1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <cstring> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 const unsigned MaxDepth = 6; 43 44 /// Enable an experimental feature to leverage information about dominating 45 /// conditions to compute known bits. The individual options below control how 46 /// hard we search. The defaults are chosen to be fairly aggressive. If you 47 /// run into compile time problems when testing, scale them back and report 48 /// your findings. 49 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 50 cl::Hidden, cl::init(false)); 51 52 // This is expensive, so we only do it for the top level query value. 53 // (TODO: evaluate cost vs profit, consider higher thresholds) 54 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 55 cl::Hidden, cl::init(1)); 56 57 /// How many dominating blocks should be scanned looking for dominating 58 /// conditions? 59 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 60 cl::Hidden, 61 cl::init(20000)); 62 63 // Controls the number of uses of the value searched for possible 64 // dominating comparisons. 65 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 66 cl::Hidden, cl::init(2000)); 67 68 // If true, don't consider only compares whose only use is a branch. 69 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 70 cl::Hidden, cl::init(false)); 71 72 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 73 /// 0). For vector types, returns the element type's bitwidth. 74 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 75 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 76 return BitWidth; 77 78 return DL.getPointerTypeSizeInBits(Ty); 79 } 80 81 // Many of these functions have internal versions that take an assumption 82 // exclusion set. This is because of the potential for mutual recursion to 83 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 84 // classic case of this is assume(x = y), which will attempt to determine 85 // bits in x from bits in y, which will attempt to determine bits in y from 86 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 87 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 88 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 89 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 90 91 namespace { 92 // Simplifying using an assume can only be done in a particular control-flow 93 // context (the context instruction provides that context). If an assume and 94 // the context instruction are not in the same block then the DT helps in 95 // figuring out if we can use it. 96 struct Query { 97 ExclInvsSet ExclInvs; 98 AssumptionCache *AC; 99 const Instruction *CxtI; 100 const DominatorTree *DT; 101 102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 103 const DominatorTree *DT = nullptr) 104 : AC(AC), CxtI(CxtI), DT(DT) {} 105 106 Query(const Query &Q, const Value *NewExcl) 107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 108 ExclInvs.insert(NewExcl); 109 } 110 }; 111 } // end anonymous namespace 112 113 // Given the provided Value and, potentially, a context instruction, return 114 // the preferred context instruction (if any). 115 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 116 // If we've been provided with a context instruction, then use that (provided 117 // it has been inserted). 118 if (CxtI && CxtI->getParent()) 119 return CxtI; 120 121 // If the value is really an already-inserted instruction, then use that. 122 CxtI = dyn_cast<Instruction>(V); 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 return nullptr; 127 } 128 129 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 130 const DataLayout &DL, unsigned Depth, 131 const Query &Q); 132 133 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 134 const DataLayout &DL, unsigned Depth, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 138 Query(AC, safeCxtI(V, CxtI), DT)); 139 } 140 141 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 142 AssumptionCache *AC, const Instruction *CxtI, 143 const DominatorTree *DT) { 144 assert(LHS->getType() == RHS->getType() && 145 "LHS and RHS should have the same type"); 146 assert(LHS->getType()->isIntOrIntVectorTy() && 147 "LHS and RHS should be integers"); 148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 154 } 155 156 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 157 const DataLayout &DL, unsigned Depth, 158 const Query &Q); 159 160 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 161 const DataLayout &DL, unsigned Depth, 162 AssumptionCache *AC, const Instruction *CxtI, 163 const DominatorTree *DT) { 164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 165 Query(AC, safeCxtI(V, CxtI), DT)); 166 } 167 168 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 169 const Query &Q, const DataLayout &DL); 170 171 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 172 unsigned Depth, AssumptionCache *AC, 173 const Instruction *CxtI, 174 const DominatorTree *DT) { 175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 176 Query(AC, safeCxtI(V, CxtI), DT), DL); 177 } 178 179 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 180 const Query &Q); 181 182 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 183 AssumptionCache *AC, const Instruction *CxtI, 184 const DominatorTree *DT) { 185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 186 } 187 188 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 189 AssumptionCache *AC, const Instruction *CxtI, 190 const DominatorTree *DT) { 191 bool NonNegative, Negative; 192 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 193 return NonNegative; 194 } 195 196 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 197 unsigned Depth, const Query &Q); 198 199 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 200 unsigned Depth, AssumptionCache *AC, 201 const Instruction *CxtI, const DominatorTree *DT) { 202 return ::MaskedValueIsZero(V, Mask, DL, Depth, 203 Query(AC, safeCxtI(V, CxtI), DT)); 204 } 205 206 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 207 unsigned Depth, const Query &Q); 208 209 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 210 unsigned Depth, AssumptionCache *AC, 211 const Instruction *CxtI, 212 const DominatorTree *DT) { 213 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 214 } 215 216 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 217 APInt &KnownZero, APInt &KnownOne, 218 APInt &KnownZero2, APInt &KnownOne2, 219 const DataLayout &DL, unsigned Depth, 220 const Query &Q) { 221 if (!Add) { 222 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 223 // We know that the top bits of C-X are clear if X contains less bits 224 // than C (i.e. no wrap-around can happen). For example, 20-X is 225 // positive if we can prove that X is >= 0 and < 16. 226 if (!CLHS->getValue().isNegative()) { 227 unsigned BitWidth = KnownZero.getBitWidth(); 228 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 229 // NLZ can't be BitWidth with no sign bit 230 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 231 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 232 233 // If all of the MaskV bits are known to be zero, then we know the 234 // output top bits are zero, because we now know that the output is 235 // from [0-C]. 236 if ((KnownZero2 & MaskV) == MaskV) { 237 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 238 // Top bits known zero. 239 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 240 } 241 } 242 } 243 } 244 245 unsigned BitWidth = KnownZero.getBitWidth(); 246 247 // If an initial sequence of bits in the result is not needed, the 248 // corresponding bits in the operands are not needed. 249 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 250 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 251 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 252 253 // Carry in a 1 for a subtract, rather than a 0. 254 APInt CarryIn(BitWidth, 0); 255 if (!Add) { 256 // Sum = LHS + ~RHS + 1 257 std::swap(KnownZero2, KnownOne2); 258 CarryIn.setBit(0); 259 } 260 261 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 262 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 263 264 // Compute known bits of the carry. 265 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 266 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 267 268 // Compute set of known bits (where all three relevant bits are known). 269 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 270 APInt RHSKnown = KnownZero2 | KnownOne2; 271 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 272 APInt Known = LHSKnown & RHSKnown & CarryKnown; 273 274 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 275 "known bits of sum differ"); 276 277 // Compute known bits of the result. 278 KnownZero = ~PossibleSumOne & Known; 279 KnownOne = PossibleSumOne & Known; 280 281 // Are we still trying to solve for the sign bit? 282 if (!Known.isNegative()) { 283 if (NSW) { 284 // Adding two non-negative numbers, or subtracting a negative number from 285 // a non-negative one, can't wrap into negative. 286 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 287 KnownZero |= APInt::getSignBit(BitWidth); 288 // Adding two negative numbers, or subtracting a non-negative number from 289 // a negative one, can't wrap into non-negative. 290 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 291 KnownOne |= APInt::getSignBit(BitWidth); 292 } 293 } 294 } 295 296 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 297 APInt &KnownZero, APInt &KnownOne, 298 APInt &KnownZero2, APInt &KnownOne2, 299 const DataLayout &DL, unsigned Depth, 300 const Query &Q) { 301 unsigned BitWidth = KnownZero.getBitWidth(); 302 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 303 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 304 305 bool isKnownNegative = false; 306 bool isKnownNonNegative = false; 307 // If the multiplication is known not to overflow, compute the sign bit. 308 if (NSW) { 309 if (Op0 == Op1) { 310 // The product of a number with itself is non-negative. 311 isKnownNonNegative = true; 312 } else { 313 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 314 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 315 bool isKnownNegativeOp1 = KnownOne.isNegative(); 316 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 317 // The product of two numbers with the same sign is non-negative. 318 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 319 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 320 // The product of a negative number and a non-negative number is either 321 // negative or zero. 322 if (!isKnownNonNegative) 323 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 324 isKnownNonZero(Op0, DL, Depth, Q)) || 325 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 326 isKnownNonZero(Op1, DL, Depth, Q)); 327 } 328 } 329 330 // If low bits are zero in either operand, output low known-0 bits. 331 // Also compute a conserative estimate for high known-0 bits. 332 // More trickiness is possible, but this is sufficient for the 333 // interesting case of alignment computation. 334 KnownOne.clearAllBits(); 335 unsigned TrailZ = KnownZero.countTrailingOnes() + 336 KnownZero2.countTrailingOnes(); 337 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 338 KnownZero2.countLeadingOnes(), 339 BitWidth) - BitWidth; 340 341 TrailZ = std::min(TrailZ, BitWidth); 342 LeadZ = std::min(LeadZ, BitWidth); 343 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 344 APInt::getHighBitsSet(BitWidth, LeadZ); 345 346 // Only make use of no-wrap flags if we failed to compute the sign bit 347 // directly. This matters if the multiplication always overflows, in 348 // which case we prefer to follow the result of the direct computation, 349 // though as the program is invoking undefined behaviour we can choose 350 // whatever we like here. 351 if (isKnownNonNegative && !KnownOne.isNegative()) 352 KnownZero.setBit(BitWidth - 1); 353 else if (isKnownNegative && !KnownZero.isNegative()) 354 KnownOne.setBit(BitWidth - 1); 355 } 356 357 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 358 APInt &KnownZero) { 359 unsigned BitWidth = KnownZero.getBitWidth(); 360 unsigned NumRanges = Ranges.getNumOperands() / 2; 361 assert(NumRanges >= 1); 362 363 // Use the high end of the ranges to find leading zeros. 364 unsigned MinLeadingZeros = BitWidth; 365 for (unsigned i = 0; i < NumRanges; ++i) { 366 ConstantInt *Lower = 367 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 368 ConstantInt *Upper = 369 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 370 ConstantRange Range(Lower->getValue(), Upper->getValue()); 371 if (Range.isWrappedSet()) 372 MinLeadingZeros = 0; // -1 has no zeros 373 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 374 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 375 } 376 377 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 378 } 379 380 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 381 SmallVector<const Value *, 16> WorkSet(1, I); 382 SmallPtrSet<const Value *, 32> Visited; 383 SmallPtrSet<const Value *, 16> EphValues; 384 385 while (!WorkSet.empty()) { 386 const Value *V = WorkSet.pop_back_val(); 387 if (!Visited.insert(V).second) 388 continue; 389 390 // If all uses of this value are ephemeral, then so is this value. 391 bool FoundNEUse = false; 392 for (const User *I : V->users()) 393 if (!EphValues.count(I)) { 394 FoundNEUse = true; 395 break; 396 } 397 398 if (!FoundNEUse) { 399 if (V == E) 400 return true; 401 402 EphValues.insert(V); 403 if (const User *U = dyn_cast<User>(V)) 404 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 405 J != JE; ++J) { 406 if (isSafeToSpeculativelyExecute(*J)) 407 WorkSet.push_back(*J); 408 } 409 } 410 } 411 412 return false; 413 } 414 415 // Is this an intrinsic that cannot be speculated but also cannot trap? 416 static bool isAssumeLikeIntrinsic(const Instruction *I) { 417 if (const CallInst *CI = dyn_cast<CallInst>(I)) 418 if (Function *F = CI->getCalledFunction()) 419 switch (F->getIntrinsicID()) { 420 default: break; 421 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 422 case Intrinsic::assume: 423 case Intrinsic::dbg_declare: 424 case Intrinsic::dbg_value: 425 case Intrinsic::invariant_start: 426 case Intrinsic::invariant_end: 427 case Intrinsic::lifetime_start: 428 case Intrinsic::lifetime_end: 429 case Intrinsic::objectsize: 430 case Intrinsic::ptr_annotation: 431 case Intrinsic::var_annotation: 432 return true; 433 } 434 435 return false; 436 } 437 438 static bool isValidAssumeForContext(Value *V, const Query &Q) { 439 Instruction *Inv = cast<Instruction>(V); 440 441 // There are two restrictions on the use of an assume: 442 // 1. The assume must dominate the context (or the control flow must 443 // reach the assume whenever it reaches the context). 444 // 2. The context must not be in the assume's set of ephemeral values 445 // (otherwise we will use the assume to prove that the condition 446 // feeding the assume is trivially true, thus causing the removal of 447 // the assume). 448 449 if (Q.DT) { 450 if (Q.DT->dominates(Inv, Q.CxtI)) { 451 return true; 452 } else if (Inv->getParent() == Q.CxtI->getParent()) { 453 // The context comes first, but they're both in the same block. Make sure 454 // there is nothing in between that might interrupt the control flow. 455 for (BasicBlock::const_iterator I = 456 std::next(BasicBlock::const_iterator(Q.CxtI)), 457 IE(Inv); I != IE; ++I) 458 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I)) 459 return false; 460 461 return !isEphemeralValueOf(Inv, Q.CxtI); 462 } 463 464 return false; 465 } 466 467 // When we don't have a DT, we do a limited search... 468 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 469 return true; 470 } else if (Inv->getParent() == Q.CxtI->getParent()) { 471 // Search forward from the assume until we reach the context (or the end 472 // of the block); the common case is that the assume will come first. 473 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 474 IE = Inv->getParent()->end(); I != IE; ++I) 475 if (I == Q.CxtI) 476 return true; 477 478 // The context must come first... 479 for (BasicBlock::const_iterator I = 480 std::next(BasicBlock::const_iterator(Q.CxtI)), 481 IE(Inv); I != IE; ++I) 482 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I)) 483 return false; 484 485 return !isEphemeralValueOf(Inv, Q.CxtI); 486 } 487 488 return false; 489 } 490 491 bool llvm::isValidAssumeForContext(const Instruction *I, 492 const Instruction *CxtI, 493 const DominatorTree *DT) { 494 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 495 Query(nullptr, CxtI, DT)); 496 } 497 498 template<typename LHS, typename RHS> 499 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 500 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 501 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 502 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 503 } 504 505 template<typename LHS, typename RHS> 506 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 507 BinaryOp_match<RHS, LHS, Instruction::And>> 508 m_c_And(const LHS &L, const RHS &R) { 509 return m_CombineOr(m_And(L, R), m_And(R, L)); 510 } 511 512 template<typename LHS, typename RHS> 513 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 514 BinaryOp_match<RHS, LHS, Instruction::Or>> 515 m_c_Or(const LHS &L, const RHS &R) { 516 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 517 } 518 519 template<typename LHS, typename RHS> 520 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 521 BinaryOp_match<RHS, LHS, Instruction::Xor>> 522 m_c_Xor(const LHS &L, const RHS &R) { 523 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 524 } 525 526 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 527 /// true (at the context instruction.) This is mostly a utility function for 528 /// the prototype dominating conditions reasoning below. 