1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <cstring> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 const unsigned MaxDepth = 6; 43 44 /// Enable an experimental feature to leverage information about dominating 45 /// conditions to compute known bits. The individual options below control how 46 /// hard we search. The defaults are chosen to be fairly aggressive. If you 47 /// run into compile time problems when testing, scale them back and report 48 /// your findings. 49 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 50 cl::Hidden, cl::init(false)); 51 52 // This is expensive, so we only do it for the top level query value. 53 // (TODO: evaluate cost vs profit, consider higher thresholds) 54 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 55 cl::Hidden, cl::init(1)); 56 57 /// How many dominating blocks should be scanned looking for dominating 58 /// conditions? 59 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 60 cl::Hidden, 61 cl::init(20)); 62 63 // Controls the number of uses of the value searched for possible 64 // dominating comparisons. 65 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 66 cl::Hidden, cl::init(20)); 67 68 // If true, don't consider only compares whose only use is a branch. 69 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 70 cl::Hidden, cl::init(false)); 71 72 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 73 /// 0). For vector types, returns the element type's bitwidth. 74 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 75 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 76 return BitWidth; 77 78 return DL.getPointerTypeSizeInBits(Ty); 79 } 80 81 // Many of these functions have internal versions that take an assumption 82 // exclusion set. This is because of the potential for mutual recursion to 83 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 84 // classic case of this is assume(x = y), which will attempt to determine 85 // bits in x from bits in y, which will attempt to determine bits in y from 86 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 87 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 88 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 89 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 90 91 namespace { 92 // Simplifying using an assume can only be done in a particular control-flow 93 // context (the context instruction provides that context). If an assume and 94 // the context instruction are not in the same block then the DT helps in 95 // figuring out if we can use it. 96 struct Query { 97 ExclInvsSet ExclInvs; 98 AssumptionCache *AC; 99 const Instruction *CxtI; 100 const DominatorTree *DT; 101 102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 103 const DominatorTree *DT = nullptr) 104 : AC(AC), CxtI(CxtI), DT(DT) {} 105 106 Query(const Query &Q, const Value *NewExcl) 107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 108 ExclInvs.insert(NewExcl); 109 } 110 }; 111 } // end anonymous namespace 112 113 // Given the provided Value and, potentially, a context instruction, return 114 // the preferred context instruction (if any). 115 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 116 // If we've been provided with a context instruction, then use that (provided 117 // it has been inserted). 118 if (CxtI && CxtI->getParent()) 119 return CxtI; 120 121 // If the value is really an already-inserted instruction, then use that. 122 CxtI = dyn_cast<Instruction>(V); 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 return nullptr; 127 } 128 129 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 130 const DataLayout &DL, unsigned Depth, 131 const Query &Q); 132 133 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 134 const DataLayout &DL, unsigned Depth, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 138 Query(AC, safeCxtI(V, CxtI), DT)); 139 } 140 141 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 142 AssumptionCache *AC, const Instruction *CxtI, 143 const DominatorTree *DT) { 144 assert(LHS->getType() == RHS->getType() && 145 "LHS and RHS should have the same type"); 146 assert(LHS->getType()->isIntOrIntVectorTy() && 147 "LHS and RHS should be integers"); 148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 154 } 155 156 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 157 const DataLayout &DL, unsigned Depth, 158 const Query &Q); 159 160 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 161 const DataLayout &DL, unsigned Depth, 162 AssumptionCache *AC, const Instruction *CxtI, 163 const DominatorTree *DT) { 164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 165 Query(AC, safeCxtI(V, CxtI), DT)); 166 } 167 168 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 169 const Query &Q, const DataLayout &DL); 170 171 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 172 unsigned Depth, AssumptionCache *AC, 173 const Instruction *CxtI, 174 const DominatorTree *DT) { 175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 176 Query(AC, safeCxtI(V, CxtI), DT), DL); 177 } 178 179 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 180 const Query &Q); 181 182 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 183 AssumptionCache *AC, const Instruction *CxtI, 184 const DominatorTree *DT) { 185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 186 } 187 188 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 189 AssumptionCache *AC, const Instruction *CxtI, 190 const DominatorTree *DT) { 191 bool NonNegative, Negative; 192 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 193 return NonNegative; 194 } 195 196 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 197 unsigned Depth, const Query &Q); 198 199 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 200 unsigned Depth, AssumptionCache *AC, 201 const Instruction *CxtI, const DominatorTree *DT) { 202 return ::MaskedValueIsZero(V, Mask, DL, Depth, 203 Query(AC, safeCxtI(V, CxtI), DT)); 204 } 205 206 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 207 unsigned Depth, const Query &Q); 208 209 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 210 unsigned Depth, AssumptionCache *AC, 211 const Instruction *CxtI, 212 const DominatorTree *DT) { 213 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 214 } 215 216 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 217 APInt &KnownZero, APInt &KnownOne, 218 APInt &KnownZero2, APInt &KnownOne2, 219 const DataLayout &DL, unsigned Depth, 220 const Query &Q) { 221 if (!Add) { 222 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 223 // We know that the top bits of C-X are clear if X contains less bits 224 // than C (i.e. no wrap-around can happen). For example, 20-X is 225 // positive if we can prove that X is >= 0 and < 16. 226 if (!CLHS->getValue().isNegative()) { 227 unsigned BitWidth = KnownZero.getBitWidth(); 228 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 229 // NLZ can't be BitWidth with no sign bit 230 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 231 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 232 233 // If all of the MaskV bits are known to be zero, then we know the 234 // output top bits are zero, because we now know that the output is 235 // from [0-C]. 236 if ((KnownZero2 & MaskV) == MaskV) { 237 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 238 // Top bits known zero. 239 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 240 } 241 } 242 } 243 } 244 245 unsigned BitWidth = KnownZero.getBitWidth(); 246 247 // If an initial sequence of bits in the result is not needed, the 248 // corresponding bits in the operands are not needed. 249 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 250 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 251 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 252 253 // Carry in a 1 for a subtract, rather than a 0. 254 APInt CarryIn(BitWidth, 0); 255 if (!Add) { 256 // Sum = LHS + ~RHS + 1 257 std::swap(KnownZero2, KnownOne2); 258 CarryIn.setBit(0); 259 } 260 261 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 262 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 263 264 // Compute known bits of the carry. 265 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 266 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 267 268 // Compute set of known bits (where all three relevant bits are known). 269 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 270 APInt RHSKnown = KnownZero2 | KnownOne2; 271 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 272 APInt Known = LHSKnown & RHSKnown & CarryKnown; 273 274 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 275 "known bits of sum differ"); 276 277 // Compute known bits of the result. 278 KnownZero = ~PossibleSumOne & Known; 279 KnownOne = PossibleSumOne & Known; 280 281 // Are we still trying to solve for the sign bit? 282 if (!Known.isNegative()) { 283 if (NSW) { 284 // Adding two non-negative numbers, or subtracting a negative number from 285 // a non-negative one, can't wrap into negative. 286 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 287 KnownZero |= APInt::getSignBit(BitWidth); 288 // Adding two negative numbers, or subtracting a non-negative number from 289 // a negative one, can't wrap into non-negative. 290 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 291 KnownOne |= APInt::getSignBit(BitWidth); 292 } 293 } 294 } 295 296 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 297 APInt &KnownZero, APInt &KnownOne, 298 APInt &KnownZero2, APInt &KnownOne2, 299 const DataLayout &DL, unsigned Depth, 300 const Query &Q) { 301 unsigned BitWidth = KnownZero.getBitWidth(); 302 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 303 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 304 305 bool isKnownNegative = false; 306 bool isKnownNonNegative = false; 307 // If the multiplication is known not to overflow, compute the sign bit. 308 if (NSW) { 309 if (Op0 == Op1) { 310 // The product of a number with itself is non-negative. 311 isKnownNonNegative = true; 312 } else { 313 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 314 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 315 bool isKnownNegativeOp1 = KnownOne.isNegative(); 316 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 317 // The product of two numbers with the same sign is non-negative. 318 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 319 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 320 // The product of a negative number and a non-negative number is either 321 // negative or zero. 322 if (!isKnownNonNegative) 323 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 324 isKnownNonZero(Op0, DL, Depth, Q)) || 325 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 326 isKnownNonZero(Op1, DL, Depth, Q)); 327 } 328 } 329 330 // If low bits are zero in either operand, output low known-0 bits. 331 // Also compute a conservative estimate for high known-0 bits. 332 // More trickiness is possible, but this is sufficient for the 333 // interesting case of alignment computation. 334 KnownOne.clearAllBits(); 335 unsigned TrailZ = KnownZero.countTrailingOnes() + 336 KnownZero2.countTrailingOnes(); 337 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 338 KnownZero2.countLeadingOnes(), 339 BitWidth) - BitWidth; 340 341 TrailZ = std::min(TrailZ, BitWidth); 342 LeadZ = std::min(LeadZ, BitWidth); 343 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 344 APInt::getHighBitsSet(BitWidth, LeadZ); 345 346 // Only make use of no-wrap flags if we failed to compute the sign bit 347 // directly. This matters if the multiplication always overflows, in 348 // which case we prefer to follow the result of the direct computation, 349 // though as the program is invoking undefined behaviour we can choose 350 // whatever we like here. 351 if (isKnownNonNegative && !KnownOne.isNegative()) 352 KnownZero.setBit(BitWidth - 1); 353 else if (isKnownNegative && !KnownZero.isNegative()) 354 KnownOne.setBit(BitWidth - 1); 355 } 356 357 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 358 APInt &KnownZero) { 359 unsigned BitWidth = KnownZero.getBitWidth(); 360 unsigned NumRanges = Ranges.getNumOperands() / 2; 361 assert(NumRanges >= 1); 362 363 // Use the high end of the ranges to find leading zeros. 364 unsigned MinLeadingZeros = BitWidth; 365 for (unsigned i = 0; i < NumRanges; ++i) { 366 ConstantInt *Lower = 367 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 368 ConstantInt *Upper = 369 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 370 ConstantRange Range(Lower->getValue(), Upper->getValue()); 371 if (Range.isWrappedSet()) 372 MinLeadingZeros = 0; // -1 has no zeros 373 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 374 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 375 } 376 377 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 378 } 379 380 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 381 SmallVector<const Value *, 16> WorkSet(1, I); 382 SmallPtrSet<const Value *, 32> Visited; 383 SmallPtrSet<const Value *, 16> EphValues; 384 385 while (!WorkSet.empty()) { 386 const Value *V = WorkSet.pop_back_val(); 387 if (!Visited.insert(V).second) 388 continue; 389 390 // If all uses of this value are ephemeral, then so is this value. 391 bool FoundNEUse = false; 392 for (const User *I : V->users()) 393 if (!EphValues.count(I)) { 394 FoundNEUse = true; 395 break; 396 } 397 398 if (!FoundNEUse) { 399 if (V == E) 400 return true; 401 402 EphValues.insert(V); 403 if (const User *U = dyn_cast<User>(V)) 404 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 405 J != JE; ++J) { 406 if (isSafeToSpeculativelyExecute(*J)) 407 WorkSet.push_back(*J); 408 } 409 } 410 } 411 412 return false; 413 } 414 415 // Is this an intrinsic that cannot be speculated but also cannot trap? 416 static bool isAssumeLikeIntrinsic(const Instruction *I) { 417 if (const CallInst *CI = dyn_cast<CallInst>(I)) 418 if (Function *F = CI->getCalledFunction()) 419 switch (F->getIntrinsicID()) { 420 default: break; 421 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 422 case Intrinsic::assume: 423 case Intrinsic::dbg_declare: 424 case Intrinsic::dbg_value: 425 case Intrinsic::invariant_start: 426 case Intrinsic::invariant_end: 427 case Intrinsic::lifetime_start: 428 case Intrinsic::lifetime_end: 429 case Intrinsic::objectsize: 430 case Intrinsic::ptr_annotation: 431 case Intrinsic::var_annotation: 432 return true; 433 } 434 435 return false; 436 } 437 438 static bool isValidAssumeForContext(Value *V, const Query &Q) { 439 Instruction *Inv = cast<Instruction>(V); 440 441 // There are two restrictions on the use of an assume: 442 // 1. The assume must dominate the context (or the control flow must 443 // reach the assume whenever it reaches the context). 444 // 2. The context must not be in the assume's set of ephemeral values 445 // (otherwise we will use the assume to prove that the condition 446 // feeding the assume is trivially true, thus causing the removal of 447 // the assume). 448 449 if (Q.DT) { 450 if (Q.DT->dominates(Inv, Q.CxtI)) { 451 return true; 452 } else if (Inv->getParent() == Q.CxtI->getParent()) { 453 // The context comes first, but they're both in the same block. Make sure 454 // there is nothing in between that might interrupt the control flow. 455 for (BasicBlock::const_iterator I = 456 std::next(BasicBlock::const_iterator(Q.CxtI)), 457 IE(Inv); I != IE; ++I) 458 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 459 return false; 460 461 return !isEphemeralValueOf(Inv, Q.CxtI); 462 } 463 464 return false; 465 } 466 467 // When we don't have a DT, we do a limited search... 468 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 469 return true; 470 } else if (Inv->getParent() == Q.CxtI->getParent()) { 471 // Search forward from the assume until we reach the context (or the end 472 // of the block); the common case is that the assume will come first. 473 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 474 IE = Inv->getParent()->end(); I != IE; ++I) 475 if (&*I == Q.CxtI) 476 return true; 477 478 // The context must come first... 479 for (BasicBlock::const_iterator I = 480 std::next(BasicBlock::const_iterator(Q.CxtI)), 481 IE(Inv); I != IE; ++I) 482 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 483 return false; 484 485 return !isEphemeralValueOf(Inv, Q.CxtI); 486 } 487 488 return false; 489 } 490 491 bool llvm::isValidAssumeForContext(const Instruction *I, 492 const Instruction *CxtI, 493 const DominatorTree *DT) { 494 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 495 Query(nullptr, CxtI, DT)); 496 } 497 498 template<typename LHS, typename RHS> 499 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 500 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 501 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 502 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 503 } 504 505 template<typename LHS, typename RHS> 506 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 507 BinaryOp_match<RHS, LHS, Instruction::And>> 508 m_c_And(const LHS &L, const RHS &R) { 509 return m_CombineOr(m_And(L, R), m_And(R, L)); 510 } 511 512 template<typename LHS, typename RHS> 513 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 514 BinaryOp_match<RHS, LHS, Instruction::Or>> 515 m_c_Or(const LHS &L, const RHS &R) { 516 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 517 } 518 519 template<typename LHS, typename RHS> 520 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 521 BinaryOp_match<RHS, LHS, Instruction::Xor>> 522 m_c_Xor(const LHS &L, const RHS &R) { 523 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 524 } 525 526 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 527 /// true (at the context instruction.) This is mostly a utility function for 528 /// the prototype dominating conditions reasoning below. 