, treat it as an 1759 // offset. 1760 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1761 // Make sure the GEP has exactly three arguments. 1762 if (GEP->getNumOperands() != 3) 1763 return false; 1764 1765 // Make sure the index-ee is a pointer to array of i8. 1766 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1767 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1768 if (!AT || !AT->getElementType()->isIntegerTy(8)) 1769 return false; 1770 1771 // Check to make sure that the first operand of the GEP is an integer and 1772 // has value 0 so that we are sure we're indexing into the initializer. 1773 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1774 if (!FirstIdx || !FirstIdx->isZero()) 1775 return false; 1776 1777 // If the second index isn't a ConstantInt, then this is a variable index 1778 // into the array. If this occurs, we can't say anything meaningful about 1779 // the string. 1780 uint64_t StartIdx = 0; 1781 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1782 StartIdx = CI->getZExtValue(); 1783 else 1784 return false; 1785 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1786 } 1787 1788 // The GEP instruction, constant or instruction, must reference a global 1789 // variable that is a constant and is initialized. The referenced constant 1790 // initializer is the array that we'll use for optimization. 1791 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1792 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1793 return false; 1794 1795 // Handle the all-zeros case 1796 if (GV->getInitializer()->isNullValue()) { 1797 // This is a degenerate case. The initializer is constant zero so the 1798 // length of the string must be zero. 1799 Str = ""; 1800 return true; 1801 } 1802 1803 // Must be a Constant Array 1804 const ConstantDataArray *Array = 1805 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1806 if (!Array || !Array->isString()) 1807 return false; 1808 1809 // Get the number of elements in the array 1810 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1811 1812 // Start out with the entire array in the StringRef. 1813 Str = Array->getAsString(); 1814 1815 if (Offset > NumElts) 1816 return false; 1817 1818 // Skip over 'offset' bytes. 1819 Str = Str.substr(Offset); 1820 1821 if (TrimAtNul) { 1822 // Trim off the \0 and anything after it. If the array is not nul 1823 // terminated, we just return the whole end of string. The client may know 1824 // some other way that the string is length-bound. 1825 Str = Str.substr(0, Str.find('\0')); 1826 } 1827 return true; 1828 } 1829 1830 // These next two are very similar to the above, but also look through PHI 1831 // nodes. 1832 // TODO: See if we can integrate these two together. 1833 1834 /// GetStringLengthH - If we can compute the length of the string pointed to by 1835 /// the specified pointer, return 'len+1'. If we can't, return 0. 1836 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1837 // Look through noop bitcast instructions. 1838 V = V->stripPointerCasts(); 1839 1840 // If this is a PHI node, there are two cases: either we have already seen it 1841 // or we haven't. 1842 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1843 if (!PHIs.insert(PN)) 1844 return ~0ULL; // already in the set. 1845 1846 // If it was new, see if all the input strings are the same length. 1847 uint64_t LenSoFar = ~0ULL; 1848 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1849 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1850 if (Len == 0) return 0; // Unknown length -> unknown. 1851 1852 if (Len == ~0ULL) continue; 1853 1854 if (Len != LenSoFar && LenSoFar != ~0ULL) 1855 return 0; // Disagree -> unknown. 1856 LenSoFar = Len; 1857 } 1858 1859 // Success, all agree. 1860 return LenSoFar; 1861 } 1862 1863 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1864 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1865 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1866 if (Len1 == 0) return 0; 1867 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1868 if (Len2 == 0) return 0; 1869 if (Len1 == ~0ULL) return Len2; 1870 if (Len2 == ~0ULL) return Len1; 1871 if (Len1 != Len2) return 0; 1872 return Len1; 1873 } 1874 1875 // Otherwise, see if we can read the string. 1876 StringRef StrData; 1877 if (!getConstantStringInfo(V, StrData)) 1878 return 0; 1879 1880 return StrData.size()+1; 1881 } 1882 1883 /// GetStringLength - If we can compute the length of the string pointed to by 1884 /// the specified pointer, return 'len+1'. If we can't, return 0. 1885 uint64_t llvm::GetStringLength(Value *V) { 1886 if (!V->getType()->isPointerTy()) return 0; 1887 1888 SmallPtrSet<PHINode*, 32> PHIs; 1889 uint64_t Len = GetStringLengthH(V, PHIs); 1890 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1891 // an empty string as a length. 1892 return Len == ~0ULL ? 1 : Len; 1893 } 1894 1895 Value * 1896 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1897 if (!V->getType()->isPointerTy()) 1898 return V; 1899 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1900 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1901 V = GEP->getPointerOperand(); 1902 } else if (Operator::getOpcode(V) == Instruction::BitCast || 1903 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 1904 V = cast<Operator>(V)->getOperand(0); 1905 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1906 if (GA->mayBeOverridden()) 1907 return V; 1908 V = GA->getAliasee(); 1909 } else { 1910 // See if InstructionSimplify knows any relevant tricks. 