1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 // This optimization is known to cause performance regressions is some cases,
55 // keep it under a temporary flag for now.
56 static cl::opt<bool>
57 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
58                               cl::Hidden, cl::init(true));
59 
60 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
61 /// 0). For vector types, returns the element type's bitwidth.
62 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
63   if (unsigned BitWidth = Ty->getScalarSizeInBits())
64     return BitWidth;
65 
66   return DL.getPointerTypeSizeInBits(Ty);
67 }
68 
69 namespace {
70 // Simplifying using an assume can only be done in a particular control-flow
71 // context (the context instruction provides that context). If an assume and
72 // the context instruction are not in the same block then the DT helps in
73 // figuring out if we can use it.
74 struct Query {
75   const DataLayout &DL;
76   AssumptionCache *AC;
77   const Instruction *CxtI;
78   const DominatorTree *DT;
79 
80   /// Set of assumptions that should be excluded from further queries.
81   /// This is because of the potential for mutual recursion to cause
82   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
83   /// classic case of this is assume(x = y), which will attempt to determine
84   /// bits in x from bits in y, which will attempt to determine bits in y from
85   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
86   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
87   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
88   /// on.
89   std::array<const Value*, MaxDepth> Excluded;
90   unsigned NumExcluded;
91 
92   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
93         const DominatorTree *DT)
94       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
95 
96   Query(const Query &Q, const Value *NewExcl)
97       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
98     Excluded = Q.Excluded;
99     Excluded[NumExcluded++] = NewExcl;
100     assert(NumExcluded <= Excluded.size());
101   }
102 
103   bool isExcluded(const Value *Value) const {
104     if (NumExcluded == 0)
105       return false;
106     auto End = Excluded.begin() + NumExcluded;
107     return std::find(Excluded.begin(), End, Value) != End;
108   }
109 };
110 } // end anonymous namespace
111 
112 // Given the provided Value and, potentially, a context instruction, return
113 // the preferred context instruction (if any).
114 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
115   // If we've been provided with a context instruction, then use that (provided
116   // it has been inserted).
117   if (CxtI && CxtI->getParent())
118     return CxtI;
119 
120   // If the value is really an already-inserted instruction, then use that.
121   CxtI = dyn_cast<Instruction>(V);
122   if (CxtI && CxtI->getParent())
123     return CxtI;
124 
125   return nullptr;
126 }
127 
128 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
129                              unsigned Depth, const Query &Q);
130 
131 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
132                             const DataLayout &DL, unsigned Depth,
133                             AssumptionCache *AC, const Instruction *CxtI,
134                             const DominatorTree *DT) {
135   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
136                      Query(DL, AC, safeCxtI(V, CxtI), DT));
137 }
138 
139 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
140                                const DataLayout &DL,
141                                AssumptionCache *AC, const Instruction *CxtI,
142                                const DominatorTree *DT) {
143   assert(LHS->getType() == RHS->getType() &&
144          "LHS and RHS should have the same type");
145   assert(LHS->getType()->isIntOrIntVectorTy() &&
146          "LHS and RHS should be integers");
147   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
148   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
149   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
150   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
151   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
152   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
153 }
154 
155 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
156                            unsigned Depth, const Query &Q);
157 
158 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
159                           const DataLayout &DL, unsigned Depth,
160                           AssumptionCache *AC, const Instruction *CxtI,
161                           const DominatorTree *DT) {
162   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
163                    Query(DL, AC, safeCxtI(V, CxtI), DT));
164 }
165 
166 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
167                                    const Query &Q);
168 
169 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
170                                   bool OrZero,
171                                   unsigned Depth, AssumptionCache *AC,
172                                   const Instruction *CxtI,
173                                   const DominatorTree *DT) {
174   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
175                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
176 }
177 
178 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
179 
180 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
181                           AssumptionCache *AC, const Instruction *CxtI,
182                           const DominatorTree *DT) {
183   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
184 }
185 
186 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
187                               unsigned Depth,
188                               AssumptionCache *AC, const Instruction *CxtI,
189                               const DominatorTree *DT) {
190   bool NonNegative, Negative;
191   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
192   return NonNegative;
193 }
194 
195 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
196                            AssumptionCache *AC, const Instruction *CxtI,
197                            const DominatorTree *DT) {
198   if (auto *CI = dyn_cast<ConstantInt>(V))
199     return CI->getValue().isStrictlyPositive();
200 
201   // TODO: We'd doing two recursive queries here.  We should factor this such
202   // that only a single query is needed.
203   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
204     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
205 }
206 
207 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
208                            AssumptionCache *AC, const Instruction *CxtI,
209                            const DominatorTree *DT) {
210   bool NonNegative, Negative;
211   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
212   return Negative;
213 }
214 
215 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
216 
217 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
218                            const DataLayout &DL,
219                            AssumptionCache *AC, const Instruction *CxtI,
220                            const DominatorTree *DT) {
221   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
222                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
223                                          DT));
224 }
225 
226 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
227                               const Query &Q);
228 
229 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
230                              const DataLayout &DL,
231                              unsigned Depth, AssumptionCache *AC,
232                              const Instruction *CxtI, const DominatorTree *DT) {
233   return ::MaskedValueIsZero(V, Mask, Depth,
234                              Query(DL, AC, safeCxtI(V, CxtI), DT));
235 }
236 
237 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
238                                    const Query &Q);
239 
240 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
241                                   unsigned Depth, AssumptionCache *AC,
242                                   const Instruction *CxtI,
243                                   const DominatorTree *DT) {
244   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
245 }
246 
247 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
248                                    bool NSW,
249                                    APInt &KnownZero, APInt &KnownOne,
250                                    APInt &KnownZero2, APInt &KnownOne2,
251                                    unsigned Depth, const Query &Q) {
252   if (!Add) {
253     if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
254       // We know that the top bits of C-X are clear if X contains less bits
255       // than C (i.e. no wrap-around can happen).  For example, 20-X is
256       // positive if we can prove that X is >= 0 and < 16.
257       if (!CLHS->getValue().isNegative()) {
258         unsigned BitWidth = KnownZero.getBitWidth();
259         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
260         // NLZ can't be BitWidth with no sign bit
261         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
262         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
263 
264         // If all of the MaskV bits are known to be zero, then we know the
265         // output top bits are zero, because we now know that the output is
266         // from [0-C].
267         if ((KnownZero2 & MaskV) == MaskV) {
268           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
269           // Top bits known zero.
270           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
271         }
272       }
273     }
274   }
275 
276   unsigned BitWidth = KnownZero.getBitWidth();
277 
278   // If an initial sequence of bits in the result is not needed, the
279   // corresponding bits in the operands are not needed.
280   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
281   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
282   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
283 
284   // Carry in a 1 for a subtract, rather than a 0.
285   APInt CarryIn(BitWidth, 0);
286   if (!Add) {
287     // Sum = LHS + ~RHS + 1
288     std::swap(KnownZero2, KnownOne2);
289     CarryIn.setBit(0);
290   }
291 
292   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
293   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
294 
295   // Compute known bits of the carry.
296   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
297   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
298 
299   // Compute set of known bits (where all three relevant bits are known).
300   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
301   APInt RHSKnown = KnownZero2 | KnownOne2;
302   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
303   APInt Known = LHSKnown & RHSKnown & CarryKnown;
304 
305   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
306          "known bits of sum differ");
307 
308   // Compute known bits of the result.
309   KnownZero = ~PossibleSumOne & Known;
310   KnownOne = PossibleSumOne & Known;
311 
312   // Are we still trying to solve for the sign bit?
313   if (!Known.isNegative()) {
314     if (NSW) {
315       // Adding two non-negative numbers, or subtracting a negative number from
316       // a non-negative one, can't wrap into negative.
317       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
318         KnownZero |= APInt::getSignBit(BitWidth);
319       // Adding two negative numbers, or subtracting a non-negative number from
320       // a negative one, can't wrap into non-negative.
321       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
322         KnownOne |= APInt::getSignBit(BitWidth);
323     }
324   }
325 }
326 
327 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
328                                 APInt &KnownZero, APInt &KnownOne,
329                                 APInt &KnownZero2, APInt &KnownOne2,
330                                 unsigned Depth, const Query &Q) {
331   unsigned BitWidth = KnownZero.getBitWidth();
332   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
333   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
334 
335   bool isKnownNegative = false;
336   bool isKnownNonNegative = false;
337   // If the multiplication is known not to overflow, compute the sign bit.
338   if (NSW) {
339     if (Op0 == Op1) {
340       // The product of a number with itself is non-negative.
341       isKnownNonNegative = true;
342     } else {
343       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
344       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
345       bool isKnownNegativeOp1 = KnownOne.isNegative();
346       bool isKnownNegativeOp0 = KnownOne2.isNegative();
347       // The product of two numbers with the same sign is non-negative.
348       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
349         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
350       // The product of a negative number and a non-negative number is either
351       // negative or zero.
352       if (!isKnownNonNegative)
353         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
354                            isKnownNonZero(Op0, Depth, Q)) ||
355                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
356                            isKnownNonZero(Op1, Depth, Q));
357     }
358   }
359 
360   // If low bits are zero in either operand, output low known-0 bits.
361   // Also compute a conservative estimate for high known-0 bits.
362   // More trickiness is possible, but this is sufficient for the
363   // interesting case of alignment computation.
364   KnownOne.clearAllBits();
365   unsigned TrailZ = KnownZero.countTrailingOnes() +
366                     KnownZero2.countTrailingOnes();
367   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
368                              KnownZero2.countLeadingOnes(),
369                              BitWidth) - BitWidth;
370 
371   TrailZ = std::min(TrailZ, BitWidth);
372   LeadZ = std::min(LeadZ, BitWidth);
373   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
374               APInt::getHighBitsSet(BitWidth, LeadZ);
375 
376   // Only make use of no-wrap flags if we failed to compute the sign bit
377   // directly.  This matters if the multiplication always overflows, in
378   // which case we prefer to follow the result of the direct computation,
379   // though as the program is invoking undefined behaviour we can choose
380   // whatever we like here.
381   if (isKnownNonNegative && !KnownOne.isNegative())
382     KnownZero.setBit(BitWidth - 1);
383   else if (isKnownNegative && !KnownZero.isNegative())
384     KnownOne.setBit(BitWidth - 1);
385 }
386 
387 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
388                                              APInt &KnownZero,
389                                              APInt &KnownOne) {
390   unsigned BitWidth = KnownZero.getBitWidth();
391   unsigned NumRanges = Ranges.getNumOperands() / 2;
392   assert(NumRanges >= 1);
393 
394   KnownZero.setAllBits();
395   KnownOne.setAllBits();
396 
397   for (unsigned i = 0; i < NumRanges; ++i) {
398     ConstantInt *Lower =
399         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
400     ConstantInt *Upper =
401         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
402     ConstantRange Range(Lower->getValue(), Upper->getValue());
403 
404     // The first CommonPrefixBits of all values in Range are equal.
405     unsigned CommonPrefixBits =
406         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
407 
408     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
409     KnownOne &= Range.getUnsignedMax() & Mask;
410     KnownZero &= ~Range.getUnsignedMax() & Mask;
411   }
412 }
413 
414 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
415   SmallVector<const Value *, 16> WorkSet(1, I);
416   SmallPtrSet<const Value *, 32> Visited;
417   SmallPtrSet<const Value *, 16> EphValues;
418 
419   // The instruction defining an assumption's condition itself is always
420   // considered ephemeral to that assumption (even if it has other
421   // non-ephemeral users). See r246696's test case for an example.
422   if (is_contained(I->operands(), E))
423     return true;
424 
425   while (!WorkSet.empty()) {
426     const Value *V = WorkSet.pop_back_val();
427     if (!Visited.insert(V).second)
428       continue;
429 
430     // If all uses of this value are ephemeral, then so is this value.
431     if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
432       if (V == E)
433         return true;
434 
435       EphValues.insert(V);
436       if (const User *U = dyn_cast<User>(V))
437         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
438              J != JE; ++J) {
439           if (isSafeToSpeculativelyExecute(*J))
440             WorkSet.push_back(*J);
441         }
442     }
443   }
444 
445   return false;
446 }
447 
448 // Is this an intrinsic that cannot be speculated but also cannot trap?
449 static bool isAssumeLikeIntrinsic(const Instruction *I) {
450   if (const CallInst *CI = dyn_cast<CallInst>(I))
451     if (Function *F = CI->getCalledFunction())
452       switch (F->getIntrinsicID()) {
453       default: break;
454       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
455       case Intrinsic::assume:
456       case Intrinsic::dbg_declare:
457       case Intrinsic::dbg_value:
458       case Intrinsic::invariant_start:
459       case Intrinsic::invariant_end:
460       case Intrinsic::lifetime_start:
461       case Intrinsic::lifetime_end:
462       case Intrinsic::objectsize:
463       case Intrinsic::ptr_annotation:
464       case Intrinsic::var_annotation:
465         return true;
466       }
467 
468   return false;
469 }
470 
471 bool llvm::isValidAssumeForContext(const Instruction *Inv,
472                                    const Instruction *CxtI,
473                                    const DominatorTree *DT) {
474 
475   // There are two restrictions on the use of an assume:
476   //  1. The assume must dominate the context (or the control flow must
477   //     reach the assume whenever it reaches the context).
478   //  2. The context must not be in the assume's set of ephemeral values
479   //     (otherwise we will use the assume to prove that the condition
480   //     feeding the assume is trivially true, thus causing the removal of
481   //     the assume).
482 
483   if (DT) {
484     if (DT->dominates(Inv, CxtI))
485       return true;
486   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
487     // We don't have a DT, but this trivially dominates.
488     return true;
489   }
490 
491   // With or without a DT, the only remaining case we will check is if the
492   // instructions are in the same BB.  Give up if that is not the case.
493   if (Inv->getParent() != CxtI->getParent())
494     return false;
495 
496   // If we have a dom tree, then we now know that the assume doens't dominate
497   // the other instruction.  If we don't have a dom tree then we can check if
498   // the assume is first in the BB.
499   if (!DT) {
500     // Search forward from the assume until we reach the context (or the end
501     // of the block); the common case is that the assume will come first.
502     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
503          IE = Inv->getParent()->end(); I != IE; ++I)
504       if (&*I == CxtI)
505         return true;
506   }
507 
508   // The context comes first, but they're both in the same block. Make sure
509   // there is nothing in between that might interrupt the control flow.
510   for (BasicBlock::const_iterator I =
511          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
512        I != IE; ++I)
513     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
514       return false;
515 
516   return !isEphemeralValueOf(Inv, CxtI);
517 }
518 
519 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
520                                        APInt &KnownOne, unsigned Depth,
521                                        const Query &Q) {
522   // Use of assumptions is context-sensitive. If we don't have a context, we
523   // cannot use them!
524   if (!Q.AC || !Q.CxtI)
525     return;
526 
527   unsigned BitWidth = KnownZero.getBitWidth();
528 
529   for (auto &AssumeVH : Q.AC->assumptions()) {
530     if (!AssumeVH)
531       continue;
532     CallInst *I = cast<CallInst>(AssumeVH);
533     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
534            "Got assumption for the wrong function!");
535     if (Q.isExcluded(I))
536       continue;
537 
538     // Warning: This loop can end up being somewhat performance sensetive.
539     // We're running this loop for once for each value queried resulting in a
540     // runtime of ~O(#assumes * #values).
541 
542     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
543            "must be an assume intrinsic");
544 
545     Value *Arg = I->getArgOperand(0);
546 
547     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548       assert(BitWidth == 1 && "assume operand is not i1?");
549       KnownZero.clearAllBits();
550       KnownOne.setAllBits();
551       return;
552     }
553 
554     // The remaining tests are all recursive, so bail out if we hit the limit.
555     if (Depth == MaxDepth)
556       continue;
557 
558     Value *A, *B;
559     auto m_V = m_CombineOr(m_Specific(V),
560                            m_CombineOr(m_PtrToInt(m_Specific(V)),
561                            m_BitCast(m_Specific(V))));
562 
563     CmpInst::Predicate Pred;
564     ConstantInt *C;
565     // assume(v = a)
566     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
567         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
568       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
569       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
570       KnownZero |= RHSKnownZero;
571       KnownOne  |= RHSKnownOne;
572     // assume(v & b = a)
573     } else if (match(Arg,
574                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
575                Pred == ICmpInst::ICMP_EQ &&
576                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
577       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
578       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
579       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
580       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
581 
582       // For those bits in the mask that are known to be one, we can propagate
583       // known bits from the RHS to V.