529 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 530 APInt &KnownZero, 531 APInt &KnownOne, 532 const DataLayout &DL, 533 unsigned Depth, const Query &Q) { 534 Value *LHS = Cmp->getOperand(0); 535 Value *RHS = Cmp->getOperand(1); 536 // TODO: We could potentially be more aggressive here. This would be worth 537 // evaluating. If we can, explore commoning this code with the assume 538 // handling logic. 539 if (LHS != V && RHS != V) 540 return; 541 542 const unsigned BitWidth = KnownZero.getBitWidth(); 543 544 switch (Cmp->getPredicate()) { 545 default: 546 // We know nothing from this condition 547 break; 548 // TODO: implement unsigned bound from below (known one bits) 549 // TODO: common condition check implementations with assumes 550 // TODO: implement other patterns from assume (e.g. V & B == A) 551 case ICmpInst::ICMP_SGT: 552 if (LHS == V) { 553 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 554 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 555 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 556 // We know that the sign bit is zero. 557 KnownZero |= APInt::getSignBit(BitWidth); 558 } 559 } 560 break; 561 case ICmpInst::ICMP_EQ: 562 { 563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 564 if (LHS == V) 565 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 566 else if (RHS == V) 567 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 568 else 569 llvm_unreachable("missing use?"); 570 KnownZero |= KnownZeroTemp; 571 KnownOne |= KnownOneTemp; 572 } 573 break; 574 case ICmpInst::ICMP_ULE: 575 if (LHS == V) { 576 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 577 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 578 // The known zero bits carry over 579 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 580 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 581 } 582 break; 583 case ICmpInst::ICMP_ULT: 584 if (LHS == V) { 585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 587 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 588 // power of 2, then one more). 589 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 590 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 591 SignBits++; 592 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 593 } 594 break; 595 }; 596 } 597 598 /// Compute known bits in 'V' from conditions which are known to be true along 599 /// all paths leading to the context instruction. In particular, look for 600 /// cases where one branch of an interesting condition dominates the context 601 /// instruction. This does not do general dataflow. 602 /// NOTE: This code is EXPERIMENTAL and currently off by default. 603 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 604 APInt &KnownOne, 605 const DataLayout &DL, 606 unsigned Depth, 607 const Query &Q) { 608 // Need both the dominator tree and the query location to do anything useful 609 if (!Q.DT || !Q.CxtI) 610 return; 611 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 612 // The context instruction might be in a statically unreachable block. If 613 // so, asking dominator queries may yield suprising results. (e.g. the block 614 // may not have a dom tree node) 615 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 616 return; 617 618 // Avoid useless work 619 if (auto VI = dyn_cast<Instruction>(V)) 620 if (VI->getParent() == Cxt->getParent()) 621 return; 622 623 // Note: We currently implement two options. It's not clear which of these 624 // will survive long term, we need data for that. 625 // Option 1 - Try walking the dominator tree looking for conditions which 626 // might apply. This works well for local conditions (loop guards, etc..), 627 // but not as well for things far from the context instruction (presuming a 628 // low max blocks explored). If we can set an high enough limit, this would 629 // be all we need. 630 // Option 2 - We restrict out search to those conditions which are uses of 631 // the value we're interested in. This is independent of dom structure, 632 // but is slightly less powerful without looking through lots of use chains. 633 // It does handle conditions far from the context instruction (e.g. early 634 // function exits on entry) really well though. 635 636 // Option 1 - Search the dom tree 637 unsigned NumBlocksExplored = 0; 638 BasicBlock *Current = Cxt->getParent(); 639 while (true) { 640 // Stop searching if we've gone too far up the chain 641 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 642 break; 643 NumBlocksExplored++; 644 645 if (!Q.DT->getNode(Current)->getIDom()) 646 break; 647 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 648 if (!Current) 649 // found function entry 650 break; 651 652 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 653 if (!BI || BI->isUnconditional()) 654 continue; 655 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 656 if (!Cmp) 657 continue; 658 659 // We're looking for conditions that are guaranteed to hold at the context 660 // instruction. Finding a condition where one path dominates the context 661 // isn't enough because both the true and false cases could merge before 662 // the context instruction we're actually interested in. Instead, we need 663 // to ensure that the taken *edge* dominates the context instruction. We 664 // know that the edge must be reachable since we started from a reachable 665 // block. 666 BasicBlock *BB0 = BI->getSuccessor(0); 667 BasicBlockEdge Edge(BI->getParent(), BB0); 668 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 669 continue; 670 671 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 672 Q); 673 } 674 675 // Option 2 - Search the other uses of V 676 unsigned NumUsesExplored = 0; 677 for (auto U : V->users()) { 678 // Avoid massive lists 679 if (NumUsesExplored >= DomConditionsMaxUses) 680 break; 681 NumUsesExplored++; 682 // Consider only compare instructions uniquely controlling a branch 683 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 684 if (!Cmp) 685 continue; 686 687 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 688 continue; 689 690 for (auto *CmpU : Cmp->users()) { 691 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 692 if (!BI || BI->isUnconditional()) 693 continue; 694 // We're looking for conditions that are guaranteed to hold at the 695 // context instruction. Finding a condition where one path dominates 696 // the context isn't enough because both the true and false cases could 697 // merge before the context instruction we're actually interested in. 698 // Instead, we need to ensure that the taken *edge* dominates the context 699 // instruction. 700 BasicBlock *BB0 = BI->getSuccessor(0); 701 BasicBlockEdge Edge(BI->getParent(), BB0); 702 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 703 continue; 704 705 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 706 Q); 707 } 708 } 709 } 710 711 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 712 APInt &KnownOne, const DataLayout &DL, 713 unsigned Depth, const Query &Q) { 714 // Use of assumptions is context-sensitive. If we don't have a context, we 715 // cannot use them! 716 if (!Q.AC || !Q.CxtI) 717 return; 718 719 unsigned BitWidth = KnownZero.getBitWidth(); 720 721 for (auto &AssumeVH : Q.AC->assumptions()) { 722 if (!AssumeVH) 723 continue; 724 CallInst *I = cast<CallInst>(AssumeVH); 725 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 726 "Got assumption for the wrong function!"); 727 if (Q.ExclInvs.count(I)) 728 continue; 729 730 // Warning: This loop can end up being somewhat performance sensetive. 731 // We're running this loop for once for each value queried resulting in a 732 // runtime of ~O(#assumes * #values). 733 734 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 735 "must be an assume intrinsic"); 736 737 Value *Arg = I->getArgOperand(0); 738 739 if (Arg == V && isValidAssumeForContext(I, Q)) { 740 assert(BitWidth == 1 && "assume operand is not i1?"); 741 KnownZero.clearAllBits(); 742 KnownOne.setAllBits(); 743 return; 744 } 745 746 // The remaining tests are all recursive, so bail out if we hit the limit. 747 if (Depth == MaxDepth) 748 continue; 749 750 Value *A, *B; 751 auto m_V = m_CombineOr(m_Specific(V), 752 m_CombineOr(m_PtrToInt(m_Specific(V)), 753 m_BitCast(m_Specific(V)))); 754 755 CmpInst::Predicate Pred; 756 ConstantInt *C; 757 // assume(v = a) 758 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 759 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 760 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 761 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 762 KnownZero |= RHSKnownZero; 763 KnownOne |= RHSKnownOne; 764 // assume(v & b = a) 765 } else if (match(Arg, 766 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 767 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 770 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 771 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 772 773 // For those bits in the mask that are known to be one, we can propagate 774 // known bits from the RHS to V. 775 KnownZero |= RHSKnownZero & MaskKnownOne; 776 KnownOne |= RHSKnownOne & MaskKnownOne; 777 // assume(~(v & b) = a) 778 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 779 m_Value(A))) && 780 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 781 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 782 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 783 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 784 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 785 786 // For those bits in the mask that are known to be one, we can propagate 787 // inverted known bits from the RHS to V. 788 KnownZero |= RHSKnownOne & MaskKnownOne; 789 KnownOne |= RHSKnownZero & MaskKnownOne; 790 // assume(v | b = a) 791 } else if (match(Arg, 792 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 793 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 794 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 795 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 796 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 797 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 798 799 // For those bits in B that are known to be zero, we can propagate known 800 // bits from the RHS to V. 801 KnownZero |= RHSKnownZero & BKnownZero; 802 KnownOne |= RHSKnownOne & BKnownZero; 803 // assume(~(v | b) = a) 804 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 805 m_Value(A))) && 806 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 807 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 808 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 809 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 810 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 811 812 // For those bits in B that are known to be zero, we can propagate 813 // inverted known bits from the RHS to V. 814 KnownZero |= RHSKnownOne & BKnownZero; 815 KnownOne |= RHSKnownZero & BKnownZero; 816 // assume(v ^ b = a) 817 } else if (match(Arg, 818 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 819 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 820 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 821 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 822 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 823 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 824 825 // For those bits in B that are known to be zero, we can propagate known 826 // bits from the RHS to V. For those bits in B that are known to be one, 827 // we can propagate inverted known bits from the RHS to V. 828 KnownZero |= RHSKnownZero & BKnownZero; 829 KnownOne |= RHSKnownOne & BKnownZero; 830 KnownZero |= RHSKnownOne & BKnownOne; 831 KnownOne |= RHSKnownZero & BKnownOne; 832 // assume(~(v ^ b) = a) 833 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 834 m_Value(A))) && 835 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 836 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 837 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 838 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 839 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 840 841 // For those bits in B that are known to be zero, we can propagate 842 // inverted known bits from the RHS to V. For those bits in B that are 843 // known to be one, we can propagate known bits from the RHS to V. 844 KnownZero |= RHSKnownOne & BKnownZero; 845 KnownOne |= RHSKnownZero & BKnownZero; 846 KnownZero |= RHSKnownZero & BKnownOne; 847 KnownOne |= RHSKnownOne & BKnownOne; 848 // assume(v << c = a) 849 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 852 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 853 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 857 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 858 // assume(~(v << c) = a) 859 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 862 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 863 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 867 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 868 // assume(v >> c = a) 869 } else if (match(Arg, 870 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 871 m_AShr(m_V, m_ConstantInt(C))), 872 m_Value(A))) && 873 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 874 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 875 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 876 // For those bits in RHS that are known, we can propagate them to known 877 // bits in V shifted to the right by C. 878 KnownZero |= RHSKnownZero << C->getZExtValue(); 879 KnownOne |= RHSKnownOne << C->getZExtValue(); 880 // assume(~(v >> c) = a) 881 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 882 m_LShr(m_V, m_ConstantInt(C)), 883 m_AShr(m_V, m_ConstantInt(C)))), 884 m_Value(A))) && 885 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 886 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 887 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 888 // For those bits in RHS that are known, we can propagate them inverted 889 // to known bits in V shifted to the right by C. 890 KnownZero |= RHSKnownOne << C->getZExtValue(); 891 KnownOne |= RHSKnownZero << C->getZExtValue(); 892 // assume(v >=_s c) where c is non-negative 893 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 894 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 895 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 896 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 897 898 if (RHSKnownZero.isNegative()) { 899 // We know that the sign bit is zero. 900 KnownZero |= APInt::getSignBit(BitWidth); 901 } 902 // assume(v >_s c) where c is at least -1. 903 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 904 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 905 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 906 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 907 908 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 909 // We know that the sign bit is zero. 910 KnownZero |= APInt::getSignBit(BitWidth); 911 } 912 // assume(v <=_s c) where c is negative 913 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 914 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 915 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 916 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 917 918 if (RHSKnownOne.isNegative()) { 919 // We know that the sign bit is one. 920 KnownOne |= APInt::getSignBit(BitWidth); 921 } 922 // assume(v <_s c) where c is non-positive 923 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 924 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 925 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 926 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 927 928 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 929 // We know that the sign bit is one. 930 KnownOne |= APInt::getSignBit(BitWidth); 931 } 932 // assume(v <=_u c) 933 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 934 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 937 938 // Whatever high bits in c are zero are known to be zero. 939 KnownZero |= 940 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 941 // assume(v <_u c) 942 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 943 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 944 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 945 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 946 947 // Whatever high bits in c are zero are known to be zero (if c is a power 948 // of 2, then one more). 949 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 950 KnownZero |= 951 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 952 else 953 KnownZero |= 954 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 955 } 956 } 957 } 958 959 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 960 APInt &KnownOne, const DataLayout &DL, 961 unsigned Depth, const Query &Q) { 962 unsigned BitWidth = KnownZero.getBitWidth(); 963 964 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 965 switch (I->getOpcode()) { 966 default: break; 967 case Instruction::Load: 968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 969 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 970 break; 971 case Instruction::And: { 972 // If either the LHS or the RHS are Zero, the result is zero. 973 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 974 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 975 976 // Output known-1 bits are only known if set in both the LHS & RHS. 977 KnownOne &= KnownOne2; 978 // Output known-0 are known to be clear if zero in either the LHS | RHS. 979 KnownZero |= KnownZero2; 980 break; 981 } 982 case Instruction::Or: { 983 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 984 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 985 986 // Output known-0 bits are only known if clear in both the LHS & RHS. 987 KnownZero &= KnownZero2; 988 // Output known-1 are known to be set if set in either the LHS | RHS. 989 KnownOne |= KnownOne2; 990 break; 991 } 992 case Instruction::Xor: { 993 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 994 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 995 996 // Output known-0 bits are known if clear or set in both the LHS & RHS. 997 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 998 // Output known-1 are known to be set if set in only one of the LHS, RHS. 999 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1000 KnownZero = KnownZeroOut; 1001 break; 1002 } 1003 case Instruction::Mul: { 1004 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1005 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1006 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1007 break; 1008 } 1009 case Instruction::UDiv: { 1010 // For the purposes of computing leading zeros we can conservatively 1011 // treat a udiv as a logical right shift by the power of 2 known to 1012 // be less than the denominator. 