529 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 530 APInt &KnownZero, 531 APInt &KnownOne, 532 const DataLayout &DL, 533 unsigned Depth, const Query &Q) { 534 Value *LHS = Cmp->getOperand(0); 535 Value *RHS = Cmp->getOperand(1); 536 // TODO: We could potentially be more aggressive here. This would be worth 537 // evaluating. If we can, explore commoning this code with the assume 538 // handling logic. 539 if (LHS != V && RHS != V) 540 return; 541 542 const unsigned BitWidth = KnownZero.getBitWidth(); 543 544 switch (Cmp->getPredicate()) { 545 default: 546 // We know nothing from this condition 547 break; 548 // TODO: implement unsigned bound from below (known one bits) 549 // TODO: common condition check implementations with assumes 550 // TODO: implement other patterns from assume (e.g. V & B == A) 551 case ICmpInst::ICMP_SGT: 552 if (LHS == V) { 553 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 554 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 555 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 556 // We know that the sign bit is zero. 557 KnownZero |= APInt::getSignBit(BitWidth); 558 } 559 } 560 break; 561 case ICmpInst::ICMP_EQ: 562 { 563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 564 if (LHS == V) 565 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 566 else if (RHS == V) 567 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 568 else 569 llvm_unreachable("missing use?"); 570 KnownZero |= KnownZeroTemp; 571 KnownOne |= KnownOneTemp; 572 } 573 break; 574 case ICmpInst::ICMP_ULE: 575 if (LHS == V) { 576 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 577 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 578 // The known zero bits carry over 579 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 580 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 581 } 582 break; 583 case ICmpInst::ICMP_ULT: 584 if (LHS == V) { 585 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 587 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 588 // power of 2, then one more). 589 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 590 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 591 SignBits++; 592 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 593 } 594 break; 595 }; 596 } 597 598 /// Compute known bits in 'V' from conditions which are known to be true along 599 /// all paths leading to the context instruction. In particular, look for 600 /// cases where one branch of an interesting condition dominates the context 601 /// instruction. This does not do general dataflow. 602 /// NOTE: This code is EXPERIMENTAL and currently off by default. 603 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 604 APInt &KnownOne, 605 const DataLayout &DL, 606 unsigned Depth, 607 const Query &Q) { 608 // Need both the dominator tree and the query location to do anything useful 609 if (!Q.DT || !Q.CxtI) 610 return; 611 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 612 613 // Avoid useless work 614 if (auto VI = dyn_cast<Instruction>(V)) 615 if (VI->getParent() == Cxt->getParent()) 616 return; 617 618 // Note: We currently implement two options. It's not clear which of these 619 // will survive long term, we need data for that. 620 // Option 1 - Try walking the dominator tree looking for conditions which 621 // might apply. This works well for local conditions (loop guards, etc..), 622 // but not as well for things far from the context instruction (presuming a 623 // low max blocks explored). If we can set an high enough limit, this would 624 // be all we need. 625 // Option 2 - We restrict out search to those conditions which are uses of 626 // the value we're interested in. This is independent of dom structure, 627 // but is slightly less powerful without looking through lots of use chains. 628 // It does handle conditions far from the context instruction (e.g. early 629 // function exits on entry) really well though. 630 631 // Option 1 - Search the dom tree 632 unsigned NumBlocksExplored = 0; 633 BasicBlock *Current = Cxt->getParent(); 634 while (true) { 635 // Stop searching if we've gone too far up the chain 636 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 637 break; 638 NumBlocksExplored++; 639 640 if (!Q.DT->getNode(Current)->getIDom()) 641 break; 642 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 643 if (!Current) 644 // found function entry 645 break; 646 647 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 648 if (!BI || BI->isUnconditional()) 649 continue; 650 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 651 if (!Cmp) 652 continue; 653 654 // We're looking for conditions that are guaranteed to hold at the context 655 // instruction. Finding a condition where one path dominates the context 656 // isn't enough because both the true and false cases could merge before 657 // the context instruction we're actually interested in. Instead, we need 658 // to ensure that the taken *edge* dominates the context instruction. 659 BasicBlock *BB0 = BI->getSuccessor(0); 660 BasicBlockEdge Edge(BI->getParent(), BB0); 661 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 662 continue; 663 664 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 665 Q); 666 } 667 668 // Option 2 - Search the other uses of V 669 unsigned NumUsesExplored = 0; 670 for (auto U : V->users()) { 671 // Avoid massive lists 672 if (NumUsesExplored >= DomConditionsMaxUses) 673 break; 674 NumUsesExplored++; 675 // Consider only compare instructions uniquely controlling a branch 676 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 677 if (!Cmp) 678 continue; 679 680 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 681 continue; 682 683 for (auto *CmpU : Cmp->users()) { 684 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 685 if (!BI || BI->isUnconditional()) 686 continue; 687 // We're looking for conditions that are guaranteed to hold at the 688 // context instruction. Finding a condition where one path dominates 689 // the context isn't enough because both the true and false cases could 690 // merge before the context instruction we're actually interested in. 691 // Instead, we need to ensure that the taken *edge* dominates the context 692 // instruction. 693 BasicBlock *BB0 = BI->getSuccessor(0); 694 BasicBlockEdge Edge(BI->getParent(), BB0); 695 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 696 continue; 697 698 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 699 Q); 700 } 701 } 702 } 703 704 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 705 APInt &KnownOne, const DataLayout &DL, 706 unsigned Depth, const Query &Q) { 707 // Use of assumptions is context-sensitive. If we don't have a context, we 708 // cannot use them! 709 if (!Q.AC || !Q.CxtI) 710 return; 711 712 unsigned BitWidth = KnownZero.getBitWidth(); 713 714 for (auto &AssumeVH : Q.AC->assumptions()) { 715 if (!AssumeVH) 716 continue; 717 CallInst *I = cast<CallInst>(AssumeVH); 718 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 719 "Got assumption for the wrong function!"); 720 if (Q.ExclInvs.count(I)) 721 continue; 722 723 // Warning: This loop can end up being somewhat performance sensetive. 724 // We're running this loop for once for each value queried resulting in a 725 // runtime of ~O(#assumes * #values). 726 727 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 728 "must be an assume intrinsic"); 729 730 Value *Arg = I->getArgOperand(0); 731 732 if (Arg == V && isValidAssumeForContext(I, Q)) { 733 assert(BitWidth == 1 && "assume operand is not i1?"); 734 KnownZero.clearAllBits(); 735 KnownOne.setAllBits(); 736 return; 737 } 738 739 // The remaining tests are all recursive, so bail out if we hit the limit. 740 if (Depth == MaxDepth) 741 continue; 742 743 Value *A, *B; 744 auto m_V = m_CombineOr(m_Specific(V), 745 m_CombineOr(m_PtrToInt(m_Specific(V)), 746 m_BitCast(m_Specific(V)))); 747 748 CmpInst::Predicate Pred; 749 ConstantInt *C; 750 // assume(v = a) 751 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 752 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 753 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 754 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 755 KnownZero |= RHSKnownZero; 756 KnownOne |= RHSKnownOne; 757 // assume(v & b = a) 758 } else if (match(Arg, 759 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 760 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 761 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 762 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 763 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 764 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 765 766 // For those bits in the mask that are known to be one, we can propagate 767 // known bits from the RHS to V. 768 KnownZero |= RHSKnownZero & MaskKnownOne; 769 KnownOne |= RHSKnownOne & MaskKnownOne; 770 // assume(~(v & b) = a) 771 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 772 m_Value(A))) && 773 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 774 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 775 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 776 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 777 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 778 779 // For those bits in the mask that are known to be one, we can propagate 780 // inverted known bits from the RHS to V. 781 KnownZero |= RHSKnownOne & MaskKnownOne; 782 KnownOne |= RHSKnownZero & MaskKnownOne; 783 // assume(v | b = a) 784 } else if (match(Arg, 785 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 786 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 787 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 788 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 789 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 790 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. 794 KnownZero |= RHSKnownZero & BKnownZero; 795 KnownOne |= RHSKnownOne & BKnownZero; 796 // assume(~(v | b) = a) 797 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 798 m_Value(A))) && 799 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 800 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 801 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 802 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 803 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 804 805 // For those bits in B that are known to be zero, we can propagate 806 // inverted known bits from the RHS to V. 807 KnownZero |= RHSKnownOne & BKnownZero; 808 KnownOne |= RHSKnownZero & BKnownZero; 809 // assume(v ^ b = a) 810 } else if (match(Arg, 811 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 812 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 813 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 814 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 815 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 816 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 817 818 // For those bits in B that are known to be zero, we can propagate known 819 // bits from the RHS to V. For those bits in B that are known to be one, 820 // we can propagate inverted known bits from the RHS to V. 821 KnownZero |= RHSKnownZero & BKnownZero; 822 KnownOne |= RHSKnownOne & BKnownZero; 823 KnownZero |= RHSKnownOne & BKnownOne; 824 KnownOne |= RHSKnownZero & BKnownOne; 825 // assume(~(v ^ b) = a) 826 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 827 m_Value(A))) && 828 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 829 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 830 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 831 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 832 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. For those bits in B that are 836 // known to be one, we can propagate known bits from the RHS to V. 837 KnownZero |= RHSKnownOne & BKnownZero; 838 KnownOne |= RHSKnownZero & BKnownZero; 839 KnownZero |= RHSKnownZero & BKnownOne; 840 KnownOne |= RHSKnownOne & BKnownOne; 841 // assume(v << c = a) 842 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 843 m_Value(A))) && 844 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 845 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 846 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 847 // For those bits in RHS that are known, we can propagate them to known 848 // bits in V shifted to the right by C. 849 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 850 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 851 // assume(~(v << c) = a) 852 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 853 m_Value(A))) && 854 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 855 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 856 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 857 // For those bits in RHS that are known, we can propagate them inverted 858 // to known bits in V shifted to the right by C. 859 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 860 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 861 // assume(v >> c = a) 862 } else if (match(Arg, 863 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 864 m_AShr(m_V, m_ConstantInt(C))), 865 m_Value(A))) && 866 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 867 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 868 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 869 // For those bits in RHS that are known, we can propagate them to known 870 // bits in V shifted to the right by C. 871 KnownZero |= RHSKnownZero << C->getZExtValue(); 872 KnownOne |= RHSKnownOne << C->getZExtValue(); 873 // assume(~(v >> c) = a) 874 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 875 m_LShr(m_V, m_ConstantInt(C)), 876 m_AShr(m_V, m_ConstantInt(C)))), 877 m_Value(A))) && 878 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 879 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 880 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 881 // For those bits in RHS that are known, we can propagate them inverted 882 // to known bits in V shifted to the right by C. 883 KnownZero |= RHSKnownOne << C->getZExtValue(); 884 KnownOne |= RHSKnownZero << C->getZExtValue(); 885 // assume(v >=_s c) where c is non-negative 886 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 887 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 888 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 889 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 890 891 if (RHSKnownZero.isNegative()) { 892 // We know that the sign bit is zero. 893 KnownZero |= APInt::getSignBit(BitWidth); 894 } 895 // assume(v >_s c) where c is at least -1. 896 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 897 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 898 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 899 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 900 901 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 902 // We know that the sign bit is zero. 903 KnownZero |= APInt::getSignBit(BitWidth); 904 } 905 // assume(v <=_s c) where c is negative 906 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 907 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 908 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 909 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 910 911 if (RHSKnownOne.isNegative()) { 912 // We know that the sign bit is one. 913 KnownOne |= APInt::getSignBit(BitWidth); 914 } 915 // assume(v <_s c) where c is non-positive 916 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 917 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 918 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 919 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 920 921 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 922 // We know that the sign bit is one. 923 KnownOne |= APInt::getSignBit(BitWidth); 924 } 925 // assume(v <=_u c) 926 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 927 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 928 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 929 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 930 931 // Whatever high bits in c are zero are known to be zero. 932 KnownZero |= 933 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 934 // assume(v <_u c) 935 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 936 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 937 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 938 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 939 940 // Whatever high bits in c are zero are known to be zero (if c is a power 941 // of 2, then one more). 