1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Statepoint.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/KnownBits.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <algorithm> 45 #include <array> 46 #include <cstring> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 const unsigned MaxDepth = 6; 51 52 // Controls the number of uses of the value searched for possible 53 // dominating comparisons. 54 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 55 cl::Hidden, cl::init(20)); 56 57 // This optimization is known to cause performance regressions is some cases, 58 // keep it under a temporary flag for now. 59 static cl::opt<bool> 60 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 61 cl::Hidden, cl::init(true)); 62 63 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 64 /// returns the element type's bitwidth. 65 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 66 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 67 return BitWidth; 68 69 return DL.getPointerTypeSizeInBits(Ty); 70 } 71 72 namespace { 73 // Simplifying using an assume can only be done in a particular control-flow 74 // context (the context instruction provides that context). If an assume and 75 // the context instruction are not in the same block then the DT helps in 76 // figuring out if we can use it. 77 struct Query { 78 const DataLayout &DL; 79 AssumptionCache *AC; 80 const Instruction *CxtI; 81 const DominatorTree *DT; 82 // Unlike the other analyses, this may be a nullptr because not all clients 83 // provide it currently. 84 OptimizationRemarkEmitter *ORE; 85 86 /// Set of assumptions that should be excluded from further queries. 87 /// This is because of the potential for mutual recursion to cause 88 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 89 /// classic case of this is assume(x = y), which will attempt to determine 90 /// bits in x from bits in y, which will attempt to determine bits in y from 91 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 92 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 93 /// (all of which can call computeKnownBits), and so on. 94 std::array<const Value *, MaxDepth> Excluded; 95 unsigned NumExcluded; 96 97 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 98 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 99 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 100 101 Query(const Query &Q, const Value *NewExcl) 102 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 103 NumExcluded(Q.NumExcluded) { 104 Excluded = Q.Excluded; 105 Excluded[NumExcluded++] = NewExcl; 106 assert(NumExcluded <= Excluded.size()); 107 } 108 109 bool isExcluded(const Value *Value) const { 110 if (NumExcluded == 0) 111 return false; 112 auto End = Excluded.begin() + NumExcluded; 113 return std::find(Excluded.begin(), End, Value) != End; 114 } 115 }; 116 } // end anonymous namespace 117 118 // Given the provided Value and, potentially, a context instruction, return 119 // the preferred context instruction (if any). 120 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 121 // If we've been provided with a context instruction, then use that (provided 122 // it has been inserted). 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 // If the value is really an already-inserted instruction, then use that. 127 CxtI = dyn_cast<Instruction>(V); 128 if (CxtI && CxtI->getParent()) 129 return CxtI; 130 131 return nullptr; 132 } 133 134 static void computeKnownBits(const Value *V, KnownBits &Known, 135 unsigned Depth, const Query &Q); 136 137 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 138 const DataLayout &DL, unsigned Depth, 139 AssumptionCache *AC, const Instruction *CxtI, 140 const DominatorTree *DT, 141 OptimizationRemarkEmitter *ORE) { 142 ::computeKnownBits(V, Known, Depth, 143 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 144 } 145 146 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 147 const Query &Q); 148 149 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 150 unsigned Depth, AssumptionCache *AC, 151 const Instruction *CxtI, 152 const DominatorTree *DT, 153 OptimizationRemarkEmitter *ORE) { 154 return ::computeKnownBits(V, Depth, 155 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 156 } 157 158 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 159 const DataLayout &DL, 160 AssumptionCache *AC, const Instruction *CxtI, 161 const DominatorTree *DT) { 162 assert(LHS->getType() == RHS->getType() && 163 "LHS and RHS should have the same type"); 164 assert(LHS->getType()->isIntOrIntVectorTy() && 165 "LHS and RHS should be integers"); 166 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 167 KnownBits LHSKnown(IT->getBitWidth()); 168 KnownBits RHSKnown(IT->getBitWidth()); 169 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 170 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 171 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 172 } 173 174 175 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 176 for (const User *U : CxtI->users()) { 177 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 178 if (IC->isEquality()) 179 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 180 if (C->isNullValue()) 181 continue; 182 return false; 183 } 184 return true; 185 } 186 187 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 188 const Query &Q); 189 190 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 191 bool OrZero, 192 unsigned Depth, AssumptionCache *AC, 193 const Instruction *CxtI, 194 const DominatorTree *DT) { 195 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 196 Query(DL, AC, safeCxtI(V, CxtI), DT)); 197 } 198 199 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 200 201 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 205 } 206 207 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 208 unsigned Depth, 209 AssumptionCache *AC, const Instruction *CxtI, 210 const DominatorTree *DT) { 211 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 212 return Known.isNonNegative(); 213 } 214 215 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 216 AssumptionCache *AC, const Instruction *CxtI, 217 const DominatorTree *DT) { 218 if (auto *CI = dyn_cast<ConstantInt>(V)) 219 return CI->getValue().isStrictlyPositive(); 220 221 // TODO: We'd doing two recursive queries here. We should factor this such 222 // that only a single query is needed. 223 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 224 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 225 } 226 227 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 228 AssumptionCache *AC, const Instruction *CxtI, 229 const DominatorTree *DT) { 230 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 231 return Known.isNegative(); 232 } 233 234 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 235 236 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 237 const DataLayout &DL, 238 AssumptionCache *AC, const Instruction *CxtI, 239 const DominatorTree *DT) { 240 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 241 safeCxtI(V1, safeCxtI(V2, CxtI)), 242 DT)); 243 } 244 245 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 246 const Query &Q); 247 248 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 249 const DataLayout &DL, 250 unsigned Depth, AssumptionCache *AC, 251 const Instruction *CxtI, const DominatorTree *DT) { 252 return ::MaskedValueIsZero(V, Mask, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT)); 254 } 255 256 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 257 const Query &Q); 258 259 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 260 unsigned Depth, AssumptionCache *AC, 261 const Instruction *CxtI, 262 const DominatorTree *DT) { 263 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 264 } 265 266 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 267 bool NSW, 268 KnownBits &KnownOut, KnownBits &Known2, 269 unsigned Depth, const Query &Q) { 270 unsigned BitWidth = KnownOut.getBitWidth(); 271 272 // If an initial sequence of bits in the result is not needed, the 273 // corresponding bits in the operands are not needed. 274 KnownBits LHSKnown(BitWidth); 275 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 276 computeKnownBits(Op1, Known2, Depth + 1, Q); 277 278 // Carry in a 1 for a subtract, rather than a 0. 279 uint64_t CarryIn = 0; 280 if (!Add) { 281 // Sum = LHS + ~RHS + 1 282 std::swap(Known2.Zero, Known2.One); 283 CarryIn = 1; 284 } 285 286 APInt PossibleSumZero = ~LHSKnown.Zero + ~Known2.Zero + CarryIn; 287 APInt PossibleSumOne = LHSKnown.One + Known2.One + CarryIn; 288 289 // Compute known bits of the carry. 290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnown.Zero ^ Known2.Zero); 291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnown.One ^ Known2.One; 292 293 // Compute set of known bits (where all three relevant bits are known). 294 APInt LHSKnownUnion = LHSKnown.Zero | LHSKnown.One; 295 APInt RHSKnownUnion = Known2.Zero | Known2.One; 296 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne; 297 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion; 298 299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 300 "known bits of sum differ"); 301 302 // Compute known bits of the result. 303 KnownOut.Zero = ~PossibleSumOne & Known; 304 KnownOut.One = PossibleSumOne & Known; 305 306 // Are we still trying to solve for the sign bit? 307 if (!Known.isSignBitSet()) { 308 if (NSW) { 309 // Adding two non-negative numbers, or subtracting a negative number from 310 // a non-negative one, can't wrap into negative. 311 if (LHSKnown.isNonNegative() && Known2.isNonNegative()) 312 KnownOut.makeNonNegative(); 313 // Adding two negative numbers, or subtracting a non-negative number from 314 // a negative one, can't wrap into non-negative. 315 else if (LHSKnown.isNegative() && Known2.isNegative()) 316 KnownOut.makeNegative(); 317 } 318 } 319 } 320 321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 322 KnownBits &Known, KnownBits &Known2, 323 unsigned Depth, const Query &Q) { 324 unsigned BitWidth = Known.getBitWidth(); 325 computeKnownBits(Op1, Known, Depth + 1, Q); 326 computeKnownBits(Op0, Known2, Depth + 1, Q); 327 328 bool isKnownNegative = false; 329 bool isKnownNonNegative = false; 330 // If the multiplication is known not to overflow, compute the sign bit. 331 if (NSW) { 332 if (Op0 == Op1) { 333 // The product of a number with itself is non-negative. 334 isKnownNonNegative = true; 335 } else { 336 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 337 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 338 bool isKnownNegativeOp1 = Known.isNegative(); 339 bool isKnownNegativeOp0 = Known2.isNegative(); 340 // The product of two numbers with the same sign is non-negative. 341 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 342 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 343 // The product of a negative number and a non-negative number is either 344 // negative or zero. 345 if (!isKnownNonNegative) 346 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 347 isKnownNonZero(Op0, Depth, Q)) || 348 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 349 isKnownNonZero(Op1, Depth, Q)); 350 } 351 } 352 353 // If low bits are zero in either operand, output low known-0 bits. 354 // Also compute a conservative estimate for high known-0 bits. 355 // More trickiness is possible, but this is sufficient for the 356 // interesting case of alignment computation. 357 unsigned TrailZ = Known.countMinTrailingZeros() + 358 Known2.countMinTrailingZeros(); 359 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 360 Known2.countMinLeadingZeros(), 361 BitWidth) - BitWidth; 362 363 TrailZ = std::min(TrailZ, BitWidth); 364 LeadZ = std::min(LeadZ, BitWidth); 365 Known.resetAll(); 366 Known.Zero.setLowBits(TrailZ); 367 Known.Zero.setHighBits(LeadZ); 368 369 // Only make use of no-wrap flags if we failed to compute the sign bit 370 // directly. This matters if the multiplication always overflows, in 371 // which case we prefer to follow the result of the direct computation, 372 // though as the program is invoking undefined behaviour we can choose 373 // whatever we like here. 374 if (isKnownNonNegative && !Known.isNegative()) 375 Known.makeNonNegative(); 376 else if (isKnownNegative && !Known.isNonNegative()) 377 Known.makeNegative(); 378 } 379 380 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 381 KnownBits &Known) { 382 unsigned BitWidth = Known.getBitWidth(); 383 unsigned NumRanges = Ranges.getNumOperands() / 2; 384 assert(NumRanges >= 1); 385 386 Known.Zero.setAllBits(); 387 Known.One.setAllBits(); 388 389 for (unsigned i = 0; i < NumRanges; ++i) { 390 ConstantInt *Lower = 391 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 392 ConstantInt *Upper = 393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 394 ConstantRange Range(Lower->getValue(), Upper->getValue()); 395 396 // The first CommonPrefixBits of all values in Range are equal. 397 unsigned CommonPrefixBits = 398 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 399 400 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 401 Known.One &= Range.getUnsignedMax() & Mask; 402 Known.Zero &= ~Range.getUnsignedMax() & Mask; 403 } 404 } 405 406 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 407 SmallVector<const Value *, 16> WorkSet(1, I); 408 SmallPtrSet<const Value *, 32> Visited; 409 SmallPtrSet<const Value *, 16> EphValues; 410 411 // The instruction defining an assumption's condition itself is always 412 // considered ephemeral to that assumption (even if it has other 413 // non-ephemeral users). See r246696's test case for an example. 