1013 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1014 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1015 1016 KnownOne2.clearAllBits(); 1017 KnownZero2.clearAllBits(); 1018 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1019 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1020 if (RHSUnknownLeadingOnes != BitWidth) 1021 LeadZ = std::min(BitWidth, 1022 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1023 1024 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1025 break; 1026 } 1027 case Instruction::Select: 1028 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1029 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1030 1031 // Only known if known in both the LHS and RHS. 1032 KnownOne &= KnownOne2; 1033 KnownZero &= KnownZero2; 1034 break; 1035 case Instruction::FPTrunc: 1036 case Instruction::FPExt: 1037 case Instruction::FPToUI: 1038 case Instruction::FPToSI: 1039 case Instruction::SIToFP: 1040 case Instruction::UIToFP: 1041 break; // Can't work with floating point. 1042 case Instruction::PtrToInt: 1043 case Instruction::IntToPtr: 1044 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1045 // FALL THROUGH and handle them the same as zext/trunc. 1046 case Instruction::ZExt: 1047 case Instruction::Trunc: { 1048 Type *SrcTy = I->getOperand(0)->getType(); 1049 1050 unsigned SrcBitWidth; 1051 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1052 // which fall through here. 1053 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1054 1055 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1056 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1057 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1058 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1059 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1060 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1061 // Any top bits are known to be zero. 1062 if (BitWidth > SrcBitWidth) 1063 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1064 break; 1065 } 1066 case Instruction::BitCast: { 1067 Type *SrcTy = I->getOperand(0)->getType(); 1068 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1069 SrcTy->isFloatingPointTy()) && 1070 // TODO: For now, not handling conversions like: 1071 // (bitcast i64 %x to <2 x i32>) 1072 !I->getType()->isVectorTy()) { 1073 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1074 break; 1075 } 1076 break; 1077 } 1078 case Instruction::SExt: { 1079 // Compute the bits in the result that are not present in the input. 1080 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1081 1082 KnownZero = KnownZero.trunc(SrcBitWidth); 1083 KnownOne = KnownOne.trunc(SrcBitWidth); 1084 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1085 KnownZero = KnownZero.zext(BitWidth); 1086 KnownOne = KnownOne.zext(BitWidth); 1087 1088 // If the sign bit of the input is known set or clear, then we know the 1089 // top bits of the result. 1090 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1091 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1092 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1093 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1094 break; 1095 } 1096 case Instruction::Shl: 1097 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1098 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1099 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1100 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1101 KnownZero <<= ShiftAmt; 1102 KnownOne <<= ShiftAmt; 1103 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1104 } 1105 break; 1106 case Instruction::LShr: 1107 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1108 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1109 // Compute the new bits that are at the top now. 1110 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1111 1112 // Unsigned shift right. 1113 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1114 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1115 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1116 // high bits known zero. 1117 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1118 } 1119 break; 1120 case Instruction::AShr: 1121 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1122 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1123 // Compute the new bits that are at the top now. 1124 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1125 1126 // Signed shift right. 1127 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1128 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1129 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1130 1131 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1132 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1133 KnownZero |= HighBits; 1134 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1135 KnownOne |= HighBits; 1136 } 1137 break; 1138 case Instruction::Sub: { 1139 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1140 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1141 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1142 Depth, Q); 1143 break; 1144 } 1145 case Instruction::Add: { 1146 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1147 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1148 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1149 Depth, Q); 1150 break; 1151 } 1152 case Instruction::SRem: 1153 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1154 APInt RA = Rem->getValue().abs(); 1155 if (RA.isPowerOf2()) { 1156 APInt LowBits = RA - 1; 1157 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1158 Q); 1159 1160 // The low bits of the first operand are unchanged by the srem. 1161 KnownZero = KnownZero2 & LowBits; 1162 KnownOne = KnownOne2 & LowBits; 1163 1164 // If the first operand is non-negative or has all low bits zero, then 1165 // the upper bits are all zero. 1166 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1167 KnownZero |= ~LowBits; 1168 1169 // If the first operand is negative and not all low bits are zero, then 1170 // the upper bits are all one. 1171 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1172 KnownOne |= ~LowBits; 1173 1174 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1175 } 1176 } 1177 1178 // The sign bit is the LHS's sign bit, except when the result of the 1179 // remainder is zero. 1180 if (KnownZero.isNonNegative()) { 1181 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1182 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1183 Depth + 1, Q); 1184 // If it's known zero, our sign bit is also zero. 1185 if (LHSKnownZero.isNegative()) 1186 KnownZero.setBit(BitWidth - 1); 1187 } 1188 1189 break; 1190 case Instruction::URem: { 1191 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1192 APInt RA = Rem->getValue(); 1193 if (RA.isPowerOf2()) { 1194 APInt LowBits = (RA - 1); 1195 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1196 Q); 1197 KnownZero |= ~LowBits; 1198 KnownOne &= LowBits; 1199 break; 1200 } 1201 } 1202 1203 // Since the result is less than or equal to either operand, any leading 1204 // zero bits in either operand must also exist in the result. 1205 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1206 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1207 1208 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1209 KnownZero2.countLeadingOnes()); 1210 KnownOne.clearAllBits(); 1211 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1212 break; 1213 } 1214 1215 case Instruction::Alloca: { 1216 AllocaInst *AI = cast<AllocaInst>(I); 1217 unsigned Align = AI->getAlignment(); 1218 if (Align == 0) 1219 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1220 1221 if (Align > 0) 1222 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1223 break; 1224 } 1225 case Instruction::GetElementPtr: { 1226 // Analyze all of the subscripts of this getelementptr instruction 1227 // to determine if we can prove known low zero bits. 1228 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1229 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1230 Depth + 1, Q); 1231 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1232 1233 gep_type_iterator GTI = gep_type_begin(I); 1234 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1235 Value *Index = I->getOperand(i); 1236 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1237 // Handle struct member offset arithmetic. 1238 1239 // Handle case when index is vector zeroinitializer 1240 Constant *CIndex = cast<Constant>(Index); 1241 if (CIndex->isZeroValue()) 1242 continue; 1243 1244 if (CIndex->getType()->isVectorTy()) 1245 Index = CIndex->getSplatValue(); 1246 1247 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1248 const StructLayout *SL = DL.getStructLayout(STy); 1249 uint64_t Offset = SL->getElementOffset(Idx); 1250 TrailZ = std::min<unsigned>(TrailZ, 1251 countTrailingZeros(Offset)); 1252 } else { 1253 // Handle array index arithmetic. 1254 Type *IndexedTy = GTI.getIndexedType(); 1255 if (!IndexedTy->isSized()) { 1256 TrailZ = 0; 1257 break; 1258 } 1259 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1260 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1261 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1262 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1263 Q); 1264 TrailZ = std::min(TrailZ, 1265 unsigned(countTrailingZeros(TypeSize) + 1266 LocalKnownZero.countTrailingOnes())); 1267 } 1268 } 1269 1270 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1271 break; 1272 } 1273 case Instruction::PHI: { 1274 PHINode *P = cast<PHINode>(I); 1275 // Handle the case of a simple two-predecessor recurrence PHI. 1276 // There's a lot more that could theoretically be done here, but 1277 // this is sufficient to catch some interesting cases. 1278 if (P->getNumIncomingValues() == 2) { 1279 for (unsigned i = 0; i != 2; ++i) { 1280 Value *L = P->getIncomingValue(i); 1281 Value *R = P->getIncomingValue(!i); 1282 Operator *LU = dyn_cast<Operator>(L); 1283 if (!LU) 1284 continue; 1285 unsigned Opcode = LU->getOpcode(); 1286 // Check for operations that have the property that if 1287 // both their operands have low zero bits, the result 1288 // will have low zero bits. 1289 if (Opcode == Instruction::Add || 1290 Opcode == Instruction::Sub || 1291 Opcode == Instruction::And || 1292 Opcode == Instruction::Or || 1293 Opcode == Instruction::Mul) { 1294 Value *LL = LU->getOperand(0); 1295 Value *LR = LU->getOperand(1); 1296 // Find a recurrence. 1297 if (LL == I) 1298 L = LR; 1299 else if (LR == I) 1300 L = LL; 1301 else 1302 break; 1303 // Ok, we have a PHI of the form L op= R. Check for low 1304 // zero bits. 1305 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1306 1307 // We need to take the minimum number of known bits 1308 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1309 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1310 1311 KnownZero = APInt::getLowBitsSet(BitWidth, 1312 std::min(KnownZero2.countTrailingOnes(), 1313 KnownZero3.countTrailingOnes())); 1314 break; 1315 } 1316 } 1317 } 1318 1319 // Unreachable blocks may have zero-operand PHI nodes. 1320 if (P->getNumIncomingValues() == 0) 1321 break; 1322 1323 // Otherwise take the unions of the known bit sets of the operands, 1324 // taking conservative care to avoid excessive recursion. 1325 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1326 // Skip if every incoming value references to ourself. 1327 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1328 break; 1329 1330 KnownZero = APInt::getAllOnesValue(BitWidth); 1331 KnownOne = APInt::getAllOnesValue(BitWidth); 1332 for (Value *IncValue : P->incoming_values()) { 1333 // Skip direct self references. 1334 if (IncValue == P) continue; 1335 1336 KnownZero2 = APInt(BitWidth, 0); 1337 KnownOne2 = APInt(BitWidth, 0); 1338 // Recurse, but cap the recursion to one level, because we don't 1339 // want to waste time spinning around in loops. 1340 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, 1341 MaxDepth - 1, Q); 1342 KnownZero &= KnownZero2; 1343 KnownOne &= KnownOne2; 1344 // If all bits have been ruled out, there's no need to check 1345 // more operands. 1346 if (!KnownZero && !KnownOne) 1347 break; 1348 } 1349 } 1350 break; 1351 } 1352 case Instruction::Call: 1353 case Instruction::Invoke: 1354 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1355 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1356 // If a range metadata is attached to this IntrinsicInst, intersect the 1357 // explicit range specified by the metadata and the implicit range of 1358 // the intrinsic. 1359 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1360 switch (II->getIntrinsicID()) { 1361 default: break; 1362 case Intrinsic::bswap: 1363 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1364 Depth + 1, Q); 1365 KnownZero |= KnownZero2.byteSwap(); 1366 KnownOne |= KnownOne2.byteSwap(); 1367 break; 1368 case Intrinsic::ctlz: 1369 case Intrinsic::cttz: { 1370 unsigned LowBits = Log2_32(BitWidth)+1; 1371 // If this call is undefined for 0, the result will be less than 2^n. 1372 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1373 LowBits -= 1; 1374 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1375 break; 1376 } 1377 case Intrinsic::ctpop: { 1378 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1379 Depth + 1, Q); 1380 // We can bound the space the count needs. Also, bits known to be zero 1381 // can't contribute to the population. 1382 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1383 unsigned LeadingZeros = 1384 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1385 assert(LeadingZeros <= BitWidth); 1386 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1387 KnownOne &= ~KnownZero; 1388 // TODO: we could bound KnownOne using the lower bound on the number 1389 // of bits which might be set provided by popcnt KnownOne2. 1390 break; 1391 } 1392 case Intrinsic::fabs: { 1393 Type *Ty = II->getType(); 1394 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1395 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1396 break; 1397 } 1398 case Intrinsic::x86_sse42_crc32_64_64: 1399 KnownZero |= APInt::getHighBitsSet(64, 32); 1400 break; 1401 } 1402 } 1403 break; 1404 case Instruction::ExtractValue: 1405 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1406 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1407 if (EVI->getNumIndices() != 1) break; 1408 if (EVI->getIndices()[0] == 0) { 1409 switch (II->getIntrinsicID()) { 1410 default: break; 1411 case Intrinsic::uadd_with_overflow: 1412 case Intrinsic::sadd_with_overflow: 1413 computeKnownBitsAddSub(true, II->getArgOperand(0), 1414 II->getArgOperand(1), false, KnownZero, 1415 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1416 break; 1417 case Intrinsic::usub_with_overflow: 1418 case Intrinsic::ssub_with_overflow: 1419 computeKnownBitsAddSub(false, II->getArgOperand(0), 1420 II->getArgOperand(1), false, KnownZero, 1421 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1422 break; 1423 case Intrinsic::umul_with_overflow: 1424 case Intrinsic::smul_with_overflow: 1425 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1426 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1427 Depth, Q); 1428 break; 1429 } 1430 } 1431 } 1432 } 1433 } 1434 1435 static unsigned getAlignment(const Value *V, const DataLayout &DL) { 1436 unsigned Align = 0; 1437 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1438 Align = GO->getAlignment(); 1439 if (Align == 0) { 1440 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1441 Type *ObjectType = GVar->getType()->getElementType(); 1442 if (ObjectType->isSized()) { 1443 // If the object is defined in the current Module, we'll be giving 1444 // it the preferred alignment. Otherwise, we have to assume that it 1445 // may only have the minimum ABI alignment. 1446 if (GVar->isStrongDefinitionForLinker()) 1447 Align = DL.getPreferredAlignment(GVar); 1448 else 1449 Align = DL.getABITypeAlignment(ObjectType); 1450 } 1451 } 1452 } 1453 } else if (const Argument *A = dyn_cast<Argument>(V)) { 1454 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1455 1456 if (!Align && A->hasStructRetAttr()) { 1457 // An sret parameter has at least the ABI alignment of the return type. 1458 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1459 if (EltTy->isSized()) 1460 Align = DL.getABITypeAlignment(EltTy); 1461 } 1462 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1463 Align = AI->getAlignment(); 1464 else if (auto CS = ImmutableCallSite(V)) 1465 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 1466 else if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1467 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 1468 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 1469 Align = CI->getLimitedValue(); 1470 } 1471 1472 return Align; 1473 } 1474 1475 /// Determine which bits of V are known to be either zero or one and return 1476 /// them in the KnownZero/KnownOne bit sets. 1477 /// 1478 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1479 /// we cannot optimize based on the assumption that it is zero without changing 1480 /// it to be an explicit zero. If we don't change it to zero, other code could 1481 /// optimized based on the contradictory assumption that it is non-zero. 1482 /// Because instcombine aggressively folds operations with undef args anyway, 1483 /// this won't lose us code quality. 