942 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 943 KnownZero |= 944 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 945 else 946 KnownZero |= 947 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 948 } 949 } 950 } 951 952 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 953 APInt &KnownOne, const DataLayout &DL, 954 unsigned Depth, const Query &Q) { 955 unsigned BitWidth = KnownZero.getBitWidth(); 956 957 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 958 switch (I->getOpcode()) { 959 default: break; 960 case Instruction::Load: 961 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 962 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 963 break; 964 case Instruction::And: { 965 // If either the LHS or the RHS are Zero, the result is zero. 966 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 967 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 968 969 // Output known-1 bits are only known if set in both the LHS & RHS. 970 KnownOne &= KnownOne2; 971 // Output known-0 are known to be clear if zero in either the LHS | RHS. 972 KnownZero |= KnownZero2; 973 break; 974 } 975 case Instruction::Or: { 976 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 977 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 978 979 // Output known-0 bits are only known if clear in both the LHS & RHS. 980 KnownZero &= KnownZero2; 981 // Output known-1 are known to be set if set in either the LHS | RHS. 982 KnownOne |= KnownOne2; 983 break; 984 } 985 case Instruction::Xor: { 986 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 987 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 988 989 // Output known-0 bits are known if clear or set in both the LHS & RHS. 990 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 991 // Output known-1 are known to be set if set in only one of the LHS, RHS. 992 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 993 KnownZero = KnownZeroOut; 994 break; 995 } 996 case Instruction::Mul: { 997 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 998 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 999 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1000 break; 1001 } 1002 case Instruction::UDiv: { 1003 // For the purposes of computing leading zeros we can conservatively 1004 // treat a udiv as a logical right shift by the power of 2 known to 1005 // be less than the denominator. 1006 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1007 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1008 1009 KnownOne2.clearAllBits(); 1010 KnownZero2.clearAllBits(); 1011 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1012 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1013 if (RHSUnknownLeadingOnes != BitWidth) 1014 LeadZ = std::min(BitWidth, 1015 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1016 1017 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1018 break; 1019 } 1020 case Instruction::Select: 1021 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1022 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1023 1024 // Only known if known in both the LHS and RHS. 1025 KnownOne &= KnownOne2; 1026 KnownZero &= KnownZero2; 1027 break; 1028 case Instruction::FPTrunc: 1029 case Instruction::FPExt: 1030 case Instruction::FPToUI: 1031 case Instruction::FPToSI: 1032 case Instruction::SIToFP: 1033 case Instruction::UIToFP: 1034 break; // Can't work with floating point. 1035 case Instruction::PtrToInt: 1036 case Instruction::IntToPtr: 1037 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1038 // FALL THROUGH and handle them the same as zext/trunc. 1039 case Instruction::ZExt: 1040 case Instruction::Trunc: { 1041 Type *SrcTy = I->getOperand(0)->getType(); 1042 1043 unsigned SrcBitWidth; 1044 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1045 // which fall through here. 1046 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1047 1048 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1049 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1050 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1051 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1052 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1053 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1054 // Any top bits are known to be zero. 1055 if (BitWidth > SrcBitWidth) 1056 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1057 break; 1058 } 1059 case Instruction::BitCast: { 1060 Type *SrcTy = I->getOperand(0)->getType(); 1061 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1062 // TODO: For now, not handling conversions like: 1063 // (bitcast i64 %x to <2 x i32>) 1064 !I->getType()->isVectorTy()) { 1065 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1066 break; 1067 } 1068 break; 1069 } 1070 case Instruction::SExt: { 1071 // Compute the bits in the result that are not present in the input. 1072 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1073 1074 KnownZero = KnownZero.trunc(SrcBitWidth); 1075 KnownOne = KnownOne.trunc(SrcBitWidth); 1076 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1077 KnownZero = KnownZero.zext(BitWidth); 1078 KnownOne = KnownOne.zext(BitWidth); 1079 1080 // If the sign bit of the input is known set or clear, then we know the 1081 // top bits of the result. 1082 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1083 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1084 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1085 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1086 break; 1087 } 1088 case Instruction::Shl: 1089 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1090 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1091 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1092 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1093 KnownZero <<= ShiftAmt; 1094 KnownOne <<= ShiftAmt; 1095 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1096 } 1097 break; 1098 case Instruction::LShr: 1099 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1100 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1101 // Compute the new bits that are at the top now. 1102 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1103 1104 // Unsigned shift right. 1105 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1106 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1107 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1108 // high bits known zero. 1109 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1110 } 1111 break; 1112 case Instruction::AShr: 1113 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1114 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1115 // Compute the new bits that are at the top now. 1116 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1117 1118 // Signed shift right. 1119 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1120 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1121 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1122 1123 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1124 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1125 KnownZero |= HighBits; 1126 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1127 KnownOne |= HighBits; 1128 } 1129 break; 1130 case Instruction::Sub: { 1131 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1132 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1133 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1134 Depth, Q); 1135 break; 1136 } 1137 case Instruction::Add: { 1138 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1139 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1140 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1141 Depth, Q); 1142 break; 1143 } 1144 case Instruction::SRem: 1145 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1146 APInt RA = Rem->getValue().abs(); 1147 if (RA.isPowerOf2()) { 1148 APInt LowBits = RA - 1; 1149 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1150 Q); 1151 1152 // The low bits of the first operand are unchanged by the srem. 1153 KnownZero = KnownZero2 & LowBits; 1154 KnownOne = KnownOne2 & LowBits; 1155 1156 // If the first operand is non-negative or has all low bits zero, then 1157 // the upper bits are all zero. 1158 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1159 KnownZero |= ~LowBits; 1160 1161 // If the first operand is negative and not all low bits are zero, then 1162 // the upper bits are all one. 1163 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1164 KnownOne |= ~LowBits; 1165 1166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1167 } 1168 } 1169 1170 // The sign bit is the LHS's sign bit, except when the result of the 1171 // remainder is zero. 1172 if (KnownZero.isNonNegative()) { 1173 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1174 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1175 Depth + 1, Q); 1176 // If it's known zero, our sign bit is also zero. 1177 if (LHSKnownZero.isNegative()) 1178 KnownZero.setBit(BitWidth - 1); 1179 } 1180 1181 break; 1182 case Instruction::URem: { 1183 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1184 APInt RA = Rem->getValue(); 1185 if (RA.isPowerOf2()) { 1186 APInt LowBits = (RA - 1); 1187 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1188 Q); 1189 KnownZero |= ~LowBits; 1190 KnownOne &= LowBits; 1191 break; 1192 } 1193 } 1194 1195 // Since the result is less than or equal to either operand, any leading 1196 // zero bits in either operand must also exist in the result. 1197 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1198 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1199 1200 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1201 KnownZero2.countLeadingOnes()); 1202 KnownOne.clearAllBits(); 1203 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1204 break; 1205 } 1206 1207 case Instruction::Alloca: { 1208 AllocaInst *AI = cast<AllocaInst>(I); 1209 unsigned Align = AI->getAlignment(); 1210 if (Align == 0) 1211 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1212 1213 if (Align > 0) 1214 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1215 break; 1216 } 1217 case Instruction::GetElementPtr: { 1218 // Analyze all of the subscripts of this getelementptr instruction 1219 // to determine if we can prove known low zero bits. 1220 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1221 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1222 Depth + 1, Q); 1223 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1224 1225 gep_type_iterator GTI = gep_type_begin(I); 1226 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1227 Value *Index = I->getOperand(i); 1228 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1229 // Handle struct member offset arithmetic. 1230 1231 // Handle case when index is vector zeroinitializer 1232 Constant *CIndex = cast<Constant>(Index); 1233 if (CIndex->isZeroValue()) 1234 continue; 1235 1236 if (CIndex->getType()->isVectorTy()) 1237 Index = CIndex->getSplatValue(); 1238 1239 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1240 const StructLayout *SL = DL.getStructLayout(STy); 1241 uint64_t Offset = SL->getElementOffset(Idx); 1242 TrailZ = std::min<unsigned>(TrailZ, 1243 countTrailingZeros(Offset)); 1244 } else { 1245 // Handle array index arithmetic. 1246 Type *IndexedTy = GTI.getIndexedType(); 1247 if (!IndexedTy->isSized()) { 1248 TrailZ = 0; 1249 break; 1250 } 1251 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1252 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1253 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1254 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1255 Q); 1256 TrailZ = std::min(TrailZ, 1257 unsigned(countTrailingZeros(TypeSize) + 1258 LocalKnownZero.countTrailingOnes())); 1259 } 1260 } 1261 1262 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1263 break; 1264 } 1265 case Instruction::PHI: { 1266 PHINode *P = cast<PHINode>(I); 1267 // Handle the case of a simple two-predecessor recurrence PHI. 1268 // There's a lot more that could theoretically be done here, but 1269 // this is sufficient to catch some interesting cases. 1270 if (P->getNumIncomingValues() == 2) { 1271 for (unsigned i = 0; i != 2; ++i) { 1272 Value *L = P->getIncomingValue(i); 1273 Value *R = P->getIncomingValue(!i); 1274 Operator *LU = dyn_cast<Operator>(L); 1275 if (!LU) 1276 continue; 1277 unsigned Opcode = LU->getOpcode(); 1278 // Check for operations that have the property that if 1279 // both their operands have low zero bits, the result 1280 // will have low zero bits. 1281 if (Opcode == Instruction::Add || 1282 Opcode == Instruction::Sub || 1283 Opcode == Instruction::And || 1284 Opcode == Instruction::Or || 1285 Opcode == Instruction::Mul) { 1286 Value *LL = LU->getOperand(0); 1287 Value *LR = LU->getOperand(1); 1288 // Find a recurrence. 1289 if (LL == I) 1290 L = LR; 1291 else if (LR == I) 1292 L = LL; 1293 else 1294 break; 1295 // Ok, we have a PHI of the form L op= R. Check for low 1296 // zero bits. 1297 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1298 1299 // We need to take the minimum number of known bits 1300 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1301 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1302 1303 KnownZero = APInt::getLowBitsSet(BitWidth, 1304 std::min(KnownZero2.countTrailingOnes(), 1305 KnownZero3.countTrailingOnes())); 1306 break; 1307 } 1308 } 1309 } 1310 1311 // Unreachable blocks may have zero-operand PHI nodes. 1312 if (P->getNumIncomingValues() == 0) 1313 break; 1314 1315 // Otherwise take the unions of the known bit sets of the operands, 1316 // taking conservative care to avoid excessive recursion. 1317 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1318 // Skip if every incoming value references to ourself. 1319 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1320 break; 1321 1322 KnownZero = APInt::getAllOnesValue(BitWidth); 1323 KnownOne = APInt::getAllOnesValue(BitWidth); 1324 for (Value *IncValue : P->incoming_values()) { 1325 // Skip direct self references. 1326 if (IncValue == P) continue; 1327 1328 KnownZero2 = APInt(BitWidth, 0); 1329 KnownOne2 = APInt(BitWidth, 0); 1330 // Recurse, but cap the recursion to one level, because we don't 1331 // want to waste time spinning around in loops. 1332 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, 1333 MaxDepth - 1, Q); 1334 KnownZero &= KnownZero2; 1335 KnownOne &= KnownOne2; 1336 // If all bits have been ruled out, there's no need to check 1337 // more operands. 1338 if (!KnownZero && !KnownOne) 1339 break; 1340 } 1341 } 1342 break; 1343 } 1344 case Instruction::Call: 1345 case Instruction::Invoke: 1346 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1347 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1348 // If a range metadata is attached to this IntrinsicInst, intersect the 1349 // explicit range specified by the metadata and the implicit range of 1350 // the intrinsic. 1351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1352 switch (II->getIntrinsicID()) { 1353 default: break; 1354 case Intrinsic::ctlz: 1355 case Intrinsic::cttz: { 1356 unsigned LowBits = Log2_32(BitWidth)+1; 1357 // If this call is undefined for 0, the result will be less than 2^n. 1358 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1359 LowBits -= 1; 1360 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1361 break; 1362 } 1363 case Intrinsic::ctpop: { 1364 unsigned LowBits = Log2_32(BitWidth)+1; 1365 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1366 break; 1367 } 1368 case Intrinsic::x86_sse42_crc32_64_64: 1369 KnownZero |= APInt::getHighBitsSet(64, 32); 1370 break; 1371 } 1372 } 1373 break; 1374 case Instruction::ExtractValue: 1375 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1376 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1377 if (EVI->getNumIndices() != 1) break; 1378 if (EVI->getIndices()[0] == 0) { 1379 switch (II->getIntrinsicID()) { 1380 default: break; 1381 case Intrinsic::uadd_with_overflow: 1382 case Intrinsic::sadd_with_overflow: 1383 computeKnownBitsAddSub(true, II->getArgOperand(0), 1384 II->getArgOperand(1), false, KnownZero, 1385 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1386 break; 1387 case Intrinsic::usub_with_overflow: 1388 case Intrinsic::ssub_with_overflow: 1389 computeKnownBitsAddSub(false, II->getArgOperand(0), 1390 II->getArgOperand(1), false, KnownZero, 1391 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1392 break; 1393 case Intrinsic::umul_with_overflow: 1394 case Intrinsic::smul_with_overflow: 1395 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1396 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1397 Depth, Q); 1398 break; 1399 } 1400 } 1401 } 1402 } 1403 } 1404 1405 /// Determine which bits of V are known to be either zero or one and return 1406 /// them in the KnownZero/KnownOne bit sets. 1407 /// 1408 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1409 /// we cannot optimize based on the assumption that it is zero without changing 1410 /// it to be an explicit zero. If we don't change it to zero, other code could 1411 /// optimized based on the contradictory assumption that it is non-zero. 1412 /// Because instcombine aggressively folds operations with undef args anyway, 1413 /// this won't lose us code quality. 1414 /// 1415 /// This function is defined on values with integer type, values with pointer 1416 /// type, and vectors of integers. In the case 1417 /// where V is a vector, known zero, and known one values are the 1418 /// same width as the vector element, and the bit is set only if it is true 1419 /// for all of the elements in the vector. 1420 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1421 const DataLayout &DL, unsigned Depth, const Query &Q) { 1422 assert(V && "No Value?"); 1423 assert(Depth <= MaxDepth && "Limit Search Depth"); 1424 unsigned BitWidth = KnownZero.getBitWidth(); 1425 1426 assert((V->getType()->isIntOrIntVectorTy() || 1427 V->getType()->getScalarType()->isPointerTy()) && 1428 "Not integer or pointer type!"); 1429 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1430 (!V->getType()->isIntOrIntVectorTy() || 1431 V->getType()->getScalarSizeInBits() == BitWidth) && 1432 KnownZero.getBitWidth() == BitWidth && 1433 KnownOne.getBitWidth() == BitWidth && 1434 "V, KnownOne and KnownZero should have same BitWidth"); 1435 1436 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1437 // We know all of the bits for a constant! 