1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 // This optimization is known to cause performance regressions is some cases, 55 // keep it under a temporary flag for now. 56 static cl::opt<bool> 57 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 58 cl::Hidden, cl::init(true)); 59 60 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 61 /// 0). For vector types, returns the element type's bitwidth. 62 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 63 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 64 return BitWidth; 65 66 return DL.getPointerTypeSizeInBits(Ty); 67 } 68 69 namespace { 70 // Simplifying using an assume can only be done in a particular control-flow 71 // context (the context instruction provides that context). If an assume and 72 // the context instruction are not in the same block then the DT helps in 73 // figuring out if we can use it. 74 struct Query { 75 const DataLayout &DL; 76 AssumptionCache *AC; 77 const Instruction *CxtI; 78 const DominatorTree *DT; 79 80 /// Set of assumptions that should be excluded from further queries. 81 /// This is because of the potential for mutual recursion to cause 82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 83 /// classic case of this is assume(x = y), which will attempt to determine 84 /// bits in x from bits in y, which will attempt to determine bits in y from 85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 86 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 87 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 88 /// on. 89 std::array<const Value*, MaxDepth> Excluded; 90 unsigned NumExcluded; 91 92 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 93 const DominatorTree *DT) 94 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 95 96 Query(const Query &Q, const Value *NewExcl) 97 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 98 Excluded = Q.Excluded; 99 Excluded[NumExcluded++] = NewExcl; 100 assert(NumExcluded <= Excluded.size()); 101 } 102 103 bool isExcluded(const Value *Value) const { 104 if (NumExcluded == 0) 105 return false; 106 auto End = Excluded.begin() + NumExcluded; 107 return std::find(Excluded.begin(), End, Value) != End; 108 } 109 }; 110 } // end anonymous namespace 111 112 // Given the provided Value and, potentially, a context instruction, return 113 // the preferred context instruction (if any). 114 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 115 // If we've been provided with a context instruction, then use that (provided 116 // it has been inserted). 117 if (CxtI && CxtI->getParent()) 118 return CxtI; 119 120 // If the value is really an already-inserted instruction, then use that. 121 CxtI = dyn_cast<Instruction>(V); 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 return nullptr; 126 } 127 128 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 129 unsigned Depth, const Query &Q); 130 131 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 132 const DataLayout &DL, unsigned Depth, 133 AssumptionCache *AC, const Instruction *CxtI, 134 const DominatorTree *DT) { 135 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 136 Query(DL, AC, safeCxtI(V, CxtI), DT)); 137 } 138 139 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 140 const DataLayout &DL, 141 AssumptionCache *AC, const Instruction *CxtI, 142 const DominatorTree *DT) { 143 assert(LHS->getType() == RHS->getType() && 144 "LHS and RHS should have the same type"); 145 assert(LHS->getType()->isIntOrIntVectorTy() && 146 "LHS and RHS should be integers"); 147 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 148 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 149 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 150 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 152 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 153 } 154 155 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 156 unsigned Depth, const Query &Q); 157 158 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 159 const DataLayout &DL, unsigned Depth, 160 AssumptionCache *AC, const Instruction *CxtI, 161 const DominatorTree *DT) { 162 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 163 Query(DL, AC, safeCxtI(V, CxtI), DT)); 164 } 165 166 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 167 const Query &Q); 168 169 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 170 bool OrZero, 171 unsigned Depth, AssumptionCache *AC, 172 const Instruction *CxtI, 173 const DominatorTree *DT) { 174 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 175 Query(DL, AC, safeCxtI(V, CxtI), DT)); 176 } 177 178 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 179 180 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 181 AssumptionCache *AC, const Instruction *CxtI, 182 const DominatorTree *DT) { 183 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 184 } 185 186 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 187 unsigned Depth, 188 AssumptionCache *AC, const Instruction *CxtI, 189 const DominatorTree *DT) { 190 bool NonNegative, Negative; 191 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 192 return NonNegative; 193 } 194 195 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 196 AssumptionCache *AC, const Instruction *CxtI, 197 const DominatorTree *DT) { 198 if (auto *CI = dyn_cast<ConstantInt>(V)) 199 return CI->getValue().isStrictlyPositive(); 200 201 // TODO: We'd doing two recursive queries here. We should factor this such 202 // that only a single query is needed. 203 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 204 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 205 } 206 207 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 208 AssumptionCache *AC, const Instruction *CxtI, 209 const DominatorTree *DT) { 210 bool NonNegative, Negative; 211 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 212 return Negative; 213 } 214 215 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 216 217 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 218 const DataLayout &DL, 219 AssumptionCache *AC, const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 222 safeCxtI(V1, safeCxtI(V2, CxtI)), 223 DT)); 224 } 225 226 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 227 const Query &Q); 228 229 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 230 const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT) { 233 return ::MaskedValueIsZero(V, Mask, Depth, 234 Query(DL, AC, safeCxtI(V, CxtI), DT)); 235 } 236 237 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 238 const Query &Q); 239 240 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 241 unsigned Depth, AssumptionCache *AC, 242 const Instruction *CxtI, 243 const DominatorTree *DT) { 244 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 245 } 246 247 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 248 bool NSW, 249 APInt &KnownZero, APInt &KnownOne, 250 APInt &KnownZero2, APInt &KnownOne2, 251 unsigned Depth, const Query &Q) { 252 if (!Add) { 253 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 254 // We know that the top bits of C-X are clear if X contains less bits 255 // than C (i.e. no wrap-around can happen). For example, 20-X is 256 // positive if we can prove that X is >= 0 and < 16. 257 if (!CLHS->getValue().isNegative()) { 258 unsigned BitWidth = KnownZero.getBitWidth(); 259 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 260 // NLZ can't be BitWidth with no sign bit 261 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 262 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 263 264 // If all of the MaskV bits are known to be zero, then we know the 265 // output top bits are zero, because we now know that the output is 266 // from [0-C]. 267 if ((KnownZero2 & MaskV) == MaskV) { 268 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 269 // Top bits known zero. 270 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 271 } 272 } 273 } 274 } 275 276 unsigned BitWidth = KnownZero.getBitWidth(); 277 278 // If an initial sequence of bits in the result is not needed, the 279 // corresponding bits in the operands are not needed. 280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 281 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 282 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 283 284 // Carry in a 1 for a subtract, rather than a 0. 285 APInt CarryIn(BitWidth, 0); 286 if (!Add) { 287 // Sum = LHS + ~RHS + 1 288 std::swap(KnownZero2, KnownOne2); 289 CarryIn.setBit(0); 290 } 291 292 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 293 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 294 295 // Compute known bits of the carry. 296 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 297 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 298 299 // Compute set of known bits (where all three relevant bits are known). 300 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 301 APInt RHSKnown = KnownZero2 | KnownOne2; 302 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 303 APInt Known = LHSKnown & RHSKnown & CarryKnown; 304 305 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 306 "known bits of sum differ"); 307 308 // Compute known bits of the result. 309 KnownZero = ~PossibleSumOne & Known; 310 KnownOne = PossibleSumOne & Known; 311 312 // Are we still trying to solve for the sign bit? 313 if (!Known.isNegative()) { 314 if (NSW) { 315 // Adding two non-negative numbers, or subtracting a negative number from 316 // a non-negative one, can't wrap into negative. 317 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 318 KnownZero |= APInt::getSignBit(BitWidth); 319 // Adding two negative numbers, or subtracting a non-negative number from 320 // a negative one, can't wrap into non-negative. 321 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 322 KnownOne |= APInt::getSignBit(BitWidth); 323 } 324 } 325 } 326 327 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 328 APInt &KnownZero, APInt &KnownOne, 329 APInt &KnownZero2, APInt &KnownOne2, 330 unsigned Depth, const Query &Q) { 331 unsigned BitWidth = KnownZero.getBitWidth(); 332 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 333 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 334 335 bool isKnownNegative = false; 336 bool isKnownNonNegative = false; 337 // If the multiplication is known not to overflow, compute the sign bit. 338 if (NSW) { 339 if (Op0 == Op1) { 340 // The product of a number with itself is non-negative. 341 isKnownNonNegative = true; 342 } else { 343 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 344 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 345 bool isKnownNegativeOp1 = KnownOne.isNegative(); 346 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 347 // The product of two numbers with the same sign is non-negative. 348 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 349 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 350 // The product of a negative number and a non-negative number is either 351 // negative or zero. 352 if (!isKnownNonNegative) 353 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 354 isKnownNonZero(Op0, Depth, Q)) || 355 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 356 isKnownNonZero(Op1, Depth, Q)); 357 } 358 } 359 360 // If low bits are zero in either operand, output low known-0 bits. 361 // Also compute a conservative estimate for high known-0 bits. 362 // More trickiness is possible, but this is sufficient for the 363 // interesting case of alignment computation. 364 KnownOne.clearAllBits(); 365 unsigned TrailZ = KnownZero.countTrailingOnes() + 366 KnownZero2.countTrailingOnes(); 367 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 368 KnownZero2.countLeadingOnes(), 369 BitWidth) - BitWidth; 370 371 TrailZ = std::min(TrailZ, BitWidth); 372 LeadZ = std::min(LeadZ, BitWidth); 373 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 374 APInt::getHighBitsSet(BitWidth, LeadZ); 375 376 // Only make use of no-wrap flags if we failed to compute the sign bit 377 // directly. This matters if the multiplication always overflows, in 378 // which case we prefer to follow the result of the direct computation, 379 // though as the program is invoking undefined behaviour we can choose 380 // whatever we like here. 381 if (isKnownNonNegative && !KnownOne.isNegative()) 382 KnownZero.setBit(BitWidth - 1); 383 else if (isKnownNegative && !KnownZero.isNegative()) 384 KnownOne.setBit(BitWidth - 1); 385 } 386 387 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 388 APInt &KnownZero, 389 APInt &KnownOne) { 390 unsigned BitWidth = KnownZero.getBitWidth(); 391 unsigned NumRanges = Ranges.getNumOperands() / 2; 392 assert(NumRanges >= 1); 393 394 KnownZero.setAllBits(); 395 KnownOne.setAllBits(); 396 397 for (unsigned i = 0; i < NumRanges; ++i) { 398 ConstantInt *Lower = 399 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 400 ConstantInt *Upper = 401 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 402 ConstantRange Range(Lower->getValue(), Upper->getValue()); 403 404 // The first CommonPrefixBits of all values in Range are equal. 405 unsigned CommonPrefixBits = 406 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 407 408 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 409 KnownOne &= Range.getUnsignedMax() & Mask; 410 KnownZero &= ~Range.getUnsignedMax() & Mask; 411 } 412 } 413 414 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 415 SmallVector<const Value *, 16> WorkSet(1, I); 416 SmallPtrSet<const Value *, 32> Visited; 417 SmallPtrSet<const Value *, 16> EphValues; 418 419 // The instruction defining an assumption's condition itself is always 420 // considered ephemeral to that assumption (even if it has other 421 // non-ephemeral users). See r246696's test case for an example. 422 if (is_contained(I->operands(), E)) 423 return true; 424 425 while (!WorkSet.empty()) { 426 const Value *V = WorkSet.pop_back_val(); 427 if (!Visited.insert(V).second) 428 continue; 429 430 // If all uses of this value are ephemeral, then so is this value. 431 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 432 if (V == E) 433 return true; 434 435 EphValues.insert(V); 436 if (const User *U = dyn_cast<User>(V)) 437 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 438 J != JE; ++J) { 439 if (isSafeToSpeculativelyExecute(*J)) 440 WorkSet.push_back(*J); 441 } 442 } 443 } 444 445 return false; 446 } 447 448 // Is this an intrinsic that cannot be speculated but also cannot trap? 449 static bool isAssumeLikeIntrinsic(const Instruction *I) { 450 if (const CallInst *CI = dyn_cast<CallInst>(I)) 451 if (Function *F = CI->getCalledFunction()) 452 switch (F->getIntrinsicID()) { 453 default: break; 454 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 455 case Intrinsic::assume: 456 case Intrinsic::dbg_declare: 457 case Intrinsic::dbg_value: 458 case Intrinsic::invariant_start: 459 case Intrinsic::invariant_end: 460 case Intrinsic::lifetime_start: 461 case Intrinsic::lifetime_end: 462 case Intrinsic::objectsize: 463 case Intrinsic::ptr_annotation: 464 case Intrinsic::var_annotation: 465 return true; 466 } 467 468 return false; 469 } 470 471 bool llvm::isValidAssumeForContext(const Instruction *Inv, 472 const Instruction *CxtI, 473 const DominatorTree *DT) { 474 475 // There are two restrictions on the use of an assume: 476 // 1. The assume must dominate the context (or the control flow must 477 // reach the assume whenever it reaches the context). 478 // 2. The context must not be in the assume's set of ephemeral values 479 // (otherwise we will use the assume to prove that the condition 480 // feeding the assume is trivially true, thus causing the removal of 481 // the assume). 482 483 if (DT) { 484 if (DT->dominates(Inv, CxtI)) 485 return true; 486 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 487 // We don't have a DT, but this trivially dominates. 488 return true; 489 } 490 491 // With or without a DT, the only remaining case we will check is if the 492 // instructions are in the same BB. Give up if that is not the case. 493 if (Inv->getParent() != CxtI->getParent()) 494 return false; 495 496 // If we have a dom tree, then we now know that the assume doens't dominate 497 // the other instruction. If we don't have a dom tree then we can check if 498 // the assume is first in the BB. 499 if (!DT) { 500 // Search forward from the assume until we reach the context (or the end 501 // of the block); the common case is that the assume will come first. 502 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 503 IE = Inv->getParent()->end(); I != IE; ++I) 504 if (&*I == CxtI) 505 return true; 506 } 507 508 // The context comes first, but they're both in the same block. Make sure 509 // there is nothing in between that might interrupt the control flow. 510 for (BasicBlock::const_iterator I = 511 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 512 I != IE; ++I) 513 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 514 return false; 515 516 return !isEphemeralValueOf(Inv, CxtI); 517 } 518 519 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 520 APInt &KnownOne, unsigned Depth, 521 const Query &Q) { 522 // Use of assumptions is context-sensitive. If we don't have a context, we 523 // cannot use them! 524 if (!Q.AC || !Q.CxtI) 525 return; 526 527 unsigned BitWidth = KnownZero.getBitWidth(); 528 529 for (auto &AssumeVH : Q.AC->assumptions()) { 530 if (!AssumeVH) 531 continue; 532 CallInst *I = cast<CallInst>(AssumeVH); 533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 534 "Got assumption for the wrong function!"); 535 if (Q.isExcluded(I)) 536 continue; 537 538 // Warning: This loop can end up being somewhat performance sensetive. 539 // We're running this loop for once for each value queried resulting in a 540 // runtime of ~O(#assumes * #values). 541 542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 543 "must be an assume intrinsic"); 544 545 Value *Arg = I->getArgOperand(0); 546 547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 548 assert(BitWidth == 1 && "assume operand is not i1?"); 549 KnownZero.clearAllBits(); 550 KnownOne.setAllBits(); 551 return; 552 } 553 554 // The remaining tests are all recursive, so bail out if we hit the limit. 