584       KnownZero |= RHSKnownZero & MaskKnownOne;
585       KnownOne  |= RHSKnownOne  & MaskKnownOne;
586     // assume(~(v & b) = a)
587     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588                                    m_Value(A))) &&
589                Pred == ICmpInst::ICMP_EQ &&
590                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
591       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
592       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
593       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
594       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
595 
596       // For those bits in the mask that are known to be one, we can propagate
597       // inverted known bits from the RHS to V.
598       KnownZero |= RHSKnownOne  & MaskKnownOne;
599       KnownOne  |= RHSKnownZero & MaskKnownOne;
600     // assume(v | b = a)
601     } else if (match(Arg,
602                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
603                Pred == ICmpInst::ICMP_EQ &&
604                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
606       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
607       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
608       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
609 
610       // For those bits in B that are known to be zero, we can propagate known
611       // bits from the RHS to V.
612       KnownZero |= RHSKnownZero & BKnownZero;
613       KnownOne  |= RHSKnownOne  & BKnownZero;
614     // assume(~(v | b) = a)
615     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616                                    m_Value(A))) &&
617                Pred == ICmpInst::ICMP_EQ &&
618                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
619       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
620       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
621       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
622       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
623 
624       // For those bits in B that are known to be zero, we can propagate
625       // inverted known bits from the RHS to V.
626       KnownZero |= RHSKnownOne  & BKnownZero;
627       KnownOne  |= RHSKnownZero & BKnownZero;
628     // assume(v ^ b = a)
629     } else if (match(Arg,
630                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
631                Pred == ICmpInst::ICMP_EQ &&
632                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
633       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
634       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
635       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
636       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
637 
638       // For those bits in B that are known to be zero, we can propagate known
639       // bits from the RHS to V. For those bits in B that are known to be one,
640       // we can propagate inverted known bits from the RHS to V.
641       KnownZero |= RHSKnownZero & BKnownZero;
642       KnownOne  |= RHSKnownOne  & BKnownZero;
643       KnownZero |= RHSKnownOne  & BKnownOne;
644       KnownOne  |= RHSKnownZero & BKnownOne;
645     // assume(~(v ^ b) = a)
646     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647                                    m_Value(A))) &&
648                Pred == ICmpInst::ICMP_EQ &&
649                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
650       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
651       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
652       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
653       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
654 
655       // For those bits in B that are known to be zero, we can propagate
656       // inverted known bits from the RHS to V. For those bits in B that are
657       // known to be one, we can propagate known bits from the RHS to V.
658       KnownZero |= RHSKnownOne  & BKnownZero;
659       KnownOne  |= RHSKnownZero & BKnownZero;
660       KnownZero |= RHSKnownZero & BKnownOne;
661       KnownOne  |= RHSKnownOne  & BKnownOne;
662     // assume(v << c = a)
663     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664                                    m_Value(A))) &&
665                Pred == ICmpInst::ICMP_EQ &&
666                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
668       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
669       // For those bits in RHS that are known, we can propagate them to known
670       // bits in V shifted to the right by C.
671       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
673     // assume(~(v << c) = a)
674     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675                                    m_Value(A))) &&
676                Pred == ICmpInst::ICMP_EQ &&
677                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
678       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
679       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
680       // For those bits in RHS that are known, we can propagate them inverted
681       // to known bits in V shifted to the right by C.
682       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
684     // assume(v >> c = a)
685     } else if (match(Arg,
686                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
687                                                 m_AShr(m_V, m_ConstantInt(C))),
688                               m_Value(A))) &&
689                Pred == ICmpInst::ICMP_EQ &&
690                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
691       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
692       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
693       // For those bits in RHS that are known, we can propagate them to known
694       // bits in V shifted to the right by C.
695       KnownZero |= RHSKnownZero << C->getZExtValue();
696       KnownOne  |= RHSKnownOne  << C->getZExtValue();
697     // assume(~(v >> c) = a)
698     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
699                                              m_LShr(m_V, m_ConstantInt(C)),
700                                              m_AShr(m_V, m_ConstantInt(C)))),
701                                    m_Value(A))) &&
702                Pred == ICmpInst::ICMP_EQ &&
703                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
704       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
705       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
706       // For those bits in RHS that are known, we can propagate them inverted
707       // to known bits in V shifted to the right by C.
708       KnownZero |= RHSKnownOne  << C->getZExtValue();
709       KnownOne  |= RHSKnownZero << C->getZExtValue();
710     // assume(v >=_s c) where c is non-negative
711     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
712                Pred == ICmpInst::ICMP_SGE &&
713                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
714       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
715       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
716 
717       if (RHSKnownZero.isNegative()) {
718         // We know that the sign bit is zero.
719         KnownZero |= APInt::getSignBit(BitWidth);
720       }
721     // assume(v >_s c) where c is at least -1.
722     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
723                Pred == ICmpInst::ICMP_SGT &&
724                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
725       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
726       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
727 
728       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729         // We know that the sign bit is zero.
730         KnownZero |= APInt::getSignBit(BitWidth);
731       }
732     // assume(v <=_s c) where c is negative
733     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
734                Pred == ICmpInst::ICMP_SLE &&
735                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
736       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
737       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
738 
739       if (RHSKnownOne.isNegative()) {
740         // We know that the sign bit is one.
741         KnownOne |= APInt::getSignBit(BitWidth);
742       }
743     // assume(v <_s c) where c is non-positive
744     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
745                Pred == ICmpInst::ICMP_SLT &&
746                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
747       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
748       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
749 
750       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751         // We know that the sign bit is one.
752         KnownOne |= APInt::getSignBit(BitWidth);
753       }
754     // assume(v <=_u c)
755     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
756                Pred == ICmpInst::ICMP_ULE &&
757                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
759       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
760 
761       // Whatever high bits in c are zero are known to be zero.
762       KnownZero |=
763         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764     // assume(v <_u c)
765     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
766                Pred == ICmpInst::ICMP_ULT &&
767                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
770 
771       // Whatever high bits in c are zero are known to be zero (if c is a power
772       // of 2, then one more).
773       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
774         KnownZero |=
775           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776       else
777         KnownZero |=
778           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
779     }
780   }
781 }
782 
783 // Compute known bits from a shift operator, including those with a
784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787 // functors that, given the known-zero or known-one bits respectively, and a
788 // shift amount, compute the implied known-zero or known-one bits of the shift
789 // operator's result respectively for that shift amount. The results from calling
790 // KZF and KOF are conservatively combined for all permitted shift amounts.
791 static void computeKnownBitsFromShiftOperator(
792     const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
793     APInt &KnownOne2, unsigned Depth, const Query &Q,
794     function_ref<APInt(const APInt &, unsigned)> KZF,
795     function_ref<APInt(const APInt &, unsigned)> KOF) {
796   unsigned BitWidth = KnownZero.getBitWidth();
797 
798   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800 
801     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
802     KnownZero = KZF(KnownZero, ShiftAmt);
803     KnownOne  = KOF(KnownOne, ShiftAmt);
804     // If there is conflict between KnownZero and KnownOne, this must be an
805     // overflowing left shift, so the shift result is undefined. Clear KnownZero
806     // and KnownOne bits so that other code could propagate this undef.
807     if ((KnownZero & KnownOne) != 0) {
808       KnownZero.clearAllBits();
809       KnownOne.clearAllBits();
810     }
811 
812     return;
813   }
814 
815   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
816 
817   // Note: We cannot use KnownZero.getLimitedValue() here, because if
818   // BitWidth > 64 and any upper bits are known, we'll end up returning the
819   // limit value (which implies all bits are known).
820   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
821   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
822 
823   // It would be more-clearly correct to use the two temporaries for this
824   // calculation. Reusing the APInts here to prevent unnecessary allocations.
825   KnownZero.clearAllBits();
826   KnownOne.clearAllBits();
827 
828   // If we know the shifter operand is nonzero, we can sometimes infer more
829   // known bits. However this is expensive to compute, so be lazy about it and
830   // only compute it when absolutely necessary.
831   Optional<bool> ShifterOperandIsNonZero;
832 
833   // Early exit if we can't constrain any well-defined shift amount.
834   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
835     ShifterOperandIsNonZero =
836         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
837     if (!*ShifterOperandIsNonZero)
838       return;
839   }
840 
841   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
842 
843   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
844   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
845     // Combine the shifted known input bits only for those shift amounts
846     // compatible with its known constraints.
847     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
848       continue;
849     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
850       continue;
851     // If we know the shifter is nonzero, we may be able to infer more known
852     // bits. This check is sunk down as far as possible to avoid the expensive
853     // call to isKnownNonZero if the cheaper checks above fail.
854     if (ShiftAmt == 0) {
855       if (!ShifterOperandIsNonZero.hasValue())
856         ShifterOperandIsNonZero =
857             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
858       if (*ShifterOperandIsNonZero)
859         continue;
860     }
861 
862     KnownZero &= KZF(KnownZero2, ShiftAmt);
863     KnownOne  &= KOF(KnownOne2, ShiftAmt);
864   }
865 
866   // If there are no compatible shift amounts, then we've proven that the shift
867   // amount must be >= the BitWidth, and the result is undefined. We could
868   // return anything we'd like, but we need to make sure the sets of known bits
869   // stay disjoint (it should be better for some other code to actually
870   // propagate the undef than to pick a value here using known bits).
871   if ((KnownZero & KnownOne) != 0) {
872     KnownZero.clearAllBits();
873     KnownOne.clearAllBits();
874   }
875 }
876 
877 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
878                                          APInt &KnownOne, unsigned Depth,
879                                          const Query &Q) {
880   unsigned BitWidth = KnownZero.getBitWidth();
881 
882   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
883   switch (I->getOpcode()) {
884   default: break;
885   case Instruction::Load:
886     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
887       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
888     break;
889   case Instruction::And: {
890     // If either the LHS or the RHS are Zero, the result is zero.
891     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
892     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
893 
894     // Output known-1 bits are only known if set in both the LHS & RHS.
895     KnownOne &= KnownOne2;
896     // Output known-0 are known to be clear if zero in either the LHS | RHS.
897     KnownZero |= KnownZero2;
898 
899     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
900     // here we handle the more general case of adding any odd number by
901     // matching the form add(x, add(x, y)) where y is odd.
902     // TODO: This could be generalized to clearing any bit set in y where the
903     // following bit is known to be unset in y.
904     Value *Y = nullptr;
905     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
906                                       m_Value(Y))) ||
907         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
908                                       m_Value(Y)))) {
909       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
910       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
911       if (KnownOne3.countTrailingOnes() > 0)
912         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
913     }
914     break;
915   }
916   case Instruction::Or: {
917     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
918     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
919 
920     // Output known-0 bits are only known if clear in both the LHS & RHS.
921     KnownZero &= KnownZero2;
922     // Output known-1 are known to be set if set in either the LHS | RHS.
923     KnownOne |= KnownOne2;
924     break;
925   }
926   case Instruction::Xor: {
927     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
928     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
929 
930     // Output known-0 bits are known if clear or set in both the LHS & RHS.
931     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
932     // Output known-1 are known to be set if set in only one of the LHS, RHS.
933     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
934     KnownZero = KnownZeroOut;
935     break;
936   }
937   case Instruction::Mul: {
938     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
939     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
940                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
941     break;
942   }
943   case Instruction::UDiv: {
944     // For the purposes of computing leading zeros we can conservatively
945     // treat a udiv as a logical right shift by the power of 2 known to
946     // be less than the denominator.
947     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
948     unsigned LeadZ = KnownZero2.countLeadingOnes();
949 
950     KnownOne2.clearAllBits();
951     KnownZero2.clearAllBits();
952     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
953     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
954     if (RHSUnknownLeadingOnes != BitWidth)
955       LeadZ = std::min(BitWidth,
956                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
957 
958     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
959     break;
960   }
961   case Instruction::Select: {
962     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
963     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
964 
965     const Value *LHS;
966     const Value *RHS;
967     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
968     if (SelectPatternResult::isMinOrMax(SPF)) {
969       computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
970       computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
971     } else {
972       computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
973       computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
974     }
975 
976     unsigned MaxHighOnes = 0;
977     unsigned MaxHighZeros = 0;
978     if (SPF == SPF_SMAX) {
979       // If both sides are negative, the result is negative.
980       if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
981         // We can derive a lower bound on the result by taking the max of the
982         // leading one bits.
983         MaxHighOnes =
984             std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
985       // If either side is non-negative, the result is non-negative.
986       else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
987         MaxHighZeros = 1;
988     } else if (SPF == SPF_SMIN) {
989       // If both sides are non-negative, the result is non-negative.
990       if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
991         // We can derive an upper bound on the result by taking the max of the
992         // leading zero bits.
993         MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
994                                 KnownZero2.countLeadingOnes());
995       // If either side is negative, the result is negative.
996       else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
997         MaxHighOnes = 1;
998     } else if (SPF == SPF_UMAX) {
999       // We can derive a lower bound on the result by taking the max of the
1000       // leading one bits.
1001       MaxHighOnes =
1002           std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1003     } else if (SPF == SPF_UMIN) {
1004       // We can derive an upper bound on the result by taking the max of the
1005       // leading zero bits.
1006       MaxHighZeros =
1007           std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1008     }
1009 
1010     // Only known if known in both the LHS and RHS.
1011     KnownOne &= KnownOne2;
1012     KnownZero &= KnownZero2;
1013     if (MaxHighOnes > 0)
1014       KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1015     if (MaxHighZeros > 0)
1016       KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
1017     break;
1018   }
1019   case Instruction::FPTrunc:
1020   case Instruction::FPExt:
1021   case Instruction::FPToUI:
1022   case Instruction::FPToSI:
1023   case Instruction::SIToFP:
1024   case Instruction::UIToFP:
1025     break; // Can't work with floating point.
1026   case Instruction::PtrToInt:
1027   case Instruction::IntToPtr:
1028   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
1029     // Fall through and handle them the same as zext/trunc.
1030     LLVM_FALLTHROUGH;
1031   case Instruction::ZExt:
1032   case Instruction::Trunc: {
1033     Type *SrcTy = I->getOperand(0)->getType();
1034 
1035     unsigned SrcBitWidth;
1036     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1037     // which fall through here.
1038     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1039 
1040     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1041     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1042     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1043     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1044     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1045     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1046     // Any top bits are known to be zero.
1047     if (BitWidth > SrcBitWidth)
1048       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1049     break;
1050   }
1051   case Instruction::BitCast: {
1052     Type *SrcTy = I->getOperand(0)->getType();
1053     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
1054         // TODO: For now, not handling conversions like:
1055         // (bitcast i64 %x to <2 x i32>)
1056         !I->getType()->isVectorTy()) {
1057       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1058       break;
1059     }
1060     break;
1061   }
1062   case Instruction::SExt: {
1063     // Compute the bits in the result that are not present in the input.
1064     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1065 
1066     KnownZero = KnownZero.trunc(SrcBitWidth);
1067     KnownOne = KnownOne.trunc(SrcBitWidth);
1068     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1069     KnownZero = KnownZero.zext(BitWidth);
1070     KnownOne = KnownOne.zext(BitWidth);
1071 
1072     // If the sign bit of the input is known set or clear, then we know the
1073     // top bits of the result.
1074     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1075       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1076     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1077       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1078     break;
1079   }
1080   case Instruction::Shl: {
1081     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1082     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1083     auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1084       APInt KZResult =
1085           (KnownZero << ShiftAmt) |
1086           APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1087       // If this shift has "nsw" keyword, then the result is either a poison
1088       // value or has the same sign bit as the first operand.
1089       if (NSW && KnownZero.isNegative())
1090         KZResult.setBit(BitWidth - 1);
1091       return KZResult;
1092     };
1093 
1094     auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1095       APInt KOResult = KnownOne << ShiftAmt;
1096       if (NSW && KnownOne.isNegative())
1097         KOResult.setBit(BitWidth - 1);
1098       return KOResult;
1099     };
1100 
1101     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1102                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1103                                       KOF);
1104     break;
1105   }
1106   case Instruction::LShr: {
1107     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1108     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1109       return APIntOps::lshr(KnownZero, ShiftAmt) |
1110              // High bits known zero.
1111              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1112     };
1113 
1114     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1115       return APIntOps::lshr(KnownOne, ShiftAmt);
1116     };
1117 
1118     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1119                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1120                                       KOF);
1121     break;
1122   }
1123   case Instruction::AShr: {
1124     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1125     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1126       return APIntOps::ashr(KnownZero, ShiftAmt);
1127     };
1128 
1129     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1130       return APIntOps::ashr(KnownOne, ShiftAmt);
1131     };
1132 
1133     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1134                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1135                                       KOF);
1136     break;
1137   }
1138   case Instruction::Sub: {
1139     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1140     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1141                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1142                            Q);
1143     break;
1144   }
1145   case Instruction::Add: {
1146     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1147     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1148                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1149                            Q);
1150     break;
1151   }
1152   case Instruction::SRem:
1153     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1154       APInt RA = Rem->getValue().abs();
1155       if (RA.isPowerOf2()) {
1156         APInt LowBits = RA - 1;
1157         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1158                          Q);
1159 
1160         // The low bits of the first operand are unchanged by the srem.
