1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getIndexTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 unsigned NumExcluded = 0; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 126 127 Query(const Query &Q, const Value *NewExcl) 128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 129 NumExcluded(Q.NumExcluded) { 130 Excluded = Q.Excluded; 131 Excluded[NumExcluded++] = NewExcl; 132 assert(NumExcluded <= Excluded.size()); 133 } 134 135 bool isExcluded(const Value *Value) const { 136 if (NumExcluded == 0) 137 return false; 138 auto End = Excluded.begin() + NumExcluded; 139 return std::find(Excluded.begin(), End, Value) != End; 140 } 141 }; 142 143 } // end anonymous namespace 144 145 // Given the provided Value and, potentially, a context instruction, return 146 // the preferred context instruction (if any). 147 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 return nullptr; 159 } 160 161 static void computeKnownBits(const Value *V, KnownBits &Known, 162 unsigned Depth, const Query &Q); 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, 168 OptimizationRemarkEmitter *ORE) { 169 ::computeKnownBits(V, Known, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 171 } 172 173 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 174 const Query &Q); 175 176 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT, 180 OptimizationRemarkEmitter *ORE) { 181 return ::computeKnownBits(V, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 183 } 184 185 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 186 const DataLayout &DL, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 assert(LHS->getType() == RHS->getType() && 190 "LHS and RHS should have the same type"); 191 assert(LHS->getType()->isIntOrIntVectorTy() && 192 "LHS and RHS should be integers"); 193 // Look for an inverted mask: (X & ~M) op (Y & M). 194 Value *M; 195 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 196 match(RHS, m_c_And(m_Specific(M), m_Value()))) 197 return true; 198 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 199 match(LHS, m_c_And(m_Specific(M), m_Value()))) 200 return true; 201 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 202 KnownBits LHSKnown(IT->getBitWidth()); 203 KnownBits RHSKnown(IT->getBitWidth()); 204 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 205 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 206 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 207 } 208 209 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 210 for (const User *U : CxtI->users()) { 211 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 212 if (IC->isEquality()) 213 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 214 if (C->isNullValue()) 215 continue; 216 return false; 217 } 218 return true; 219 } 220 221 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 222 const Query &Q); 223 224 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 225 bool OrZero, 226 unsigned Depth, AssumptionCache *AC, 227 const Instruction *CxtI, 228 const DominatorTree *DT) { 229 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT)); 231 } 232 233 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 234 235 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 236 AssumptionCache *AC, const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 242 unsigned Depth, 243 AssumptionCache *AC, const Instruction *CxtI, 244 const DominatorTree *DT) { 245 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 246 return Known.isNonNegative(); 247 } 248 249 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 250 AssumptionCache *AC, const Instruction *CxtI, 251 const DominatorTree *DT) { 252 if (auto *CI = dyn_cast<ConstantInt>(V)) 253 return CI->getValue().isStrictlyPositive(); 254 255 // TODO: We'd doing two recursive queries here. We should factor this such 256 // that only a single query is needed. 257 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 258 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 259 } 260 261 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 262 AssumptionCache *AC, const Instruction *CxtI, 263 const DominatorTree *DT) { 264 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 265 return Known.isNegative(); 266 } 267 268 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 269 270 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 271 const DataLayout &DL, 272 AssumptionCache *AC, const Instruction *CxtI, 273 const DominatorTree *DT) { 274 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 275 safeCxtI(V1, safeCxtI(V2, CxtI)), 276 DT)); 277 } 278 279 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 280 const Query &Q); 281 282 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 283 const DataLayout &DL, 284 unsigned Depth, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT) { 286 return ::MaskedValueIsZero(V, Mask, Depth, 287 Query(DL, AC, safeCxtI(V, CxtI), DT)); 288 } 289 290 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 291 const Query &Q); 292 293 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 294 unsigned Depth, AssumptionCache *AC, 295 const Instruction *CxtI, 296 const DominatorTree *DT) { 297 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 298 } 299 300 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 301 bool NSW, 302 KnownBits &KnownOut, KnownBits &Known2, 303 unsigned Depth, const Query &Q) { 304 unsigned BitWidth = KnownOut.getBitWidth(); 305 306 // If an initial sequence of bits in the result is not needed, the 307 // corresponding bits in the operands are not needed. 308 KnownBits LHSKnown(BitWidth); 309 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 310 computeKnownBits(Op1, Known2, Depth + 1, Q); 311 312 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 313 } 314 315 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 316 KnownBits &Known, KnownBits &Known2, 317 unsigned Depth, const Query &Q) { 318 unsigned BitWidth = Known.getBitWidth(); 319 computeKnownBits(Op1, Known, Depth + 1, Q); 320 computeKnownBits(Op0, Known2, Depth + 1, Q); 321 322 bool isKnownNegative = false; 323 bool isKnownNonNegative = false; 324 // If the multiplication is known not to overflow, compute the sign bit. 325 if (NSW) { 326 if (Op0 == Op1) { 327 // The product of a number with itself is non-negative. 328 isKnownNonNegative = true; 329 } else { 330 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 331 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 332 bool isKnownNegativeOp1 = Known.isNegative(); 333 bool isKnownNegativeOp0 = Known2.isNegative(); 334 // The product of two numbers with the same sign is non-negative. 335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 337 // The product of a negative number and a non-negative number is either 338 // negative or zero. 339 if (!isKnownNonNegative) 340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 341 isKnownNonZero(Op0, Depth, Q)) || 342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 343 isKnownNonZero(Op1, Depth, Q)); 344 } 345 } 346 347 assert(!Known.hasConflict() && !Known2.hasConflict()); 348 // Compute a conservative estimate for high known-0 bits. 349 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 350 Known2.countMinLeadingZeros(), 351 BitWidth) - BitWidth; 352 LeadZ = std::min(LeadZ, BitWidth); 353 354 // The result of the bottom bits of an integer multiply can be 355 // inferred by looking at the bottom bits of both operands and 356 // multiplying them together. 357 // We can infer at least the minimum number of known trailing bits 358 // of both operands. Depending on number of trailing zeros, we can 359 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 360 // a and b are divisible by m and n respectively. 361 // We then calculate how many of those bits are inferrable and set 362 // the output. For example, the i8 mul: 363 // a = XXXX1100 (12) 364 // b = XXXX1110 (14) 365 // We know the bottom 3 bits are zero since the first can be divided by 366 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 367 // Applying the multiplication to the trimmed arguments gets: 368 // XX11 (3) 369 // X111 (7) 370 // ------- 371 // XX11 372 // XX11 373 // XX11 374 // XX11 375 // ------- 376 // XXXXX01 377 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 378 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 379 // The proof for this can be described as: 380 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 381 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 382 // umin(countTrailingZeros(C2), C6) + 383 // umin(C5 - umin(countTrailingZeros(C1), C5), 384 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 385 // %aa = shl i8 %a, C5 386 // %bb = shl i8 %b, C6 387 // %aaa = or i8 %aa, C1 388 // %bbb = or i8 %bb, C2 389 // %mul = mul i8 %aaa, %bbb 390 // %mask = and i8 %mul, C7 391 // => 392 // %mask = i8 ((C1*C2)&C7) 393 // Where C5, C6 describe the known bits of %a, %b 394 // C1, C2 describe the known bottom bits of %a, %b. 395 // C7 describes the mask of the known bits of the result. 396 APInt Bottom0 = Known.One; 397 APInt Bottom1 = Known2.One; 398 399 // How many times we'd be able to divide each argument by 2 (shr by 1). 400 // This gives us the number of trailing zeros on the multiplication result. 401 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 402 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 403 unsigned TrailZero0 = Known.countMinTrailingZeros(); 404 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 405 unsigned TrailZ = TrailZero0 + TrailZero1; 406 407 // Figure out the fewest known-bits operand. 408 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 409 TrailBitsKnown1 - TrailZero1); 410 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 411 412 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 413 Bottom1.getLoBits(TrailBitsKnown1); 414 415 Known.resetAll(); 416 Known.Zero.setHighBits(LeadZ); 417 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 418 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 419 420 // Only make use of no-wrap flags if we failed to compute the sign bit 421 // directly. This matters if the multiplication always overflows, in 422 // which case we prefer to follow the result of the direct computation, 423 // though as the program is invoking undefined behaviour we can choose 424 // whatever we like here. 425 if (isKnownNonNegative && !Known.isNegative()) 426 Known.makeNonNegative(); 427 else if (isKnownNegative && !Known.isNonNegative()) 428 Known.makeNegative(); 429 } 430 431 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 432 KnownBits &Known) { 433 unsigned BitWidth = Known.getBitWidth(); 434 unsigned NumRanges = Ranges.getNumOperands() / 2; 435 assert(NumRanges >= 1); 436 437 Known.Zero.setAllBits(); 438 Known.One.setAllBits(); 439 440 for (unsigned i = 0; i < NumRanges; ++i) { 441 ConstantInt *Lower = 442 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 443 ConstantInt *Upper = 444 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 445 ConstantRange Range(Lower->getValue(), Upper->getValue()); 446 447 // The first CommonPrefixBits of all values in Range are equal. 448 unsigned CommonPrefixBits = 449 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 450 451 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 452 Known.One &= Range.getUnsignedMax() & Mask; 453 Known.Zero &= ~Range.getUnsignedMax() & Mask; 454 } 455 } 456 457 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 458 SmallVector<const Value *, 16> WorkSet(1, I); 459 SmallPtrSet<const Value *, 32> Visited; 460 SmallPtrSet<const Value *, 16> EphValues; 461 462 // The instruction defining an assumption's condition itself is always 463 // considered ephemeral to that assumption (even if it has other 464 // non-ephemeral users). See r246696's test case for an example. 465 if (is_contained(I->operands(), E)) 466 return true; 467 468 while (!WorkSet.empty()) { 469 const Value *V = WorkSet.pop_back_val(); 470 if (!Visited.insert(V).second) 471 continue; 472 473 // If all uses of this value are ephemeral, then so is this value. 474 if (llvm::all_of(V->users(), [&](const User *U) { 475 return EphValues.count(U); 476 })) { 477 if (V == E) 478 return true; 479 480 if (V == I || isSafeToSpeculativelyExecute(V)) { 481 EphValues.insert(V); 482 if (const User *U = dyn_cast<User>(V)) 483 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 484 J != JE; ++J) 485 WorkSet.push_back(*J); 486 } 487 } 488 } 489 490 return false; 491 } 492 493 // Is this an intrinsic that cannot be speculated but also cannot trap? 494 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 495 if (const CallInst *CI = dyn_cast<CallInst>(I)) 496 if (Function *F = CI->getCalledFunction()) 497 switch (F->getIntrinsicID()) { 498 default: break; 499 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 500 case Intrinsic::assume: 501 case Intrinsic::sideeffect: 502 case Intrinsic::dbg_declare: 503 case Intrinsic::dbg_value: 504 case Intrinsic::dbg_label: 505 case Intrinsic::invariant_start: 506 case Intrinsic::invariant_end: 507 case Intrinsic::lifetime_start: 508 case Intrinsic::lifetime_end: 509 case Intrinsic::objectsize: 510 case Intrinsic::ptr_annotation: 511 case Intrinsic::var_annotation: 512 return true; 513 } 514 515 return false; 516 } 517 518 bool llvm::isValidAssumeForContext(const Instruction *Inv, 519 const Instruction *CxtI, 520 const DominatorTree *DT) { 521 // There are two restrictions on the use of an assume: 522 // 1. The assume must dominate the context (or the control flow must 523 // reach the assume whenever it reaches the context). 524 // 2. The context must not be in the assume's set of ephemeral values 525 // (otherwise we will use the assume to prove that the condition 526 // feeding the assume is trivially true, thus causing the removal of 527 // the assume). 528 529 if (DT) { 530 if (DT->dominates(Inv, CxtI)) 531 return true; 532 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 533 // We don't have a DT, but this trivially dominates. 534 return true; 535 } 536 537 // With or without a DT, the only remaining case we will check is if the 538 // instructions are in the same BB. Give up if that is not the case. 539 if (Inv->getParent() != CxtI->getParent()) 540 return false; 541 542 // If we have a dom tree, then we now know that the assume doesn't dominate 543 // the other instruction. If we don't have a dom tree then we can check if 544 // the assume is first in the BB. 545 if (!DT) { 546 // Search forward from the assume until we reach the context (or the end 547 // of the block); the common case is that the assume will come first. 548 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 549 IE = Inv->getParent()->end(); I != IE; ++I) 550 if (&*I == CxtI) 551 return true; 552 } 553 554 // The context comes first, but they're both in the same block. Make sure 555 // there is nothing in between that might interrupt the control flow. 556 for (BasicBlock::const_iterator I = 557 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 558 I != IE; ++I) 559 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 560 return false; 561 562 return !isEphemeralValueOf(Inv, CxtI); 563 } 564 565 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 566 unsigned Depth, const Query &Q) { 567 // Use of assumptions is context-sensitive. If we don't have a context, we 568 // cannot use them! 569 if (!Q.AC || !Q.CxtI) 570 return; 571 572 unsigned BitWidth = Known.getBitWidth(); 573 574 // Note that the patterns below need to be kept in sync with the code 575 // in AssumptionCache::updateAffectedValues. 576 577 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 578 if (!AssumeVH) 579 continue; 580 CallInst *I = cast<CallInst>(AssumeVH); 581 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 582 "Got assumption for the wrong function!"); 583 if (Q.isExcluded(I)) 584 continue; 585 586 // Warning: This loop can end up being somewhat performance sensitive. 587 // We're running this loop for once for each value queried resulting in a 588 // runtime of ~O(#assumes * #values). 589 590 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 591 "must be an assume intrinsic"); 592 593 Value *Arg = I->getArgOperand(0); 594 595 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 596 assert(BitWidth == 1 && "assume operand is not i1?"); 597 Known.setAllOnes(); 598 return; 599 } 600 if (match(Arg, m_Not(m_Specific(V))) && 601 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 602 assert(BitWidth == 1 && "assume operand is not i1?"); 603 Known.setAllZero(); 604 return; 605 } 606 607 // The remaining tests are all recursive, so bail out if we hit the limit. 608 if (Depth == MaxDepth) 609 continue; 610 611 Value *A, *B; 612 auto m_V = m_CombineOr(m_Specific(V), 613 m_CombineOr(m_PtrToInt(m_Specific(V)), 614 m_BitCast(m_Specific(V)))); 615 616 CmpInst::Predicate Pred; 617 uint64_t C; 618 // assume(v = a) 619 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 620 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 KnownBits RHSKnown(BitWidth); 622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 623 Known.Zero |= RHSKnown.Zero; 624 Known.One |= RHSKnown.One; 625 // assume(v & b = a) 626 } else if (match(Arg, 627 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 628 Pred == ICmpInst::ICMP_EQ && 629 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 630 KnownBits RHSKnown(BitWidth); 631 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 632 KnownBits MaskKnown(BitWidth); 633 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 634 635 // For those bits in the mask that are known to be one, we can propagate 636 // known bits from the RHS to V. 637 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 638 Known.One |= RHSKnown.One & MaskKnown.One; 639 // assume(~(v & b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 KnownBits RHSKnown(BitWidth); 645 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 646 KnownBits MaskKnown(BitWidth); 647 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 648 649 // For those bits in the mask that are known to be one, we can propagate 650 // inverted known bits from the RHS to V. 651 Known.Zero |= RHSKnown.One & MaskKnown.One; 652 Known.One |= RHSKnown.Zero & MaskKnown.One; 653 // assume(v | b = a) 654 } else if (match(Arg, 655 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 656 Pred == ICmpInst::ICMP_EQ && 657 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 658 KnownBits RHSKnown(BitWidth); 659 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 660 KnownBits BKnown(BitWidth); 661 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 662 663 // For those bits in B that are known to be zero, we can propagate known 664 // bits from the RHS to V. 665 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 666 Known.One |= RHSKnown.One & BKnown.Zero; 667 // assume(~(v | b) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 KnownBits RHSKnown(BitWidth); 673 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 674 KnownBits BKnown(BitWidth); 675 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 676 677 // For those bits in B that are known to be zero, we can propagate 678 // inverted known bits from the RHS to V. 679 Known.Zero |= RHSKnown.One & BKnown.Zero; 680 Known.One |= RHSKnown.Zero & BKnown.Zero; 681 // assume(v ^ b = a) 682 } else if (match(Arg, 683 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 684 Pred == ICmpInst::ICMP_EQ && 685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 686 KnownBits RHSKnown(BitWidth); 687 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 688 KnownBits BKnown(BitWidth); 689 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 690 691 // For those bits in B that are known to be zero, we can propagate known 692 // bits from the RHS to V. For those bits in B that are known to be one, 693 // we can propagate inverted known bits from the RHS to V. 694 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 695 Known.One |= RHSKnown.One & BKnown.Zero; 696 Known.Zero |= RHSKnown.One & BKnown.One; 697 Known.One |= RHSKnown.Zero & BKnown.One; 698 // assume(~(v ^ b) = a) 699 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 700 m_Value(A))) && 701 Pred == ICmpInst::ICMP_EQ && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 KnownBits RHSKnown(BitWidth); 704 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 705 KnownBits BKnown(BitWidth); 706 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 707 708 // For those bits in B that are known to be zero, we can propagate 709 // inverted known bits from the RHS to V. For those bits in B that are 710 // known to be one, we can propagate known bits from the RHS to V. 711 Known.Zero |= RHSKnown.One & BKnown.Zero; 712 Known.One |= RHSKnown.Zero & BKnown.Zero; 713 Known.Zero |= RHSKnown.Zero & BKnown.One; 714 Known.One |= RHSKnown.One & BKnown.One; 715 // assume(v << c = a) 716 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 717 m_Value(A))) && 718 Pred == ICmpInst::ICMP_EQ && 719 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 720 C < BitWidth) { 721 KnownBits RHSKnown(BitWidth); 722 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 723 // For those bits in RHS that are known, we can propagate them to known 724 // bits in V shifted to the right by C. 725 RHSKnown.Zero.lshrInPlace(C); 726 Known.Zero |= RHSKnown.Zero; 727 RHSKnown.One.lshrInPlace(C); 728 Known.One |= RHSKnown.One; 729 // assume(~(v << c) = a) 730 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 731 m_Value(A))) && 732 Pred == ICmpInst::ICMP_EQ && 733 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 734 C < BitWidth) { 735 KnownBits RHSKnown(BitWidth); 736 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 737 // For those bits in RHS that are known, we can propagate them inverted 738 // to known bits in V shifted to the right by C. 739 RHSKnown.One.lshrInPlace(C); 740 Known.Zero |= RHSKnown.One; 741 RHSKnown.Zero.lshrInPlace(C); 742 Known.One |= RHSKnown.Zero; 743 // assume(v >> c = a) 744 } else if (match(Arg, 745 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 746 m_Value(A))) && 747 Pred == ICmpInst::ICMP_EQ && 748 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 749 C < BitWidth) { 750 KnownBits RHSKnown(BitWidth); 751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 752 // For those bits in RHS that are known, we can propagate them to known 753 // bits in V shifted to the right by C. 754 Known.Zero |= RHSKnown.Zero << C; 755 Known.One |= RHSKnown.One << C; 756 // assume(~(v >> c) = a) 757 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 758 m_Value(A))) && 759 Pred == ICmpInst::ICMP_EQ && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 761 C < BitWidth) { 762 KnownBits RHSKnown(BitWidth); 763 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 764 // For those bits in RHS that are known, we can propagate them inverted 765 // to known bits in V shifted to the right by C. 766 Known.Zero |= RHSKnown.One << C; 767 Known.One |= RHSKnown.Zero << C; 768 // assume(v >=_s c) where c is non-negative 769 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 770 Pred == ICmpInst::ICMP_SGE && 771 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 772 KnownBits RHSKnown(BitWidth); 773 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 774 775 if (RHSKnown.isNonNegative()) { 776 // We know that the sign bit is zero. 777 Known.makeNonNegative(); 778 } 779 // assume(v >_s c) where c is at least -1. 