1438 KnownOne = CI->getValue(); 1439 KnownZero = ~KnownOne; 1440 return; 1441 } 1442 // Null and aggregate-zero are all-zeros. 1443 if (isa<ConstantPointerNull>(V) || 1444 isa<ConstantAggregateZero>(V)) { 1445 KnownOne.clearAllBits(); 1446 KnownZero = APInt::getAllOnesValue(BitWidth); 1447 return; 1448 } 1449 // Handle a constant vector by taking the intersection of the known bits of 1450 // each element. There is no real need to handle ConstantVector here, because 1451 // we don't handle undef in any particularly useful way. 1452 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1453 // We know that CDS must be a vector of integers. Take the intersection of 1454 // each element. 1455 KnownZero.setAllBits(); KnownOne.setAllBits(); 1456 APInt Elt(KnownZero.getBitWidth(), 0); 1457 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1458 Elt = CDS->getElementAsInteger(i); 1459 KnownZero &= ~Elt; 1460 KnownOne &= Elt; 1461 } 1462 return; 1463 } 1464 1465 // The address of an aligned GlobalValue has trailing zeros. 1466 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1467 unsigned Align = GO->getAlignment(); 1468 if (Align == 0) { 1469 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1470 Type *ObjectType = GVar->getType()->getElementType(); 1471 if (ObjectType->isSized()) { 1472 // If the object is defined in the current Module, we'll be giving 1473 // it the preferred alignment. Otherwise, we have to assume that it 1474 // may only have the minimum ABI alignment. 1475 if (GVar->isStrongDefinitionForLinker()) 1476 Align = DL.getPreferredAlignment(GVar); 1477 else 1478 Align = DL.getABITypeAlignment(ObjectType); 1479 } 1480 } 1481 } 1482 if (Align > 0) 1483 KnownZero = APInt::getLowBitsSet(BitWidth, 1484 countTrailingZeros(Align)); 1485 else 1486 KnownZero.clearAllBits(); 1487 KnownOne.clearAllBits(); 1488 return; 1489 } 1490 1491 if (Argument *A = dyn_cast<Argument>(V)) { 1492 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1493 1494 if (!Align && A->hasStructRetAttr()) { 1495 // An sret parameter has at least the ABI alignment of the return type. 1496 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1497 if (EltTy->isSized()) 1498 Align = DL.getABITypeAlignment(EltTy); 1499 } 1500 1501 if (Align) 1502 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1503 else 1504 KnownZero.clearAllBits(); 1505 KnownOne.clearAllBits(); 1506 1507 // Don't give up yet... there might be an assumption that provides more 1508 // information... 1509 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1510 1511 // Or a dominating condition for that matter 1512 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1513 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, 1514 Depth, Q); 1515 return; 1516 } 1517 1518 // Start out not knowing anything. 1519 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1520 1521 // Limit search depth. 1522 // All recursive calls that increase depth must come after this. 1523 if (Depth == MaxDepth) 1524 return; 1525 1526 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1527 // the bits of its aliasee. 1528 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1529 if (!GA->mayBeOverridden()) 1530 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1531 return; 1532 } 1533 1534 if (Operator *I = dyn_cast<Operator>(V)) 1535 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); 1536 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1537 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1538 // computeKnownBitsFromOperator. 1539 1540 // Check whether a nearby assume intrinsic can determine some known bits. 1541 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1542 1543 // Check whether there's a dominating condition which implies something about 1544 // this value at the given context. 1545 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1546 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1547 Q); 1548 1549 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1550 } 1551 1552 /// Determine whether the sign bit is known to be zero or one. 1553 /// Convenience wrapper around computeKnownBits. 1554 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1555 const DataLayout &DL, unsigned Depth, const Query &Q) { 1556 unsigned BitWidth = getBitWidth(V->getType(), DL); 1557 if (!BitWidth) { 1558 KnownZero = false; 1559 KnownOne = false; 1560 return; 1561 } 1562 APInt ZeroBits(BitWidth, 0); 1563 APInt OneBits(BitWidth, 0); 1564 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1565 KnownOne = OneBits[BitWidth - 1]; 1566 KnownZero = ZeroBits[BitWidth - 1]; 1567 } 1568 1569 /// Return true if the given value is known to have exactly one 1570 /// bit set when defined. For vectors return true if every element is known to 1571 /// be a power of two when defined. Supports values with integer or pointer 1572 /// types and vectors of integers. 1573 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1574 const Query &Q, const DataLayout &DL) { 1575 if (Constant *C = dyn_cast<Constant>(V)) { 1576 if (C->isNullValue()) 1577 return OrZero; 1578 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1579 return CI->getValue().isPowerOf2(); 1580 // TODO: Handle vector constants. 1581 } 1582 1583 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1584 // it is shifted off the end then the result is undefined. 1585 if (match(V, m_Shl(m_One(), m_Value()))) 1586 return true; 1587 1588 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1589 // bottom. If it is shifted off the bottom then the result is undefined. 1590 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1591 return true; 1592 1593 // The remaining tests are all recursive, so bail out if we hit the limit. 1594 if (Depth++ == MaxDepth) 1595 return false; 1596 1597 Value *X = nullptr, *Y = nullptr; 1598 // A shift of a power of two is a power of two or zero. 1599 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1600 match(V, m_Shr(m_Value(X), m_Value())))) 1601 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1602 1603 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1604 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1605 1606 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1607 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1608 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1609 1610 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1611 // A power of two and'd with anything is a power of two or zero. 1612 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1613 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1614 return true; 1615 // X & (-X) is always a power of two or zero. 1616 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1617 return true; 1618 return false; 1619 } 1620 1621 // Adding a power-of-two or zero to the same power-of-two or zero yields 1622 // either the original power-of-two, a larger power-of-two or zero. 1623 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1624 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1625 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1626 if (match(X, m_And(m_Specific(Y), m_Value())) || 1627 match(X, m_And(m_Value(), m_Specific(Y)))) 1628 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1629 return true; 1630 if (match(Y, m_And(m_Specific(X), m_Value())) || 1631 match(Y, m_And(m_Value(), m_Specific(X)))) 1632 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1633 return true; 1634 1635 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1636 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1637 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1638 1639 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1640 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1641 // If i8 V is a power of two or zero: 1642 // ZeroBits: 1 1 1 0 1 1 1 1 1643 // ~ZeroBits: 0 0 0 1 0 0 0 0 1644 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1645 // If OrZero isn't set, we cannot give back a zero result. 1646 // Make sure either the LHS or RHS has a bit set. 1647 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1648 return true; 1649 } 1650 } 1651 1652 // An exact divide or right shift can only shift off zero bits, so the result 1653 // is a power of two only if the first operand is a power of two and not 1654 // copying a sign bit (sdiv int_min, 2). 1655 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1656 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1657 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1658 Depth, Q, DL); 1659 } 1660 1661 return false; 1662 } 1663 1664 /// \brief Test whether a GEP's result is known to be non-null. 1665 /// 1666 /// Uses properties inherent in a GEP to try to determine whether it is known 1667 /// to be non-null. 1668 /// 1669 /// Currently this routine does not support vector GEPs. 1670 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1671 unsigned Depth, const Query &Q) { 1672 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1673 return false; 1674 1675 // FIXME: Support vector-GEPs. 1676 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1677 1678 // If the base pointer is non-null, we cannot walk to a null address with an 1679 // inbounds GEP in address space zero. 1680 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1681 return true; 1682 1683 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1684 // If so, then the GEP cannot produce a null pointer, as doing so would 1685 // inherently violate the inbounds contract within address space zero. 1686 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1687 GTI != GTE; ++GTI) { 1688 // Struct types are easy -- they must always be indexed by a constant. 1689 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1690 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1691 unsigned ElementIdx = OpC->getZExtValue(); 1692 const StructLayout *SL = DL.getStructLayout(STy); 1693 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1694 if (ElementOffset > 0) 1695 return true; 1696 continue; 1697 } 1698 1699 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1700 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1701 continue; 1702 1703 // Fast path the constant operand case both for efficiency and so we don't 1704 // increment Depth when just zipping down an all-constant GEP. 1705 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1706 if (!OpC->isZero()) 1707 return true; 1708 continue; 1709 } 1710 1711 // We post-increment Depth here because while isKnownNonZero increments it 1712 // as well, when we pop back up that increment won't persist. We don't want 1713 // to recurse 10k times just because we have 10k GEP operands. We don't 1714 // bail completely out because we want to handle constant GEPs regardless 1715 // of depth. 1716 if (Depth++ >= MaxDepth) 1717 continue; 1718 1719 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1720 return true; 1721 } 1722 1723 return false; 1724 } 1725 1726 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1727 /// ensure that the value it's attached to is never Value? 'RangeType' is 1728 /// is the type of the value described by the range. 1729 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1730 const APInt& Value) { 1731 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1732 assert(NumRanges >= 1); 1733 for (unsigned i = 0; i < NumRanges; ++i) { 1734 ConstantInt *Lower = 1735 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1736 ConstantInt *Upper = 1737 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1738 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1739 if (Range.contains(Value)) 1740 return false; 1741 } 1742 return true; 1743 } 1744 1745 /// Return true if the given value is known to be non-zero when defined. 1746 /// For vectors return true if every element is known to be non-zero when 1747 /// defined. Supports values with integer or pointer type and vectors of 1748 /// integers. 1749 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1750 const Query &Q) { 1751 if (Constant *C = dyn_cast<Constant>(V)) { 1752 if (C->isNullValue()) 1753 return false; 1754 if (isa<ConstantInt>(C)) 1755 // Must be non-zero due to null test above. 1756 return true; 1757 // TODO: Handle vectors 1758 return false; 1759 } 1760 1761 if (Instruction* I = dyn_cast<Instruction>(V)) { 1762 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1763 // If the possible ranges don't contain zero, then the value is 1764 // definitely non-zero. 1765 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1766 const APInt ZeroValue(Ty->getBitWidth(), 0); 1767 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1768 return true; 1769 } 1770 } 1771 } 1772 1773 // The remaining tests are all recursive, so bail out if we hit the limit. 1774 if (Depth++ >= MaxDepth) 1775 return false; 1776 1777 // Check for pointer simplifications. 1778 if (V->getType()->isPointerTy()) { 1779 if (isKnownNonNull(V)) 1780 return true; 1781 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1782 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1783 return true; 1784 } 1785 1786 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1787 1788 // X | Y != 0 if X != 0 or Y != 0. 1789 Value *X = nullptr, *Y = nullptr; 1790 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1791 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1792 1793 // ext X != 0 if X != 0. 1794 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1795 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1796 1797 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1798 // if the lowest bit is shifted off the end. 1799 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1800 // shl nuw can't remove any non-zero bits. 1801 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1802 if (BO->hasNoUnsignedWrap()) 1803 return isKnownNonZero(X, DL, Depth, Q); 1804 1805 APInt KnownZero(BitWidth, 0); 1806 APInt KnownOne(BitWidth, 0); 1807 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1808 if (KnownOne[0]) 1809 return true; 1810 } 1811 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1812 // defined if the sign bit is shifted off the end. 1813 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1814 // shr exact can only shift out zero bits. 1815 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1816 if (BO->isExact()) 1817 return isKnownNonZero(X, DL, Depth, Q); 1818 1819 bool XKnownNonNegative, XKnownNegative; 1820 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1821 if (XKnownNegative) 1822 return true; 1823 } 1824 // div exact can only produce a zero if the dividend is zero. 1825 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1826 return isKnownNonZero(X, DL, Depth, Q); 1827 } 1828 // X + Y. 1829 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1830 bool XKnownNonNegative, XKnownNegative; 1831 bool YKnownNonNegative, YKnownNegative; 1832 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1833 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 1834 1835 // If X and Y are both non-negative (as signed values) then their sum is not 1836 // zero unless both X and Y are zero. 1837 if (XKnownNonNegative && YKnownNonNegative) 1838 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 1839 return true; 1840 1841 // If X and Y are both negative (as signed values) then their sum is not 1842 // zero unless both X and Y equal INT_MIN. 1843 if (BitWidth && XKnownNegative && YKnownNegative) { 1844 APInt KnownZero(BitWidth, 0); 1845 APInt KnownOne(BitWidth, 0); 1846 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1847 // The sign bit of X is set. If some other bit is set then X is not equal 1848 // to INT_MIN. 1849 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1850 if ((KnownOne & Mask) != 0) 1851 return true; 1852 // The sign bit of Y is set. If some other bit is set then Y is not equal 1853 // to INT_MIN. 1854 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 1855 if ((KnownOne & Mask) != 0) 1856 return true; 1857 } 1858 1859 // The sum of a non-negative number and a power of two is not zero. 1860 if (XKnownNonNegative && 1861 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 1862 return true; 1863 if (YKnownNonNegative && 1864 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 1865 return true; 1866 } 1867 // X * Y. 1868 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1869 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1870 // If X and Y are non-zero then so is X * Y as long as the multiplication 1871 // does not overflow. 1872 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1873 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 1874 return true; 1875 } 1876 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1877 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1878 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 1879 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 1880 return true; 1881 } 1882 1883 if (!BitWidth) return false; 1884 APInt KnownZero(BitWidth, 0); 1885 APInt KnownOne(BitWidth, 0); 1886 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1887 return KnownOne != 0; 1888 } 1889 1890 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1891 /// simplify operations downstream. Mask is known to be zero for bits that V 1892 /// cannot have. 1893 /// 1894 /// This function is defined on values with integer type, values with pointer 1895 /// type, and vectors of integers. In the case 1896 /// where V is a vector, the mask, known zero, and known one values are the 1897 /// same width as the vector element, and the bit is set only if it is true 1898 /// for all of the elements in the vector. 