555 if (Depth == MaxDepth) 556 continue; 557 558 Value *A, *B; 559 auto m_V = m_CombineOr(m_Specific(V), 560 m_CombineOr(m_PtrToInt(m_Specific(V)), 561 m_BitCast(m_Specific(V)))); 562 563 CmpInst::Predicate Pred; 564 ConstantInt *C; 565 // assume(v = a) 566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 570 KnownZero |= RHSKnownZero; 571 KnownOne |= RHSKnownOne; 572 // assume(v & b = a) 573 } else if (match(Arg, 574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 575 Pred == ICmpInst::ICMP_EQ && 576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 581 582 // For those bits in the mask that are known to be one, we can propagate 583 // known bits from the RHS to V. 584 KnownZero |= RHSKnownZero & MaskKnownOne; 585 KnownOne |= RHSKnownOne & MaskKnownOne; 586 // assume(~(v & b) = a) 587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 588 m_Value(A))) && 589 Pred == ICmpInst::ICMP_EQ && 590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 595 596 // For those bits in the mask that are known to be one, we can propagate 597 // inverted known bits from the RHS to V. 598 KnownZero |= RHSKnownOne & MaskKnownOne; 599 KnownOne |= RHSKnownZero & MaskKnownOne; 600 // assume(v | b = a) 601 } else if (match(Arg, 602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 603 Pred == ICmpInst::ICMP_EQ && 604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 609 610 // For those bits in B that are known to be zero, we can propagate known 611 // bits from the RHS to V. 612 KnownZero |= RHSKnownZero & BKnownZero; 613 KnownOne |= RHSKnownOne & BKnownZero; 614 // assume(~(v | b) = a) 615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 616 m_Value(A))) && 617 Pred == ICmpInst::ICMP_EQ && 618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 623 624 // For those bits in B that are known to be zero, we can propagate 625 // inverted known bits from the RHS to V. 626 KnownZero |= RHSKnownOne & BKnownZero; 627 KnownOne |= RHSKnownZero & BKnownZero; 628 // assume(v ^ b = a) 629 } else if (match(Arg, 630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 631 Pred == ICmpInst::ICMP_EQ && 632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 637 638 // For those bits in B that are known to be zero, we can propagate known 639 // bits from the RHS to V. For those bits in B that are known to be one, 640 // we can propagate inverted known bits from the RHS to V. 641 KnownZero |= RHSKnownZero & BKnownZero; 642 KnownOne |= RHSKnownOne & BKnownZero; 643 KnownZero |= RHSKnownOne & BKnownOne; 644 KnownOne |= RHSKnownZero & BKnownOne; 645 // assume(~(v ^ b) = a) 646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 647 m_Value(A))) && 648 Pred == ICmpInst::ICMP_EQ && 649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 654 655 // For those bits in B that are known to be zero, we can propagate 656 // inverted known bits from the RHS to V. For those bits in B that are 657 // known to be one, we can propagate known bits from the RHS to V. 658 KnownZero |= RHSKnownOne & BKnownZero; 659 KnownOne |= RHSKnownZero & BKnownZero; 660 KnownZero |= RHSKnownZero & BKnownOne; 661 KnownOne |= RHSKnownOne & BKnownOne; 662 // assume(v << c = a) 663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 664 m_Value(A))) && 665 Pred == ICmpInst::ICMP_EQ && 666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 669 // For those bits in RHS that are known, we can propagate them to known 670 // bits in V shifted to the right by C. 671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 673 // assume(~(v << c) = a) 674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 675 m_Value(A))) && 676 Pred == ICmpInst::ICMP_EQ && 677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 680 // For those bits in RHS that are known, we can propagate them inverted 681 // to known bits in V shifted to the right by C. 682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 684 // assume(v >> c = a) 685 } else if (match(Arg, 686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 687 m_AShr(m_V, m_ConstantInt(C))), 688 m_Value(A))) && 689 Pred == ICmpInst::ICMP_EQ && 690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 693 // For those bits in RHS that are known, we can propagate them to known 694 // bits in V shifted to the right by C. 695 KnownZero |= RHSKnownZero << C->getZExtValue(); 696 KnownOne |= RHSKnownOne << C->getZExtValue(); 697 // assume(~(v >> c) = a) 698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 699 m_LShr(m_V, m_ConstantInt(C)), 700 m_AShr(m_V, m_ConstantInt(C)))), 701 m_Value(A))) && 702 Pred == ICmpInst::ICMP_EQ && 703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 706 // For those bits in RHS that are known, we can propagate them inverted 707 // to known bits in V shifted to the right by C. 708 KnownZero |= RHSKnownOne << C->getZExtValue(); 709 KnownOne |= RHSKnownZero << C->getZExtValue(); 710 // assume(v >=_s c) where c is non-negative 711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 712 Pred == ICmpInst::ICMP_SGE && 713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 716 717 if (RHSKnownZero.isNegative()) { 718 // We know that the sign bit is zero. 719 KnownZero |= APInt::getSignBit(BitWidth); 720 } 721 // assume(v >_s c) where c is at least -1. 722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 723 Pred == ICmpInst::ICMP_SGT && 724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 727 728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 729 // We know that the sign bit is zero. 730 KnownZero |= APInt::getSignBit(BitWidth); 731 } 732 // assume(v <=_s c) where c is negative 733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 734 Pred == ICmpInst::ICMP_SLE && 735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 738 739 if (RHSKnownOne.isNegative()) { 740 // We know that the sign bit is one. 741 KnownOne |= APInt::getSignBit(BitWidth); 742 } 743 // assume(v <_s c) where c is non-positive 744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 745 Pred == ICmpInst::ICMP_SLT && 746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 749 750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 751 // We know that the sign bit is one. 752 KnownOne |= APInt::getSignBit(BitWidth); 753 } 754 // assume(v <=_u c) 755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 756 Pred == ICmpInst::ICMP_ULE && 757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 760 761 // Whatever high bits in c are zero are known to be zero. 762 KnownZero |= 763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 764 // assume(v <_u c) 765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 766 Pred == ICmpInst::ICMP_ULT && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 770 771 // Whatever high bits in c are zero are known to be zero (if c is a power 772 // of 2, then one more). 773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 774 KnownZero |= 775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 776 else 777 KnownZero |= 778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 779 } 780 } 781 } 782 783 // Compute known bits from a shift operator, including those with a 784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 787 // functors that, given the known-zero or known-one bits respectively, and a 788 // shift amount, compute the implied known-zero or known-one bits of the shift 789 // operator's result respectively for that shift amount. The results from calling 790 // KZF and KOF are conservatively combined for all permitted shift amounts. 791 static void computeKnownBitsFromShiftOperator( 792 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 793 APInt &KnownOne2, unsigned Depth, const Query &Q, 794 function_ref<APInt(const APInt &, unsigned)> KZF, 795 function_ref<APInt(const APInt &, unsigned)> KOF) { 796 unsigned BitWidth = KnownZero.getBitWidth(); 797 798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 800 801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 802 KnownZero = KZF(KnownZero, ShiftAmt); 803 KnownOne = KOF(KnownOne, ShiftAmt); 804 // If there is conflict between KnownZero and KnownOne, this must be an 805 // overflowing left shift, so the shift result is undefined. Clear KnownZero 806 // and KnownOne bits so that other code could propagate this undef. 807 if ((KnownZero & KnownOne) != 0) { 808 KnownZero.clearAllBits(); 809 KnownOne.clearAllBits(); 810 } 811 812 return; 813 } 814 815 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 816 817 // Note: We cannot use KnownZero.getLimitedValue() here, because if 818 // BitWidth > 64 and any upper bits are known, we'll end up returning the 819 // limit value (which implies all bits are known). 820 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 821 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 822 823 // It would be more-clearly correct to use the two temporaries for this 824 // calculation. Reusing the APInts here to prevent unnecessary allocations. 825 KnownZero.clearAllBits(); 826 KnownOne.clearAllBits(); 827 828 // If we know the shifter operand is nonzero, we can sometimes infer more 829 // known bits. However this is expensive to compute, so be lazy about it and 830 // only compute it when absolutely necessary. 831 Optional<bool> ShifterOperandIsNonZero; 832 833 // Early exit if we can't constrain any well-defined shift amount. 834 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 835 ShifterOperandIsNonZero = 836 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 837 if (!*ShifterOperandIsNonZero) 838 return; 839 } 840 841 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 842 843 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 844 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 845 // Combine the shifted known input bits only for those shift amounts 846 // compatible with its known constraints. 847 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 848 continue; 849 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 850 continue; 851 // If we know the shifter is nonzero, we may be able to infer more known 852 // bits. This check is sunk down as far as possible to avoid the expensive 853 // call to isKnownNonZero if the cheaper checks above fail. 854 if (ShiftAmt == 0) { 855 if (!ShifterOperandIsNonZero.hasValue()) 856 ShifterOperandIsNonZero = 857 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 858 if (*ShifterOperandIsNonZero) 859 continue; 860 } 861 862 KnownZero &= KZF(KnownZero2, ShiftAmt); 863 KnownOne &= KOF(KnownOne2, ShiftAmt); 864 } 865 866 // If there are no compatible shift amounts, then we've proven that the shift 867 // amount must be >= the BitWidth, and the result is undefined. We could 868 // return anything we'd like, but we need to make sure the sets of known bits 869 // stay disjoint (it should be better for some other code to actually 870 // propagate the undef than to pick a value here using known bits). 871 if ((KnownZero & KnownOne) != 0) { 872 KnownZero.clearAllBits(); 873 KnownOne.clearAllBits(); 874 } 875 } 876 877 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 878 APInt &KnownOne, unsigned Depth, 879 const Query &Q) { 880 unsigned BitWidth = KnownZero.getBitWidth(); 881 882 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 883 switch (I->getOpcode()) { 884 default: break; 885 case Instruction::Load: 886 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 887 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 888 break; 889 case Instruction::And: { 890 // If either the LHS or the RHS are Zero, the result is zero. 891 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 892 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 893 894 // Output known-1 bits are only known if set in both the LHS & RHS. 895 KnownOne &= KnownOne2; 896 // Output known-0 are known to be clear if zero in either the LHS | RHS. 897 KnownZero |= KnownZero2; 898 899 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 900 // here we handle the more general case of adding any odd number by 901 // matching the form add(x, add(x, y)) where y is odd. 902 // TODO: This could be generalized to clearing any bit set in y where the 903 // following bit is known to be unset in y. 904 Value *Y = nullptr; 905 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 906 m_Value(Y))) || 907 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 908 m_Value(Y)))) { 909 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 910 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 911 if (KnownOne3.countTrailingOnes() > 0) 912 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 913 } 914 break; 915 } 916 case Instruction::Or: { 917 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 918 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 919 920 // Output known-0 bits are only known if clear in both the LHS & RHS. 921 KnownZero &= KnownZero2; 922 // Output known-1 are known to be set if set in either the LHS | RHS. 923 KnownOne |= KnownOne2; 924 break; 925 } 926 case Instruction::Xor: { 927 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 928 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 929 930 // Output known-0 bits are known if clear or set in both the LHS & RHS. 931 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 932 // Output known-1 are known to be set if set in only one of the LHS, RHS. 933 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 934 KnownZero = KnownZeroOut; 935 break; 936 } 937 case Instruction::Mul: { 938 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 939 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 940 KnownOne, KnownZero2, KnownOne2, Depth, Q); 941 break; 942 } 943 case Instruction::UDiv: { 944 // For the purposes of computing leading zeros we can conservatively 945 // treat a udiv as a logical right shift by the power of 2 known to 946 // be less than the denominator. 947 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 948 unsigned LeadZ = KnownZero2.countLeadingOnes(); 949 950 KnownOne2.clearAllBits(); 951 KnownZero2.clearAllBits(); 952 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 953 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 954 if (RHSUnknownLeadingOnes != BitWidth) 955 LeadZ = std::min(BitWidth, 956 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 957 958 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 959 break; 960 } 961 case Instruction::Select: { 962 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 963 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 964 965 const Value *LHS; 966 const Value *RHS; 967 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 968 if (SelectPatternResult::isMinOrMax(SPF)) { 969 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 970 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 971 } else { 972 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 973 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 974 } 975 976 unsigned MaxHighOnes = 0; 977 unsigned MaxHighZeros = 0; 978 if (SPF == SPF_SMAX) { 979 // If both sides are negative, the result is negative. 980 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 981 // We can derive a lower bound on the result by taking the max of the 982 // leading one bits. 983 MaxHighOnes = 984 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 985 // If either side is non-negative, the result is non-negative. 986 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 987 MaxHighZeros = 1; 988 } else if (SPF == SPF_SMIN) { 989 // If both sides are non-negative, the result is non-negative. 990 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 991 // We can derive an upper bound on the result by taking the max of the 992 // leading zero bits. 993 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 994 KnownZero2.countLeadingOnes()); 995 // If either side is negative, the result is negative. 996 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 997 MaxHighOnes = 1; 998 } else if (SPF == SPF_UMAX) { 999 // We can derive a lower bound on the result by taking the max of the 1000 // leading one bits. 1001 MaxHighOnes = 1002 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1003 } else if (SPF == SPF_UMIN) { 1004 // We can derive an upper bound on the result by taking the max of the 1005 // leading zero bits. 1006 MaxHighZeros = 1007 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1008 } 1009 1010 // Only known if known in both the LHS and RHS. 1011 KnownOne &= KnownOne2; 1012 KnownZero &= KnownZero2; 1013 if (MaxHighOnes > 0) 1014 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1015 if (MaxHighZeros > 0) 1016 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1017 break; 1018 } 1019 case Instruction::FPTrunc: 1020 case Instruction::FPExt: 1021 case Instruction::FPToUI: 1022 case Instruction::FPToSI: 1023 case Instruction::SIToFP: 1024 case Instruction::UIToFP: 1025 break; // Can't work with floating point. 1026 case Instruction::PtrToInt: 1027 case Instruction::IntToPtr: 1028 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1029 // Fall through and handle them the same as zext/trunc. 1030 LLVM_FALLTHROUGH; 1031 case Instruction::ZExt: 1032 case Instruction::Trunc: { 1033 Type *SrcTy = I->getOperand(0)->getType(); 1034 1035 unsigned SrcBitWidth; 1036 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1037 // which fall through here. 1038 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1039 1040 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1041 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1042 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1043 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1044 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1045 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1046 // Any top bits are known to be zero. 1047 if (BitWidth > SrcBitWidth) 1048 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1049 break; 1050 } 1051 case Instruction::BitCast: { 1052 Type *SrcTy = I->getOperand(0)->getType(); 1053 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1054 // TODO: For now, not handling conversions like: 1055 // (bitcast i64 %x to <2 x i32>) 1056 !I->getType()->isVectorTy()) { 1057 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1058 break; 1059 } 1060 break; 1061 } 1062 case Instruction::SExt: { 1063 // Compute the bits in the result that are not present in the input. 1064 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1065 1066 KnownZero = KnownZero.trunc(SrcBitWidth); 1067 KnownOne = KnownOne.trunc(SrcBitWidth); 1068 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1069 KnownZero = KnownZero.zext(BitWidth); 1070 KnownOne = KnownOne.zext(BitWidth); 1071 1072 // If the sign bit of the input is known set or clear, then we know the 1073 // top bits of the result. 1074 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1075 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1076 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1077 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1078 break; 1079 } 1080 case Instruction::Shl: { 1081 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1082 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1083 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1084 APInt KZResult = 1085 (KnownZero << ShiftAmt) | 1086 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1087 // If this shift has "nsw" keyword, then the result is either a poison 1088 // value or has the same sign bit as the first operand. 