1161         KnownZero = KnownZero2 & LowBits;
1162         KnownOne = KnownOne2 & LowBits;
1163 
1164         // If the first operand is non-negative or has all low bits zero, then
1165         // the upper bits are all zero.
1166         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1167           KnownZero |= ~LowBits;
1168 
1169         // If the first operand is negative and not all low bits are zero, then
1170         // the upper bits are all one.
1171         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1172           KnownOne |= ~LowBits;
1173 
1174         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1175       }
1176     }
1177 
1178     // The sign bit is the LHS's sign bit, except when the result of the
1179     // remainder is zero.
1180     if (KnownZero.isNonNegative()) {
1181       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1182       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1183                        Q);
1184       // If it's known zero, our sign bit is also zero.
1185       if (LHSKnownZero.isNegative())
1186         KnownZero.setBit(BitWidth - 1);
1187     }
1188 
1189     break;
1190   case Instruction::URem: {
1191     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1192       const APInt &RA = Rem->getValue();
1193       if (RA.isPowerOf2()) {
1194         APInt LowBits = (RA - 1);
1195         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1196         KnownZero |= ~LowBits;
1197         KnownOne &= LowBits;
1198         break;
1199       }
1200     }
1201 
1202     // Since the result is less than or equal to either operand, any leading
1203     // zero bits in either operand must also exist in the result.
1204     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1205     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1206 
1207     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1208                                 KnownZero2.countLeadingOnes());
1209     KnownOne.clearAllBits();
1210     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1211     break;
1212   }
1213 
1214   case Instruction::Alloca: {
1215     const AllocaInst *AI = cast<AllocaInst>(I);
1216     unsigned Align = AI->getAlignment();
1217     if (Align == 0)
1218       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1219 
1220     if (Align > 0)
1221       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1222     break;
1223   }
1224   case Instruction::GetElementPtr: {
1225     // Analyze all of the subscripts of this getelementptr instruction
1226     // to determine if we can prove known low zero bits.
1227     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1228     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1229                      Q);
1230     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1231 
1232     gep_type_iterator GTI = gep_type_begin(I);
1233     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1234       Value *Index = I->getOperand(i);
1235       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1236         // Handle struct member offset arithmetic.
1237 
1238         // Handle case when index is vector zeroinitializer
1239         Constant *CIndex = cast<Constant>(Index);
1240         if (CIndex->isZeroValue())
1241           continue;
1242 
1243         if (CIndex->getType()->isVectorTy())
1244           Index = CIndex->getSplatValue();
1245 
1246         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1247         const StructLayout *SL = Q.DL.getStructLayout(STy);
1248         uint64_t Offset = SL->getElementOffset(Idx);
1249         TrailZ = std::min<unsigned>(TrailZ,
1250                                     countTrailingZeros(Offset));
1251       } else {
1252         // Handle array index arithmetic.
1253         Type *IndexedTy = GTI.getIndexedType();
1254         if (!IndexedTy->isSized()) {
1255           TrailZ = 0;
1256           break;
1257         }
1258         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1259         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1260         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1261         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1262         TrailZ = std::min(TrailZ,
1263                           unsigned(countTrailingZeros(TypeSize) +
1264                                    LocalKnownZero.countTrailingOnes()));
1265       }
1266     }
1267 
1268     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1269     break;
1270   }
1271   case Instruction::PHI: {
1272     const PHINode *P = cast<PHINode>(I);
1273     // Handle the case of a simple two-predecessor recurrence PHI.
1274     // There's a lot more that could theoretically be done here, but
1275     // this is sufficient to catch some interesting cases.
1276     if (P->getNumIncomingValues() == 2) {
1277       for (unsigned i = 0; i != 2; ++i) {
1278         Value *L = P->getIncomingValue(i);
1279         Value *R = P->getIncomingValue(!i);
1280         Operator *LU = dyn_cast<Operator>(L);
1281         if (!LU)
1282           continue;
1283         unsigned Opcode = LU->getOpcode();
1284         // Check for operations that have the property that if
1285         // both their operands have low zero bits, the result
1286         // will have low zero bits.
1287         if (Opcode == Instruction::Add ||
1288             Opcode == Instruction::Sub ||
1289             Opcode == Instruction::And ||
1290             Opcode == Instruction::Or ||
1291             Opcode == Instruction::Mul) {
1292           Value *LL = LU->getOperand(0);
1293           Value *LR = LU->getOperand(1);
1294           // Find a recurrence.
1295           if (LL == I)
1296             L = LR;
1297           else if (LR == I)
1298             L = LL;
1299           else
1300             break;
1301           // Ok, we have a PHI of the form L op= R. Check for low
1302           // zero bits.
1303           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1304 
1305           // We need to take the minimum number of known bits
1306           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1307           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1308 
1309           KnownZero = APInt::getLowBitsSet(
1310               BitWidth, std::min(KnownZero2.countTrailingOnes(),
1311                                  KnownZero3.countTrailingOnes()));
1312 
1313           if (DontImproveNonNegativePhiBits)
1314             break;
1315 
1316           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1317           if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1318             // If initial value of recurrence is nonnegative, and we are adding
1319             // a nonnegative number with nsw, the result can only be nonnegative
1320             // or poison value regardless of the number of times we execute the
1321             // add in phi recurrence. If initial value is negative and we are
1322             // adding a negative number with nsw, the result can only be
1323             // negative or poison value. Similar arguments apply to sub and mul.
1324             //
1325             // (add non-negative, non-negative) --> non-negative
1326             // (add negative, negative) --> negative
1327             if (Opcode == Instruction::Add) {
1328               if (KnownZero2.isNegative() && KnownZero3.isNegative())
1329                 KnownZero.setBit(BitWidth - 1);
1330               else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1331                 KnownOne.setBit(BitWidth - 1);
1332             }
1333 
1334             // (sub nsw non-negative, negative) --> non-negative
1335             // (sub nsw negative, non-negative) --> negative
1336             else if (Opcode == Instruction::Sub && LL == I) {
1337               if (KnownZero2.isNegative() && KnownOne3.isNegative())
1338                 KnownZero.setBit(BitWidth - 1);
1339               else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1340                 KnownOne.setBit(BitWidth - 1);
1341             }
1342 
1343             // (mul nsw non-negative, non-negative) --> non-negative
1344             else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1345                      KnownZero3.isNegative())
1346               KnownZero.setBit(BitWidth - 1);
1347           }
1348 
1349           break;
1350         }
1351       }
1352     }
1353 
1354     // Unreachable blocks may have zero-operand PHI nodes.
1355     if (P->getNumIncomingValues() == 0)
1356       break;
1357 
1358     // Otherwise take the unions of the known bit sets of the operands,
1359     // taking conservative care to avoid excessive recursion.
1360     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1361       // Skip if every incoming value references to ourself.
1362       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1363         break;
1364 
1365       KnownZero = APInt::getAllOnesValue(BitWidth);
1366       KnownOne = APInt::getAllOnesValue(BitWidth);
1367       for (Value *IncValue : P->incoming_values()) {
1368         // Skip direct self references.
1369         if (IncValue == P) continue;
1370 
1371         KnownZero2 = APInt(BitWidth, 0);
1372         KnownOne2 = APInt(BitWidth, 0);
1373         // Recurse, but cap the recursion to one level, because we don't
1374         // want to waste time spinning around in loops.
1375         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1376         KnownZero &= KnownZero2;
1377         KnownOne &= KnownOne2;
1378         // If all bits have been ruled out, there's no need to check
1379         // more operands.
1380         if (!KnownZero && !KnownOne)
1381           break;
1382       }
1383     }
1384     break;
1385   }
1386   case Instruction::Call:
1387   case Instruction::Invoke:
1388     // If range metadata is attached to this call, set known bits from that,
1389     // and then intersect with known bits based on other properties of the
1390     // function.
1391     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1392       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1393     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1394       computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1395       KnownZero |= KnownZero2;
1396       KnownOne |= KnownOne2;
1397     }
1398     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1399       switch (II->getIntrinsicID()) {
1400       default: break;
1401       case Intrinsic::bswap:
1402         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1403         KnownZero |= KnownZero2.byteSwap();
1404         KnownOne |= KnownOne2.byteSwap();
1405         break;
1406       case Intrinsic::ctlz:
1407       case Intrinsic::cttz: {
1408         unsigned LowBits = Log2_32(BitWidth)+1;
1409         // If this call is undefined for 0, the result will be less than 2^n.
1410         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1411           LowBits -= 1;
1412         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1413         break;
1414       }
1415       case Intrinsic::ctpop: {
1416         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1417         // We can bound the space the count needs.  Also, bits known to be zero
1418         // can't contribute to the population.
1419         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1420         unsigned LeadingZeros =
1421           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1422         assert(LeadingZeros <= BitWidth);
1423         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1424         KnownOne &= ~KnownZero;
1425         // TODO: we could bound KnownOne using the lower bound on the number
1426         // of bits which might be set provided by popcnt KnownOne2.
1427         break;
1428       }
1429       case Intrinsic::x86_sse42_crc32_64_64:
1430         KnownZero |= APInt::getHighBitsSet(64, 32);
1431         break;
1432       }
1433     }
1434     break;
1435   case Instruction::ExtractElement:
1436     // Look through extract element. At the moment we keep this simple and skip
1437     // tracking the specific element. But at least we might find information
1438     // valid for all elements of the vector (for example if vector is sign
1439     // extended, shifted, etc).
1440     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1441     break;
1442   case Instruction::ExtractValue:
1443     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1444       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1445       if (EVI->getNumIndices() != 1) break;
1446       if (EVI->getIndices()[0] == 0) {
1447         switch (II->getIntrinsicID()) {
1448         default: break;
1449         case Intrinsic::uadd_with_overflow:
1450         case Intrinsic::sadd_with_overflow:
1451           computeKnownBitsAddSub(true, II->getArgOperand(0),
1452                                  II->getArgOperand(1), false, KnownZero,
1453                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1454           break;
1455         case Intrinsic::usub_with_overflow:
1456         case Intrinsic::ssub_with_overflow:
1457           computeKnownBitsAddSub(false, II->getArgOperand(0),
1458                                  II->getArgOperand(1), false, KnownZero,
1459                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1460           break;
1461         case Intrinsic::umul_with_overflow:
1462         case Intrinsic::smul_with_overflow:
1463           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1464                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1465                               Q);
1466           break;
1467         }
1468       }
1469     }
1470   }
1471 }
1472 
1473 /// Determine which bits of V are known to be either zero or one and return
1474 /// them in the KnownZero/KnownOne bit sets.
1475 ///
1476 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1477 /// we cannot optimize based on the assumption that it is zero without changing
1478 /// it to be an explicit zero.  If we don't change it to zero, other code could
1479 /// optimized based on the contradictory assumption that it is non-zero.
1480 /// Because instcombine aggressively folds operations with undef args anyway,
1481 /// this won't lose us code quality.
1482 ///
1483 /// This function is defined on values with integer type, values with pointer
1484 /// type, and vectors of integers.  In the case
1485 /// where V is a vector, known zero, and known one values are the
1486 /// same width as the vector element, and the bit is set only if it is true
1487 /// for all of the elements in the vector.
1488 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
1489                       unsigned Depth, const Query &Q) {
1490   assert(V && "No Value?");
1491   assert(Depth <= MaxDepth && "Limit Search Depth");
1492   unsigned BitWidth = KnownZero.getBitWidth();
1493 
1494   assert((V->getType()->isIntOrIntVectorTy() ||
1495           V->getType()->getScalarType()->isPointerTy()) &&
1496          "Not integer or pointer type!");
1497   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1498          (!V->getType()->isIntOrIntVectorTy() ||
1499           V->getType()->getScalarSizeInBits() == BitWidth) &&
1500          KnownZero.getBitWidth() == BitWidth &&
1501          KnownOne.getBitWidth() == BitWidth &&
1502          "V, KnownOne and KnownZero should have same BitWidth");
1503 
1504   const APInt *C;
1505   if (match(V, m_APInt(C))) {
1506     // We know all of the bits for a scalar constant or a splat vector constant!
1507     KnownOne = *C;
1508     KnownZero = ~KnownOne;
1509     return;
1510   }
1511   // Null and aggregate-zero are all-zeros.
1512   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1513     KnownOne.clearAllBits();
1514     KnownZero = APInt::getAllOnesValue(BitWidth);
1515     return;
1516   }
1517   // Handle a constant vector by taking the intersection of the known bits of
1518   // each element.
1519   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1520     // We know that CDS must be a vector of integers. Take the intersection of
1521     // each element.
1522     KnownZero.setAllBits(); KnownOne.setAllBits();
1523     APInt Elt(KnownZero.getBitWidth(), 0);
1524     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1525       Elt = CDS->getElementAsInteger(i);
1526       KnownZero &= ~Elt;
1527       KnownOne &= Elt;
1528     }
1529     return;
1530   }
1531 
1532   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1533     // We know that CV must be a vector of integers. Take the intersection of
1534     // each element.
1535     KnownZero.setAllBits(); KnownOne.setAllBits();
1536     APInt Elt(KnownZero.getBitWidth(), 0);
1537     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1538       Constant *Element = CV->getAggregateElement(i);
1539       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1540       if (!ElementCI) {
1541         KnownZero.clearAllBits();
1542         KnownOne.clearAllBits();
1543         return;
1544       }
1545       Elt = ElementCI->getValue();
1546       KnownZero &= ~Elt;
1547       KnownOne &= Elt;
1548     }
1549     return;
1550   }
1551 
1552   // Start out not knowing anything.
1553   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1554 
1555   // We can't imply anything about undefs.
1556   if (isa<UndefValue>(V))
1557     return;
1558 
1559   // There's no point in looking through other users of ConstantData for
1560   // assumptions.  Confirm that we've handled them all.
1561   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1562 
1563   // Limit search depth.
1564   // All recursive calls that increase depth must come after this.
1565   if (Depth == MaxDepth)
1566     return;
1567 
1568   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1569   // the bits of its aliasee.
1570   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1571     if (!GA->isInterposable())
1572       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1573     return;
1574   }
1575 
1576   if (const Operator *I = dyn_cast<Operator>(V))
1577     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1578 
1579   // Aligned pointers have trailing zeros - refine KnownZero set
1580   if (V->getType()->isPointerTy()) {
1581     unsigned Align = V->getPointerAlignment(Q.DL);
1582     if (Align)
1583       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1584   }
1585 
1586   // computeKnownBitsFromAssume strictly refines KnownZero and
1587   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1588 
1589   // Check whether a nearby assume intrinsic can determine some known bits.
1590   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1591 
1592   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1593 }
1594 
1595 /// Determine whether the sign bit is known to be zero or one.
1596 /// Convenience wrapper around computeKnownBits.
1597 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
1598                     unsigned Depth, const Query &Q) {
1599   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1600   if (!BitWidth) {
1601     KnownZero = false;
1602     KnownOne = false;
1603     return;
1604   }
1605   APInt ZeroBits(BitWidth, 0);
1606   APInt OneBits(BitWidth, 0);
1607   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1608   KnownOne = OneBits[BitWidth - 1];
1609   KnownZero = ZeroBits[BitWidth - 1];
1610 }
1611 
1612 /// Return true if the given value is known to have exactly one
1613 /// bit set when defined. For vectors return true if every element is known to
1614 /// be a power of two when defined. Supports values with integer or pointer
1615 /// types and vectors of integers.
1616 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1617                             const Query &Q) {
1618   if (const Constant *C = dyn_cast<Constant>(V)) {
1619     if (C->isNullValue())
1620       return OrZero;
1621 
1622     const APInt *ConstIntOrConstSplatInt;
1623     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1624       return ConstIntOrConstSplatInt->isPowerOf2();
1625   }
1626 
1627   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1628   // it is shifted off the end then the result is undefined.
1629   if (match(V, m_Shl(m_One(), m_Value())))
1630     return true;
1631 
1632   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1633   // bottom.  If it is shifted off the bottom then the result is undefined.
1634   if (match(V, m_LShr(m_SignBit(), m_Value())))
1635     return true;
1636 
1637   // The remaining tests are all recursive, so bail out if we hit the limit.