1899 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 1900 unsigned Depth, const Query &Q) { 1901 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1902 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1903 return (KnownZero & Mask) == Mask; 1904 } 1905 1906 1907 1908 /// Return the number of times the sign bit of the register is replicated into 1909 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1910 /// (itself), but other cases can give us information. For example, immediately 1911 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1912 /// other, so we return 3. 1913 /// 1914 /// 'Op' must have a scalar integer type. 1915 /// 1916 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 1917 const Query &Q) { 1918 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 1919 unsigned Tmp, Tmp2; 1920 unsigned FirstAnswer = 1; 1921 1922 // Note that ConstantInt is handled by the general computeKnownBits case 1923 // below. 1924 1925 if (Depth == 6) 1926 return 1; // Limit search depth. 1927 1928 Operator *U = dyn_cast<Operator>(V); 1929 switch (Operator::getOpcode(V)) { 1930 default: break; 1931 case Instruction::SExt: 1932 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1933 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 1934 1935 case Instruction::SDiv: { 1936 const APInt *Denominator; 1937 // sdiv X, C -> adds log(C) sign bits. 1938 if (match(U->getOperand(1), m_APInt(Denominator))) { 1939 1940 // Ignore non-positive denominator. 1941 if (!Denominator->isStrictlyPositive()) 1942 break; 1943 1944 // Calculate the incoming numerator bits. 1945 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1946 1947 // Add floor(log(C)) bits to the numerator bits. 1948 return std::min(TyBits, NumBits + Denominator->logBase2()); 1949 } 1950 break; 1951 } 1952 1953 case Instruction::SRem: { 1954 const APInt *Denominator; 1955 // srem X, C -> we know that the result is within [-C+1,C) when C is a 1956 // positive constant. This let us put a lower bound on the number of sign 1957 // bits. 1958 if (match(U->getOperand(1), m_APInt(Denominator))) { 1959 1960 // Ignore non-positive denominator. 1961 if (!Denominator->isStrictlyPositive()) 1962 break; 1963 1964 // Calculate the incoming numerator bits. SRem by a positive constant 1965 // can't lower the number of sign bits. 1966 unsigned NumrBits = 1967 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1968 1969 // Calculate the leading sign bit constraints by examining the 1970 // denominator. Given that the denominator is positive, there are two 1971 // cases: 1972 // 1973 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 1974 // (1 << ceilLogBase2(C)). 1975 // 1976 // 2. the numerator is negative. Then the result range is (-C,0] and 1977 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 1978 // 1979 // Thus a lower bound on the number of sign bits is `TyBits - 1980 // ceilLogBase2(C)`. 1981 1982 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 1983 return std::max(NumrBits, ResBits); 1984 } 1985 break; 1986 } 1987 1988 case Instruction::AShr: { 1989 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1990 // ashr X, C -> adds C sign bits. Vectors too. 1991 const APInt *ShAmt; 1992 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1993 Tmp += ShAmt->getZExtValue(); 1994 if (Tmp > TyBits) Tmp = TyBits; 1995 } 1996 return Tmp; 1997 } 1998 case Instruction::Shl: { 1999 const APInt *ShAmt; 2000 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2001 // shl destroys sign bits. 2002 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2003 Tmp2 = ShAmt->getZExtValue(); 2004 if (Tmp2 >= TyBits || // Bad shift. 2005 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2006 return Tmp - Tmp2; 2007 } 2008 break; 2009 } 2010 case Instruction::And: 2011 case Instruction::Or: 2012 case Instruction::Xor: // NOT is handled here. 2013 // Logical binary ops preserve the number of sign bits at the worst. 2014 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2015 if (Tmp != 1) { 2016 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2017 FirstAnswer = std::min(Tmp, Tmp2); 2018 // We computed what we know about the sign bits as our first 2019 // answer. Now proceed to the generic code that uses 2020 // computeKnownBits, and pick whichever answer is better. 2021 } 2022 break; 2023 2024 case Instruction::Select: 2025 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2026 if (Tmp == 1) return 1; // Early out. 2027 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 2028 return std::min(Tmp, Tmp2); 2029 2030 case Instruction::Add: 2031 // Add can have at most one carry bit. Thus we know that the output 2032 // is, at worst, one more bit than the inputs. 2033 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2034 if (Tmp == 1) return 1; // Early out. 2035 2036 // Special case decrementing a value (ADD X, -1): 2037 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2038 if (CRHS->isAllOnesValue()) { 2039 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2040 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2041 Q); 2042 2043 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2044 // sign bits set. 2045 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2046 return TyBits; 2047 2048 // If we are subtracting one from a positive number, there is no carry 2049 // out of the result. 2050 if (KnownZero.isNegative()) 2051 return Tmp; 2052 } 2053 2054 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2055 if (Tmp2 == 1) return 1; 2056 return std::min(Tmp, Tmp2)-1; 2057 2058 case Instruction::Sub: 2059 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2060 if (Tmp2 == 1) return 1; 2061 2062 // Handle NEG. 2063 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2064 if (CLHS->isNullValue()) { 2065 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2066 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2067 Q); 2068 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2069 // sign bits set. 2070 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2071 return TyBits; 2072 2073 // If the input is known to be positive (the sign bit is known clear), 2074 // the output of the NEG has the same number of sign bits as the input. 2075 if (KnownZero.isNegative()) 2076 return Tmp2; 2077 2078 // Otherwise, we treat this like a SUB. 2079 } 2080 2081 // Sub can have at most one carry bit. Thus we know that the output 2082 // is, at worst, one more bit than the inputs. 2083 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2084 if (Tmp == 1) return 1; // Early out. 2085 return std::min(Tmp, Tmp2)-1; 2086 2087 case Instruction::PHI: { 2088 PHINode *PN = cast<PHINode>(U); 2089 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2090 // Don't analyze large in-degree PHIs. 2091 if (NumIncomingValues > 4) break; 2092 // Unreachable blocks may have zero-operand PHI nodes. 2093 if (NumIncomingValues == 0) break; 2094 2095 // Take the minimum of all incoming values. This can't infinitely loop 2096 // because of our depth threshold. 2097 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2098 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2099 if (Tmp == 1) return Tmp; 2100 Tmp = std::min( 2101 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2102 } 2103 return Tmp; 2104 } 2105 2106 case Instruction::Trunc: 2107 // FIXME: it's tricky to do anything useful for this, but it is an important 2108 // case for targets like X86. 2109 break; 2110 } 2111 2112 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2113 // use this information. 2114 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2115 APInt Mask; 2116 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2117 2118 if (KnownZero.isNegative()) { // sign bit is 0 2119 Mask = KnownZero; 2120 } else if (KnownOne.isNegative()) { // sign bit is 1; 2121 Mask = KnownOne; 2122 } else { 2123 // Nothing known. 2124 return FirstAnswer; 2125 } 2126 2127 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2128 // the number of identical bits in the top of the input value. 2129 Mask = ~Mask; 2130 Mask <<= Mask.getBitWidth()-TyBits; 2131 // Return # leading zeros. We use 'min' here in case Val was zero before 2132 // shifting. We don't want to return '64' as for an i32 "0". 2133 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2134 } 2135 2136 /// This function computes the integer multiple of Base that equals V. 2137 /// If successful, it returns true and returns the multiple in 2138 /// Multiple. If unsuccessful, it returns false. It looks 2139 /// through SExt instructions only if LookThroughSExt is true. 2140 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2141 bool LookThroughSExt, unsigned Depth) { 2142 const unsigned MaxDepth = 6; 2143 2144 assert(V && "No Value?"); 2145 assert(Depth <= MaxDepth && "Limit Search Depth"); 2146 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2147 2148 Type *T = V->getType(); 2149 2150 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2151 2152 if (Base == 0) 2153 return false; 2154 2155 if (Base == 1) { 2156 Multiple = V; 2157 return true; 2158 } 2159 2160 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2161 Constant *BaseVal = ConstantInt::get(T, Base); 2162 if (CO && CO == BaseVal) { 2163 // Multiple is 1. 2164 Multiple = ConstantInt::get(T, 1); 2165 return true; 2166 } 2167 2168 if (CI && CI->getZExtValue() % Base == 0) { 2169 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2170 return true; 2171 } 2172 2173 if (Depth == MaxDepth) return false; // Limit search depth. 2174 2175 Operator *I = dyn_cast<Operator>(V); 2176 if (!I) return false; 2177 2178 switch (I->getOpcode()) { 2179 default: break; 2180 case Instruction::SExt: 2181 if (!LookThroughSExt) return false; 2182 // otherwise fall through to ZExt 2183 case Instruction::ZExt: 2184 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2185 LookThroughSExt, Depth+1); 2186 case Instruction::Shl: 2187 case Instruction::Mul: { 2188 Value *Op0 = I->getOperand(0); 2189 Value *Op1 = I->getOperand(1); 2190 2191 if (I->getOpcode() == Instruction::Shl) { 2192 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2193 if (!Op1CI) return false; 2194 // Turn Op0 << Op1 into Op0 * 2^Op1 2195 APInt Op1Int = Op1CI->getValue(); 2196 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2197 APInt API(Op1Int.getBitWidth(), 0); 2198 API.setBit(BitToSet); 2199 Op1 = ConstantInt::get(V->getContext(), API); 2200 } 2201 2202 Value *Mul0 = nullptr; 2203 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2204 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2205 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2206 if (Op1C->getType()->getPrimitiveSizeInBits() < 2207 MulC->getType()->getPrimitiveSizeInBits()) 2208 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2209 if (Op1C->getType()->getPrimitiveSizeInBits() > 2210 MulC->getType()->getPrimitiveSizeInBits()) 2211 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2212 2213 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2214 Multiple = ConstantExpr::getMul(MulC, Op1C); 2215 return true; 2216 } 2217 2218 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2219 if (Mul0CI->getValue() == 1) { 2220 // V == Base * Op1, so return Op1 2221 Multiple = Op1; 2222 return true; 2223 } 2224 } 2225 2226 Value *Mul1 = nullptr; 2227 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2228 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2229 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2230 if (Op0C->getType()->getPrimitiveSizeInBits() < 2231 MulC->getType()->getPrimitiveSizeInBits()) 2232 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2233 if (Op0C->getType()->getPrimitiveSizeInBits() > 2234 MulC->getType()->getPrimitiveSizeInBits()) 2235 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2236 2237 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2238 Multiple = ConstantExpr::getMul(MulC, Op0C); 2239 return true; 2240 } 2241 2242 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2243 if (Mul1CI->getValue() == 1) { 2244 // V == Base * Op0, so return Op0 2245 Multiple = Op0; 2246 return true; 2247 } 2248 } 2249 } 2250 } 2251 2252 // We could not determine if V is a multiple of Base. 2253 return false; 2254 } 2255 2256 /// Return true if we can prove that the specified FP value is never equal to 2257 /// -0.0. 2258 /// 2259 /// NOTE: this function will need to be revisited when we support non-default 2260 /// rounding modes! 2261 /// 2262 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2263 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2264 return !CFP->getValueAPF().isNegZero(); 2265 2266 // FIXME: Magic number! At the least, this should be given a name because it's 2267 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2268 // expose it as a parameter, so it can be used for testing / experimenting. 2269 if (Depth == 6) 2270 return false; // Limit search depth. 2271 2272 const Operator *I = dyn_cast<Operator>(V); 2273 if (!I) return false; 2274 2275 // Check if the nsz fast-math flag is set 2276 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2277 if (FPO->hasNoSignedZeros()) 2278 return true; 2279 2280 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2281 if (I->getOpcode() == Instruction::FAdd) 2282 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2283 if (CFP->isNullValue()) 2284 return true; 2285 2286 // sitofp and uitofp turn into +0.0 for zero. 2287 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2288 return true; 2289 2290 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2291 // sqrt(-0.0) = -0.0, no other negative results are possible. 2292 if (II->getIntrinsicID() == Intrinsic::sqrt) 2293 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2294 2295 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2296 if (const Function *F = CI->getCalledFunction()) { 2297 if (F->isDeclaration()) { 2298 // abs(x) != -0.0 2299 if (F->getName() == "abs") return true; 2300 // fabs[lf](x) != -0.0 2301 if (F->getName() == "fabs") return true; 2302 if (F->getName() == "fabsf") return true; 2303 if (F->getName() == "fabsl") return true; 2304 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2305 F->getName() == "sqrtl") 2306 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2307 } 2308 } 2309 2310 return false; 2311 } 2312 2313 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2314 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2315 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2316 2317 // FIXME: Magic number! At the least, this should be given a name because it's 2318 // used similarly in CannotBeNegativeZero(). A better fix may be to 2319 // expose it as a parameter, so it can be used for testing / experimenting. 2320 if (Depth == 6) 2321 return false; // Limit search depth. 2322 2323 const Operator *I = dyn_cast<Operator>(V); 2324 if (!I) return false; 2325 2326 switch (I->getOpcode()) { 2327 default: break; 2328 case Instruction::FMul: 2329 // x*x is always non-negative or a NaN. 2330 if (I->getOperand(0) == I->getOperand(1)) 2331 return true; 2332 // Fall through 2333 case Instruction::FAdd: 2334 case Instruction::FDiv: 2335 case Instruction::FRem: 2336 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2337 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2338 case Instruction::FPExt: 2339 case Instruction::FPTrunc: 2340 // Widening/narrowing never change sign. 2341 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2342 case Instruction::Call: 2343 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2344 switch (II->getIntrinsicID()) { 2345 default: break; 2346 case Intrinsic::exp: 2347 case Intrinsic::exp2: 2348 case Intrinsic::fabs: 2349 case Intrinsic::sqrt: 2350 return true; 2351 case Intrinsic::powi: 2352 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2353 // powi(x,n) is non-negative if n is even. 2354 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2355 return true; 2356 } 2357 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2358 case Intrinsic::fma: 2359 case Intrinsic::fmuladd: 2360 // x*x+y is non-negative if y is non-negative. 2361 return I->getOperand(0) == I->getOperand(1) && 2362 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2363 } 2364 break; 2365 } 2366 return false; 2367 } 2368 2369 /// If the specified value can be set by repeating the same byte in memory, 2370 /// return the i8 value that it is represented with. This is 2371 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2372 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2373 /// byte store (e.g. i16 0x1234), return null. 2374 Value *llvm::isBytewiseValue(Value *V) { 2375 // All byte-wide stores are splatable, even of arbitrary variables. 2376 if (V->getType()->isIntegerTy(8)) return V; 2377 2378 // Handle 'null' ConstantArrayZero etc. 2379 if (Constant *C = dyn_cast<Constant>(V)) 2380 if (C->isNullValue()) 2381 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2382 2383 // Constant float and double values can be handled as integer values if the 2384 // corresponding integer value is "byteable". An important case is 0.0. 2385 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2386 if (CFP->getType()->isFloatTy()) 2387 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2388 if (CFP->getType()->isDoubleTy()) 2389 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2390 // Don't handle long double formats, which have strange constraints. 