1484 /// 1485 /// This function is defined on values with integer type, values with pointer 1486 /// type, and vectors of integers. In the case 1487 /// where V is a vector, known zero, and known one values are the 1488 /// same width as the vector element, and the bit is set only if it is true 1489 /// for all of the elements in the vector. 1490 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1491 const DataLayout &DL, unsigned Depth, const Query &Q) { 1492 assert(V && "No Value?"); 1493 assert(Depth <= MaxDepth && "Limit Search Depth"); 1494 unsigned BitWidth = KnownZero.getBitWidth(); 1495 1496 assert((V->getType()->isIntOrIntVectorTy() || 1497 V->getType()->isFPOrFPVectorTy() || 1498 V->getType()->getScalarType()->isPointerTy()) && 1499 "Not integer, floating point, or pointer type!"); 1500 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1501 (!V->getType()->isIntOrIntVectorTy() || 1502 V->getType()->getScalarSizeInBits() == BitWidth) && 1503 KnownZero.getBitWidth() == BitWidth && 1504 KnownOne.getBitWidth() == BitWidth && 1505 "V, KnownOne and KnownZero should have same BitWidth"); 1506 1507 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1508 // We know all of the bits for a constant! 1509 KnownOne = CI->getValue(); 1510 KnownZero = ~KnownOne; 1511 return; 1512 } 1513 // Null and aggregate-zero are all-zeros. 1514 if (isa<ConstantPointerNull>(V) || 1515 isa<ConstantAggregateZero>(V)) { 1516 KnownOne.clearAllBits(); 1517 KnownZero = APInt::getAllOnesValue(BitWidth); 1518 return; 1519 } 1520 // Handle a constant vector by taking the intersection of the known bits of 1521 // each element. There is no real need to handle ConstantVector here, because 1522 // we don't handle undef in any particularly useful way. 1523 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1524 // We know that CDS must be a vector of integers. Take the intersection of 1525 // each element. 1526 KnownZero.setAllBits(); KnownOne.setAllBits(); 1527 APInt Elt(KnownZero.getBitWidth(), 0); 1528 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1529 Elt = CDS->getElementAsInteger(i); 1530 KnownZero &= ~Elt; 1531 KnownOne &= Elt; 1532 } 1533 return; 1534 } 1535 1536 // Start out not knowing anything. 1537 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1538 1539 // Limit search depth. 1540 // All recursive calls that increase depth must come after this. 1541 if (Depth == MaxDepth) 1542 return; 1543 1544 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1545 // the bits of its aliasee. 1546 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1547 if (!GA->mayBeOverridden()) 1548 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1549 return; 1550 } 1551 1552 if (Operator *I = dyn_cast<Operator>(V)) 1553 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); 1554 1555 // Aligned pointers have trailing zeros - refine KnownZero set 1556 if (V->getType()->isPointerTy()) { 1557 unsigned Align = getAlignment(V, DL); 1558 if (Align) 1559 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1560 } 1561 1562 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1563 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1564 // computeKnownBitsFromOperator. 1565 1566 // Check whether a nearby assume intrinsic can determine some known bits. 1567 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1568 1569 // Check whether there's a dominating condition which implies something about 1570 // this value at the given context. 1571 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1572 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1573 Q); 1574 1575 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1576 } 1577 1578 /// Determine whether the sign bit is known to be zero or one. 1579 /// Convenience wrapper around computeKnownBits. 1580 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1581 const DataLayout &DL, unsigned Depth, const Query &Q) { 1582 unsigned BitWidth = getBitWidth(V->getType(), DL); 1583 if (!BitWidth) { 1584 KnownZero = false; 1585 KnownOne = false; 1586 return; 1587 } 1588 APInt ZeroBits(BitWidth, 0); 1589 APInt OneBits(BitWidth, 0); 1590 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1591 KnownOne = OneBits[BitWidth - 1]; 1592 KnownZero = ZeroBits[BitWidth - 1]; 1593 } 1594 1595 /// Return true if the given value is known to have exactly one 1596 /// bit set when defined. For vectors return true if every element is known to 1597 /// be a power of two when defined. Supports values with integer or pointer 1598 /// types and vectors of integers. 1599 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1600 const Query &Q, const DataLayout &DL) { 1601 if (Constant *C = dyn_cast<Constant>(V)) { 1602 if (C->isNullValue()) 1603 return OrZero; 1604 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1605 return CI->getValue().isPowerOf2(); 1606 // TODO: Handle vector constants. 1607 } 1608 1609 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1610 // it is shifted off the end then the result is undefined. 1611 if (match(V, m_Shl(m_One(), m_Value()))) 1612 return true; 1613 1614 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1615 // bottom. If it is shifted off the bottom then the result is undefined. 1616 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1617 return true; 1618 1619 // The remaining tests are all recursive, so bail out if we hit the limit. 1620 if (Depth++ == MaxDepth) 1621 return false; 1622 1623 Value *X = nullptr, *Y = nullptr; 1624 // A shift of a power of two is a power of two or zero. 1625 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1626 match(V, m_Shr(m_Value(X), m_Value())))) 1627 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1628 1629 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1630 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1631 1632 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1633 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1634 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1635 1636 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1637 // A power of two and'd with anything is a power of two or zero. 1638 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1639 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1640 return true; 1641 // X & (-X) is always a power of two or zero. 1642 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1643 return true; 1644 return false; 1645 } 1646 1647 // Adding a power-of-two or zero to the same power-of-two or zero yields 1648 // either the original power-of-two, a larger power-of-two or zero. 1649 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1650 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1651 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1652 if (match(X, m_And(m_Specific(Y), m_Value())) || 1653 match(X, m_And(m_Value(), m_Specific(Y)))) 1654 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1655 return true; 1656 if (match(Y, m_And(m_Specific(X), m_Value())) || 1657 match(Y, m_And(m_Value(), m_Specific(X)))) 1658 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1659 return true; 1660 1661 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1662 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1663 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1664 1665 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1666 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1667 // If i8 V is a power of two or zero: 1668 // ZeroBits: 1 1 1 0 1 1 1 1 1669 // ~ZeroBits: 0 0 0 1 0 0 0 0 1670 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1671 // If OrZero isn't set, we cannot give back a zero result. 1672 // Make sure either the LHS or RHS has a bit set. 1673 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1674 return true; 1675 } 1676 } 1677 1678 // An exact divide or right shift can only shift off zero bits, so the result 1679 // is a power of two only if the first operand is a power of two and not 1680 // copying a sign bit (sdiv int_min, 2). 1681 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1682 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1683 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1684 Depth, Q, DL); 1685 } 1686 1687 return false; 1688 } 1689 1690 /// \brief Test whether a GEP's result is known to be non-null. 1691 /// 1692 /// Uses properties inherent in a GEP to try to determine whether it is known 1693 /// to be non-null. 1694 /// 1695 /// Currently this routine does not support vector GEPs. 1696 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1697 unsigned Depth, const Query &Q) { 1698 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1699 return false; 1700 1701 // FIXME: Support vector-GEPs. 1702 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1703 1704 // If the base pointer is non-null, we cannot walk to a null address with an 1705 // inbounds GEP in address space zero. 1706 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1707 return true; 1708 1709 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1710 // If so, then the GEP cannot produce a null pointer, as doing so would 1711 // inherently violate the inbounds contract within address space zero. 1712 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1713 GTI != GTE; ++GTI) { 1714 // Struct types are easy -- they must always be indexed by a constant. 1715 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1716 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1717 unsigned ElementIdx = OpC->getZExtValue(); 1718 const StructLayout *SL = DL.getStructLayout(STy); 1719 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1720 if (ElementOffset > 0) 1721 return true; 1722 continue; 1723 } 1724 1725 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1726 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1727 continue; 1728 1729 // Fast path the constant operand case both for efficiency and so we don't 1730 // increment Depth when just zipping down an all-constant GEP. 1731 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1732 if (!OpC->isZero()) 1733 return true; 1734 continue; 1735 } 1736 1737 // We post-increment Depth here because while isKnownNonZero increments it 1738 // as well, when we pop back up that increment won't persist. We don't want 1739 // to recurse 10k times just because we have 10k GEP operands. We don't 1740 // bail completely out because we want to handle constant GEPs regardless 1741 // of depth. 1742 if (Depth++ >= MaxDepth) 1743 continue; 1744 1745 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1746 return true; 1747 } 1748 1749 return false; 1750 } 1751 1752 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1753 /// ensure that the value it's attached to is never Value? 'RangeType' is 1754 /// is the type of the value described by the range. 1755 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1756 const APInt& Value) { 1757 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1758 assert(NumRanges >= 1); 1759 for (unsigned i = 0; i < NumRanges; ++i) { 1760 ConstantInt *Lower = 1761 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1762 ConstantInt *Upper = 1763 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1764 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1765 if (Range.contains(Value)) 1766 return false; 1767 } 1768 return true; 1769 } 1770 1771 /// Return true if the given value is known to be non-zero when defined. 1772 /// For vectors return true if every element is known to be non-zero when 1773 /// defined. Supports values with integer or pointer type and vectors of 1774 /// integers. 1775 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1776 const Query &Q) { 1777 if (Constant *C = dyn_cast<Constant>(V)) { 1778 if (C->isNullValue()) 1779 return false; 1780 if (isa<ConstantInt>(C)) 1781 // Must be non-zero due to null test above. 1782 return true; 1783 // TODO: Handle vectors 1784 return false; 1785 } 1786 1787 if (Instruction* I = dyn_cast<Instruction>(V)) { 1788 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1789 // If the possible ranges don't contain zero, then the value is 1790 // definitely non-zero. 1791 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1792 const APInt ZeroValue(Ty->getBitWidth(), 0); 1793 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1794 return true; 1795 } 1796 } 1797 } 1798 1799 // The remaining tests are all recursive, so bail out if we hit the limit. 1800 if (Depth++ >= MaxDepth) 1801 return false; 1802 1803 // Check for pointer simplifications. 1804 if (V->getType()->isPointerTy()) { 1805 if (isKnownNonNull(V)) 1806 return true; 1807 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1808 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1809 return true; 1810 } 1811 1812 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1813 1814 // X | Y != 0 if X != 0 or Y != 0. 1815 Value *X = nullptr, *Y = nullptr; 1816 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1817 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1818 1819 // ext X != 0 if X != 0. 1820 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1821 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1822 1823 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1824 // if the lowest bit is shifted off the end. 1825 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1826 // shl nuw can't remove any non-zero bits. 1827 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1828 if (BO->hasNoUnsignedWrap()) 1829 return isKnownNonZero(X, DL, Depth, Q); 1830 1831 APInt KnownZero(BitWidth, 0); 1832 APInt KnownOne(BitWidth, 0); 1833 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1834 if (KnownOne[0]) 1835 return true; 1836 } 1837 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1838 // defined if the sign bit is shifted off the end. 1839 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1840 // shr exact can only shift out zero bits. 1841 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1842 if (BO->isExact()) 1843 return isKnownNonZero(X, DL, Depth, Q); 1844 1845 bool XKnownNonNegative, XKnownNegative; 1846 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1847 if (XKnownNegative) 1848 return true; 1849 1850 // If the shifter operand is a constant, and all of the bits shifted 1851 // out are known to be zero, and X is known non-zero then at least one 1852 // non-zero bit must remain. 1853 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1854 APInt KnownZero(BitWidth, 0); 1855 APInt KnownOne(BitWidth, 0); 1856 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1857 1858 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1859 // Is there a known one in the portion not shifted out? 1860 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1861 return true; 1862 // Are all the bits to be shifted out known zero? 1863 if (KnownZero.countTrailingOnes() >= ShiftVal) 1864 return isKnownNonZero(X, DL, Depth, Q); 1865 } 1866 } 1867 // div exact can only produce a zero if the dividend is zero. 1868 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1869 return isKnownNonZero(X, DL, Depth, Q); 1870 } 1871 // X + Y. 1872 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1873 bool XKnownNonNegative, XKnownNegative; 1874 bool YKnownNonNegative, YKnownNegative; 1875 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1876 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 1877 1878 // If X and Y are both non-negative (as signed values) then their sum is not 1879 // zero unless both X and Y are zero. 1880 if (XKnownNonNegative && YKnownNonNegative) 1881 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 1882 return true; 1883 1884 // If X and Y are both negative (as signed values) then their sum is not 1885 // zero unless both X and Y equal INT_MIN. 1886 if (BitWidth && XKnownNegative && YKnownNegative) { 1887 APInt KnownZero(BitWidth, 0); 1888 APInt KnownOne(BitWidth, 0); 1889 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1890 // The sign bit of X is set. If some other bit is set then X is not equal 1891 // to INT_MIN. 1892 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1893 if ((KnownOne & Mask) != 0) 1894 return true; 1895 // The sign bit of Y is set. If some other bit is set then Y is not equal 1896 // to INT_MIN. 1897 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 1898 if ((KnownOne & Mask) != 0) 1899 return true; 1900 } 1901 1902 // The sum of a non-negative number and a power of two is not zero. 1903 if (XKnownNonNegative && 1904 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 1905 return true; 1906 if (YKnownNonNegative && 1907 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 1908 return true; 1909 } 1910 // X * Y. 1911 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1912 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1913 // If X and Y are non-zero then so is X * Y as long as the multiplication 1914 // does not overflow. 1915 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1916 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 1917 return true; 1918 } 1919 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1920 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1921 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 1922 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 1923 return true; 1924 } 1925 // PHI 1926 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1927 // Try and detect a recurrence that monotonically increases from a 1928 // starting value, as these are common as induction variables. 