780 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 781 Pred == ICmpInst::ICMP_SGT && 782 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 783 KnownBits RHSKnown(BitWidth); 784 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 785 786 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 787 // We know that the sign bit is zero. 788 Known.makeNonNegative(); 789 } 790 // assume(v <=_s c) where c is negative 791 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 792 Pred == ICmpInst::ICMP_SLE && 793 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 794 KnownBits RHSKnown(BitWidth); 795 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 796 797 if (RHSKnown.isNegative()) { 798 // We know that the sign bit is one. 799 Known.makeNegative(); 800 } 801 // assume(v <_s c) where c is non-positive 802 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 803 Pred == ICmpInst::ICMP_SLT && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown(BitWidth); 806 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 807 808 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 809 // We know that the sign bit is one. 810 Known.makeNegative(); 811 } 812 // assume(v <=_u c) 813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 814 Pred == ICmpInst::ICMP_ULE && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown(BitWidth); 817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 818 819 // Whatever high bits in c are zero are known to be zero. 820 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 821 // assume(v <_u c) 822 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 823 Pred == ICmpInst::ICMP_ULT && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 825 KnownBits RHSKnown(BitWidth); 826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 827 828 // If the RHS is known zero, then this assumption must be wrong (nothing 829 // is unsigned less than zero). Signal a conflict and get out of here. 830 if (RHSKnown.isZero()) { 831 Known.Zero.setAllBits(); 832 Known.One.setAllBits(); 833 break; 834 } 835 836 // Whatever high bits in c are zero are known to be zero (if c is a power 837 // of 2, then one more). 838 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 839 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 840 else 841 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 842 } 843 } 844 845 // If assumptions conflict with each other or previous known bits, then we 846 // have a logical fallacy. It's possible that the assumption is not reachable, 847 // so this isn't a real bug. On the other hand, the program may have undefined 848 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 849 // clear out the known bits, try to warn the user, and hope for the best. 850 if (Known.Zero.intersects(Known.One)) { 851 Known.resetAll(); 852 853 if (Q.ORE) 854 Q.ORE->emit([&]() { 855 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 856 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 857 CxtI) 858 << "Detected conflicting code assumptions. Program may " 859 "have undefined behavior, or compiler may have " 860 "internal error."; 861 }); 862 } 863 } 864 865 /// Compute known bits from a shift operator, including those with a 866 /// non-constant shift amount. Known is the output of this function. Known2 is a 867 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 868 /// operator-specific functions that, given the known-zero or known-one bits 869 /// respectively, and a shift amount, compute the implied known-zero or 870 /// known-one bits of the shift operator's result respectively for that shift 871 /// amount. The results from calling KZF and KOF are conservatively combined for 872 /// all permitted shift amounts. 873 static void computeKnownBitsFromShiftOperator( 874 const Operator *I, KnownBits &Known, KnownBits &Known2, 875 unsigned Depth, const Query &Q, 876 function_ref<APInt(const APInt &, unsigned)> KZF, 877 function_ref<APInt(const APInt &, unsigned)> KOF) { 878 unsigned BitWidth = Known.getBitWidth(); 879 880 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 881 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 882 883 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 884 Known.Zero = KZF(Known.Zero, ShiftAmt); 885 Known.One = KOF(Known.One, ShiftAmt); 886 // If the known bits conflict, this must be an overflowing left shift, so 887 // the shift result is poison. We can return anything we want. Choose 0 for 888 // the best folding opportunity. 889 if (Known.hasConflict()) 890 Known.setAllZero(); 891 892 return; 893 } 894 895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 896 897 // If the shift amount could be greater than or equal to the bit-width of the 898 // LHS, the value could be poison, but bail out because the check below is 899 // expensive. TODO: Should we just carry on? 900 if ((~Known.Zero).uge(BitWidth)) { 901 Known.resetAll(); 902 return; 903 } 904 905 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 906 // BitWidth > 64 and any upper bits are known, we'll end up returning the 907 // limit value (which implies all bits are known). 908 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 909 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 910 911 // It would be more-clearly correct to use the two temporaries for this 912 // calculation. Reusing the APInts here to prevent unnecessary allocations. 913 Known.resetAll(); 914 915 // If we know the shifter operand is nonzero, we can sometimes infer more 916 // known bits. However this is expensive to compute, so be lazy about it and 917 // only compute it when absolutely necessary. 918 Optional<bool> ShifterOperandIsNonZero; 919 920 // Early exit if we can't constrain any well-defined shift amount. 921 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 922 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 923 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 924 if (!*ShifterOperandIsNonZero) 925 return; 926 } 927 928 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 929 930 Known.Zero.setAllBits(); 931 Known.One.setAllBits(); 932 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 933 // Combine the shifted known input bits only for those shift amounts 934 // compatible with its known constraints. 935 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 936 continue; 937 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 938 continue; 939 // If we know the shifter is nonzero, we may be able to infer more known 940 // bits. This check is sunk down as far as possible to avoid the expensive 941 // call to isKnownNonZero if the cheaper checks above fail. 942 if (ShiftAmt == 0) { 943 if (!ShifterOperandIsNonZero.hasValue()) 944 ShifterOperandIsNonZero = 945 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 946 if (*ShifterOperandIsNonZero) 947 continue; 948 } 949 950 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 951 Known.One &= KOF(Known2.One, ShiftAmt); 952 } 953 954 // If the known bits conflict, the result is poison. Return a 0 and hope the 955 // caller can further optimize that. 956 if (Known.hasConflict()) 957 Known.setAllZero(); 958 } 959 960 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 961 unsigned Depth, const Query &Q) { 962 unsigned BitWidth = Known.getBitWidth(); 963 964 KnownBits Known2(Known); 965 switch (I->getOpcode()) { 966 default: break; 967 case Instruction::Load: 968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 969 computeKnownBitsFromRangeMetadata(*MD, Known); 970 break; 971 case Instruction::And: { 972 // If either the LHS or the RHS are Zero, the result is zero. 973 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 974 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 975 976 // Output known-1 bits are only known if set in both the LHS & RHS. 977 Known.One &= Known2.One; 978 // Output known-0 are known to be clear if zero in either the LHS | RHS. 979 Known.Zero |= Known2.Zero; 980 981 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 982 // here we handle the more general case of adding any odd number by 983 // matching the form add(x, add(x, y)) where y is odd. 984 // TODO: This could be generalized to clearing any bit set in y where the 985 // following bit is known to be unset in y. 986 Value *X = nullptr, *Y = nullptr; 987 if (!Known.Zero[0] && !Known.One[0] && 988 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 989 Known2.resetAll(); 990 computeKnownBits(Y, Known2, Depth + 1, Q); 991 if (Known2.countMinTrailingOnes() > 0) 992 Known.Zero.setBit(0); 993 } 994 break; 995 } 996 case Instruction::Or: 997 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 998 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 999 1000 // Output known-0 bits are only known if clear in both the LHS & RHS. 1001 Known.Zero &= Known2.Zero; 1002 // Output known-1 are known to be set if set in either the LHS | RHS. 1003 Known.One |= Known2.One; 1004 break; 1005 case Instruction::Xor: { 1006 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1007 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1008 1009 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1010 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1011 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1012 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1013 Known.Zero = std::move(KnownZeroOut); 1014 break; 1015 } 1016 case Instruction::Mul: { 1017 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1018 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1019 Known2, Depth, Q); 1020 break; 1021 } 1022 case Instruction::UDiv: { 1023 // For the purposes of computing leading zeros we can conservatively 1024 // treat a udiv as a logical right shift by the power of 2 known to 1025 // be less than the denominator. 1026 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1027 unsigned LeadZ = Known2.countMinLeadingZeros(); 1028 1029 Known2.resetAll(); 1030 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1031 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1032 if (RHSMaxLeadingZeros != BitWidth) 1033 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1034 1035 Known.Zero.setHighBits(LeadZ); 1036 break; 1037 } 1038 case Instruction::Select: { 1039 const Value *LHS, *RHS; 1040 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1041 if (SelectPatternResult::isMinOrMax(SPF)) { 1042 computeKnownBits(RHS, Known, Depth + 1, Q); 1043 computeKnownBits(LHS, Known2, Depth + 1, Q); 1044 } else { 1045 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1046 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1047 } 1048 1049 unsigned MaxHighOnes = 0; 1050 unsigned MaxHighZeros = 0; 1051 if (SPF == SPF_SMAX) { 1052 // If both sides are negative, the result is negative. 1053 if (Known.isNegative() && Known2.isNegative()) 1054 // We can derive a lower bound on the result by taking the max of the 1055 // leading one bits. 1056 MaxHighOnes = 1057 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1058 // If either side is non-negative, the result is non-negative. 1059 else if (Known.isNonNegative() || Known2.isNonNegative()) 1060 MaxHighZeros = 1; 1061 } else if (SPF == SPF_SMIN) { 1062 // If both sides are non-negative, the result is non-negative. 1063 if (Known.isNonNegative() && Known2.isNonNegative()) 1064 // We can derive an upper bound on the result by taking the max of the 1065 // leading zero bits. 1066 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1067 Known2.countMinLeadingZeros()); 1068 // If either side is negative, the result is negative. 1069 else if (Known.isNegative() || Known2.isNegative()) 1070 MaxHighOnes = 1; 1071 } else if (SPF == SPF_UMAX) { 1072 // We can derive a lower bound on the result by taking the max of the 1073 // leading one bits. 1074 MaxHighOnes = 1075 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1076 } else if (SPF == SPF_UMIN) { 1077 // We can derive an upper bound on the result by taking the max of the 1078 // leading zero bits. 1079 MaxHighZeros = 1080 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1081 } 1082 1083 // Only known if known in both the LHS and RHS. 1084 Known.One &= Known2.One; 1085 Known.Zero &= Known2.Zero; 1086 if (MaxHighOnes > 0) 1087 Known.One.setHighBits(MaxHighOnes); 1088 if (MaxHighZeros > 0) 1089 Known.Zero.setHighBits(MaxHighZeros); 1090 break; 1091 } 1092 case Instruction::FPTrunc: 1093 case Instruction::FPExt: 1094 case Instruction::FPToUI: 1095 case Instruction::FPToSI: 1096 case Instruction::SIToFP: 1097 case Instruction::UIToFP: 1098 break; // Can't work with floating point. 1099 case Instruction::PtrToInt: 1100 case Instruction::IntToPtr: 1101 // Fall through and handle them the same as zext/trunc. 1102 LLVM_FALLTHROUGH; 1103 case Instruction::ZExt: 1104 case Instruction::Trunc: { 1105 Type *SrcTy = I->getOperand(0)->getType(); 1106 1107 unsigned SrcBitWidth; 1108 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1109 // which fall through here. 1110 Type *ScalarTy = SrcTy->getScalarType(); 1111 SrcBitWidth = ScalarTy->isPointerTy() ? 1112 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1113 Q.DL.getTypeSizeInBits(ScalarTy); 1114 1115 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1116 Known = Known.zextOrTrunc(SrcBitWidth); 1117 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1118 Known = Known.zextOrTrunc(BitWidth); 1119 // Any top bits are known to be zero. 1120 if (BitWidth > SrcBitWidth) 1121 Known.Zero.setBitsFrom(SrcBitWidth); 1122 break; 1123 } 1124 case Instruction::BitCast: { 1125 Type *SrcTy = I->getOperand(0)->getType(); 1126 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1127 // TODO: For now, not handling conversions like: 1128 // (bitcast i64 %x to <2 x i32>) 1129 !I->getType()->isVectorTy()) { 1130 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1131 break; 1132 } 1133 break; 1134 } 1135 case Instruction::SExt: { 1136 // Compute the bits in the result that are not present in the input. 1137 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1138 1139 Known = Known.trunc(SrcBitWidth); 1140 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1141 // If the sign bit of the input is known set or clear, then we know the 1142 // top bits of the result. 1143 Known = Known.sext(BitWidth); 1144 break; 1145 } 1146 case Instruction::Shl: { 1147 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1148 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1149 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1150 APInt KZResult = KnownZero << ShiftAmt; 1151 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1152 // If this shift has "nsw" keyword, then the result is either a poison 1153 // value or has the same sign bit as the first operand. 1154 if (NSW && KnownZero.isSignBitSet()) 1155 KZResult.setSignBit(); 1156 return KZResult; 1157 }; 1158 1159 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1160 APInt KOResult = KnownOne << ShiftAmt; 1161 if (NSW && KnownOne.isSignBitSet()) 1162 KOResult.setSignBit(); 1163 return KOResult; 1164 }; 1165 1166 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1167 break; 1168 } 1169 case Instruction::LShr: { 1170 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1171 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1172 APInt KZResult = KnownZero.lshr(ShiftAmt); 1173 // High bits known zero. 1174 KZResult.setHighBits(ShiftAmt); 1175 return KZResult; 1176 }; 1177 1178 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1179 return KnownOne.lshr(ShiftAmt); 1180 }; 1181 1182 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1183 break; 1184 } 1185 case Instruction::AShr: { 1186 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1187 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1188 return KnownZero.ashr(ShiftAmt); 1189 }; 1190 1191 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1192 return KnownOne.ashr(ShiftAmt); 1193 }; 1194 1195 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1196 break; 1197 } 1198 case Instruction::Sub: { 1199 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1200 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1201 Known, Known2, Depth, Q); 1202 break; 1203 } 1204 case Instruction::Add: { 1205 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1206 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1207 Known, Known2, Depth, Q); 1208 break; 1209 } 1210 case Instruction::SRem: 1211 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1212 APInt RA = Rem->getValue().abs(); 1213 if (RA.isPowerOf2()) { 1214 APInt LowBits = RA - 1; 1215 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1216 1217 // The low bits of the first operand are unchanged by the srem. 1218 Known.Zero = Known2.Zero & LowBits; 1219 Known.One = Known2.One & LowBits; 1220 1221 // If the first operand is non-negative or has all low bits zero, then 1222 // the upper bits are all zero. 1223 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1224 Known.Zero |= ~LowBits; 1225 1226 // If the first operand is negative and not all low bits are zero, then 1227 // the upper bits are all one. 1228 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1229 Known.One |= ~LowBits; 1230 1231 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1232 break; 1233 } 1234 } 1235 1236 // The sign bit is the LHS's sign bit, except when the result of the 1237 // remainder is zero. 1238 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1239 // If it's known zero, our sign bit is also zero. 1240 if (Known2.isNonNegative()) 1241 Known.makeNonNegative(); 1242 1243 break; 1244 case Instruction::URem: { 1245 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1246 const APInt &RA = Rem->getValue(); 1247 if (RA.isPowerOf2()) { 1248 APInt LowBits = (RA - 1); 1249 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1250 Known.Zero |= ~LowBits; 1251 Known.One &= LowBits; 1252 break; 1253 } 1254 } 1255 1256 // Since the result is less than or equal to either operand, any leading 1257 // zero bits in either operand must also exist in the result. 1258 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1259 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1260 1261 unsigned Leaders = 1262 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1263 Known.resetAll(); 1264 Known.Zero.setHighBits(Leaders); 1265 break; 1266 } 1267 1268 case Instruction::Alloca: { 1269 const AllocaInst *AI = cast<AllocaInst>(I); 1270 unsigned Align = AI->getAlignment(); 1271 if (Align == 0) 1272 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1273 1274 if (Align > 0) 1275 Known.Zero.setLowBits(countTrailingZeros(Align)); 1276 break; 1277 } 1278 case Instruction::GetElementPtr: { 1279 // Analyze all of the subscripts of this getelementptr instruction 1280 // to determine if we can prove known low zero bits. 1281 KnownBits LocalKnown(BitWidth); 1282 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1283 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1284 1285 gep_type_iterator GTI = gep_type_begin(I); 1286 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1287 Value *Index = I->getOperand(i); 1288 if (StructType *STy = GTI.getStructTypeOrNull()) { 1289 // Handle struct member offset arithmetic. 1290 1291 // Handle case when index is vector zeroinitializer 1292 Constant *CIndex = cast<Constant>(Index); 1293 if (CIndex->isZeroValue()) 1294 continue; 1295 1296 if (CIndex->getType()->isVectorTy()) 1297 Index = CIndex->getSplatValue(); 1298 1299 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1300 const StructLayout *SL = Q.DL.getStructLayout(STy); 1301 uint64_t Offset = SL->getElementOffset(Idx); 1302 TrailZ = std::min<unsigned>(TrailZ, 1303 countTrailingZeros(Offset)); 1304 } else { 1305 // Handle array index arithmetic. 1306 Type *IndexedTy = GTI.getIndexedType(); 1307 if (!IndexedTy->isSized()) { 1308 TrailZ = 0; 1309 break; 1310 } 1311 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1312 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1313 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1314 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1315 TrailZ = std::min(TrailZ, 1316 unsigned(countTrailingZeros(TypeSize) + 1317 LocalKnown.countMinTrailingZeros())); 1318 } 1319 } 1320 1321 Known.Zero.setLowBits(TrailZ); 1322 break; 1323 } 1324 case Instruction::PHI: { 1325 const PHINode *P = cast<PHINode>(I); 1326 // Handle the case of a simple two-predecessor recurrence PHI. 1327 // There's a lot more that could theoretically be done here, but 1328 // this is sufficient to catch some interesting cases. 1329 if (P->getNumIncomingValues() == 2) { 1330 for (unsigned i = 0; i != 2; ++i) { 1331 Value *L = P->getIncomingValue(i); 1332 Value *R = P->getIncomingValue(!i); 1333 Operator *LU = dyn_cast<Operator>(L); 1334 if (!LU) 1335 continue; 1336 unsigned Opcode = LU->getOpcode(); 1337 // Check for operations that have the property that if 1338 // both their operands have low zero bits, the result 1339 // will have low zero bits. 1340 if (Opcode == Instruction::Add || 1341 Opcode == Instruction::Sub || 1342 Opcode == Instruction::And || 1343 Opcode == Instruction::Or || 1344 Opcode == Instruction::Mul) { 1345 Value *LL = LU->getOperand(0); 1346 Value *LR = LU->getOperand(1); 1347 // Find a recurrence. 