1638   if (Depth++ == MaxDepth)
1639     return false;
1640 
1641   Value *X = nullptr, *Y = nullptr;
1642   // A shift left or a logical shift right of a power of two is a power of two
1643   // or zero.
1644   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1645                  match(V, m_LShr(m_Value(X), m_Value()))))
1646     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1647 
1648   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1649     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1650 
1651   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1652     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1653            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1654 
1655   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1656     // A power of two and'd with anything is a power of two or zero.
1657     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1658         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1659       return true;
1660     // X & (-X) is always a power of two or zero.
1661     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1662       return true;
1663     return false;
1664   }
1665 
1666   // Adding a power-of-two or zero to the same power-of-two or zero yields
1667   // either the original power-of-two, a larger power-of-two or zero.
1668   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1669     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1670     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1671       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1672           match(X, m_And(m_Value(), m_Specific(Y))))
1673         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1674           return true;
1675       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1676           match(Y, m_And(m_Value(), m_Specific(X))))
1677         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1678           return true;
1679 
1680       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1681       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1682       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1683 
1684       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1685       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1686       // If i8 V is a power of two or zero:
1687       //  ZeroBits: 1 1 1 0 1 1 1 1
1688       // ~ZeroBits: 0 0 0 1 0 0 0 0
1689       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1690         // If OrZero isn't set, we cannot give back a zero result.
1691         // Make sure either the LHS or RHS has a bit set.
1692         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1693           return true;
1694     }
1695   }
1696 
1697   // An exact divide or right shift can only shift off zero bits, so the result
1698   // is a power of two only if the first operand is a power of two and not
1699   // copying a sign bit (sdiv int_min, 2).
1700   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1701       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1702     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1703                                   Depth, Q);
1704   }
1705 
1706   return false;
1707 }
1708 
1709 /// \brief Test whether a GEP's result is known to be non-null.
1710 ///
1711 /// Uses properties inherent in a GEP to try to determine whether it is known
1712 /// to be non-null.
1713 ///
1714 /// Currently this routine does not support vector GEPs.
1715 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1716                               const Query &Q) {
1717   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1718     return false;
1719 
1720   // FIXME: Support vector-GEPs.
1721   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1722 
1723   // If the base pointer is non-null, we cannot walk to a null address with an
1724   // inbounds GEP in address space zero.
1725   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1726     return true;
1727 
1728   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1729   // If so, then the GEP cannot produce a null pointer, as doing so would
1730   // inherently violate the inbounds contract within address space zero.
1731   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1732        GTI != GTE; ++GTI) {
1733     // Struct types are easy -- they must always be indexed by a constant.
1734     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1735       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1736       unsigned ElementIdx = OpC->getZExtValue();
1737       const StructLayout *SL = Q.DL.getStructLayout(STy);
1738       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1739       if (ElementOffset > 0)
1740         return true;
1741       continue;
1742     }
1743 
1744     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1745     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1746       continue;
1747 
1748     // Fast path the constant operand case both for efficiency and so we don't
1749     // increment Depth when just zipping down an all-constant GEP.
1750     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1751       if (!OpC->isZero())
1752         return true;
1753       continue;
1754     }
1755 
1756     // We post-increment Depth here because while isKnownNonZero increments it
1757     // as well, when we pop back up that increment won't persist. We don't want
1758     // to recurse 10k times just because we have 10k GEP operands. We don't
1759     // bail completely out because we want to handle constant GEPs regardless
1760     // of depth.
1761     if (Depth++ >= MaxDepth)
1762       continue;
1763 
1764     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1765       return true;
1766   }
1767 
1768   return false;
1769 }
1770 
1771 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1772 /// ensure that the value it's attached to is never Value?  'RangeType' is
1773 /// is the type of the value described by the range.
1774 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1775   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1776   assert(NumRanges >= 1);
1777   for (unsigned i = 0; i < NumRanges; ++i) {
1778     ConstantInt *Lower =
1779         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1780     ConstantInt *Upper =
1781         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1782     ConstantRange Range(Lower->getValue(), Upper->getValue());
1783     if (Range.contains(Value))
1784       return false;
1785   }
1786   return true;
1787 }
1788 
1789 /// Return true if the given value is known to be non-zero when defined.
1790 /// For vectors return true if every element is known to be non-zero when
1791 /// defined. Supports values with integer or pointer type and vectors of
1792 /// integers.
1793 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1794   if (auto *C = dyn_cast<Constant>(V)) {
1795     if (C->isNullValue())
1796       return false;
1797     if (isa<ConstantInt>(C))
1798       // Must be non-zero due to null test above.
1799       return true;
1800 
1801     // For constant vectors, check that all elements are undefined or known
1802     // non-zero to determine that the whole vector is known non-zero.
1803     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1804       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1805         Constant *Elt = C->getAggregateElement(i);
1806         if (!Elt || Elt->isNullValue())
1807           return false;
1808         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1809           return false;
1810       }
1811       return true;
1812     }
1813 
1814     return false;
1815   }
1816 
1817   if (auto *I = dyn_cast<Instruction>(V)) {
1818     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1819       // If the possible ranges don't contain zero, then the value is
1820       // definitely non-zero.
1821       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1822         const APInt ZeroValue(Ty->getBitWidth(), 0);
1823         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1824           return true;
1825       }
1826     }
1827   }
1828 
1829   // The remaining tests are all recursive, so bail out if we hit the limit.
1830   if (Depth++ >= MaxDepth)
1831     return false;
1832 
1833   // Check for pointer simplifications.
1834   if (V->getType()->isPointerTy()) {
1835     if (isKnownNonNull(V))
1836       return true;
1837     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1838       if (isGEPKnownNonNull(GEP, Depth, Q))
1839         return true;
1840   }
1841 
1842   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1843 
1844   // X | Y != 0 if X != 0 or Y != 0.
1845   Value *X = nullptr, *Y = nullptr;
1846   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1847     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1848 
1849   // ext X != 0 if X != 0.
1850   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1851     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1852 
1853   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1854   // if the lowest bit is shifted off the end.
1855   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1856     // shl nuw can't remove any non-zero bits.
1857     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1858     if (BO->hasNoUnsignedWrap())
1859       return isKnownNonZero(X, Depth, Q);
1860 
1861     APInt KnownZero(BitWidth, 0);
1862     APInt KnownOne(BitWidth, 0);
1863     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1864     if (KnownOne[0])
1865       return true;
1866   }
1867   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1868   // defined if the sign bit is shifted off the end.
1869   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1870     // shr exact can only shift out zero bits.
1871     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1872     if (BO->isExact())
1873       return isKnownNonZero(X, Depth, Q);
1874 
1875     bool XKnownNonNegative, XKnownNegative;
1876     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1877     if (XKnownNegative)
1878       return true;
1879 
1880     // If the shifter operand is a constant, and all of the bits shifted
1881     // out are known to be zero, and X is known non-zero then at least one
1882     // non-zero bit must remain.
1883     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1884       APInt KnownZero(BitWidth, 0);
1885       APInt KnownOne(BitWidth, 0);
1886       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1887 
1888       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1889       // Is there a known one in the portion not shifted out?
1890       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1891         return true;
1892       // Are all the bits to be shifted out known zero?
1893       if (KnownZero.countTrailingOnes() >= ShiftVal)
1894         return isKnownNonZero(X, Depth, Q);
1895     }
1896   }
1897   // div exact can only produce a zero if the dividend is zero.
1898   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1899     return isKnownNonZero(X, Depth, Q);
1900   }
1901   // X + Y.
1902   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1903     bool XKnownNonNegative, XKnownNegative;
1904     bool YKnownNonNegative, YKnownNegative;
1905     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1906     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1907 
1908     // If X and Y are both non-negative (as signed values) then their sum is not
1909     // zero unless both X and Y are zero.
1910     if (XKnownNonNegative && YKnownNonNegative)
1911       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1912         return true;
1913 
1914     // If X and Y are both negative (as signed values) then their sum is not
1915     // zero unless both X and Y equal INT_MIN.
1916     if (BitWidth && XKnownNegative && YKnownNegative) {
1917       APInt KnownZero(BitWidth, 0);
1918       APInt KnownOne(BitWidth, 0);
1919       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1920       // The sign bit of X is set.  If some other bit is set then X is not equal
1921       // to INT_MIN.
1922       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1923       if ((KnownOne & Mask) != 0)
1924         return true;
1925       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1926       // to INT_MIN.
1927       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1928       if ((KnownOne & Mask) != 0)
1929         return true;
1930     }
1931 
1932     // The sum of a non-negative number and a power of two is not zero.
1933     if (XKnownNonNegative &&
1934         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1935       return true;
1936     if (YKnownNonNegative &&
1937         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1938       return true;
1939   }
1940   // X * Y.
1941   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1942     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1943     // If X and Y are non-zero then so is X * Y as long as the multiplication
1944     // does not overflow.
1945     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1946         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1947       return true;
1948   }
1949   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1950   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
1951     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1952         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1953       return true;
1954   }
1955   // PHI
1956   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
1957     // Try and detect a recurrence that monotonically increases from a
1958     // starting value, as these are common as induction variables.
1959     if (PN->getNumIncomingValues() == 2) {
1960       Value *Start = PN->getIncomingValue(0);
1961       Value *Induction = PN->getIncomingValue(1);
1962       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1963         std::swap(Start, Induction);
1964       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1965         if (!C->isZero() && !C->isNegative()) {
1966           ConstantInt *X;
1967           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1968                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1969               !X->isNegative())
1970             return true;
1971         }
1972       }
1973     }
1974     // Check if all incoming values are non-zero constant.
1975     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1976       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1977     });
1978     if (AllNonZeroConstants)
1979       return true;
1980   }
1981 
1982   if (!BitWidth) return false;
1983   APInt KnownZero(BitWidth, 0);
1984   APInt KnownOne(BitWidth, 0);
1985   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1986   return KnownOne != 0;
1987 }
1988 
1989 /// Return true if V2 == V1 + X, where X is known non-zero.
1990 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1991   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1992   if (!BO || BO->getOpcode() != Instruction::Add)
1993     return false;
1994   Value *Op = nullptr;
1995   if (V2 == BO->getOperand(0))
1996     Op = BO->getOperand(1);
1997   else if (V2 == BO->getOperand(1))
1998     Op = BO->getOperand(0);
1999   else
2000     return false;
2001   return isKnownNonZero(Op, 0, Q);
2002 }
2003 
2004 /// Return true if it is known that V1 != V2.
2005 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2006   if (V1->getType()->isVectorTy() || V1 == V2)
2007     return false;
2008   if (V1->getType() != V2->getType())
2009     // We can't look through casts yet.
2010     return false;
2011   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2012     return true;
2013 
2014   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2015     // Are any known bits in V1 contradictory to known bits in V2? If V1
2016     // has a known zero where V2 has a known one, they must not be equal.
2017     auto BitWidth = Ty->getBitWidth();
2018     APInt KnownZero1(BitWidth, 0);
2019     APInt KnownOne1(BitWidth, 0);
2020     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
2021     APInt KnownZero2(BitWidth, 0);
2022     APInt KnownOne2(BitWidth, 0);
2023     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
2024 
2025     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2026     if (OppositeBits.getBoolValue())
2027       return true;
2028   }
2029   return false;
2030 }
2031 
2032 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2033 /// simplify operations downstream. Mask is known to be zero for bits that V
2034 /// cannot have.
2035 ///
2036 /// This function is defined on values with integer type, values with pointer
2037 /// type, and vectors of integers.  In the case
2038 /// where V is a vector, the mask, known zero, and known one values are the
2039 /// same width as the vector element, and the bit is set only if it is true
2040 /// for all of the elements in the vector.
2041 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2042                        const Query &Q) {
2043   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2044   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2045   return (KnownZero & Mask) == Mask;
2046 }
2047 
2048 /// For vector constants, loop over the elements and find the constant with the
2049 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2050 /// or if any element was not analyzed; otherwise, return the count for the
2051 /// element with the minimum number of sign bits.
2052 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2053                                                  unsigned TyBits) {
2054   const auto *CV = dyn_cast<Constant>(V);
2055   if (!CV || !CV->getType()->isVectorTy())
2056     return 0;
2057 
2058   unsigned MinSignBits = TyBits;
2059   unsigned NumElts = CV->getType()->getVectorNumElements();
2060   for (unsigned i = 0; i != NumElts; ++i) {
2061     // If we find a non-ConstantInt, bail out.
2062     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2063     if (!Elt)
2064       return 0;
2065 
2066     // If the sign bit is 1, flip the bits, so we always count leading zeros.
2067     APInt EltVal = Elt->getValue();
2068     if (EltVal.isNegative())
2069       EltVal = ~EltVal;
2070     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2071   }
2072 
2073   return MinSignBits;
2074 }
2075 
2076 /// Return the number of times the sign bit of the register is replicated into
2077 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2078 /// (itself), but other cases can give us information. For example, immediately
2079 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2080 /// other, so we return 3. For vectors, return the number of sign bits for the
2081 /// vector element with the mininum number of known sign bits.
2082 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
2083   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2084   unsigned Tmp, Tmp2;
2085   unsigned FirstAnswer = 1;
2086 
2087   // Note that ConstantInt is handled by the general computeKnownBits case
2088   // below.
2089 
2090   if (Depth == 6)
2091     return 1;  // Limit search depth.
2092 
2093   const Operator *U = dyn_cast<Operator>(V);
2094   switch (Operator::getOpcode(V)) {
2095   default: break;
2096   case Instruction::SExt:
2097     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2098     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2099 
2100   case Instruction::SDiv: {
2101     const APInt *Denominator;
2102     // sdiv X, C -> adds log(C) sign bits.
2103     if (match(U->getOperand(1), m_APInt(Denominator))) {
2104 
2105       // Ignore non-positive denominator.
2106       if (!Denominator->isStrictlyPositive())
2107         break;
2108 
2109       // Calculate the incoming numerator bits.
2110       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2111 
2112       // Add floor(log(C)) bits to the numerator bits.
2113       return std::min(TyBits, NumBits + Denominator->logBase2());
2114     }
2115     break;
2116   }
2117 
2118   case Instruction::SRem: {
2119     const APInt *Denominator;
2120     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2121     // positive constant.  This let us put a lower bound on the number of sign
2122     // bits.
2123     if (match(U->getOperand(1), m_APInt(Denominator))) {
2124 
2125       // Ignore non-positive denominator.
2126       if (!Denominator->isStrictlyPositive())
2127         break;
2128 
2129       // Calculate the incoming numerator bits. SRem by a positive constant
2130       // can't lower the number of sign bits.
2131       unsigned NumrBits =
2132           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2133 
2134       // Calculate the leading sign bit constraints by examining the
2135       // denominator.  Given that the denominator is positive, there are two
2136       // cases:
2137       //
2138       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2139       //     (1 << ceilLogBase2(C)).
2140       //
2141       //  2. the numerator is negative.  Then the result range is (-C,0] and
2142       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2143       //
2144       // Thus a lower bound on the number of sign bits is `TyBits -
2145       // ceilLogBase2(C)`.
2146 
2147       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2148       return std::max(NumrBits, ResBits);
2149     }
2150     break;
2151   }
2152 
2153   case Instruction::AShr: {
2154     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2155     // ashr X, C   -> adds C sign bits.  Vectors too.
2156     const APInt *ShAmt;
2157     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2158       Tmp += ShAmt->getZExtValue();
2159       if (Tmp > TyBits) Tmp = TyBits;
2160     }
2161     return Tmp;
2162   }
2163   case Instruction::Shl: {
2164     const APInt *ShAmt;
2165     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2166       // shl destroys sign bits.
2167       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2168       Tmp2 = ShAmt->getZExtValue();
2169       if (Tmp2 >= TyBits ||      // Bad shift.
2170           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2171       return Tmp - Tmp2;
2172     }
2173     break;
2174   }
2175   case Instruction::And:
2176   case Instruction::Or:
2177   case Instruction::Xor:    // NOT is handled here.
2178     // Logical binary ops preserve the number of sign bits at the worst.
2179     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2180     if (Tmp != 1) {
2181       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2182       FirstAnswer = std::min(Tmp, Tmp2);
2183       // We computed what we know about the sign bits as our first
2184       // answer. Now proceed to the generic code that uses
2185       // computeKnownBits, and pick whichever answer is better.
2186     }
2187     break;
2188 
2189   case Instruction::Select:
2190     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2191     if (Tmp == 1) return 1;  // Early out.
2192     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2193     return std::min(Tmp, Tmp2);
2194 
2195   case Instruction::Add:
2196     // Add can have at most one carry bit.  Thus we know that the output
2197     // is, at worst, one more bit than the inputs.
2198     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2199     if (Tmp == 1) return 1;  // Early out.