1089 if (NSW && KnownZero.isNegative()) 1090 KZResult.setBit(BitWidth - 1); 1091 return KZResult; 1092 }; 1093 1094 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1095 APInt KOResult = KnownOne << ShiftAmt; 1096 if (NSW && KnownOne.isNegative()) 1097 KOResult.setBit(BitWidth - 1); 1098 return KOResult; 1099 }; 1100 1101 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1102 KnownZero2, KnownOne2, Depth, Q, KZF, 1103 KOF); 1104 break; 1105 } 1106 case Instruction::LShr: { 1107 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1108 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1109 return APIntOps::lshr(KnownZero, ShiftAmt) | 1110 // High bits known zero. 1111 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1112 }; 1113 1114 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1115 return APIntOps::lshr(KnownOne, ShiftAmt); 1116 }; 1117 1118 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1119 KnownZero2, KnownOne2, Depth, Q, KZF, 1120 KOF); 1121 break; 1122 } 1123 case Instruction::AShr: { 1124 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1125 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1126 return APIntOps::ashr(KnownZero, ShiftAmt); 1127 }; 1128 1129 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1130 return APIntOps::ashr(KnownOne, ShiftAmt); 1131 }; 1132 1133 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1134 KnownZero2, KnownOne2, Depth, Q, KZF, 1135 KOF); 1136 break; 1137 } 1138 case Instruction::Sub: { 1139 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1140 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1141 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1142 Q); 1143 break; 1144 } 1145 case Instruction::Add: { 1146 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1147 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1148 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1149 Q); 1150 break; 1151 } 1152 case Instruction::SRem: 1153 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1154 APInt RA = Rem->getValue().abs(); 1155 if (RA.isPowerOf2()) { 1156 APInt LowBits = RA - 1; 1157 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1158 Q); 1159 1160 // The low bits of the first operand are unchanged by the srem. 1161 KnownZero = KnownZero2 & LowBits; 1162 KnownOne = KnownOne2 & LowBits; 1163 1164 // If the first operand is non-negative or has all low bits zero, then 1165 // the upper bits are all zero. 1166 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1167 KnownZero |= ~LowBits; 1168 1169 // If the first operand is negative and not all low bits are zero, then 1170 // the upper bits are all one. 1171 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1172 KnownOne |= ~LowBits; 1173 1174 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1175 } 1176 } 1177 1178 // The sign bit is the LHS's sign bit, except when the result of the 1179 // remainder is zero. 1180 if (KnownZero.isNonNegative()) { 1181 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1182 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1183 Q); 1184 // If it's known zero, our sign bit is also zero. 1185 if (LHSKnownZero.isNegative()) 1186 KnownZero.setBit(BitWidth - 1); 1187 } 1188 1189 break; 1190 case Instruction::URem: { 1191 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1192 const APInt &RA = Rem->getValue(); 1193 if (RA.isPowerOf2()) { 1194 APInt LowBits = (RA - 1); 1195 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1196 KnownZero |= ~LowBits; 1197 KnownOne &= LowBits; 1198 break; 1199 } 1200 } 1201 1202 // Since the result is less than or equal to either operand, any leading 1203 // zero bits in either operand must also exist in the result. 1204 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1205 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1206 1207 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1208 KnownZero2.countLeadingOnes()); 1209 KnownOne.clearAllBits(); 1210 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1211 break; 1212 } 1213 1214 case Instruction::Alloca: { 1215 const AllocaInst *AI = cast<AllocaInst>(I); 1216 unsigned Align = AI->getAlignment(); 1217 if (Align == 0) 1218 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1219 1220 if (Align > 0) 1221 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1222 break; 1223 } 1224 case Instruction::GetElementPtr: { 1225 // Analyze all of the subscripts of this getelementptr instruction 1226 // to determine if we can prove known low zero bits. 1227 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1228 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1229 Q); 1230 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1231 1232 gep_type_iterator GTI = gep_type_begin(I); 1233 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1234 Value *Index = I->getOperand(i); 1235 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1236 // Handle struct member offset arithmetic. 1237 1238 // Handle case when index is vector zeroinitializer 1239 Constant *CIndex = cast<Constant>(Index); 1240 if (CIndex->isZeroValue()) 1241 continue; 1242 1243 if (CIndex->getType()->isVectorTy()) 1244 Index = CIndex->getSplatValue(); 1245 1246 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1247 const StructLayout *SL = Q.DL.getStructLayout(STy); 1248 uint64_t Offset = SL->getElementOffset(Idx); 1249 TrailZ = std::min<unsigned>(TrailZ, 1250 countTrailingZeros(Offset)); 1251 } else { 1252 // Handle array index arithmetic. 1253 Type *IndexedTy = GTI.getIndexedType(); 1254 if (!IndexedTy->isSized()) { 1255 TrailZ = 0; 1256 break; 1257 } 1258 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1259 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1260 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1261 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1262 TrailZ = std::min(TrailZ, 1263 unsigned(countTrailingZeros(TypeSize) + 1264 LocalKnownZero.countTrailingOnes())); 1265 } 1266 } 1267 1268 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1269 break; 1270 } 1271 case Instruction::PHI: { 1272 const PHINode *P = cast<PHINode>(I); 1273 // Handle the case of a simple two-predecessor recurrence PHI. 1274 // There's a lot more that could theoretically be done here, but 1275 // this is sufficient to catch some interesting cases. 1276 if (P->getNumIncomingValues() == 2) { 1277 for (unsigned i = 0; i != 2; ++i) { 1278 Value *L = P->getIncomingValue(i); 1279 Value *R = P->getIncomingValue(!i); 1280 Operator *LU = dyn_cast<Operator>(L); 1281 if (!LU) 1282 continue; 1283 unsigned Opcode = LU->getOpcode(); 1284 // Check for operations that have the property that if 1285 // both their operands have low zero bits, the result 1286 // will have low zero bits. 1287 if (Opcode == Instruction::Add || 1288 Opcode == Instruction::Sub || 1289 Opcode == Instruction::And || 1290 Opcode == Instruction::Or || 1291 Opcode == Instruction::Mul) { 1292 Value *LL = LU->getOperand(0); 1293 Value *LR = LU->getOperand(1); 1294 // Find a recurrence. 1295 if (LL == I) 1296 L = LR; 1297 else if (LR == I) 1298 L = LL; 1299 else 1300 break; 1301 // Ok, we have a PHI of the form L op= R. Check for low 1302 // zero bits. 1303 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1304 1305 // We need to take the minimum number of known bits 1306 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1307 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1308 1309 KnownZero = APInt::getLowBitsSet( 1310 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1311 KnownZero3.countTrailingOnes())); 1312 1313 if (DontImproveNonNegativePhiBits) 1314 break; 1315 1316 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1317 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1318 // If initial value of recurrence is nonnegative, and we are adding 1319 // a nonnegative number with nsw, the result can only be nonnegative 1320 // or poison value regardless of the number of times we execute the 1321 // add in phi recurrence. If initial value is negative and we are 1322 // adding a negative number with nsw, the result can only be 1323 // negative or poison value. Similar arguments apply to sub and mul. 1324 // 1325 // (add non-negative, non-negative) --> non-negative 1326 // (add negative, negative) --> negative 1327 if (Opcode == Instruction::Add) { 1328 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1329 KnownZero.setBit(BitWidth - 1); 1330 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1331 KnownOne.setBit(BitWidth - 1); 1332 } 1333 1334 // (sub nsw non-negative, negative) --> non-negative 1335 // (sub nsw negative, non-negative) --> negative 1336 else if (Opcode == Instruction::Sub && LL == I) { 1337 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1338 KnownZero.setBit(BitWidth - 1); 1339 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1340 KnownOne.setBit(BitWidth - 1); 1341 } 1342 1343 // (mul nsw non-negative, non-negative) --> non-negative 1344 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1345 KnownZero3.isNegative()) 1346 KnownZero.setBit(BitWidth - 1); 1347 } 1348 1349 break; 1350 } 1351 } 1352 } 1353 1354 // Unreachable blocks may have zero-operand PHI nodes. 1355 if (P->getNumIncomingValues() == 0) 1356 break; 1357 1358 // Otherwise take the unions of the known bit sets of the operands, 1359 // taking conservative care to avoid excessive recursion. 1360 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1361 // Skip if every incoming value references to ourself. 1362 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1363 break; 1364 1365 KnownZero = APInt::getAllOnesValue(BitWidth); 1366 KnownOne = APInt::getAllOnesValue(BitWidth); 1367 for (Value *IncValue : P->incoming_values()) { 1368 // Skip direct self references. 1369 if (IncValue == P) continue; 1370 1371 KnownZero2 = APInt(BitWidth, 0); 1372 KnownOne2 = APInt(BitWidth, 0); 1373 // Recurse, but cap the recursion to one level, because we don't 1374 // want to waste time spinning around in loops. 1375 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1376 KnownZero &= KnownZero2; 1377 KnownOne &= KnownOne2; 1378 // If all bits have been ruled out, there's no need to check 1379 // more operands. 1380 if (!KnownZero && !KnownOne) 1381 break; 1382 } 1383 } 1384 break; 1385 } 1386 case Instruction::Call: 1387 case Instruction::Invoke: 1388 // If range metadata is attached to this call, set known bits from that, 1389 // and then intersect with known bits based on other properties of the 1390 // function. 1391 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1392 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1393 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1394 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1395 KnownZero |= KnownZero2; 1396 KnownOne |= KnownOne2; 1397 } 1398 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1399 switch (II->getIntrinsicID()) { 1400 default: break; 1401 case Intrinsic::bswap: 1402 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1403 KnownZero |= KnownZero2.byteSwap(); 1404 KnownOne |= KnownOne2.byteSwap(); 1405 break; 1406 case Intrinsic::ctlz: 1407 case Intrinsic::cttz: { 1408 unsigned LowBits = Log2_32(BitWidth)+1; 1409 // If this call is undefined for 0, the result will be less than 2^n. 1410 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1411 LowBits -= 1; 1412 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1413 break; 1414 } 1415 case Intrinsic::ctpop: { 1416 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1417 // We can bound the space the count needs. Also, bits known to be zero 1418 // can't contribute to the population. 1419 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1420 unsigned LeadingZeros = 1421 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1422 assert(LeadingZeros <= BitWidth); 1423 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1424 KnownOne &= ~KnownZero; 1425 // TODO: we could bound KnownOne using the lower bound on the number 1426 // of bits which might be set provided by popcnt KnownOne2. 1427 break; 1428 } 1429 case Intrinsic::x86_sse42_crc32_64_64: 1430 KnownZero |= APInt::getHighBitsSet(64, 32); 1431 break; 1432 } 1433 } 1434 break; 1435 case Instruction::ExtractElement: 1436 // Look through extract element. At the moment we keep this simple and skip 1437 // tracking the specific element. But at least we might find information 1438 // valid for all elements of the vector (for example if vector is sign 1439 // extended, shifted, etc). 1440 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1441 break; 1442 case Instruction::ExtractValue: 1443 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1444 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1445 if (EVI->getNumIndices() != 1) break; 1446 if (EVI->getIndices()[0] == 0) { 1447 switch (II->getIntrinsicID()) { 1448 default: break; 1449 case Intrinsic::uadd_with_overflow: 1450 case Intrinsic::sadd_with_overflow: 1451 computeKnownBitsAddSub(true, II->getArgOperand(0), 1452 II->getArgOperand(1), false, KnownZero, 1453 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1454 break; 1455 case Intrinsic::usub_with_overflow: 1456 case Intrinsic::ssub_with_overflow: 1457 computeKnownBitsAddSub(false, II->getArgOperand(0), 1458 II->getArgOperand(1), false, KnownZero, 1459 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1460 break; 1461 case Intrinsic::umul_with_overflow: 1462 case Intrinsic::smul_with_overflow: 1463 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1464 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1465 Q); 1466 break; 1467 } 1468 } 1469 } 1470 } 1471 } 1472 1473 /// Determine which bits of V are known to be either zero or one and return 1474 /// them in the KnownZero/KnownOne bit sets. 1475 /// 1476 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1477 /// we cannot optimize based on the assumption that it is zero without changing 1478 /// it to be an explicit zero. If we don't change it to zero, other code could 1479 /// optimized based on the contradictory assumption that it is non-zero. 1480 /// Because instcombine aggressively folds operations with undef args anyway, 1481 /// this won't lose us code quality. 1482 /// 1483 /// This function is defined on values with integer type, values with pointer 1484 /// type, and vectors of integers. In the case 1485 /// where V is a vector, known zero, and known one values are the 1486 /// same width as the vector element, and the bit is set only if it is true 1487 /// for all of the elements in the vector. 1488 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1489 unsigned Depth, const Query &Q) { 1490 assert(V && "No Value?"); 1491 assert(Depth <= MaxDepth && "Limit Search Depth"); 1492 unsigned BitWidth = KnownZero.getBitWidth(); 1493 1494 assert((V->getType()->isIntOrIntVectorTy() || 1495 V->getType()->getScalarType()->isPointerTy()) && 1496 "Not integer or pointer type!"); 1497 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1498 (!V->getType()->isIntOrIntVectorTy() || 1499 V->getType()->getScalarSizeInBits() == BitWidth) && 1500 KnownZero.getBitWidth() == BitWidth && 1501 KnownOne.getBitWidth() == BitWidth && 1502 "V, KnownOne and KnownZero should have same BitWidth"); 1503 1504 const APInt *C; 1505 if (match(V, m_APInt(C))) { 1506 // We know all of the bits for a scalar constant or a splat vector constant! 1507 KnownOne = *C; 1508 KnownZero = ~KnownOne; 1509 return; 1510 } 1511 // Null and aggregate-zero are all-zeros. 1512 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1513 KnownOne.clearAllBits(); 1514 KnownZero = APInt::getAllOnesValue(BitWidth); 1515 return; 1516 } 1517 // Handle a constant vector by taking the intersection of the known bits of 1518 // each element. 1519 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1520 // We know that CDS must be a vector of integers. Take the intersection of 1521 // each element. 1522 KnownZero.setAllBits(); KnownOne.setAllBits(); 1523 APInt Elt(KnownZero.getBitWidth(), 0); 1524 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1525 Elt = CDS->getElementAsInteger(i); 1526 KnownZero &= ~Elt; 1527 KnownOne &= Elt; 1528 } 1529 return; 1530 } 1531 1532 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1533 // We know that CV must be a vector of integers. Take the intersection of 1534 // each element. 1535 KnownZero.setAllBits(); KnownOne.setAllBits(); 1536 APInt Elt(KnownZero.getBitWidth(), 0); 1537 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1538 Constant *Element = CV->getAggregateElement(i); 1539 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1540 if (!ElementCI) { 1541 KnownZero.clearAllBits(); 1542 KnownOne.clearAllBits(); 1543 return; 1544 } 1545 Elt = ElementCI->getValue(); 1546 KnownZero &= ~Elt; 1547 KnownOne &= Elt; 1548 } 1549 return; 1550 } 1551 1552 // Start out not knowing anything. 1553 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1554 1555 // We can't imply anything about undefs. 1556 if (isa<UndefValue>(V)) 1557 return; 1558 1559 // There's no point in looking through other users of ConstantData for 1560 // assumptions. Confirm that we've handled them all. 1561 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1562 1563 // Limit search depth. 1564 // All recursive calls that increase depth must come after this. 1565 if (Depth == MaxDepth) 1566 return; 1567 1568 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1569 // the bits of its aliasee. 1570 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1571 if (!GA->isInterposable()) 1572 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1573 return; 1574 } 1575 1576 if (const Operator *I = dyn_cast<Operator>(V)) 1577 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1578 1579 // Aligned pointers have trailing zeros - refine KnownZero set 1580 if (V->getType()->isPointerTy()) { 1581 unsigned Align = V->getPointerAlignment(Q.DL); 1582 if (Align) 1583 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1584 } 1585 1586 // computeKnownBitsFromAssume strictly refines KnownZero and 1587 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1588 1589 // Check whether a nearby assume intrinsic can determine some known bits. 1590 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1591 1592 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1593 } 1594 1595 /// Determine whether the sign bit is known to be zero or one. 1596 /// Convenience wrapper around computeKnownBits. 1597 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1598 unsigned Depth, const Query &Q) { 1599 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1600 if (!BitWidth) { 1601 KnownZero = false; 1602 KnownOne = false; 1603 return; 1604 } 1605 APInt ZeroBits(BitWidth, 0); 1606 APInt OneBits(BitWidth, 0); 1607 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1608 KnownOne = OneBits[BitWidth - 1]; 1609 KnownZero = ZeroBits[BitWidth - 1]; 1610 } 1611 1612 /// Return true if the given value is known to have exactly one 1613 /// bit set when defined. For vectors return true if every element is known to 1614 /// be a power of two when defined. Supports values with integer or pointer 1615 /// types and vectors of integers. 1616 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1617 const Query &Q) { 1618 if (const Constant *C = dyn_cast<Constant>(V)) { 1619 if (C->isNullValue()) 1620 return OrZero; 1621 1622 const APInt *ConstIntOrConstSplatInt; 1623 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1624 return ConstIntOrConstSplatInt->isPowerOf2(); 1625 } 1626 1627 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1628 // it is shifted off the end then the result is undefined. 1629 if (match(V, m_Shl(m_One(), m_Value()))) 1630 return true; 1631 1632 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1633 // bottom. If it is shifted off the bottom then the result is undefined. 