1348 if (LL == I) 1349 L = LR; 1350 else if (LR == I) 1351 L = LL; 1352 else 1353 break; 1354 // Ok, we have a PHI of the form L op= R. Check for low 1355 // zero bits. 1356 computeKnownBits(R, Known2, Depth + 1, Q); 1357 1358 // We need to take the minimum number of known bits 1359 KnownBits Known3(Known); 1360 computeKnownBits(L, Known3, Depth + 1, Q); 1361 1362 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1363 Known3.countMinTrailingZeros())); 1364 1365 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1366 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1367 // If initial value of recurrence is nonnegative, and we are adding 1368 // a nonnegative number with nsw, the result can only be nonnegative 1369 // or poison value regardless of the number of times we execute the 1370 // add in phi recurrence. If initial value is negative and we are 1371 // adding a negative number with nsw, the result can only be 1372 // negative or poison value. Similar arguments apply to sub and mul. 1373 // 1374 // (add non-negative, non-negative) --> non-negative 1375 // (add negative, negative) --> negative 1376 if (Opcode == Instruction::Add) { 1377 if (Known2.isNonNegative() && Known3.isNonNegative()) 1378 Known.makeNonNegative(); 1379 else if (Known2.isNegative() && Known3.isNegative()) 1380 Known.makeNegative(); 1381 } 1382 1383 // (sub nsw non-negative, negative) --> non-negative 1384 // (sub nsw negative, non-negative) --> negative 1385 else if (Opcode == Instruction::Sub && LL == I) { 1386 if (Known2.isNonNegative() && Known3.isNegative()) 1387 Known.makeNonNegative(); 1388 else if (Known2.isNegative() && Known3.isNonNegative()) 1389 Known.makeNegative(); 1390 } 1391 1392 // (mul nsw non-negative, non-negative) --> non-negative 1393 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1394 Known3.isNonNegative()) 1395 Known.makeNonNegative(); 1396 } 1397 1398 break; 1399 } 1400 } 1401 } 1402 1403 // Unreachable blocks may have zero-operand PHI nodes. 1404 if (P->getNumIncomingValues() == 0) 1405 break; 1406 1407 // Otherwise take the unions of the known bit sets of the operands, 1408 // taking conservative care to avoid excessive recursion. 1409 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1410 // Skip if every incoming value references to ourself. 1411 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1412 break; 1413 1414 Known.Zero.setAllBits(); 1415 Known.One.setAllBits(); 1416 for (Value *IncValue : P->incoming_values()) { 1417 // Skip direct self references. 1418 if (IncValue == P) continue; 1419 1420 Known2 = KnownBits(BitWidth); 1421 // Recurse, but cap the recursion to one level, because we don't 1422 // want to waste time spinning around in loops. 1423 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1424 Known.Zero &= Known2.Zero; 1425 Known.One &= Known2.One; 1426 // If all bits have been ruled out, there's no need to check 1427 // more operands. 1428 if (!Known.Zero && !Known.One) 1429 break; 1430 } 1431 } 1432 break; 1433 } 1434 case Instruction::Call: 1435 case Instruction::Invoke: 1436 // If range metadata is attached to this call, set known bits from that, 1437 // and then intersect with known bits based on other properties of the 1438 // function. 1439 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1440 computeKnownBitsFromRangeMetadata(*MD, Known); 1441 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1442 computeKnownBits(RV, Known2, Depth + 1, Q); 1443 Known.Zero |= Known2.Zero; 1444 Known.One |= Known2.One; 1445 } 1446 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1447 switch (II->getIntrinsicID()) { 1448 default: break; 1449 case Intrinsic::bitreverse: 1450 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1451 Known.Zero |= Known2.Zero.reverseBits(); 1452 Known.One |= Known2.One.reverseBits(); 1453 break; 1454 case Intrinsic::bswap: 1455 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1456 Known.Zero |= Known2.Zero.byteSwap(); 1457 Known.One |= Known2.One.byteSwap(); 1458 break; 1459 case Intrinsic::ctlz: { 1460 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1461 // If we have a known 1, its position is our upper bound. 1462 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1463 // If this call is undefined for 0, the result will be less than 2^n. 1464 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1465 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1466 unsigned LowBits = Log2_32(PossibleLZ)+1; 1467 Known.Zero.setBitsFrom(LowBits); 1468 break; 1469 } 1470 case Intrinsic::cttz: { 1471 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1472 // If we have a known 1, its position is our upper bound. 1473 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1474 // If this call is undefined for 0, the result will be less than 2^n. 1475 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1476 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1477 unsigned LowBits = Log2_32(PossibleTZ)+1; 1478 Known.Zero.setBitsFrom(LowBits); 1479 break; 1480 } 1481 case Intrinsic::ctpop: { 1482 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1483 // We can bound the space the count needs. Also, bits known to be zero 1484 // can't contribute to the population. 1485 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1486 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1487 Known.Zero.setBitsFrom(LowBits); 1488 // TODO: we could bound KnownOne using the lower bound on the number 1489 // of bits which might be set provided by popcnt KnownOne2. 1490 break; 1491 } 1492 case Intrinsic::x86_sse42_crc32_64_64: 1493 Known.Zero.setBitsFrom(32); 1494 break; 1495 } 1496 } 1497 break; 1498 case Instruction::ExtractElement: 1499 // Look through extract element. At the moment we keep this simple and skip 1500 // tracking the specific element. But at least we might find information 1501 // valid for all elements of the vector (for example if vector is sign 1502 // extended, shifted, etc). 1503 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1504 break; 1505 case Instruction::ExtractValue: 1506 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1507 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1508 if (EVI->getNumIndices() != 1) break; 1509 if (EVI->getIndices()[0] == 0) { 1510 switch (II->getIntrinsicID()) { 1511 default: break; 1512 case Intrinsic::uadd_with_overflow: 1513 case Intrinsic::sadd_with_overflow: 1514 computeKnownBitsAddSub(true, II->getArgOperand(0), 1515 II->getArgOperand(1), false, Known, Known2, 1516 Depth, Q); 1517 break; 1518 case Intrinsic::usub_with_overflow: 1519 case Intrinsic::ssub_with_overflow: 1520 computeKnownBitsAddSub(false, II->getArgOperand(0), 1521 II->getArgOperand(1), false, Known, Known2, 1522 Depth, Q); 1523 break; 1524 case Intrinsic::umul_with_overflow: 1525 case Intrinsic::smul_with_overflow: 1526 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1527 Known, Known2, Depth, Q); 1528 break; 1529 } 1530 } 1531 } 1532 } 1533 } 1534 1535 /// Determine which bits of V are known to be either zero or one and return 1536 /// them. 1537 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1538 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1539 computeKnownBits(V, Known, Depth, Q); 1540 return Known; 1541 } 1542 1543 /// Determine which bits of V are known to be either zero or one and return 1544 /// them in the Known bit set. 1545 /// 1546 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1547 /// we cannot optimize based on the assumption that it is zero without changing 1548 /// it to be an explicit zero. If we don't change it to zero, other code could 1549 /// optimized based on the contradictory assumption that it is non-zero. 1550 /// Because instcombine aggressively folds operations with undef args anyway, 1551 /// this won't lose us code quality. 1552 /// 1553 /// This function is defined on values with integer type, values with pointer 1554 /// type, and vectors of integers. In the case 1555 /// where V is a vector, known zero, and known one values are the 1556 /// same width as the vector element, and the bit is set only if it is true 1557 /// for all of the elements in the vector. 1558 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1559 const Query &Q) { 1560 assert(V && "No Value?"); 1561 assert(Depth <= MaxDepth && "Limit Search Depth"); 1562 unsigned BitWidth = Known.getBitWidth(); 1563 1564 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1565 V->getType()->isPtrOrPtrVectorTy()) && 1566 "Not integer or pointer type!"); 1567 1568 Type *ScalarTy = V->getType()->getScalarType(); 1569 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1570 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1571 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1572 (void)BitWidth; 1573 (void)ExpectedWidth; 1574 1575 const APInt *C; 1576 if (match(V, m_APInt(C))) { 1577 // We know all of the bits for a scalar constant or a splat vector constant! 1578 Known.One = *C; 1579 Known.Zero = ~Known.One; 1580 return; 1581 } 1582 // Null and aggregate-zero are all-zeros. 1583 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1584 Known.setAllZero(); 1585 return; 1586 } 1587 // Handle a constant vector by taking the intersection of the known bits of 1588 // each element. 1589 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1590 // We know that CDS must be a vector of integers. Take the intersection of 1591 // each element. 1592 Known.Zero.setAllBits(); Known.One.setAllBits(); 1593 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1594 APInt Elt = CDS->getElementAsAPInt(i); 1595 Known.Zero &= ~Elt; 1596 Known.One &= Elt; 1597 } 1598 return; 1599 } 1600 1601 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1602 // We know that CV must be a vector of integers. Take the intersection of 1603 // each element. 1604 Known.Zero.setAllBits(); Known.One.setAllBits(); 1605 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1606 Constant *Element = CV->getAggregateElement(i); 1607 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1608 if (!ElementCI) { 1609 Known.resetAll(); 1610 return; 1611 } 1612 const APInt &Elt = ElementCI->getValue(); 1613 Known.Zero &= ~Elt; 1614 Known.One &= Elt; 1615 } 1616 return; 1617 } 1618 1619 // Start out not knowing anything. 1620 Known.resetAll(); 1621 1622 // We can't imply anything about undefs. 1623 if (isa<UndefValue>(V)) 1624 return; 1625 1626 // There's no point in looking through other users of ConstantData for 1627 // assumptions. Confirm that we've handled them all. 1628 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1629 1630 // Limit search depth. 1631 // All recursive calls that increase depth must come after this. 1632 if (Depth == MaxDepth) 1633 return; 1634 1635 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1636 // the bits of its aliasee. 1637 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1638 if (!GA->isInterposable()) 1639 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1640 return; 1641 } 1642 1643 if (const Operator *I = dyn_cast<Operator>(V)) 1644 computeKnownBitsFromOperator(I, Known, Depth, Q); 1645 1646 // Aligned pointers have trailing zeros - refine Known.Zero set 1647 if (V->getType()->isPointerTy()) { 1648 unsigned Align = V->getPointerAlignment(Q.DL); 1649 if (Align) 1650 Known.Zero.setLowBits(countTrailingZeros(Align)); 1651 } 1652 1653 // computeKnownBitsFromAssume strictly refines Known. 1654 // Therefore, we run them after computeKnownBitsFromOperator. 1655 1656 // Check whether a nearby assume intrinsic can determine some known bits. 1657 computeKnownBitsFromAssume(V, Known, Depth, Q); 1658 1659 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1660 } 1661 1662 /// Return true if the given value is known to have exactly one 1663 /// bit set when defined. For vectors return true if every element is known to 1664 /// be a power of two when defined. Supports values with integer or pointer 1665 /// types and vectors of integers. 1666 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1667 const Query &Q) { 1668 assert(Depth <= MaxDepth && "Limit Search Depth"); 1669 1670 // Attempt to match against constants. 1671 if (OrZero && match(V, m_Power2OrZero())) 1672 return true; 1673 if (match(V, m_Power2())) 1674 return true; 1675 1676 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1677 // it is shifted off the end then the result is undefined. 1678 if (match(V, m_Shl(m_One(), m_Value()))) 1679 return true; 1680 1681 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1682 // the bottom. If it is shifted off the bottom then the result is undefined. 1683 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1684 return true; 1685 1686 // The remaining tests are all recursive, so bail out if we hit the limit. 1687 if (Depth++ == MaxDepth) 1688 return false; 1689 1690 Value *X = nullptr, *Y = nullptr; 1691 // A shift left or a logical shift right of a power of two is a power of two 1692 // or zero. 1693 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1694 match(V, m_LShr(m_Value(X), m_Value())))) 1695 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1696 1697 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1698 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1699 1700 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1701 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1702 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1703 1704 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1705 // A power of two and'd with anything is a power of two or zero. 1706 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1707 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1708 return true; 1709 // X & (-X) is always a power of two or zero. 1710 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1711 return true; 1712 return false; 1713 } 1714 1715 // Adding a power-of-two or zero to the same power-of-two or zero yields 1716 // either the original power-of-two, a larger power-of-two or zero. 1717 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1718 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1719 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1720 if (match(X, m_And(m_Specific(Y), m_Value())) || 1721 match(X, m_And(m_Value(), m_Specific(Y)))) 1722 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1723 return true; 1724 if (match(Y, m_And(m_Specific(X), m_Value())) || 1725 match(Y, m_And(m_Value(), m_Specific(X)))) 1726 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1727 return true; 1728 1729 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1730 KnownBits LHSBits(BitWidth); 1731 computeKnownBits(X, LHSBits, Depth, Q); 1732 1733 KnownBits RHSBits(BitWidth); 1734 computeKnownBits(Y, RHSBits, Depth, Q); 1735 // If i8 V is a power of two or zero: 1736 // ZeroBits: 1 1 1 0 1 1 1 1 1737 // ~ZeroBits: 0 0 0 1 0 0 0 0 1738 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1739 // If OrZero isn't set, we cannot give back a zero result. 1740 // Make sure either the LHS or RHS has a bit set. 1741 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1742 return true; 1743 } 1744 } 1745 1746 // An exact divide or right shift can only shift off zero bits, so the result 1747 // is a power of two only if the first operand is a power of two and not 1748 // copying a sign bit (sdiv int_min, 2). 1749 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1750 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1751 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1752 Depth, Q); 1753 } 1754 1755 return false; 1756 } 1757 1758 /// Test whether a GEP's result is known to be non-null. 1759 /// 1760 /// Uses properties inherent in a GEP to try to determine whether it is known 1761 /// to be non-null. 1762 /// 1763 /// Currently this routine does not support vector GEPs. 1764 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1765 const Query &Q) { 1766 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1767 return false; 1768 1769 // FIXME: Support vector-GEPs. 1770 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1771 1772 // If the base pointer is non-null, we cannot walk to a null address with an 1773 // inbounds GEP in address space zero. 1774 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1775 return true; 1776 1777 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1778 // If so, then the GEP cannot produce a null pointer, as doing so would 1779 // inherently violate the inbounds contract within address space zero. 1780 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1781 GTI != GTE; ++GTI) { 1782 // Struct types are easy -- they must always be indexed by a constant. 1783 if (StructType *STy = GTI.getStructTypeOrNull()) { 1784 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1785 unsigned ElementIdx = OpC->getZExtValue(); 1786 const StructLayout *SL = Q.DL.getStructLayout(STy); 1787 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1788 if (ElementOffset > 0) 1789 return true; 1790 continue; 1791 } 1792 1793 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1794 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1795 continue; 1796 1797 // Fast path the constant operand case both for efficiency and so we don't 1798 // increment Depth when just zipping down an all-constant GEP. 1799 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1800 if (!OpC->isZero()) 1801 return true; 1802 continue; 1803 } 1804 1805 // We post-increment Depth here because while isKnownNonZero increments it 1806 // as well, when we pop back up that increment won't persist. We don't want 1807 // to recurse 10k times just because we have 10k GEP operands. We don't 1808 // bail completely out because we want to handle constant GEPs regardless 1809 // of depth. 1810 if (Depth++ >= MaxDepth) 1811 continue; 1812 1813 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1814 return true; 1815 } 1816 1817 return false; 1818 } 1819 1820 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1821 const Instruction *CtxI, 1822 const DominatorTree *DT) { 1823 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1824 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1825 1826 if (!CtxI || !DT) 1827 return false; 1828 1829 unsigned NumUsesExplored = 0; 1830 for (auto *U : V->users()) { 1831 // Avoid massive lists 1832 if (NumUsesExplored >= DomConditionsMaxUses) 1833 break; 1834 NumUsesExplored++; 1835 1836 // If the value is used as an argument to a call or invoke, then argument 1837 // attributes may provide an answer about null-ness. 1838 if (auto CS = ImmutableCallSite(U)) 1839 if (auto *CalledFunc = CS.getCalledFunction()) 1840 for (const Argument &Arg : CalledFunc->args()) 1841 if (CS.getArgOperand(Arg.getArgNo()) == V && 1842 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1843 return true; 1844 1845 // Consider only compare instructions uniquely controlling a branch 1846 CmpInst::Predicate Pred; 1847 if (!match(const_cast<User *>(U), 1848 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1849 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1850 continue; 1851 1852 for (auto *CmpU : U->users()) { 1853 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 1854 assert(BI->isConditional() && "uses a comparison!"); 1855 1856 BasicBlock *NonNullSuccessor = 1857 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1858 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1859 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1860 return true; 1861 } else if (Pred == ICmpInst::ICMP_NE && 1862 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 1863 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 1864 return true; 1865 } 1866 } 1867 } 1868 1869 return false; 1870 } 1871 1872 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1873 /// ensure that the value it's attached to is never Value? 'RangeType' is 1874 /// is the type of the value described by the range. 1875 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1876 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1877 assert(NumRanges >= 1); 1878 for (unsigned i = 0; i < NumRanges; ++i) { 1879 ConstantInt *Lower = 1880 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1881 ConstantInt *Upper = 1882 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1883 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1884 if (Range.contains(Value)) 1885 return false; 1886 } 1887 return true; 1888 } 1889 1890 /// Return true if the given value is known to be non-zero when defined. For 1891 /// vectors, return true if every element is known to be non-zero when 1892 /// defined. For pointers, if the context instruction and dominator tree are 1893 /// specified, perform context-sensitive analysis and return true if the 1894 /// pointer couldn't possibly be null at the specified instruction. 1895 /// Supports values with integer or pointer type and vectors of integers. 1896 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1897 if (auto *C = dyn_cast<Constant>(V)) { 1898 if (C->isNullValue()) 1899 return false; 1900 if (isa<ConstantInt>(C)) 1901 // Must be non-zero due to null test above. 1902 return true; 1903 1904 // For constant vectors, check that all elements are undefined or known 1905 // non-zero to determine that the whole vector is known non-zero. 1906 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1907 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1908 Constant *Elt = C->getAggregateElement(i); 1909 if (!Elt || Elt->isNullValue()) 1910 return false; 1911 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1912 return false; 1913 } 1914 return true; 1915 } 1916 1917 // A global variable in address space 0 is non null unless extern weak 1918 // or an absolute symbol reference. Other address spaces may have null as a 1919 // valid address for a global, so we can't assume anything. 1920 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1921 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1922 GV->getType()->getAddressSpace() == 0) 1923 return true; 1924 } else 1925 return false; 1926 } 1927 1928 if (auto *I = dyn_cast<Instruction>(V)) { 1929 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1930 // If the possible ranges don't contain zero, then the value is 1931 // definitely non-zero. 1932 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1933 const APInt ZeroValue(Ty->getBitWidth(), 0); 1934 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1935 return true; 1936 } 1937 } 1938 } 1939 1940 // Check for pointer simplifications. 1941 if (V->getType()->isPointerTy()) { 1942 // Alloca never returns null, malloc might. 