414 if (is_contained(I->operands(), E)) 415 return true; 416 417 while (!WorkSet.empty()) { 418 const Value *V = WorkSet.pop_back_val(); 419 if (!Visited.insert(V).second) 420 continue; 421 422 // If all uses of this value are ephemeral, then so is this value. 423 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 424 if (V == E) 425 return true; 426 427 EphValues.insert(V); 428 if (const User *U = dyn_cast<User>(V)) 429 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 430 J != JE; ++J) { 431 if (isSafeToSpeculativelyExecute(*J)) 432 WorkSet.push_back(*J); 433 } 434 } 435 } 436 437 return false; 438 } 439 440 // Is this an intrinsic that cannot be speculated but also cannot trap? 441 static bool isAssumeLikeIntrinsic(const Instruction *I) { 442 if (const CallInst *CI = dyn_cast<CallInst>(I)) 443 if (Function *F = CI->getCalledFunction()) 444 switch (F->getIntrinsicID()) { 445 default: break; 446 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 447 case Intrinsic::assume: 448 case Intrinsic::dbg_declare: 449 case Intrinsic::dbg_value: 450 case Intrinsic::invariant_start: 451 case Intrinsic::invariant_end: 452 case Intrinsic::lifetime_start: 453 case Intrinsic::lifetime_end: 454 case Intrinsic::objectsize: 455 case Intrinsic::ptr_annotation: 456 case Intrinsic::var_annotation: 457 return true; 458 } 459 460 return false; 461 } 462 463 bool llvm::isValidAssumeForContext(const Instruction *Inv, 464 const Instruction *CxtI, 465 const DominatorTree *DT) { 466 467 // There are two restrictions on the use of an assume: 468 // 1. The assume must dominate the context (or the control flow must 469 // reach the assume whenever it reaches the context). 470 // 2. The context must not be in the assume's set of ephemeral values 471 // (otherwise we will use the assume to prove that the condition 472 // feeding the assume is trivially true, thus causing the removal of 473 // the assume). 474 475 if (DT) { 476 if (DT->dominates(Inv, CxtI)) 477 return true; 478 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 479 // We don't have a DT, but this trivially dominates. 480 return true; 481 } 482 483 // With or without a DT, the only remaining case we will check is if the 484 // instructions are in the same BB. Give up if that is not the case. 485 if (Inv->getParent() != CxtI->getParent()) 486 return false; 487 488 // If we have a dom tree, then we now know that the assume doens't dominate 489 // the other instruction. If we don't have a dom tree then we can check if 490 // the assume is first in the BB. 491 if (!DT) { 492 // Search forward from the assume until we reach the context (or the end 493 // of the block); the common case is that the assume will come first. 494 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 495 IE = Inv->getParent()->end(); I != IE; ++I) 496 if (&*I == CxtI) 497 return true; 498 } 499 500 // The context comes first, but they're both in the same block. Make sure 501 // there is nothing in between that might interrupt the control flow. 502 for (BasicBlock::const_iterator I = 503 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 504 I != IE; ++I) 505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 506 return false; 507 508 return !isEphemeralValueOf(Inv, CxtI); 509 } 510 511 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 512 unsigned Depth, const Query &Q) { 513 // Use of assumptions is context-sensitive. If we don't have a context, we 514 // cannot use them! 515 if (!Q.AC || !Q.CxtI) 516 return; 517 518 unsigned BitWidth = Known.getBitWidth(); 519 520 // Note that the patterns below need to be kept in sync with the code 521 // in AssumptionCache::updateAffectedValues. 522 523 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 524 if (!AssumeVH) 525 continue; 526 CallInst *I = cast<CallInst>(AssumeVH); 527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 528 "Got assumption for the wrong function!"); 529 if (Q.isExcluded(I)) 530 continue; 531 532 // Warning: This loop can end up being somewhat performance sensetive. 533 // We're running this loop for once for each value queried resulting in a 534 // runtime of ~O(#assumes * #values). 535 536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 537 "must be an assume intrinsic"); 538 539 Value *Arg = I->getArgOperand(0); 540 541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 542 assert(BitWidth == 1 && "assume operand is not i1?"); 543 Known.setAllOnes(); 544 return; 545 } 546 if (match(Arg, m_Not(m_Specific(V))) && 547 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 548 assert(BitWidth == 1 && "assume operand is not i1?"); 549 Known.setAllZero(); 550 return; 551 } 552 553 // The remaining tests are all recursive, so bail out if we hit the limit. 554 if (Depth == MaxDepth) 555 continue; 556 557 Value *A, *B; 558 auto m_V = m_CombineOr(m_Specific(V), 559 m_CombineOr(m_PtrToInt(m_Specific(V)), 560 m_BitCast(m_Specific(V)))); 561 562 CmpInst::Predicate Pred; 563 ConstantInt *C; 564 // assume(v = a) 565 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 566 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 567 KnownBits RHSKnown(BitWidth); 568 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 569 Known.Zero |= RHSKnown.Zero; 570 Known.One |= RHSKnown.One; 571 // assume(v & b = a) 572 } else if (match(Arg, 573 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 574 Pred == ICmpInst::ICMP_EQ && 575 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 576 KnownBits RHSKnown(BitWidth); 577 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 578 KnownBits MaskKnown(BitWidth); 579 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 580 581 // For those bits in the mask that are known to be one, we can propagate 582 // known bits from the RHS to V. 583 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 584 Known.One |= RHSKnown.One & MaskKnown.One; 585 // assume(~(v & b) = a) 586 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 587 m_Value(A))) && 588 Pred == ICmpInst::ICMP_EQ && 589 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 590 KnownBits RHSKnown(BitWidth); 591 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 592 KnownBits MaskKnown(BitWidth); 593 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 594 595 // For those bits in the mask that are known to be one, we can propagate 596 // inverted known bits from the RHS to V. 597 Known.Zero |= RHSKnown.One & MaskKnown.One; 598 Known.One |= RHSKnown.Zero & MaskKnown.One; 599 // assume(v | b = a) 600 } else if (match(Arg, 601 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 602 Pred == ICmpInst::ICMP_EQ && 603 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 604 KnownBits RHSKnown(BitWidth); 605 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 606 KnownBits BKnown(BitWidth); 607 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 608 609 // For those bits in B that are known to be zero, we can propagate known 610 // bits from the RHS to V. 611 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 612 Known.One |= RHSKnown.One & BKnown.Zero; 613 // assume(~(v | b) = a) 614 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 615 m_Value(A))) && 616 Pred == ICmpInst::ICMP_EQ && 617 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 618 KnownBits RHSKnown(BitWidth); 619 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 620 KnownBits BKnown(BitWidth); 621 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 622 623 // For those bits in B that are known to be zero, we can propagate 624 // inverted known bits from the RHS to V. 625 Known.Zero |= RHSKnown.One & BKnown.Zero; 626 Known.One |= RHSKnown.Zero & BKnown.Zero; 627 // assume(v ^ b = a) 628 } else if (match(Arg, 629 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 630 Pred == ICmpInst::ICMP_EQ && 631 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 632 KnownBits RHSKnown(BitWidth); 633 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 634 KnownBits BKnown(BitWidth); 635 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 636 637 // For those bits in B that are known to be zero, we can propagate known 638 // bits from the RHS to V. For those bits in B that are known to be one, 639 // we can propagate inverted known bits from the RHS to V. 640 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 641 Known.One |= RHSKnown.One & BKnown.Zero; 642 Known.Zero |= RHSKnown.One & BKnown.One; 643 Known.One |= RHSKnown.Zero & BKnown.One; 644 // assume(~(v ^ b) = a) 645 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 646 m_Value(A))) && 647 Pred == ICmpInst::ICMP_EQ && 648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 649 KnownBits RHSKnown(BitWidth); 650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 651 KnownBits BKnown(BitWidth); 652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 653 654 // For those bits in B that are known to be zero, we can propagate 655 // inverted known bits from the RHS to V. For those bits in B that are 656 // known to be one, we can propagate known bits from the RHS to V. 657 Known.Zero |= RHSKnown.One & BKnown.Zero; 658 Known.One |= RHSKnown.Zero & BKnown.Zero; 659 Known.Zero |= RHSKnown.Zero & BKnown.One; 660 Known.One |= RHSKnown.One & BKnown.One; 661 // assume(v << c = a) 662 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 663 m_Value(A))) && 664 Pred == ICmpInst::ICMP_EQ && 665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 666 KnownBits RHSKnown(BitWidth); 667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 668 // For those bits in RHS that are known, we can propagate them to known 669 // bits in V shifted to the right by C. 670 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 671 Known.Zero |= RHSKnown.Zero; 672 RHSKnown.One.lshrInPlace(C->getZExtValue()); 673 Known.One |= RHSKnown.One; 674 // assume(~(v << c) = a) 675 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 676 m_Value(A))) && 677 Pred == ICmpInst::ICMP_EQ && 678 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 679 KnownBits RHSKnown(BitWidth); 680 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 681 // For those bits in RHS that are known, we can propagate them inverted 682 // to known bits in V shifted to the right by C. 683 RHSKnown.One.lshrInPlace(C->getZExtValue()); 684 Known.Zero |= RHSKnown.One; 685 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 686 Known.One |= RHSKnown.Zero; 687 // assume(v >> c = a) 688 } else if (match(Arg, 689 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 690 m_Value(A))) && 691 Pred == ICmpInst::ICMP_EQ && 692 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 693 KnownBits RHSKnown(BitWidth); 694 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 695 // For those bits in RHS that are known, we can propagate them to known 696 // bits in V shifted to the right by C. 697 Known.Zero |= RHSKnown.Zero << C->getZExtValue(); 698 Known.One |= RHSKnown.One << C->getZExtValue(); 699 // assume(~(v >> c) = a) 700 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 701 m_Value(A))) && 702 Pred == ICmpInst::ICMP_EQ && 703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 704 KnownBits RHSKnown(BitWidth); 705 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 706 // For those bits in RHS that are known, we can propagate them inverted 707 // to known bits in V shifted to the right by C. 708 Known.Zero |= RHSKnown.One << C->getZExtValue(); 709 Known.One |= RHSKnown.Zero << C->getZExtValue(); 710 // assume(v >=_s c) where c is non-negative 711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 712 Pred == ICmpInst::ICMP_SGE && 713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 714 KnownBits RHSKnown(BitWidth); 715 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 716 717 if (RHSKnown.isNonNegative()) { 718 // We know that the sign bit is zero. 719 Known.makeNonNegative(); 720 } 721 // assume(v >_s c) where c is at least -1. 722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 723 Pred == ICmpInst::ICMP_SGT && 724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 725 KnownBits RHSKnown(BitWidth); 726 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 727 728 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 729 // We know that the sign bit is zero. 730 Known.makeNonNegative(); 731 } 732 // assume(v <=_s c) where c is negative 733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 734 Pred == ICmpInst::ICMP_SLE && 735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 736 KnownBits RHSKnown(BitWidth); 737 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 738 739 if (RHSKnown.isNegative()) { 740 // We know that the sign bit is one. 741 Known.makeNegative(); 742 } 743 // assume(v <_s c) where c is non-positive 744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 745 Pred == ICmpInst::ICMP_SLT && 746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 747 KnownBits RHSKnown(BitWidth); 748 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 749 750 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 751 // We know that the sign bit is one. 752 Known.makeNegative(); 753 } 754 // assume(v <=_u c) 755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 756 Pred == ICmpInst::ICMP_ULE && 757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 758 KnownBits RHSKnown(BitWidth); 759 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 760 761 // Whatever high bits in c are zero are known to be zero. 762 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 763 // assume(v <_u c) 764 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 765 Pred == ICmpInst::ICMP_ULT && 766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 KnownBits RHSKnown(BitWidth); 768 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 769 770 // Whatever high bits in c are zero are known to be zero (if c is a power 771 // of 2, then one more). 