1634 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1635 return true; 1636 1637 // The remaining tests are all recursive, so bail out if we hit the limit. 1638 if (Depth++ == MaxDepth) 1639 return false; 1640 1641 Value *X = nullptr, *Y = nullptr; 1642 // A shift left or a logical shift right of a power of two is a power of two 1643 // or zero. 1644 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1645 match(V, m_LShr(m_Value(X), m_Value())))) 1646 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1647 1648 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1649 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1650 1651 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1652 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1653 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1654 1655 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1656 // A power of two and'd with anything is a power of two or zero. 1657 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1658 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1659 return true; 1660 // X & (-X) is always a power of two or zero. 1661 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1662 return true; 1663 return false; 1664 } 1665 1666 // Adding a power-of-two or zero to the same power-of-two or zero yields 1667 // either the original power-of-two, a larger power-of-two or zero. 1668 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1669 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1670 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1671 if (match(X, m_And(m_Specific(Y), m_Value())) || 1672 match(X, m_And(m_Value(), m_Specific(Y)))) 1673 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1674 return true; 1675 if (match(Y, m_And(m_Specific(X), m_Value())) || 1676 match(Y, m_And(m_Value(), m_Specific(X)))) 1677 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1678 return true; 1679 1680 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1681 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1682 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1683 1684 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1685 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1686 // If i8 V is a power of two or zero: 1687 // ZeroBits: 1 1 1 0 1 1 1 1 1688 // ~ZeroBits: 0 0 0 1 0 0 0 0 1689 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1690 // If OrZero isn't set, we cannot give back a zero result. 1691 // Make sure either the LHS or RHS has a bit set. 1692 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1693 return true; 1694 } 1695 } 1696 1697 // An exact divide or right shift can only shift off zero bits, so the result 1698 // is a power of two only if the first operand is a power of two and not 1699 // copying a sign bit (sdiv int_min, 2). 1700 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1701 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1702 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1703 Depth, Q); 1704 } 1705 1706 return false; 1707 } 1708 1709 /// \brief Test whether a GEP's result is known to be non-null. 1710 /// 1711 /// Uses properties inherent in a GEP to try to determine whether it is known 1712 /// to be non-null. 1713 /// 1714 /// Currently this routine does not support vector GEPs. 1715 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1716 const Query &Q) { 1717 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1718 return false; 1719 1720 // FIXME: Support vector-GEPs. 1721 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1722 1723 // If the base pointer is non-null, we cannot walk to a null address with an 1724 // inbounds GEP in address space zero. 1725 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1726 return true; 1727 1728 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1729 // If so, then the GEP cannot produce a null pointer, as doing so would 1730 // inherently violate the inbounds contract within address space zero. 1731 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1732 GTI != GTE; ++GTI) { 1733 // Struct types are easy -- they must always be indexed by a constant. 1734 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1735 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1736 unsigned ElementIdx = OpC->getZExtValue(); 1737 const StructLayout *SL = Q.DL.getStructLayout(STy); 1738 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1739 if (ElementOffset > 0) 1740 return true; 1741 continue; 1742 } 1743 1744 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1745 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1746 continue; 1747 1748 // Fast path the constant operand case both for efficiency and so we don't 1749 // increment Depth when just zipping down an all-constant GEP. 1750 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1751 if (!OpC->isZero()) 1752 return true; 1753 continue; 1754 } 1755 1756 // We post-increment Depth here because while isKnownNonZero increments it 1757 // as well, when we pop back up that increment won't persist. We don't want 1758 // to recurse 10k times just because we have 10k GEP operands. We don't 1759 // bail completely out because we want to handle constant GEPs regardless 1760 // of depth. 1761 if (Depth++ >= MaxDepth) 1762 continue; 1763 1764 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1765 return true; 1766 } 1767 1768 return false; 1769 } 1770 1771 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1772 /// ensure that the value it's attached to is never Value? 'RangeType' is 1773 /// is the type of the value described by the range. 1774 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1775 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1776 assert(NumRanges >= 1); 1777 for (unsigned i = 0; i < NumRanges; ++i) { 1778 ConstantInt *Lower = 1779 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1780 ConstantInt *Upper = 1781 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1782 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1783 if (Range.contains(Value)) 1784 return false; 1785 } 1786 return true; 1787 } 1788 1789 /// Return true if the given value is known to be non-zero when defined. 1790 /// For vectors return true if every element is known to be non-zero when 1791 /// defined. Supports values with integer or pointer type and vectors of 1792 /// integers. 1793 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1794 if (auto *C = dyn_cast<Constant>(V)) { 1795 if (C->isNullValue()) 1796 return false; 1797 if (isa<ConstantInt>(C)) 1798 // Must be non-zero due to null test above. 1799 return true; 1800 1801 // For constant vectors, check that all elements are undefined or known 1802 // non-zero to determine that the whole vector is known non-zero. 1803 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1804 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1805 Constant *Elt = C->getAggregateElement(i); 1806 if (!Elt || Elt->isNullValue()) 1807 return false; 1808 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1809 return false; 1810 } 1811 return true; 1812 } 1813 1814 return false; 1815 } 1816 1817 if (auto *I = dyn_cast<Instruction>(V)) { 1818 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1819 // If the possible ranges don't contain zero, then the value is 1820 // definitely non-zero. 1821 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1822 const APInt ZeroValue(Ty->getBitWidth(), 0); 1823 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1824 return true; 1825 } 1826 } 1827 } 1828 1829 // The remaining tests are all recursive, so bail out if we hit the limit. 1830 if (Depth++ >= MaxDepth) 1831 return false; 1832 1833 // Check for pointer simplifications. 1834 if (V->getType()->isPointerTy()) { 1835 if (isKnownNonNull(V)) 1836 return true; 1837 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1838 if (isGEPKnownNonNull(GEP, Depth, Q)) 1839 return true; 1840 } 1841 1842 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1843 1844 // X | Y != 0 if X != 0 or Y != 0. 1845 Value *X = nullptr, *Y = nullptr; 1846 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1847 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1848 1849 // ext X != 0 if X != 0. 1850 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1851 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1852 1853 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1854 // if the lowest bit is shifted off the end. 1855 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1856 // shl nuw can't remove any non-zero bits. 1857 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1858 if (BO->hasNoUnsignedWrap()) 1859 return isKnownNonZero(X, Depth, Q); 1860 1861 APInt KnownZero(BitWidth, 0); 1862 APInt KnownOne(BitWidth, 0); 1863 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1864 if (KnownOne[0]) 1865 return true; 1866 } 1867 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1868 // defined if the sign bit is shifted off the end. 1869 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1870 // shr exact can only shift out zero bits. 1871 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1872 if (BO->isExact()) 1873 return isKnownNonZero(X, Depth, Q); 1874 1875 bool XKnownNonNegative, XKnownNegative; 1876 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1877 if (XKnownNegative) 1878 return true; 1879 1880 // If the shifter operand is a constant, and all of the bits shifted 1881 // out are known to be zero, and X is known non-zero then at least one 1882 // non-zero bit must remain. 1883 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1884 APInt KnownZero(BitWidth, 0); 1885 APInt KnownOne(BitWidth, 0); 1886 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1887 1888 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1889 // Is there a known one in the portion not shifted out? 1890 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1891 return true; 1892 // Are all the bits to be shifted out known zero? 1893 if (KnownZero.countTrailingOnes() >= ShiftVal) 1894 return isKnownNonZero(X, Depth, Q); 1895 } 1896 } 1897 // div exact can only produce a zero if the dividend is zero. 1898 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1899 return isKnownNonZero(X, Depth, Q); 1900 } 1901 // X + Y. 1902 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1903 bool XKnownNonNegative, XKnownNegative; 1904 bool YKnownNonNegative, YKnownNegative; 1905 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1906 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1907 1908 // If X and Y are both non-negative (as signed values) then their sum is not 1909 // zero unless both X and Y are zero. 1910 if (XKnownNonNegative && YKnownNonNegative) 1911 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1912 return true; 1913 1914 // If X and Y are both negative (as signed values) then their sum is not 1915 // zero unless both X and Y equal INT_MIN. 1916 if (BitWidth && XKnownNegative && YKnownNegative) { 1917 APInt KnownZero(BitWidth, 0); 1918 APInt KnownOne(BitWidth, 0); 1919 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1920 // The sign bit of X is set. If some other bit is set then X is not equal 1921 // to INT_MIN. 1922 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1923 if ((KnownOne & Mask) != 0) 1924 return true; 1925 // The sign bit of Y is set. If some other bit is set then Y is not equal 1926 // to INT_MIN. 1927 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1928 if ((KnownOne & Mask) != 0) 1929 return true; 1930 } 1931 1932 // The sum of a non-negative number and a power of two is not zero. 1933 if (XKnownNonNegative && 1934 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1935 return true; 1936 if (YKnownNonNegative && 1937 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1938 return true; 1939 } 1940 // X * Y. 1941 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1942 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1943 // If X and Y are non-zero then so is X * Y as long as the multiplication 1944 // does not overflow. 1945 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1946 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1947 return true; 1948 } 1949 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1950 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1951 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1952 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1953 return true; 1954 } 1955 // PHI 1956 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1957 // Try and detect a recurrence that monotonically increases from a 1958 // starting value, as these are common as induction variables. 1959 if (PN->getNumIncomingValues() == 2) { 1960 Value *Start = PN->getIncomingValue(0); 1961 Value *Induction = PN->getIncomingValue(1); 1962 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1963 std::swap(Start, Induction); 1964 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1965 if (!C->isZero() && !C->isNegative()) { 1966 ConstantInt *X; 1967 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1968 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1969 !X->isNegative()) 1970 return true; 1971 } 1972 } 1973 } 1974 // Check if all incoming values are non-zero constant. 1975 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1976 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1977 }); 1978 if (AllNonZeroConstants) 1979 return true; 1980 } 1981 1982 if (!BitWidth) return false; 1983 APInt KnownZero(BitWidth, 0); 1984 APInt KnownOne(BitWidth, 0); 1985 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1986 return KnownOne != 0; 1987 } 1988 1989 /// Return true if V2 == V1 + X, where X is known non-zero. 1990 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1991 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1992 if (!BO || BO->getOpcode() != Instruction::Add) 1993 return false; 1994 Value *Op = nullptr; 1995 if (V2 == BO->getOperand(0)) 1996 Op = BO->getOperand(1); 1997 else if (V2 == BO->getOperand(1)) 1998 Op = BO->getOperand(0); 1999 else 2000 return false; 2001 return isKnownNonZero(Op, 0, Q); 2002 } 2003 2004 /// Return true if it is known that V1 != V2. 2005 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2006 if (V1->getType()->isVectorTy() || V1 == V2) 2007 return false; 2008 if (V1->getType() != V2->getType()) 2009 // We can't look through casts yet. 2010 return false; 2011 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2012 return true; 2013 2014 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2015 // Are any known bits in V1 contradictory to known bits in V2? If V1 2016 // has a known zero where V2 has a known one, they must not be equal. 2017 auto BitWidth = Ty->getBitWidth(); 2018 APInt KnownZero1(BitWidth, 0); 2019 APInt KnownOne1(BitWidth, 0); 2020 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2021 APInt KnownZero2(BitWidth, 0); 2022 APInt KnownOne2(BitWidth, 0); 2023 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2024 2025 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2026 if (OppositeBits.getBoolValue()) 2027 return true; 2028 } 2029 return false; 2030 } 2031 2032 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2033 /// simplify operations downstream. Mask is known to be zero for bits that V 2034 /// cannot have. 2035 /// 2036 /// This function is defined on values with integer type, values with pointer 2037 /// type, and vectors of integers. In the case 2038 /// where V is a vector, the mask, known zero, and known one values are the 2039 /// same width as the vector element, and the bit is set only if it is true 2040 /// for all of the elements in the vector. 2041 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2042 const Query &Q) { 2043 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2044 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2045 return (KnownZero & Mask) == Mask; 2046 } 2047 2048 /// For vector constants, loop over the elements and find the constant with the 2049 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2050 /// or if any element was not analyzed; otherwise, return the count for the 2051 /// element with the minimum number of sign bits. 2052 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2053 unsigned TyBits) { 2054 const auto *CV = dyn_cast<Constant>(V); 2055 if (!CV || !CV->getType()->isVectorTy()) 2056 return 0; 2057 2058 unsigned MinSignBits = TyBits; 2059 unsigned NumElts = CV->getType()->getVectorNumElements(); 2060 for (unsigned i = 0; i != NumElts; ++i) { 2061 // If we find a non-ConstantInt, bail out. 2062 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2063 if (!Elt) 2064 return 0; 2065 2066 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2067 APInt EltVal = Elt->getValue(); 2068 if (EltVal.isNegative()) 2069 EltVal = ~EltVal; 2070 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2071 } 2072 2073 return MinSignBits; 2074 } 2075 2076 /// Return the number of times the sign bit of the register is replicated into 2077 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2078 /// (itself), but other cases can give us information. For example, immediately 2079 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2080 /// other, so we return 3. For vectors, return the number of sign bits for the 2081 /// vector element with the mininum number of known sign bits. 2082 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2083 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2084 unsigned Tmp, Tmp2; 2085 unsigned FirstAnswer = 1; 2086 2087 // Note that ConstantInt is handled by the general computeKnownBits case 2088 // below. 2089 2090 if (Depth == 6) 2091 return 1; // Limit search depth. 2092 2093 const Operator *U = dyn_cast<Operator>(V); 2094 switch (Operator::getOpcode(V)) { 2095 default: break; 2096 case Instruction::SExt: 2097 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2098 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2099 2100 case Instruction::SDiv: { 2101 const APInt *Denominator; 2102 // sdiv X, C -> adds log(C) sign bits. 2103 if (match(U->getOperand(1), m_APInt(Denominator))) { 2104 2105 // Ignore non-positive denominator. 2106 if (!Denominator->isStrictlyPositive()) 2107 break; 2108 2109 // Calculate the incoming numerator bits. 2110 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2111 2112 // Add floor(log(C)) bits to the numerator bits. 2113 return std::min(TyBits, NumBits + Denominator->logBase2()); 2114 } 2115 break; 2116 } 2117 2118 case Instruction::SRem: { 2119 const APInt *Denominator; 2120 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2121 // positive constant. This let us put a lower bound on the number of sign 2122 // bits. 2123 if (match(U->getOperand(1), m_APInt(Denominator))) { 2124 2125 // Ignore non-positive denominator. 2126 if (!Denominator->isStrictlyPositive()) 2127 break; 2128 2129 // Calculate the incoming numerator bits. SRem by a positive constant 2130 // can't lower the number of sign bits. 2131 unsigned NumrBits = 2132 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2133 2134 // Calculate the leading sign bit constraints by examining the 2135 // denominator. Given that the denominator is positive, there are two 2136 // cases: 2137 // 2138 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2139 // (1 << ceilLogBase2(C)). 