1943 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1944 return true; 1945 1946 // A byval, inalloca, or nonnull argument is never null. 1947 if (const Argument *A = dyn_cast<Argument>(V)) 1948 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1949 return true; 1950 1951 // A Load tagged with nonnull metadata is never null. 1952 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1953 if (LI->getMetadata(LLVMContext::MD_nonnull)) 1954 return true; 1955 1956 if (auto CS = ImmutableCallSite(V)) { 1957 if (CS.isReturnNonNull()) 1958 return true; 1959 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS)) 1960 return isKnownNonZero(RP, Depth + 1, Q); 1961 } 1962 } 1963 1964 // The remaining tests are all recursive, so bail out if we hit the limit. 1965 if (Depth++ >= MaxDepth) 1966 return false; 1967 1968 // Check for recursive pointer simplifications. 1969 if (V->getType()->isPointerTy()) { 1970 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 1971 return true; 1972 1973 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1974 if (isGEPKnownNonNull(GEP, Depth, Q)) 1975 return true; 1976 } 1977 1978 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1979 1980 // X | Y != 0 if X != 0 or Y != 0. 1981 Value *X = nullptr, *Y = nullptr; 1982 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1983 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1984 1985 // ext X != 0 if X != 0. 1986 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1987 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1988 1989 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1990 // if the lowest bit is shifted off the end. 1991 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1992 // shl nuw can't remove any non-zero bits. 1993 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1994 if (BO->hasNoUnsignedWrap()) 1995 return isKnownNonZero(X, Depth, Q); 1996 1997 KnownBits Known(BitWidth); 1998 computeKnownBits(X, Known, Depth, Q); 1999 if (Known.One[0]) 2000 return true; 2001 } 2002 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2003 // defined if the sign bit is shifted off the end. 2004 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2005 // shr exact can only shift out zero bits. 2006 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2007 if (BO->isExact()) 2008 return isKnownNonZero(X, Depth, Q); 2009 2010 KnownBits Known = computeKnownBits(X, Depth, Q); 2011 if (Known.isNegative()) 2012 return true; 2013 2014 // If the shifter operand is a constant, and all of the bits shifted 2015 // out are known to be zero, and X is known non-zero then at least one 2016 // non-zero bit must remain. 2017 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2018 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2019 // Is there a known one in the portion not shifted out? 2020 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2021 return true; 2022 // Are all the bits to be shifted out known zero? 2023 if (Known.countMinTrailingZeros() >= ShiftVal) 2024 return isKnownNonZero(X, Depth, Q); 2025 } 2026 } 2027 // div exact can only produce a zero if the dividend is zero. 2028 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2029 return isKnownNonZero(X, Depth, Q); 2030 } 2031 // X + Y. 2032 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2033 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2034 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2035 2036 // If X and Y are both non-negative (as signed values) then their sum is not 2037 // zero unless both X and Y are zero. 2038 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2039 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2040 return true; 2041 2042 // If X and Y are both negative (as signed values) then their sum is not 2043 // zero unless both X and Y equal INT_MIN. 2044 if (XKnown.isNegative() && YKnown.isNegative()) { 2045 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2046 // The sign bit of X is set. If some other bit is set then X is not equal 2047 // to INT_MIN. 2048 if (XKnown.One.intersects(Mask)) 2049 return true; 2050 // The sign bit of Y is set. If some other bit is set then Y is not equal 2051 // to INT_MIN. 2052 if (YKnown.One.intersects(Mask)) 2053 return true; 2054 } 2055 2056 // The sum of a non-negative number and a power of two is not zero. 2057 if (XKnown.isNonNegative() && 2058 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2059 return true; 2060 if (YKnown.isNonNegative() && 2061 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2062 return true; 2063 } 2064 // X * Y. 2065 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2066 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2067 // If X and Y are non-zero then so is X * Y as long as the multiplication 2068 // does not overflow. 2069 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2070 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2071 return true; 2072 } 2073 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2074 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2075 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2076 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2077 return true; 2078 } 2079 // PHI 2080 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2081 // Try and detect a recurrence that monotonically increases from a 2082 // starting value, as these are common as induction variables. 2083 if (PN->getNumIncomingValues() == 2) { 2084 Value *Start = PN->getIncomingValue(0); 2085 Value *Induction = PN->getIncomingValue(1); 2086 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2087 std::swap(Start, Induction); 2088 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2089 if (!C->isZero() && !C->isNegative()) { 2090 ConstantInt *X; 2091 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2092 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2093 !X->isNegative()) 2094 return true; 2095 } 2096 } 2097 } 2098 // Check if all incoming values are non-zero constant. 2099 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2100 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2101 }); 2102 if (AllNonZeroConstants) 2103 return true; 2104 } 2105 2106 KnownBits Known(BitWidth); 2107 computeKnownBits(V, Known, Depth, Q); 2108 return Known.One != 0; 2109 } 2110 2111 /// Return true if V2 == V1 + X, where X is known non-zero. 2112 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2113 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2114 if (!BO || BO->getOpcode() != Instruction::Add) 2115 return false; 2116 Value *Op = nullptr; 2117 if (V2 == BO->getOperand(0)) 2118 Op = BO->getOperand(1); 2119 else if (V2 == BO->getOperand(1)) 2120 Op = BO->getOperand(0); 2121 else 2122 return false; 2123 return isKnownNonZero(Op, 0, Q); 2124 } 2125 2126 /// Return true if it is known that V1 != V2. 2127 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2128 if (V1 == V2) 2129 return false; 2130 if (V1->getType() != V2->getType()) 2131 // We can't look through casts yet. 2132 return false; 2133 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2134 return true; 2135 2136 if (V1->getType()->isIntOrIntVectorTy()) { 2137 // Are any known bits in V1 contradictory to known bits in V2? If V1 2138 // has a known zero where V2 has a known one, they must not be equal. 2139 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2140 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2141 2142 if (Known1.Zero.intersects(Known2.One) || 2143 Known2.Zero.intersects(Known1.One)) 2144 return true; 2145 } 2146 return false; 2147 } 2148 2149 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2150 /// simplify operations downstream. Mask is known to be zero for bits that V 2151 /// cannot have. 2152 /// 2153 /// This function is defined on values with integer type, values with pointer 2154 /// type, and vectors of integers. In the case 2155 /// where V is a vector, the mask, known zero, and known one values are the 2156 /// same width as the vector element, and the bit is set only if it is true 2157 /// for all of the elements in the vector. 2158 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2159 const Query &Q) { 2160 KnownBits Known(Mask.getBitWidth()); 2161 computeKnownBits(V, Known, Depth, Q); 2162 return Mask.isSubsetOf(Known.Zero); 2163 } 2164 2165 /// For vector constants, loop over the elements and find the constant with the 2166 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2167 /// or if any element was not analyzed; otherwise, return the count for the 2168 /// element with the minimum number of sign bits. 2169 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2170 unsigned TyBits) { 2171 const auto *CV = dyn_cast<Constant>(V); 2172 if (!CV || !CV->getType()->isVectorTy()) 2173 return 0; 2174 2175 unsigned MinSignBits = TyBits; 2176 unsigned NumElts = CV->getType()->getVectorNumElements(); 2177 for (unsigned i = 0; i != NumElts; ++i) { 2178 // If we find a non-ConstantInt, bail out. 2179 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2180 if (!Elt) 2181 return 0; 2182 2183 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2184 } 2185 2186 return MinSignBits; 2187 } 2188 2189 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2190 const Query &Q); 2191 2192 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2193 const Query &Q) { 2194 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2195 assert(Result > 0 && "At least one sign bit needs to be present!"); 2196 return Result; 2197 } 2198 2199 /// Return the number of times the sign bit of the register is replicated into 2200 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2201 /// (itself), but other cases can give us information. For example, immediately 2202 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2203 /// other, so we return 3. For vectors, return the number of sign bits for the 2204 /// vector element with the minimum number of known sign bits. 2205 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2206 const Query &Q) { 2207 assert(Depth <= MaxDepth && "Limit Search Depth"); 2208 2209 // We return the minimum number of sign bits that are guaranteed to be present 2210 // in V, so for undef we have to conservatively return 1. We don't have the 2211 // same behavior for poison though -- that's a FIXME today. 2212 2213 Type *ScalarTy = V->getType()->getScalarType(); 2214 unsigned TyBits = ScalarTy->isPointerTy() ? 2215 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2216 Q.DL.getTypeSizeInBits(ScalarTy); 2217 2218 unsigned Tmp, Tmp2; 2219 unsigned FirstAnswer = 1; 2220 2221 // Note that ConstantInt is handled by the general computeKnownBits case 2222 // below. 2223 2224 if (Depth == MaxDepth) 2225 return 1; // Limit search depth. 2226 2227 const Operator *U = dyn_cast<Operator>(V); 2228 switch (Operator::getOpcode(V)) { 2229 default: break; 2230 case Instruction::SExt: 2231 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2232 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2233 2234 case Instruction::SDiv: { 2235 const APInt *Denominator; 2236 // sdiv X, C -> adds log(C) sign bits. 2237 if (match(U->getOperand(1), m_APInt(Denominator))) { 2238 2239 // Ignore non-positive denominator. 2240 if (!Denominator->isStrictlyPositive()) 2241 break; 2242 2243 // Calculate the incoming numerator bits. 2244 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2245 2246 // Add floor(log(C)) bits to the numerator bits. 2247 return std::min(TyBits, NumBits + Denominator->logBase2()); 2248 } 2249 break; 2250 } 2251 2252 case Instruction::SRem: { 2253 const APInt *Denominator; 2254 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2255 // positive constant. This let us put a lower bound on the number of sign 2256 // bits. 2257 if (match(U->getOperand(1), m_APInt(Denominator))) { 2258 2259 // Ignore non-positive denominator. 2260 if (!Denominator->isStrictlyPositive()) 2261 break; 2262 2263 // Calculate the incoming numerator bits. SRem by a positive constant 2264 // can't lower the number of sign bits. 2265 unsigned NumrBits = 2266 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2267 2268 // Calculate the leading sign bit constraints by examining the 2269 // denominator. Given that the denominator is positive, there are two 2270 // cases: 2271 // 2272 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2273 // (1 << ceilLogBase2(C)). 2274 // 2275 // 2. the numerator is negative. Then the result range is (-C,0] and 2276 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2277 // 2278 // Thus a lower bound on the number of sign bits is `TyBits - 2279 // ceilLogBase2(C)`. 2280 2281 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2282 return std::max(NumrBits, ResBits); 2283 } 2284 break; 2285 } 2286 2287 case Instruction::AShr: { 2288 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2289 // ashr X, C -> adds C sign bits. Vectors too. 2290 const APInt *ShAmt; 2291 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2292 if (ShAmt->uge(TyBits)) 2293 break; // Bad shift. 2294 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2295 Tmp += ShAmtLimited; 2296 if (Tmp > TyBits) Tmp = TyBits; 2297 } 2298 return Tmp; 2299 } 2300 case Instruction::Shl: { 2301 const APInt *ShAmt; 2302 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2303 // shl destroys sign bits. 2304 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2305 if (ShAmt->uge(TyBits) || // Bad shift. 2306 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2307 Tmp2 = ShAmt->getZExtValue(); 2308 return Tmp - Tmp2; 2309 } 2310 break; 2311 } 2312 case Instruction::And: 2313 case Instruction::Or: 2314 case Instruction::Xor: // NOT is handled here. 2315 // Logical binary ops preserve the number of sign bits at the worst. 2316 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2317 if (Tmp != 1) { 2318 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2319 FirstAnswer = std::min(Tmp, Tmp2); 2320 // We computed what we know about the sign bits as our first 2321 // answer. Now proceed to the generic code that uses 2322 // computeKnownBits, and pick whichever answer is better. 2323 } 2324 break; 2325 2326 case Instruction::Select: 2327 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2328 if (Tmp == 1) return 1; // Early out. 2329 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2330 return std::min(Tmp, Tmp2); 2331 2332 case Instruction::Add: 2333 // Add can have at most one carry bit. Thus we know that the output 2334 // is, at worst, one more bit than the inputs. 2335 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2336 if (Tmp == 1) return 1; // Early out. 2337 2338 // Special case decrementing a value (ADD X, -1): 2339 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2340 if (CRHS->isAllOnesValue()) { 2341 KnownBits Known(TyBits); 2342 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2343 2344 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2345 // sign bits set. 2346 if ((Known.Zero | 1).isAllOnesValue()) 2347 return TyBits; 2348 2349 // If we are subtracting one from a positive number, there is no carry 2350 // out of the result. 2351 if (Known.isNonNegative()) 2352 return Tmp; 2353 } 2354 2355 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2356 if (Tmp2 == 1) return 1; 2357 return std::min(Tmp, Tmp2)-1; 2358 2359 case Instruction::Sub: 2360 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2361 if (Tmp2 == 1) return 1; 2362 2363 // Handle NEG. 2364 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2365 if (CLHS->isNullValue()) { 2366 KnownBits Known(TyBits); 2367 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2368 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2369 // sign bits set. 2370 if ((Known.Zero | 1).isAllOnesValue()) 2371 return TyBits; 2372 2373 // If the input is known to be positive (the sign bit is known clear), 2374 // the output of the NEG has the same number of sign bits as the input. 2375 if (Known.isNonNegative()) 2376 return Tmp2; 2377 2378 // Otherwise, we treat this like a SUB. 2379 } 2380 2381 // Sub can have at most one carry bit. Thus we know that the output 2382 // is, at worst, one more bit than the inputs. 2383 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2384 if (Tmp == 1) return 1; // Early out. 2385 return std::min(Tmp, Tmp2)-1; 2386 2387 case Instruction::Mul: { 2388 // The output of the Mul can be at most twice the valid bits in the inputs. 2389 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2390 if (SignBitsOp0 == 1) return 1; // Early out. 2391 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2392 if (SignBitsOp1 == 1) return 1; 2393 unsigned OutValidBits = 2394 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2395 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2396 } 2397 2398 case Instruction::PHI: { 2399 const PHINode *PN = cast<PHINode>(U); 2400 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2401 // Don't analyze large in-degree PHIs. 2402 if (NumIncomingValues > 4) break; 2403 // Unreachable blocks may have zero-operand PHI nodes. 2404 if (NumIncomingValues == 0) break; 2405 2406 // Take the minimum of all incoming values. This can't infinitely loop 2407 // because of our depth threshold. 2408 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2409 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2410 if (Tmp == 1) return Tmp; 2411 Tmp = std::min( 2412 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2413 } 2414 return Tmp; 2415 } 2416 2417 case Instruction::Trunc: 2418 // FIXME: it's tricky to do anything useful for this, but it is an important 2419 // case for targets like X86. 2420 break; 2421 2422 case Instruction::ExtractElement: 2423 // Look through extract element. At the moment we keep this simple and skip 2424 // tracking the specific element. But at least we might find information 2425 // valid for all elements of the vector (for example if vector is sign 2426 // extended, shifted, etc). 2427 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2428 } 2429 2430 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2431 // use this information. 2432 2433 // If we can examine all elements of a vector constant successfully, we're 2434 // done (we can't do any better than that). If not, keep trying. 2435 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2436 return VecSignBits; 2437 2438 KnownBits Known(TyBits); 2439 computeKnownBits(V, Known, Depth, Q); 2440 2441 // If we know that the sign bit is either zero or one, determine the number of 2442 // identical bits in the top of the input value. 2443 return std::max(FirstAnswer, Known.countMinSignBits()); 2444 } 2445 2446 /// This function computes the integer multiple of Base that equals V. 2447 /// If successful, it returns true and returns the multiple in 2448 /// Multiple. If unsuccessful, it returns false. It looks 2449 /// through SExt instructions only if LookThroughSExt is true. 2450 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2451 bool LookThroughSExt, unsigned Depth) { 2452 const unsigned MaxDepth = 6; 2453 2454 assert(V && "No Value?"); 2455 assert(Depth <= MaxDepth && "Limit Search Depth"); 2456 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2457 2458 Type *T = V->getType(); 2459 2460 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2461 2462 if (Base == 0) 2463 return false; 2464 2465 if (Base == 1) { 2466 Multiple = V; 2467 return true; 2468 } 2469 2470 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2471 Constant *BaseVal = ConstantInt::get(T, Base); 2472 if (CO && CO == BaseVal) { 2473 // Multiple is 1. 2474 Multiple = ConstantInt::get(T, 1); 2475 return true; 2476 } 2477 2478 if (CI && CI->getZExtValue() % Base == 0) { 2479 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2480 return true; 2481 } 2482 2483 if (Depth == MaxDepth) return false; // Limit search depth. 2484 2485 Operator *I = dyn_cast<Operator>(V); 2486 if (!I) return false; 2487 2488 switch (I->getOpcode()) { 2489 default: break; 2490 case Instruction::SExt: 2491 if (!LookThroughSExt) return false; 2492 // otherwise fall through to ZExt 2493 LLVM_FALLTHROUGH; 2494 case Instruction::ZExt: 2495 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2496 LookThroughSExt, Depth+1); 2497 case Instruction::Shl: 2498 case Instruction::Mul: { 2499 Value *Op0 = I->getOperand(0); 2500 Value *Op1 = I->getOperand(1); 2501 2502 if (I->getOpcode() == Instruction::Shl) { 2503 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2504 if (!Op1CI) return false; 2505 // Turn Op0 << Op1 into Op0 * 2^Op1 2506 APInt Op1Int = Op1CI->getValue(); 2507 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2508 APInt API(Op1Int.getBitWidth(), 0); 2509 API.setBit(BitToSet); 2510 Op1 = ConstantInt::get(V->getContext(), API); 2511 } 2512 2513 Value *Mul0 = nullptr; 2514 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2515 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2516 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2517 if (Op1C->getType()->getPrimitiveSizeInBits() < 2518 MulC->getType()->getPrimitiveSizeInBits()) 2519 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2520 if (Op1C->getType()->getPrimitiveSizeInBits() > 2521 MulC->getType()->getPrimitiveSizeInBits()) 2522 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2523 2524 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2525 Multiple = ConstantExpr::getMul(MulC, Op1C); 2526 return true; 2527 } 2528 2529 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2530 if (Mul0CI->getValue() == 1) { 2531 // V == Base * Op1, so return Op1 2532 Multiple = Op1; 2533 return true; 2534 } 2535 } 2536 2537 Value *Mul1 = nullptr; 2538 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2539 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2540 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2541 if (Op0C->getType()->getPrimitiveSizeInBits() < 2542 MulC->getType()->getPrimitiveSizeInBits()) 2543 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2544 if (Op0C->getType()->getPrimitiveSizeInBits() > 2545 MulC->getType()->getPrimitiveSizeInBits()) 2546 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2547 2548 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2549 Multiple = ConstantExpr::getMul(MulC, Op0C); 2550 return true; 2551 } 2552 2553 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2554 if (Mul1CI->getValue() == 1) { 2555 // V == Base * Op0, so return Op0 2556 Multiple = Op0; 2557 return true; 2558 } 2559 } 2560 } 2561 } 2562 2563 // We could not determine if V is a multiple of Base. 2564 return false; 2565 } 2566 2567 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2568 const TargetLibraryInfo *TLI) { 2569 const Function *F = ICS.getCalledFunction(); 2570 if (!F) 2571 return Intrinsic::not_intrinsic; 2572 2573 if (F->isIntrinsic()) 2574 return F->getIntrinsicID(); 2575 2576 if (!TLI) 2577 return Intrinsic::not_intrinsic; 2578 2579 LibFunc Func; 2580 // We're going to make assumptions on the semantics of the functions, check 2581 // that the target knows that it's available in this environment and it does 2582 // not have local linkage. 