772 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 773 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 774 else 775 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 776 } 777 } 778 779 // If assumptions conflict with each other or previous known bits, then we 780 // have a logical fallacy. It's possible that the assumption is not reachable, 781 // so this isn't a real bug. On the other hand, the program may have undefined 782 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 783 // clear out the known bits, try to warn the user, and hope for the best. 784 if (Known.Zero.intersects(Known.One)) { 785 Known.resetAll(); 786 787 if (Q.ORE) { 788 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 789 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 790 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 791 "have undefined behavior, or compiler may have " 792 "internal error."); 793 } 794 } 795 } 796 797 // Compute known bits from a shift operator, including those with a 798 // non-constant shift amount. Known is the outputs of this function. Known2 is a 799 // pre-allocated temporary with the/ same bit width as Known. KZF and KOF are 800 // operator-specific functors that, given the known-zero or known-one bits 801 // respectively, and a shift amount, compute the implied known-zero or known-one 802 // bits of the shift operator's result respectively for that shift amount. The 803 // results from calling KZF and KOF are conservatively combined for all 804 // permitted shift amounts. 805 static void computeKnownBitsFromShiftOperator( 806 const Operator *I, KnownBits &Known, KnownBits &Known2, 807 unsigned Depth, const Query &Q, 808 function_ref<APInt(const APInt &, unsigned)> KZF, 809 function_ref<APInt(const APInt &, unsigned)> KOF) { 810 unsigned BitWidth = Known.getBitWidth(); 811 812 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 813 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 814 815 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 816 Known.Zero = KZF(Known.Zero, ShiftAmt); 817 Known.One = KOF(Known.One, ShiftAmt); 818 // If there is conflict between Known.Zero and Known.One, this must be an 819 // overflowing left shift, so the shift result is undefined. Clear Known 820 // bits so that other code could propagate this undef. 821 if ((Known.Zero & Known.One) != 0) 822 Known.resetAll(); 823 824 return; 825 } 826 827 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 828 829 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 830 // value could be undef, so we don't know anything about it. 831 if ((~Known.Zero).uge(BitWidth)) { 832 Known.resetAll(); 833 return; 834 } 835 836 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 837 // BitWidth > 64 and any upper bits are known, we'll end up returning the 838 // limit value (which implies all bits are known). 839 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 840 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 841 842 // It would be more-clearly correct to use the two temporaries for this 843 // calculation. Reusing the APInts here to prevent unnecessary allocations. 844 Known.resetAll(); 845 846 // If we know the shifter operand is nonzero, we can sometimes infer more 847 // known bits. However this is expensive to compute, so be lazy about it and 848 // only compute it when absolutely necessary. 849 Optional<bool> ShifterOperandIsNonZero; 850 851 // Early exit if we can't constrain any well-defined shift amount. 852 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 853 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 854 ShifterOperandIsNonZero = 855 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 856 if (!*ShifterOperandIsNonZero) 857 return; 858 } 859 860 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 861 862 Known.Zero.setAllBits(); 863 Known.One.setAllBits(); 864 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 865 // Combine the shifted known input bits only for those shift amounts 866 // compatible with its known constraints. 867 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 868 continue; 869 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 870 continue; 871 // If we know the shifter is nonzero, we may be able to infer more known 872 // bits. This check is sunk down as far as possible to avoid the expensive 873 // call to isKnownNonZero if the cheaper checks above fail. 874 if (ShiftAmt == 0) { 875 if (!ShifterOperandIsNonZero.hasValue()) 876 ShifterOperandIsNonZero = 877 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 878 if (*ShifterOperandIsNonZero) 879 continue; 880 } 881 882 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 883 Known.One &= KOF(Known2.One, ShiftAmt); 884 } 885 886 // If there are no compatible shift amounts, then we've proven that the shift 887 // amount must be >= the BitWidth, and the result is undefined. We could 888 // return anything we'd like, but we need to make sure the sets of known bits 889 // stay disjoint (it should be better for some other code to actually 890 // propagate the undef than to pick a value here using known bits). 891 if (Known.Zero.intersects(Known.One)) 892 Known.resetAll(); 893 } 894 895 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 896 unsigned Depth, const Query &Q) { 897 unsigned BitWidth = Known.getBitWidth(); 898 899 KnownBits Known2(Known); 900 switch (I->getOpcode()) { 901 default: break; 902 case Instruction::Load: 903 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 904 computeKnownBitsFromRangeMetadata(*MD, Known); 905 break; 906 case Instruction::And: { 907 // If either the LHS or the RHS are Zero, the result is zero. 908 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 909 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 910 911 // Output known-1 bits are only known if set in both the LHS & RHS. 912 Known.One &= Known2.One; 913 // Output known-0 are known to be clear if zero in either the LHS | RHS. 914 Known.Zero |= Known2.Zero; 915 916 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 917 // here we handle the more general case of adding any odd number by 918 // matching the form add(x, add(x, y)) where y is odd. 919 // TODO: This could be generalized to clearing any bit set in y where the 920 // following bit is known to be unset in y. 921 Value *Y = nullptr; 922 if (!Known.Zero[0] && !Known.One[0] && 923 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 924 m_Value(Y))) || 925 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 926 m_Value(Y))))) { 927 Known2.resetAll(); 928 computeKnownBits(Y, Known2, Depth + 1, Q); 929 if (Known2.countMinTrailingOnes() > 0) 930 Known.Zero.setBit(0); 931 } 932 break; 933 } 934 case Instruction::Or: { 935 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 936 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 937 938 // Output known-0 bits are only known if clear in both the LHS & RHS. 939 Known.Zero &= Known2.Zero; 940 // Output known-1 are known to be set if set in either the LHS | RHS. 941 Known.One |= Known2.One; 942 break; 943 } 944 case Instruction::Xor: { 945 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 946 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 947 948 // Output known-0 bits are known if clear or set in both the LHS & RHS. 949 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 950 // Output known-1 are known to be set if set in only one of the LHS, RHS. 951 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 952 Known.Zero = std::move(KnownZeroOut); 953 break; 954 } 955 case Instruction::Mul: { 956 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 957 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 958 Known2, Depth, Q); 959 break; 960 } 961 case Instruction::UDiv: { 962 // For the purposes of computing leading zeros we can conservatively 963 // treat a udiv as a logical right shift by the power of 2 known to 964 // be less than the denominator. 965 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 966 unsigned LeadZ = Known2.countMinLeadingZeros(); 967 968 Known2.resetAll(); 969 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 970 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 971 if (RHSMaxLeadingZeros != BitWidth) 972 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 973 974 Known.Zero.setHighBits(LeadZ); 975 break; 976 } 977 case Instruction::Select: { 978 const Value *LHS, *RHS; 979 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 980 if (SelectPatternResult::isMinOrMax(SPF)) { 981 computeKnownBits(RHS, Known, Depth + 1, Q); 982 computeKnownBits(LHS, Known2, Depth + 1, Q); 983 } else { 984 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 985 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 986 } 987 988 unsigned MaxHighOnes = 0; 989 unsigned MaxHighZeros = 0; 990 if (SPF == SPF_SMAX) { 991 // If both sides are negative, the result is negative. 992 if (Known.isNegative() && Known2.isNegative()) 993 // We can derive a lower bound on the result by taking the max of the 994 // leading one bits. 995 MaxHighOnes = 996 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 997 // If either side is non-negative, the result is non-negative. 998 else if (Known.isNonNegative() || Known2.isNonNegative()) 999 MaxHighZeros = 1; 1000 } else if (SPF == SPF_SMIN) { 1001 // If both sides are non-negative, the result is non-negative. 1002 if (Known.isNonNegative() && Known2.isNonNegative()) 1003 // We can derive an upper bound on the result by taking the max of the 1004 // leading zero bits. 1005 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1006 Known2.countMinLeadingZeros()); 1007 // If either side is negative, the result is negative. 1008 else if (Known.isNegative() || Known2.isNegative()) 1009 MaxHighOnes = 1; 1010 } else if (SPF == SPF_UMAX) { 1011 // We can derive a lower bound on the result by taking the max of the 1012 // leading one bits. 1013 MaxHighOnes = 1014 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1015 } else if (SPF == SPF_UMIN) { 1016 // We can derive an upper bound on the result by taking the max of the 1017 // leading zero bits. 1018 MaxHighZeros = 1019 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1020 } 1021 1022 // Only known if known in both the LHS and RHS. 1023 Known.One &= Known2.One; 1024 Known.Zero &= Known2.Zero; 1025 if (MaxHighOnes > 0) 1026 Known.One.setHighBits(MaxHighOnes); 1027 if (MaxHighZeros > 0) 1028 Known.Zero.setHighBits(MaxHighZeros); 1029 break; 1030 } 1031 case Instruction::FPTrunc: 1032 case Instruction::FPExt: 1033 case Instruction::FPToUI: 1034 case Instruction::FPToSI: 1035 case Instruction::SIToFP: 1036 case Instruction::UIToFP: 1037 break; // Can't work with floating point. 1038 case Instruction::PtrToInt: 1039 case Instruction::IntToPtr: 1040 // Fall through and handle them the same as zext/trunc. 1041 LLVM_FALLTHROUGH; 1042 case Instruction::ZExt: 1043 case Instruction::Trunc: { 1044 Type *SrcTy = I->getOperand(0)->getType(); 1045 1046 unsigned SrcBitWidth; 1047 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1048 // which fall through here. 1049 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1050 1051 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1052 Known = Known.zextOrTrunc(SrcBitWidth); 1053 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1054 Known = Known.zextOrTrunc(BitWidth); 1055 // Any top bits are known to be zero. 1056 if (BitWidth > SrcBitWidth) 1057 Known.Zero.setBitsFrom(SrcBitWidth); 1058 break; 1059 } 1060 case Instruction::BitCast: { 1061 Type *SrcTy = I->getOperand(0)->getType(); 1062 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1063 // TODO: For now, not handling conversions like: 1064 // (bitcast i64 %x to <2 x i32>) 1065 !I->getType()->isVectorTy()) { 1066 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1067 break; 1068 } 1069 break; 1070 } 1071 case Instruction::SExt: { 1072 // Compute the bits in the result that are not present in the input. 1073 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1074 1075 Known = Known.trunc(SrcBitWidth); 1076 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1077 // If the sign bit of the input is known set or clear, then we know the 1078 // top bits of the result. 1079 Known = Known.sext(BitWidth); 1080 break; 1081 } 1082 case Instruction::Shl: { 1083 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1084 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1085 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1086 APInt KZResult = KnownZero << ShiftAmt; 1087 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1088 // If this shift has "nsw" keyword, then the result is either a poison 1089 // value or has the same sign bit as the first operand. 