1929 if (PN->getNumIncomingValues() == 2) { 1930 Value *Start = PN->getIncomingValue(0); 1931 Value *Induction = PN->getIncomingValue(1); 1932 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1933 std::swap(Start, Induction); 1934 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1935 if (!C->isZero() && !C->isNegative()) { 1936 ConstantInt *X; 1937 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1938 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1939 !X->isNegative()) 1940 return true; 1941 } 1942 } 1943 } 1944 } 1945 1946 if (!BitWidth) return false; 1947 APInt KnownZero(BitWidth, 0); 1948 APInt KnownOne(BitWidth, 0); 1949 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1950 return KnownOne != 0; 1951 } 1952 1953 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1954 /// simplify operations downstream. Mask is known to be zero for bits that V 1955 /// cannot have. 1956 /// 1957 /// This function is defined on values with integer type, values with pointer 1958 /// type, and vectors of integers. In the case 1959 /// where V is a vector, the mask, known zero, and known one values are the 1960 /// same width as the vector element, and the bit is set only if it is true 1961 /// for all of the elements in the vector. 1962 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 1963 unsigned Depth, const Query &Q) { 1964 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1965 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1966 return (KnownZero & Mask) == Mask; 1967 } 1968 1969 1970 1971 /// Return the number of times the sign bit of the register is replicated into 1972 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1973 /// (itself), but other cases can give us information. For example, immediately 1974 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1975 /// other, so we return 3. 1976 /// 1977 /// 'Op' must have a scalar integer type. 1978 /// 1979 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 1980 const Query &Q) { 1981 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 1982 unsigned Tmp, Tmp2; 1983 unsigned FirstAnswer = 1; 1984 1985 // Note that ConstantInt is handled by the general computeKnownBits case 1986 // below. 1987 1988 if (Depth == 6) 1989 return 1; // Limit search depth. 1990 1991 Operator *U = dyn_cast<Operator>(V); 1992 switch (Operator::getOpcode(V)) { 1993 default: break; 1994 case Instruction::SExt: 1995 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1996 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 1997 1998 case Instruction::SDiv: { 1999 const APInt *Denominator; 2000 // sdiv X, C -> adds log(C) sign bits. 2001 if (match(U->getOperand(1), m_APInt(Denominator))) { 2002 2003 // Ignore non-positive denominator. 2004 if (!Denominator->isStrictlyPositive()) 2005 break; 2006 2007 // Calculate the incoming numerator bits. 2008 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2009 2010 // Add floor(log(C)) bits to the numerator bits. 2011 return std::min(TyBits, NumBits + Denominator->logBase2()); 2012 } 2013 break; 2014 } 2015 2016 case Instruction::SRem: { 2017 const APInt *Denominator; 2018 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2019 // positive constant. This let us put a lower bound on the number of sign 2020 // bits. 2021 if (match(U->getOperand(1), m_APInt(Denominator))) { 2022 2023 // Ignore non-positive denominator. 2024 if (!Denominator->isStrictlyPositive()) 2025 break; 2026 2027 // Calculate the incoming numerator bits. SRem by a positive constant 2028 // can't lower the number of sign bits. 2029 unsigned NumrBits = 2030 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2031 2032 // Calculate the leading sign bit constraints by examining the 2033 // denominator. Given that the denominator is positive, there are two 2034 // cases: 2035 // 2036 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2037 // (1 << ceilLogBase2(C)). 2038 // 2039 // 2. the numerator is negative. Then the result range is (-C,0] and 2040 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2041 // 2042 // Thus a lower bound on the number of sign bits is `TyBits - 2043 // ceilLogBase2(C)`. 2044 2045 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2046 return std::max(NumrBits, ResBits); 2047 } 2048 break; 2049 } 2050 2051 case Instruction::AShr: { 2052 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2053 // ashr X, C -> adds C sign bits. Vectors too. 2054 const APInt *ShAmt; 2055 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2056 Tmp += ShAmt->getZExtValue(); 2057 if (Tmp > TyBits) Tmp = TyBits; 2058 } 2059 return Tmp; 2060 } 2061 case Instruction::Shl: { 2062 const APInt *ShAmt; 2063 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2064 // shl destroys sign bits. 2065 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2066 Tmp2 = ShAmt->getZExtValue(); 2067 if (Tmp2 >= TyBits || // Bad shift. 2068 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2069 return Tmp - Tmp2; 2070 } 2071 break; 2072 } 2073 case Instruction::And: 2074 case Instruction::Or: 2075 case Instruction::Xor: // NOT is handled here. 2076 // Logical binary ops preserve the number of sign bits at the worst. 2077 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2078 if (Tmp != 1) { 2079 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2080 FirstAnswer = std::min(Tmp, Tmp2); 2081 // We computed what we know about the sign bits as our first 2082 // answer. Now proceed to the generic code that uses 2083 // computeKnownBits, and pick whichever answer is better. 2084 } 2085 break; 2086 2087 case Instruction::Select: 2088 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2089 if (Tmp == 1) return 1; // Early out. 2090 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 2091 return std::min(Tmp, Tmp2); 2092 2093 case Instruction::Add: 2094 // Add can have at most one carry bit. Thus we know that the output 2095 // is, at worst, one more bit than the inputs. 2096 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2097 if (Tmp == 1) return 1; // Early out. 2098 2099 // Special case decrementing a value (ADD X, -1): 2100 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2101 if (CRHS->isAllOnesValue()) { 2102 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2103 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2104 Q); 2105 2106 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2107 // sign bits set. 2108 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2109 return TyBits; 2110 2111 // If we are subtracting one from a positive number, there is no carry 2112 // out of the result. 2113 if (KnownZero.isNegative()) 2114 return Tmp; 2115 } 2116 2117 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2118 if (Tmp2 == 1) return 1; 2119 return std::min(Tmp, Tmp2)-1; 2120 2121 case Instruction::Sub: 2122 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2123 if (Tmp2 == 1) return 1; 2124 2125 // Handle NEG. 2126 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2127 if (CLHS->isNullValue()) { 2128 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2129 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2130 Q); 2131 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2132 // sign bits set. 2133 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2134 return TyBits; 2135 2136 // If the input is known to be positive (the sign bit is known clear), 2137 // the output of the NEG has the same number of sign bits as the input. 2138 if (KnownZero.isNegative()) 2139 return Tmp2; 2140 2141 // Otherwise, we treat this like a SUB. 2142 } 2143 2144 // Sub can have at most one carry bit. Thus we know that the output 2145 // is, at worst, one more bit than the inputs. 2146 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2147 if (Tmp == 1) return 1; // Early out. 2148 return std::min(Tmp, Tmp2)-1; 2149 2150 case Instruction::PHI: { 2151 PHINode *PN = cast<PHINode>(U); 2152 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2153 // Don't analyze large in-degree PHIs. 2154 if (NumIncomingValues > 4) break; 2155 // Unreachable blocks may have zero-operand PHI nodes. 2156 if (NumIncomingValues == 0) break; 2157 2158 // Take the minimum of all incoming values. This can't infinitely loop 2159 // because of our depth threshold. 2160 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2161 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2162 if (Tmp == 1) return Tmp; 2163 Tmp = std::min( 2164 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2165 } 2166 return Tmp; 2167 } 2168 2169 case Instruction::Trunc: 2170 // FIXME: it's tricky to do anything useful for this, but it is an important 2171 // case for targets like X86. 2172 break; 2173 } 2174 2175 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2176 // use this information. 2177 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2178 APInt Mask; 2179 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2180 2181 if (KnownZero.isNegative()) { // sign bit is 0 2182 Mask = KnownZero; 2183 } else if (KnownOne.isNegative()) { // sign bit is 1; 2184 Mask = KnownOne; 2185 } else { 2186 // Nothing known. 2187 return FirstAnswer; 2188 } 2189 2190 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2191 // the number of identical bits in the top of the input value. 2192 Mask = ~Mask; 2193 Mask <<= Mask.getBitWidth()-TyBits; 2194 // Return # leading zeros. We use 'min' here in case Val was zero before 2195 // shifting. We don't want to return '64' as for an i32 "0". 2196 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2197 } 2198 2199 /// This function computes the integer multiple of Base that equals V. 2200 /// If successful, it returns true and returns the multiple in 2201 /// Multiple. If unsuccessful, it returns false. It looks 2202 /// through SExt instructions only if LookThroughSExt is true. 2203 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2204 bool LookThroughSExt, unsigned Depth) { 2205 const unsigned MaxDepth = 6; 2206 2207 assert(V && "No Value?"); 2208 assert(Depth <= MaxDepth && "Limit Search Depth"); 2209 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2210 2211 Type *T = V->getType(); 2212 2213 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2214 2215 if (Base == 0) 2216 return false; 2217 2218 if (Base == 1) { 2219 Multiple = V; 2220 return true; 2221 } 2222 2223 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2224 Constant *BaseVal = ConstantInt::get(T, Base); 2225 if (CO && CO == BaseVal) { 2226 // Multiple is 1. 2227 Multiple = ConstantInt::get(T, 1); 2228 return true; 2229 } 2230 2231 if (CI && CI->getZExtValue() % Base == 0) { 2232 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2233 return true; 2234 } 2235 2236 if (Depth == MaxDepth) return false; // Limit search depth. 2237 2238 Operator *I = dyn_cast<Operator>(V); 2239 if (!I) return false; 2240 2241 switch (I->getOpcode()) { 2242 default: break; 2243 case Instruction::SExt: 2244 if (!LookThroughSExt) return false; 2245 // otherwise fall through to ZExt 2246 case Instruction::ZExt: 2247 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2248 LookThroughSExt, Depth+1); 2249 case Instruction::Shl: 2250 case Instruction::Mul: { 2251 Value *Op0 = I->getOperand(0); 2252 Value *Op1 = I->getOperand(1); 2253 2254 if (I->getOpcode() == Instruction::Shl) { 2255 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2256 if (!Op1CI) return false; 2257 // Turn Op0 << Op1 into Op0 * 2^Op1 2258 APInt Op1Int = Op1CI->getValue(); 2259 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2260 APInt API(Op1Int.getBitWidth(), 0); 2261 API.setBit(BitToSet); 2262 Op1 = ConstantInt::get(V->getContext(), API); 2263 } 2264 2265 Value *Mul0 = nullptr; 2266 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2267 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2268 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2269 if (Op1C->getType()->getPrimitiveSizeInBits() < 2270 MulC->getType()->getPrimitiveSizeInBits()) 2271 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2272 if (Op1C->getType()->getPrimitiveSizeInBits() > 2273 MulC->getType()->getPrimitiveSizeInBits()) 2274 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2275 2276 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2277 Multiple = ConstantExpr::getMul(MulC, Op1C); 2278 return true; 2279 } 2280 2281 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2282 if (Mul0CI->getValue() == 1) { 2283 // V == Base * Op1, so return Op1 2284 Multiple = Op1; 2285 return true; 2286 } 2287 } 2288 2289 Value *Mul1 = nullptr; 2290 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2291 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2292 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2293 if (Op0C->getType()->getPrimitiveSizeInBits() < 2294 MulC->getType()->getPrimitiveSizeInBits()) 2295 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2296 if (Op0C->getType()->getPrimitiveSizeInBits() > 2297 MulC->getType()->getPrimitiveSizeInBits()) 2298 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2299 2300 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2301 Multiple = ConstantExpr::getMul(MulC, Op0C); 2302 return true; 2303 } 2304 2305 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2306 if (Mul1CI->getValue() == 1) { 2307 // V == Base * Op0, so return Op0 2308 Multiple = Op0; 2309 return true; 2310 } 2311 } 2312 } 2313 } 2314 2315 // We could not determine if V is a multiple of Base. 2316 return false; 2317 } 2318 2319 /// Return true if we can prove that the specified FP value is never equal to 2320 /// -0.0. 2321 /// 2322 /// NOTE: this function will need to be revisited when we support non-default 2323 /// rounding modes! 2324 /// 2325 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2326 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2327 return !CFP->getValueAPF().isNegZero(); 2328 2329 // FIXME: Magic number! At the least, this should be given a name because it's 2330 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2331 // expose it as a parameter, so it can be used for testing / experimenting. 2332 if (Depth == 6) 2333 return false; // Limit search depth. 2334 2335 const Operator *I = dyn_cast<Operator>(V); 2336 if (!I) return false; 2337 2338 // Check if the nsz fast-math flag is set 2339 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2340 if (FPO->hasNoSignedZeros()) 2341 return true; 2342 2343 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2344 if (I->getOpcode() == Instruction::FAdd) 2345 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2346 if (CFP->isNullValue()) 2347 return true; 2348 2349 // sitofp and uitofp turn into +0.0 for zero. 2350 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2351 return true; 2352 2353 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2354 // sqrt(-0.0) = -0.0, no other negative results are possible. 2355 if (II->getIntrinsicID() == Intrinsic::sqrt) 2356 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2357 2358 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2359 if (const Function *F = CI->getCalledFunction()) { 2360 if (F->isDeclaration()) { 2361 // abs(x) != -0.0 2362 if (F->getName() == "abs") return true; 2363 // fabs[lf](x) != -0.0 2364 if (F->getName() == "fabs") return true; 2365 if (F->getName() == "fabsf") return true; 2366 if (F->getName() == "fabsl") return true; 2367 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2368 F->getName() == "sqrtl") 2369 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2370 } 2371 } 2372 2373 return false; 2374 } 2375 2376 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2377 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2378 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2379 2380 // FIXME: Magic number! At the least, this should be given a name because it's 2381 // used similarly in CannotBeNegativeZero(). A better fix may be to 2382 // expose it as a parameter, so it can be used for testing / experimenting. 2383 if (Depth == 6) 2384 return false; // Limit search depth. 2385 2386 const Operator *I = dyn_cast<Operator>(V); 2387 if (!I) return false; 2388 2389 switch (I->getOpcode()) { 2390 default: break; 2391 case Instruction::FMul: 2392 // x*x is always non-negative or a NaN. 2393 if (I->getOperand(0) == I->getOperand(1)) 2394 return true; 2395 // Fall through 2396 case Instruction::FAdd: 2397 case Instruction::FDiv: 2398 case Instruction::FRem: 2399 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2400 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2401 case Instruction::FPExt: 2402 case Instruction::FPTrunc: 2403 // Widening/narrowing never change sign. 2404 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2405 case Instruction::Call: 2406 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2407 switch (II->getIntrinsicID()) { 2408 default: break; 2409 case Intrinsic::exp: 2410 case Intrinsic::exp2: 2411 case Intrinsic::fabs: 2412 case Intrinsic::sqrt: 2413 return true; 2414 case Intrinsic::powi: 2415 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2416 // powi(x,n) is non-negative if n is even. 2417 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2418 return true; 2419 } 2420 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2421 case Intrinsic::fma: 2422 case Intrinsic::fmuladd: 2423 // x*x+y is non-negative if y is non-negative. 2424 return I->getOperand(0) == I->getOperand(1) && 2425 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2426 } 2427 break; 2428 } 2429 return false; 2430 } 2431 2432 /// If the specified value can be set by repeating the same byte in memory, 2433 /// return the i8 value that it is represented with. This is 2434 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2435 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2436 /// byte store (e.g. i16 0x1234), return null. 2437 Value *llvm::isBytewiseValue(Value *V) { 2438 // All byte-wide stores are splatable, even of arbitrary variables. 