2200 
2201     // Special case decrementing a value (ADD X, -1):
2202     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2203       if (CRHS->isAllOnesValue()) {
2204         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2205         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2206 
2207         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2208         // sign bits set.
2209         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2210           return TyBits;
2211 
2212         // If we are subtracting one from a positive number, there is no carry
2213         // out of the result.
2214         if (KnownZero.isNegative())
2215           return Tmp;
2216       }
2217 
2218     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2219     if (Tmp2 == 1) return 1;
2220     return std::min(Tmp, Tmp2)-1;
2221 
2222   case Instruction::Sub:
2223     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2224     if (Tmp2 == 1) return 1;
2225 
2226     // Handle NEG.
2227     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2228       if (CLHS->isNullValue()) {
2229         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2230         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2231         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2232         // sign bits set.
2233         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2234           return TyBits;
2235 
2236         // If the input is known to be positive (the sign bit is known clear),
2237         // the output of the NEG has the same number of sign bits as the input.
2238         if (KnownZero.isNegative())
2239           return Tmp2;
2240 
2241         // Otherwise, we treat this like a SUB.
2242       }
2243 
2244     // Sub can have at most one carry bit.  Thus we know that the output
2245     // is, at worst, one more bit than the inputs.
2246     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2247     if (Tmp == 1) return 1;  // Early out.
2248     return std::min(Tmp, Tmp2)-1;
2249 
2250   case Instruction::PHI: {
2251     const PHINode *PN = cast<PHINode>(U);
2252     unsigned NumIncomingValues = PN->getNumIncomingValues();
2253     // Don't analyze large in-degree PHIs.
2254     if (NumIncomingValues > 4) break;
2255     // Unreachable blocks may have zero-operand PHI nodes.
2256     if (NumIncomingValues == 0) break;
2257 
2258     // Take the minimum of all incoming values.  This can't infinitely loop
2259     // because of our depth threshold.
2260     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2261     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2262       if (Tmp == 1) return Tmp;
2263       Tmp = std::min(
2264           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2265     }
2266     return Tmp;
2267   }
2268 
2269   case Instruction::Trunc:
2270     // FIXME: it's tricky to do anything useful for this, but it is an important
2271     // case for targets like X86.
2272     break;
2273 
2274   case Instruction::ExtractElement:
2275     // Look through extract element. At the moment we keep this simple and skip
2276     // tracking the specific element. But at least we might find information
2277     // valid for all elements of the vector (for example if vector is sign
2278     // extended, shifted, etc).
2279     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2280   }
2281 
2282   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2283   // use this information.
2284 
2285   // If we can examine all elements of a vector constant successfully, we're
2286   // done (we can't do any better than that). If not, keep trying.
2287   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2288     return VecSignBits;
2289 
2290   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2291   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2292 
2293   // If we know that the sign bit is either zero or one, determine the number of
2294   // identical bits in the top of the input value.
2295   if (KnownZero.isNegative())
2296     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2297 
2298   if (KnownOne.isNegative())
2299     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2300 
2301   // computeKnownBits gave us no extra information about the top bits.
2302   return FirstAnswer;
2303 }
2304 
2305 /// This function computes the integer multiple of Base that equals V.
2306 /// If successful, it returns true and returns the multiple in
2307 /// Multiple. If unsuccessful, it returns false. It looks
2308 /// through SExt instructions only if LookThroughSExt is true.
2309 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2310                            bool LookThroughSExt, unsigned Depth) {
2311   const unsigned MaxDepth = 6;
2312 
2313   assert(V && "No Value?");
2314   assert(Depth <= MaxDepth && "Limit Search Depth");
2315   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2316 
2317   Type *T = V->getType();
2318 
2319   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2320 
2321   if (Base == 0)
2322     return false;
2323 
2324   if (Base == 1) {
2325     Multiple = V;
2326     return true;
2327   }
2328 
2329   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2330   Constant *BaseVal = ConstantInt::get(T, Base);
2331   if (CO && CO == BaseVal) {
2332     // Multiple is 1.
2333     Multiple = ConstantInt::get(T, 1);
2334     return true;
2335   }
2336 
2337   if (CI && CI->getZExtValue() % Base == 0) {
2338     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2339     return true;
2340   }
2341 
2342   if (Depth == MaxDepth) return false;  // Limit search depth.
2343 
2344   Operator *I = dyn_cast<Operator>(V);
2345   if (!I) return false;
2346 
2347   switch (I->getOpcode()) {
2348   default: break;
2349   case Instruction::SExt:
2350     if (!LookThroughSExt) return false;
2351     // otherwise fall through to ZExt
2352   case Instruction::ZExt:
2353     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2354                            LookThroughSExt, Depth+1);
2355   case Instruction::Shl:
2356   case Instruction::Mul: {
2357     Value *Op0 = I->getOperand(0);
2358     Value *Op1 = I->getOperand(1);
2359 
2360     if (I->getOpcode() == Instruction::Shl) {
2361       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2362       if (!Op1CI) return false;
2363       // Turn Op0 << Op1 into Op0 * 2^Op1
2364       APInt Op1Int = Op1CI->getValue();
2365       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2366       APInt API(Op1Int.getBitWidth(), 0);
2367       API.setBit(BitToSet);
2368       Op1 = ConstantInt::get(V->getContext(), API);
2369     }
2370 
2371     Value *Mul0 = nullptr;
2372     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2373       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2374         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2375           if (Op1C->getType()->getPrimitiveSizeInBits() <
2376               MulC->getType()->getPrimitiveSizeInBits())
2377             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2378           if (Op1C->getType()->getPrimitiveSizeInBits() >
2379               MulC->getType()->getPrimitiveSizeInBits())
2380             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2381 
2382           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2383           Multiple = ConstantExpr::getMul(MulC, Op1C);
2384           return true;
2385         }
2386 
2387       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2388         if (Mul0CI->getValue() == 1) {
2389           // V == Base * Op1, so return Op1
2390           Multiple = Op1;
2391           return true;
2392         }
2393     }
2394 
2395     Value *Mul1 = nullptr;
2396     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2397       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2398         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2399           if (Op0C->getType()->getPrimitiveSizeInBits() <
2400               MulC->getType()->getPrimitiveSizeInBits())
2401             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2402           if (Op0C->getType()->getPrimitiveSizeInBits() >
2403               MulC->getType()->getPrimitiveSizeInBits())
2404             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2405 
2406           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2407           Multiple = ConstantExpr::getMul(MulC, Op0C);
2408           return true;
2409         }
2410 
2411       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2412         if (Mul1CI->getValue() == 1) {
2413           // V == Base * Op0, so return Op0
2414           Multiple = Op0;
2415           return true;
2416         }
2417     }
2418   }
2419   }
2420 
2421   // We could not determine if V is a multiple of Base.
2422   return false;
2423 }
2424 
2425 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2426                                             const TargetLibraryInfo *TLI) {
2427   const Function *F = ICS.getCalledFunction();
2428   if (!F)
2429     return Intrinsic::not_intrinsic;
2430 
2431   if (F->isIntrinsic())
2432     return F->getIntrinsicID();
2433 
2434   if (!TLI)
2435     return Intrinsic::not_intrinsic;
2436 
2437   LibFunc::Func Func;
2438   // We're going to make assumptions on the semantics of the functions, check
2439   // that the target knows that it's available in this environment and it does
2440   // not have local linkage.
2441   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2442     return Intrinsic::not_intrinsic;
2443 
2444   if (!ICS.onlyReadsMemory())
2445     return Intrinsic::not_intrinsic;
2446 
2447   // Otherwise check if we have a call to a function that can be turned into a
2448   // vector intrinsic.
2449   switch (Func) {
2450   default:
2451     break;
2452   case LibFunc::sin:
2453   case LibFunc::sinf:
2454   case LibFunc::sinl:
2455     return Intrinsic::sin;
2456   case LibFunc::cos:
2457   case LibFunc::cosf:
2458   case LibFunc::cosl:
2459     return Intrinsic::cos;
2460   case LibFunc::exp:
2461   case LibFunc::expf:
2462   case LibFunc::expl:
2463     return Intrinsic::exp;
2464   case LibFunc::exp2:
2465   case LibFunc::exp2f:
2466   case LibFunc::exp2l:
2467     return Intrinsic::exp2;
2468   case LibFunc::log:
2469   case LibFunc::logf:
2470   case LibFunc::logl:
2471     return Intrinsic::log;
2472   case LibFunc::log10:
2473   case LibFunc::log10f:
2474   case LibFunc::log10l:
2475     return Intrinsic::log10;
2476   case LibFunc::log2:
2477   case LibFunc::log2f:
2478   case LibFunc::log2l:
2479     return Intrinsic::log2;
2480   case LibFunc::fabs:
2481   case LibFunc::fabsf:
2482   case LibFunc::fabsl:
2483     return Intrinsic::fabs;
2484   case LibFunc::fmin:
2485   case LibFunc::fminf:
2486   case LibFunc::fminl:
2487     return Intrinsic::minnum;
2488   case LibFunc::fmax:
2489   case LibFunc::fmaxf:
2490   case LibFunc::fmaxl:
2491     return Intrinsic::maxnum;
2492   case LibFunc::copysign:
2493   case LibFunc::copysignf:
2494   case LibFunc::copysignl:
2495     return Intrinsic::copysign;
2496   case LibFunc::floor:
2497   case LibFunc::floorf:
2498   case LibFunc::floorl:
2499     return Intrinsic::floor;
2500   case LibFunc::ceil:
2501   case LibFunc::ceilf:
2502   case LibFunc::ceill:
2503     return Intrinsic::ceil;
2504   case LibFunc::trunc:
2505   case LibFunc::truncf:
2506   case LibFunc::truncl:
2507     return Intrinsic::trunc;
2508   case LibFunc::rint:
2509   case LibFunc::rintf:
2510   case LibFunc::rintl:
2511     return Intrinsic::rint;
2512   case LibFunc::nearbyint:
2513   case LibFunc::nearbyintf:
2514   case LibFunc::nearbyintl:
2515     return Intrinsic::nearbyint;
2516   case LibFunc::round:
2517   case LibFunc::roundf:
2518   case LibFunc::roundl:
2519     return Intrinsic::round;
2520   case LibFunc::pow:
2521   case LibFunc::powf:
2522   case LibFunc::powl:
2523     return Intrinsic::pow;
2524   case LibFunc::sqrt:
2525   case LibFunc::sqrtf:
2526   case LibFunc::sqrtl:
2527     if (ICS->hasNoNaNs())
2528       return Intrinsic::sqrt;
2529     return Intrinsic::not_intrinsic;
2530   }
2531 
2532   return Intrinsic::not_intrinsic;
2533 }
2534 
2535 /// Return true if we can prove that the specified FP value is never equal to
2536 /// -0.0.
2537 ///
2538 /// NOTE: this function will need to be revisited when we support non-default
2539 /// rounding modes!
2540 ///
2541 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2542                                 unsigned Depth) {
2543   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2544     return !CFP->getValueAPF().isNegZero();
2545 
2546   // FIXME: Magic number! At the least, this should be given a name because it's
2547   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2548   // expose it as a parameter, so it can be used for testing / experimenting.
2549   if (Depth == 6)
2550     return false;  // Limit search depth.
2551 
2552   const Operator *I = dyn_cast<Operator>(V);
2553   if (!I) return false;
2554 
2555   // Check if the nsz fast-math flag is set
2556   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2557     if (FPO->hasNoSignedZeros())
2558       return true;
2559 
2560   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2561   if (I->getOpcode() == Instruction::FAdd)
2562     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2563       if (CFP->isNullValue())
2564         return true;
2565 
2566   // sitofp and uitofp turn into +0.0 for zero.
2567   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2568     return true;
2569 
2570   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2571     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2572     switch (IID) {
2573     default:
2574       break;
2575     // sqrt(-0.0) = -0.0, no other negative results are possible.
2576     case Intrinsic::sqrt:
2577       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2578     // fabs(x) != -0.0
2579     case Intrinsic::fabs:
2580       return true;
2581     }
2582   }
2583 
2584   return false;
2585 }
2586 
2587 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2588                                        const TargetLibraryInfo *TLI,
2589                                        unsigned Depth) {
2590   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2591     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2592 
2593   // FIXME: Magic number! At the least, this should be given a name because it's
2594   // used similarly in CannotBeNegativeZero(). A better fix may be to
2595   // expose it as a parameter, so it can be used for testing / experimenting.
2596   if (Depth == 6)
2597     return false;  // Limit search depth.
2598 
2599   const Operator *I = dyn_cast<Operator>(V);
2600   if (!I) return false;
2601 
2602   switch (I->getOpcode()) {
2603   default: break;
2604   // Unsigned integers are always nonnegative.
2605   case Instruction::UIToFP:
2606     return true;
2607   case Instruction::FMul:
2608     // x*x is always non-negative or a NaN.
2609     if (I->getOperand(0) == I->getOperand(1))
2610       return true;
2611     LLVM_FALLTHROUGH;
2612   case Instruction::FAdd:
2613   case Instruction::FDiv:
2614   case Instruction::FRem:
2615     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2616            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2617   case Instruction::Select:
2618     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2619            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2620   case Instruction::FPExt:
2621   case Instruction::FPTrunc:
2622     // Widening/narrowing never change sign.
2623     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2624   case Instruction::Call:
2625     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2626     switch (IID) {
2627     default:
2628       break;
2629     case Intrinsic::maxnum:
2630       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2631              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2632     case Intrinsic::minnum:
2633       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2634              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2635     case Intrinsic::exp:
2636     case Intrinsic::exp2:
2637     case Intrinsic::fabs:
2638     case Intrinsic::sqrt:
2639       return true;
2640     case Intrinsic::powi:
2641       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2642         // powi(x,n) is non-negative if n is even.
2643         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2644           return true;
2645       }
2646       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2647     case Intrinsic::fma:
2648     case Intrinsic::fmuladd:
2649       // x*x+y is non-negative if y is non-negative.
2650       return I->getOperand(0) == I->getOperand(1) &&
2651              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2652     }
2653     break;
2654   }
2655   return false;
2656 }
2657 
2658 /// If the specified value can be set by repeating the same byte in memory,
2659 /// return the i8 value that it is represented with.  This is
2660 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2661 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2662 /// byte store (e.g. i16 0x1234), return null.
2663 Value *llvm::isBytewiseValue(Value *V) {
2664   // All byte-wide stores are splatable, even of arbitrary variables.
2665   if (V->getType()->isIntegerTy(8)) return V;
2666 
2667   // Handle 'null' ConstantArrayZero etc.
2668   if (Constant *C = dyn_cast<Constant>(V))
2669     if (C->isNullValue())
2670       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2671 
2672   // Constant float and double values can be handled as integer values if the
2673   // corresponding integer value is "byteable".  An important case is 0.0.
2674   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2675     if (CFP->getType()->isFloatTy())
2676       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2677     if (CFP->getType()->isDoubleTy())
2678       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2679     // Don't handle long double formats, which have strange constraints.
2680   }
2681 
2682   // We can handle constant integers that are multiple of 8 bits.
2683   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2684     if (CI->getBitWidth() % 8 == 0) {
2685       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2686 
2687       if (!CI->getValue().isSplat(8))
2688         return nullptr;
2689       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2690     }
2691   }
2692 
2693   // A ConstantDataArray/Vector is splatable if all its members are equal and
2694   // also splatable.
2695   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2696     Value *Elt = CA->getElementAsConstant(0);
2697     Value *Val = isBytewiseValue(Elt);
2698     if (!Val)
2699       return nullptr;
2700 
2701     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2702       if (CA->getElementAsConstant(I) != Elt)
2703         return nullptr;
2704 
2705     return Val;
2706   }
2707 
2708   // Conceptually, we could handle things like:
2709   //   %a = zext i8 %X to i16
2710   //   %b = shl i16 %a, 8
2711   //   %c = or i16 %a, %b
2712   // but until there is an example that actually needs this, it doesn't seem
2713   // worth worrying about.
2714   return nullptr;
2715 }
2716 
2717 
2718 // This is the recursive version of BuildSubAggregate. It takes a few different
2719 // arguments. Idxs is the index within the nested struct From that we are
2720 // looking at now (which is of type IndexedType). IdxSkip is the number of
2721 // indices from Idxs that should be left out when inserting into the resulting
2722 // struct. To is the result struct built so far, new insertvalue instructions
2723 // build on that.