1090 if (NSW && KnownZero.isSignBitSet()) 1091 KZResult.setSignBit(); 1092 return KZResult; 1093 }; 1094 1095 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1096 APInt KOResult = KnownOne << ShiftAmt; 1097 if (NSW && KnownOne.isSignBitSet()) 1098 KOResult.setSignBit(); 1099 return KOResult; 1100 }; 1101 1102 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1103 break; 1104 } 1105 case Instruction::LShr: { 1106 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1107 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1108 APInt KZResult = KnownZero.lshr(ShiftAmt); 1109 // High bits known zero. 1110 KZResult.setHighBits(ShiftAmt); 1111 return KZResult; 1112 }; 1113 1114 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1115 return KnownOne.lshr(ShiftAmt); 1116 }; 1117 1118 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1119 break; 1120 } 1121 case Instruction::AShr: { 1122 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1123 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1124 return KnownZero.ashr(ShiftAmt); 1125 }; 1126 1127 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1128 return KnownOne.ashr(ShiftAmt); 1129 }; 1130 1131 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1132 break; 1133 } 1134 case Instruction::Sub: { 1135 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1136 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1137 Known, Known2, Depth, Q); 1138 break; 1139 } 1140 case Instruction::Add: { 1141 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1142 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1143 Known, Known2, Depth, Q); 1144 break; 1145 } 1146 case Instruction::SRem: 1147 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1148 APInt RA = Rem->getValue().abs(); 1149 if (RA.isPowerOf2()) { 1150 APInt LowBits = RA - 1; 1151 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1152 1153 // The low bits of the first operand are unchanged by the srem. 1154 Known.Zero = Known2.Zero & LowBits; 1155 Known.One = Known2.One & LowBits; 1156 1157 // If the first operand is non-negative or has all low bits zero, then 1158 // the upper bits are all zero. 1159 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1160 Known.Zero |= ~LowBits; 1161 1162 // If the first operand is negative and not all low bits are zero, then 1163 // the upper bits are all one. 1164 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1165 Known.One |= ~LowBits; 1166 1167 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1168 break; 1169 } 1170 } 1171 1172 // The sign bit is the LHS's sign bit, except when the result of the 1173 // remainder is zero. 1174 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1175 // If it's known zero, our sign bit is also zero. 1176 if (Known2.isNonNegative()) 1177 Known.makeNonNegative(); 1178 1179 break; 1180 case Instruction::URem: { 1181 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1182 const APInt &RA = Rem->getValue(); 1183 if (RA.isPowerOf2()) { 1184 APInt LowBits = (RA - 1); 1185 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1186 Known.Zero |= ~LowBits; 1187 Known.One &= LowBits; 1188 break; 1189 } 1190 } 1191 1192 // Since the result is less than or equal to either operand, any leading 1193 // zero bits in either operand must also exist in the result. 1194 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1195 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1196 1197 unsigned Leaders = 1198 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1199 Known.resetAll(); 1200 Known.Zero.setHighBits(Leaders); 1201 break; 1202 } 1203 1204 case Instruction::Alloca: { 1205 const AllocaInst *AI = cast<AllocaInst>(I); 1206 unsigned Align = AI->getAlignment(); 1207 if (Align == 0) 1208 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1209 1210 if (Align > 0) 1211 Known.Zero.setLowBits(countTrailingZeros(Align)); 1212 break; 1213 } 1214 case Instruction::GetElementPtr: { 1215 // Analyze all of the subscripts of this getelementptr instruction 1216 // to determine if we can prove known low zero bits. 1217 KnownBits LocalKnown(BitWidth); 1218 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1219 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1220 1221 gep_type_iterator GTI = gep_type_begin(I); 1222 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1223 Value *Index = I->getOperand(i); 1224 if (StructType *STy = GTI.getStructTypeOrNull()) { 1225 // Handle struct member offset arithmetic. 1226 1227 // Handle case when index is vector zeroinitializer 1228 Constant *CIndex = cast<Constant>(Index); 1229 if (CIndex->isZeroValue()) 1230 continue; 1231 1232 if (CIndex->getType()->isVectorTy()) 1233 Index = CIndex->getSplatValue(); 1234 1235 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1236 const StructLayout *SL = Q.DL.getStructLayout(STy); 1237 uint64_t Offset = SL->getElementOffset(Idx); 1238 TrailZ = std::min<unsigned>(TrailZ, 1239 countTrailingZeros(Offset)); 1240 } else { 1241 // Handle array index arithmetic. 1242 Type *IndexedTy = GTI.getIndexedType(); 1243 if (!IndexedTy->isSized()) { 1244 TrailZ = 0; 1245 break; 1246 } 1247 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1248 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1249 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1250 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1251 TrailZ = std::min(TrailZ, 1252 unsigned(countTrailingZeros(TypeSize) + 1253 LocalKnown.countMinTrailingZeros())); 1254 } 1255 } 1256 1257 Known.Zero.setLowBits(TrailZ); 1258 break; 1259 } 1260 case Instruction::PHI: { 1261 const PHINode *P = cast<PHINode>(I); 1262 // Handle the case of a simple two-predecessor recurrence PHI. 1263 // There's a lot more that could theoretically be done here, but 1264 // this is sufficient to catch some interesting cases. 1265 if (P->getNumIncomingValues() == 2) { 1266 for (unsigned i = 0; i != 2; ++i) { 1267 Value *L = P->getIncomingValue(i); 1268 Value *R = P->getIncomingValue(!i); 1269 Operator *LU = dyn_cast<Operator>(L); 1270 if (!LU) 1271 continue; 1272 unsigned Opcode = LU->getOpcode(); 1273 // Check for operations that have the property that if 1274 // both their operands have low zero bits, the result 1275 // will have low zero bits. 1276 if (Opcode == Instruction::Add || 1277 Opcode == Instruction::Sub || 1278 Opcode == Instruction::And || 1279 Opcode == Instruction::Or || 1280 Opcode == Instruction::Mul) { 1281 Value *LL = LU->getOperand(0); 1282 Value *LR = LU->getOperand(1); 1283 // Find a recurrence. 1284 if (LL == I) 1285 L = LR; 1286 else if (LR == I) 1287 L = LL; 1288 else 1289 break; 1290 // Ok, we have a PHI of the form L op= R. Check for low 1291 // zero bits. 1292 computeKnownBits(R, Known2, Depth + 1, Q); 1293 1294 // We need to take the minimum number of known bits 1295 KnownBits Known3(Known); 1296 computeKnownBits(L, Known3, Depth + 1, Q); 1297 1298 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1299 Known3.countMinTrailingZeros())); 1300 1301 if (DontImproveNonNegativePhiBits) 1302 break; 1303 1304 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1305 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1306 // If initial value of recurrence is nonnegative, and we are adding 1307 // a nonnegative number with nsw, the result can only be nonnegative 1308 // or poison value regardless of the number of times we execute the 1309 // add in phi recurrence. If initial value is negative and we are 1310 // adding a negative number with nsw, the result can only be 1311 // negative or poison value. Similar arguments apply to sub and mul. 1312 // 1313 // (add non-negative, non-negative) --> non-negative 1314 // (add negative, negative) --> negative 1315 if (Opcode == Instruction::Add) { 1316 if (Known2.isNonNegative() && Known3.isNonNegative()) 1317 Known.makeNonNegative(); 1318 else if (Known2.isNegative() && Known3.isNegative()) 1319 Known.makeNegative(); 1320 } 1321 1322 // (sub nsw non-negative, negative) --> non-negative 1323 // (sub nsw negative, non-negative) --> negative 1324 else if (Opcode == Instruction::Sub && LL == I) { 1325 if (Known2.isNonNegative() && Known3.isNegative()) 1326 Known.makeNonNegative(); 1327 else if (Known2.isNegative() && Known3.isNonNegative()) 1328 Known.makeNegative(); 1329 } 1330 1331 // (mul nsw non-negative, non-negative) --> non-negative 1332 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1333 Known3.isNonNegative()) 1334 Known.makeNonNegative(); 1335 } 1336 1337 break; 1338 } 1339 } 1340 } 1341 1342 // Unreachable blocks may have zero-operand PHI nodes. 1343 if (P->getNumIncomingValues() == 0) 1344 break; 1345 1346 // Otherwise take the unions of the known bit sets of the operands, 1347 // taking conservative care to avoid excessive recursion. 1348 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1349 // Skip if every incoming value references to ourself. 1350 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1351 break; 1352 1353 Known.Zero.setAllBits(); 1354 Known.One.setAllBits(); 1355 for (Value *IncValue : P->incoming_values()) { 1356 // Skip direct self references. 1357 if (IncValue == P) continue; 1358 1359 Known2 = KnownBits(BitWidth); 1360 // Recurse, but cap the recursion to one level, because we don't 1361 // want to waste time spinning around in loops. 1362 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1363 Known.Zero &= Known2.Zero; 1364 Known.One &= Known2.One; 1365 // If all bits have been ruled out, there's no need to check 1366 // more operands. 1367 if (!Known.Zero && !Known.One) 1368 break; 1369 } 1370 } 1371 break; 1372 } 1373 case Instruction::Call: 1374 case Instruction::Invoke: 1375 // If range metadata is attached to this call, set known bits from that, 1376 // and then intersect with known bits based on other properties of the 1377 // function. 1378 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1379 computeKnownBitsFromRangeMetadata(*MD, Known); 1380 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1381 computeKnownBits(RV, Known2, Depth + 1, Q); 1382 Known.Zero |= Known2.Zero; 1383 Known.One |= Known2.One; 1384 } 1385 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1386 switch (II->getIntrinsicID()) { 1387 default: break; 1388 case Intrinsic::bitreverse: 1389 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1390 Known.Zero |= Known2.Zero.reverseBits(); 1391 Known.One |= Known2.One.reverseBits(); 1392 break; 1393 case Intrinsic::bswap: 1394 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1395 Known.Zero |= Known2.Zero.byteSwap(); 1396 Known.One |= Known2.One.byteSwap(); 1397 break; 1398 case Intrinsic::ctlz: { 1399 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1400 // If we have a known 1, its position is our upper bound. 1401 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1402 // If this call is undefined for 0, the result will be less than 2^n. 1403 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1404 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1405 unsigned LowBits = Log2_32(PossibleLZ)+1; 1406 Known.Zero.setBitsFrom(LowBits); 1407 break; 1408 } 1409 case Intrinsic::cttz: { 1410 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1411 // If we have a known 1, its position is our upper bound. 1412 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1413 // If this call is undefined for 0, the result will be less than 2^n. 1414 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1415 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1416 unsigned LowBits = Log2_32(PossibleTZ)+1; 1417 Known.Zero.setBitsFrom(LowBits); 1418 break; 1419 } 1420 case Intrinsic::ctpop: { 1421 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1422 // We can bound the space the count needs. Also, bits known to be zero 1423 // can't contribute to the population. 1424 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1425 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1426 Known.Zero.setBitsFrom(LowBits); 1427 // TODO: we could bound KnownOne using the lower bound on the number 1428 // of bits which might be set provided by popcnt KnownOne2. 1429 break; 1430 } 1431 case Intrinsic::x86_sse42_crc32_64_64: 1432 Known.Zero.setBitsFrom(32); 1433 break; 1434 } 1435 } 1436 break; 1437 case Instruction::ExtractElement: 1438 // Look through extract element. At the moment we keep this simple and skip 1439 // tracking the specific element. But at least we might find information 1440 // valid for all elements of the vector (for example if vector is sign 1441 // extended, shifted, etc). 1442 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1443 break; 1444 case Instruction::ExtractValue: 1445 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1446 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1447 if (EVI->getNumIndices() != 1) break; 1448 if (EVI->getIndices()[0] == 0) { 1449 switch (II->getIntrinsicID()) { 1450 default: break; 1451 case Intrinsic::uadd_with_overflow: 1452 case Intrinsic::sadd_with_overflow: 1453 computeKnownBitsAddSub(true, II->getArgOperand(0), 1454 II->getArgOperand(1), false, Known, Known2, 1455 Depth, Q); 1456 break; 1457 case Intrinsic::usub_with_overflow: 1458 case Intrinsic::ssub_with_overflow: 1459 computeKnownBitsAddSub(false, II->getArgOperand(0), 1460 II->getArgOperand(1), false, Known, Known2, 1461 Depth, Q); 1462 break; 1463 case Intrinsic::umul_with_overflow: 1464 case Intrinsic::smul_with_overflow: 1465 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1466 Known, Known2, Depth, Q); 1467 break; 1468 } 1469 } 1470 } 1471 } 1472 } 1473 1474 /// Determine which bits of V are known to be either zero or one and return 1475 /// them. 1476 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1477 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1478 computeKnownBits(V, Known, Depth, Q); 1479 return Known; 1480 } 1481 1482 /// Determine which bits of V are known to be either zero or one and return 1483 /// them in the Known bit set. 1484 /// 1485 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1486 /// we cannot optimize based on the assumption that it is zero without changing 1487 /// it to be an explicit zero. If we don't change it to zero, other code could 1488 /// optimized based on the contradictory assumption that it is non-zero. 1489 /// Because instcombine aggressively folds operations with undef args anyway, 1490 /// this won't lose us code quality. 