2583 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2584 return Intrinsic::not_intrinsic; 2585 2586 if (!ICS.onlyReadsMemory()) 2587 return Intrinsic::not_intrinsic; 2588 2589 // Otherwise check if we have a call to a function that can be turned into a 2590 // vector intrinsic. 2591 switch (Func) { 2592 default: 2593 break; 2594 case LibFunc_sin: 2595 case LibFunc_sinf: 2596 case LibFunc_sinl: 2597 return Intrinsic::sin; 2598 case LibFunc_cos: 2599 case LibFunc_cosf: 2600 case LibFunc_cosl: 2601 return Intrinsic::cos; 2602 case LibFunc_exp: 2603 case LibFunc_expf: 2604 case LibFunc_expl: 2605 return Intrinsic::exp; 2606 case LibFunc_exp2: 2607 case LibFunc_exp2f: 2608 case LibFunc_exp2l: 2609 return Intrinsic::exp2; 2610 case LibFunc_log: 2611 case LibFunc_logf: 2612 case LibFunc_logl: 2613 return Intrinsic::log; 2614 case LibFunc_log10: 2615 case LibFunc_log10f: 2616 case LibFunc_log10l: 2617 return Intrinsic::log10; 2618 case LibFunc_log2: 2619 case LibFunc_log2f: 2620 case LibFunc_log2l: 2621 return Intrinsic::log2; 2622 case LibFunc_fabs: 2623 case LibFunc_fabsf: 2624 case LibFunc_fabsl: 2625 return Intrinsic::fabs; 2626 case LibFunc_fmin: 2627 case LibFunc_fminf: 2628 case LibFunc_fminl: 2629 return Intrinsic::minnum; 2630 case LibFunc_fmax: 2631 case LibFunc_fmaxf: 2632 case LibFunc_fmaxl: 2633 return Intrinsic::maxnum; 2634 case LibFunc_copysign: 2635 case LibFunc_copysignf: 2636 case LibFunc_copysignl: 2637 return Intrinsic::copysign; 2638 case LibFunc_floor: 2639 case LibFunc_floorf: 2640 case LibFunc_floorl: 2641 return Intrinsic::floor; 2642 case LibFunc_ceil: 2643 case LibFunc_ceilf: 2644 case LibFunc_ceill: 2645 return Intrinsic::ceil; 2646 case LibFunc_trunc: 2647 case LibFunc_truncf: 2648 case LibFunc_truncl: 2649 return Intrinsic::trunc; 2650 case LibFunc_rint: 2651 case LibFunc_rintf: 2652 case LibFunc_rintl: 2653 return Intrinsic::rint; 2654 case LibFunc_nearbyint: 2655 case LibFunc_nearbyintf: 2656 case LibFunc_nearbyintl: 2657 return Intrinsic::nearbyint; 2658 case LibFunc_round: 2659 case LibFunc_roundf: 2660 case LibFunc_roundl: 2661 return Intrinsic::round; 2662 case LibFunc_pow: 2663 case LibFunc_powf: 2664 case LibFunc_powl: 2665 return Intrinsic::pow; 2666 case LibFunc_sqrt: 2667 case LibFunc_sqrtf: 2668 case LibFunc_sqrtl: 2669 return Intrinsic::sqrt; 2670 } 2671 2672 return Intrinsic::not_intrinsic; 2673 } 2674 2675 /// Return true if we can prove that the specified FP value is never equal to 2676 /// -0.0. 2677 /// 2678 /// NOTE: this function will need to be revisited when we support non-default 2679 /// rounding modes! 2680 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2681 unsigned Depth) { 2682 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2683 return !CFP->getValueAPF().isNegZero(); 2684 2685 // Limit search depth. 2686 if (Depth == MaxDepth) 2687 return false; 2688 2689 auto *Op = dyn_cast<Operator>(V); 2690 if (!Op) 2691 return false; 2692 2693 // Check if the nsz fast-math flag is set. 2694 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2695 if (FPO->hasNoSignedZeros()) 2696 return true; 2697 2698 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2699 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2700 return true; 2701 2702 // sitofp and uitofp turn into +0.0 for zero. 2703 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2704 return true; 2705 2706 if (auto *Call = dyn_cast<CallInst>(Op)) { 2707 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2708 switch (IID) { 2709 default: 2710 break; 2711 // sqrt(-0.0) = -0.0, no other negative results are possible. 2712 case Intrinsic::sqrt: 2713 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2714 // fabs(x) != -0.0 2715 case Intrinsic::fabs: 2716 return true; 2717 } 2718 } 2719 2720 return false; 2721 } 2722 2723 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2724 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2725 /// bit despite comparing equal. 2726 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2727 const TargetLibraryInfo *TLI, 2728 bool SignBitOnly, 2729 unsigned Depth) { 2730 // TODO: This function does not do the right thing when SignBitOnly is true 2731 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2732 // which flips the sign bits of NaNs. See 2733 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2734 2735 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2736 return !CFP->getValueAPF().isNegative() || 2737 (!SignBitOnly && CFP->getValueAPF().isZero()); 2738 } 2739 2740 // Handle vector of constants. 2741 if (auto *CV = dyn_cast<Constant>(V)) { 2742 if (CV->getType()->isVectorTy()) { 2743 unsigned NumElts = CV->getType()->getVectorNumElements(); 2744 for (unsigned i = 0; i != NumElts; ++i) { 2745 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2746 if (!CFP) 2747 return false; 2748 if (CFP->getValueAPF().isNegative() && 2749 (SignBitOnly || !CFP->getValueAPF().isZero())) 2750 return false; 2751 } 2752 2753 // All non-negative ConstantFPs. 2754 return true; 2755 } 2756 } 2757 2758 if (Depth == MaxDepth) 2759 return false; // Limit search depth. 2760 2761 const Operator *I = dyn_cast<Operator>(V); 2762 if (!I) 2763 return false; 2764 2765 switch (I->getOpcode()) { 2766 default: 2767 break; 2768 // Unsigned integers are always nonnegative. 2769 case Instruction::UIToFP: 2770 return true; 2771 case Instruction::FMul: 2772 // x*x is always non-negative or a NaN. 2773 if (I->getOperand(0) == I->getOperand(1) && 2774 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2775 return true; 2776 2777 LLVM_FALLTHROUGH; 2778 case Instruction::FAdd: 2779 case Instruction::FDiv: 2780 case Instruction::FRem: 2781 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2782 Depth + 1) && 2783 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2784 Depth + 1); 2785 case Instruction::Select: 2786 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2787 Depth + 1) && 2788 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2789 Depth + 1); 2790 case Instruction::FPExt: 2791 case Instruction::FPTrunc: 2792 // Widening/narrowing never change sign. 2793 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2794 Depth + 1); 2795 case Instruction::ExtractElement: 2796 // Look through extract element. At the moment we keep this simple and skip 2797 // tracking the specific element. But at least we might find information 2798 // valid for all elements of the vector. 2799 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2800 Depth + 1); 2801 case Instruction::Call: 2802 const auto *CI = cast<CallInst>(I); 2803 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2804 switch (IID) { 2805 default: 2806 break; 2807 case Intrinsic::maxnum: 2808 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2809 Depth + 1) || 2810 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2811 Depth + 1); 2812 case Intrinsic::minnum: 2813 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2814 Depth + 1) && 2815 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2816 Depth + 1); 2817 case Intrinsic::exp: 2818 case Intrinsic::exp2: 2819 case Intrinsic::fabs: 2820 return true; 2821 2822 case Intrinsic::sqrt: 2823 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2824 if (!SignBitOnly) 2825 return true; 2826 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2827 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2828 2829 case Intrinsic::powi: 2830 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2831 // powi(x,n) is non-negative if n is even. 2832 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2833 return true; 2834 } 2835 // TODO: This is not correct. Given that exp is an integer, here are the 2836 // ways that pow can return a negative value: 2837 // 2838 // pow(x, exp) --> negative if exp is odd and x is negative. 2839 // pow(-0, exp) --> -inf if exp is negative odd. 2840 // pow(-0, exp) --> -0 if exp is positive odd. 2841 // pow(-inf, exp) --> -0 if exp is negative odd. 2842 // pow(-inf, exp) --> -inf if exp is positive odd. 2843 // 2844 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2845 // but we must return false if x == -0. Unfortunately we do not currently 2846 // have a way of expressing this constraint. See details in 2847 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2848 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2849 Depth + 1); 2850 2851 case Intrinsic::fma: 2852 case Intrinsic::fmuladd: 2853 // x*x+y is non-negative if y is non-negative. 2854 return I->getOperand(0) == I->getOperand(1) && 2855 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2856 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2857 Depth + 1); 2858 } 2859 break; 2860 } 2861 return false; 2862 } 2863 2864 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2865 const TargetLibraryInfo *TLI) { 2866 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2867 } 2868 2869 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2870 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2871 } 2872 2873 bool llvm::isKnownNeverNaN(const Value *V) { 2874 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2875 2876 // If we're told that NaNs won't happen, assume they won't. 2877 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2878 if (FPMathOp->hasNoNaNs()) 2879 return true; 2880 2881 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2882 // functions. For example, the result of sitofp is never NaN. 2883 2884 // Handle scalar constants. 2885 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2886 return !CFP->isNaN(); 2887 2888 // Bail out for constant expressions, but try to handle vector constants. 2889 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2890 return false; 2891 2892 // For vectors, verify that each element is not NaN. 2893 unsigned NumElts = V->getType()->getVectorNumElements(); 2894 for (unsigned i = 0; i != NumElts; ++i) { 2895 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2896 if (!Elt) 2897 return false; 2898 if (isa<UndefValue>(Elt)) 2899 continue; 2900 auto *CElt = dyn_cast<ConstantFP>(Elt); 2901 if (!CElt || CElt->isNaN()) 2902 return false; 2903 } 2904 // All elements were confirmed not-NaN or undefined. 2905 return true; 2906 } 2907 2908 /// If the specified value can be set by repeating the same byte in memory, 2909 /// return the i8 value that it is represented with. This is 2910 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2911 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2912 /// byte store (e.g. i16 0x1234), return null. 2913 Value *llvm::isBytewiseValue(Value *V) { 2914 // All byte-wide stores are splatable, even of arbitrary variables. 2915 if (V->getType()->isIntegerTy(8)) return V; 2916 2917 // Handle 'null' ConstantArrayZero etc. 2918 if (Constant *C = dyn_cast<Constant>(V)) 2919 if (C->isNullValue()) 2920 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2921 2922 // Constant float and double values can be handled as integer values if the 2923 // corresponding integer value is "byteable". An important case is 0.0. 2924 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2925 if (CFP->getType()->isFloatTy()) 2926 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2927 if (CFP->getType()->isDoubleTy()) 2928 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2929 // Don't handle long double formats, which have strange constraints. 2930 } 2931 2932 // We can handle constant integers that are multiple of 8 bits. 2933 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2934 if (CI->getBitWidth() % 8 == 0) { 2935 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2936 2937 if (!CI->getValue().isSplat(8)) 2938 return nullptr; 2939 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2940 } 2941 } 2942 2943 // A ConstantDataArray/Vector is splatable if all its members are equal and 2944 // also splatable. 2945 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2946 Value *Elt = CA->getElementAsConstant(0); 2947 Value *Val = isBytewiseValue(Elt); 2948 if (!Val) 2949 return nullptr; 2950 2951 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2952 if (CA->getElementAsConstant(I) != Elt) 2953 return nullptr; 2954 2955 return Val; 2956 } 2957 2958 // Conceptually, we could handle things like: 2959 // %a = zext i8 %X to i16 2960 // %b = shl i16 %a, 8 2961 // %c = or i16 %a, %b 2962 // but until there is an example that actually needs this, it doesn't seem 2963 // worth worrying about. 2964 return nullptr; 2965 } 2966 2967 // This is the recursive version of BuildSubAggregate. It takes a few different 2968 // arguments. Idxs is the index within the nested struct From that we are 2969 // looking at now (which is of type IndexedType). IdxSkip is the number of 2970 // indices from Idxs that should be left out when inserting into the resulting 2971 // struct. To is the result struct built so far, new insertvalue instructions 2972 // build on that. 2973 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2974 SmallVectorImpl<unsigned> &Idxs, 2975 unsigned IdxSkip, 2976 Instruction *InsertBefore) { 2977 StructType *STy = dyn_cast<StructType>(IndexedType); 2978 if (STy) { 2979 // Save the original To argument so we can modify it 2980 Value *OrigTo = To; 2981 // General case, the type indexed by Idxs is a struct 2982 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2983 // Process each struct element recursively 2984 Idxs.push_back(i); 2985 Value *PrevTo = To; 2986 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2987 InsertBefore); 2988 Idxs.pop_back(); 2989 if (!To) { 2990 // Couldn't find any inserted value for this index? Cleanup 2991 while (PrevTo != OrigTo) { 2992 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2993 PrevTo = Del->getAggregateOperand(); 2994 Del->eraseFromParent(); 2995 } 2996 // Stop processing elements 2997 break; 2998 } 2999 } 3000 // If we successfully found a value for each of our subaggregates 3001 if (To) 3002 return To; 3003 } 3004 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3005 // the struct's elements had a value that was inserted directly. In the latter 3006 // case, perhaps we can't determine each of the subelements individually, but 3007 // we might be able to find the complete struct somewhere. 3008 3009 // Find the value that is at that particular spot 3010 Value *V = FindInsertedValue(From, Idxs); 3011 3012 if (!V) 3013 return nullptr; 3014 3015 // Insert the value in the new (sub) aggregate 3016 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3017 "tmp", InsertBefore); 3018 } 3019 3020 // This helper takes a nested struct and extracts a part of it (which is again a 3021 // struct) into a new value. For example, given the struct: 3022 // { a, { b, { c, d }, e } } 3023 // and the indices "1, 1" this returns 3024 // { c, d }. 3025 // 3026 // It does this by inserting an insertvalue for each element in the resulting 3027 // struct, as opposed to just inserting a single struct. This will only work if 3028 // each of the elements of the substruct are known (ie, inserted into From by an 3029 // insertvalue instruction somewhere). 3030 // 3031 // All inserted insertvalue instructions are inserted before InsertBefore 3032 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3033 Instruction *InsertBefore) { 3034 assert(InsertBefore && "Must have someplace to insert!"); 3035 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3036 idx_range); 3037 Value *To = UndefValue::get(IndexedType); 3038 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3039 unsigned IdxSkip = Idxs.size(); 3040 3041 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3042 } 3043 3044 /// Given an aggregate and a sequence of indices, see if the scalar value 3045 /// indexed is already around as a register, for example if it was inserted 3046 /// directly into the aggregate. 3047 /// 3048 /// If InsertBefore is not null, this function will duplicate (modified) 3049 /// insertvalues when a part of a nested struct is extracted. 3050 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3051 Instruction *InsertBefore) { 3052 // Nothing to index? Just return V then (this is useful at the end of our 3053 // recursion). 3054 if (idx_range.empty()) 3055 return V; 3056 // We have indices, so V should have an indexable type. 3057 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3058 "Not looking at a struct or array?"); 3059 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3060 "Invalid indices for type?"); 3061 3062 if (Constant *C = dyn_cast<Constant>(V)) { 3063 C = C->getAggregateElement(idx_range[0]); 3064 if (!C) return nullptr; 3065 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3066 } 3067 3068 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3069 // Loop the indices for the insertvalue instruction in parallel with the 3070 // requested indices 3071 const unsigned *req_idx = idx_range.begin(); 3072 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3073 i != e; ++i, ++req_idx) { 3074 if (req_idx == idx_range.end()) { 3075 // We can't handle this without inserting insertvalues 3076 if (!InsertBefore) 3077 return nullptr; 3078 3079 // The requested index identifies a part of a nested aggregate. Handle 3080 // this specially. For example, 3081 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3082 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3083 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3084 // This can be changed into 3085 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3086 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3087 // which allows the unused 0,0 element from the nested struct to be 3088 // removed. 3089 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3090 InsertBefore); 3091 } 3092 3093 // This insert value inserts something else than what we are looking for. 3094 // See if the (aggregate) value inserted into has the value we are 3095 // looking for, then. 3096 if (*req_idx != *i) 3097 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3098 InsertBefore); 3099 } 3100 // If we end up here, the indices of the insertvalue match with those 3101 // requested (though possibly only partially). Now we recursively look at 3102 // the inserted value, passing any remaining indices. 3103 return FindInsertedValue(I->getInsertedValueOperand(), 3104 makeArrayRef(req_idx, idx_range.end()), 3105 InsertBefore); 3106 } 3107 3108 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3109 // If we're extracting a value from an aggregate that was extracted from 3110 // something else, we can extract from that something else directly instead. 3111 // However, we will need to chain I's indices with the requested indices. 3112 3113 // Calculate the number of indices required 3114 unsigned size = I->getNumIndices() + idx_range.size(); 3115 // Allocate some space to put the new indices in 3116 SmallVector<unsigned, 5> Idxs; 3117 Idxs.reserve(size); 3118 // Add indices from the extract value instruction 3119 Idxs.append(I->idx_begin(), I->idx_end()); 3120 3121 // Add requested indices 3122 Idxs.append(idx_range.begin(), idx_range.end()); 3123 3124 assert(Idxs.size() == size 3125 && "Number of indices added not correct?"); 3126 3127 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3128 } 3129 // Otherwise, we don't know (such as, extracting from a function return value 3130 // or load instruction) 3131 return nullptr; 3132 } 3133 3134 /// Analyze the specified pointer to see if it can be expressed as a base 3135 /// pointer plus a constant offset. Return the base and offset to the caller. 3136 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3137 const DataLayout &DL) { 3138 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3139 APInt ByteOffset(BitWidth, 0); 3140 3141 // We walk up the defs but use a visited set to handle unreachable code. In 3142 // that case, we stop after accumulating the cycle once (not that it 3143 // matters). 3144 SmallPtrSet<Value *, 16> Visited; 3145 while (Visited.insert(Ptr).second) { 3146 if (Ptr->getType()->isVectorTy()) 3147 break; 3148 3149 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3150 // If one of the values we have visited is an addrspacecast, then 3151 // the pointer type of this GEP may be different from the type 3152 // of the Ptr parameter which was passed to this function. This 3153 // means when we construct GEPOffset, we need to use the size 3154 // of GEP's pointer type rather than the size of the original 3155 // pointer type. 3156 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3157 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3158 break; 3159 3160 ByteOffset += GEPOffset.getSExtValue(); 3161 3162 Ptr = GEP->getPointerOperand(); 3163 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3164 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3165 Ptr = cast<Operator>(Ptr)->getOperand(0); 3166 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3167 if (GA->isInterposable()) 3168 break; 3169 Ptr = GA->getAliasee(); 3170 } else { 3171 break; 3172 } 3173 } 3174 Offset = ByteOffset.getSExtValue(); 3175 return Ptr; 3176 } 3177 3178 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3179 unsigned CharSize) { 3180 // Make sure the GEP has exactly three arguments. 3181 if (GEP->getNumOperands() != 3) 3182 return false; 3183 3184 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3185 // CharSize. 3186 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3187 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3188 return false; 3189 3190 // Check to make sure that the first operand of the GEP is an integer and 3191 // has value 0 so that we are sure we're indexing into the initializer. 3192 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3193 if (!FirstIdx || !FirstIdx->isZero()) 3194 return false; 3195 3196 return true; 3197 } 3198 3199 bool llvm::getConstantDataArrayInfo(const Value *V, 3200 ConstantDataArraySlice &Slice, 3201 unsigned ElementSize, uint64_t Offset) { 3202 assert(V); 3203 3204 // Look through bitcast instructions and geps. 3205 V = V->stripPointerCasts(); 3206 3207 // If the value is a GEP instruction or constant expression, treat it as an 3208 // offset. 