1911 if (Instruction *I = dyn_cast<Instruction>(V)) 1912 // TODO: Acquire a DominatorTree and use it. 1913 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { 1914 V = Simplified; 1915 continue; 1916 } 1917 1918 return V; 1919 } 1920 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1921 } 1922 return V; 1923 } 1924 1925 void 1926 llvm::GetUnderlyingObjects(Value *V, 1927 SmallVectorImpl<Value *> &Objects, 1928 const DataLayout *TD, 1929 unsigned MaxLookup) { 1930 SmallPtrSet<Value *, 4> Visited; 1931 SmallVector<Value *, 4> Worklist; 1932 Worklist.push_back(V); 1933 do { 1934 Value *P = Worklist.pop_back_val(); 1935 P = GetUnderlyingObject(P, TD, MaxLookup); 1936 1937 if (!Visited.insert(P)) 1938 continue; 1939 1940 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1941 Worklist.push_back(SI->getTrueValue()); 1942 Worklist.push_back(SI->getFalseValue()); 1943 continue; 1944 } 1945 1946 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1947 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1948 Worklist.push_back(PN->getIncomingValue(i)); 1949 continue; 1950 } 1951 1952 Objects.push_back(P); 1953 } while (!Worklist.empty()); 1954 } 1955 1956 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1957 /// are lifetime markers. 1958 /// 1959 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1960 for (const User *U : V->users()) { 1961 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1962 if (!II) return false; 1963 1964 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1965 II->getIntrinsicID() != Intrinsic::lifetime_end) 1966 return false; 1967 } 1968 return true; 1969 } 1970 1971 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1972 const DataLayout *TD) { 1973 const Operator *Inst = dyn_cast<Operator>(V); 1974 if (!Inst) 1975 return false; 1976 1977 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1978 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1979 if (C->canTrap()) 1980 return false; 1981 1982 switch (Inst->getOpcode()) { 1983 default: 1984 return true; 1985 case Instruction::UDiv: 1986 case Instruction::URem: 1987 // x / y is undefined if y == 0, but calculations like x / 3 are safe. 1988 return isKnownNonZero(Inst->getOperand(1), TD); 1989 case Instruction::SDiv: 1990 case Instruction::SRem: { 1991 Value *Op = Inst->getOperand(1); 1992 // x / y is undefined if y == 0 1993 if (!isKnownNonZero(Op, TD)) 1994 return false; 1995 // x / y might be undefined if y == -1 1996 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1997 if (BitWidth == 0) 1998 return false; 1999 APInt KnownZero(BitWidth, 0); 2000 APInt KnownOne(BitWidth, 0); 2001 computeKnownBits(Op, KnownZero, KnownOne, TD); 2002 return !!KnownZero; 2003 } 2004 case Instruction::Load: { 2005 const LoadInst *LI = cast<LoadInst>(Inst); 2006 if (!LI->isUnordered() || 2007 // Speculative load may create a race that did not exist in the source. 2008 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2009 return false; 2010 return LI->getPointerOperand()->isDereferenceablePointer(TD); 2011 } 2012 case Instruction::Call: { 2013 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2014 switch (II->getIntrinsicID()) { 2015 // These synthetic intrinsics have no side-effects and just mark 2016 // information about their operands. 2017 // FIXME: There are other no-op synthetic instructions that potentially 2018 // should be considered at least *safe* to speculate... 2019 case Intrinsic::dbg_declare: 2020 case Intrinsic::dbg_value: 2021 return true; 2022 2023 case Intrinsic::bswap: 2024 case Intrinsic::ctlz: 2025 case Intrinsic::ctpop: 2026 case Intrinsic::cttz: 2027 case Intrinsic::objectsize: 2028 case Intrinsic::sadd_with_overflow: 2029 case Intrinsic::smul_with_overflow: 2030 case Intrinsic::ssub_with_overflow: 2031 case Intrinsic::uadd_with_overflow: 2032 case Intrinsic::umul_with_overflow: 2033 case Intrinsic::usub_with_overflow: 2034 return true; 2035 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2036 // errno like libm sqrt would. 2037 case Intrinsic::sqrt: 2038 case Intrinsic::fma: 2039 case Intrinsic::fmuladd: 2040 return true; 2041 // TODO: some fp intrinsics are marked as having the same error handling 2042 // as libm. They're safe to speculate when they won't error. 2043 // TODO: are convert_{from,to}_fp16 safe? 2044 // TODO: can we list target-specific intrinsics here? 2045 default: break; 2046 } 2047 } 2048 return false; // The called function could have undefined behavior or 2049 // side-effects, even if marked readnone nounwind. 2050 } 2051 case Instruction::VAArg: 2052 case Instruction::Alloca: 2053 case Instruction::Invoke: 2054 case Instruction::PHI: 2055 case Instruction::Store: 2056 case Instruction::Ret: 2057 case Instruction::Br: 2058 case Instruction::IndirectBr: 2059 case Instruction::Switch: 2060 case Instruction::Unreachable: 2061 case Instruction::Fence: 2062 case Instruction::LandingPad: 2063 case Instruction::AtomicRMW: 2064 case Instruction::AtomicCmpXchg: 2065 case Instruction::Resume: 2066 return false; // Misc instructions which have effects 2067 } 2068 } 2069 2070 /// isKnownNonNull - Return true if we know that the specified value is never 2071 /// null. 2072 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2073 // Alloca never returns null, malloc might. 2074 if (isa<AllocaInst>(V)) return true; 2075 2076 // A byval, inalloca, or nonnull argument is never null. 2077 if (const Argument *A = dyn_cast<Argument>(V)) 2078 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 2079 2080 // Global values are not null unless extern weak. 2081 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2082 return !GV->hasExternalWeakLinkage(); 2083 2084 if (ImmutableCallSite CS = V) 2085 if (CS.isReturnNonNull()) 2086 return true; 2087 2088 // operator new never returns null. 2089 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2090 return true; 2091 2092 return false; 2093 } 2094