1491 /// 1492 /// This function is defined on values with integer type, values with pointer 1493 /// type, and vectors of integers. In the case 1494 /// where V is a vector, known zero, and known one values are the 1495 /// same width as the vector element, and the bit is set only if it is true 1496 /// for all of the elements in the vector. 1497 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1498 const Query &Q) { 1499 assert(V && "No Value?"); 1500 assert(Depth <= MaxDepth && "Limit Search Depth"); 1501 unsigned BitWidth = Known.getBitWidth(); 1502 1503 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1504 V->getType()->isPtrOrPtrVectorTy()) && 1505 "Not integer or pointer type!"); 1506 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth && 1507 "V and Known should have same BitWidth"); 1508 (void)BitWidth; 1509 1510 const APInt *C; 1511 if (match(V, m_APInt(C))) { 1512 // We know all of the bits for a scalar constant or a splat vector constant! 1513 Known.One = *C; 1514 Known.Zero = ~Known.One; 1515 return; 1516 } 1517 // Null and aggregate-zero are all-zeros. 1518 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1519 Known.setAllZero(); 1520 return; 1521 } 1522 // Handle a constant vector by taking the intersection of the known bits of 1523 // each element. 1524 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1525 // We know that CDS must be a vector of integers. Take the intersection of 1526 // each element. 1527 Known.Zero.setAllBits(); Known.One.setAllBits(); 1528 APInt Elt(BitWidth, 0); 1529 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1530 Elt = CDS->getElementAsInteger(i); 1531 Known.Zero &= ~Elt; 1532 Known.One &= Elt; 1533 } 1534 return; 1535 } 1536 1537 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1538 // We know that CV must be a vector of integers. Take the intersection of 1539 // each element. 1540 Known.Zero.setAllBits(); Known.One.setAllBits(); 1541 APInt Elt(BitWidth, 0); 1542 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1543 Constant *Element = CV->getAggregateElement(i); 1544 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1545 if (!ElementCI) { 1546 Known.resetAll(); 1547 return; 1548 } 1549 Elt = ElementCI->getValue(); 1550 Known.Zero &= ~Elt; 1551 Known.One &= Elt; 1552 } 1553 return; 1554 } 1555 1556 // Start out not knowing anything. 1557 Known.resetAll(); 1558 1559 // We can't imply anything about undefs. 1560 if (isa<UndefValue>(V)) 1561 return; 1562 1563 // There's no point in looking through other users of ConstantData for 1564 // assumptions. Confirm that we've handled them all. 1565 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1566 1567 // Limit search depth. 1568 // All recursive calls that increase depth must come after this. 1569 if (Depth == MaxDepth) 1570 return; 1571 1572 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1573 // the bits of its aliasee. 1574 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1575 if (!GA->isInterposable()) 1576 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1577 return; 1578 } 1579 1580 if (const Operator *I = dyn_cast<Operator>(V)) 1581 computeKnownBitsFromOperator(I, Known, Depth, Q); 1582 1583 // Aligned pointers have trailing zeros - refine Known.Zero set 1584 if (V->getType()->isPointerTy()) { 1585 unsigned Align = V->getPointerAlignment(Q.DL); 1586 if (Align) 1587 Known.Zero.setLowBits(countTrailingZeros(Align)); 1588 } 1589 1590 // computeKnownBitsFromAssume strictly refines Known. 1591 // Therefore, we run them after computeKnownBitsFromOperator. 1592 1593 // Check whether a nearby assume intrinsic can determine some known bits. 1594 computeKnownBitsFromAssume(V, Known, Depth, Q); 1595 1596 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1597 } 1598 1599 /// Return true if the given value is known to have exactly one 1600 /// bit set when defined. For vectors return true if every element is known to 1601 /// be a power of two when defined. Supports values with integer or pointer 1602 /// types and vectors of integers. 1603 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1604 const Query &Q) { 1605 if (const Constant *C = dyn_cast<Constant>(V)) { 1606 if (C->isNullValue()) 1607 return OrZero; 1608 1609 const APInt *ConstIntOrConstSplatInt; 1610 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1611 return ConstIntOrConstSplatInt->isPowerOf2(); 1612 } 1613 1614 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1615 // it is shifted off the end then the result is undefined. 1616 if (match(V, m_Shl(m_One(), m_Value()))) 1617 return true; 1618 1619 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1620 // the bottom. If it is shifted off the bottom then the result is undefined. 1621 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1622 return true; 1623 1624 // The remaining tests are all recursive, so bail out if we hit the limit. 1625 if (Depth++ == MaxDepth) 1626 return false; 1627 1628 Value *X = nullptr, *Y = nullptr; 1629 // A shift left or a logical shift right of a power of two is a power of two 1630 // or zero. 1631 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1632 match(V, m_LShr(m_Value(X), m_Value())))) 1633 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1634 1635 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1636 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1637 1638 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1639 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1640 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1641 1642 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1643 // A power of two and'd with anything is a power of two or zero. 1644 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1645 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1646 return true; 1647 // X & (-X) is always a power of two or zero. 1648 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1649 return true; 1650 return false; 1651 } 1652 1653 // Adding a power-of-two or zero to the same power-of-two or zero yields 1654 // either the original power-of-two, a larger power-of-two or zero. 1655 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1656 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1657 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1658 if (match(X, m_And(m_Specific(Y), m_Value())) || 1659 match(X, m_And(m_Value(), m_Specific(Y)))) 1660 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1661 return true; 1662 if (match(Y, m_And(m_Specific(X), m_Value())) || 1663 match(Y, m_And(m_Value(), m_Specific(X)))) 1664 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1665 return true; 1666 1667 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1668 KnownBits LHSBits(BitWidth); 1669 computeKnownBits(X, LHSBits, Depth, Q); 1670 1671 KnownBits RHSBits(BitWidth); 1672 computeKnownBits(Y, RHSBits, Depth, Q); 1673 // If i8 V is a power of two or zero: 1674 // ZeroBits: 1 1 1 0 1 1 1 1 1675 // ~ZeroBits: 0 0 0 1 0 0 0 0 1676 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1677 // If OrZero isn't set, we cannot give back a zero result. 1678 // Make sure either the LHS or RHS has a bit set. 1679 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1680 return true; 1681 } 1682 } 1683 1684 // An exact divide or right shift can only shift off zero bits, so the result 1685 // is a power of two only if the first operand is a power of two and not 1686 // copying a sign bit (sdiv int_min, 2). 1687 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1688 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1689 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1690 Depth, Q); 1691 } 1692 1693 return false; 1694 } 1695 1696 /// \brief Test whether a GEP's result is known to be non-null. 1697 /// 1698 /// Uses properties inherent in a GEP to try to determine whether it is known 1699 /// to be non-null. 1700 /// 1701 /// Currently this routine does not support vector GEPs. 1702 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1703 const Query &Q) { 1704 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1705 return false; 1706 1707 // FIXME: Support vector-GEPs. 1708 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1709 1710 // If the base pointer is non-null, we cannot walk to a null address with an 1711 // inbounds GEP in address space zero. 1712 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1713 return true; 1714 1715 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1716 // If so, then the GEP cannot produce a null pointer, as doing so would 1717 // inherently violate the inbounds contract within address space zero. 1718 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1719 GTI != GTE; ++GTI) { 1720 // Struct types are easy -- they must always be indexed by a constant. 1721 if (StructType *STy = GTI.getStructTypeOrNull()) { 1722 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1723 unsigned ElementIdx = OpC->getZExtValue(); 1724 const StructLayout *SL = Q.DL.getStructLayout(STy); 1725 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1726 if (ElementOffset > 0) 1727 return true; 1728 continue; 1729 } 1730 1731 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1732 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1733 continue; 1734 1735 // Fast path the constant operand case both for efficiency and so we don't 1736 // increment Depth when just zipping down an all-constant GEP. 1737 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1738 if (!OpC->isZero()) 1739 return true; 1740 continue; 1741 } 1742 1743 // We post-increment Depth here because while isKnownNonZero increments it 1744 // as well, when we pop back up that increment won't persist. We don't want 1745 // to recurse 10k times just because we have 10k GEP operands. We don't 1746 // bail completely out because we want to handle constant GEPs regardless 1747 // of depth. 1748 if (Depth++ >= MaxDepth) 1749 continue; 1750 1751 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1752 return true; 1753 } 1754 1755 return false; 1756 } 1757 1758 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1759 /// ensure that the value it's attached to is never Value? 'RangeType' is 1760 /// is the type of the value described by the range. 1761 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1762 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1763 assert(NumRanges >= 1); 1764 for (unsigned i = 0; i < NumRanges; ++i) { 1765 ConstantInt *Lower = 1766 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1767 ConstantInt *Upper = 1768 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1769 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1770 if (Range.contains(Value)) 1771 return false; 1772 } 1773 return true; 1774 } 1775 1776 /// Return true if the given value is known to be non-zero when defined. For 1777 /// vectors, return true if every element is known to be non-zero when 1778 /// defined. For pointers, if the context instruction and dominator tree are 1779 /// specified, perform context-sensitive analysis and return true if the 1780 /// pointer couldn't possibly be null at the specified instruction. 1781 /// Supports values with integer or pointer type and vectors of integers. 1782 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1783 if (auto *C = dyn_cast<Constant>(V)) { 1784 if (C->isNullValue()) 1785 return false; 1786 if (isa<ConstantInt>(C)) 1787 // Must be non-zero due to null test above. 1788 return true; 1789 1790 // For constant vectors, check that all elements are undefined or known 1791 // non-zero to determine that the whole vector is known non-zero. 1792 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1793 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1794 Constant *Elt = C->getAggregateElement(i); 1795 if (!Elt || Elt->isNullValue()) 1796 return false; 1797 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1798 return false; 1799 } 1800 return true; 1801 } 1802 1803 return false; 1804 } 1805 1806 if (auto *I = dyn_cast<Instruction>(V)) { 1807 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1808 // If the possible ranges don't contain zero, then the value is 1809 // definitely non-zero. 1810 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1811 const APInt ZeroValue(Ty->getBitWidth(), 0); 1812 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1813 return true; 1814 } 1815 } 1816 } 1817 1818 // The remaining tests are all recursive, so bail out if we hit the limit. 1819 if (Depth++ >= MaxDepth) 1820 return false; 1821 1822 // Check for pointer simplifications. 1823 if (V->getType()->isPointerTy()) { 1824 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1825 return true; 1826 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1827 if (isGEPKnownNonNull(GEP, Depth, Q)) 1828 return true; 1829 } 1830 1831 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1832 1833 // X | Y != 0 if X != 0 or Y != 0. 1834 Value *X = nullptr, *Y = nullptr; 1835 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1836 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1837 1838 // ext X != 0 if X != 0. 