2140 // 2141 // 2. the numerator is negative. Then the result range is (-C,0] and 2142 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2143 // 2144 // Thus a lower bound on the number of sign bits is `TyBits - 2145 // ceilLogBase2(C)`. 2146 2147 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2148 return std::max(NumrBits, ResBits); 2149 } 2150 break; 2151 } 2152 2153 case Instruction::AShr: { 2154 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2155 // ashr X, C -> adds C sign bits. Vectors too. 2156 const APInt *ShAmt; 2157 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2158 Tmp += ShAmt->getZExtValue(); 2159 if (Tmp > TyBits) Tmp = TyBits; 2160 } 2161 return Tmp; 2162 } 2163 case Instruction::Shl: { 2164 const APInt *ShAmt; 2165 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2166 // shl destroys sign bits. 2167 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2168 Tmp2 = ShAmt->getZExtValue(); 2169 if (Tmp2 >= TyBits || // Bad shift. 2170 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2171 return Tmp - Tmp2; 2172 } 2173 break; 2174 } 2175 case Instruction::And: 2176 case Instruction::Or: 2177 case Instruction::Xor: // NOT is handled here. 2178 // Logical binary ops preserve the number of sign bits at the worst. 2179 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2180 if (Tmp != 1) { 2181 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2182 FirstAnswer = std::min(Tmp, Tmp2); 2183 // We computed what we know about the sign bits as our first 2184 // answer. Now proceed to the generic code that uses 2185 // computeKnownBits, and pick whichever answer is better. 2186 } 2187 break; 2188 2189 case Instruction::Select: 2190 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2191 if (Tmp == 1) return 1; // Early out. 2192 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2193 return std::min(Tmp, Tmp2); 2194 2195 case Instruction::Add: 2196 // Add can have at most one carry bit. Thus we know that the output 2197 // is, at worst, one more bit than the inputs. 2198 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2199 if (Tmp == 1) return 1; // Early out. 2200 2201 // Special case decrementing a value (ADD X, -1): 2202 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2203 if (CRHS->isAllOnesValue()) { 2204 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2205 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2206 2207 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2208 // sign bits set. 2209 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2210 return TyBits; 2211 2212 // If we are subtracting one from a positive number, there is no carry 2213 // out of the result. 2214 if (KnownZero.isNegative()) 2215 return Tmp; 2216 } 2217 2218 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2219 if (Tmp2 == 1) return 1; 2220 return std::min(Tmp, Tmp2)-1; 2221 2222 case Instruction::Sub: 2223 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2224 if (Tmp2 == 1) return 1; 2225 2226 // Handle NEG. 2227 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2228 if (CLHS->isNullValue()) { 2229 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2230 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2231 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2232 // sign bits set. 2233 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2234 return TyBits; 2235 2236 // If the input is known to be positive (the sign bit is known clear), 2237 // the output of the NEG has the same number of sign bits as the input. 2238 if (KnownZero.isNegative()) 2239 return Tmp2; 2240 2241 // Otherwise, we treat this like a SUB. 2242 } 2243 2244 // Sub can have at most one carry bit. Thus we know that the output 2245 // is, at worst, one more bit than the inputs. 2246 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2247 if (Tmp == 1) return 1; // Early out. 2248 return std::min(Tmp, Tmp2)-1; 2249 2250 case Instruction::PHI: { 2251 const PHINode *PN = cast<PHINode>(U); 2252 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2253 // Don't analyze large in-degree PHIs. 2254 if (NumIncomingValues > 4) break; 2255 // Unreachable blocks may have zero-operand PHI nodes. 2256 if (NumIncomingValues == 0) break; 2257 2258 // Take the minimum of all incoming values. This can't infinitely loop 2259 // because of our depth threshold. 2260 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2261 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2262 if (Tmp == 1) return Tmp; 2263 Tmp = std::min( 2264 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2265 } 2266 return Tmp; 2267 } 2268 2269 case Instruction::Trunc: 2270 // FIXME: it's tricky to do anything useful for this, but it is an important 2271 // case for targets like X86. 2272 break; 2273 2274 case Instruction::ExtractElement: 2275 // Look through extract element. At the moment we keep this simple and skip 2276 // tracking the specific element. But at least we might find information 2277 // valid for all elements of the vector (for example if vector is sign 2278 // extended, shifted, etc). 2279 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2280 } 2281 2282 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2283 // use this information. 2284 2285 // If we can examine all elements of a vector constant successfully, we're 2286 // done (we can't do any better than that). If not, keep trying. 2287 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2288 return VecSignBits; 2289 2290 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2291 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2292 2293 // If we know that the sign bit is either zero or one, determine the number of 2294 // identical bits in the top of the input value. 2295 if (KnownZero.isNegative()) 2296 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2297 2298 if (KnownOne.isNegative()) 2299 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2300 2301 // computeKnownBits gave us no extra information about the top bits. 2302 return FirstAnswer; 2303 } 2304 2305 /// This function computes the integer multiple of Base that equals V. 2306 /// If successful, it returns true and returns the multiple in 2307 /// Multiple. If unsuccessful, it returns false. It looks 2308 /// through SExt instructions only if LookThroughSExt is true. 2309 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2310 bool LookThroughSExt, unsigned Depth) { 2311 const unsigned MaxDepth = 6; 2312 2313 assert(V && "No Value?"); 2314 assert(Depth <= MaxDepth && "Limit Search Depth"); 2315 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2316 2317 Type *T = V->getType(); 2318 2319 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2320 2321 if (Base == 0) 2322 return false; 2323 2324 if (Base == 1) { 2325 Multiple = V; 2326 return true; 2327 } 2328 2329 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2330 Constant *BaseVal = ConstantInt::get(T, Base); 2331 if (CO && CO == BaseVal) { 2332 // Multiple is 1. 2333 Multiple = ConstantInt::get(T, 1); 2334 return true; 2335 } 2336 2337 if (CI && CI->getZExtValue() % Base == 0) { 2338 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2339 return true; 2340 } 2341 2342 if (Depth == MaxDepth) return false; // Limit search depth. 2343 2344 Operator *I = dyn_cast<Operator>(V); 2345 if (!I) return false; 2346 2347 switch (I->getOpcode()) { 2348 default: break; 2349 case Instruction::SExt: 2350 if (!LookThroughSExt) return false; 2351 // otherwise fall through to ZExt 2352 case Instruction::ZExt: 2353 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2354 LookThroughSExt, Depth+1); 2355 case Instruction::Shl: 2356 case Instruction::Mul: { 2357 Value *Op0 = I->getOperand(0); 2358 Value *Op1 = I->getOperand(1); 2359 2360 if (I->getOpcode() == Instruction::Shl) { 2361 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2362 if (!Op1CI) return false; 2363 // Turn Op0 << Op1 into Op0 * 2^Op1 2364 APInt Op1Int = Op1CI->getValue(); 2365 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2366 APInt API(Op1Int.getBitWidth(), 0); 2367 API.setBit(BitToSet); 2368 Op1 = ConstantInt::get(V->getContext(), API); 2369 } 2370 2371 Value *Mul0 = nullptr; 2372 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2373 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2374 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2375 if (Op1C->getType()->getPrimitiveSizeInBits() < 2376 MulC->getType()->getPrimitiveSizeInBits()) 2377 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2378 if (Op1C->getType()->getPrimitiveSizeInBits() > 2379 MulC->getType()->getPrimitiveSizeInBits()) 2380 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2381 2382 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2383 Multiple = ConstantExpr::getMul(MulC, Op1C); 2384 return true; 2385 } 2386 2387 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2388 if (Mul0CI->getValue() == 1) { 2389 // V == Base * Op1, so return Op1 2390 Multiple = Op1; 2391 return true; 2392 } 2393 } 2394 2395 Value *Mul1 = nullptr; 2396 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2397 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2398 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2399 if (Op0C->getType()->getPrimitiveSizeInBits() < 2400 MulC->getType()->getPrimitiveSizeInBits()) 2401 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2402 if (Op0C->getType()->getPrimitiveSizeInBits() > 2403 MulC->getType()->getPrimitiveSizeInBits()) 2404 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2405 2406 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2407 Multiple = ConstantExpr::getMul(MulC, Op0C); 2408 return true; 2409 } 2410 2411 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2412 if (Mul1CI->getValue() == 1) { 2413 // V == Base * Op0, so return Op0 2414 Multiple = Op0; 2415 return true; 2416 } 2417 } 2418 } 2419 } 2420 2421 // We could not determine if V is a multiple of Base. 2422 return false; 2423 } 2424 2425 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2426 const TargetLibraryInfo *TLI) { 2427 const Function *F = ICS.getCalledFunction(); 2428 if (!F) 2429 return Intrinsic::not_intrinsic; 2430 2431 if (F->isIntrinsic()) 2432 return F->getIntrinsicID(); 2433 2434 if (!TLI) 2435 return Intrinsic::not_intrinsic; 2436 2437 LibFunc::Func Func; 2438 // We're going to make assumptions on the semantics of the functions, check 2439 // that the target knows that it's available in this environment and it does 2440 // not have local linkage. 2441 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2442 return Intrinsic::not_intrinsic; 2443 2444 if (!ICS.onlyReadsMemory()) 2445 return Intrinsic::not_intrinsic; 2446 2447 // Otherwise check if we have a call to a function that can be turned into a 2448 // vector intrinsic. 2449 switch (Func) { 2450 default: 2451 break; 2452 case LibFunc::sin: 2453 case LibFunc::sinf: 2454 case LibFunc::sinl: 2455 return Intrinsic::sin; 2456 case LibFunc::cos: 2457 case LibFunc::cosf: 2458 case LibFunc::cosl: 2459 return Intrinsic::cos; 2460 case LibFunc::exp: 2461 case LibFunc::expf: 2462 case LibFunc::expl: 2463 return Intrinsic::exp; 2464 case LibFunc::exp2: 2465 case LibFunc::exp2f: 2466 case LibFunc::exp2l: 2467 return Intrinsic::exp2; 2468 case LibFunc::log: 2469 case LibFunc::logf: 2470 case LibFunc::logl: 2471 return Intrinsic::log; 2472 case LibFunc::log10: 2473 case LibFunc::log10f: 2474 case LibFunc::log10l: 2475 return Intrinsic::log10; 2476 case LibFunc::log2: 2477 case LibFunc::log2f: 2478 case LibFunc::log2l: 2479 return Intrinsic::log2; 2480 case LibFunc::fabs: 2481 case LibFunc::fabsf: 2482 case LibFunc::fabsl: 2483 return Intrinsic::fabs; 2484 case LibFunc::fmin: 2485 case LibFunc::fminf: 2486 case LibFunc::fminl: 2487 return Intrinsic::minnum; 2488 case LibFunc::fmax: 2489 case LibFunc::fmaxf: 2490 case LibFunc::fmaxl: 2491 return Intrinsic::maxnum; 2492 case LibFunc::copysign: 2493 case LibFunc::copysignf: 2494 case LibFunc::copysignl: 2495 return Intrinsic::copysign; 2496 case LibFunc::floor: 2497 case LibFunc::floorf: 2498 case LibFunc::floorl: 2499 return Intrinsic::floor; 2500 case LibFunc::ceil: 2501 case LibFunc::ceilf: 2502 case LibFunc::ceill: 2503 return Intrinsic::ceil; 2504 case LibFunc::trunc: 2505 case LibFunc::truncf: 2506 case LibFunc::truncl: 2507 return Intrinsic::trunc; 2508 case LibFunc::rint: 2509 case LibFunc::rintf: 2510 case LibFunc::rintl: 2511 return Intrinsic::rint; 2512 case LibFunc::nearbyint: 2513 case LibFunc::nearbyintf: 2514 case LibFunc::nearbyintl: 2515 return Intrinsic::nearbyint; 2516 case LibFunc::round: 2517 case LibFunc::roundf: 2518 case LibFunc::roundl: 2519 return Intrinsic::round; 2520 case LibFunc::pow: 2521 case LibFunc::powf: 2522 case LibFunc::powl: 2523 return Intrinsic::pow; 2524 case LibFunc::sqrt: 2525 case LibFunc::sqrtf: 2526 case LibFunc::sqrtl: 2527 if (ICS->hasNoNaNs()) 2528 return Intrinsic::sqrt; 2529 return Intrinsic::not_intrinsic; 2530 } 2531 2532 return Intrinsic::not_intrinsic; 2533 } 2534 2535 /// Return true if we can prove that the specified FP value is never equal to 2536 /// -0.0. 2537 /// 2538 /// NOTE: this function will need to be revisited when we support non-default 2539 /// rounding modes! 2540 /// 2541 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2542 unsigned Depth) { 2543 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2544 return !CFP->getValueAPF().isNegZero(); 2545 2546 // FIXME: Magic number! At the least, this should be given a name because it's 2547 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2548 // expose it as a parameter, so it can be used for testing / experimenting. 2549 if (Depth == 6) 2550 return false; // Limit search depth. 2551 2552 const Operator *I = dyn_cast<Operator>(V); 2553 if (!I) return false; 2554 2555 // Check if the nsz fast-math flag is set 2556 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2557 if (FPO->hasNoSignedZeros()) 2558 return true; 2559 2560 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2561 if (I->getOpcode() == Instruction::FAdd) 2562 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2563 if (CFP->isNullValue()) 2564 return true; 2565 2566 // sitofp and uitofp turn into +0.0 for zero. 2567 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2568 return true; 2569 2570 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2571 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2572 switch (IID) { 2573 default: 2574 break; 2575 // sqrt(-0.0) = -0.0, no other negative results are possible. 2576 case Intrinsic::sqrt: 2577 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2578 // fabs(x) != -0.0 2579 case Intrinsic::fabs: 2580 return true; 2581 } 2582 } 2583 2584 return false; 2585 } 2586 2587 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2588 const TargetLibraryInfo *TLI, 2589 unsigned Depth) { 2590 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2591 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2592 2593 // FIXME: Magic number! At the least, this should be given a name because it's 2594 // used similarly in CannotBeNegativeZero(). A better fix may be to 2595 // expose it as a parameter, so it can be used for testing / experimenting. 2596 if (Depth == 6) 2597 return false; // Limit search depth. 2598 2599 const Operator *I = dyn_cast<Operator>(V); 2600 if (!I) return false; 2601 2602 switch (I->getOpcode()) { 2603 default: break; 2604 // Unsigned integers are always nonnegative. 2605 case Instruction::UIToFP: 2606 return true; 2607 case Instruction::FMul: 2608 // x*x is always non-negative or a NaN. 2609 if (I->getOperand(0) == I->getOperand(1)) 2610 return true; 2611 LLVM_FALLTHROUGH; 2612 case Instruction::FAdd: 2613 case Instruction::FDiv: 2614 case Instruction::FRem: 2615 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2616 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2617 case Instruction::Select: 2618 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && 2619 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2620 case Instruction::FPExt: 2621 case Instruction::FPTrunc: 2622 // Widening/narrowing never change sign. 2623 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2624 case Instruction::Call: 2625 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2626 switch (IID) { 2627 default: 2628 break; 2629 case Intrinsic::maxnum: 2630 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || 2631 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2632 case Intrinsic::minnum: 2633 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2634 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2635 case Intrinsic::exp: 2636 case Intrinsic::exp2: 2637 case Intrinsic::fabs: 2638 case Intrinsic::sqrt: 2639 return true; 2640 case Intrinsic::powi: 2641 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2642 // powi(x,n) is non-negative if n is even. 2643 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2644 return true; 2645 } 2646 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2647 case Intrinsic::fma: 2648 case Intrinsic::fmuladd: 2649 // x*x+y is non-negative if y is non-negative. 2650 return I->getOperand(0) == I->getOperand(1) && 2651 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2652 } 2653 break; 2654 } 2655 return false; 2656 } 2657 2658 /// If the specified value can be set by repeating the same byte in memory, 2659 /// return the i8 value that it is represented with. This is 2660 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2661 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2662 /// byte store (e.g. i16 0x1234), return null. 2663 Value *llvm::isBytewiseValue(Value *V) { 2664 // All byte-wide stores are splatable, even of arbitrary variables. 2665 if (V->getType()->isIntegerTy(8)) return V; 2666 2667 // Handle 'null' ConstantArrayZero etc. 2668 if (Constant *C = dyn_cast<Constant>(V)) 2669 if (C->isNullValue()) 2670 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2671 2672 // Constant float and double values can be handled as integer values if the 2673 // corresponding integer value is "byteable". An important case is 0.0. 2674 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2675 if (CFP->getType()->isFloatTy()) 2676 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2677 if (CFP->getType()->isDoubleTy()) 2678 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2679 // Don't handle long double formats, which have strange constraints. 2680 } 2681 2682 // We can handle constant integers that are multiple of 8 bits. 2683 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2684 if (CI->getBitWidth() % 8 == 0) { 2685 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2686 2687 if (!CI->getValue().isSplat(8)) 2688 return nullptr; 2689 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2690 } 2691 } 2692 2693 // A ConstantDataArray/Vector is splatable if all its members are equal and 2694 // also splatable. 