2391 } 2392 2393 // We can handle constant integers that are multiple of 8 bits. 2394 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2395 if (CI->getBitWidth() % 8 == 0) { 2396 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2397 2398 if (!CI->getValue().isSplat(8)) 2399 return nullptr; 2400 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2401 } 2402 } 2403 2404 // A ConstantDataArray/Vector is splatable if all its members are equal and 2405 // also splatable. 2406 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2407 Value *Elt = CA->getElementAsConstant(0); 2408 Value *Val = isBytewiseValue(Elt); 2409 if (!Val) 2410 return nullptr; 2411 2412 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2413 if (CA->getElementAsConstant(I) != Elt) 2414 return nullptr; 2415 2416 return Val; 2417 } 2418 2419 // Conceptually, we could handle things like: 2420 // %a = zext i8 %X to i16 2421 // %b = shl i16 %a, 8 2422 // %c = or i16 %a, %b 2423 // but until there is an example that actually needs this, it doesn't seem 2424 // worth worrying about. 2425 return nullptr; 2426 } 2427 2428 2429 // This is the recursive version of BuildSubAggregate. It takes a few different 2430 // arguments. Idxs is the index within the nested struct From that we are 2431 // looking at now (which is of type IndexedType). IdxSkip is the number of 2432 // indices from Idxs that should be left out when inserting into the resulting 2433 // struct. To is the result struct built so far, new insertvalue instructions 2434 // build on that. 2435 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2436 SmallVectorImpl<unsigned> &Idxs, 2437 unsigned IdxSkip, 2438 Instruction *InsertBefore) { 2439 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2440 if (STy) { 2441 // Save the original To argument so we can modify it 2442 Value *OrigTo = To; 2443 // General case, the type indexed by Idxs is a struct 2444 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2445 // Process each struct element recursively 2446 Idxs.push_back(i); 2447 Value *PrevTo = To; 2448 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2449 InsertBefore); 2450 Idxs.pop_back(); 2451 if (!To) { 2452 // Couldn't find any inserted value for this index? Cleanup 2453 while (PrevTo != OrigTo) { 2454 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2455 PrevTo = Del->getAggregateOperand(); 2456 Del->eraseFromParent(); 2457 } 2458 // Stop processing elements 2459 break; 2460 } 2461 } 2462 // If we successfully found a value for each of our subaggregates 2463 if (To) 2464 return To; 2465 } 2466 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2467 // the struct's elements had a value that was inserted directly. In the latter 2468 // case, perhaps we can't determine each of the subelements individually, but 2469 // we might be able to find the complete struct somewhere. 2470 2471 // Find the value that is at that particular spot 2472 Value *V = FindInsertedValue(From, Idxs); 2473 2474 if (!V) 2475 return nullptr; 2476 2477 // Insert the value in the new (sub) aggregrate 2478 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2479 "tmp", InsertBefore); 2480 } 2481 2482 // This helper takes a nested struct and extracts a part of it (which is again a 2483 // struct) into a new value. For example, given the struct: 2484 // { a, { b, { c, d }, e } } 2485 // and the indices "1, 1" this returns 2486 // { c, d }. 2487 // 2488 // It does this by inserting an insertvalue for each element in the resulting 2489 // struct, as opposed to just inserting a single struct. This will only work if 2490 // each of the elements of the substruct are known (ie, inserted into From by an 2491 // insertvalue instruction somewhere). 2492 // 2493 // All inserted insertvalue instructions are inserted before InsertBefore 2494 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2495 Instruction *InsertBefore) { 2496 assert(InsertBefore && "Must have someplace to insert!"); 2497 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2498 idx_range); 2499 Value *To = UndefValue::get(IndexedType); 2500 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2501 unsigned IdxSkip = Idxs.size(); 2502 2503 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2504 } 2505 2506 /// Given an aggregrate and an sequence of indices, see if 2507 /// the scalar value indexed is already around as a register, for example if it 2508 /// were inserted directly into the aggregrate. 2509 /// 2510 /// If InsertBefore is not null, this function will duplicate (modified) 2511 /// insertvalues when a part of a nested struct is extracted. 2512 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2513 Instruction *InsertBefore) { 2514 // Nothing to index? Just return V then (this is useful at the end of our 2515 // recursion). 2516 if (idx_range.empty()) 2517 return V; 2518 // We have indices, so V should have an indexable type. 2519 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2520 "Not looking at a struct or array?"); 2521 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2522 "Invalid indices for type?"); 2523 2524 if (Constant *C = dyn_cast<Constant>(V)) { 2525 C = C->getAggregateElement(idx_range[0]); 2526 if (!C) return nullptr; 2527 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2528 } 2529 2530 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2531 // Loop the indices for the insertvalue instruction in parallel with the 2532 // requested indices 2533 const unsigned *req_idx = idx_range.begin(); 2534 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2535 i != e; ++i, ++req_idx) { 2536 if (req_idx == idx_range.end()) { 2537 // We can't handle this without inserting insertvalues 2538 if (!InsertBefore) 2539 return nullptr; 2540 2541 // The requested index identifies a part of a nested aggregate. Handle 2542 // this specially. For example, 2543 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2544 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2545 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2546 // This can be changed into 2547 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2548 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2549 // which allows the unused 0,0 element from the nested struct to be 2550 // removed. 2551 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2552 InsertBefore); 2553 } 2554 2555 // This insert value inserts something else than what we are looking for. 2556 // See if the (aggregate) value inserted into has the value we are 2557 // looking for, then. 2558 if (*req_idx != *i) 2559 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2560 InsertBefore); 2561 } 2562 // If we end up here, the indices of the insertvalue match with those 2563 // requested (though possibly only partially). Now we recursively look at 2564 // the inserted value, passing any remaining indices. 2565 return FindInsertedValue(I->getInsertedValueOperand(), 2566 makeArrayRef(req_idx, idx_range.end()), 2567 InsertBefore); 2568 } 2569 2570 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2571 // If we're extracting a value from an aggregate that was extracted from 2572 // something else, we can extract from that something else directly instead. 2573 // However, we will need to chain I's indices with the requested indices. 2574 2575 // Calculate the number of indices required 2576 unsigned size = I->getNumIndices() + idx_range.size(); 2577 // Allocate some space to put the new indices in 2578 SmallVector<unsigned, 5> Idxs; 2579 Idxs.reserve(size); 2580 // Add indices from the extract value instruction 2581 Idxs.append(I->idx_begin(), I->idx_end()); 2582 2583 // Add requested indices 2584 Idxs.append(idx_range.begin(), idx_range.end()); 2585 2586 assert(Idxs.size() == size 2587 && "Number of indices added not correct?"); 2588 2589 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2590 } 2591 // Otherwise, we don't know (such as, extracting from a function return value 2592 // or load instruction) 2593 return nullptr; 2594 } 2595 2596 /// Analyze the specified pointer to see if it can be expressed as a base 2597 /// pointer plus a constant offset. Return the base and offset to the caller. 2598 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2599 const DataLayout &DL) { 2600 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2601 APInt ByteOffset(BitWidth, 0); 2602 while (1) { 2603 if (Ptr->getType()->isVectorTy()) 2604 break; 2605 2606 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2607 APInt GEPOffset(BitWidth, 0); 2608 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2609 break; 2610 2611 ByteOffset += GEPOffset; 2612 2613 Ptr = GEP->getPointerOperand(); 2614 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2615 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2616 Ptr = cast<Operator>(Ptr)->getOperand(0); 2617 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2618 if (GA->mayBeOverridden()) 2619 break; 2620 Ptr = GA->getAliasee(); 2621 } else { 2622 break; 2623 } 2624 } 2625 Offset = ByteOffset.getSExtValue(); 2626 return Ptr; 2627 } 2628 2629 2630 /// This function computes the length of a null-terminated C string pointed to 2631 /// by V. If successful, it returns true and returns the string in Str. 2632 /// If unsuccessful, it returns false. 2633 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2634 uint64_t Offset, bool TrimAtNul) { 2635 assert(V); 2636 2637 // Look through bitcast instructions and geps. 2638 V = V->stripPointerCasts(); 2639 2640 // If the value is a GEP instruction or constant expression, treat it as an 2641 // offset. 2642 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2643 // Make sure the GEP has exactly three arguments. 2644 if (GEP->getNumOperands() != 3) 2645 return false; 2646 2647 // Make sure the index-ee is a pointer to array of i8. 2648 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2649 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2650 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2651 return false; 2652 2653 // Check to make sure that the first operand of the GEP is an integer and 2654 // has value 0 so that we are sure we're indexing into the initializer. 2655 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2656 if (!FirstIdx || !FirstIdx->isZero()) 2657 return false; 2658 2659 // If the second index isn't a ConstantInt, then this is a variable index 2660 // into the array. If this occurs, we can't say anything meaningful about 2661 // the string. 2662 uint64_t StartIdx = 0; 2663 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2664 StartIdx = CI->getZExtValue(); 2665 else 2666 return false; 2667 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2668 TrimAtNul); 2669 } 2670 2671 // The GEP instruction, constant or instruction, must reference a global 2672 // variable that is a constant and is initialized. The referenced constant 2673 // initializer is the array that we'll use for optimization. 2674 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2675 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2676 return false; 2677 2678 // Handle the all-zeros case 2679 if (GV->getInitializer()->isNullValue()) { 2680 // This is a degenerate case. The initializer is constant zero so the 2681 // length of the string must be zero. 2682 Str = ""; 2683 return true; 2684 } 2685 2686 // Must be a Constant Array 2687 const ConstantDataArray *Array = 2688 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2689 if (!Array || !Array->isString()) 2690 return false; 2691 2692 // Get the number of elements in the array 2693 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2694 2695 // Start out with the entire array in the StringRef. 2696 Str = Array->getAsString(); 2697 2698 if (Offset > NumElts) 2699 return false; 2700 2701 // Skip over 'offset' bytes. 2702 Str = Str.substr(Offset); 2703 2704 if (TrimAtNul) { 2705 // Trim off the \0 and anything after it. If the array is not nul 2706 // terminated, we just return the whole end of string. The client may know 2707 // some other way that the string is length-bound. 2708 Str = Str.substr(0, Str.find('\0')); 2709 } 2710 return true; 2711 } 2712 2713 // These next two are very similar to the above, but also look through PHI 2714 // nodes. 2715 // TODO: See if we can integrate these two together. 2716 2717 /// If we can compute the length of the string pointed to by 2718 /// the specified pointer, return 'len+1'. If we can't, return 0. 2719 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2720 // Look through noop bitcast instructions. 2721 V = V->stripPointerCasts(); 2722 2723 // If this is a PHI node, there are two cases: either we have already seen it 2724 // or we haven't. 2725 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2726 if (!PHIs.insert(PN).second) 2727 return ~0ULL; // already in the set. 2728 2729 // If it was new, see if all the input strings are the same length. 2730 uint64_t LenSoFar = ~0ULL; 2731 for (Value *IncValue : PN->incoming_values()) { 2732 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2733 if (Len == 0) return 0; // Unknown length -> unknown. 2734 2735 if (Len == ~0ULL) continue; 2736 2737 if (Len != LenSoFar && LenSoFar != ~0ULL) 2738 return 0; // Disagree -> unknown. 2739 LenSoFar = Len; 2740 } 2741 2742 // Success, all agree. 2743 return LenSoFar; 2744 } 2745 2746 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2747 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2748 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2749 if (Len1 == 0) return 0; 2750 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2751 if (Len2 == 0) return 0; 2752 if (Len1 == ~0ULL) return Len2; 2753 if (Len2 == ~0ULL) return Len1; 2754 if (Len1 != Len2) return 0; 2755 return Len1; 2756 } 2757 2758 // Otherwise, see if we can read the string. 2759 StringRef StrData; 2760 if (!getConstantStringInfo(V, StrData)) 2761 return 0; 2762 2763 return StrData.size()+1; 2764 } 2765 2766 /// If we can compute the length of the string pointed to by 2767 /// the specified pointer, return 'len+1'. If we can't, return 0. 2768 uint64_t llvm::GetStringLength(Value *V) { 2769 if (!V->getType()->isPointerTy()) return 0; 2770 2771 SmallPtrSet<PHINode*, 32> PHIs; 2772 uint64_t Len = GetStringLengthH(V, PHIs); 2773 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2774 // an empty string as a length. 2775 return Len == ~0ULL ? 1 : Len; 2776 } 2777 2778 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2779 /// previous iteration of the loop was referring to the same object as \p PN. 2780 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2781 // Find the loop-defined value. 2782 Loop *L = LI->getLoopFor(PN->getParent()); 2783 if (PN->getNumIncomingValues() != 2) 2784 return true; 2785 2786 // Find the value from previous iteration. 2787 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2788 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2789 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2790 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2791 return true; 2792 2793 // If a new pointer is loaded in the loop, the pointer references a different 2794 // object in every iteration. E.g.: 2795 // for (i) 2796 // int *p = a[i]; 2797 // ... 2798 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2799 if (!L->isLoopInvariant(Load->getPointerOperand())) 2800 return false; 2801 return true; 2802 } 2803 2804 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2805 unsigned MaxLookup) { 2806 if (!V->getType()->isPointerTy()) 2807 return V; 2808 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2809 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2810 V = GEP->getPointerOperand(); 2811 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2812 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2813 V = cast<Operator>(V)->getOperand(0); 2814 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2815 if (GA->mayBeOverridden()) 2816 return V; 2817 V = GA->getAliasee(); 2818 } else { 2819 // See if InstructionSimplify knows any relevant tricks. 2820 if (Instruction *I = dyn_cast<Instruction>(V)) 2821 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2822 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2823 V = Simplified; 2824 continue; 2825 } 2826 2827 return V; 2828 } 2829 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2830 } 2831 return V; 2832 } 2833 2834 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2835 const DataLayout &DL, LoopInfo *LI, 2836 unsigned MaxLookup) { 2837 SmallPtrSet<Value *, 4> Visited; 2838 SmallVector<Value *, 4> Worklist; 2839 Worklist.push_back(V); 2840 do { 2841 Value *P = Worklist.pop_back_val(); 2842 P = GetUnderlyingObject(P, DL, MaxLookup); 2843 2844 if (!Visited.insert(P).second) 2845 continue; 2846 2847 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2848 Worklist.push_back(SI->getTrueValue()); 2849 Worklist.push_back(SI->getFalseValue()); 2850 continue; 2851 } 2852 2853 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2854 // If this PHI changes the underlying object in every iteration of the 2855 // loop, don't look through it. Consider: 2856 // int **A; 2857 // for (i) { 2858 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2859 // Curr = A[i]; 2860 // *Prev, *Curr; 2861 // 2862 // Prev is tracking Curr one iteration behind so they refer to different 2863 // underlying objects. 2864 if (!LI || !LI->isLoopHeader(PN->getParent()) || 2865 isSameUnderlyingObjectInLoop(PN, LI)) 2866 for (Value *IncValue : PN->incoming_values()) 2867 Worklist.push_back(IncValue); 2868 continue; 2869 } 2870 2871 Objects.push_back(P); 2872 } while (!Worklist.empty()); 2873 } 2874 2875 /// Return true if the only users of this pointer are lifetime markers. 