1839 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1840 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1841 1842 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1843 // if the lowest bit is shifted off the end. 1844 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1845 // shl nuw can't remove any non-zero bits. 1846 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1847 if (BO->hasNoUnsignedWrap()) 1848 return isKnownNonZero(X, Depth, Q); 1849 1850 KnownBits Known(BitWidth); 1851 computeKnownBits(X, Known, Depth, Q); 1852 if (Known.One[0]) 1853 return true; 1854 } 1855 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1856 // defined if the sign bit is shifted off the end. 1857 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1858 // shr exact can only shift out zero bits. 1859 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1860 if (BO->isExact()) 1861 return isKnownNonZero(X, Depth, Q); 1862 1863 KnownBits Known = computeKnownBits(X, Depth, Q); 1864 if (Known.isNegative()) 1865 return true; 1866 1867 // If the shifter operand is a constant, and all of the bits shifted 1868 // out are known to be zero, and X is known non-zero then at least one 1869 // non-zero bit must remain. 1870 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1871 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1872 // Is there a known one in the portion not shifted out? 1873 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 1874 return true; 1875 // Are all the bits to be shifted out known zero? 1876 if (Known.countMinTrailingZeros() >= ShiftVal) 1877 return isKnownNonZero(X, Depth, Q); 1878 } 1879 } 1880 // div exact can only produce a zero if the dividend is zero. 1881 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1882 return isKnownNonZero(X, Depth, Q); 1883 } 1884 // X + Y. 1885 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1886 KnownBits XKnown = computeKnownBits(X, Depth, Q); 1887 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 1888 1889 // If X and Y are both non-negative (as signed values) then their sum is not 1890 // zero unless both X and Y are zero. 1891 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 1892 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1893 return true; 1894 1895 // If X and Y are both negative (as signed values) then their sum is not 1896 // zero unless both X and Y equal INT_MIN. 1897 if (XKnown.isNegative() && YKnown.isNegative()) { 1898 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1899 // The sign bit of X is set. If some other bit is set then X is not equal 1900 // to INT_MIN. 1901 if (XKnown.One.intersects(Mask)) 1902 return true; 1903 // The sign bit of Y is set. If some other bit is set then Y is not equal 1904 // to INT_MIN. 1905 if (YKnown.One.intersects(Mask)) 1906 return true; 1907 } 1908 1909 // The sum of a non-negative number and a power of two is not zero. 1910 if (XKnown.isNonNegative() && 1911 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1912 return true; 1913 if (YKnown.isNonNegative() && 1914 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1915 return true; 1916 } 1917 // X * Y. 1918 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1919 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1920 // If X and Y are non-zero then so is X * Y as long as the multiplication 1921 // does not overflow. 1922 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1923 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1924 return true; 1925 } 1926 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1927 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1928 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1929 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1930 return true; 1931 } 1932 // PHI 1933 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1934 // Try and detect a recurrence that monotonically increases from a 1935 // starting value, as these are common as induction variables. 1936 if (PN->getNumIncomingValues() == 2) { 1937 Value *Start = PN->getIncomingValue(0); 1938 Value *Induction = PN->getIncomingValue(1); 1939 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1940 std::swap(Start, Induction); 1941 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1942 if (!C->isZero() && !C->isNegative()) { 1943 ConstantInt *X; 1944 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1945 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1946 !X->isNegative()) 1947 return true; 1948 } 1949 } 1950 } 1951 // Check if all incoming values are non-zero constant. 1952 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1953 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 1954 }); 1955 if (AllNonZeroConstants) 1956 return true; 1957 } 1958 1959 KnownBits Known(BitWidth); 1960 computeKnownBits(V, Known, Depth, Q); 1961 return Known.One != 0; 1962 } 1963 1964 /// Return true if V2 == V1 + X, where X is known non-zero. 1965 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1966 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1967 if (!BO || BO->getOpcode() != Instruction::Add) 1968 return false; 1969 Value *Op = nullptr; 1970 if (V2 == BO->getOperand(0)) 1971 Op = BO->getOperand(1); 1972 else if (V2 == BO->getOperand(1)) 1973 Op = BO->getOperand(0); 1974 else 1975 return false; 1976 return isKnownNonZero(Op, 0, Q); 1977 } 1978 1979 /// Return true if it is known that V1 != V2. 1980 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1981 if (V1 == V2) 1982 return false; 1983 if (V1->getType() != V2->getType()) 1984 // We can't look through casts yet. 1985 return false; 1986 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1987 return true; 1988 1989 if (V1->getType()->isIntOrIntVectorTy()) { 1990 // Are any known bits in V1 contradictory to known bits in V2? If V1 1991 // has a known zero where V2 has a known one, they must not be equal. 1992 KnownBits Known1 = computeKnownBits(V1, 0, Q); 1993 KnownBits Known2 = computeKnownBits(V2, 0, Q); 1994 1995 if (Known1.Zero.intersects(Known2.One) || 1996 Known2.Zero.intersects(Known1.One)) 1997 return true; 1998 } 1999 return false; 2000 } 2001 2002 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2003 /// simplify operations downstream. Mask is known to be zero for bits that V 2004 /// cannot have. 2005 /// 2006 /// This function is defined on values with integer type, values with pointer 2007 /// type, and vectors of integers. In the case 2008 /// where V is a vector, the mask, known zero, and known one values are the 2009 /// same width as the vector element, and the bit is set only if it is true 2010 /// for all of the elements in the vector. 2011 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2012 const Query &Q) { 2013 KnownBits Known(Mask.getBitWidth()); 2014 computeKnownBits(V, Known, Depth, Q); 2015 return Mask.isSubsetOf(Known.Zero); 2016 } 2017 2018 /// For vector constants, loop over the elements and find the constant with the 2019 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2020 /// or if any element was not analyzed; otherwise, return the count for the 2021 /// element with the minimum number of sign bits. 2022 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2023 unsigned TyBits) { 2024 const auto *CV = dyn_cast<Constant>(V); 2025 if (!CV || !CV->getType()->isVectorTy()) 2026 return 0; 2027 2028 unsigned MinSignBits = TyBits; 2029 unsigned NumElts = CV->getType()->getVectorNumElements(); 2030 for (unsigned i = 0; i != NumElts; ++i) { 2031 // If we find a non-ConstantInt, bail out. 2032 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2033 if (!Elt) 2034 return 0; 2035 2036 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2037 APInt EltVal = Elt->getValue(); 2038 if (EltVal.isNegative()) 2039 EltVal = ~EltVal; 2040 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2041 } 2042 2043 return MinSignBits; 2044 } 2045 2046 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2047 const Query &Q); 2048 2049 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2050 const Query &Q) { 2051 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2052 assert(Result > 0 && "At least one sign bit needs to be present!"); 2053 return Result; 2054 } 2055 2056 /// Return the number of times the sign bit of the register is replicated into 2057 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2058 /// (itself), but other cases can give us information. For example, immediately 2059 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2060 /// other, so we return 3. For vectors, return the number of sign bits for the 2061 /// vector element with the mininum number of known sign bits. 2062 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2063 const Query &Q) { 2064 2065 // We return the minimum number of sign bits that are guaranteed to be present 2066 // in V, so for undef we have to conservatively return 1. We don't have the 2067 // same behavior for poison though -- that's a FIXME today. 2068 2069 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2070 unsigned Tmp, Tmp2; 2071 unsigned FirstAnswer = 1; 2072 2073 // Note that ConstantInt is handled by the general computeKnownBits case 2074 // below. 2075 2076 if (Depth == MaxDepth) 2077 return 1; // Limit search depth. 2078 2079 const Operator *U = dyn_cast<Operator>(V); 2080 switch (Operator::getOpcode(V)) { 2081 default: break; 2082 case Instruction::SExt: 2083 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2084 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2085 2086 case Instruction::SDiv: { 2087 const APInt *Denominator; 2088 // sdiv X, C -> adds log(C) sign bits. 2089 if (match(U->getOperand(1), m_APInt(Denominator))) { 2090 2091 // Ignore non-positive denominator. 2092 if (!Denominator->isStrictlyPositive()) 2093 break; 2094 2095 // Calculate the incoming numerator bits. 2096 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2097 2098 // Add floor(log(C)) bits to the numerator bits. 2099 return std::min(TyBits, NumBits + Denominator->logBase2()); 2100 } 2101 break; 2102 } 2103 2104 case Instruction::SRem: { 2105 const APInt *Denominator; 2106 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2107 // positive constant. This let us put a lower bound on the number of sign 2108 // bits. 2109 if (match(U->getOperand(1), m_APInt(Denominator))) { 2110 2111 // Ignore non-positive denominator. 2112 if (!Denominator->isStrictlyPositive()) 2113 break; 2114 2115 // Calculate the incoming numerator bits. SRem by a positive constant 2116 // can't lower the number of sign bits. 2117 unsigned NumrBits = 2118 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2119 2120 // Calculate the leading sign bit constraints by examining the 2121 // denominator. Given that the denominator is positive, there are two 2122 // cases: 2123 // 2124 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2125 // (1 << ceilLogBase2(C)). 2126 // 2127 // 2. the numerator is negative. Then the result range is (-C,0] and 2128 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2129 // 2130 // Thus a lower bound on the number of sign bits is `TyBits - 2131 // ceilLogBase2(C)`. 2132 2133 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2134 return std::max(NumrBits, ResBits); 2135 } 2136 break; 2137 } 2138 2139 case Instruction::AShr: { 2140 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2141 // ashr X, C -> adds C sign bits. Vectors too. 2142 const APInt *ShAmt; 2143 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2144 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2145 if (ShAmtLimited >= TyBits) 2146 break; // Bad shift. 2147 Tmp += ShAmtLimited; 2148 if (Tmp > TyBits) Tmp = TyBits; 2149 } 2150 return Tmp; 2151 } 2152 case Instruction::Shl: { 2153 const APInt *ShAmt; 2154 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2155 // shl destroys sign bits. 2156 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2157 Tmp2 = ShAmt->getZExtValue(); 2158 if (Tmp2 >= TyBits || // Bad shift. 2159 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2160 return Tmp - Tmp2; 2161 } 2162 break; 2163 } 2164 case Instruction::And: 2165 case Instruction::Or: 2166 case Instruction::Xor: // NOT is handled here. 2167 // Logical binary ops preserve the number of sign bits at the worst. 2168 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2169 if (Tmp != 1) { 2170 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2171 FirstAnswer = std::min(Tmp, Tmp2); 2172 // We computed what we know about the sign bits as our first 2173 // answer. Now proceed to the generic code that uses 2174 // computeKnownBits, and pick whichever answer is better. 2175 } 2176 break; 2177 2178 case Instruction::Select: 2179 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2180 if (Tmp == 1) return 1; // Early out. 2181 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2182 return std::min(Tmp, Tmp2); 2183 2184 case Instruction::Add: 2185 // Add can have at most one carry bit. Thus we know that the output 2186 // is, at worst, one more bit than the inputs. 2187 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2188 if (Tmp == 1) return 1; // Early out. 2189 2190 // Special case decrementing a value (ADD X, -1): 2191 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2192 if (CRHS->isAllOnesValue()) { 2193 KnownBits Known(TyBits); 2194 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2195 2196 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2197 // sign bits set. 2198 if ((Known.Zero | 1).isAllOnesValue()) 2199 return TyBits; 2200 2201 // If we are subtracting one from a positive number, there is no carry 2202 // out of the result. 