2695 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2696 Value *Elt = CA->getElementAsConstant(0); 2697 Value *Val = isBytewiseValue(Elt); 2698 if (!Val) 2699 return nullptr; 2700 2701 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2702 if (CA->getElementAsConstant(I) != Elt) 2703 return nullptr; 2704 2705 return Val; 2706 } 2707 2708 // Conceptually, we could handle things like: 2709 // %a = zext i8 %X to i16 2710 // %b = shl i16 %a, 8 2711 // %c = or i16 %a, %b 2712 // but until there is an example that actually needs this, it doesn't seem 2713 // worth worrying about. 2714 return nullptr; 2715 } 2716 2717 2718 // This is the recursive version of BuildSubAggregate. It takes a few different 2719 // arguments. Idxs is the index within the nested struct From that we are 2720 // looking at now (which is of type IndexedType). IdxSkip is the number of 2721 // indices from Idxs that should be left out when inserting into the resulting 2722 // struct. To is the result struct built so far, new insertvalue instructions 2723 // build on that. 2724 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2725 SmallVectorImpl<unsigned> &Idxs, 2726 unsigned IdxSkip, 2727 Instruction *InsertBefore) { 2728 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2729 if (STy) { 2730 // Save the original To argument so we can modify it 2731 Value *OrigTo = To; 2732 // General case, the type indexed by Idxs is a struct 2733 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2734 // Process each struct element recursively 2735 Idxs.push_back(i); 2736 Value *PrevTo = To; 2737 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2738 InsertBefore); 2739 Idxs.pop_back(); 2740 if (!To) { 2741 // Couldn't find any inserted value for this index? Cleanup 2742 while (PrevTo != OrigTo) { 2743 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2744 PrevTo = Del->getAggregateOperand(); 2745 Del->eraseFromParent(); 2746 } 2747 // Stop processing elements 2748 break; 2749 } 2750 } 2751 // If we successfully found a value for each of our subaggregates 2752 if (To) 2753 return To; 2754 } 2755 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2756 // the struct's elements had a value that was inserted directly. In the latter 2757 // case, perhaps we can't determine each of the subelements individually, but 2758 // we might be able to find the complete struct somewhere. 2759 2760 // Find the value that is at that particular spot 2761 Value *V = FindInsertedValue(From, Idxs); 2762 2763 if (!V) 2764 return nullptr; 2765 2766 // Insert the value in the new (sub) aggregrate 2767 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2768 "tmp", InsertBefore); 2769 } 2770 2771 // This helper takes a nested struct and extracts a part of it (which is again a 2772 // struct) into a new value. For example, given the struct: 2773 // { a, { b, { c, d }, e } } 2774 // and the indices "1, 1" this returns 2775 // { c, d }. 2776 // 2777 // It does this by inserting an insertvalue for each element in the resulting 2778 // struct, as opposed to just inserting a single struct. This will only work if 2779 // each of the elements of the substruct are known (ie, inserted into From by an 2780 // insertvalue instruction somewhere). 2781 // 2782 // All inserted insertvalue instructions are inserted before InsertBefore 2783 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2784 Instruction *InsertBefore) { 2785 assert(InsertBefore && "Must have someplace to insert!"); 2786 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2787 idx_range); 2788 Value *To = UndefValue::get(IndexedType); 2789 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2790 unsigned IdxSkip = Idxs.size(); 2791 2792 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2793 } 2794 2795 /// Given an aggregrate and an sequence of indices, see if 2796 /// the scalar value indexed is already around as a register, for example if it 2797 /// were inserted directly into the aggregrate. 2798 /// 2799 /// If InsertBefore is not null, this function will duplicate (modified) 2800 /// insertvalues when a part of a nested struct is extracted. 2801 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2802 Instruction *InsertBefore) { 2803 // Nothing to index? Just return V then (this is useful at the end of our 2804 // recursion). 2805 if (idx_range.empty()) 2806 return V; 2807 // We have indices, so V should have an indexable type. 2808 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2809 "Not looking at a struct or array?"); 2810 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2811 "Invalid indices for type?"); 2812 2813 if (Constant *C = dyn_cast<Constant>(V)) { 2814 C = C->getAggregateElement(idx_range[0]); 2815 if (!C) return nullptr; 2816 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2817 } 2818 2819 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2820 // Loop the indices for the insertvalue instruction in parallel with the 2821 // requested indices 2822 const unsigned *req_idx = idx_range.begin(); 2823 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2824 i != e; ++i, ++req_idx) { 2825 if (req_idx == idx_range.end()) { 2826 // We can't handle this without inserting insertvalues 2827 if (!InsertBefore) 2828 return nullptr; 2829 2830 // The requested index identifies a part of a nested aggregate. Handle 2831 // this specially. For example, 2832 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2833 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2834 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2835 // This can be changed into 2836 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2837 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2838 // which allows the unused 0,0 element from the nested struct to be 2839 // removed. 2840 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2841 InsertBefore); 2842 } 2843 2844 // This insert value inserts something else than what we are looking for. 2845 // See if the (aggregate) value inserted into has the value we are 2846 // looking for, then. 2847 if (*req_idx != *i) 2848 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2849 InsertBefore); 2850 } 2851 // If we end up here, the indices of the insertvalue match with those 2852 // requested (though possibly only partially). Now we recursively look at 2853 // the inserted value, passing any remaining indices. 2854 return FindInsertedValue(I->getInsertedValueOperand(), 2855 makeArrayRef(req_idx, idx_range.end()), 2856 InsertBefore); 2857 } 2858 2859 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2860 // If we're extracting a value from an aggregate that was extracted from 2861 // something else, we can extract from that something else directly instead. 2862 // However, we will need to chain I's indices with the requested indices. 2863 2864 // Calculate the number of indices required 2865 unsigned size = I->getNumIndices() + idx_range.size(); 2866 // Allocate some space to put the new indices in 2867 SmallVector<unsigned, 5> Idxs; 2868 Idxs.reserve(size); 2869 // Add indices from the extract value instruction 2870 Idxs.append(I->idx_begin(), I->idx_end()); 2871 2872 // Add requested indices 2873 Idxs.append(idx_range.begin(), idx_range.end()); 2874 2875 assert(Idxs.size() == size 2876 && "Number of indices added not correct?"); 2877 2878 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2879 } 2880 // Otherwise, we don't know (such as, extracting from a function return value 2881 // or load instruction) 2882 return nullptr; 2883 } 2884 2885 /// Analyze the specified pointer to see if it can be expressed as a base 2886 /// pointer plus a constant offset. Return the base and offset to the caller. 2887 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2888 const DataLayout &DL) { 2889 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2890 APInt ByteOffset(BitWidth, 0); 2891 2892 // We walk up the defs but use a visited set to handle unreachable code. In 2893 // that case, we stop after accumulating the cycle once (not that it 2894 // matters). 2895 SmallPtrSet<Value *, 16> Visited; 2896 while (Visited.insert(Ptr).second) { 2897 if (Ptr->getType()->isVectorTy()) 2898 break; 2899 2900 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2901 // If one of the values we have visited is an addrspacecast, then 2902 // the pointer type of this GEP may be different from the type 2903 // of the Ptr parameter which was passed to this function. This 2904 // means when we construct GEPOffset, we need to use the size 2905 // of GEP's pointer type rather than the size of the original 2906 // pointer type. 2907 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2908 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2909 break; 2910 2911 ByteOffset += GEPOffset.getSExtValue(); 2912 2913 Ptr = GEP->getPointerOperand(); 2914 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2915 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2916 Ptr = cast<Operator>(Ptr)->getOperand(0); 2917 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2918 if (GA->isInterposable()) 2919 break; 2920 Ptr = GA->getAliasee(); 2921 } else { 2922 break; 2923 } 2924 } 2925 Offset = ByteOffset.getSExtValue(); 2926 return Ptr; 2927 } 2928 2929 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2930 // Make sure the GEP has exactly three arguments. 2931 if (GEP->getNumOperands() != 3) 2932 return false; 2933 2934 // Make sure the index-ee is a pointer to array of i8. 2935 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2936 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2937 return false; 2938 2939 // Check to make sure that the first operand of the GEP is an integer and 2940 // has value 0 so that we are sure we're indexing into the initializer. 2941 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2942 if (!FirstIdx || !FirstIdx->isZero()) 2943 return false; 2944 2945 return true; 2946 } 2947 2948 /// This function computes the length of a null-terminated C string pointed to 2949 /// by V. If successful, it returns true and returns the string in Str. 2950 /// If unsuccessful, it returns false. 2951 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2952 uint64_t Offset, bool TrimAtNul) { 2953 assert(V); 2954 2955 // Look through bitcast instructions and geps. 2956 V = V->stripPointerCasts(); 2957 2958 // If the value is a GEP instruction or constant expression, treat it as an 2959 // offset. 2960 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2961 // The GEP operator should be based on a pointer to string constant, and is 2962 // indexing into the string constant. 2963 if (!isGEPBasedOnPointerToString(GEP)) 2964 return false; 2965 2966 // If the second index isn't a ConstantInt, then this is a variable index 2967 // into the array. If this occurs, we can't say anything meaningful about 2968 // the string. 2969 uint64_t StartIdx = 0; 2970 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2971 StartIdx = CI->getZExtValue(); 2972 else 2973 return false; 2974 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2975 TrimAtNul); 2976 } 2977 2978 // The GEP instruction, constant or instruction, must reference a global 2979 // variable that is a constant and is initialized. The referenced constant 2980 // initializer is the array that we'll use for optimization. 2981 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2982 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2983 return false; 2984 2985 // Handle the all-zeros case. 2986 if (GV->getInitializer()->isNullValue()) { 2987 // This is a degenerate case. The initializer is constant zero so the 2988 // length of the string must be zero. 2989 Str = ""; 2990 return true; 2991 } 2992 2993 // This must be a ConstantDataArray. 2994 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 2995 if (!Array || !Array->isString()) 2996 return false; 2997 2998 // Get the number of elements in the array. 2999 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3000 3001 // Start out with the entire array in the StringRef. 3002 Str = Array->getAsString(); 3003 3004 if (Offset > NumElts) 3005 return false; 3006 3007 // Skip over 'offset' bytes. 3008 Str = Str.substr(Offset); 3009 3010 if (TrimAtNul) { 3011 // Trim off the \0 and anything after it. If the array is not nul 3012 // terminated, we just return the whole end of string. The client may know 3013 // some other way that the string is length-bound. 3014 Str = Str.substr(0, Str.find('\0')); 3015 } 3016 return true; 3017 } 3018 3019 // These next two are very similar to the above, but also look through PHI 3020 // nodes. 3021 // TODO: See if we can integrate these two together. 3022 3023 /// If we can compute the length of the string pointed to by 3024 /// the specified pointer, return 'len+1'. If we can't, return 0. 3025 static uint64_t GetStringLengthH(const Value *V, 3026 SmallPtrSetImpl<const PHINode*> &PHIs) { 3027 // Look through noop bitcast instructions. 3028 V = V->stripPointerCasts(); 3029 3030 // If this is a PHI node, there are two cases: either we have already seen it 3031 // or we haven't. 3032 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3033 if (!PHIs.insert(PN).second) 3034 return ~0ULL; // already in the set. 3035 3036 // If it was new, see if all the input strings are the same length. 3037 uint64_t LenSoFar = ~0ULL; 3038 for (Value *IncValue : PN->incoming_values()) { 3039 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3040 if (Len == 0) return 0; // Unknown length -> unknown. 3041 3042 if (Len == ~0ULL) continue; 3043 3044 if (Len != LenSoFar && LenSoFar != ~0ULL) 3045 return 0; // Disagree -> unknown. 3046 LenSoFar = Len; 3047 } 3048 3049 // Success, all agree. 3050 return LenSoFar; 3051 } 3052 3053 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3054 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3055 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3056 if (Len1 == 0) return 0; 3057 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3058 if (Len2 == 0) return 0; 3059 if (Len1 == ~0ULL) return Len2; 3060 if (Len2 == ~0ULL) return Len1; 3061 if (Len1 != Len2) return 0; 3062 return Len1; 3063 } 3064 3065 // Otherwise, see if we can read the string. 3066 StringRef StrData; 3067 if (!getConstantStringInfo(V, StrData)) 3068 return 0; 3069 3070 return StrData.size()+1; 3071 } 3072 3073 /// If we can compute the length of the string pointed to by 3074 /// the specified pointer, return 'len+1'. If we can't, return 0. 3075 uint64_t llvm::GetStringLength(const Value *V) { 3076 if (!V->getType()->isPointerTy()) return 0; 3077 3078 SmallPtrSet<const PHINode*, 32> PHIs; 3079 uint64_t Len = GetStringLengthH(V, PHIs); 3080 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3081 // an empty string as a length. 3082 return Len == ~0ULL ? 1 : Len; 3083 } 3084 3085 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3086 /// previous iteration of the loop was referring to the same object as \p PN. 3087 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3088 const LoopInfo *LI) { 3089 // Find the loop-defined value. 3090 Loop *L = LI->getLoopFor(PN->getParent()); 3091 if (PN->getNumIncomingValues() != 2) 3092 return true; 3093 3094 // Find the value from previous iteration. 3095 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3096 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3097 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3098 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3099 return true; 3100 3101 // If a new pointer is loaded in the loop, the pointer references a different 3102 // object in every iteration. E.g.: 3103 // for (i) 3104 // int *p = a[i]; 3105 // ... 3106 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3107 if (!L->isLoopInvariant(Load->getPointerOperand())) 3108 return false; 3109 return true; 3110 } 3111 3112 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3113 unsigned MaxLookup) { 3114 if (!V->getType()->isPointerTy()) 3115 return V; 3116 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3117 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3118 V = GEP->getPointerOperand(); 3119 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3120 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3121 V = cast<Operator>(V)->getOperand(0); 3122 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3123 if (GA->isInterposable()) 3124 return V; 3125 V = GA->getAliasee(); 3126 } else { 3127 if (auto CS = CallSite(V)) 3128 if (Value *RV = CS.getReturnedArgOperand()) { 3129 V = RV; 3130 continue; 3131 } 3132 3133 // See if InstructionSimplify knows any relevant tricks. 3134 if (Instruction *I = dyn_cast<Instruction>(V)) 3135 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3136 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3137 V = Simplified; 3138 continue; 3139 } 3140 3141 return V; 3142 } 3143 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3144 } 3145 return V; 3146 } 3147 3148 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3149 const DataLayout &DL, LoopInfo *LI, 3150 unsigned MaxLookup) { 3151 SmallPtrSet<Value *, 4> Visited; 3152 SmallVector<Value *, 4> Worklist; 3153 Worklist.push_back(V); 3154 do { 3155 Value *P = Worklist.pop_back_val(); 3156 P = GetUnderlyingObject(P, DL, MaxLookup); 3157 3158 if (!Visited.insert(P).second) 3159 continue; 3160 3161 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3162 Worklist.push_back(SI->getTrueValue()); 3163 Worklist.push_back(SI->getFalseValue()); 3164 continue; 3165 } 3166 3167 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3168 // If this PHI changes the underlying object in every iteration of the 3169 // loop, don't look through it. Consider: 3170 // int **A; 3171 // for (i) { 3172 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3173 // Curr = A[i]; 3174 // *Prev, *Curr; 3175 // 3176 // Prev is tracking Curr one iteration behind so they refer to different 3177 // underlying objects. 3178 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3179 isSameUnderlyingObjectInLoop(PN, LI)) 3180 for (Value *IncValue : PN->incoming_values()) 3181 Worklist.push_back(IncValue); 3182 continue; 3183 } 3184 3185 Objects.push_back(P); 3186 } while (!Worklist.empty()); 3187 } 3188 3189 /// Return true if the only users of this pointer are lifetime markers. 3190 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3191 for (const User *U : V->users()) { 3192 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3193 if (!II) return false; 3194 3195 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3196 II->getIntrinsicID() != Intrinsic::lifetime_end) 3197 return false; 3198 } 3199 return true; 3200 } 3201 3202 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3203 const Instruction *CtxI, 3204 const DominatorTree *DT) { 3205 const Operator *Inst = dyn_cast<Operator>(V); 3206 if (!Inst) 3207 return false; 3208 3209 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3210 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3211 if (C->canTrap()) 3212 return false; 3213 3214 switch (Inst->getOpcode()) { 3215 default: 3216 return true; 3217 case Instruction::UDiv: 3218 case Instruction::URem: { 3219 // x / y is undefined if y == 0. 