2439 if (V->getType()->isIntegerTy(8)) return V; 2440 2441 // Handle 'null' ConstantArrayZero etc. 2442 if (Constant *C = dyn_cast<Constant>(V)) 2443 if (C->isNullValue()) 2444 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2445 2446 // Constant float and double values can be handled as integer values if the 2447 // corresponding integer value is "byteable". An important case is 0.0. 2448 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2449 if (CFP->getType()->isFloatTy()) 2450 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2451 if (CFP->getType()->isDoubleTy()) 2452 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2453 // Don't handle long double formats, which have strange constraints. 2454 } 2455 2456 // We can handle constant integers that are multiple of 8 bits. 2457 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2458 if (CI->getBitWidth() % 8 == 0) { 2459 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2460 2461 if (!CI->getValue().isSplat(8)) 2462 return nullptr; 2463 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2464 } 2465 } 2466 2467 // A ConstantDataArray/Vector is splatable if all its members are equal and 2468 // also splatable. 2469 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2470 Value *Elt = CA->getElementAsConstant(0); 2471 Value *Val = isBytewiseValue(Elt); 2472 if (!Val) 2473 return nullptr; 2474 2475 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2476 if (CA->getElementAsConstant(I) != Elt) 2477 return nullptr; 2478 2479 return Val; 2480 } 2481 2482 // Conceptually, we could handle things like: 2483 // %a = zext i8 %X to i16 2484 // %b = shl i16 %a, 8 2485 // %c = or i16 %a, %b 2486 // but until there is an example that actually needs this, it doesn't seem 2487 // worth worrying about. 2488 return nullptr; 2489 } 2490 2491 2492 // This is the recursive version of BuildSubAggregate. It takes a few different 2493 // arguments. Idxs is the index within the nested struct From that we are 2494 // looking at now (which is of type IndexedType). IdxSkip is the number of 2495 // indices from Idxs that should be left out when inserting into the resulting 2496 // struct. To is the result struct built so far, new insertvalue instructions 2497 // build on that. 2498 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2499 SmallVectorImpl<unsigned> &Idxs, 2500 unsigned IdxSkip, 2501 Instruction *InsertBefore) { 2502 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2503 if (STy) { 2504 // Save the original To argument so we can modify it 2505 Value *OrigTo = To; 2506 // General case, the type indexed by Idxs is a struct 2507 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2508 // Process each struct element recursively 2509 Idxs.push_back(i); 2510 Value *PrevTo = To; 2511 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2512 InsertBefore); 2513 Idxs.pop_back(); 2514 if (!To) { 2515 // Couldn't find any inserted value for this index? Cleanup 2516 while (PrevTo != OrigTo) { 2517 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2518 PrevTo = Del->getAggregateOperand(); 2519 Del->eraseFromParent(); 2520 } 2521 // Stop processing elements 2522 break; 2523 } 2524 } 2525 // If we successfully found a value for each of our subaggregates 2526 if (To) 2527 return To; 2528 } 2529 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2530 // the struct's elements had a value that was inserted directly. In the latter 2531 // case, perhaps we can't determine each of the subelements individually, but 2532 // we might be able to find the complete struct somewhere. 2533 2534 // Find the value that is at that particular spot 2535 Value *V = FindInsertedValue(From, Idxs); 2536 2537 if (!V) 2538 return nullptr; 2539 2540 // Insert the value in the new (sub) aggregrate 2541 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2542 "tmp", InsertBefore); 2543 } 2544 2545 // This helper takes a nested struct and extracts a part of it (which is again a 2546 // struct) into a new value. For example, given the struct: 2547 // { a, { b, { c, d }, e } } 2548 // and the indices "1, 1" this returns 2549 // { c, d }. 2550 // 2551 // It does this by inserting an insertvalue for each element in the resulting 2552 // struct, as opposed to just inserting a single struct. This will only work if 2553 // each of the elements of the substruct are known (ie, inserted into From by an 2554 // insertvalue instruction somewhere). 2555 // 2556 // All inserted insertvalue instructions are inserted before InsertBefore 2557 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2558 Instruction *InsertBefore) { 2559 assert(InsertBefore && "Must have someplace to insert!"); 2560 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2561 idx_range); 2562 Value *To = UndefValue::get(IndexedType); 2563 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2564 unsigned IdxSkip = Idxs.size(); 2565 2566 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2567 } 2568 2569 /// Given an aggregrate and an sequence of indices, see if 2570 /// the scalar value indexed is already around as a register, for example if it 2571 /// were inserted directly into the aggregrate. 2572 /// 2573 /// If InsertBefore is not null, this function will duplicate (modified) 2574 /// insertvalues when a part of a nested struct is extracted. 2575 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2576 Instruction *InsertBefore) { 2577 // Nothing to index? Just return V then (this is useful at the end of our 2578 // recursion). 2579 if (idx_range.empty()) 2580 return V; 2581 // We have indices, so V should have an indexable type. 2582 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2583 "Not looking at a struct or array?"); 2584 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2585 "Invalid indices for type?"); 2586 2587 if (Constant *C = dyn_cast<Constant>(V)) { 2588 C = C->getAggregateElement(idx_range[0]); 2589 if (!C) return nullptr; 2590 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2591 } 2592 2593 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2594 // Loop the indices for the insertvalue instruction in parallel with the 2595 // requested indices 2596 const unsigned *req_idx = idx_range.begin(); 2597 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2598 i != e; ++i, ++req_idx) { 2599 if (req_idx == idx_range.end()) { 2600 // We can't handle this without inserting insertvalues 2601 if (!InsertBefore) 2602 return nullptr; 2603 2604 // The requested index identifies a part of a nested aggregate. Handle 2605 // this specially. For example, 2606 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2607 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2608 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2609 // This can be changed into 2610 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2611 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2612 // which allows the unused 0,0 element from the nested struct to be 2613 // removed. 2614 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2615 InsertBefore); 2616 } 2617 2618 // This insert value inserts something else than what we are looking for. 2619 // See if the (aggregate) value inserted into has the value we are 2620 // looking for, then. 2621 if (*req_idx != *i) 2622 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2623 InsertBefore); 2624 } 2625 // If we end up here, the indices of the insertvalue match with those 2626 // requested (though possibly only partially). Now we recursively look at 2627 // the inserted value, passing any remaining indices. 2628 return FindInsertedValue(I->getInsertedValueOperand(), 2629 makeArrayRef(req_idx, idx_range.end()), 2630 InsertBefore); 2631 } 2632 2633 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2634 // If we're extracting a value from an aggregate that was extracted from 2635 // something else, we can extract from that something else directly instead. 2636 // However, we will need to chain I's indices with the requested indices. 2637 2638 // Calculate the number of indices required 2639 unsigned size = I->getNumIndices() + idx_range.size(); 2640 // Allocate some space to put the new indices in 2641 SmallVector<unsigned, 5> Idxs; 2642 Idxs.reserve(size); 2643 // Add indices from the extract value instruction 2644 Idxs.append(I->idx_begin(), I->idx_end()); 2645 2646 // Add requested indices 2647 Idxs.append(idx_range.begin(), idx_range.end()); 2648 2649 assert(Idxs.size() == size 2650 && "Number of indices added not correct?"); 2651 2652 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2653 } 2654 // Otherwise, we don't know (such as, extracting from a function return value 2655 // or load instruction) 2656 return nullptr; 2657 } 2658 2659 /// Analyze the specified pointer to see if it can be expressed as a base 2660 /// pointer plus a constant offset. Return the base and offset to the caller. 2661 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2662 const DataLayout &DL) { 2663 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2664 APInt ByteOffset(BitWidth, 0); 2665 while (1) { 2666 if (Ptr->getType()->isVectorTy()) 2667 break; 2668 2669 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2670 APInt GEPOffset(BitWidth, 0); 2671 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2672 break; 2673 2674 ByteOffset += GEPOffset; 2675 2676 Ptr = GEP->getPointerOperand(); 2677 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2678 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2679 Ptr = cast<Operator>(Ptr)->getOperand(0); 2680 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2681 if (GA->mayBeOverridden()) 2682 break; 2683 Ptr = GA->getAliasee(); 2684 } else { 2685 break; 2686 } 2687 } 2688 Offset = ByteOffset.getSExtValue(); 2689 return Ptr; 2690 } 2691 2692 2693 /// This function computes the length of a null-terminated C string pointed to 2694 /// by V. If successful, it returns true and returns the string in Str. 2695 /// If unsuccessful, it returns false. 2696 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2697 uint64_t Offset, bool TrimAtNul) { 2698 assert(V); 2699 2700 // Look through bitcast instructions and geps. 2701 V = V->stripPointerCasts(); 2702 2703 // If the value is a GEP instruction or constant expression, treat it as an 2704 // offset. 2705 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2706 // Make sure the GEP has exactly three arguments. 2707 if (GEP->getNumOperands() != 3) 2708 return false; 2709 2710 // Make sure the index-ee is a pointer to array of i8. 2711 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2712 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2713 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2714 return false; 2715 2716 // Check to make sure that the first operand of the GEP is an integer and 2717 // has value 0 so that we are sure we're indexing into the initializer. 2718 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2719 if (!FirstIdx || !FirstIdx->isZero()) 2720 return false; 2721 2722 // If the second index isn't a ConstantInt, then this is a variable index 2723 // into the array. If this occurs, we can't say anything meaningful about 2724 // the string. 2725 uint64_t StartIdx = 0; 2726 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2727 StartIdx = CI->getZExtValue(); 2728 else 2729 return false; 2730 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2731 TrimAtNul); 2732 } 2733 2734 // The GEP instruction, constant or instruction, must reference a global 2735 // variable that is a constant and is initialized. The referenced constant 2736 // initializer is the array that we'll use for optimization. 2737 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2738 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2739 return false; 2740 2741 // Handle the all-zeros case 2742 if (GV->getInitializer()->isNullValue()) { 2743 // This is a degenerate case. The initializer is constant zero so the 2744 // length of the string must be zero. 2745 Str = ""; 2746 return true; 2747 } 2748 2749 // Must be a Constant Array 2750 const ConstantDataArray *Array = 2751 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2752 if (!Array || !Array->isString()) 2753 return false; 2754 2755 // Get the number of elements in the array 2756 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2757 2758 // Start out with the entire array in the StringRef. 2759 Str = Array->getAsString(); 2760 2761 if (Offset > NumElts) 2762 return false; 2763 2764 // Skip over 'offset' bytes. 2765 Str = Str.substr(Offset); 2766 2767 if (TrimAtNul) { 2768 // Trim off the \0 and anything after it. If the array is not nul 2769 // terminated, we just return the whole end of string. The client may know 2770 // some other way that the string is length-bound. 2771 Str = Str.substr(0, Str.find('\0')); 2772 } 2773 return true; 2774 } 2775 2776 // These next two are very similar to the above, but also look through PHI 2777 // nodes. 2778 // TODO: See if we can integrate these two together. 2779 2780 /// If we can compute the length of the string pointed to by 2781 /// the specified pointer, return 'len+1'. If we can't, return 0. 2782 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2783 // Look through noop bitcast instructions. 2784 V = V->stripPointerCasts(); 2785 2786 // If this is a PHI node, there are two cases: either we have already seen it 2787 // or we haven't. 2788 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2789 if (!PHIs.insert(PN).second) 2790 return ~0ULL; // already in the set. 2791 2792 // If it was new, see if all the input strings are the same length. 2793 uint64_t LenSoFar = ~0ULL; 2794 for (Value *IncValue : PN->incoming_values()) { 2795 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2796 if (Len == 0) return 0; // Unknown length -> unknown. 2797 2798 if (Len == ~0ULL) continue; 2799 2800 if (Len != LenSoFar && LenSoFar != ~0ULL) 2801 return 0; // Disagree -> unknown. 2802 LenSoFar = Len; 2803 } 2804 2805 // Success, all agree. 2806 return LenSoFar; 2807 } 2808 2809 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2810 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2811 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2812 if (Len1 == 0) return 0; 2813 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2814 if (Len2 == 0) return 0; 2815 if (Len1 == ~0ULL) return Len2; 2816 if (Len2 == ~0ULL) return Len1; 2817 if (Len1 != Len2) return 0; 2818 return Len1; 2819 } 2820 2821 // Otherwise, see if we can read the string. 2822 StringRef StrData; 2823 if (!getConstantStringInfo(V, StrData)) 2824 return 0; 2825 2826 return StrData.size()+1; 2827 } 2828 2829 /// If we can compute the length of the string pointed to by 2830 /// the specified pointer, return 'len+1'. If we can't, return 0. 2831 uint64_t llvm::GetStringLength(Value *V) { 2832 if (!V->getType()->isPointerTy()) return 0; 2833 2834 SmallPtrSet<PHINode*, 32> PHIs; 2835 uint64_t Len = GetStringLengthH(V, PHIs); 2836 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2837 // an empty string as a length. 2838 return Len == ~0ULL ? 1 : Len; 2839 } 2840 2841 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2842 /// previous iteration of the loop was referring to the same object as \p PN. 2843 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2844 // Find the loop-defined value. 2845 Loop *L = LI->getLoopFor(PN->getParent()); 2846 if (PN->getNumIncomingValues() != 2) 2847 return true; 2848 2849 // Find the value from previous iteration. 2850 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2851 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2852 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2853 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2854 return true; 2855 2856 // If a new pointer is loaded in the loop, the pointer references a different 2857 // object in every iteration. E.g.: 2858 // for (i) 2859 // int *p = a[i]; 2860 // ... 2861 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2862 if (!L->isLoopInvariant(Load->getPointerOperand())) 2863 return false; 2864 return true; 2865 } 2866 2867 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2868 unsigned MaxLookup) { 2869 if (!V->getType()->isPointerTy()) 2870 return V; 2871 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2872 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2873 V = GEP->getPointerOperand(); 2874 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2875 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2876 V = cast<Operator>(V)->getOperand(0); 2877 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2878 if (GA->mayBeOverridden()) 2879 return V; 2880 V = GA->getAliasee(); 2881 } else { 2882 // See if InstructionSimplify knows any relevant tricks. 2883 if (Instruction *I = dyn_cast<Instruction>(V)) 2884 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2885 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2886 V = Simplified; 2887 continue; 2888 } 2889 2890 return V; 2891 } 2892 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2893 } 2894 return V; 2895 } 2896 2897 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2898 const DataLayout &DL, LoopInfo *LI, 2899 unsigned MaxLookup) { 2900 SmallPtrSet<Value *, 4> Visited; 2901 SmallVector<Value *, 4> Worklist; 2902 Worklist.push_back(V); 2903 do { 2904 Value *P = Worklist.pop_back_val(); 2905 P = GetUnderlyingObject(P, DL, MaxLookup); 2906 2907 if (!Visited.insert(P).second) 2908 continue; 2909 2910 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2911 Worklist.push_back(SI->getTrueValue()); 2912 Worklist.push_back(SI->getFalseValue()); 2913 continue; 2914 } 2915 2916 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2917 // If this PHI changes the underlying object in every iteration of the 2918 // loop, don't look through it. Consider: 2919 // int **A; 2920 // for (i) { 2921 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2922 // Curr = A[i]; 2923 // *Prev, *Curr; 2924 // 2925 // Prev is tracking Curr one iteration behind so they refer to different 2926 // underlying objects. 