2203 if (Known.isNonNegative()) 2204 return Tmp; 2205 } 2206 2207 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2208 if (Tmp2 == 1) return 1; 2209 return std::min(Tmp, Tmp2)-1; 2210 2211 case Instruction::Sub: 2212 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2213 if (Tmp2 == 1) return 1; 2214 2215 // Handle NEG. 2216 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2217 if (CLHS->isNullValue()) { 2218 KnownBits Known(TyBits); 2219 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2220 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2221 // sign bits set. 2222 if ((Known.Zero | 1).isAllOnesValue()) 2223 return TyBits; 2224 2225 // If the input is known to be positive (the sign bit is known clear), 2226 // the output of the NEG has the same number of sign bits as the input. 2227 if (Known.isNonNegative()) 2228 return Tmp2; 2229 2230 // Otherwise, we treat this like a SUB. 2231 } 2232 2233 // Sub can have at most one carry bit. Thus we know that the output 2234 // is, at worst, one more bit than the inputs. 2235 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2236 if (Tmp == 1) return 1; // Early out. 2237 return std::min(Tmp, Tmp2)-1; 2238 2239 case Instruction::PHI: { 2240 const PHINode *PN = cast<PHINode>(U); 2241 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2242 // Don't analyze large in-degree PHIs. 2243 if (NumIncomingValues > 4) break; 2244 // Unreachable blocks may have zero-operand PHI nodes. 2245 if (NumIncomingValues == 0) break; 2246 2247 // Take the minimum of all incoming values. This can't infinitely loop 2248 // because of our depth threshold. 2249 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2250 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2251 if (Tmp == 1) return Tmp; 2252 Tmp = std::min( 2253 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2254 } 2255 return Tmp; 2256 } 2257 2258 case Instruction::Trunc: 2259 // FIXME: it's tricky to do anything useful for this, but it is an important 2260 // case for targets like X86. 2261 break; 2262 2263 case Instruction::ExtractElement: 2264 // Look through extract element. At the moment we keep this simple and skip 2265 // tracking the specific element. But at least we might find information 2266 // valid for all elements of the vector (for example if vector is sign 2267 // extended, shifted, etc). 2268 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2269 } 2270 2271 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2272 // use this information. 2273 2274 // If we can examine all elements of a vector constant successfully, we're 2275 // done (we can't do any better than that). If not, keep trying. 2276 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2277 return VecSignBits; 2278 2279 KnownBits Known(TyBits); 2280 computeKnownBits(V, Known, Depth, Q); 2281 2282 // If we know that the sign bit is either zero or one, determine the number of 2283 // identical bits in the top of the input value. 2284 return std::max(FirstAnswer, Known.countMinSignBits()); 2285 } 2286 2287 /// This function computes the integer multiple of Base that equals V. 2288 /// If successful, it returns true and returns the multiple in 2289 /// Multiple. If unsuccessful, it returns false. It looks 2290 /// through SExt instructions only if LookThroughSExt is true. 2291 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2292 bool LookThroughSExt, unsigned Depth) { 2293 const unsigned MaxDepth = 6; 2294 2295 assert(V && "No Value?"); 2296 assert(Depth <= MaxDepth && "Limit Search Depth"); 2297 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2298 2299 Type *T = V->getType(); 2300 2301 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2302 2303 if (Base == 0) 2304 return false; 2305 2306 if (Base == 1) { 2307 Multiple = V; 2308 return true; 2309 } 2310 2311 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2312 Constant *BaseVal = ConstantInt::get(T, Base); 2313 if (CO && CO == BaseVal) { 2314 // Multiple is 1. 2315 Multiple = ConstantInt::get(T, 1); 2316 return true; 2317 } 2318 2319 if (CI && CI->getZExtValue() % Base == 0) { 2320 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2321 return true; 2322 } 2323 2324 if (Depth == MaxDepth) return false; // Limit search depth. 2325 2326 Operator *I = dyn_cast<Operator>(V); 2327 if (!I) return false; 2328 2329 switch (I->getOpcode()) { 2330 default: break; 2331 case Instruction::SExt: 2332 if (!LookThroughSExt) return false; 2333 // otherwise fall through to ZExt 2334 LLVM_FALLTHROUGH; 2335 case Instruction::ZExt: 2336 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2337 LookThroughSExt, Depth+1); 2338 case Instruction::Shl: 2339 case Instruction::Mul: { 2340 Value *Op0 = I->getOperand(0); 2341 Value *Op1 = I->getOperand(1); 2342 2343 if (I->getOpcode() == Instruction::Shl) { 2344 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2345 if (!Op1CI) return false; 2346 // Turn Op0 << Op1 into Op0 * 2^Op1 2347 APInt Op1Int = Op1CI->getValue(); 2348 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2349 APInt API(Op1Int.getBitWidth(), 0); 2350 API.setBit(BitToSet); 2351 Op1 = ConstantInt::get(V->getContext(), API); 2352 } 2353 2354 Value *Mul0 = nullptr; 2355 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2356 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2357 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2358 if (Op1C->getType()->getPrimitiveSizeInBits() < 2359 MulC->getType()->getPrimitiveSizeInBits()) 2360 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2361 if (Op1C->getType()->getPrimitiveSizeInBits() > 2362 MulC->getType()->getPrimitiveSizeInBits()) 2363 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2364 2365 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2366 Multiple = ConstantExpr::getMul(MulC, Op1C); 2367 return true; 2368 } 2369 2370 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2371 if (Mul0CI->getValue() == 1) { 2372 // V == Base * Op1, so return Op1 2373 Multiple = Op1; 2374 return true; 2375 } 2376 } 2377 2378 Value *Mul1 = nullptr; 2379 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2380 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2381 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2382 if (Op0C->getType()->getPrimitiveSizeInBits() < 2383 MulC->getType()->getPrimitiveSizeInBits()) 2384 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2385 if (Op0C->getType()->getPrimitiveSizeInBits() > 2386 MulC->getType()->getPrimitiveSizeInBits()) 2387 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2388 2389 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2390 Multiple = ConstantExpr::getMul(MulC, Op0C); 2391 return true; 2392 } 2393 2394 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2395 if (Mul1CI->getValue() == 1) { 2396 // V == Base * Op0, so return Op0 2397 Multiple = Op0; 2398 return true; 2399 } 2400 } 2401 } 2402 } 2403 2404 // We could not determine if V is a multiple of Base. 2405 return false; 2406 } 2407 2408 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2409 const TargetLibraryInfo *TLI) { 2410 const Function *F = ICS.getCalledFunction(); 2411 if (!F) 2412 return Intrinsic::not_intrinsic; 2413 2414 if (F->isIntrinsic()) 2415 return F->getIntrinsicID(); 2416 2417 if (!TLI) 2418 return Intrinsic::not_intrinsic; 2419 2420 LibFunc Func; 2421 // We're going to make assumptions on the semantics of the functions, check 2422 // that the target knows that it's available in this environment and it does 2423 // not have local linkage. 2424 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2425 return Intrinsic::not_intrinsic; 2426 2427 if (!ICS.onlyReadsMemory()) 2428 return Intrinsic::not_intrinsic; 2429 2430 // Otherwise check if we have a call to a function that can be turned into a 2431 // vector intrinsic. 2432 switch (Func) { 2433 default: 2434 break; 2435 case LibFunc_sin: 2436 case LibFunc_sinf: 2437 case LibFunc_sinl: 2438 return Intrinsic::sin; 2439 case LibFunc_cos: 2440 case LibFunc_cosf: 2441 case LibFunc_cosl: 2442 return Intrinsic::cos; 2443 case LibFunc_exp: 2444 case LibFunc_expf: 2445 case LibFunc_expl: 2446 return Intrinsic::exp; 2447 case LibFunc_exp2: 2448 case LibFunc_exp2f: 2449 case LibFunc_exp2l: 2450 return Intrinsic::exp2; 2451 case LibFunc_log: 2452 case LibFunc_logf: 2453 case LibFunc_logl: 2454 return Intrinsic::log; 2455 case LibFunc_log10: 2456 case LibFunc_log10f: 2457 case LibFunc_log10l: 2458 return Intrinsic::log10; 2459 case LibFunc_log2: 2460 case LibFunc_log2f: 2461 case LibFunc_log2l: 2462 return Intrinsic::log2; 2463 case LibFunc_fabs: 2464 case LibFunc_fabsf: 2465 case LibFunc_fabsl: 2466 return Intrinsic::fabs; 2467 case LibFunc_fmin: 2468 case LibFunc_fminf: 2469 case LibFunc_fminl: 2470 return Intrinsic::minnum; 2471 case LibFunc_fmax: 2472 case LibFunc_fmaxf: 2473 case LibFunc_fmaxl: 2474 return Intrinsic::maxnum; 2475 case LibFunc_copysign: 2476 case LibFunc_copysignf: 2477 case LibFunc_copysignl: 2478 return Intrinsic::copysign; 2479 case LibFunc_floor: 2480 case LibFunc_floorf: 2481 case LibFunc_floorl: 2482 return Intrinsic::floor; 2483 case LibFunc_ceil: 2484 case LibFunc_ceilf: 2485 case LibFunc_ceill: 2486 return Intrinsic::ceil; 2487 case LibFunc_trunc: 2488 case LibFunc_truncf: 2489 case LibFunc_truncl: 2490 return Intrinsic::trunc; 2491 case LibFunc_rint: 2492 case LibFunc_rintf: 2493 case LibFunc_rintl: 2494 return Intrinsic::rint; 2495 case LibFunc_nearbyint: 2496 case LibFunc_nearbyintf: 2497 case LibFunc_nearbyintl: 2498 return Intrinsic::nearbyint; 2499 case LibFunc_round: 2500 case LibFunc_roundf: 2501 case LibFunc_roundl: 2502 return Intrinsic::round; 2503 case LibFunc_pow: 2504 case LibFunc_powf: 2505 case LibFunc_powl: 2506 return Intrinsic::pow; 2507 case LibFunc_sqrt: 2508 case LibFunc_sqrtf: 2509 case LibFunc_sqrtl: 2510 if (ICS->hasNoNaNs()) 2511 return Intrinsic::sqrt; 2512 return Intrinsic::not_intrinsic; 2513 } 2514 2515 return Intrinsic::not_intrinsic; 2516 } 2517 2518 /// Return true if we can prove that the specified FP value is never equal to 2519 /// -0.0. 2520 /// 2521 /// NOTE: this function will need to be revisited when we support non-default 2522 /// rounding modes! 2523 /// 2524 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2525 unsigned Depth) { 2526 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2527 return !CFP->getValueAPF().isNegZero(); 2528 2529 if (Depth == MaxDepth) 2530 return false; // Limit search depth. 2531 2532 const Operator *I = dyn_cast<Operator>(V); 2533 if (!I) return false; 2534 2535 // Check if the nsz fast-math flag is set 2536 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2537 if (FPO->hasNoSignedZeros()) 2538 return true; 2539 2540 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2541 if (I->getOpcode() == Instruction::FAdd) 2542 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2543 if (CFP->isNullValue()) 2544 return true; 2545 2546 // sitofp and uitofp turn into +0.0 for zero. 2547 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2548 return true; 2549 2550 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2551 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2552 switch (IID) { 2553 default: 2554 break; 2555 // sqrt(-0.0) = -0.0, no other negative results are possible. 2556 case Intrinsic::sqrt: 2557 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2558 // fabs(x) != -0.0 2559 case Intrinsic::fabs: 2560 return true; 2561 } 2562 } 2563 2564 return false; 2565 } 2566 2567 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2568 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2569 /// bit despite comparing equal. 2570 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2571 const TargetLibraryInfo *TLI, 2572 bool SignBitOnly, 2573 unsigned Depth) { 2574 // TODO: This function does not do the right thing when SignBitOnly is true 2575 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2576 // which flips the sign bits of NaNs. See 2577 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2578 2579 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2580 return !CFP->getValueAPF().isNegative() || 2581 (!SignBitOnly && CFP->getValueAPF().isZero()); 2582 } 2583 2584 if (Depth == MaxDepth) 2585 return false; // Limit search depth. 2586 2587 const Operator *I = dyn_cast<Operator>(V); 2588 if (!I) 2589 return false; 2590 2591 switch (I->getOpcode()) { 2592 default: 2593 break; 2594 // Unsigned integers are always nonnegative. 