3209 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3210 // The GEP operator should be based on a pointer to string constant, and is 3211 // indexing into the string constant. 3212 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3213 return false; 3214 3215 // If the second index isn't a ConstantInt, then this is a variable index 3216 // into the array. If this occurs, we can't say anything meaningful about 3217 // the string. 3218 uint64_t StartIdx = 0; 3219 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3220 StartIdx = CI->getZExtValue(); 3221 else 3222 return false; 3223 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3224 StartIdx + Offset); 3225 } 3226 3227 // The GEP instruction, constant or instruction, must reference a global 3228 // variable that is a constant and is initialized. The referenced constant 3229 // initializer is the array that we'll use for optimization. 3230 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3231 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3232 return false; 3233 3234 const ConstantDataArray *Array; 3235 ArrayType *ArrayTy; 3236 if (GV->getInitializer()->isNullValue()) { 3237 Type *GVTy = GV->getValueType(); 3238 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3239 // A zeroinitializer for the array; there is no ConstantDataArray. 3240 Array = nullptr; 3241 } else { 3242 const DataLayout &DL = GV->getParent()->getDataLayout(); 3243 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3244 uint64_t Length = SizeInBytes / (ElementSize / 8); 3245 if (Length <= Offset) 3246 return false; 3247 3248 Slice.Array = nullptr; 3249 Slice.Offset = 0; 3250 Slice.Length = Length - Offset; 3251 return true; 3252 } 3253 } else { 3254 // This must be a ConstantDataArray. 3255 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3256 if (!Array) 3257 return false; 3258 ArrayTy = Array->getType(); 3259 } 3260 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3261 return false; 3262 3263 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3264 if (Offset > NumElts) 3265 return false; 3266 3267 Slice.Array = Array; 3268 Slice.Offset = Offset; 3269 Slice.Length = NumElts - Offset; 3270 return true; 3271 } 3272 3273 /// This function computes the length of a null-terminated C string pointed to 3274 /// by V. If successful, it returns true and returns the string in Str. 3275 /// If unsuccessful, it returns false. 3276 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3277 uint64_t Offset, bool TrimAtNul) { 3278 ConstantDataArraySlice Slice; 3279 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3280 return false; 3281 3282 if (Slice.Array == nullptr) { 3283 if (TrimAtNul) { 3284 Str = StringRef(); 3285 return true; 3286 } 3287 if (Slice.Length == 1) { 3288 Str = StringRef("", 1); 3289 return true; 3290 } 3291 // We cannot instantiate a StringRef as we do not have an appropriate string 3292 // of 0s at hand. 3293 return false; 3294 } 3295 3296 // Start out with the entire array in the StringRef. 3297 Str = Slice.Array->getAsString(); 3298 // Skip over 'offset' bytes. 3299 Str = Str.substr(Slice.Offset); 3300 3301 if (TrimAtNul) { 3302 // Trim off the \0 and anything after it. If the array is not nul 3303 // terminated, we just return the whole end of string. The client may know 3304 // some other way that the string is length-bound. 3305 Str = Str.substr(0, Str.find('\0')); 3306 } 3307 return true; 3308 } 3309 3310 // These next two are very similar to the above, but also look through PHI 3311 // nodes. 3312 // TODO: See if we can integrate these two together. 3313 3314 /// If we can compute the length of the string pointed to by 3315 /// the specified pointer, return 'len+1'. If we can't, return 0. 3316 static uint64_t GetStringLengthH(const Value *V, 3317 SmallPtrSetImpl<const PHINode*> &PHIs, 3318 unsigned CharSize) { 3319 // Look through noop bitcast instructions. 3320 V = V->stripPointerCasts(); 3321 3322 // If this is a PHI node, there are two cases: either we have already seen it 3323 // or we haven't. 3324 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3325 if (!PHIs.insert(PN).second) 3326 return ~0ULL; // already in the set. 3327 3328 // If it was new, see if all the input strings are the same length. 3329 uint64_t LenSoFar = ~0ULL; 3330 for (Value *IncValue : PN->incoming_values()) { 3331 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3332 if (Len == 0) return 0; // Unknown length -> unknown. 3333 3334 if (Len == ~0ULL) continue; 3335 3336 if (Len != LenSoFar && LenSoFar != ~0ULL) 3337 return 0; // Disagree -> unknown. 3338 LenSoFar = Len; 3339 } 3340 3341 // Success, all agree. 3342 return LenSoFar; 3343 } 3344 3345 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3346 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3347 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3348 if (Len1 == 0) return 0; 3349 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3350 if (Len2 == 0) return 0; 3351 if (Len1 == ~0ULL) return Len2; 3352 if (Len2 == ~0ULL) return Len1; 3353 if (Len1 != Len2) return 0; 3354 return Len1; 3355 } 3356 3357 // Otherwise, see if we can read the string. 3358 ConstantDataArraySlice Slice; 3359 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3360 return 0; 3361 3362 if (Slice.Array == nullptr) 3363 return 1; 3364 3365 // Search for nul characters 3366 unsigned NullIndex = 0; 3367 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3368 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3369 break; 3370 } 3371 3372 return NullIndex + 1; 3373 } 3374 3375 /// If we can compute the length of the string pointed to by 3376 /// the specified pointer, return 'len+1'. If we can't, return 0. 3377 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3378 if (!V->getType()->isPointerTy()) 3379 return 0; 3380 3381 SmallPtrSet<const PHINode*, 32> PHIs; 3382 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3383 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3384 // an empty string as a length. 3385 return Len == ~0ULL ? 1 : Len; 3386 } 3387 3388 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) { 3389 assert(CS && 3390 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite"); 3391 if (const Value *RV = CS.getReturnedArgOperand()) 3392 return RV; 3393 // This can be used only as a aliasing property. 3394 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS)) 3395 return CS.getArgOperand(0); 3396 return nullptr; 3397 } 3398 3399 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3400 ImmutableCallSite CS) { 3401 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group; 3402 } 3403 3404 /// \p PN defines a loop-variant pointer to an object. Check if the 3405 /// previous iteration of the loop was referring to the same object as \p PN. 3406 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3407 const LoopInfo *LI) { 3408 // Find the loop-defined value. 3409 Loop *L = LI->getLoopFor(PN->getParent()); 3410 if (PN->getNumIncomingValues() != 2) 3411 return true; 3412 3413 // Find the value from previous iteration. 3414 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3415 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3416 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3417 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3418 return true; 3419 3420 // If a new pointer is loaded in the loop, the pointer references a different 3421 // object in every iteration. E.g.: 3422 // for (i) 3423 // int *p = a[i]; 3424 // ... 3425 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3426 if (!L->isLoopInvariant(Load->getPointerOperand())) 3427 return false; 3428 return true; 3429 } 3430 3431 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3432 unsigned MaxLookup) { 3433 if (!V->getType()->isPointerTy()) 3434 return V; 3435 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3436 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3437 V = GEP->getPointerOperand(); 3438 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3439 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3440 V = cast<Operator>(V)->getOperand(0); 3441 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3442 if (GA->isInterposable()) 3443 return V; 3444 V = GA->getAliasee(); 3445 } else if (isa<AllocaInst>(V)) { 3446 // An alloca can't be further simplified. 3447 return V; 3448 } else { 3449 if (auto CS = CallSite(V)) { 3450 // Note: getArgumentAliasingToReturnedPointer keeps it in sync with 3451 // CaptureTracking, which is needed for correctness. This is because 3452 // some intrinsics like launder.invariant.group returns pointers that 3453 // are aliasing it's argument, which is known to CaptureTracking. 3454 // If AliasAnalysis does not use the same information, it could assume 3455 // that pointer returned from launder does not alias it's argument 3456 // because launder could not return it if the pointer was not captured. 3457 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { 3458 V = RP; 3459 continue; 3460 } 3461 } 3462 3463 // See if InstructionSimplify knows any relevant tricks. 3464 if (Instruction *I = dyn_cast<Instruction>(V)) 3465 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3466 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3467 V = Simplified; 3468 continue; 3469 } 3470 3471 return V; 3472 } 3473 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3474 } 3475 return V; 3476 } 3477 3478 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3479 const DataLayout &DL, LoopInfo *LI, 3480 unsigned MaxLookup) { 3481 SmallPtrSet<Value *, 4> Visited; 3482 SmallVector<Value *, 4> Worklist; 3483 Worklist.push_back(V); 3484 do { 3485 Value *P = Worklist.pop_back_val(); 3486 P = GetUnderlyingObject(P, DL, MaxLookup); 3487 3488 if (!Visited.insert(P).second) 3489 continue; 3490 3491 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3492 Worklist.push_back(SI->getTrueValue()); 3493 Worklist.push_back(SI->getFalseValue()); 3494 continue; 3495 } 3496 3497 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3498 // If this PHI changes the underlying object in every iteration of the 3499 // loop, don't look through it. Consider: 3500 // int **A; 3501 // for (i) { 3502 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3503 // Curr = A[i]; 3504 // *Prev, *Curr; 3505 // 3506 // Prev is tracking Curr one iteration behind so they refer to different 3507 // underlying objects. 3508 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3509 isSameUnderlyingObjectInLoop(PN, LI)) 3510 for (Value *IncValue : PN->incoming_values()) 3511 Worklist.push_back(IncValue); 3512 continue; 3513 } 3514 3515 Objects.push_back(P); 3516 } while (!Worklist.empty()); 3517 } 3518 3519 /// This is the function that does the work of looking through basic 3520 /// ptrtoint+arithmetic+inttoptr sequences. 3521 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3522 do { 3523 if (const Operator *U = dyn_cast<Operator>(V)) { 3524 // If we find a ptrtoint, we can transfer control back to the 3525 // regular getUnderlyingObjectFromInt. 3526 if (U->getOpcode() == Instruction::PtrToInt) 3527 return U->getOperand(0); 3528 // If we find an add of a constant, a multiplied value, or a phi, it's 3529 // likely that the other operand will lead us to the base 3530 // object. We don't have to worry about the case where the 3531 // object address is somehow being computed by the multiply, 3532 // because our callers only care when the result is an 3533 // identifiable object. 3534 if (U->getOpcode() != Instruction::Add || 3535 (!isa<ConstantInt>(U->getOperand(1)) && 3536 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3537 !isa<PHINode>(U->getOperand(1)))) 3538 return V; 3539 V = U->getOperand(0); 3540 } else { 3541 return V; 3542 } 3543 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3544 } while (true); 3545 } 3546 3547 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3548 /// ptrtoint+arithmetic+inttoptr sequences. 3549 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3550 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3551 SmallVectorImpl<Value *> &Objects, 3552 const DataLayout &DL) { 3553 SmallPtrSet<const Value *, 16> Visited; 3554 SmallVector<const Value *, 4> Working(1, V); 3555 do { 3556 V = Working.pop_back_val(); 3557 3558 SmallVector<Value *, 4> Objs; 3559 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3560 3561 for (Value *V : Objs) { 3562 if (!Visited.insert(V).second) 3563 continue; 3564 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3565 const Value *O = 3566 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3567 if (O->getType()->isPointerTy()) { 3568 Working.push_back(O); 3569 continue; 3570 } 3571 } 3572 // If GetUnderlyingObjects fails to find an identifiable object, 3573 // getUnderlyingObjectsForCodeGen also fails for safety. 3574 if (!isIdentifiedObject(V)) { 3575 Objects.clear(); 3576 return false; 3577 } 3578 Objects.push_back(const_cast<Value *>(V)); 3579 } 3580 } while (!Working.empty()); 3581 return true; 3582 } 3583 3584 /// Return true if the only users of this pointer are lifetime markers. 3585 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3586 for (const User *U : V->users()) { 3587 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3588 if (!II) return false; 3589 3590 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3591 II->getIntrinsicID() != Intrinsic::lifetime_end) 3592 return false; 3593 } 3594 return true; 3595 } 3596 3597 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3598 const Instruction *CtxI, 3599 const DominatorTree *DT) { 3600 const Operator *Inst = dyn_cast<Operator>(V); 3601 if (!Inst) 3602 return false; 3603 3604 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3605 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3606 if (C->canTrap()) 3607 return false; 3608 3609 switch (Inst->getOpcode()) { 3610 default: 3611 return true; 3612 case Instruction::UDiv: 3613 case Instruction::URem: { 3614 // x / y is undefined if y == 0. 3615 const APInt *V; 3616 if (match(Inst->getOperand(1), m_APInt(V))) 3617 return *V != 0; 3618 return false; 3619 } 3620 case Instruction::SDiv: 3621 case Instruction::SRem: { 3622 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3623 const APInt *Numerator, *Denominator; 3624 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3625 return false; 3626 // We cannot hoist this division if the denominator is 0. 3627 if (*Denominator == 0) 3628 return false; 3629 // It's safe to hoist if the denominator is not 0 or -1. 3630 if (*Denominator != -1) 3631 return true; 3632 // At this point we know that the denominator is -1. It is safe to hoist as 3633 // long we know that the numerator is not INT_MIN. 3634 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3635 return !Numerator->isMinSignedValue(); 3636 // The numerator *might* be MinSignedValue. 3637 return false; 3638 } 3639 case Instruction::Load: { 3640 const LoadInst *LI = cast<LoadInst>(Inst); 3641 if (!LI->isUnordered() || 3642 // Speculative load may create a race that did not exist in the source. 3643 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3644 // Speculative load may load data from dirty regions. 3645 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3646 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3647 return false; 3648 const DataLayout &DL = LI->getModule()->getDataLayout(); 3649 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3650 LI->getAlignment(), DL, CtxI, DT); 3651 } 3652 case Instruction::Call: { 3653 auto *CI = cast<const CallInst>(Inst); 3654 const Function *Callee = CI->getCalledFunction(); 3655 3656 // The called function could have undefined behavior or side-effects, even 3657 // if marked readnone nounwind. 3658 return Callee && Callee->isSpeculatable(); 3659 } 3660 case Instruction::VAArg: 3661 case Instruction::Alloca: 3662 case Instruction::Invoke: 3663 case Instruction::PHI: 3664 case Instruction::Store: 3665 case Instruction::Ret: 3666 case Instruction::Br: 3667 case Instruction::IndirectBr: 3668 case Instruction::Switch: 3669 case Instruction::Unreachable: 3670 case Instruction::Fence: 3671 case Instruction::AtomicRMW: 3672 case Instruction::AtomicCmpXchg: 3673 case Instruction::LandingPad: 3674 case Instruction::Resume: 3675 case Instruction::CatchSwitch: 3676 case Instruction::CatchPad: 3677 case Instruction::CatchRet: 3678 case Instruction::CleanupPad: 3679 case Instruction::CleanupRet: 3680 return false; // Misc instructions which have effects 3681 } 3682 } 3683 3684 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3685 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3686 } 3687 3688 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3689 const Value *RHS, 3690 const DataLayout &DL, 3691 AssumptionCache *AC, 3692 const Instruction *CxtI, 3693 const DominatorTree *DT) { 3694 // Multiplying n * m significant bits yields a result of n + m significant 3695 // bits. If the total number of significant bits does not exceed the 3696 // result bit width (minus 1), there is no overflow. 3697 // This means if we have enough leading zero bits in the operands 3698 // we can guarantee that the result does not overflow. 3699 // Ref: "Hacker's Delight" by Henry Warren 3700 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3701 KnownBits LHSKnown(BitWidth); 3702 KnownBits RHSKnown(BitWidth); 3703 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3704 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3705 // Note that underestimating the number of zero bits gives a more 3706 // conservative answer. 3707 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3708 RHSKnown.countMinLeadingZeros(); 3709 // First handle the easy case: if we have enough zero bits there's 3710 // definitely no overflow. 3711 if (ZeroBits >= BitWidth) 3712 return OverflowResult::NeverOverflows; 3713 3714 // Get the largest possible values for each operand. 3715 APInt LHSMax = ~LHSKnown.Zero; 3716 APInt RHSMax = ~RHSKnown.Zero; 3717 3718 // We know the multiply operation doesn't overflow if the maximum values for 3719 // each operand will not overflow after we multiply them together. 3720 bool MaxOverflow; 3721 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3722 if (!MaxOverflow) 3723 return OverflowResult::NeverOverflows; 3724 3725 // We know it always overflows if multiplying the smallest possible values for 3726 // the operands also results in overflow. 3727 bool MinOverflow; 3728 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3729 if (MinOverflow) 3730 return OverflowResult::AlwaysOverflows; 3731 3732 return OverflowResult::MayOverflow; 3733 } 3734 3735 OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS, 3736 const Value *RHS, 3737 const DataLayout &DL, 3738 AssumptionCache *AC, 3739 const Instruction *CxtI, 3740 const DominatorTree *DT) { 3741 // Multiplying n * m significant bits yields a result of n + m significant 3742 // bits. If the total number of significant bits does not exceed the 3743 // result bit width (minus 1), there is no overflow. 3744 // This means if we have enough leading sign bits in the operands 3745 // we can guarantee that the result does not overflow. 3746 // Ref: "Hacker's Delight" by Henry Warren 3747 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3748 3749 // Note that underestimating the number of sign bits gives a more 3750 // conservative answer. 3751 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 3752 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 3753 3754 // First handle the easy case: if we have enough sign bits there's 3755 // definitely no overflow. 3756 if (SignBits > BitWidth + 1) 3757 return OverflowResult::NeverOverflows; 3758 3759 // There are two ambiguous cases where there can be no overflow: 3760 // SignBits == BitWidth + 1 and 3761 // SignBits == BitWidth 3762 // The second case is difficult to check, therefore we only handle the 3763 // first case. 3764 if (SignBits == BitWidth + 1) { 3765 // It overflows only when both arguments are negative and the true 3766 // product is exactly the minimum negative number. 3767 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 3768 // For simplicity we just check if at least one side is not negative. 3769 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3770 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3771 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 3772 return OverflowResult::NeverOverflows; 3773 } 3774 return OverflowResult::MayOverflow; 3775 } 3776 3777 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3778 const Value *RHS, 3779 const DataLayout &DL, 3780 AssumptionCache *AC, 3781 const Instruction *CxtI, 3782 const DominatorTree *DT) { 3783 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3784 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3785 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3786 3787 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3788 // The sign bit is set in both cases: this MUST overflow. 3789 // Create a simple add instruction, and insert it into the struct. 3790 return OverflowResult::AlwaysOverflows; 3791 } 3792 3793 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3794 // The sign bit is clear in both cases: this CANNOT overflow. 3795 // Create a simple add instruction, and insert it into the struct. 3796 return OverflowResult::NeverOverflows; 3797 } 3798 } 3799 3800 return OverflowResult::MayOverflow; 3801 } 3802 3803 /// Return true if we can prove that adding the two values of the 3804 /// knownbits will not overflow. 3805 /// Otherwise return false. 3806 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3807 const KnownBits &RHSKnown) { 3808 // Addition of two 2's complement numbers having opposite signs will never 3809 // overflow. 