2927 if (!LI || !LI->isLoopHeader(PN->getParent()) || 2928 isSameUnderlyingObjectInLoop(PN, LI)) 2929 for (Value *IncValue : PN->incoming_values()) 2930 Worklist.push_back(IncValue); 2931 continue; 2932 } 2933 2934 Objects.push_back(P); 2935 } while (!Worklist.empty()); 2936 } 2937 2938 /// Return true if the only users of this pointer are lifetime markers. 2939 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2940 for (const User *U : V->users()) { 2941 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2942 if (!II) return false; 2943 2944 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2945 II->getIntrinsicID() != Intrinsic::lifetime_end) 2946 return false; 2947 } 2948 return true; 2949 } 2950 2951 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 2952 Type *Ty, const DataLayout &DL, 2953 const Instruction *CtxI, 2954 const DominatorTree *DT, 2955 const TargetLibraryInfo *TLI) { 2956 assert(Offset.isNonNegative() && "offset can't be negative"); 2957 assert(Ty->isSized() && "must be sized"); 2958 2959 APInt DerefBytes(Offset.getBitWidth(), 0); 2960 bool CheckForNonNull = false; 2961 if (const Argument *A = dyn_cast<Argument>(BV)) { 2962 DerefBytes = A->getDereferenceableBytes(); 2963 if (!DerefBytes.getBoolValue()) { 2964 DerefBytes = A->getDereferenceableOrNullBytes(); 2965 CheckForNonNull = true; 2966 } 2967 } else if (auto CS = ImmutableCallSite(BV)) { 2968 DerefBytes = CS.getDereferenceableBytes(0); 2969 if (!DerefBytes.getBoolValue()) { 2970 DerefBytes = CS.getDereferenceableOrNullBytes(0); 2971 CheckForNonNull = true; 2972 } 2973 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 2974 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 2975 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2976 DerefBytes = CI->getLimitedValue(); 2977 } 2978 if (!DerefBytes.getBoolValue()) { 2979 if (MDNode *MD = 2980 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 2981 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2982 DerefBytes = CI->getLimitedValue(); 2983 } 2984 CheckForNonNull = true; 2985 } 2986 } 2987 2988 if (DerefBytes.getBoolValue()) 2989 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 2990 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 2991 return true; 2992 2993 return false; 2994 } 2995 2996 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 2997 const Instruction *CtxI, 2998 const DominatorTree *DT, 2999 const TargetLibraryInfo *TLI) { 3000 Type *VTy = V->getType(); 3001 Type *Ty = VTy->getPointerElementType(); 3002 if (!Ty->isSized()) 3003 return false; 3004 3005 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3006 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 3007 } 3008 3009 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 3010 const DataLayout &DL) { 3011 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); 3012 3013 if (!BaseAlign) { 3014 Type *Ty = Base->getType()->getPointerElementType(); 3015 BaseAlign = DL.getABITypeAlignment(Ty); 3016 } 3017 3018 APInt Alignment(Offset.getBitWidth(), Align); 3019 3020 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3021 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3022 } 3023 3024 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3025 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0); 3026 return isAligned(Base, Offset, Align, DL); 3027 } 3028 3029 /// Test if V is always a pointer to allocated and suitably aligned memory for 3030 /// a simple load or store. 3031 static bool isDereferenceableAndAlignedPointer( 3032 const Value *V, unsigned Align, const DataLayout &DL, 3033 const Instruction *CtxI, const DominatorTree *DT, 3034 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3035 // Note that it is not safe to speculate into a malloc'd region because 3036 // malloc may return null. 3037 3038 // These are obviously ok if aligned. 3039 if (isa<AllocaInst>(V)) 3040 return isAligned(V, Align, DL); 3041 3042 // It's not always safe to follow a bitcast, for example: 3043 // bitcast i8* (alloca i8) to i32* 3044 // would result in a 4-byte load from a 1-byte alloca. However, 3045 // if we're casting from a pointer from a type of larger size 3046 // to a type of smaller size (or the same size), and the alignment 3047 // is at least as large as for the resulting pointer type, then 3048 // we can look through the bitcast. 3049 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3050 Type *STy = BC->getSrcTy()->getPointerElementType(), 3051 *DTy = BC->getDestTy()->getPointerElementType(); 3052 if (STy->isSized() && DTy->isSized() && 3053 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3054 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3055 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3056 CtxI, DT, TLI, Visited); 3057 } 3058 3059 // Global variables which can't collapse to null are ok. 3060 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3061 if (!GV->hasExternalWeakLinkage()) 3062 return isAligned(V, Align, DL); 3063 3064 // byval arguments are okay. 3065 if (const Argument *A = dyn_cast<Argument>(V)) 3066 if (A->hasByValAttr()) 3067 return isAligned(V, Align, DL); 3068 3069 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3070 return isAligned(V, Align, DL); 3071 3072 // For GEPs, determine if the indexing lands within the allocated object. 3073 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3074 Type *VTy = GEP->getType(); 3075 Type *Ty = VTy->getPointerElementType(); 3076 const Value *Base = GEP->getPointerOperand(); 3077 3078 // Conservatively require that the base pointer be fully dereferenceable 3079 // and aligned. 3080 if (!Visited.insert(Base).second) 3081 return false; 3082 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3083 Visited)) 3084 return false; 3085 3086 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); 3087 if (!GEP->accumulateConstantOffset(DL, Offset)) 3088 return false; 3089 3090 // Check if the load is within the bounds of the underlying object 3091 // and offset is aligned. 3092 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3093 Type *BaseType = Base->getType()->getPointerElementType(); 3094 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3095 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3096 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3097 } 3098 3099 // For gc.relocate, look through relocations 3100 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V)) 3101 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) { 3102 GCRelocateOperands RelocateInst(I); 3103 return isDereferenceableAndAlignedPointer( 3104 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3105 } 3106 3107 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3108 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3109 CtxI, DT, TLI, Visited); 3110 3111 // If we don't know, assume the worst. 3112 return false; 3113 } 3114 3115 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3116 const DataLayout &DL, 3117 const Instruction *CtxI, 3118 const DominatorTree *DT, 3119 const TargetLibraryInfo *TLI) { 3120 // When dereferenceability information is provided by a dereferenceable 3121 // attribute, we know exactly how many bytes are dereferenceable. If we can 3122 // determine the exact offset to the attributed variable, we can use that 3123 // information here. 3124 Type *VTy = V->getType(); 3125 Type *Ty = VTy->getPointerElementType(); 3126 3127 // Require ABI alignment for loads without alignment specification 3128 if (Align == 0) 3129 Align = DL.getABITypeAlignment(Ty); 3130 3131 if (Ty->isSized()) { 3132 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3133 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3134 3135 if (Offset.isNonNegative()) 3136 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3137 isAligned(BV, Offset, Align, DL)) 3138 return true; 3139 } 3140 3141 SmallPtrSet<const Value *, 32> Visited; 3142 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3143 Visited); 3144 } 3145 3146 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3147 const Instruction *CtxI, 3148 const DominatorTree *DT, 3149 const TargetLibraryInfo *TLI) { 3150 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3151 } 3152 3153 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3154 const Instruction *CtxI, 3155 const DominatorTree *DT, 3156 const TargetLibraryInfo *TLI) { 3157 const Operator *Inst = dyn_cast<Operator>(V); 3158 if (!Inst) 3159 return false; 3160 3161 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3162 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3163 if (C->canTrap()) 3164 return false; 3165 3166 switch (Inst->getOpcode()) { 3167 default: 3168 return true; 3169 case Instruction::UDiv: 3170 case Instruction::URem: { 3171 // x / y is undefined if y == 0. 3172 const APInt *V; 3173 if (match(Inst->getOperand(1), m_APInt(V))) 3174 return *V != 0; 3175 return false; 3176 } 3177 case Instruction::SDiv: 3178 case Instruction::SRem: { 3179 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3180 const APInt *Numerator, *Denominator; 3181 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3182 return false; 3183 // We cannot hoist this division if the denominator is 0. 3184 if (*Denominator == 0) 3185 return false; 3186 // It's safe to hoist if the denominator is not 0 or -1. 3187 if (*Denominator != -1) 3188 return true; 3189 // At this point we know that the denominator is -1. It is safe to hoist as 3190 // long we know that the numerator is not INT_MIN. 3191 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3192 return !Numerator->isMinSignedValue(); 3193 // The numerator *might* be MinSignedValue. 3194 return false; 3195 } 3196 case Instruction::Load: { 3197 const LoadInst *LI = cast<LoadInst>(Inst); 3198 if (!LI->isUnordered() || 3199 // Speculative load may create a race that did not exist in the source. 3200 LI->getParent()->getParent()->hasFnAttribute( 3201 Attribute::SanitizeThread) || 3202 // Speculative load may load data from dirty regions. 3203 LI->getParent()->getParent()->hasFnAttribute( 3204 Attribute::SanitizeAddress)) 3205 return false; 3206 const DataLayout &DL = LI->getModule()->getDataLayout(); 3207 return isDereferenceableAndAlignedPointer( 3208 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3209 } 3210 case Instruction::Call: { 3211 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3212 switch (II->getIntrinsicID()) { 3213 // These synthetic intrinsics have no side-effects and just mark 3214 // information about their operands. 3215 // FIXME: There are other no-op synthetic instructions that potentially 3216 // should be considered at least *safe* to speculate... 3217 case Intrinsic::dbg_declare: 3218 case Intrinsic::dbg_value: 3219 return true; 3220 3221 case Intrinsic::bswap: 3222 case Intrinsic::ctlz: 3223 case Intrinsic::ctpop: 3224 case Intrinsic::cttz: 3225 case Intrinsic::objectsize: 3226 case Intrinsic::sadd_with_overflow: 3227 case Intrinsic::smul_with_overflow: 3228 case Intrinsic::ssub_with_overflow: 3229 case Intrinsic::uadd_with_overflow: 3230 case Intrinsic::umul_with_overflow: 3231 case Intrinsic::usub_with_overflow: 3232 return true; 3233 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3234 // errno like libm sqrt would. 3235 case Intrinsic::sqrt: 3236 case Intrinsic::fma: 3237 case Intrinsic::fmuladd: 3238 case Intrinsic::fabs: 3239 case Intrinsic::minnum: 3240 case Intrinsic::maxnum: 3241 return true; 3242 // TODO: some fp intrinsics are marked as having the same error handling 3243 // as libm. They're safe to speculate when they won't error. 3244 // TODO: are convert_{from,to}_fp16 safe? 3245 // TODO: can we list target-specific intrinsics here? 3246 default: break; 3247 } 3248 } 3249 return false; // The called function could have undefined behavior or 3250 // side-effects, even if marked readnone nounwind. 3251 } 3252 case Instruction::VAArg: 3253 case Instruction::Alloca: 3254 case Instruction::Invoke: 3255 case Instruction::PHI: 3256 case Instruction::Store: 3257 case Instruction::Ret: 3258 case Instruction::Br: 3259 case Instruction::IndirectBr: 3260 case Instruction::Switch: 3261 case Instruction::Unreachable: 3262 case Instruction::Fence: 3263 case Instruction::AtomicRMW: 3264 case Instruction::AtomicCmpXchg: 3265 case Instruction::LandingPad: 3266 case Instruction::Resume: 3267 case Instruction::CatchPad: 3268 case Instruction::CatchEndPad: 3269 case Instruction::CatchRet: 3270 case Instruction::CleanupPad: 3271 case Instruction::CleanupEndPad: 3272 case Instruction::CleanupRet: 3273 case Instruction::TerminatePad: 3274 return false; // Misc instructions which have effects 3275 } 3276 } 3277 3278 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3279 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3280 } 3281 3282 /// Return true if we know that the specified value is never null. 3283 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3284 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3285 3286 // Alloca never returns null, malloc might. 3287 if (isa<AllocaInst>(V)) return true; 3288 3289 // A byval, inalloca, or nonnull argument is never null. 3290 if (const Argument *A = dyn_cast<Argument>(V)) 3291 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3292 3293 // A global variable in address space 0 is non null unless extern weak. 3294 // Other address spaces may have null as a valid address for a global, 3295 // so we can't assume anything. 3296 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3297 return !GV->hasExternalWeakLinkage() && 3298 GV->getType()->getAddressSpace() == 0; 3299 3300 // A Load tagged w/nonnull metadata is never null. 3301 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3302 return LI->getMetadata(LLVMContext::MD_nonnull); 3303 3304 if (auto CS = ImmutableCallSite(V)) 3305 if (CS.isReturnNonNull()) 3306 return true; 3307 3308 // operator new never returns null. 3309 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 3310 return true; 3311 3312 return false; 3313 } 3314 3315 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3316 const Instruction *CtxI, 3317 const DominatorTree *DT) { 3318 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3319 3320 unsigned NumUsesExplored = 0; 3321 for (auto U : V->users()) { 3322 // Avoid massive lists 3323 if (NumUsesExplored >= DomConditionsMaxUses) 3324 break; 3325 NumUsesExplored++; 3326 // Consider only compare instructions uniquely controlling a branch 3327 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3328 if (!Cmp) 3329 continue; 3330 3331 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3332 continue; 3333 3334 for (auto *CmpU : Cmp->users()) { 3335 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3336 if (!BI) 3337 continue; 3338 3339 assert(BI->isConditional() && "uses a comparison!"); 3340 3341 BasicBlock *NonNullSuccessor = nullptr; 3342 CmpInst::Predicate Pred; 3343 3344 if (match(const_cast<ICmpInst*>(Cmp), 3345 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3346 if (Pred == ICmpInst::ICMP_EQ) 3347 NonNullSuccessor = BI->getSuccessor(1); 3348 else if (Pred == ICmpInst::ICMP_NE) 3349 NonNullSuccessor = BI->getSuccessor(0); 3350 } 3351 3352 if (NonNullSuccessor) { 3353 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3354 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3355 return true; 3356 } 3357 } 3358 } 3359 3360 return false; 3361 } 3362 3363 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3364 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3365 if (isKnownNonNull(V, TLI)) 3366 return true; 3367 3368 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3369 } 3370 3371 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3372 const DataLayout &DL, 3373 AssumptionCache *AC, 3374 const Instruction *CxtI, 3375 const DominatorTree *DT) { 3376 // Multiplying n * m significant bits yields a result of n + m significant 3377 // bits. If the total number of significant bits does not exceed the 3378 // result bit width (minus 1), there is no overflow. 3379 // This means if we have enough leading zero bits in the operands 3380 // we can guarantee that the result does not overflow. 3381 // Ref: "Hacker's Delight" by Henry Warren 3382 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3383 APInt LHSKnownZero(BitWidth, 0); 3384 APInt LHSKnownOne(BitWidth, 0); 3385 APInt RHSKnownZero(BitWidth, 0); 3386 APInt RHSKnownOne(BitWidth, 0); 3387 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3388 DT); 3389 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3390 DT); 3391 // Note that underestimating the number of zero bits gives a more 3392 // conservative answer. 3393 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3394 RHSKnownZero.countLeadingOnes(); 3395 // First handle the easy case: if we have enough zero bits there's 3396 // definitely no overflow. 3397 if (ZeroBits >= BitWidth) 3398 return OverflowResult::NeverOverflows; 3399 3400 // Get the largest possible values for each operand. 3401 APInt LHSMax = ~LHSKnownZero; 3402 APInt RHSMax = ~RHSKnownZero; 3403 3404 // We know the multiply operation doesn't overflow if the maximum values for 3405 // each operand will not overflow after we multiply them together. 3406 bool MaxOverflow; 3407 LHSMax.umul_ov(RHSMax, MaxOverflow); 3408 if (!MaxOverflow) 3409 return OverflowResult::NeverOverflows; 3410 3411 // We know it always overflows if multiplying the smallest possible values for 3412 // the operands also results in overflow. 