2724 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2725                                 SmallVectorImpl<unsigned> &Idxs,
2726                                 unsigned IdxSkip,
2727                                 Instruction *InsertBefore) {
2728   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2729   if (STy) {
2730     // Save the original To argument so we can modify it
2731     Value *OrigTo = To;
2732     // General case, the type indexed by Idxs is a struct
2733     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2734       // Process each struct element recursively
2735       Idxs.push_back(i);
2736       Value *PrevTo = To;
2737       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2738                              InsertBefore);
2739       Idxs.pop_back();
2740       if (!To) {
2741         // Couldn't find any inserted value for this index? Cleanup
2742         while (PrevTo != OrigTo) {
2743           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2744           PrevTo = Del->getAggregateOperand();
2745           Del->eraseFromParent();
2746         }
2747         // Stop processing elements
2748         break;
2749       }
2750     }
2751     // If we successfully found a value for each of our subaggregates
2752     if (To)
2753       return To;
2754   }
2755   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2756   // the struct's elements had a value that was inserted directly. In the latter
2757   // case, perhaps we can't determine each of the subelements individually, but
2758   // we might be able to find the complete struct somewhere.
2759 
2760   // Find the value that is at that particular spot
2761   Value *V = FindInsertedValue(From, Idxs);
2762 
2763   if (!V)
2764     return nullptr;
2765 
2766   // Insert the value in the new (sub) aggregrate
2767   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2768                                        "tmp", InsertBefore);
2769 }
2770 
2771 // This helper takes a nested struct and extracts a part of it (which is again a
2772 // struct) into a new value. For example, given the struct:
2773 // { a, { b, { c, d }, e } }
2774 // and the indices "1, 1" this returns
2775 // { c, d }.
2776 //
2777 // It does this by inserting an insertvalue for each element in the resulting
2778 // struct, as opposed to just inserting a single struct. This will only work if
2779 // each of the elements of the substruct are known (ie, inserted into From by an
2780 // insertvalue instruction somewhere).
2781 //
2782 // All inserted insertvalue instructions are inserted before InsertBefore
2783 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2784                                 Instruction *InsertBefore) {
2785   assert(InsertBefore && "Must have someplace to insert!");
2786   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2787                                                              idx_range);
2788   Value *To = UndefValue::get(IndexedType);
2789   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2790   unsigned IdxSkip = Idxs.size();
2791 
2792   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2793 }
2794 
2795 /// Given an aggregrate and an sequence of indices, see if
2796 /// the scalar value indexed is already around as a register, for example if it
2797 /// were inserted directly into the aggregrate.
2798 ///
2799 /// If InsertBefore is not null, this function will duplicate (modified)
2800 /// insertvalues when a part of a nested struct is extracted.
2801 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2802                                Instruction *InsertBefore) {
2803   // Nothing to index? Just return V then (this is useful at the end of our
2804   // recursion).
2805   if (idx_range.empty())
2806     return V;
2807   // We have indices, so V should have an indexable type.
2808   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2809          "Not looking at a struct or array?");
2810   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2811          "Invalid indices for type?");
2812 
2813   if (Constant *C = dyn_cast<Constant>(V)) {
2814     C = C->getAggregateElement(idx_range[0]);
2815     if (!C) return nullptr;
2816     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2817   }
2818 
2819   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2820     // Loop the indices for the insertvalue instruction in parallel with the
2821     // requested indices
2822     const unsigned *req_idx = idx_range.begin();
2823     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2824          i != e; ++i, ++req_idx) {
2825       if (req_idx == idx_range.end()) {
2826         // We can't handle this without inserting insertvalues
2827         if (!InsertBefore)
2828           return nullptr;
2829 
2830         // The requested index identifies a part of a nested aggregate. Handle
2831         // this specially. For example,
2832         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2833         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2834         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2835         // This can be changed into
2836         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2837         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2838         // which allows the unused 0,0 element from the nested struct to be
2839         // removed.
2840         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2841                                  InsertBefore);
2842       }
2843 
2844       // This insert value inserts something else than what we are looking for.
2845       // See if the (aggregate) value inserted into has the value we are
2846       // looking for, then.
2847       if (*req_idx != *i)
2848         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2849                                  InsertBefore);
2850     }
2851     // If we end up here, the indices of the insertvalue match with those
2852     // requested (though possibly only partially). Now we recursively look at
2853     // the inserted value, passing any remaining indices.
2854     return FindInsertedValue(I->getInsertedValueOperand(),
2855                              makeArrayRef(req_idx, idx_range.end()),
2856                              InsertBefore);
2857   }
2858 
2859   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2860     // If we're extracting a value from an aggregate that was extracted from
2861     // something else, we can extract from that something else directly instead.
2862     // However, we will need to chain I's indices with the requested indices.
2863 
2864     // Calculate the number of indices required
2865     unsigned size = I->getNumIndices() + idx_range.size();
2866     // Allocate some space to put the new indices in
2867     SmallVector<unsigned, 5> Idxs;
2868     Idxs.reserve(size);
2869     // Add indices from the extract value instruction
2870     Idxs.append(I->idx_begin(), I->idx_end());
2871 
2872     // Add requested indices
2873     Idxs.append(idx_range.begin(), idx_range.end());
2874 
2875     assert(Idxs.size() == size
2876            && "Number of indices added not correct?");
2877 
2878     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2879   }
2880   // Otherwise, we don't know (such as, extracting from a function return value
2881   // or load instruction)
2882   return nullptr;
2883 }
2884 
2885 /// Analyze the specified pointer to see if it can be expressed as a base
2886 /// pointer plus a constant offset. Return the base and offset to the caller.
2887 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2888                                               const DataLayout &DL) {
2889   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2890   APInt ByteOffset(BitWidth, 0);
2891 
2892   // We walk up the defs but use a visited set to handle unreachable code. In
2893   // that case, we stop after accumulating the cycle once (not that it
2894   // matters).
2895   SmallPtrSet<Value *, 16> Visited;
2896   while (Visited.insert(Ptr).second) {
2897     if (Ptr->getType()->isVectorTy())
2898       break;
2899 
2900     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2901       // If one of the values we have visited is an addrspacecast, then
2902       // the pointer type of this GEP may be different from the type
2903       // of the Ptr parameter which was passed to this function.  This
2904       // means when we construct GEPOffset, we need to use the size
2905       // of GEP's pointer type rather than the size of the original
2906       // pointer type.
2907       APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
2908       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2909         break;
2910 
2911       ByteOffset += GEPOffset.getSExtValue();
2912 
2913       Ptr = GEP->getPointerOperand();
2914     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2915                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2916       Ptr = cast<Operator>(Ptr)->getOperand(0);
2917     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2918       if (GA->isInterposable())
2919         break;
2920       Ptr = GA->getAliasee();
2921     } else {
2922       break;
2923     }
2924   }
2925   Offset = ByteOffset.getSExtValue();
2926   return Ptr;
2927 }
2928 
2929 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2930   // Make sure the GEP has exactly three arguments.
2931   if (GEP->getNumOperands() != 3)
2932     return false;
2933 
2934   // Make sure the index-ee is a pointer to array of i8.
2935   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2936   if (!AT || !AT->getElementType()->isIntegerTy(8))
2937     return false;
2938 
2939   // Check to make sure that the first operand of the GEP is an integer and
2940   // has value 0 so that we are sure we're indexing into the initializer.
2941   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2942   if (!FirstIdx || !FirstIdx->isZero())
2943     return false;
2944 
2945   return true;
2946 }
2947 
2948 /// This function computes the length of a null-terminated C string pointed to
2949 /// by V. If successful, it returns true and returns the string in Str.
2950 /// If unsuccessful, it returns false.
2951 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2952                                  uint64_t Offset, bool TrimAtNul) {
2953   assert(V);
2954 
2955   // Look through bitcast instructions and geps.
2956   V = V->stripPointerCasts();
2957 
2958   // If the value is a GEP instruction or constant expression, treat it as an
2959   // offset.
2960   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2961     // The GEP operator should be based on a pointer to string constant, and is
2962     // indexing into the string constant.
2963     if (!isGEPBasedOnPointerToString(GEP))
2964       return false;
2965 
2966     // If the second index isn't a ConstantInt, then this is a variable index
2967     // into the array.  If this occurs, we can't say anything meaningful about
2968     // the string.
2969     uint64_t StartIdx = 0;
2970     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2971       StartIdx = CI->getZExtValue();
2972     else
2973       return false;
2974     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2975                                  TrimAtNul);
2976   }
2977 
2978   // The GEP instruction, constant or instruction, must reference a global
2979   // variable that is a constant and is initialized. The referenced constant
2980   // initializer is the array that we'll use for optimization.
2981   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2982   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2983     return false;
2984 
2985   // Handle the all-zeros case.
2986   if (GV->getInitializer()->isNullValue()) {
2987     // This is a degenerate case. The initializer is constant zero so the
2988     // length of the string must be zero.
2989     Str = "";
2990     return true;
2991   }
2992 
2993   // This must be a ConstantDataArray.
2994   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
2995   if (!Array || !Array->isString())
2996     return false;
2997 
2998   // Get the number of elements in the array.
2999   uint64_t NumElts = Array->getType()->getArrayNumElements();
3000 
3001   // Start out with the entire array in the StringRef.
3002   Str = Array->getAsString();
3003 
3004   if (Offset > NumElts)
3005     return false;
3006 
3007   // Skip over 'offset' bytes.
3008   Str = Str.substr(Offset);
3009 
3010   if (TrimAtNul) {
3011     // Trim off the \0 and anything after it.  If the array is not nul
3012     // terminated, we just return the whole end of string.  The client may know
3013     // some other way that the string is length-bound.
3014     Str = Str.substr(0, Str.find('\0'));
3015   }
3016   return true;
3017 }
3018 
3019 // These next two are very similar to the above, but also look through PHI
3020 // nodes.
3021 // TODO: See if we can integrate these two together.
3022 
3023 /// If we can compute the length of the string pointed to by
3024 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3025 static uint64_t GetStringLengthH(const Value *V,
3026                                  SmallPtrSetImpl<const PHINode*> &PHIs) {
3027   // Look through noop bitcast instructions.
3028   V = V->stripPointerCasts();
3029 
3030   // If this is a PHI node, there are two cases: either we have already seen it
3031   // or we haven't.
3032   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3033     if (!PHIs.insert(PN).second)
3034       return ~0ULL;  // already in the set.
3035 
3036     // If it was new, see if all the input strings are the same length.
3037     uint64_t LenSoFar = ~0ULL;
3038     for (Value *IncValue : PN->incoming_values()) {
3039       uint64_t Len = GetStringLengthH(IncValue, PHIs);
3040       if (Len == 0) return 0; // Unknown length -> unknown.
3041 
3042       if (Len == ~0ULL) continue;
3043 
3044       if (Len != LenSoFar && LenSoFar != ~0ULL)
3045         return 0;    // Disagree -> unknown.
3046       LenSoFar = Len;
3047     }
3048 
3049     // Success, all agree.
3050     return LenSoFar;
3051   }
3052 
3053   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3054   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3055     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3056     if (Len1 == 0) return 0;
3057     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3058     if (Len2 == 0) return 0;
3059     if (Len1 == ~0ULL) return Len2;
3060     if (Len2 == ~0ULL) return Len1;
3061     if (Len1 != Len2) return 0;
3062     return Len1;
3063   }
3064 
3065   // Otherwise, see if we can read the string.
3066   StringRef StrData;
3067   if (!getConstantStringInfo(V, StrData))
3068     return 0;
3069 
3070   return StrData.size()+1;
3071 }
3072 
3073 /// If we can compute the length of the string pointed to by
3074 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3075 uint64_t llvm::GetStringLength(const Value *V) {
3076   if (!V->getType()->isPointerTy()) return 0;
3077 
3078   SmallPtrSet<const PHINode*, 32> PHIs;
3079   uint64_t Len = GetStringLengthH(V, PHIs);
3080   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3081   // an empty string as a length.
3082   return Len == ~0ULL ? 1 : Len;
3083 }
3084 
3085 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3086 /// previous iteration of the loop was referring to the same object as \p PN.
3087 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3088                                          const LoopInfo *LI) {
3089   // Find the loop-defined value.
3090   Loop *L = LI->getLoopFor(PN->getParent());
3091   if (PN->getNumIncomingValues() != 2)
3092     return true;
3093 
3094   // Find the value from previous iteration.
3095   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3096   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3097     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3098   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3099     return true;
3100 
3101   // If a new pointer is loaded in the loop, the pointer references a different
3102   // object in every iteration.  E.g.:
3103   //    for (i)
3104   //       int *p = a[i];
3105   //       ...
3106   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3107     if (!L->isLoopInvariant(Load->getPointerOperand()))
3108       return false;
3109   return true;
3110 }
3111 
3112 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3113                                  unsigned MaxLookup) {
3114   if (!V->getType()->isPointerTy())
3115     return V;
3116   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3117     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3118       V = GEP->getPointerOperand();
3119     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3120                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3121       V = cast<Operator>(V)->getOperand(0);
3122     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3123       if (GA->isInterposable())
3124         return V;
3125       V = GA->getAliasee();
3126     } else {
3127       if (auto CS = CallSite(V))
3128         if (Value *RV = CS.getReturnedArgOperand()) {
3129           V = RV;
3130           continue;
3131         }
3132 
3133       // See if InstructionSimplify knows any relevant tricks.
3134       if (Instruction *I = dyn_cast<Instruction>(V))
3135         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3136         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3137           V = Simplified;
3138           continue;
3139         }
3140 
3141       return V;
3142     }
3143     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3144   }
3145   return V;
3146 }
3147 
3148 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3149                                 const DataLayout &DL, LoopInfo *LI,
3150                                 unsigned MaxLookup) {
3151   SmallPtrSet<Value *, 4> Visited;
3152   SmallVector<Value *, 4> Worklist;
3153   Worklist.push_back(V);
3154   do {
3155     Value *P = Worklist.pop_back_val();
3156     P = GetUnderlyingObject(P, DL, MaxLookup);
3157 
3158     if (!Visited.insert(P).second)
3159       continue;
3160 
3161     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3162       Worklist.push_back(SI->getTrueValue());
3163       Worklist.push_back(SI->getFalseValue());
3164       continue;
3165     }
3166 
3167     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3168       // If this PHI changes the underlying object in every iteration of the
3169       // loop, don't look through it.  Consider:
3170       //   int **A;
3171       //   for (i) {
3172       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3173       //     Curr = A[i];
3174       //     *Prev, *Curr;
3175       //
3176       // Prev is tracking Curr one iteration behind so they refer to different
3177       // underlying objects.
3178       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3179           isSameUnderlyingObjectInLoop(PN, LI))
3180         for (Value *IncValue : PN->incoming_values())
3181           Worklist.push_back(IncValue);
3182       continue;
3183     }
3184 
3185     Objects.push_back(P);
3186   } while (!Worklist.empty());
3187 }
3188 
3189 /// Return true if the only users of this pointer are lifetime markers.
3190 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3191   for (const User *U : V->users()) {
3192     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3193     if (!II) return false;
3194 
3195     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3196         II->getIntrinsicID() != Intrinsic::lifetime_end)
3197       return false;
3198   }
3199   return true;
3200 }
3201 
3202 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3203                                         const Instruction *CtxI,
3204                                         const DominatorTree *DT) {
3205   const Operator *Inst = dyn_cast<Operator>(V);
3206   if (!Inst)
3207     return false;
3208 
3209   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3210     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3211       if (C->canTrap())
3212         return false;
3213 
3214   switch (Inst->getOpcode()) {
3215   default:
3216     return true;
3217   case Instruction::UDiv:
3218   case Instruction::URem: {
3219     // x / y is undefined if y == 0.
3220     const APInt *V;
3221     if (match(Inst->getOperand(1), m_APInt(V)))
3222       return *V != 0;
3223     return false;
3224   }
3225   case Instruction::SDiv:
3226   case Instruction::SRem: {
3227     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3228     const APInt *Numerator, *Denominator;
3229     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3230       return false;
3231     // We cannot hoist this division if the denominator is 0.
3232     if (*Denominator == 0)
3233       return false;
3234     // It's safe to hoist if the denominator is not 0 or -1.
3235     if (*Denominator != -1)
3236       return true;
3237     // At this point we know that the denominator is -1.  It is safe to hoist as
3238     // long we know that the numerator is not INT_MIN.
3239     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3240       return !Numerator->isMinSignedValue();
3241     // The numerator *might* be MinSignedValue.
3242     return false;
3243   }
3244   case Instruction::Load: {
3245     const LoadInst *LI = cast<LoadInst>(Inst);
3246     if (!LI->isUnordered() ||
3247         // Speculative load may create a race that did not exist in the source.
3248         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3249         // Speculative load may load data from dirty regions.