2876 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2877 for (const User *U : V->users()) { 2878 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2879 if (!II) return false; 2880 2881 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2882 II->getIntrinsicID() != Intrinsic::lifetime_end) 2883 return false; 2884 } 2885 return true; 2886 } 2887 2888 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 2889 Type *Ty, const DataLayout &DL, 2890 const Instruction *CtxI, 2891 const DominatorTree *DT, 2892 const TargetLibraryInfo *TLI) { 2893 assert(Offset.isNonNegative() && "offset can't be negative"); 2894 assert(Ty->isSized() && "must be sized"); 2895 2896 APInt DerefBytes(Offset.getBitWidth(), 0); 2897 bool CheckForNonNull = false; 2898 if (const Argument *A = dyn_cast<Argument>(BV)) { 2899 DerefBytes = A->getDereferenceableBytes(); 2900 if (!DerefBytes.getBoolValue()) { 2901 DerefBytes = A->getDereferenceableOrNullBytes(); 2902 CheckForNonNull = true; 2903 } 2904 } else if (auto CS = ImmutableCallSite(BV)) { 2905 DerefBytes = CS.getDereferenceableBytes(0); 2906 if (!DerefBytes.getBoolValue()) { 2907 DerefBytes = CS.getDereferenceableOrNullBytes(0); 2908 CheckForNonNull = true; 2909 } 2910 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 2911 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 2912 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2913 DerefBytes = CI->getLimitedValue(); 2914 } 2915 if (!DerefBytes.getBoolValue()) { 2916 if (MDNode *MD = 2917 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 2918 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2919 DerefBytes = CI->getLimitedValue(); 2920 } 2921 CheckForNonNull = true; 2922 } 2923 } 2924 2925 if (DerefBytes.getBoolValue()) 2926 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 2927 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 2928 return true; 2929 2930 return false; 2931 } 2932 2933 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 2934 const Instruction *CtxI, 2935 const DominatorTree *DT, 2936 const TargetLibraryInfo *TLI) { 2937 Type *VTy = V->getType(); 2938 Type *Ty = VTy->getPointerElementType(); 2939 if (!Ty->isSized()) 2940 return false; 2941 2942 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 2943 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 2944 } 2945 2946 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 2947 const DataLayout &DL) { 2948 APInt BaseAlign(Offset.getBitWidth(), 0); 2949 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) 2950 BaseAlign = AI->getAlignment(); 2951 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) 2952 BaseAlign = GV->getAlignment(); 2953 else if (const Argument *A = dyn_cast<Argument>(Base)) 2954 BaseAlign = A->getParamAlignment(); 2955 2956 if (!BaseAlign) { 2957 Type *Ty = Base->getType()->getPointerElementType(); 2958 BaseAlign = DL.getABITypeAlignment(Ty); 2959 } 2960 2961 APInt Alignment(Offset.getBitWidth(), Align); 2962 2963 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 2964 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 2965 } 2966 2967 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 2968 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0); 2969 return isAligned(Base, Offset, Align, DL); 2970 } 2971 2972 /// Test if V is always a pointer to allocated and suitably aligned memory for 2973 /// a simple load or store. 2974 static bool isDereferenceableAndAlignedPointer( 2975 const Value *V, unsigned Align, const DataLayout &DL, 2976 const Instruction *CtxI, const DominatorTree *DT, 2977 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 2978 // Note that it is not safe to speculate into a malloc'd region because 2979 // malloc may return null. 2980 2981 // These are obviously ok if aligned. 2982 if (isa<AllocaInst>(V)) 2983 return isAligned(V, Align, DL); 2984 2985 // It's not always safe to follow a bitcast, for example: 2986 // bitcast i8* (alloca i8) to i32* 2987 // would result in a 4-byte load from a 1-byte alloca. However, 2988 // if we're casting from a pointer from a type of larger size 2989 // to a type of smaller size (or the same size), and the alignment 2990 // is at least as large as for the resulting pointer type, then 2991 // we can look through the bitcast. 2992 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 2993 Type *STy = BC->getSrcTy()->getPointerElementType(), 2994 *DTy = BC->getDestTy()->getPointerElementType(); 2995 if (STy->isSized() && DTy->isSized() && 2996 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 2997 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 2998 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 2999 CtxI, DT, TLI, Visited); 3000 } 3001 3002 // Global variables which can't collapse to null are ok. 3003 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3004 if (!GV->hasExternalWeakLinkage()) 3005 return isAligned(V, Align, DL); 3006 3007 // byval arguments are okay. 3008 if (const Argument *A = dyn_cast<Argument>(V)) 3009 if (A->hasByValAttr()) 3010 return isAligned(V, Align, DL); 3011 3012 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3013 return isAligned(V, Align, DL); 3014 3015 // For GEPs, determine if the indexing lands within the allocated object. 3016 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3017 Type *VTy = GEP->getType(); 3018 Type *Ty = VTy->getPointerElementType(); 3019 const Value *Base = GEP->getPointerOperand(); 3020 3021 // Conservatively require that the base pointer be fully dereferenceable 3022 // and aligned. 3023 if (!Visited.insert(Base).second) 3024 return false; 3025 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3026 Visited)) 3027 return false; 3028 3029 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); 3030 if (!GEP->accumulateConstantOffset(DL, Offset)) 3031 return false; 3032 3033 // Check if the load is within the bounds of the underlying object 3034 // and offset is aligned. 3035 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3036 Type *BaseType = Base->getType()->getPointerElementType(); 3037 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3038 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3039 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3040 } 3041 3042 // For gc.relocate, look through relocations 3043 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V)) 3044 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) { 3045 GCRelocateOperands RelocateInst(I); 3046 return isDereferenceableAndAlignedPointer( 3047 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3048 } 3049 3050 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3051 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3052 CtxI, DT, TLI, Visited); 3053 3054 // If we don't know, assume the worst. 3055 return false; 3056 } 3057 3058 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3059 const DataLayout &DL, 3060 const Instruction *CtxI, 3061 const DominatorTree *DT, 3062 const TargetLibraryInfo *TLI) { 3063 // When dereferenceability information is provided by a dereferenceable 3064 // attribute, we know exactly how many bytes are dereferenceable. If we can 3065 // determine the exact offset to the attributed variable, we can use that 3066 // information here. 3067 Type *VTy = V->getType(); 3068 Type *Ty = VTy->getPointerElementType(); 3069 3070 // Require ABI alignment for loads without alignment specification 3071 if (Align == 0) 3072 Align = DL.getABITypeAlignment(Ty); 3073 3074 if (Ty->isSized()) { 3075 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3076 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3077 3078 if (Offset.isNonNegative()) 3079 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3080 isAligned(BV, Offset, Align, DL)) 3081 return true; 3082 } 3083 3084 SmallPtrSet<const Value *, 32> Visited; 3085 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3086 Visited); 3087 } 3088 3089 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3090 const Instruction *CtxI, 3091 const DominatorTree *DT, 3092 const TargetLibraryInfo *TLI) { 3093 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3094 } 3095 3096 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3097 const Instruction *CtxI, 3098 const DominatorTree *DT, 3099 const TargetLibraryInfo *TLI) { 3100 const Operator *Inst = dyn_cast<Operator>(V); 3101 if (!Inst) 3102 return false; 3103 3104 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3105 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3106 if (C->canTrap()) 3107 return false; 3108 3109 switch (Inst->getOpcode()) { 3110 default: 3111 return true; 3112 case Instruction::UDiv: 3113 case Instruction::URem: { 3114 // x / y is undefined if y == 0. 3115 const APInt *V; 3116 if (match(Inst->getOperand(1), m_APInt(V))) 3117 return *V != 0; 3118 return false; 3119 } 3120 case Instruction::SDiv: 3121 case Instruction::SRem: { 3122 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3123 const APInt *Numerator, *Denominator; 3124 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3125 return false; 3126 // We cannot hoist this division if the denominator is 0. 3127 if (*Denominator == 0) 3128 return false; 3129 // It's safe to hoist if the denominator is not 0 or -1. 3130 if (*Denominator != -1) 3131 return true; 3132 // At this point we know that the denominator is -1. It is safe to hoist as 3133 // long we know that the numerator is not INT_MIN. 3134 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3135 return !Numerator->isMinSignedValue(); 3136 // The numerator *might* be MinSignedValue. 3137 return false; 3138 } 3139 case Instruction::Load: { 3140 const LoadInst *LI = cast<LoadInst>(Inst); 3141 if (!LI->isUnordered() || 3142 // Speculative load may create a race that did not exist in the source. 3143 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 3144 return false; 3145 const DataLayout &DL = LI->getModule()->getDataLayout(); 3146 return isDereferenceableAndAlignedPointer( 3147 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3148 } 3149 case Instruction::Call: { 3150 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3151 switch (II->getIntrinsicID()) { 3152 // These synthetic intrinsics have no side-effects and just mark 3153 // information about their operands. 3154 // FIXME: There are other no-op synthetic instructions that potentially 3155 // should be considered at least *safe* to speculate... 3156 case Intrinsic::dbg_declare: 3157 case Intrinsic::dbg_value: 3158 return true; 3159 3160 case Intrinsic::bswap: 3161 case Intrinsic::ctlz: 3162 case Intrinsic::ctpop: 3163 case Intrinsic::cttz: 3164 case Intrinsic::objectsize: 3165 case Intrinsic::sadd_with_overflow: 3166 case Intrinsic::smul_with_overflow: 3167 case Intrinsic::ssub_with_overflow: 3168 case Intrinsic::uadd_with_overflow: 3169 case Intrinsic::umul_with_overflow: 3170 case Intrinsic::usub_with_overflow: 3171 return true; 3172 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3173 // errno like libm sqrt would. 3174 case Intrinsic::sqrt: 3175 case Intrinsic::fma: 3176 case Intrinsic::fmuladd: 3177 case Intrinsic::fabs: 3178 case Intrinsic::minnum: 3179 case Intrinsic::maxnum: 3180 return true; 3181 // TODO: some fp intrinsics are marked as having the same error handling 3182 // as libm. They're safe to speculate when they won't error. 3183 // TODO: are convert_{from,to}_fp16 safe? 3184 // TODO: can we list target-specific intrinsics here? 3185 default: break; 3186 } 3187 } 3188 return false; // The called function could have undefined behavior or 3189 // side-effects, even if marked readnone nounwind. 3190 } 3191 case Instruction::VAArg: 3192 case Instruction::Alloca: 3193 case Instruction::Invoke: 3194 case Instruction::PHI: 3195 case Instruction::Store: 3196 case Instruction::Ret: 3197 case Instruction::Br: 3198 case Instruction::IndirectBr: 3199 case Instruction::Switch: 3200 case Instruction::Unreachable: 3201 case Instruction::Fence: 3202 case Instruction::AtomicRMW: 3203 case Instruction::AtomicCmpXchg: 3204 case Instruction::LandingPad: 3205 case Instruction::Resume: 3206 case Instruction::CatchPad: 3207 case Instruction::CatchEndPad: 3208 case Instruction::CatchRet: 3209 case Instruction::CleanupPad: 3210 case Instruction::CleanupEndPad: 3211 case Instruction::CleanupRet: 3212 case Instruction::TerminatePad: 3213 return false; // Misc instructions which have effects 3214 } 3215 } 3216 3217 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3218 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3219 } 3220 3221 /// Return true if we know that the specified value is never null. 3222 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3223 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3224 3225 // Alloca never returns null, malloc might. 3226 if (isa<AllocaInst>(V)) return true; 3227 3228 // A byval, inalloca, or nonnull argument is never null. 3229 if (const Argument *A = dyn_cast<Argument>(V)) 3230 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3231 3232 // A global variable in address space 0 is non null unless extern weak. 3233 // Other address spaces may have null as a valid address for a global, 3234 // so we can't assume anything. 3235 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3236 return !GV->hasExternalWeakLinkage() && 3237 GV->getType()->getAddressSpace() == 0; 3238 3239 // A Load tagged w/nonnull metadata is never null. 3240 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3241 return LI->getMetadata(LLVMContext::MD_nonnull); 3242 3243 if (auto CS = ImmutableCallSite(V)) 3244 if (CS.isReturnNonNull()) 3245 return true; 3246 3247 // operator new never returns null. 3248 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 3249 return true; 3250 3251 return false; 3252 } 3253 3254 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3255 const Instruction *CtxI, 3256 const DominatorTree *DT) { 3257 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3258 3259 unsigned NumUsesExplored = 0; 3260 for (auto U : V->users()) { 3261 // Avoid massive lists 3262 if (NumUsesExplored >= DomConditionsMaxUses) 3263 break; 3264 NumUsesExplored++; 3265 // Consider only compare instructions uniquely controlling a branch 3266 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3267 if (!Cmp) 3268 continue; 3269 3270 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3271 continue; 3272 3273 for (auto *CmpU : Cmp->users()) { 3274 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3275 if (!BI) 3276 continue; 3277 3278 assert(BI->isConditional() && "uses a comparison!"); 3279 3280 BasicBlock *NonNullSuccessor = nullptr; 3281 CmpInst::Predicate Pred; 3282 3283 if (match(const_cast<ICmpInst*>(Cmp), 3284 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3285 if (Pred == ICmpInst::ICMP_EQ) 3286 NonNullSuccessor = BI->getSuccessor(1); 3287 else if (Pred == ICmpInst::ICMP_NE) 3288 NonNullSuccessor = BI->getSuccessor(0); 3289 } 3290 3291 if (NonNullSuccessor) { 3292 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3293 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3294 return true; 3295 } 3296 } 3297 } 3298 3299 return false; 3300 } 3301 3302 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3303 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3304 if (isKnownNonNull(V, TLI)) 3305 return true; 3306 3307 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3308 } 3309 3310 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3311 const DataLayout &DL, 3312 AssumptionCache *AC, 3313 const Instruction *CxtI, 3314 const DominatorTree *DT) { 3315 // Multiplying n * m significant bits yields a result of n + m significant 3316 // bits. If the total number of significant bits does not exceed the 3317 // result bit width (minus 1), there is no overflow. 3318 // This means if we have enough leading zero bits in the operands 3319 // we can guarantee that the result does not overflow. 3320 // Ref: "Hacker's Delight" by Henry Warren 3321 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3322 APInt LHSKnownZero(BitWidth, 0); 3323 APInt LHSKnownOne(BitWidth, 0); 3324 APInt RHSKnownZero(BitWidth, 0); 3325 APInt RHSKnownOne(BitWidth, 0); 3326 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3327 DT); 3328 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3329 DT); 3330 // Note that underestimating the number of zero bits gives a more 3331 // conservative answer. 3332 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3333 RHSKnownZero.countLeadingOnes(); 3334 // First handle the easy case: if we have enough zero bits there's 3335 // definitely no overflow. 3336 if (ZeroBits >= BitWidth) 3337 return OverflowResult::NeverOverflows; 3338 3339 // Get the largest possible values for each operand. 3340 APInt LHSMax = ~LHSKnownZero; 3341 APInt RHSMax = ~RHSKnownZero; 3342 3343 // We know the multiply operation doesn't overflow if the maximum values for 3344 // each operand will not overflow after we multiply them together. 3345 bool MaxOverflow; 3346 LHSMax.umul_ov(RHSMax, MaxOverflow); 3347 if (!MaxOverflow) 3348 return OverflowResult::NeverOverflows; 3349 3350 // We know it always overflows if multiplying the smallest possible values for 3351 // the operands also results in overflow. 