3810 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3811 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3812 return true; 3813 3814 // If either of the values is known to be non-negative, adding them can only 3815 // overflow if the second is also non-negative, so we can assume that. 3816 // Two non-negative numbers will only overflow if there is a carry to the 3817 // sign bit, so we can check if even when the values are as big as possible 3818 // there is no overflow to the sign bit. 3819 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3820 APInt MaxLHS = ~LHSKnown.Zero; 3821 MaxLHS.clearSignBit(); 3822 APInt MaxRHS = ~RHSKnown.Zero; 3823 MaxRHS.clearSignBit(); 3824 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3825 return Result.isSignBitClear(); 3826 } 3827 3828 // If either of the values is known to be negative, adding them can only 3829 // overflow if the second is also negative, so we can assume that. 3830 // Two negative number will only overflow if there is no carry to the sign 3831 // bit, so we can check if even when the values are as small as possible 3832 // there is overflow to the sign bit. 3833 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3834 APInt MinLHS = LHSKnown.One; 3835 MinLHS.clearSignBit(); 3836 APInt MinRHS = RHSKnown.One; 3837 MinRHS.clearSignBit(); 3838 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3839 return Result.isSignBitSet(); 3840 } 3841 3842 // If we reached here it means that we know nothing about the sign bits. 3843 // In this case we can't know if there will be an overflow, since by 3844 // changing the sign bits any two values can be made to overflow. 3845 return false; 3846 } 3847 3848 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3849 const Value *RHS, 3850 const AddOperator *Add, 3851 const DataLayout &DL, 3852 AssumptionCache *AC, 3853 const Instruction *CxtI, 3854 const DominatorTree *DT) { 3855 if (Add && Add->hasNoSignedWrap()) { 3856 return OverflowResult::NeverOverflows; 3857 } 3858 3859 // If LHS and RHS each have at least two sign bits, the addition will look 3860 // like 3861 // 3862 // XX..... + 3863 // YY..... 3864 // 3865 // If the carry into the most significant position is 0, X and Y can't both 3866 // be 1 and therefore the carry out of the addition is also 0. 3867 // 3868 // If the carry into the most significant position is 1, X and Y can't both 3869 // be 0 and therefore the carry out of the addition is also 1. 3870 // 3871 // Since the carry into the most significant position is always equal to 3872 // the carry out of the addition, there is no signed overflow. 3873 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3874 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3875 return OverflowResult::NeverOverflows; 3876 3877 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3878 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3879 3880 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3881 return OverflowResult::NeverOverflows; 3882 3883 // The remaining code needs Add to be available. Early returns if not so. 3884 if (!Add) 3885 return OverflowResult::MayOverflow; 3886 3887 // If the sign of Add is the same as at least one of the operands, this add 3888 // CANNOT overflow. This is particularly useful when the sum is 3889 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3890 // operands. 3891 bool LHSOrRHSKnownNonNegative = 3892 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3893 bool LHSOrRHSKnownNegative = 3894 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3895 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3896 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3897 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3898 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3899 return OverflowResult::NeverOverflows; 3900 } 3901 } 3902 3903 return OverflowResult::MayOverflow; 3904 } 3905 3906 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 3907 const Value *RHS, 3908 const DataLayout &DL, 3909 AssumptionCache *AC, 3910 const Instruction *CxtI, 3911 const DominatorTree *DT) { 3912 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 3913 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3914 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3915 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 3916 return OverflowResult::NeverOverflows; 3917 3918 return OverflowResult::MayOverflow; 3919 } 3920 3921 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 3922 const Value *RHS, 3923 const DataLayout &DL, 3924 AssumptionCache *AC, 3925 const Instruction *CxtI, 3926 const DominatorTree *DT) { 3927 // If LHS and RHS each have at least two sign bits, the subtraction 3928 // cannot overflow. 3929 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3930 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3931 return OverflowResult::NeverOverflows; 3932 3933 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); 3934 3935 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); 3936 3937 // Subtraction of two 2's complement numbers having identical signs will 3938 // never overflow. 3939 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 3940 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 3941 return OverflowResult::NeverOverflows; 3942 3943 // TODO: implement logic similar to checkRippleForAdd 3944 return OverflowResult::MayOverflow; 3945 } 3946 3947 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3948 const DominatorTree &DT) { 3949 #ifndef NDEBUG 3950 auto IID = II->getIntrinsicID(); 3951 assert((IID == Intrinsic::sadd_with_overflow || 3952 IID == Intrinsic::uadd_with_overflow || 3953 IID == Intrinsic::ssub_with_overflow || 3954 IID == Intrinsic::usub_with_overflow || 3955 IID == Intrinsic::smul_with_overflow || 3956 IID == Intrinsic::umul_with_overflow) && 3957 "Not an overflow intrinsic!"); 3958 #endif 3959 3960 SmallVector<const BranchInst *, 2> GuardingBranches; 3961 SmallVector<const ExtractValueInst *, 2> Results; 3962 3963 for (const User *U : II->users()) { 3964 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3965 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3966 3967 if (EVI->getIndices()[0] == 0) 3968 Results.push_back(EVI); 3969 else { 3970 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3971 3972 for (const auto *U : EVI->users()) 3973 if (const auto *B = dyn_cast<BranchInst>(U)) { 3974 assert(B->isConditional() && "How else is it using an i1?"); 3975 GuardingBranches.push_back(B); 3976 } 3977 } 3978 } else { 3979 // We are using the aggregate directly in a way we don't want to analyze 3980 // here (storing it to a global, say). 3981 return false; 3982 } 3983 } 3984 3985 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3986 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3987 if (!NoWrapEdge.isSingleEdge()) 3988 return false; 3989 3990 // Check if all users of the add are provably no-wrap. 3991 for (const auto *Result : Results) { 3992 // If the extractvalue itself is not executed on overflow, the we don't 3993 // need to check each use separately, since domination is transitive. 3994 if (DT.dominates(NoWrapEdge, Result->getParent())) 3995 continue; 3996 3997 for (auto &RU : Result->uses()) 3998 if (!DT.dominates(NoWrapEdge, RU)) 3999 return false; 4000 } 4001 4002 return true; 4003 }; 4004 4005 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4006 } 4007 4008 4009 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4010 const DataLayout &DL, 4011 AssumptionCache *AC, 4012 const Instruction *CxtI, 4013 const DominatorTree *DT) { 4014 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4015 Add, DL, AC, CxtI, DT); 4016 } 4017 4018 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4019 const Value *RHS, 4020 const DataLayout &DL, 4021 AssumptionCache *AC, 4022 const Instruction *CxtI, 4023 const DominatorTree *DT) { 4024 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4025 } 4026 4027 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4028 // A memory operation returns normally if it isn't volatile. A volatile 4029 // operation is allowed to trap. 4030 // 4031 // An atomic operation isn't guaranteed to return in a reasonable amount of 4032 // time because it's possible for another thread to interfere with it for an 4033 // arbitrary length of time, but programs aren't allowed to rely on that. 4034 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4035 return !LI->isVolatile(); 4036 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4037 return !SI->isVolatile(); 4038 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4039 return !CXI->isVolatile(); 4040 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4041 return !RMWI->isVolatile(); 4042 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4043 return !MII->isVolatile(); 4044 4045 // If there is no successor, then execution can't transfer to it. 4046 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4047 return !CRI->unwindsToCaller(); 4048 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4049 return !CatchSwitch->unwindsToCaller(); 4050 if (isa<ResumeInst>(I)) 4051 return false; 4052 if (isa<ReturnInst>(I)) 4053 return false; 4054 if (isa<UnreachableInst>(I)) 4055 return false; 4056 4057 // Calls can throw, or contain an infinite loop, or kill the process. 4058 if (auto CS = ImmutableCallSite(I)) { 4059 // Call sites that throw have implicit non-local control flow. 4060 if (!CS.doesNotThrow()) 4061 return false; 4062 4063 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4064 // etc. and thus not return. However, LLVM already assumes that 4065 // 4066 // - Thread exiting actions are modeled as writes to memory invisible to 4067 // the program. 4068 // 4069 // - Loops that don't have side effects (side effects are volatile/atomic 4070 // stores and IO) always terminate (see http://llvm.org/PR965). 4071 // Furthermore IO itself is also modeled as writes to memory invisible to 4072 // the program. 4073 // 4074 // We rely on those assumptions here, and use the memory effects of the call 4075 // target as a proxy for checking that it always returns. 4076 4077 // FIXME: This isn't aggressive enough; a call which only writes to a global 4078 // is guaranteed to return. 4079 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4080 match(I, m_Intrinsic<Intrinsic::assume>()) || 4081 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 4082 } 4083 4084 // Other instructions return normally. 4085 return true; 4086 } 4087 4088 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4089 // TODO: This is slightly consdervative for invoke instruction since exiting 4090 // via an exception *is* normal control for them. 4091 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4092 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4093 return false; 4094 return true; 4095 } 4096 4097 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4098 const Loop *L) { 4099 // The loop header is guaranteed to be executed for every iteration. 4100 // 4101 // FIXME: Relax this constraint to cover all basic blocks that are 4102 // guaranteed to be executed at every iteration. 4103 if (I->getParent() != L->getHeader()) return false; 4104 4105 for (const Instruction &LI : *L->getHeader()) { 4106 if (&LI == I) return true; 4107 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4108 } 4109 llvm_unreachable("Instruction not contained in its own parent basic block."); 4110 } 4111 4112 bool llvm::propagatesFullPoison(const Instruction *I) { 4113 switch (I->getOpcode()) { 4114 case Instruction::Add: 4115 case Instruction::Sub: 4116 case Instruction::Xor: 4117 case Instruction::Trunc: 4118 case Instruction::BitCast: 4119 case Instruction::AddrSpaceCast: 4120 case Instruction::Mul: 4121 case Instruction::Shl: 4122 case Instruction::GetElementPtr: 4123 // These operations all propagate poison unconditionally. Note that poison 4124 // is not any particular value, so xor or subtraction of poison with 4125 // itself still yields poison, not zero. 4126 return true; 4127 4128 case Instruction::AShr: 4129 case Instruction::SExt: 4130 // For these operations, one bit of the input is replicated across 4131 // multiple output bits. A replicated poison bit is still poison. 4132 return true; 4133 4134 case Instruction::ICmp: 4135 // Comparing poison with any value yields poison. This is why, for 4136 // instance, x s< (x +nsw 1) can be folded to true. 4137 return true; 4138 4139 default: 4140 return false; 4141 } 4142 } 4143 4144 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4145 switch (I->getOpcode()) { 4146 case Instruction::Store: 4147 return cast<StoreInst>(I)->getPointerOperand(); 4148 4149 case Instruction::Load: 4150 return cast<LoadInst>(I)->getPointerOperand(); 4151 4152 case Instruction::AtomicCmpXchg: 4153 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4154 4155 case Instruction::AtomicRMW: 4156 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4157 4158 case Instruction::UDiv: 4159 case Instruction::SDiv: 4160 case Instruction::URem: 4161 case Instruction::SRem: 4162 return I->getOperand(1); 4163 4164 default: 4165 return nullptr; 4166 } 4167 } 4168 4169 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4170 // We currently only look for uses of poison values within the same basic 4171 // block, as that makes it easier to guarantee that the uses will be 4172 // executed given that PoisonI is executed. 4173 // 4174 // FIXME: Expand this to consider uses beyond the same basic block. To do 4175 // this, look out for the distinction between post-dominance and strong 4176 // post-dominance. 4177 const BasicBlock *BB = PoisonI->getParent(); 4178 4179 // Set of instructions that we have proved will yield poison if PoisonI 4180 // does. 4181 SmallSet<const Value *, 16> YieldsPoison; 4182 SmallSet<const BasicBlock *, 4> Visited; 4183 YieldsPoison.insert(PoisonI); 4184 Visited.insert(PoisonI->getParent()); 4185 4186 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4187 4188 unsigned Iter = 0; 4189 while (Iter++ < MaxDepth) { 4190 for (auto &I : make_range(Begin, End)) { 4191 if (&I != PoisonI) { 4192 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4193 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4194 return true; 4195 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4196 return false; 4197 } 4198 4199 // Mark poison that propagates from I through uses of I. 4200 if (YieldsPoison.count(&I)) { 4201 for (const User *User : I.users()) { 4202 const Instruction *UserI = cast<Instruction>(User); 4203 if (propagatesFullPoison(UserI)) 4204 YieldsPoison.insert(User); 4205 } 4206 } 4207 } 4208 4209 if (auto *NextBB = BB->getSingleSuccessor()) { 4210 if (Visited.insert(NextBB).second) { 4211 BB = NextBB; 4212 Begin = BB->getFirstNonPHI()->getIterator(); 4213 End = BB->end(); 4214 continue; 4215 } 4216 } 4217 4218 break; 4219 } 4220 return false; 4221 } 4222 4223 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4224 if (FMF.noNaNs()) 4225 return true; 4226 4227 if (auto *C = dyn_cast<ConstantFP>(V)) 4228 return !C->isNaN(); 4229 return false; 4230 } 4231 4232 static bool isKnownNonZero(const Value *V) { 4233 if (auto *C = dyn_cast<ConstantFP>(V)) 4234 return !C->isZero(); 4235 return false; 4236 } 4237 4238 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4239 /// Given non-min/max outer cmp/select from the clamp pattern this 4240 /// function recognizes if it can be substitued by a "canonical" min/max 4241 /// pattern. 4242 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4243 Value *CmpLHS, Value *CmpRHS, 4244 Value *TrueVal, Value *FalseVal, 4245 Value *&LHS, Value *&RHS) { 4246 // Try to match 4247 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4248 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4249 // and return description of the outer Max/Min. 4250 4251 // First, check if select has inverse order: 4252 if (CmpRHS == FalseVal) { 4253 std::swap(TrueVal, FalseVal); 4254 Pred = CmpInst::getInversePredicate(Pred); 4255 } 4256 4257 // Assume success now. If there's no match, callers should not use these anyway. 4258 LHS = TrueVal; 4259 RHS = FalseVal; 4260 4261 const APFloat *FC1; 4262 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4263 return {SPF_UNKNOWN, SPNB_NA, false}; 4264 4265 const APFloat *FC2; 4266 switch (Pred) { 4267 case CmpInst::FCMP_OLT: 4268 case CmpInst::FCMP_OLE: 4269 case CmpInst::FCMP_ULT: 4270 case CmpInst::FCMP_ULE: 4271 if (match(FalseVal, 4272 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4273 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4274 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4275 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4276 break; 4277 case CmpInst::FCMP_OGT: 4278 case CmpInst::FCMP_OGE: 4279 case CmpInst::FCMP_UGT: 4280 case CmpInst::FCMP_UGE: 4281 if (match(FalseVal, 4282 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4283 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4284 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4285 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4286 break; 4287 default: 4288 break; 4289 } 4290 4291 return {SPF_UNKNOWN, SPNB_NA, false}; 4292 } 4293 4294 /// Recognize variations of: 4295 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4296 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4297 Value *CmpLHS, Value *CmpRHS, 4298 Value *TrueVal, Value *FalseVal) { 4299 // Swap the select operands and predicate to match the patterns below. 4300 if (CmpRHS != TrueVal) { 4301 Pred = ICmpInst::getSwappedPredicate(Pred); 4302 std::swap(TrueVal, FalseVal); 4303 } 4304 const APInt *C1; 4305 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4306 const APInt *C2; 4307 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4308 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4309 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4310 return {SPF_SMAX, SPNB_NA, false}; 4311 4312 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4313 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4314 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4315 return {SPF_SMIN, SPNB_NA, false}; 4316 4317 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4318 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4319 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4320 return {SPF_UMAX, SPNB_NA, false}; 4321 4322 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4323 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4324 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4325 return {SPF_UMIN, SPNB_NA, false}; 4326 } 4327 return {SPF_UNKNOWN, SPNB_NA, false}; 4328 } 4329 4330 /// Recognize variations of: 4331 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4332 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4333 Value *CmpLHS, Value *CmpRHS, 4334 Value *TVal, Value *FVal, 4335 unsigned Depth) { 4336 // TODO: Allow FP min/max with nnan/nsz. 4337 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4338 4339 Value *A, *B; 4340 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4341 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4342 return {SPF_UNKNOWN, SPNB_NA, false}; 4343 4344 Value *C, *D; 4345 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4346 if (L.Flavor != R.Flavor) 4347 return {SPF_UNKNOWN, SPNB_NA, false}; 4348 4349 // We have something like: x Pred y ? min(a, b) : min(c, d). 4350 // Try to match the compare to the min/max operations of the select operands. 4351 // First, make sure we have the right compare predicate. 4352 switch (L.Flavor) { 4353 case SPF_SMIN: 4354 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4355 Pred = ICmpInst::getSwappedPredicate(Pred); 4356 std::swap(CmpLHS, CmpRHS); 4357 } 4358 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4359 break; 4360 return {SPF_UNKNOWN, SPNB_NA, false}; 4361 case SPF_SMAX: 4362 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4363 Pred = ICmpInst::getSwappedPredicate(Pred); 4364 std::swap(CmpLHS, CmpRHS); 4365 } 4366 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4367 break; 4368 return {SPF_UNKNOWN, SPNB_NA, false}; 4369 case SPF_UMIN: 4370 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4371 Pred = ICmpInst::getSwappedPredicate(Pred); 4372 std::swap(CmpLHS, CmpRHS); 4373 } 4374 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4375 break; 4376 return {SPF_UNKNOWN, SPNB_NA, false}; 4377 case SPF_UMAX: 4378 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4379 Pred = ICmpInst::getSwappedPredicate(Pred); 4380 std::swap(CmpLHS, CmpRHS); 4381 } 4382 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4383 break; 4384 return {SPF_UNKNOWN, SPNB_NA, false}; 4385 default: 4386 return {SPF_UNKNOWN, SPNB_NA, false}; 4387 } 4388 4389 // If there is a common operand in the already matched min/max and the other 4390 // min/max operands match the compare operands (either directly or inverted), 4391 // then this is min/max of the same flavor. 4392 4393 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4394 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4395 if (D == B) { 4396 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4397 match(A, m_Not(m_Specific(CmpRHS))))) 4398 return {L.Flavor, SPNB_NA, false}; 4399 } 4400 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4401 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4402 if (C == B) { 4403 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4404 match(A, m_Not(m_Specific(CmpRHS))))) 4405 return {L.Flavor, SPNB_NA, false}; 4406 } 4407 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4408 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4409 if (D == A) { 4410 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4411 match(B, m_Not(m_Specific(CmpRHS))))) 4412 return {L.Flavor, SPNB_NA, false}; 4413 } 4414 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4415 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4416 if (C == A) { 4417 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4418 match(B, m_Not(m_Specific(CmpRHS))))) 4419 return {L.Flavor, SPNB_NA, false}; 4420 } 4421 4422 return {SPF_UNKNOWN, SPNB_NA, false}; 4423 } 4424 4425 /// Match non-obvious integer minimum and maximum sequences. 4426 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4427 Value *CmpLHS, Value *CmpRHS, 4428 Value *TrueVal, Value *FalseVal, 4429 Value *&LHS, Value *&RHS, 4430 unsigned Depth) { 4431 // Assume success. If there's no match, callers should not use these anyway. 4432 LHS = TrueVal; 4433 RHS = FalseVal; 4434 4435 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4436 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4437 return SPR; 4438 4439 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4440 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4441 return SPR; 4442 4443 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4444 return {SPF_UNKNOWN, SPNB_NA, false}; 4445 4446 // Z = X -nsw Y 4447 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4448 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4449 if (match(TrueVal, m_Zero()) && 4450 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4451 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4452 4453 // Z = X -nsw Y 4454 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4455 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4456 if (match(FalseVal, m_Zero()) && 4457 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4458 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4459 4460 const APInt *C1; 4461 if (!match(CmpRHS, m_APInt(C1))) 4462 return {SPF_UNKNOWN, SPNB_NA, false}; 4463 4464 // An unsigned min/max can be written with a signed compare. 