3250         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3251       return false;
3252     const DataLayout &DL = LI->getModule()->getDataLayout();
3253     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3254                                               LI->getAlignment(), DL, CtxI, DT);
3255   }
3256   case Instruction::Call: {
3257     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3258       switch (II->getIntrinsicID()) {
3259       // These synthetic intrinsics have no side-effects and just mark
3260       // information about their operands.
3261       // FIXME: There are other no-op synthetic instructions that potentially
3262       // should be considered at least *safe* to speculate...
3263       case Intrinsic::dbg_declare:
3264       case Intrinsic::dbg_value:
3265         return true;
3266 
3267       case Intrinsic::bswap:
3268       case Intrinsic::ctlz:
3269       case Intrinsic::ctpop:
3270       case Intrinsic::cttz:
3271       case Intrinsic::objectsize:
3272       case Intrinsic::sadd_with_overflow:
3273       case Intrinsic::smul_with_overflow:
3274       case Intrinsic::ssub_with_overflow:
3275       case Intrinsic::uadd_with_overflow:
3276       case Intrinsic::umul_with_overflow:
3277       case Intrinsic::usub_with_overflow:
3278         return true;
3279       // These intrinsics are defined to have the same behavior as libm
3280       // functions except for setting errno.
3281       case Intrinsic::sqrt:
3282       case Intrinsic::fma:
3283       case Intrinsic::fmuladd:
3284         return true;
3285       // These intrinsics are defined to have the same behavior as libm
3286       // functions, and the corresponding libm functions never set errno.
3287       case Intrinsic::trunc:
3288       case Intrinsic::copysign:
3289       case Intrinsic::fabs:
3290       case Intrinsic::minnum:
3291       case Intrinsic::maxnum:
3292         return true;
3293       // These intrinsics are defined to have the same behavior as libm
3294       // functions, which never overflow when operating on the IEEE754 types
3295       // that we support, and never set errno otherwise.
3296       case Intrinsic::ceil:
3297       case Intrinsic::floor:
3298       case Intrinsic::nearbyint:
3299       case Intrinsic::rint:
3300       case Intrinsic::round:
3301         return true;
3302       // TODO: are convert_{from,to}_fp16 safe?
3303       // TODO: can we list target-specific intrinsics here?
3304       default: break;
3305       }
3306     }
3307     return false; // The called function could have undefined behavior or
3308                   // side-effects, even if marked readnone nounwind.
3309   }
3310   case Instruction::VAArg:
3311   case Instruction::Alloca:
3312   case Instruction::Invoke:
3313   case Instruction::PHI:
3314   case Instruction::Store:
3315   case Instruction::Ret:
3316   case Instruction::Br:
3317   case Instruction::IndirectBr:
3318   case Instruction::Switch:
3319   case Instruction::Unreachable:
3320   case Instruction::Fence:
3321   case Instruction::AtomicRMW:
3322   case Instruction::AtomicCmpXchg:
3323   case Instruction::LandingPad:
3324   case Instruction::Resume:
3325   case Instruction::CatchSwitch:
3326   case Instruction::CatchPad:
3327   case Instruction::CatchRet:
3328   case Instruction::CleanupPad:
3329   case Instruction::CleanupRet:
3330     return false; // Misc instructions which have effects
3331   }
3332 }
3333 
3334 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3335   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3336 }
3337 
3338 /// Return true if we know that the specified value is never null.
3339 bool llvm::isKnownNonNull(const Value *V) {
3340   assert(V->getType()->isPointerTy() && "V must be pointer type");
3341 
3342   // Alloca never returns null, malloc might.
3343   if (isa<AllocaInst>(V)) return true;
3344 
3345   // A byval, inalloca, or nonnull argument is never null.
3346   if (const Argument *A = dyn_cast<Argument>(V))
3347     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3348 
3349   // A global variable in address space 0 is non null unless extern weak.
3350   // Other address spaces may have null as a valid address for a global,
3351   // so we can't assume anything.
3352   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3353     return !GV->hasExternalWeakLinkage() &&
3354            GV->getType()->getAddressSpace() == 0;
3355 
3356   // A Load tagged with nonnull metadata is never null.
3357   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3358     return LI->getMetadata(LLVMContext::MD_nonnull);
3359 
3360   if (auto CS = ImmutableCallSite(V))
3361     if (CS.isReturnNonNull())
3362       return true;
3363 
3364   return false;
3365 }
3366 
3367 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3368                                                   const Instruction *CtxI,
3369                                                   const DominatorTree *DT) {
3370   assert(V->getType()->isPointerTy() && "V must be pointer type");
3371   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
3372 
3373   unsigned NumUsesExplored = 0;
3374   for (auto *U : V->users()) {
3375     // Avoid massive lists
3376     if (NumUsesExplored >= DomConditionsMaxUses)
3377       break;
3378     NumUsesExplored++;
3379     // Consider only compare instructions uniquely controlling a branch
3380     CmpInst::Predicate Pred;
3381     if (!match(const_cast<User *>(U),
3382                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3383         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3384       continue;
3385 
3386     for (auto *CmpU : U->users()) {
3387       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3388         assert(BI->isConditional() && "uses a comparison!");
3389 
3390         BasicBlock *NonNullSuccessor =
3391             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3392         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3393         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3394           return true;
3395       } else if (Pred == ICmpInst::ICMP_NE &&
3396                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3397                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3398         return true;
3399       }
3400     }
3401   }
3402 
3403   return false;
3404 }
3405 
3406 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3407                             const DominatorTree *DT) {
3408   if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3409     return false;
3410 
3411   if (isKnownNonNull(V))
3412     return true;
3413 
3414   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3415 }
3416 
3417 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3418                                                    const Value *RHS,
3419                                                    const DataLayout &DL,
3420                                                    AssumptionCache *AC,
3421                                                    const Instruction *CxtI,
3422                                                    const DominatorTree *DT) {
3423   // Multiplying n * m significant bits yields a result of n + m significant
3424   // bits. If the total number of significant bits does not exceed the
3425   // result bit width (minus 1), there is no overflow.
3426   // This means if we have enough leading zero bits in the operands
3427   // we can guarantee that the result does not overflow.
3428   // Ref: "Hacker's Delight" by Henry Warren
3429   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3430   APInt LHSKnownZero(BitWidth, 0);
3431   APInt LHSKnownOne(BitWidth, 0);
3432   APInt RHSKnownZero(BitWidth, 0);
3433   APInt RHSKnownOne(BitWidth, 0);
3434   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3435                    DT);
3436   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3437                    DT);
3438   // Note that underestimating the number of zero bits gives a more
3439   // conservative answer.
3440   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3441                       RHSKnownZero.countLeadingOnes();
3442   // First handle the easy case: if we have enough zero bits there's
3443   // definitely no overflow.
3444   if (ZeroBits >= BitWidth)
3445     return OverflowResult::NeverOverflows;
3446 
3447   // Get the largest possible values for each operand.
3448   APInt LHSMax = ~LHSKnownZero;
3449   APInt RHSMax = ~RHSKnownZero;
3450 
3451   // We know the multiply operation doesn't overflow if the maximum values for
3452   // each operand will not overflow after we multiply them together.
3453   bool MaxOverflow;
3454   LHSMax.umul_ov(RHSMax, MaxOverflow);
3455   if (!MaxOverflow)
3456     return OverflowResult::NeverOverflows;
3457 
3458   // We know it always overflows if multiplying the smallest possible values for
3459   // the operands also results in overflow.
3460   bool MinOverflow;
3461   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3462   if (MinOverflow)
3463     return OverflowResult::AlwaysOverflows;
3464 
3465   return OverflowResult::MayOverflow;
3466 }
3467 
3468 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3469                                                    const Value *RHS,
3470                                                    const DataLayout &DL,
3471                                                    AssumptionCache *AC,
3472                                                    const Instruction *CxtI,
3473                                                    const DominatorTree *DT) {
3474   bool LHSKnownNonNegative, LHSKnownNegative;
3475   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3476                  AC, CxtI, DT);
3477   if (LHSKnownNonNegative || LHSKnownNegative) {
3478     bool RHSKnownNonNegative, RHSKnownNegative;
3479     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3480                    AC, CxtI, DT);
3481 
3482     if (LHSKnownNegative && RHSKnownNegative) {
3483       // The sign bit is set in both cases: this MUST overflow.
3484       // Create a simple add instruction, and insert it into the struct.
3485       return OverflowResult::AlwaysOverflows;
3486     }
3487 
3488     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3489       // The sign bit is clear in both cases: this CANNOT overflow.
3490       // Create a simple add instruction, and insert it into the struct.
3491       return OverflowResult::NeverOverflows;
3492     }
3493   }
3494 
3495   return OverflowResult::MayOverflow;
3496 }
3497 
3498 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3499                                                   const Value *RHS,
3500                                                   const AddOperator *Add,
3501                                                   const DataLayout &DL,
3502                                                   AssumptionCache *AC,
3503                                                   const Instruction *CxtI,
3504                                                   const DominatorTree *DT) {
3505   if (Add && Add->hasNoSignedWrap()) {
3506     return OverflowResult::NeverOverflows;
3507   }
3508 
3509   bool LHSKnownNonNegative, LHSKnownNegative;
3510   bool RHSKnownNonNegative, RHSKnownNegative;
3511   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3512                  AC, CxtI, DT);
3513   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3514                  AC, CxtI, DT);
3515 
3516   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3517       (LHSKnownNegative && RHSKnownNonNegative)) {
3518     // The sign bits are opposite: this CANNOT overflow.
3519     return OverflowResult::NeverOverflows;
3520   }
3521 
3522   // The remaining code needs Add to be available. Early returns if not so.
3523   if (!Add)
3524     return OverflowResult::MayOverflow;
3525 
3526   // If the sign of Add is the same as at least one of the operands, this add
3527   // CANNOT overflow. This is particularly useful when the sum is
3528   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3529   // operands.
3530   bool LHSOrRHSKnownNonNegative =
3531       (LHSKnownNonNegative || RHSKnownNonNegative);
3532   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3533   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3534     bool AddKnownNonNegative, AddKnownNegative;
3535     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3536                    /*Depth=*/0, AC, CxtI, DT);
3537     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3538         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3539       return OverflowResult::NeverOverflows;
3540     }
3541   }
3542 
3543   return OverflowResult::MayOverflow;
3544 }
3545 
3546 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3547                                      const DominatorTree &DT) {
3548 #ifndef NDEBUG
3549   auto IID = II->getIntrinsicID();
3550   assert((IID == Intrinsic::sadd_with_overflow ||
3551           IID == Intrinsic::uadd_with_overflow ||
3552           IID == Intrinsic::ssub_with_overflow ||
3553           IID == Intrinsic::usub_with_overflow ||
3554           IID == Intrinsic::smul_with_overflow ||
3555           IID == Intrinsic::umul_with_overflow) &&
3556          "Not an overflow intrinsic!");
3557 #endif
3558 
3559   SmallVector<const BranchInst *, 2> GuardingBranches;
3560   SmallVector<const ExtractValueInst *, 2> Results;
3561 
3562   for (const User *U : II->users()) {
3563     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3564       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3565 
3566       if (EVI->getIndices()[0] == 0)
3567         Results.push_back(EVI);
3568       else {
3569         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3570 
3571         for (const auto *U : EVI->users())
3572           if (const auto *B = dyn_cast<BranchInst>(U)) {
3573             assert(B->isConditional() && "How else is it using an i1?");
3574             GuardingBranches.push_back(B);
3575           }
3576       }
3577     } else {
3578       // We are using the aggregate directly in a way we don't want to analyze
3579       // here (storing it to a global, say).
3580       return false;
3581     }
3582   }
3583 
3584   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
3585     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3586     if (!NoWrapEdge.isSingleEdge())
3587       return false;
3588 
3589     // Check if all users of the add are provably no-wrap.
3590     for (const auto *Result : Results) {
3591       // If the extractvalue itself is not executed on overflow, the we don't
3592       // need to check each use separately, since domination is transitive.
3593       if (DT.dominates(NoWrapEdge, Result->getParent()))
3594         continue;
3595 
3596       for (auto &RU : Result->uses())
3597         if (!DT.dominates(NoWrapEdge, RU))
3598           return false;
3599     }
3600 
3601     return true;
3602   };
3603 
3604   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3605 }
3606 
3607 
3608 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
3609                                                  const DataLayout &DL,
3610                                                  AssumptionCache *AC,
3611                                                  const Instruction *CxtI,
3612                                                  const DominatorTree *DT) {
3613   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3614                                        Add, DL, AC, CxtI, DT);
3615 }
3616 
3617 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3618                                                  const Value *RHS,
3619                                                  const DataLayout &DL,
3620                                                  AssumptionCache *AC,
3621                                                  const Instruction *CxtI,
3622                                                  const DominatorTree *DT) {
3623   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3624 }
3625 
3626 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3627   // A memory operation returns normally if it isn't volatile. A volatile
3628   // operation is allowed to trap.
3629   //
3630   // An atomic operation isn't guaranteed to return in a reasonable amount of
3631   // time because it's possible for another thread to interfere with it for an
3632   // arbitrary length of time, but programs aren't allowed to rely on that.
3633   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3634     return !LI->isVolatile();
3635   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3636     return !SI->isVolatile();
3637   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3638     return !CXI->isVolatile();
3639   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3640     return !RMWI->isVolatile();
3641   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3642     return !MII->isVolatile();
3643 
3644   // If there is no successor, then execution can't transfer to it.
3645   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3646     return !CRI->unwindsToCaller();
3647   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3648     return !CatchSwitch->unwindsToCaller();
3649   if (isa<ResumeInst>(I))
3650     return false;
3651   if (isa<ReturnInst>(I))
3652     return false;
3653 
3654   // Calls can throw, or contain an infinite loop, or kill the process.
3655   if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3656     // Calls which don't write to arbitrary memory are safe.
3657     // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3658     // but it's consistent with other passes. See http://llvm.org/PR965 .
3659     // FIXME: This isn't aggressive enough; a call which only writes to a
3660     // global is guaranteed to return.
3661     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3662            match(I, m_Intrinsic<Intrinsic::assume>());
3663   }
3664 
3665   // Other instructions return normally.
3666   return true;
3667 }
3668 
3669 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3670                                                   const Loop *L) {
3671   // The loop header is guaranteed to be executed for every iteration.
3672   //
3673   // FIXME: Relax this constraint to cover all basic blocks that are
3674   // guaranteed to be executed at every iteration.
3675   if (I->getParent() != L->getHeader()) return false;
3676 
3677   for (const Instruction &LI : *L->getHeader()) {
3678     if (&LI == I) return true;
3679     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3680   }
3681   llvm_unreachable("Instruction not contained in its own parent basic block.");
3682 }
3683 
3684 bool llvm::propagatesFullPoison(const Instruction *I) {
3685   switch (I->getOpcode()) {
3686     case Instruction::Add:
3687     case Instruction::Sub:
3688     case Instruction::Xor:
3689     case Instruction::Trunc:
3690     case Instruction::BitCast:
3691     case Instruction::AddrSpaceCast:
3692       // These operations all propagate poison unconditionally. Note that poison
3693       // is not any particular value, so xor or subtraction of poison with
3694       // itself still yields poison, not zero.
3695       return true;
3696 
3697     case Instruction::AShr:
3698     case Instruction::SExt:
3699       // For these operations, one bit of the input is replicated across
3700       // multiple output bits. A replicated poison bit is still poison.
3701       return true;
3702 
3703     case Instruction::Shl: {
3704       // Left shift *by* a poison value is poison. The number of
3705       // positions to shift is unsigned, so no negative values are
3706       // possible there. Left shift by zero places preserves poison. So
3707       // it only remains to consider left shift of poison by a positive
3708       // number of places.
3709       //
3710       // A left shift by a positive number of places leaves the lowest order bit
3711       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3712       // make the poison operand violate that flag, yielding a fresh full-poison
3713       // value.
3714       auto *OBO = cast<OverflowingBinaryOperator>(I);
3715       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3716     }
3717 
3718     case Instruction::Mul: {
3719       // A multiplication by zero yields a non-poison zero result, so we need to
3720       // rule out zero as an operand. Conservatively, multiplication by a
3721       // non-zero constant is not multiplication by zero.
3722       //
3723       // Multiplication by a non-zero constant can leave some bits
3724       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3725       // order bit unpoisoned. So we need to consider that.
3726       //
3727       // Multiplication by 1 preserves poison. If the multiplication has a
3728       // no-wrap flag, then we can make the poison operand violate that flag
3729       // when multiplied by any integer other than 0 and 1.
3730       auto *OBO = cast<OverflowingBinaryOperator>(I);
3731       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3732         for (Value *V : OBO->operands()) {
3733           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3734             // A ConstantInt cannot yield poison, so we can assume that it is
3735             // the other operand that is poison.