3352 bool MinOverflow; 3353 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3354 if (MinOverflow) 3355 return OverflowResult::AlwaysOverflows; 3356 3357 return OverflowResult::MayOverflow; 3358 } 3359 3360 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3361 const DataLayout &DL, 3362 AssumptionCache *AC, 3363 const Instruction *CxtI, 3364 const DominatorTree *DT) { 3365 bool LHSKnownNonNegative, LHSKnownNegative; 3366 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3367 AC, CxtI, DT); 3368 if (LHSKnownNonNegative || LHSKnownNegative) { 3369 bool RHSKnownNonNegative, RHSKnownNegative; 3370 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3371 AC, CxtI, DT); 3372 3373 if (LHSKnownNegative && RHSKnownNegative) { 3374 // The sign bit is set in both cases: this MUST overflow. 3375 // Create a simple add instruction, and insert it into the struct. 3376 return OverflowResult::AlwaysOverflows; 3377 } 3378 3379 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3380 // The sign bit is clear in both cases: this CANNOT overflow. 3381 // Create a simple add instruction, and insert it into the struct. 3382 return OverflowResult::NeverOverflows; 3383 } 3384 } 3385 3386 return OverflowResult::MayOverflow; 3387 } 3388 3389 static OverflowResult computeOverflowForSignedAdd( 3390 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3391 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3392 if (Add && Add->hasNoSignedWrap()) { 3393 return OverflowResult::NeverOverflows; 3394 } 3395 3396 bool LHSKnownNonNegative, LHSKnownNegative; 3397 bool RHSKnownNonNegative, RHSKnownNegative; 3398 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3399 AC, CxtI, DT); 3400 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3401 AC, CxtI, DT); 3402 3403 if ((LHSKnownNonNegative && RHSKnownNegative) || 3404 (LHSKnownNegative && RHSKnownNonNegative)) { 3405 // The sign bits are opposite: this CANNOT overflow. 3406 return OverflowResult::NeverOverflows; 3407 } 3408 3409 // The remaining code needs Add to be available. Early returns if not so. 3410 if (!Add) 3411 return OverflowResult::MayOverflow; 3412 3413 // If the sign of Add is the same as at least one of the operands, this add 3414 // CANNOT overflow. This is particularly useful when the sum is 3415 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3416 // operands. 3417 bool LHSOrRHSKnownNonNegative = 3418 (LHSKnownNonNegative || RHSKnownNonNegative); 3419 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3420 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3421 bool AddKnownNonNegative, AddKnownNegative; 3422 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3423 /*Depth=*/0, AC, CxtI, DT); 3424 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3425 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3426 return OverflowResult::NeverOverflows; 3427 } 3428 } 3429 3430 return OverflowResult::MayOverflow; 3431 } 3432 3433 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3434 const DataLayout &DL, 3435 AssumptionCache *AC, 3436 const Instruction *CxtI, 3437 const DominatorTree *DT) { 3438 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3439 Add, DL, AC, CxtI, DT); 3440 } 3441 3442 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3443 const DataLayout &DL, 3444 AssumptionCache *AC, 3445 const Instruction *CxtI, 3446 const DominatorTree *DT) { 3447 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3448 } 3449 3450 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3451 // FIXME: This conservative implementation can be relaxed. E.g. most 3452 // atomic operations are guaranteed to terminate on most platforms 3453 // and most functions terminate. 3454 3455 return !I->isAtomic() && // atomics may never succeed on some platforms 3456 !isa<CallInst>(I) && // could throw and might not terminate 3457 !isa<InvokeInst>(I) && // might not terminate and could throw to 3458 // non-successor (see bug 24185 for details). 3459 !isa<ResumeInst>(I) && // has no successors 3460 !isa<ReturnInst>(I); // has no successors 3461 } 3462 3463 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3464 const Loop *L) { 3465 // The loop header is guaranteed to be executed for every iteration. 3466 // 3467 // FIXME: Relax this constraint to cover all basic blocks that are 3468 // guaranteed to be executed at every iteration. 3469 if (I->getParent() != L->getHeader()) return false; 3470 3471 for (const Instruction &LI : *L->getHeader()) { 3472 if (&LI == I) return true; 3473 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3474 } 3475 llvm_unreachable("Instruction not contained in its own parent basic block."); 3476 } 3477 3478 bool llvm::propagatesFullPoison(const Instruction *I) { 3479 switch (I->getOpcode()) { 3480 case Instruction::Add: 3481 case Instruction::Sub: 3482 case Instruction::Xor: 3483 case Instruction::Trunc: 3484 case Instruction::BitCast: 3485 case Instruction::AddrSpaceCast: 3486 // These operations all propagate poison unconditionally. Note that poison 3487 // is not any particular value, so xor or subtraction of poison with 3488 // itself still yields poison, not zero. 3489 return true; 3490 3491 case Instruction::AShr: 3492 case Instruction::SExt: 3493 // For these operations, one bit of the input is replicated across 3494 // multiple output bits. A replicated poison bit is still poison. 3495 return true; 3496 3497 case Instruction::Shl: { 3498 // Left shift *by* a poison value is poison. The number of 3499 // positions to shift is unsigned, so no negative values are 3500 // possible there. Left shift by zero places preserves poison. So 3501 // it only remains to consider left shift of poison by a positive 3502 // number of places. 3503 // 3504 // A left shift by a positive number of places leaves the lowest order bit 3505 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3506 // make the poison operand violate that flag, yielding a fresh full-poison 3507 // value. 3508 auto *OBO = cast<OverflowingBinaryOperator>(I); 3509 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3510 } 3511 3512 case Instruction::Mul: { 3513 // A multiplication by zero yields a non-poison zero result, so we need to 3514 // rule out zero as an operand. Conservatively, multiplication by a 3515 // non-zero constant is not multiplication by zero. 3516 // 3517 // Multiplication by a non-zero constant can leave some bits 3518 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3519 // order bit unpoisoned. So we need to consider that. 3520 // 3521 // Multiplication by 1 preserves poison. If the multiplication has a 3522 // no-wrap flag, then we can make the poison operand violate that flag 3523 // when multiplied by any integer other than 0 and 1. 3524 auto *OBO = cast<OverflowingBinaryOperator>(I); 3525 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3526 for (Value *V : OBO->operands()) { 3527 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3528 // A ConstantInt cannot yield poison, so we can assume that it is 3529 // the other operand that is poison. 3530 return !CI->isZero(); 3531 } 3532 } 3533 } 3534 return false; 3535 } 3536 3537 case Instruction::GetElementPtr: 3538 // A GEP implicitly represents a sequence of additions, subtractions, 3539 // truncations, sign extensions and multiplications. The multiplications 3540 // are by the non-zero sizes of some set of types, so we do not have to be 3541 // concerned with multiplication by zero. If the GEP is in-bounds, then 3542 // these operations are implicitly no-signed-wrap so poison is propagated 3543 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3544 return cast<GEPOperator>(I)->isInBounds(); 3545 3546 default: 3547 return false; 3548 } 3549 } 3550 3551 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3552 switch (I->getOpcode()) { 3553 case Instruction::Store: 3554 return cast<StoreInst>(I)->getPointerOperand(); 3555 3556 case Instruction::Load: 3557 return cast<LoadInst>(I)->getPointerOperand(); 3558 3559 case Instruction::AtomicCmpXchg: 3560 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3561 3562 case Instruction::AtomicRMW: 3563 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3564 3565 case Instruction::UDiv: 3566 case Instruction::SDiv: 3567 case Instruction::URem: 3568 case Instruction::SRem: 3569 return I->getOperand(1); 3570 3571 default: 3572 return nullptr; 3573 } 3574 } 3575 3576 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3577 // We currently only look for uses of poison values within the same basic 3578 // block, as that makes it easier to guarantee that the uses will be 3579 // executed given that PoisonI is executed. 3580 // 3581 // FIXME: Expand this to consider uses beyond the same basic block. To do 3582 // this, look out for the distinction between post-dominance and strong 3583 // post-dominance. 3584 const BasicBlock *BB = PoisonI->getParent(); 3585 3586 // Set of instructions that we have proved will yield poison if PoisonI 3587 // does. 3588 SmallSet<const Value *, 16> YieldsPoison; 3589 YieldsPoison.insert(PoisonI); 3590 3591 for (const Instruction *I = PoisonI, *E = BB->end(); I != E; 3592 I = I->getNextNode()) { 3593 if (I != PoisonI) { 3594 const Value *NotPoison = getGuaranteedNonFullPoisonOp(I); 3595 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3596 if (!isGuaranteedToTransferExecutionToSuccessor(I)) return false; 3597 } 3598 3599 // Mark poison that propagates from I through uses of I. 3600 if (YieldsPoison.count(I)) { 3601 for (const User *User : I->users()) { 3602 const Instruction *UserI = cast<Instruction>(User); 3603 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3604 YieldsPoison.insert(User); 3605 } 3606 } 3607 } 3608 return false; 3609 } 3610 3611 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3612 if (FMF.noNaNs()) 3613 return true; 3614 3615 if (auto *C = dyn_cast<ConstantFP>(V)) 3616 return !C->isNaN(); 3617 return false; 3618 } 3619 3620 static bool isKnownNonZero(Value *V) { 3621 if (auto *C = dyn_cast<ConstantFP>(V)) 3622 return !C->isZero(); 3623 return false; 3624 } 3625 3626 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3627 FastMathFlags FMF, 3628 Value *CmpLHS, Value *CmpRHS, 3629 Value *TrueVal, Value *FalseVal, 3630 Value *&LHS, Value *&RHS) { 3631 LHS = CmpLHS; 3632 RHS = CmpRHS; 3633 3634 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3635 // return inconsistent results between implementations. 3636 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3637 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3638 // Therefore we behave conservatively and only proceed if at least one of the 3639 // operands is known to not be zero, or if we don't care about signed zeroes. 3640 switch (Pred) { 3641 default: break; 3642 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3643 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3644 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3645 !isKnownNonZero(CmpRHS)) 3646 return {SPF_UNKNOWN, SPNB_NA, false}; 3647 } 3648 3649 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3650 bool Ordered = false; 3651 3652 // When given one NaN and one non-NaN input: 3653 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3654 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3655 // ordered comparison fails), which could be NaN or non-NaN. 3656 // so here we discover exactly what NaN behavior is required/accepted. 3657 if (CmpInst::isFPPredicate(Pred)) { 3658 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3659 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3660 3661 if (LHSSafe && RHSSafe) { 3662 // Both operands are known non-NaN. 3663 NaNBehavior = SPNB_RETURNS_ANY; 3664 } else if (CmpInst::isOrdered(Pred)) { 3665 // An ordered comparison will return false when given a NaN, so it 3666 // returns the RHS. 3667 Ordered = true; 3668 if (LHSSafe) 3669 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3670 NaNBehavior = SPNB_RETURNS_NAN; 3671 else if (RHSSafe) 3672 NaNBehavior = SPNB_RETURNS_OTHER; 3673 else 3674 // Completely unsafe. 3675 return {SPF_UNKNOWN, SPNB_NA, false}; 3676 } else { 3677 Ordered = false; 3678 // An unordered comparison will return true when given a NaN, so it 3679 // returns the LHS. 3680 if (LHSSafe) 3681 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3682 NaNBehavior = SPNB_RETURNS_OTHER; 3683 else if (RHSSafe) 3684 NaNBehavior = SPNB_RETURNS_NAN; 3685 else 3686 // Completely unsafe. 3687 return {SPF_UNKNOWN, SPNB_NA, false}; 3688 } 3689 } 3690 3691 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3692 std::swap(CmpLHS, CmpRHS); 3693 Pred = CmpInst::getSwappedPredicate(Pred); 3694 if (NaNBehavior == SPNB_RETURNS_NAN) 3695 NaNBehavior = SPNB_RETURNS_OTHER; 3696 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3697 NaNBehavior = SPNB_RETURNS_NAN; 3698 Ordered = !Ordered; 3699 } 3700 3701 // ([if]cmp X, Y) ? X : Y 3702 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3703 switch (Pred) { 3704 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3705 case ICmpInst::ICMP_UGT: 3706 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3707 case ICmpInst::ICMP_SGT: 3708 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3709 case ICmpInst::ICMP_ULT: 3710 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3711 case ICmpInst::ICMP_SLT: 3712 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3713 case FCmpInst::FCMP_UGT: 3714 case FCmpInst::FCMP_UGE: 3715 case FCmpInst::FCMP_OGT: 3716 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3717 case FCmpInst::FCMP_ULT: 3718 case FCmpInst::FCMP_ULE: 3719 case FCmpInst::FCMP_OLT: 3720 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3721 } 3722 } 3723 3724 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3725 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3726 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3727 3728 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3729 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3730 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3731 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3732 } 3733 3734 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3735 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3736 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3737 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3738 } 3739 } 3740 3741 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3742 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3743 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3744 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3745 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3746 LHS = TrueVal; 3747 RHS = FalseVal; 3748 return {SPF_SMIN, SPNB_NA, false}; 3749 } 3750 } 3751 } 3752 3753 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3754 3755 return {SPF_UNKNOWN, SPNB_NA, false}; 3756 } 3757 3758 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3759 Instruction::CastOps *CastOp) { 3760 CastInst *CI = dyn_cast<CastInst>(V1); 3761 Constant *C = dyn_cast<Constant>(V2); 3762 CastInst *CI2 = dyn_cast<CastInst>(V2); 3763 if (!CI) 3764 return nullptr; 3765 *CastOp = CI->getOpcode(); 3766 3767 if (CI2) { 3768 // If V1 and V2 are both the same cast from the same type, we can look 3769 // through V1. 3770 if (CI2->getOpcode() == CI->getOpcode() && 3771 CI2->getSrcTy() == CI->getSrcTy()) 3772 return CI2->getOperand(0); 3773 return nullptr; 3774 } else if (!C) { 3775 return nullptr; 3776 } 3777 3778 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3779 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3780 // This is only valid if the truncated value can be sign-extended 3781 // back to the original value. 3782 if (ConstantExpr::getSExt(T, C->getType()) == C) 3783 return T; 3784 return nullptr; 3785 } 3786 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3787 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3788 3789 if (isa<TruncInst>(CI)) 3790 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3791 3792 if (isa<FPToUIInst>(CI)) 3793 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3794 3795 if (isa<FPToSIInst>(CI)) 3796 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3797 3798 if (isa<UIToFPInst>(CI)) 3799 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3800 3801 if (isa<SIToFPInst>(CI)) 3802 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3803 3804 if (isa<FPTruncInst>(CI)) 3805 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3806 3807 if (isa<FPExtInst>(CI)) 3808 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3809 3810 return nullptr; 3811 } 3812 3813 SelectPatternResult llvm::matchSelectPattern(Value *V, 3814 Value *&LHS, Value *&RHS, 3815 Instruction::CastOps *CastOp) { 3816 SelectInst *SI = dyn_cast<SelectInst>(V); 3817 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3818 3819 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3820 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3821 3822 CmpInst::Predicate Pred = CmpI->getPredicate(); 3823 Value *CmpLHS = CmpI->getOperand(0); 3824 Value *CmpRHS = CmpI->getOperand(1); 3825 Value *TrueVal = SI->getTrueValue(); 3826 Value *FalseVal = SI->getFalseValue(); 3827 FastMathFlags FMF; 3828 if (isa<FPMathOperator>(CmpI)) 3829 FMF = CmpI->getFastMathFlags(); 3830 3831 // Bail out early. 3832 if (CmpI->isEquality()) 3833 return {SPF_UNKNOWN, SPNB_NA, false}; 3834 3835 // Deal with type mismatches. 3836 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3837 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3838 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3839 cast<CastInst>(TrueVal)->getOperand(0), C, 3840 LHS, RHS); 3841 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3842 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3843 C, cast<CastInst>(FalseVal)->getOperand(0), 3844 LHS, RHS); 3845 } 3846 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3847 LHS, RHS); 3848 } 3849