4465 const APInt *C2; 4466 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4467 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4468 // Is the sign bit set? 4469 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4470 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4471 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4472 C2->isMaxSignedValue()) 4473 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4474 4475 // Is the sign bit clear? 4476 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4477 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4478 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4479 C2->isMinSignedValue()) 4480 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4481 } 4482 4483 // Look through 'not' ops to find disguised signed min/max. 4484 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4485 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4486 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4487 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4488 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4489 4490 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4491 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4492 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4493 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4494 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4495 4496 return {SPF_UNKNOWN, SPNB_NA, false}; 4497 } 4498 4499 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4500 FastMathFlags FMF, 4501 Value *CmpLHS, Value *CmpRHS, 4502 Value *TrueVal, Value *FalseVal, 4503 Value *&LHS, Value *&RHS, 4504 unsigned Depth) { 4505 LHS = CmpLHS; 4506 RHS = CmpRHS; 4507 4508 // Signed zero may return inconsistent results between implementations. 4509 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4510 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4511 // Therefore, we behave conservatively and only proceed if at least one of the 4512 // operands is known to not be zero or if we don't care about signed zero. 4513 switch (Pred) { 4514 default: break; 4515 // FIXME: Include OGT/OLT/UGT/ULT. 4516 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4517 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4518 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4519 !isKnownNonZero(CmpRHS)) 4520 return {SPF_UNKNOWN, SPNB_NA, false}; 4521 } 4522 4523 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4524 bool Ordered = false; 4525 4526 // When given one NaN and one non-NaN input: 4527 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4528 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4529 // ordered comparison fails), which could be NaN or non-NaN. 4530 // so here we discover exactly what NaN behavior is required/accepted. 4531 if (CmpInst::isFPPredicate(Pred)) { 4532 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4533 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4534 4535 if (LHSSafe && RHSSafe) { 4536 // Both operands are known non-NaN. 4537 NaNBehavior = SPNB_RETURNS_ANY; 4538 } else if (CmpInst::isOrdered(Pred)) { 4539 // An ordered comparison will return false when given a NaN, so it 4540 // returns the RHS. 4541 Ordered = true; 4542 if (LHSSafe) 4543 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4544 NaNBehavior = SPNB_RETURNS_NAN; 4545 else if (RHSSafe) 4546 NaNBehavior = SPNB_RETURNS_OTHER; 4547 else 4548 // Completely unsafe. 4549 return {SPF_UNKNOWN, SPNB_NA, false}; 4550 } else { 4551 Ordered = false; 4552 // An unordered comparison will return true when given a NaN, so it 4553 // returns the LHS. 4554 if (LHSSafe) 4555 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4556 NaNBehavior = SPNB_RETURNS_OTHER; 4557 else if (RHSSafe) 4558 NaNBehavior = SPNB_RETURNS_NAN; 4559 else 4560 // Completely unsafe. 4561 return {SPF_UNKNOWN, SPNB_NA, false}; 4562 } 4563 } 4564 4565 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4566 std::swap(CmpLHS, CmpRHS); 4567 Pred = CmpInst::getSwappedPredicate(Pred); 4568 if (NaNBehavior == SPNB_RETURNS_NAN) 4569 NaNBehavior = SPNB_RETURNS_OTHER; 4570 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4571 NaNBehavior = SPNB_RETURNS_NAN; 4572 Ordered = !Ordered; 4573 } 4574 4575 // ([if]cmp X, Y) ? X : Y 4576 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4577 switch (Pred) { 4578 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4579 case ICmpInst::ICMP_UGT: 4580 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4581 case ICmpInst::ICMP_SGT: 4582 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4583 case ICmpInst::ICMP_ULT: 4584 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4585 case ICmpInst::ICMP_SLT: 4586 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4587 case FCmpInst::FCMP_UGT: 4588 case FCmpInst::FCMP_UGE: 4589 case FCmpInst::FCMP_OGT: 4590 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4591 case FCmpInst::FCMP_ULT: 4592 case FCmpInst::FCMP_ULE: 4593 case FCmpInst::FCMP_OLT: 4594 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4595 } 4596 } 4597 4598 const APInt *C1; 4599 if (match(CmpRHS, m_APInt(C1))) { 4600 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4601 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4602 // Set RHS to the negate operand. LHS was assigned to CmpLHS earlier. 4603 RHS = (CmpLHS == TrueVal) ? FalseVal : TrueVal; 4604 4605 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4606 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4607 if (Pred == ICmpInst::ICMP_SGT && 4608 (C1->isNullValue() || C1->isAllOnesValue())) { 4609 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4610 } 4611 4612 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4613 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4614 if (Pred == ICmpInst::ICMP_SLT && 4615 (C1->isNullValue() || C1->isOneValue())) { 4616 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4617 } 4618 } 4619 } 4620 4621 if (CmpInst::isIntPredicate(Pred)) 4622 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4623 4624 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4625 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4626 // semantics than minNum. Be conservative in such case. 4627 if (NaNBehavior != SPNB_RETURNS_ANY || 4628 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4629 !isKnownNonZero(CmpRHS))) 4630 return {SPF_UNKNOWN, SPNB_NA, false}; 4631 4632 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4633 } 4634 4635 /// Helps to match a select pattern in case of a type mismatch. 4636 /// 4637 /// The function processes the case when type of true and false values of a 4638 /// select instruction differs from type of the cmp instruction operands because 4639 /// of a cast instruction. The function checks if it is legal to move the cast 4640 /// operation after "select". If yes, it returns the new second value of 4641 /// "select" (with the assumption that cast is moved): 4642 /// 1. As operand of cast instruction when both values of "select" are same cast 4643 /// instructions. 4644 /// 2. As restored constant (by applying reverse cast operation) when the first 4645 /// value of the "select" is a cast operation and the second value is a 4646 /// constant. 4647 /// NOTE: We return only the new second value because the first value could be 4648 /// accessed as operand of cast instruction. 4649 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4650 Instruction::CastOps *CastOp) { 4651 auto *Cast1 = dyn_cast<CastInst>(V1); 4652 if (!Cast1) 4653 return nullptr; 4654 4655 *CastOp = Cast1->getOpcode(); 4656 Type *SrcTy = Cast1->getSrcTy(); 4657 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4658 // If V1 and V2 are both the same cast from the same type, look through V1. 4659 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4660 return Cast2->getOperand(0); 4661 return nullptr; 4662 } 4663 4664 auto *C = dyn_cast<Constant>(V2); 4665 if (!C) 4666 return nullptr; 4667 4668 Constant *CastedTo = nullptr; 4669 switch (*CastOp) { 4670 case Instruction::ZExt: 4671 if (CmpI->isUnsigned()) 4672 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4673 break; 4674 case Instruction::SExt: 4675 if (CmpI->isSigned()) 4676 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4677 break; 4678 case Instruction::Trunc: 4679 Constant *CmpConst; 4680 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4681 CmpConst->getType() == SrcTy) { 4682 // Here we have the following case: 4683 // 4684 // %cond = cmp iN %x, CmpConst 4685 // %tr = trunc iN %x to iK 4686 // %narrowsel = select i1 %cond, iK %t, iK C 4687 // 4688 // We can always move trunc after select operation: 4689 // 4690 // %cond = cmp iN %x, CmpConst 4691 // %widesel = select i1 %cond, iN %x, iN CmpConst 4692 // %tr = trunc iN %widesel to iK 4693 // 4694 // Note that C could be extended in any way because we don't care about 4695 // upper bits after truncation. It can't be abs pattern, because it would 4696 // look like: 4697 // 4698 // select i1 %cond, x, -x. 4699 // 4700 // So only min/max pattern could be matched. Such match requires widened C 4701 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4702 // CmpConst == C is checked below. 4703 CastedTo = CmpConst; 4704 } else { 4705 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4706 } 4707 break; 4708 case Instruction::FPTrunc: 4709 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4710 break; 4711 case Instruction::FPExt: 4712 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4713 break; 4714 case Instruction::FPToUI: 4715 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4716 break; 4717 case Instruction::FPToSI: 4718 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4719 break; 4720 case Instruction::UIToFP: 4721 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4722 break; 4723 case Instruction::SIToFP: 4724 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4725 break; 4726 default: 4727 break; 4728 } 4729 4730 if (!CastedTo) 4731 return nullptr; 4732 4733 // Make sure the cast doesn't lose any information. 4734 Constant *CastedBack = 4735 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4736 if (CastedBack != C) 4737 return nullptr; 4738 4739 return CastedTo; 4740 } 4741 4742 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4743 Instruction::CastOps *CastOp, 4744 unsigned Depth) { 4745 if (Depth >= MaxDepth) 4746 return {SPF_UNKNOWN, SPNB_NA, false}; 4747 4748 SelectInst *SI = dyn_cast<SelectInst>(V); 4749 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4750 4751 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4752 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4753 4754 CmpInst::Predicate Pred = CmpI->getPredicate(); 4755 Value *CmpLHS = CmpI->getOperand(0); 4756 Value *CmpRHS = CmpI->getOperand(1); 4757 Value *TrueVal = SI->getTrueValue(); 4758 Value *FalseVal = SI->getFalseValue(); 4759 FastMathFlags FMF; 4760 if (isa<FPMathOperator>(CmpI)) 4761 FMF = CmpI->getFastMathFlags(); 4762 4763 // Bail out early. 4764 if (CmpI->isEquality()) 4765 return {SPF_UNKNOWN, SPNB_NA, false}; 4766 4767 // Deal with type mismatches. 4768 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4769 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4770 // If this is a potential fmin/fmax with a cast to integer, then ignore 4771 // -0.0 because there is no corresponding integer value. 4772 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4773 FMF.setNoSignedZeros(); 4774 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4775 cast<CastInst>(TrueVal)->getOperand(0), C, 4776 LHS, RHS, Depth); 4777 } 4778 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4779 // If this is a potential fmin/fmax with a cast to integer, then ignore 4780 // -0.0 because there is no corresponding integer value. 4781 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4782 FMF.setNoSignedZeros(); 4783 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4784 C, cast<CastInst>(FalseVal)->getOperand(0), 4785 LHS, RHS, Depth); 4786 } 4787 } 4788 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4789 LHS, RHS, Depth); 4790 } 4791 4792 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 4793 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 4794 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 4795 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 4796 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 4797 if (SPF == SPF_FMINNUM) 4798 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 4799 if (SPF == SPF_FMAXNUM) 4800 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 4801 llvm_unreachable("unhandled!"); 4802 } 4803 4804 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 4805 if (SPF == SPF_SMIN) return SPF_SMAX; 4806 if (SPF == SPF_UMIN) return SPF_UMAX; 4807 if (SPF == SPF_SMAX) return SPF_SMIN; 4808 if (SPF == SPF_UMAX) return SPF_UMIN; 4809 llvm_unreachable("unhandled!"); 4810 } 4811 4812 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 4813 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 4814 } 4815 4816 /// Return true if "icmp Pred LHS RHS" is always true. 4817 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4818 const Value *RHS, const DataLayout &DL, 4819 unsigned Depth) { 4820 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4821 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4822 return true; 4823 4824 switch (Pred) { 4825 default: 4826 return false; 4827 4828 case CmpInst::ICMP_SLE: { 4829 const APInt *C; 4830 4831 // LHS s<= LHS +_{nsw} C if C >= 0 4832 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4833 return !C->isNegative(); 4834 return false; 4835 } 4836 4837 case CmpInst::ICMP_ULE: { 4838 const APInt *C; 4839 4840 // LHS u<= LHS +_{nuw} C for any C 4841 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4842 return true; 4843 4844 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4845 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4846 const Value *&X, 4847 const APInt *&CA, const APInt *&CB) { 4848 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4849 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4850 return true; 4851 4852 // If X & C == 0 then (X | C) == X +_{nuw} C 4853 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4854 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4855 KnownBits Known(CA->getBitWidth()); 4856 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4857 /*CxtI*/ nullptr, /*DT*/ nullptr); 4858 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4859 return true; 4860 } 4861 4862 return false; 4863 }; 4864 4865 const Value *X; 4866 const APInt *CLHS, *CRHS; 4867 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4868 return CLHS->ule(*CRHS); 4869 4870 return false; 4871 } 4872 } 4873 } 4874 4875 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4876 /// ALHS ARHS" is true. Otherwise, return None. 4877 static Optional<bool> 4878 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4879 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4880 const DataLayout &DL, unsigned Depth) { 4881 switch (Pred) { 4882 default: 4883 return None; 4884 4885 case CmpInst::ICMP_SLT: 4886 case CmpInst::ICMP_SLE: 4887 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4888 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4889 return true; 4890 return None; 4891 4892 case CmpInst::ICMP_ULT: 4893 case CmpInst::ICMP_ULE: 4894 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4895 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4896 return true; 4897 return None; 4898 } 4899 } 4900 4901 /// Return true if the operands of the two compares match. IsSwappedOps is true 4902 /// when the operands match, but are swapped. 4903 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4904 const Value *BLHS, const Value *BRHS, 4905 bool &IsSwappedOps) { 4906 4907 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4908 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4909 return IsMatchingOps || IsSwappedOps; 4910 } 4911 4912 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4913 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4914 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4915 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4916 const Value *ALHS, 4917 const Value *ARHS, 4918 CmpInst::Predicate BPred, 4919 const Value *BLHS, 4920 const Value *BRHS, 4921 bool IsSwappedOps) { 4922 // Canonicalize the operands so they're matching. 4923 if (IsSwappedOps) { 4924 std::swap(BLHS, BRHS); 4925 BPred = ICmpInst::getSwappedPredicate(BPred); 4926 } 4927 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4928 return true; 4929 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4930 return false; 4931 4932 return None; 4933 } 4934 4935 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4936 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4937 /// C2" is false. Otherwise, return None if we can't infer anything. 4938 static Optional<bool> 4939 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4940 const ConstantInt *C1, 4941 CmpInst::Predicate BPred, 4942 const Value *BLHS, const ConstantInt *C2) { 4943 assert(ALHS == BLHS && "LHS operands must match."); 4944 ConstantRange DomCR = 4945 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4946 ConstantRange CR = 4947 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4948 ConstantRange Intersection = DomCR.intersectWith(CR); 4949 ConstantRange Difference = DomCR.difference(CR); 4950 if (Intersection.isEmptySet()) 4951 return false; 4952 if (Difference.isEmptySet()) 4953 return true; 4954 return None; 4955 } 4956 4957 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4958 /// false. Otherwise, return None if we can't infer anything. 4959 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4960 const ICmpInst *RHS, 4961 const DataLayout &DL, bool LHSIsTrue, 4962 unsigned Depth) { 4963 Value *ALHS = LHS->getOperand(0); 4964 Value *ARHS = LHS->getOperand(1); 4965 // The rest of the logic assumes the LHS condition is true. If that's not the 4966 // case, invert the predicate to make it so. 4967 ICmpInst::Predicate APred = 4968 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4969 4970 Value *BLHS = RHS->getOperand(0); 4971 Value *BRHS = RHS->getOperand(1); 4972 ICmpInst::Predicate BPred = RHS->getPredicate(); 4973 4974 // Can we infer anything when the two compares have matching operands? 4975 bool IsSwappedOps; 4976 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4977 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4978 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4979 return Implication; 4980 // No amount of additional analysis will infer the second condition, so 4981 // early exit. 4982 return None; 4983 } 4984 4985 // Can we infer anything when the LHS operands match and the RHS operands are 4986 // constants (not necessarily matching)? 4987 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4988 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4989 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4990 cast<ConstantInt>(BRHS))) 4991 return Implication; 4992 // No amount of additional analysis will infer the second condition, so 4993 // early exit. 4994 return None; 4995 } 4996 4997 if (APred == BPred) 4998 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4999 return None; 5000 } 5001 5002 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5003 /// false. Otherwise, return None if we can't infer anything. We expect the 5004 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5005 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5006 const ICmpInst *RHS, 5007 const DataLayout &DL, bool LHSIsTrue, 5008 unsigned Depth) { 5009 // The LHS must be an 'or' or an 'and' instruction. 5010 assert((LHS->getOpcode() == Instruction::And || 5011 LHS->getOpcode() == Instruction::Or) && 5012 "Expected LHS to be 'and' or 'or'."); 5013 5014 assert(Depth <= MaxDepth && "Hit recursion limit"); 5015 5016 // If the result of an 'or' is false, then we know both legs of the 'or' are 5017 // false. Similarly, if the result of an 'and' is true, then we know both 5018 // legs of the 'and' are true. 5019 Value *ALHS, *ARHS; 5020 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5021 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5022 // FIXME: Make this non-recursion. 5023 if (Optional<bool> Implication = 5024 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5025 return Implication; 5026 if (Optional<bool> Implication = 5027 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5028 return Implication; 5029 return None; 5030 } 5031 return None; 5032 } 5033 5034 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5035 const DataLayout &DL, bool LHSIsTrue, 5036 unsigned Depth) { 5037 // Bail out when we hit the limit. 5038 if (Depth == MaxDepth) 5039 return None; 5040 5041 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5042 // example. 5043 if (LHS->getType() != RHS->getType()) 5044 return None; 5045 5046 Type *OpTy = LHS->getType(); 5047 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5048 5049 // LHS ==> RHS by definition 5050 if (LHS == RHS) 5051 return LHSIsTrue; 5052 5053 // FIXME: Extending the code below to handle vectors. 5054 if (OpTy->isVectorTy()) 5055 return None; 5056 5057 assert(OpTy->isIntegerTy(1) && "implied by above"); 5058 5059 // Both LHS and RHS are icmps. 5060 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5061 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5062 if (LHSCmp && RHSCmp) 5063 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5064 5065 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5066 // an icmp. FIXME: Add support for and/or on the RHS. 5067 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5068 if (LHSBO && RHSCmp) { 5069 if ((LHSBO->getOpcode() == Instruction::And || 5070 LHSBO->getOpcode() == Instruction::Or)) 5071 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5072 } 5073 return None; 5074 } 5075