3413 bool MinOverflow; 3414 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3415 if (MinOverflow) 3416 return OverflowResult::AlwaysOverflows; 3417 3418 return OverflowResult::MayOverflow; 3419 } 3420 3421 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3422 const DataLayout &DL, 3423 AssumptionCache *AC, 3424 const Instruction *CxtI, 3425 const DominatorTree *DT) { 3426 bool LHSKnownNonNegative, LHSKnownNegative; 3427 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3428 AC, CxtI, DT); 3429 if (LHSKnownNonNegative || LHSKnownNegative) { 3430 bool RHSKnownNonNegative, RHSKnownNegative; 3431 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3432 AC, CxtI, DT); 3433 3434 if (LHSKnownNegative && RHSKnownNegative) { 3435 // The sign bit is set in both cases: this MUST overflow. 3436 // Create a simple add instruction, and insert it into the struct. 3437 return OverflowResult::AlwaysOverflows; 3438 } 3439 3440 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3441 // The sign bit is clear in both cases: this CANNOT overflow. 3442 // Create a simple add instruction, and insert it into the struct. 3443 return OverflowResult::NeverOverflows; 3444 } 3445 } 3446 3447 return OverflowResult::MayOverflow; 3448 } 3449 3450 static OverflowResult computeOverflowForSignedAdd( 3451 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3452 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3453 if (Add && Add->hasNoSignedWrap()) { 3454 return OverflowResult::NeverOverflows; 3455 } 3456 3457 bool LHSKnownNonNegative, LHSKnownNegative; 3458 bool RHSKnownNonNegative, RHSKnownNegative; 3459 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3460 AC, CxtI, DT); 3461 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3462 AC, CxtI, DT); 3463 3464 if ((LHSKnownNonNegative && RHSKnownNegative) || 3465 (LHSKnownNegative && RHSKnownNonNegative)) { 3466 // The sign bits are opposite: this CANNOT overflow. 3467 return OverflowResult::NeverOverflows; 3468 } 3469 3470 // The remaining code needs Add to be available. Early returns if not so. 3471 if (!Add) 3472 return OverflowResult::MayOverflow; 3473 3474 // If the sign of Add is the same as at least one of the operands, this add 3475 // CANNOT overflow. This is particularly useful when the sum is 3476 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3477 // operands. 3478 bool LHSOrRHSKnownNonNegative = 3479 (LHSKnownNonNegative || RHSKnownNonNegative); 3480 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3481 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3482 bool AddKnownNonNegative, AddKnownNegative; 3483 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3484 /*Depth=*/0, AC, CxtI, DT); 3485 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3486 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3487 return OverflowResult::NeverOverflows; 3488 } 3489 } 3490 3491 return OverflowResult::MayOverflow; 3492 } 3493 3494 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3495 const DataLayout &DL, 3496 AssumptionCache *AC, 3497 const Instruction *CxtI, 3498 const DominatorTree *DT) { 3499 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3500 Add, DL, AC, CxtI, DT); 3501 } 3502 3503 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3504 const DataLayout &DL, 3505 AssumptionCache *AC, 3506 const Instruction *CxtI, 3507 const DominatorTree *DT) { 3508 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3509 } 3510 3511 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3512 // FIXME: This conservative implementation can be relaxed. E.g. most 3513 // atomic operations are guaranteed to terminate on most platforms 3514 // and most functions terminate. 3515 3516 return !I->isAtomic() && // atomics may never succeed on some platforms 3517 !isa<CallInst>(I) && // could throw and might not terminate 3518 !isa<InvokeInst>(I) && // might not terminate and could throw to 3519 // non-successor (see bug 24185 for details). 3520 !isa<ResumeInst>(I) && // has no successors 3521 !isa<ReturnInst>(I); // has no successors 3522 } 3523 3524 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3525 const Loop *L) { 3526 // The loop header is guaranteed to be executed for every iteration. 3527 // 3528 // FIXME: Relax this constraint to cover all basic blocks that are 3529 // guaranteed to be executed at every iteration. 3530 if (I->getParent() != L->getHeader()) return false; 3531 3532 for (const Instruction &LI : *L->getHeader()) { 3533 if (&LI == I) return true; 3534 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3535 } 3536 llvm_unreachable("Instruction not contained in its own parent basic block."); 3537 } 3538 3539 bool llvm::propagatesFullPoison(const Instruction *I) { 3540 switch (I->getOpcode()) { 3541 case Instruction::Add: 3542 case Instruction::Sub: 3543 case Instruction::Xor: 3544 case Instruction::Trunc: 3545 case Instruction::BitCast: 3546 case Instruction::AddrSpaceCast: 3547 // These operations all propagate poison unconditionally. Note that poison 3548 // is not any particular value, so xor or subtraction of poison with 3549 // itself still yields poison, not zero. 3550 return true; 3551 3552 case Instruction::AShr: 3553 case Instruction::SExt: 3554 // For these operations, one bit of the input is replicated across 3555 // multiple output bits. A replicated poison bit is still poison. 3556 return true; 3557 3558 case Instruction::Shl: { 3559 // Left shift *by* a poison value is poison. The number of 3560 // positions to shift is unsigned, so no negative values are 3561 // possible there. Left shift by zero places preserves poison. So 3562 // it only remains to consider left shift of poison by a positive 3563 // number of places. 3564 // 3565 // A left shift by a positive number of places leaves the lowest order bit 3566 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3567 // make the poison operand violate that flag, yielding a fresh full-poison 3568 // value. 3569 auto *OBO = cast<OverflowingBinaryOperator>(I); 3570 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3571 } 3572 3573 case Instruction::Mul: { 3574 // A multiplication by zero yields a non-poison zero result, so we need to 3575 // rule out zero as an operand. Conservatively, multiplication by a 3576 // non-zero constant is not multiplication by zero. 3577 // 3578 // Multiplication by a non-zero constant can leave some bits 3579 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3580 // order bit unpoisoned. So we need to consider that. 3581 // 3582 // Multiplication by 1 preserves poison. If the multiplication has a 3583 // no-wrap flag, then we can make the poison operand violate that flag 3584 // when multiplied by any integer other than 0 and 1. 3585 auto *OBO = cast<OverflowingBinaryOperator>(I); 3586 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3587 for (Value *V : OBO->operands()) { 3588 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3589 // A ConstantInt cannot yield poison, so we can assume that it is 3590 // the other operand that is poison. 3591 return !CI->isZero(); 3592 } 3593 } 3594 } 3595 return false; 3596 } 3597 3598 case Instruction::GetElementPtr: 3599 // A GEP implicitly represents a sequence of additions, subtractions, 3600 // truncations, sign extensions and multiplications. The multiplications 3601 // are by the non-zero sizes of some set of types, so we do not have to be 3602 // concerned with multiplication by zero. If the GEP is in-bounds, then 3603 // these operations are implicitly no-signed-wrap so poison is propagated 3604 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3605 return cast<GEPOperator>(I)->isInBounds(); 3606 3607 default: 3608 return false; 3609 } 3610 } 3611 3612 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3613 switch (I->getOpcode()) { 3614 case Instruction::Store: 3615 return cast<StoreInst>(I)->getPointerOperand(); 3616 3617 case Instruction::Load: 3618 return cast<LoadInst>(I)->getPointerOperand(); 3619 3620 case Instruction::AtomicCmpXchg: 3621 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3622 3623 case Instruction::AtomicRMW: 3624 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3625 3626 case Instruction::UDiv: 3627 case Instruction::SDiv: 3628 case Instruction::URem: 3629 case Instruction::SRem: 3630 return I->getOperand(1); 3631 3632 default: 3633 return nullptr; 3634 } 3635 } 3636 3637 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3638 // We currently only look for uses of poison values within the same basic 3639 // block, as that makes it easier to guarantee that the uses will be 3640 // executed given that PoisonI is executed. 3641 // 3642 // FIXME: Expand this to consider uses beyond the same basic block. To do 3643 // this, look out for the distinction between post-dominance and strong 3644 // post-dominance. 3645 const BasicBlock *BB = PoisonI->getParent(); 3646 3647 // Set of instructions that we have proved will yield poison if PoisonI 3648 // does. 3649 SmallSet<const Value *, 16> YieldsPoison; 3650 YieldsPoison.insert(PoisonI); 3651 3652 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3653 I != E; ++I) { 3654 if (&*I != PoisonI) { 3655 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3656 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3657 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3658 return false; 3659 } 3660 3661 // Mark poison that propagates from I through uses of I. 3662 if (YieldsPoison.count(&*I)) { 3663 for (const User *User : I->users()) { 3664 const Instruction *UserI = cast<Instruction>(User); 3665 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3666 YieldsPoison.insert(User); 3667 } 3668 } 3669 } 3670 return false; 3671 } 3672 3673 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3674 if (FMF.noNaNs()) 3675 return true; 3676 3677 if (auto *C = dyn_cast<ConstantFP>(V)) 3678 return !C->isNaN(); 3679 return false; 3680 } 3681 3682 static bool isKnownNonZero(Value *V) { 3683 if (auto *C = dyn_cast<ConstantFP>(V)) 3684 return !C->isZero(); 3685 return false; 3686 } 3687 3688 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3689 FastMathFlags FMF, 3690 Value *CmpLHS, Value *CmpRHS, 3691 Value *TrueVal, Value *FalseVal, 3692 Value *&LHS, Value *&RHS) { 3693 LHS = CmpLHS; 3694 RHS = CmpRHS; 3695 3696 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3697 // return inconsistent results between implementations. 3698 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3699 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3700 // Therefore we behave conservatively and only proceed if at least one of the 3701 // operands is known to not be zero, or if we don't care about signed zeroes. 3702 switch (Pred) { 3703 default: break; 3704 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3705 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3706 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3707 !isKnownNonZero(CmpRHS)) 3708 return {SPF_UNKNOWN, SPNB_NA, false}; 3709 } 3710 3711 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3712 bool Ordered = false; 3713 3714 // When given one NaN and one non-NaN input: 3715 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3716 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3717 // ordered comparison fails), which could be NaN or non-NaN. 3718 // so here we discover exactly what NaN behavior is required/accepted. 3719 if (CmpInst::isFPPredicate(Pred)) { 3720 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3721 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3722 3723 if (LHSSafe && RHSSafe) { 3724 // Both operands are known non-NaN. 3725 NaNBehavior = SPNB_RETURNS_ANY; 3726 } else if (CmpInst::isOrdered(Pred)) { 3727 // An ordered comparison will return false when given a NaN, so it 3728 // returns the RHS. 3729 Ordered = true; 3730 if (LHSSafe) 3731 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3732 NaNBehavior = SPNB_RETURNS_NAN; 3733 else if (RHSSafe) 3734 NaNBehavior = SPNB_RETURNS_OTHER; 3735 else 3736 // Completely unsafe. 3737 return {SPF_UNKNOWN, SPNB_NA, false}; 3738 } else { 3739 Ordered = false; 3740 // An unordered comparison will return true when given a NaN, so it 3741 // returns the LHS. 3742 if (LHSSafe) 3743 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3744 NaNBehavior = SPNB_RETURNS_OTHER; 3745 else if (RHSSafe) 3746 NaNBehavior = SPNB_RETURNS_NAN; 3747 else 3748 // Completely unsafe. 3749 return {SPF_UNKNOWN, SPNB_NA, false}; 3750 } 3751 } 3752 3753 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3754 std::swap(CmpLHS, CmpRHS); 3755 Pred = CmpInst::getSwappedPredicate(Pred); 3756 if (NaNBehavior == SPNB_RETURNS_NAN) 3757 NaNBehavior = SPNB_RETURNS_OTHER; 3758 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3759 NaNBehavior = SPNB_RETURNS_NAN; 3760 Ordered = !Ordered; 3761 } 3762 3763 // ([if]cmp X, Y) ? X : Y 3764 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3765 switch (Pred) { 3766 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3767 case ICmpInst::ICMP_UGT: 3768 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3769 case ICmpInst::ICMP_SGT: 3770 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3771 case ICmpInst::ICMP_ULT: 3772 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3773 case ICmpInst::ICMP_SLT: 3774 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3775 case FCmpInst::FCMP_UGT: 3776 case FCmpInst::FCMP_UGE: 3777 case FCmpInst::FCMP_OGT: 3778 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3779 case FCmpInst::FCMP_ULT: 3780 case FCmpInst::FCMP_ULE: 3781 case FCmpInst::FCMP_OLT: 3782 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3783 } 3784 } 3785 3786 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3787 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3788 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3789 3790 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3791 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3792 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3793 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3794 } 3795 3796 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3797 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3798 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3799 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3800 } 3801 } 3802 3803 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3804 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3805 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3806 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3807 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3808 LHS = TrueVal; 3809 RHS = FalseVal; 3810 return {SPF_SMIN, SPNB_NA, false}; 3811 } 3812 } 3813 } 3814 3815 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3816 3817 return {SPF_UNKNOWN, SPNB_NA, false}; 3818 } 3819 3820 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3821 Instruction::CastOps *CastOp) { 3822 CastInst *CI = dyn_cast<CastInst>(V1); 3823 Constant *C = dyn_cast<Constant>(V2); 3824 CastInst *CI2 = dyn_cast<CastInst>(V2); 3825 if (!CI) 3826 return nullptr; 3827 *CastOp = CI->getOpcode(); 3828 3829 if (CI2) { 3830 // If V1 and V2 are both the same cast from the same type, we can look 3831 // through V1. 3832 if (CI2->getOpcode() == CI->getOpcode() && 3833 CI2->getSrcTy() == CI->getSrcTy()) 3834 return CI2->getOperand(0); 3835 return nullptr; 3836 } else if (!C) { 3837 return nullptr; 3838 } 3839 3840 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3841 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3842 // This is only valid if the truncated value can be sign-extended 3843 // back to the original value. 3844 if (ConstantExpr::getSExt(T, C->getType()) == C) 3845 return T; 3846 return nullptr; 3847 } 3848 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3849 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3850 3851 if (isa<TruncInst>(CI)) 3852 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3853 3854 if (isa<FPToUIInst>(CI)) 3855 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3856 3857 if (isa<FPToSIInst>(CI)) 3858 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3859 3860 if (isa<UIToFPInst>(CI)) 3861 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3862 3863 if (isa<SIToFPInst>(CI)) 3864 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3865 3866 if (isa<FPTruncInst>(CI)) 3867 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3868 3869 if (isa<FPExtInst>(CI)) 3870 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3871 3872 return nullptr; 3873 } 3874 3875 SelectPatternResult llvm::matchSelectPattern(Value *V, 3876 Value *&LHS, Value *&RHS, 3877 Instruction::CastOps *CastOp) { 3878 SelectInst *SI = dyn_cast<SelectInst>(V); 3879 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3880 3881 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3882 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3883 3884 CmpInst::Predicate Pred = CmpI->getPredicate(); 3885 Value *CmpLHS = CmpI->getOperand(0); 3886 Value *CmpRHS = CmpI->getOperand(1); 3887 Value *TrueVal = SI->getTrueValue(); 3888 Value *FalseVal = SI->getFalseValue(); 3889 FastMathFlags FMF; 3890 if (isa<FPMathOperator>(CmpI)) 3891 FMF = CmpI->getFastMathFlags(); 3892 3893 // Bail out early. 3894 if (CmpI->isEquality()) 3895 return {SPF_UNKNOWN, SPNB_NA, false}; 3896 3897 // Deal with type mismatches. 3898 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3899 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3900 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3901 cast<CastInst>(TrueVal)->getOperand(0), C, 3902 LHS, RHS); 3903 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3904 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3905 C, cast<CastInst>(FalseVal)->getOperand(0), 3906 LHS, RHS); 3907 } 3908 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3909 LHS, RHS); 3910 } 3911