3736             return !CI->isZero();
3737           }
3738         }
3739       }
3740       return false;
3741     }
3742 
3743     case Instruction::ICmp:
3744       // Comparing poison with any value yields poison.  This is why, for
3745       // instance, x s< (x +nsw 1) can be folded to true.
3746       return true;
3747 
3748     case Instruction::GetElementPtr:
3749       // A GEP implicitly represents a sequence of additions, subtractions,
3750       // truncations, sign extensions and multiplications. The multiplications
3751       // are by the non-zero sizes of some set of types, so we do not have to be
3752       // concerned with multiplication by zero. If the GEP is in-bounds, then
3753       // these operations are implicitly no-signed-wrap so poison is propagated
3754       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3755       return cast<GEPOperator>(I)->isInBounds();
3756 
3757     default:
3758       return false;
3759   }
3760 }
3761 
3762 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3763   switch (I->getOpcode()) {
3764     case Instruction::Store:
3765       return cast<StoreInst>(I)->getPointerOperand();
3766 
3767     case Instruction::Load:
3768       return cast<LoadInst>(I)->getPointerOperand();
3769 
3770     case Instruction::AtomicCmpXchg:
3771       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3772 
3773     case Instruction::AtomicRMW:
3774       return cast<AtomicRMWInst>(I)->getPointerOperand();
3775 
3776     case Instruction::UDiv:
3777     case Instruction::SDiv:
3778     case Instruction::URem:
3779     case Instruction::SRem:
3780       return I->getOperand(1);
3781 
3782     default:
3783       return nullptr;
3784   }
3785 }
3786 
3787 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3788   // We currently only look for uses of poison values within the same basic
3789   // block, as that makes it easier to guarantee that the uses will be
3790   // executed given that PoisonI is executed.
3791   //
3792   // FIXME: Expand this to consider uses beyond the same basic block. To do
3793   // this, look out for the distinction between post-dominance and strong
3794   // post-dominance.
3795   const BasicBlock *BB = PoisonI->getParent();
3796 
3797   // Set of instructions that we have proved will yield poison if PoisonI
3798   // does.
3799   SmallSet<const Value *, 16> YieldsPoison;
3800   SmallSet<const BasicBlock *, 4> Visited;
3801   YieldsPoison.insert(PoisonI);
3802   Visited.insert(PoisonI->getParent());
3803 
3804   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3805 
3806   unsigned Iter = 0;
3807   while (Iter++ < MaxDepth) {
3808     for (auto &I : make_range(Begin, End)) {
3809       if (&I != PoisonI) {
3810         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3811         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3812           return true;
3813         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3814           return false;
3815       }
3816 
3817       // Mark poison that propagates from I through uses of I.
3818       if (YieldsPoison.count(&I)) {
3819         for (const User *User : I.users()) {
3820           const Instruction *UserI = cast<Instruction>(User);
3821           if (propagatesFullPoison(UserI))
3822             YieldsPoison.insert(User);
3823         }
3824       }
3825     }
3826 
3827     if (auto *NextBB = BB->getSingleSuccessor()) {
3828       if (Visited.insert(NextBB).second) {
3829         BB = NextBB;
3830         Begin = BB->getFirstNonPHI()->getIterator();
3831         End = BB->end();
3832         continue;
3833       }
3834     }
3835 
3836     break;
3837   };
3838   return false;
3839 }
3840 
3841 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
3842   if (FMF.noNaNs())
3843     return true;
3844 
3845   if (auto *C = dyn_cast<ConstantFP>(V))
3846     return !C->isNaN();
3847   return false;
3848 }
3849 
3850 static bool isKnownNonZero(const Value *V) {
3851   if (auto *C = dyn_cast<ConstantFP>(V))
3852     return !C->isZero();
3853   return false;
3854 }
3855 
3856 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3857                                               FastMathFlags FMF,
3858                                               Value *CmpLHS, Value *CmpRHS,
3859                                               Value *TrueVal, Value *FalseVal,
3860                                               Value *&LHS, Value *&RHS) {
3861   LHS = CmpLHS;
3862   RHS = CmpRHS;
3863 
3864   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3865   // return inconsistent results between implementations.
3866   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3867   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3868   // Therefore we behave conservatively and only proceed if at least one of the
3869   // operands is known to not be zero, or if we don't care about signed zeroes.
3870   switch (Pred) {
3871   default: break;
3872   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3873   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3874     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3875         !isKnownNonZero(CmpRHS))
3876       return {SPF_UNKNOWN, SPNB_NA, false};
3877   }
3878 
3879   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3880   bool Ordered = false;
3881 
3882   // When given one NaN and one non-NaN input:
3883   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3884   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3885   //     ordered comparison fails), which could be NaN or non-NaN.
3886   // so here we discover exactly what NaN behavior is required/accepted.
3887   if (CmpInst::isFPPredicate(Pred)) {
3888     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3889     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3890 
3891     if (LHSSafe && RHSSafe) {
3892       // Both operands are known non-NaN.
3893       NaNBehavior = SPNB_RETURNS_ANY;
3894     } else if (CmpInst::isOrdered(Pred)) {
3895       // An ordered comparison will return false when given a NaN, so it
3896       // returns the RHS.
3897       Ordered = true;
3898       if (LHSSafe)
3899         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3900         NaNBehavior = SPNB_RETURNS_NAN;
3901       else if (RHSSafe)
3902         NaNBehavior = SPNB_RETURNS_OTHER;
3903       else
3904         // Completely unsafe.
3905         return {SPF_UNKNOWN, SPNB_NA, false};
3906     } else {
3907       Ordered = false;
3908       // An unordered comparison will return true when given a NaN, so it
3909       // returns the LHS.
3910       if (LHSSafe)
3911         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3912         NaNBehavior = SPNB_RETURNS_OTHER;
3913       else if (RHSSafe)
3914         NaNBehavior = SPNB_RETURNS_NAN;
3915       else
3916         // Completely unsafe.
3917         return {SPF_UNKNOWN, SPNB_NA, false};
3918     }
3919   }
3920 
3921   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3922     std::swap(CmpLHS, CmpRHS);
3923     Pred = CmpInst::getSwappedPredicate(Pred);
3924     if (NaNBehavior == SPNB_RETURNS_NAN)
3925       NaNBehavior = SPNB_RETURNS_OTHER;
3926     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3927       NaNBehavior = SPNB_RETURNS_NAN;
3928     Ordered = !Ordered;
3929   }
3930 
3931   // ([if]cmp X, Y) ? X : Y
3932   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3933     switch (Pred) {
3934     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3935     case ICmpInst::ICMP_UGT:
3936     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3937     case ICmpInst::ICMP_SGT:
3938     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3939     case ICmpInst::ICMP_ULT:
3940     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3941     case ICmpInst::ICMP_SLT:
3942     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3943     case FCmpInst::FCMP_UGT:
3944     case FCmpInst::FCMP_UGE:
3945     case FCmpInst::FCMP_OGT:
3946     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3947     case FCmpInst::FCMP_ULT:
3948     case FCmpInst::FCMP_ULE:
3949     case FCmpInst::FCMP_OLT:
3950     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3951     }
3952   }
3953 
3954   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3955     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3956         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3957 
3958       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3959       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3960       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3961         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3962       }
3963 
3964       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3965       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3966       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3967         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3968       }
3969     }
3970 
3971     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3972     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3973       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3974           ~C1->getValue() == C2->getValue() &&
3975           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3976            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3977         LHS = TrueVal;
3978         RHS = FalseVal;
3979         return {SPF_SMIN, SPNB_NA, false};
3980       }
3981     }
3982   }
3983 
3984   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3985 
3986   return {SPF_UNKNOWN, SPNB_NA, false};
3987 }
3988 
3989 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3990                               Instruction::CastOps *CastOp) {
3991   CastInst *CI = dyn_cast<CastInst>(V1);
3992   Constant *C = dyn_cast<Constant>(V2);
3993   if (!CI)
3994     return nullptr;
3995   *CastOp = CI->getOpcode();
3996 
3997   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3998     // If V1 and V2 are both the same cast from the same type, we can look
3999     // through V1.
4000     if (CI2->getOpcode() == CI->getOpcode() &&
4001         CI2->getSrcTy() == CI->getSrcTy())
4002       return CI2->getOperand(0);
4003     return nullptr;
4004   } else if (!C) {
4005     return nullptr;
4006   }
4007 
4008   Constant *CastedTo = nullptr;
4009 
4010   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4011     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
4012 
4013   if (isa<SExtInst>(CI) && CmpI->isSigned())
4014     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
4015 
4016   if (isa<TruncInst>(CI))
4017     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4018 
4019   if (isa<FPTruncInst>(CI))
4020     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4021 
4022   if (isa<FPExtInst>(CI))
4023     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4024 
4025   if (isa<FPToUIInst>(CI))
4026     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4027 
4028   if (isa<FPToSIInst>(CI))
4029     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4030 
4031   if (isa<UIToFPInst>(CI))
4032     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4033 
4034   if (isa<SIToFPInst>(CI))
4035     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4036 
4037   if (!CastedTo)
4038     return nullptr;
4039 
4040   Constant *CastedBack =
4041       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
4042   // Make sure the cast doesn't lose any information.
4043   if (CastedBack != C)
4044     return nullptr;
4045 
4046   return CastedTo;
4047 }
4048 
4049 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4050                                              Instruction::CastOps *CastOp) {
4051   SelectInst *SI = dyn_cast<SelectInst>(V);
4052   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4053 
4054   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4055   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4056 
4057   CmpInst::Predicate Pred = CmpI->getPredicate();
4058   Value *CmpLHS = CmpI->getOperand(0);
4059   Value *CmpRHS = CmpI->getOperand(1);
4060   Value *TrueVal = SI->getTrueValue();
4061   Value *FalseVal = SI->getFalseValue();
4062   FastMathFlags FMF;
4063   if (isa<FPMathOperator>(CmpI))
4064     FMF = CmpI->getFastMathFlags();
4065 
4066   // Bail out early.
4067   if (CmpI->isEquality())
4068     return {SPF_UNKNOWN, SPNB_NA, false};
4069 
4070   // Deal with type mismatches.
4071   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4072     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4073       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4074                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4075                                   LHS, RHS);
4076     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4077       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4078                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4079                                   LHS, RHS);
4080   }
4081   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4082                               LHS, RHS);
4083 }
4084 
4085 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
4086   const unsigned NumRanges = Ranges.getNumOperands() / 2;
4087   assert(NumRanges >= 1 && "Must have at least one range!");
4088   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4089 
4090   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4091   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4092 
4093   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4094 
4095   for (unsigned i = 1; i < NumRanges; ++i) {
4096     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4097     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4098 
4099     // Note: unionWith will potentially create a range that contains values not
4100     // contained in any of the original N ranges.
4101     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4102   }
4103 
4104   return CR;
4105 }
4106 
4107 /// Return true if "icmp Pred LHS RHS" is always true.
4108 static bool isTruePredicate(CmpInst::Predicate Pred,
4109                             const Value *LHS, const Value *RHS,
4110                             const DataLayout &DL, unsigned Depth,
4111                             AssumptionCache *AC, const Instruction *CxtI,
4112                             const DominatorTree *DT) {
4113   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4114   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4115     return true;
4116 
4117   switch (Pred) {
4118   default:
4119     return false;
4120 
4121   case CmpInst::ICMP_SLE: {
4122     const APInt *C;
4123 
4124     // LHS s<= LHS +_{nsw} C   if C >= 0
4125     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4126       return !C->isNegative();
4127     return false;
4128   }
4129 
4130   case CmpInst::ICMP_ULE: {
4131     const APInt *C;
4132 
4133     // LHS u<= LHS +_{nuw} C   for any C
4134     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4135       return true;
4136 
4137     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4138     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4139                                        const Value *&X,
4140                                        const APInt *&CA, const APInt *&CB) {
4141       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4142           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4143         return true;
4144 
4145       // If X & C == 0 then (X | C) == X +_{nuw} C
4146       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4147           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4148         unsigned BitWidth = CA->getBitWidth();
4149         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4150         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4151 
4152         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4153           return true;
4154       }
4155 
4156       return false;
4157     };
4158 
4159     const Value *X;
4160     const APInt *CLHS, *CRHS;
4161     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4162       return CLHS->ule(*CRHS);
4163 
4164     return false;
4165   }
4166   }
4167 }
4168 
4169 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4170 /// ALHS ARHS" is true.  Otherwise, return None.
4171 static Optional<bool>
4172 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4173                       const Value *ARHS, const Value *BLHS,
4174                       const Value *BRHS, const DataLayout &DL,
4175                       unsigned Depth, AssumptionCache *AC,
4176                       const Instruction *CxtI, const DominatorTree *DT) {
4177   switch (Pred) {
4178   default:
4179     return None;
4180 
4181   case CmpInst::ICMP_SLT:
4182   case CmpInst::ICMP_SLE:
4183     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4184                         DT) &&
4185         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4186       return true;
4187     return None;
4188 
4189   case CmpInst::ICMP_ULT:
4190   case CmpInst::ICMP_ULE:
4191     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4192                         DT) &&
4193         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4194       return true;
4195     return None;
4196   }
4197 }
4198 
4199 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4200 /// when the operands match, but are swapped.
4201 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4202                           const Value *BLHS, const Value *BRHS,
4203                           bool &IsSwappedOps) {
4204 
4205   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4206   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4207   return IsMatchingOps || IsSwappedOps;
4208 }
4209 
4210 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4211 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4212 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4213 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4214                                                     const Value *ALHS,
4215                                                     const Value *ARHS,
4216                                                     CmpInst::Predicate BPred,
4217                                                     const Value *BLHS,
4218                                                     const Value *BRHS,
4219                                                     bool IsSwappedOps) {
4220   // Canonicalize the operands so they're matching.
4221   if (IsSwappedOps) {
4222     std::swap(BLHS, BRHS);
4223     BPred = ICmpInst::getSwappedPredicate(BPred);
4224   }
4225   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4226     return true;
4227   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4228     return false;
4229 
4230   return None;
4231 }
4232 
4233 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4234 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4235 /// C2" is false.  Otherwise, return None if we can't infer anything.
4236 static Optional<bool>
4237 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4238                                  const ConstantInt *C1,
4239                                  CmpInst::Predicate BPred,
4240                                  const Value *BLHS, const ConstantInt *C2) {
4241   assert(ALHS == BLHS && "LHS operands must match.");
4242   ConstantRange DomCR =
4243       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4244   ConstantRange CR =
4245       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4246   ConstantRange Intersection = DomCR.intersectWith(CR);
4247   ConstantRange Difference = DomCR.difference(CR);
4248   if (Intersection.isEmptySet())
4249     return false;
4250   if (Difference.isEmptySet())
4251     return true;
4252   return None;
4253 }
4254 
4255 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
4256                                         const DataLayout &DL, bool InvertAPred,
4257                                         unsigned Depth, AssumptionCache *AC,
4258                                         const Instruction *CxtI,
4259                                         const DominatorTree *DT) {
4260   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4261   if (LHS->getType() != RHS->getType())
4262     return None;
4263 
4264   Type *OpTy = LHS->getType();
4265   assert(OpTy->getScalarType()->isIntegerTy(1));
4266 
4267   // LHS ==> RHS by definition
4268   if (!InvertAPred && LHS == RHS)
4269     return true;
4270 
4271   if (OpTy->isVectorTy())
4272     // TODO: extending the code below to handle vectors
4273     return None;
4274   assert(OpTy->isIntegerTy(1) && "implied by above");
4275 
4276   ICmpInst::Predicate APred, BPred;
4277   Value *ALHS, *ARHS;
4278   Value *BLHS, *BRHS;
4279 
4280   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4281       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4282     return None;
4283 
4284   if (InvertAPred)
4285     APred = CmpInst::getInversePredicate(APred);
4286 
4287   // Can we infer anything when the two compares have matching operands?
4288   bool IsSwappedOps;
4289   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4290     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4291             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4292       return Implication;
4293     // No amount of additional analysis will infer the second condition, so
4294     // early exit.
4295     return None;
4296   }
4297 
4298   // Can we infer anything when the LHS operands match and the RHS operands are
4299   // constants (not necessarily matching)?
4300   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4301     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4302             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4303             cast<ConstantInt>(BRHS)))
4304       return Implication;
4305     // No amount of additional analysis will infer the second condition, so
4306     // early exit.
4307     return None;
4308   }
4309 
4310   if (APred == BPred)
4311     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4312                                  CxtI, DT);
4313 
4314   return None;
4315 }
4316