3220 const APInt *V; 3221 if (match(Inst->getOperand(1), m_APInt(V))) 3222 return *V != 0; 3223 return false; 3224 } 3225 case Instruction::SDiv: 3226 case Instruction::SRem: { 3227 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3228 const APInt *Numerator, *Denominator; 3229 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3230 return false; 3231 // We cannot hoist this division if the denominator is 0. 3232 if (*Denominator == 0) 3233 return false; 3234 // It's safe to hoist if the denominator is not 0 or -1. 3235 if (*Denominator != -1) 3236 return true; 3237 // At this point we know that the denominator is -1. It is safe to hoist as 3238 // long we know that the numerator is not INT_MIN. 3239 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3240 return !Numerator->isMinSignedValue(); 3241 // The numerator *might* be MinSignedValue. 3242 return false; 3243 } 3244 case Instruction::Load: { 3245 const LoadInst *LI = cast<LoadInst>(Inst); 3246 if (!LI->isUnordered() || 3247 // Speculative load may create a race that did not exist in the source. 3248 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3249 // Speculative load may load data from dirty regions. 3250 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3251 return false; 3252 const DataLayout &DL = LI->getModule()->getDataLayout(); 3253 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3254 LI->getAlignment(), DL, CtxI, DT); 3255 } 3256 case Instruction::Call: { 3257 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3258 switch (II->getIntrinsicID()) { 3259 // These synthetic intrinsics have no side-effects and just mark 3260 // information about their operands. 3261 // FIXME: There are other no-op synthetic instructions that potentially 3262 // should be considered at least *safe* to speculate... 3263 case Intrinsic::dbg_declare: 3264 case Intrinsic::dbg_value: 3265 return true; 3266 3267 case Intrinsic::bswap: 3268 case Intrinsic::ctlz: 3269 case Intrinsic::ctpop: 3270 case Intrinsic::cttz: 3271 case Intrinsic::objectsize: 3272 case Intrinsic::sadd_with_overflow: 3273 case Intrinsic::smul_with_overflow: 3274 case Intrinsic::ssub_with_overflow: 3275 case Intrinsic::uadd_with_overflow: 3276 case Intrinsic::umul_with_overflow: 3277 case Intrinsic::usub_with_overflow: 3278 return true; 3279 // These intrinsics are defined to have the same behavior as libm 3280 // functions except for setting errno. 3281 case Intrinsic::sqrt: 3282 case Intrinsic::fma: 3283 case Intrinsic::fmuladd: 3284 return true; 3285 // These intrinsics are defined to have the same behavior as libm 3286 // functions, and the corresponding libm functions never set errno. 3287 case Intrinsic::trunc: 3288 case Intrinsic::copysign: 3289 case Intrinsic::fabs: 3290 case Intrinsic::minnum: 3291 case Intrinsic::maxnum: 3292 return true; 3293 // These intrinsics are defined to have the same behavior as libm 3294 // functions, which never overflow when operating on the IEEE754 types 3295 // that we support, and never set errno otherwise. 3296 case Intrinsic::ceil: 3297 case Intrinsic::floor: 3298 case Intrinsic::nearbyint: 3299 case Intrinsic::rint: 3300 case Intrinsic::round: 3301 return true; 3302 // TODO: are convert_{from,to}_fp16 safe? 3303 // TODO: can we list target-specific intrinsics here? 3304 default: break; 3305 } 3306 } 3307 return false; // The called function could have undefined behavior or 3308 // side-effects, even if marked readnone nounwind. 3309 } 3310 case Instruction::VAArg: 3311 case Instruction::Alloca: 3312 case Instruction::Invoke: 3313 case Instruction::PHI: 3314 case Instruction::Store: 3315 case Instruction::Ret: 3316 case Instruction::Br: 3317 case Instruction::IndirectBr: 3318 case Instruction::Switch: 3319 case Instruction::Unreachable: 3320 case Instruction::Fence: 3321 case Instruction::AtomicRMW: 3322 case Instruction::AtomicCmpXchg: 3323 case Instruction::LandingPad: 3324 case Instruction::Resume: 3325 case Instruction::CatchSwitch: 3326 case Instruction::CatchPad: 3327 case Instruction::CatchRet: 3328 case Instruction::CleanupPad: 3329 case Instruction::CleanupRet: 3330 return false; // Misc instructions which have effects 3331 } 3332 } 3333 3334 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3335 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3336 } 3337 3338 /// Return true if we know that the specified value is never null. 3339 bool llvm::isKnownNonNull(const Value *V) { 3340 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3341 3342 // Alloca never returns null, malloc might. 3343 if (isa<AllocaInst>(V)) return true; 3344 3345 // A byval, inalloca, or nonnull argument is never null. 3346 if (const Argument *A = dyn_cast<Argument>(V)) 3347 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3348 3349 // A global variable in address space 0 is non null unless extern weak. 3350 // Other address spaces may have null as a valid address for a global, 3351 // so we can't assume anything. 3352 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3353 return !GV->hasExternalWeakLinkage() && 3354 GV->getType()->getAddressSpace() == 0; 3355 3356 // A Load tagged with nonnull metadata is never null. 3357 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3358 return LI->getMetadata(LLVMContext::MD_nonnull); 3359 3360 if (auto CS = ImmutableCallSite(V)) 3361 if (CS.isReturnNonNull()) 3362 return true; 3363 3364 return false; 3365 } 3366 3367 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3368 const Instruction *CtxI, 3369 const DominatorTree *DT) { 3370 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3371 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3372 3373 unsigned NumUsesExplored = 0; 3374 for (auto *U : V->users()) { 3375 // Avoid massive lists 3376 if (NumUsesExplored >= DomConditionsMaxUses) 3377 break; 3378 NumUsesExplored++; 3379 // Consider only compare instructions uniquely controlling a branch 3380 CmpInst::Predicate Pred; 3381 if (!match(const_cast<User *>(U), 3382 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3383 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3384 continue; 3385 3386 for (auto *CmpU : U->users()) { 3387 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3388 assert(BI->isConditional() && "uses a comparison!"); 3389 3390 BasicBlock *NonNullSuccessor = 3391 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3392 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3393 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3394 return true; 3395 } else if (Pred == ICmpInst::ICMP_NE && 3396 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3397 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3398 return true; 3399 } 3400 } 3401 } 3402 3403 return false; 3404 } 3405 3406 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3407 const DominatorTree *DT) { 3408 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3409 return false; 3410 3411 if (isKnownNonNull(V)) 3412 return true; 3413 3414 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3415 } 3416 3417 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3418 const Value *RHS, 3419 const DataLayout &DL, 3420 AssumptionCache *AC, 3421 const Instruction *CxtI, 3422 const DominatorTree *DT) { 3423 // Multiplying n * m significant bits yields a result of n + m significant 3424 // bits. If the total number of significant bits does not exceed the 3425 // result bit width (minus 1), there is no overflow. 3426 // This means if we have enough leading zero bits in the operands 3427 // we can guarantee that the result does not overflow. 3428 // Ref: "Hacker's Delight" by Henry Warren 3429 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3430 APInt LHSKnownZero(BitWidth, 0); 3431 APInt LHSKnownOne(BitWidth, 0); 3432 APInt RHSKnownZero(BitWidth, 0); 3433 APInt RHSKnownOne(BitWidth, 0); 3434 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3435 DT); 3436 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3437 DT); 3438 // Note that underestimating the number of zero bits gives a more 3439 // conservative answer. 3440 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3441 RHSKnownZero.countLeadingOnes(); 3442 // First handle the easy case: if we have enough zero bits there's 3443 // definitely no overflow. 3444 if (ZeroBits >= BitWidth) 3445 return OverflowResult::NeverOverflows; 3446 3447 // Get the largest possible values for each operand. 3448 APInt LHSMax = ~LHSKnownZero; 3449 APInt RHSMax = ~RHSKnownZero; 3450 3451 // We know the multiply operation doesn't overflow if the maximum values for 3452 // each operand will not overflow after we multiply them together. 3453 bool MaxOverflow; 3454 LHSMax.umul_ov(RHSMax, MaxOverflow); 3455 if (!MaxOverflow) 3456 return OverflowResult::NeverOverflows; 3457 3458 // We know it always overflows if multiplying the smallest possible values for 3459 // the operands also results in overflow. 3460 bool MinOverflow; 3461 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3462 if (MinOverflow) 3463 return OverflowResult::AlwaysOverflows; 3464 3465 return OverflowResult::MayOverflow; 3466 } 3467 3468 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3469 const Value *RHS, 3470 const DataLayout &DL, 3471 AssumptionCache *AC, 3472 const Instruction *CxtI, 3473 const DominatorTree *DT) { 3474 bool LHSKnownNonNegative, LHSKnownNegative; 3475 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3476 AC, CxtI, DT); 3477 if (LHSKnownNonNegative || LHSKnownNegative) { 3478 bool RHSKnownNonNegative, RHSKnownNegative; 3479 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3480 AC, CxtI, DT); 3481 3482 if (LHSKnownNegative && RHSKnownNegative) { 3483 // The sign bit is set in both cases: this MUST overflow. 3484 // Create a simple add instruction, and insert it into the struct. 3485 return OverflowResult::AlwaysOverflows; 3486 } 3487 3488 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3489 // The sign bit is clear in both cases: this CANNOT overflow. 3490 // Create a simple add instruction, and insert it into the struct. 3491 return OverflowResult::NeverOverflows; 3492 } 3493 } 3494 3495 return OverflowResult::MayOverflow; 3496 } 3497 3498 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3499 const Value *RHS, 3500 const AddOperator *Add, 3501 const DataLayout &DL, 3502 AssumptionCache *AC, 3503 const Instruction *CxtI, 3504 const DominatorTree *DT) { 3505 if (Add && Add->hasNoSignedWrap()) { 3506 return OverflowResult::NeverOverflows; 3507 } 3508 3509 bool LHSKnownNonNegative, LHSKnownNegative; 3510 bool RHSKnownNonNegative, RHSKnownNegative; 3511 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3512 AC, CxtI, DT); 3513 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3514 AC, CxtI, DT); 3515 3516 if ((LHSKnownNonNegative && RHSKnownNegative) || 3517 (LHSKnownNegative && RHSKnownNonNegative)) { 3518 // The sign bits are opposite: this CANNOT overflow. 3519 return OverflowResult::NeverOverflows; 3520 } 3521 3522 // The remaining code needs Add to be available. Early returns if not so. 3523 if (!Add) 3524 return OverflowResult::MayOverflow; 3525 3526 // If the sign of Add is the same as at least one of the operands, this add 3527 // CANNOT overflow. This is particularly useful when the sum is 3528 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3529 // operands. 3530 bool LHSOrRHSKnownNonNegative = 3531 (LHSKnownNonNegative || RHSKnownNonNegative); 3532 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3533 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3534 bool AddKnownNonNegative, AddKnownNegative; 3535 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3536 /*Depth=*/0, AC, CxtI, DT); 3537 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3538 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3539 return OverflowResult::NeverOverflows; 3540 } 3541 } 3542 3543 return OverflowResult::MayOverflow; 3544 } 3545 3546 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3547 const DominatorTree &DT) { 3548 #ifndef NDEBUG 3549 auto IID = II->getIntrinsicID(); 3550 assert((IID == Intrinsic::sadd_with_overflow || 3551 IID == Intrinsic::uadd_with_overflow || 3552 IID == Intrinsic::ssub_with_overflow || 3553 IID == Intrinsic::usub_with_overflow || 3554 IID == Intrinsic::smul_with_overflow || 3555 IID == Intrinsic::umul_with_overflow) && 3556 "Not an overflow intrinsic!"); 3557 #endif 3558 3559 SmallVector<const BranchInst *, 2> GuardingBranches; 3560 SmallVector<const ExtractValueInst *, 2> Results; 3561 3562 for (const User *U : II->users()) { 3563 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3564 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3565 3566 if (EVI->getIndices()[0] == 0) 3567 Results.push_back(EVI); 3568 else { 3569 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3570 3571 for (const auto *U : EVI->users()) 3572 if (const auto *B = dyn_cast<BranchInst>(U)) { 3573 assert(B->isConditional() && "How else is it using an i1?"); 3574 GuardingBranches.push_back(B); 3575 } 3576 } 3577 } else { 3578 // We are using the aggregate directly in a way we don't want to analyze 3579 // here (storing it to a global, say). 3580 return false; 3581 } 3582 } 3583 3584 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3585 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3586 if (!NoWrapEdge.isSingleEdge()) 3587 return false; 3588 3589 // Check if all users of the add are provably no-wrap. 3590 for (const auto *Result : Results) { 3591 // If the extractvalue itself is not executed on overflow, the we don't 3592 // need to check each use separately, since domination is transitive. 3593 if (DT.dominates(NoWrapEdge, Result->getParent())) 3594 continue; 3595 3596 for (auto &RU : Result->uses()) 3597 if (!DT.dominates(NoWrapEdge, RU)) 3598 return false; 3599 } 3600 3601 return true; 3602 }; 3603 3604 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3605 } 3606 3607 3608 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3609 const DataLayout &DL, 3610 AssumptionCache *AC, 3611 const Instruction *CxtI, 3612 const DominatorTree *DT) { 3613 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3614 Add, DL, AC, CxtI, DT); 3615 } 3616 3617 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3618 const Value *RHS, 3619 const DataLayout &DL, 3620 AssumptionCache *AC, 3621 const Instruction *CxtI, 3622 const DominatorTree *DT) { 3623 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3624 } 3625 3626 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3627 // A memory operation returns normally if it isn't volatile. A volatile 3628 // operation is allowed to trap. 3629 // 3630 // An atomic operation isn't guaranteed to return in a reasonable amount of 3631 // time because it's possible for another thread to interfere with it for an 3632 // arbitrary length of time, but programs aren't allowed to rely on that. 3633 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3634 return !LI->isVolatile(); 3635 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3636 return !SI->isVolatile(); 3637 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3638 return !CXI->isVolatile(); 3639 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3640 return !RMWI->isVolatile(); 3641 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3642 return !MII->isVolatile(); 3643 3644 // If there is no successor, then execution can't transfer to it. 3645 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3646 return !CRI->unwindsToCaller(); 3647 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3648 return !CatchSwitch->unwindsToCaller(); 3649 if (isa<ResumeInst>(I)) 3650 return false; 3651 if (isa<ReturnInst>(I)) 3652 return false; 3653 3654 // Calls can throw, or contain an infinite loop, or kill the process. 3655 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) { 3656 // Calls which don't write to arbitrary memory are safe. 3657 // FIXME: Ignoring infinite loops without any side-effects is too aggressive, 3658 // but it's consistent with other passes. See http://llvm.org/PR965 . 3659 // FIXME: This isn't aggressive enough; a call which only writes to a 3660 // global is guaranteed to return. 3661 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3662 match(I, m_Intrinsic<Intrinsic::assume>()); 3663 } 3664 3665 // Other instructions return normally. 3666 return true; 3667 } 3668 3669 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3670 const Loop *L) { 3671 // The loop header is guaranteed to be executed for every iteration. 3672 // 3673 // FIXME: Relax this constraint to cover all basic blocks that are 3674 // guaranteed to be executed at every iteration. 3675 if (I->getParent() != L->getHeader()) return false; 3676 3677 for (const Instruction &LI : *L->getHeader()) { 3678 if (&LI == I) return true; 3679 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3680 } 3681 llvm_unreachable("Instruction not contained in its own parent basic block."); 3682 } 3683 3684 bool llvm::propagatesFullPoison(const Instruction *I) { 3685 switch (I->getOpcode()) { 3686 case Instruction::Add: 3687 case Instruction::Sub: 3688 case Instruction::Xor: 3689 case Instruction::Trunc: 3690 case Instruction::BitCast: 3691 case Instruction::AddrSpaceCast: 3692 // These operations all propagate poison unconditionally. Note that poison 3693 // is not any particular value, so xor or subtraction of poison with 3694 // itself still yields poison, not zero. 3695 return true; 3696 3697 case Instruction::AShr: 3698 case Instruction::SExt: 3699 // For these operations, one bit of the input is replicated across 3700 // multiple output bits. A replicated poison bit is still poison. 3701 return true; 3702 3703 case Instruction::Shl: { 3704 // Left shift *by* a poison value is poison. The number of 3705 // positions to shift is unsigned, so no negative values are 3706 // possible there. Left shift by zero places preserves poison. So 3707 // it only remains to consider left shift of poison by a positive 3708 // number of places. 3709 // 3710 // A left shift by a positive number of places leaves the lowest order bit 3711 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3712 // make the poison operand violate that flag, yielding a fresh full-poison 3713 // value. 3714 auto *OBO = cast<OverflowingBinaryOperator>(I); 3715 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3716 } 3717 3718 case Instruction::Mul: { 3719 // A multiplication by zero yields a non-poison zero result, so we need to 3720 // rule out zero as an operand. Conservatively, multiplication by a 3721 // non-zero constant is not multiplication by zero. 3722 // 3723 // Multiplication by a non-zero constant can leave some bits 3724 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3725 // order bit unpoisoned. So we need to consider that. 3726 // 3727 // Multiplication by 1 preserves poison. If the multiplication has a 3728 // no-wrap flag, then we can make the poison operand violate that flag 3729 // when multiplied by any integer other than 0 and 1. 3730 auto *OBO = cast<OverflowingBinaryOperator>(I); 3731 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3732 for (Value *V : OBO->operands()) { 3733 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3734 // A ConstantInt cannot yield poison, so we can assume that it is 3735 // the other operand that is poison. 3736 return !CI->isZero(); 3737 } 3738 } 3739 } 3740 return false; 3741 } 3742 3743 case Instruction::ICmp: 3744 // Comparing poison with any value yields poison. This is why, for 3745 // instance, x s< (x +nsw 1) can be folded to true. 3746 return true; 3747 3748 case Instruction::GetElementPtr: 3749 // A GEP implicitly represents a sequence of additions, subtractions, 3750 // truncations, sign extensions and multiplications. The multiplications 3751 // are by the non-zero sizes of some set of types, so we do not have to be 3752 // concerned with multiplication by zero. If the GEP is in-bounds, then 3753 // these operations are implicitly no-signed-wrap so poison is propagated 3754 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3755 return cast<GEPOperator>(I)->isInBounds(); 3756 3757 default: 3758 return false; 3759 } 3760 } 3761 3762 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3763 switch (I->getOpcode()) { 3764 case Instruction::Store: 3765 return cast<StoreInst>(I)->getPointerOperand(); 3766 3767 case Instruction::Load: 3768 return cast<LoadInst>(I)->getPointerOperand(); 3769 3770 case Instruction::AtomicCmpXchg: 3771 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3772 3773 case Instruction::AtomicRMW: 3774 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3775 3776 case Instruction::UDiv: 3777 case Instruction::SDiv: 3778 case Instruction::URem: 3779 case Instruction::SRem: 3780 return I->getOperand(1); 3781 3782 default: 3783 return nullptr; 3784 } 3785 } 3786 3787 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3788 // We currently only look for uses of poison values within the same basic 3789 // block, as that makes it easier to guarantee that the uses will be 3790 // executed given that PoisonI is executed. 3791 // 3792 // FIXME: Expand this to consider uses beyond the same basic block. To do 3793 // this, look out for the distinction between post-dominance and strong 3794 // post-dominance. 3795 const BasicBlock *BB = PoisonI->getParent(); 3796 3797 // Set of instructions that we have proved will yield poison if PoisonI 3798 // does. 3799 SmallSet<const Value *, 16> YieldsPoison; 3800 SmallSet<const BasicBlock *, 4> Visited; 3801 YieldsPoison.insert(PoisonI); 3802 Visited.insert(PoisonI->getParent()); 3803 3804 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3805 3806 unsigned Iter = 0; 3807 while (Iter++ < MaxDepth) { 3808 for (auto &I : make_range(Begin, End)) { 3809 if (&I != PoisonI) { 3810 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3811 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3812 return true; 3813 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3814 return false; 3815 } 3816 3817 // Mark poison that propagates from I through uses of I. 3818 if (YieldsPoison.count(&I)) { 3819 for (const User *User : I.users()) { 3820 const Instruction *UserI = cast<Instruction>(User); 3821 if (propagatesFullPoison(UserI)) 3822 YieldsPoison.insert(User); 3823 } 3824 } 3825 } 3826 3827 if (auto *NextBB = BB->getSingleSuccessor()) { 3828 if (Visited.insert(NextBB).second) { 3829 BB = NextBB; 3830 Begin = BB->getFirstNonPHI()->getIterator(); 3831 End = BB->end(); 3832 continue; 3833 } 3834 } 3835 3836 break; 3837 }; 3838 return false; 3839 } 3840 3841 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3842 if (FMF.noNaNs()) 3843 return true; 3844 3845 if (auto *C = dyn_cast<ConstantFP>(V)) 3846 return !C->isNaN(); 3847 return false; 3848 } 3849 3850 static bool isKnownNonZero(const Value *V) { 3851 if (auto *C = dyn_cast<ConstantFP>(V)) 3852 return !C->isZero(); 3853 return false; 3854 } 3855 3856 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3857 FastMathFlags FMF, 3858 Value *CmpLHS, Value *CmpRHS, 3859 Value *TrueVal, Value *FalseVal, 3860 Value *&LHS, Value *&RHS) { 3861 LHS = CmpLHS; 3862 RHS = CmpRHS; 3863 3864 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3865 // return inconsistent results between implementations. 3866 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3867 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3868 // Therefore we behave conservatively and only proceed if at least one of the 3869 // operands is known to not be zero, or if we don't care about signed zeroes. 3870 switch (Pred) { 3871 default: break; 3872 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3873 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3874 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3875 !isKnownNonZero(CmpRHS)) 3876 return {SPF_UNKNOWN, SPNB_NA, false}; 3877 } 3878 3879 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3880 bool Ordered = false; 3881 3882 // When given one NaN and one non-NaN input: 3883 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3884 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3885 // ordered comparison fails), which could be NaN or non-NaN. 3886 // so here we discover exactly what NaN behavior is required/accepted. 3887 if (CmpInst::isFPPredicate(Pred)) { 3888 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3889 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3890 3891 if (LHSSafe && RHSSafe) { 3892 // Both operands are known non-NaN. 3893 NaNBehavior = SPNB_RETURNS_ANY; 3894 } else if (CmpInst::isOrdered(Pred)) { 3895 // An ordered comparison will return false when given a NaN, so it 3896 // returns the RHS. 3897 Ordered = true; 3898 if (LHSSafe) 3899 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3900 NaNBehavior = SPNB_RETURNS_NAN; 3901 else if (RHSSafe) 3902 NaNBehavior = SPNB_RETURNS_OTHER; 3903 else 3904 // Completely unsafe. 3905 return {SPF_UNKNOWN, SPNB_NA, false}; 3906 } else { 3907 Ordered = false; 3908 // An unordered comparison will return true when given a NaN, so it 3909 // returns the LHS. 3910 if (LHSSafe) 3911 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3912 NaNBehavior = SPNB_RETURNS_OTHER; 3913 else if (RHSSafe) 3914 NaNBehavior = SPNB_RETURNS_NAN; 3915 else 3916 // Completely unsafe. 3917 return {SPF_UNKNOWN, SPNB_NA, false}; 3918 } 3919 } 3920 3921 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3922 std::swap(CmpLHS, CmpRHS); 3923 Pred = CmpInst::getSwappedPredicate(Pred); 3924 if (NaNBehavior == SPNB_RETURNS_NAN) 3925 NaNBehavior = SPNB_RETURNS_OTHER; 3926 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3927 NaNBehavior = SPNB_RETURNS_NAN; 3928 Ordered = !Ordered; 3929 } 3930 3931 // ([if]cmp X, Y) ? X : Y 3932 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3933 switch (Pred) { 3934 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3935 case ICmpInst::ICMP_UGT: 3936 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3937 case ICmpInst::ICMP_SGT: 3938 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3939 case ICmpInst::ICMP_ULT: 3940 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3941 case ICmpInst::ICMP_SLT: 3942 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3943 case FCmpInst::FCMP_UGT: 3944 case FCmpInst::FCMP_UGE: 3945 case FCmpInst::FCMP_OGT: 3946 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3947 case FCmpInst::FCMP_ULT: 3948 case FCmpInst::FCMP_ULE: 3949 case FCmpInst::FCMP_OLT: 3950 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3951 } 3952 } 3953 3954 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3955 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3956 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3957 3958 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3959 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3960 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3961 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3962 } 3963 3964 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3965 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3966 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3967 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3968 } 3969 } 3970 3971 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3972 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3973 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3974 ~C1->getValue() == C2->getValue() && 3975 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3976 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3977 LHS = TrueVal; 3978 RHS = FalseVal; 3979 return {SPF_SMIN, SPNB_NA, false}; 3980 } 3981 } 3982 } 3983 3984 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3985 3986 return {SPF_UNKNOWN, SPNB_NA, false}; 3987 } 3988 3989 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3990 Instruction::CastOps *CastOp) { 3991 CastInst *CI = dyn_cast<CastInst>(V1); 3992 Constant *C = dyn_cast<Constant>(V2); 3993 if (!CI) 3994 return nullptr; 3995 *CastOp = CI->getOpcode(); 3996 3997 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 3998 // If V1 and V2 are both the same cast from the same type, we can look 3999 // through V1. 4000 if (CI2->getOpcode() == CI->getOpcode() && 4001 CI2->getSrcTy() == CI->getSrcTy()) 4002 return CI2->getOperand(0); 4003 return nullptr; 4004 } else if (!C) { 4005 return nullptr; 4006 } 4007 4008 Constant *CastedTo = nullptr; 4009 4010 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 4011 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 4012 4013 if (isa<SExtInst>(CI) && CmpI->isSigned()) 4014 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 4015 4016 if (isa<TruncInst>(CI)) 4017 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 4018 4019 if (isa<FPTruncInst>(CI)) 4020 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4021 4022 if (isa<FPExtInst>(CI)) 4023 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4024 4025 if (isa<FPToUIInst>(CI)) 4026 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4027 4028 if (isa<FPToSIInst>(CI)) 4029 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4030 4031 if (isa<UIToFPInst>(CI)) 4032 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4033 4034 if (isa<SIToFPInst>(CI)) 4035 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4036 4037 if (!CastedTo) 4038 return nullptr; 4039 4040 Constant *CastedBack = 4041 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 4042 // Make sure the cast doesn't lose any information. 4043 if (CastedBack != C) 4044 return nullptr; 4045 4046 return CastedTo; 4047 } 4048 4049 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4050 Instruction::CastOps *CastOp) { 4051 SelectInst *SI = dyn_cast<SelectInst>(V); 4052 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4053 4054 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4055 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4056 4057 CmpInst::Predicate Pred = CmpI->getPredicate(); 4058 Value *CmpLHS = CmpI->getOperand(0); 4059 Value *CmpRHS = CmpI->getOperand(1); 4060 Value *TrueVal = SI->getTrueValue(); 4061 Value *FalseVal = SI->getFalseValue(); 4062 FastMathFlags FMF; 4063 if (isa<FPMathOperator>(CmpI)) 4064 FMF = CmpI->getFastMathFlags(); 4065 4066 // Bail out early. 4067 if (CmpI->isEquality()) 4068 return {SPF_UNKNOWN, SPNB_NA, false}; 4069 4070 // Deal with type mismatches. 4071 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4072 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4073 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4074 cast<CastInst>(TrueVal)->getOperand(0), C, 4075 LHS, RHS); 4076 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4077 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4078 C, cast<CastInst>(FalseVal)->getOperand(0), 4079 LHS, RHS); 4080 } 4081 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4082 LHS, RHS); 4083 } 4084 4085 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 4086 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4087 assert(NumRanges >= 1 && "Must have at least one range!"); 4088 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4089 4090 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4091 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4092 4093 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4094 4095 for (unsigned i = 1; i < NumRanges; ++i) { 4096 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4097 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4098 4099 // Note: unionWith will potentially create a range that contains values not 4100 // contained in any of the original N ranges. 4101 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4102 } 4103 4104 return CR; 4105 } 4106 4107 /// Return true if "icmp Pred LHS RHS" is always true. 4108 static bool isTruePredicate(CmpInst::Predicate Pred, 4109 const Value *LHS, const Value *RHS, 4110 const DataLayout &DL, unsigned Depth, 4111 AssumptionCache *AC, const Instruction *CxtI, 4112 const DominatorTree *DT) { 4113 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4114 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4115 return true; 4116 4117 switch (Pred) { 4118 default: 4119 return false; 4120 4121 case CmpInst::ICMP_SLE: { 4122 const APInt *C; 4123 4124 // LHS s<= LHS +_{nsw} C if C >= 0 4125 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4126 return !C->isNegative(); 4127 return false; 4128 } 4129 4130 case CmpInst::ICMP_ULE: { 4131 const APInt *C; 4132 4133 // LHS u<= LHS +_{nuw} C for any C 4134 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4135 return true; 4136 4137 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4138 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4139 const Value *&X, 4140 const APInt *&CA, const APInt *&CB) { 4141 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4142 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4143 return true; 4144 4145 // If X & C == 0 then (X | C) == X +_{nuw} C 4146 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4147 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4148 unsigned BitWidth = CA->getBitWidth(); 4149 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4150 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4151 4152 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4153 return true; 4154 } 4155 4156 return false; 4157 }; 4158 4159 const Value *X; 4160 const APInt *CLHS, *CRHS; 4161 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4162 return CLHS->ule(*CRHS); 4163 4164 return false; 4165 } 4166 } 4167 } 4168 4169 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4170 /// ALHS ARHS" is true. Otherwise, return None. 4171 static Optional<bool> 4172 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4173 const Value *ARHS, const Value *BLHS, 4174 const Value *BRHS, const DataLayout &DL, 4175 unsigned Depth, AssumptionCache *AC, 4176 const Instruction *CxtI, const DominatorTree *DT) { 4177 switch (Pred) { 4178 default: 4179 return None; 4180 4181 case CmpInst::ICMP_SLT: 4182 case CmpInst::ICMP_SLE: 4183 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4184 DT) && 4185 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4186 return true; 4187 return None; 4188 4189 case CmpInst::ICMP_ULT: 4190 case CmpInst::ICMP_ULE: 4191 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4192 DT) && 4193 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4194 return true; 4195 return None; 4196 } 4197 } 4198 4199 /// Return true if the operands of the two compares match. IsSwappedOps is true 4200 /// when the operands match, but are swapped. 4201 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4202 const Value *BLHS, const Value *BRHS, 4203 bool &IsSwappedOps) { 4204 4205 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4206 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4207 return IsMatchingOps || IsSwappedOps; 4208 } 4209 4210 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4211 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4212 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4213 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4214 const Value *ALHS, 4215 const Value *ARHS, 4216 CmpInst::Predicate BPred, 4217 const Value *BLHS, 4218 const Value *BRHS, 4219 bool IsSwappedOps) { 4220 // Canonicalize the operands so they're matching. 4221 if (IsSwappedOps) { 4222 std::swap(BLHS, BRHS); 4223 BPred = ICmpInst::getSwappedPredicate(BPred); 4224 } 4225 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4226 return true; 4227 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4228 return false; 4229 4230 return None; 4231 } 4232 4233 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4234 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4235 /// C2" is false. Otherwise, return None if we can't infer anything. 4236 static Optional<bool> 4237 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4238 const ConstantInt *C1, 4239 CmpInst::Predicate BPred, 4240 const Value *BLHS, const ConstantInt *C2) { 4241 assert(ALHS == BLHS && "LHS operands must match."); 4242 ConstantRange DomCR = 4243 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4244 ConstantRange CR = 4245 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4246 ConstantRange Intersection = DomCR.intersectWith(CR); 4247 ConstantRange Difference = DomCR.difference(CR); 4248 if (Intersection.isEmptySet()) 4249 return false; 4250 if (Difference.isEmptySet()) 4251 return true; 4252 return None; 4253 } 4254 4255 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4256 const DataLayout &DL, bool InvertAPred, 4257 unsigned Depth, AssumptionCache *AC, 4258 const Instruction *CxtI, 4259 const DominatorTree *DT) { 4260 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4261 if (LHS->getType() != RHS->getType()) 4262 return None; 4263 4264 Type *OpTy = LHS->getType(); 4265 assert(OpTy->getScalarType()->isIntegerTy(1)); 4266 4267 // LHS ==> RHS by definition 4268 if (!InvertAPred && LHS == RHS) 4269 return true; 4270 4271 if (OpTy->isVectorTy()) 4272 // TODO: extending the code below to handle vectors 4273 return None; 4274 assert(OpTy->isIntegerTy(1) && "implied by above"); 4275 4276 ICmpInst::Predicate APred, BPred; 4277 Value *ALHS, *ARHS; 4278 Value *BLHS, *BRHS; 4279 4280 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4281 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4282 return None; 4283 4284 if (InvertAPred) 4285 APred = CmpInst::getInversePredicate(APred); 4286 4287 // Can we infer anything when the two compares have matching operands? 4288 bool IsSwappedOps; 4289 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4290 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4291 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4292 return Implication; 4293 // No amount of additional analysis will infer the second condition, so 4294 // early exit. 4295 return None; 4296 } 4297 4298 // Can we infer anything when the LHS operands match and the RHS operands are 4299 // constants (not necessarily matching)? 4300 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4301 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4302 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4303 cast<ConstantInt>(BRHS))) 4304 return Implication; 4305 // No amount of additional analysis will infer the second condition, so 4306 // early exit. 4307 return None; 4308 } 4309 4310 if (APred == BPred) 4311 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4312 CxtI, DT); 4313 4314 return None; 4315 } 4316