2595 case Instruction::UIToFP: 2596 return true; 2597 case Instruction::FMul: 2598 // x*x is always non-negative or a NaN. 2599 if (I->getOperand(0) == I->getOperand(1) && 2600 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2601 return true; 2602 2603 LLVM_FALLTHROUGH; 2604 case Instruction::FAdd: 2605 case Instruction::FDiv: 2606 case Instruction::FRem: 2607 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2608 Depth + 1) && 2609 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2610 Depth + 1); 2611 case Instruction::Select: 2612 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2613 Depth + 1) && 2614 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2615 Depth + 1); 2616 case Instruction::FPExt: 2617 case Instruction::FPTrunc: 2618 // Widening/narrowing never change sign. 2619 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2620 Depth + 1); 2621 case Instruction::Call: 2622 const auto *CI = cast<CallInst>(I); 2623 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2624 switch (IID) { 2625 default: 2626 break; 2627 case Intrinsic::maxnum: 2628 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2629 Depth + 1) || 2630 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2631 Depth + 1); 2632 case Intrinsic::minnum: 2633 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2634 Depth + 1) && 2635 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2636 Depth + 1); 2637 case Intrinsic::exp: 2638 case Intrinsic::exp2: 2639 case Intrinsic::fabs: 2640 return true; 2641 2642 case Intrinsic::sqrt: 2643 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2644 if (!SignBitOnly) 2645 return true; 2646 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2647 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2648 2649 case Intrinsic::powi: 2650 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2651 // powi(x,n) is non-negative if n is even. 2652 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2653 return true; 2654 } 2655 // TODO: This is not correct. Given that exp is an integer, here are the 2656 // ways that pow can return a negative value: 2657 // 2658 // pow(x, exp) --> negative if exp is odd and x is negative. 2659 // pow(-0, exp) --> -inf if exp is negative odd. 2660 // pow(-0, exp) --> -0 if exp is positive odd. 2661 // pow(-inf, exp) --> -0 if exp is negative odd. 2662 // pow(-inf, exp) --> -inf if exp is positive odd. 2663 // 2664 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2665 // but we must return false if x == -0. Unfortunately we do not currently 2666 // have a way of expressing this constraint. See details in 2667 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2668 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2669 Depth + 1); 2670 2671 case Intrinsic::fma: 2672 case Intrinsic::fmuladd: 2673 // x*x+y is non-negative if y is non-negative. 2674 return I->getOperand(0) == I->getOperand(1) && 2675 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2676 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2677 Depth + 1); 2678 } 2679 break; 2680 } 2681 return false; 2682 } 2683 2684 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2685 const TargetLibraryInfo *TLI) { 2686 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2687 } 2688 2689 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2690 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2691 } 2692 2693 /// If the specified value can be set by repeating the same byte in memory, 2694 /// return the i8 value that it is represented with. This is 2695 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2696 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2697 /// byte store (e.g. i16 0x1234), return null. 2698 Value *llvm::isBytewiseValue(Value *V) { 2699 // All byte-wide stores are splatable, even of arbitrary variables. 2700 if (V->getType()->isIntegerTy(8)) return V; 2701 2702 // Handle 'null' ConstantArrayZero etc. 2703 if (Constant *C = dyn_cast<Constant>(V)) 2704 if (C->isNullValue()) 2705 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2706 2707 // Constant float and double values can be handled as integer values if the 2708 // corresponding integer value is "byteable". An important case is 0.0. 2709 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2710 if (CFP->getType()->isFloatTy()) 2711 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2712 if (CFP->getType()->isDoubleTy()) 2713 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2714 // Don't handle long double formats, which have strange constraints. 2715 } 2716 2717 // We can handle constant integers that are multiple of 8 bits. 2718 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2719 if (CI->getBitWidth() % 8 == 0) { 2720 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2721 2722 if (!CI->getValue().isSplat(8)) 2723 return nullptr; 2724 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2725 } 2726 } 2727 2728 // A ConstantDataArray/Vector is splatable if all its members are equal and 2729 // also splatable. 2730 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2731 Value *Elt = CA->getElementAsConstant(0); 2732 Value *Val = isBytewiseValue(Elt); 2733 if (!Val) 2734 return nullptr; 2735 2736 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2737 if (CA->getElementAsConstant(I) != Elt) 2738 return nullptr; 2739 2740 return Val; 2741 } 2742 2743 // Conceptually, we could handle things like: 2744 // %a = zext i8 %X to i16 2745 // %b = shl i16 %a, 8 2746 // %c = or i16 %a, %b 2747 // but until there is an example that actually needs this, it doesn't seem 2748 // worth worrying about. 2749 return nullptr; 2750 } 2751 2752 2753 // This is the recursive version of BuildSubAggregate. It takes a few different 2754 // arguments. Idxs is the index within the nested struct From that we are 2755 // looking at now (which is of type IndexedType). IdxSkip is the number of 2756 // indices from Idxs that should be left out when inserting into the resulting 2757 // struct. To is the result struct built so far, new insertvalue instructions 2758 // build on that. 2759 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2760 SmallVectorImpl<unsigned> &Idxs, 2761 unsigned IdxSkip, 2762 Instruction *InsertBefore) { 2763 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2764 if (STy) { 2765 // Save the original To argument so we can modify it 2766 Value *OrigTo = To; 2767 // General case, the type indexed by Idxs is a struct 2768 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2769 // Process each struct element recursively 2770 Idxs.push_back(i); 2771 Value *PrevTo = To; 2772 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2773 InsertBefore); 2774 Idxs.pop_back(); 2775 if (!To) { 2776 // Couldn't find any inserted value for this index? Cleanup 2777 while (PrevTo != OrigTo) { 2778 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2779 PrevTo = Del->getAggregateOperand(); 2780 Del->eraseFromParent(); 2781 } 2782 // Stop processing elements 2783 break; 2784 } 2785 } 2786 // If we successfully found a value for each of our subaggregates 2787 if (To) 2788 return To; 2789 } 2790 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2791 // the struct's elements had a value that was inserted directly. In the latter 2792 // case, perhaps we can't determine each of the subelements individually, but 2793 // we might be able to find the complete struct somewhere. 2794 2795 // Find the value that is at that particular spot 2796 Value *V = FindInsertedValue(From, Idxs); 2797 2798 if (!V) 2799 return nullptr; 2800 2801 // Insert the value in the new (sub) aggregrate 2802 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2803 "tmp", InsertBefore); 2804 } 2805 2806 // This helper takes a nested struct and extracts a part of it (which is again a 2807 // struct) into a new value. For example, given the struct: 2808 // { a, { b, { c, d }, e } } 2809 // and the indices "1, 1" this returns 2810 // { c, d }. 2811 // 2812 // It does this by inserting an insertvalue for each element in the resulting 2813 // struct, as opposed to just inserting a single struct. This will only work if 2814 // each of the elements of the substruct are known (ie, inserted into From by an 2815 // insertvalue instruction somewhere). 2816 // 2817 // All inserted insertvalue instructions are inserted before InsertBefore 2818 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2819 Instruction *InsertBefore) { 2820 assert(InsertBefore && "Must have someplace to insert!"); 2821 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2822 idx_range); 2823 Value *To = UndefValue::get(IndexedType); 2824 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2825 unsigned IdxSkip = Idxs.size(); 2826 2827 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2828 } 2829 2830 /// Given an aggregrate and an sequence of indices, see if 2831 /// the scalar value indexed is already around as a register, for example if it 2832 /// were inserted directly into the aggregrate. 2833 /// 2834 /// If InsertBefore is not null, this function will duplicate (modified) 2835 /// insertvalues when a part of a nested struct is extracted. 2836 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2837 Instruction *InsertBefore) { 2838 // Nothing to index? Just return V then (this is useful at the end of our 2839 // recursion). 2840 if (idx_range.empty()) 2841 return V; 2842 // We have indices, so V should have an indexable type. 2843 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2844 "Not looking at a struct or array?"); 2845 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2846 "Invalid indices for type?"); 2847 2848 if (Constant *C = dyn_cast<Constant>(V)) { 2849 C = C->getAggregateElement(idx_range[0]); 2850 if (!C) return nullptr; 2851 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2852 } 2853 2854 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2855 // Loop the indices for the insertvalue instruction in parallel with the 2856 // requested indices 2857 const unsigned *req_idx = idx_range.begin(); 2858 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2859 i != e; ++i, ++req_idx) { 2860 if (req_idx == idx_range.end()) { 2861 // We can't handle this without inserting insertvalues 2862 if (!InsertBefore) 2863 return nullptr; 2864 2865 // The requested index identifies a part of a nested aggregate. Handle 2866 // this specially. For example, 2867 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2868 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2869 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2870 // This can be changed into 2871 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2872 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2873 // which allows the unused 0,0 element from the nested struct to be 2874 // removed. 2875 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2876 InsertBefore); 2877 } 2878 2879 // This insert value inserts something else than what we are looking for. 2880 // See if the (aggregate) value inserted into has the value we are 2881 // looking for, then. 2882 if (*req_idx != *i) 2883 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2884 InsertBefore); 2885 } 2886 // If we end up here, the indices of the insertvalue match with those 2887 // requested (though possibly only partially). Now we recursively look at 2888 // the inserted value, passing any remaining indices. 2889 return FindInsertedValue(I->getInsertedValueOperand(), 2890 makeArrayRef(req_idx, idx_range.end()), 2891 InsertBefore); 2892 } 2893 2894 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2895 // If we're extracting a value from an aggregate that was extracted from 2896 // something else, we can extract from that something else directly instead. 2897 // However, we will need to chain I's indices with the requested indices. 2898 2899 // Calculate the number of indices required 2900 unsigned size = I->getNumIndices() + idx_range.size(); 2901 // Allocate some space to put the new indices in 2902 SmallVector<unsigned, 5> Idxs; 2903 Idxs.reserve(size); 2904 // Add indices from the extract value instruction 2905 Idxs.append(I->idx_begin(), I->idx_end()); 2906 2907 // Add requested indices 2908 Idxs.append(idx_range.begin(), idx_range.end()); 2909 2910 assert(Idxs.size() == size 2911 && "Number of indices added not correct?"); 2912 2913 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2914 } 2915 // Otherwise, we don't know (such as, extracting from a function return value 2916 // or load instruction) 2917 return nullptr; 2918 } 2919 2920 /// Analyze the specified pointer to see if it can be expressed as a base 2921 /// pointer plus a constant offset. Return the base and offset to the caller. 2922 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2923 const DataLayout &DL) { 2924 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2925 APInt ByteOffset(BitWidth, 0); 2926 2927 // We walk up the defs but use a visited set to handle unreachable code. In 2928 // that case, we stop after accumulating the cycle once (not that it 2929 // matters). 2930 SmallPtrSet<Value *, 16> Visited; 2931 while (Visited.insert(Ptr).second) { 2932 if (Ptr->getType()->isVectorTy()) 2933 break; 2934 2935 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2936 // If one of the values we have visited is an addrspacecast, then 2937 // the pointer type of this GEP may be different from the type 2938 // of the Ptr parameter which was passed to this function. This 2939 // means when we construct GEPOffset, we need to use the size 2940 // of GEP's pointer type rather than the size of the original 2941 // pointer type. 2942 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2943 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2944 break; 2945 2946 ByteOffset += GEPOffset.getSExtValue(); 2947 2948 Ptr = GEP->getPointerOperand(); 2949 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2950 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2951 Ptr = cast<Operator>(Ptr)->getOperand(0); 2952 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2953 if (GA->isInterposable()) 2954 break; 2955 Ptr = GA->getAliasee(); 2956 } else { 2957 break; 2958 } 2959 } 2960 Offset = ByteOffset.getSExtValue(); 2961 return Ptr; 2962 } 2963 2964 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 2965 unsigned CharSize) { 2966 // Make sure the GEP has exactly three arguments. 2967 if (GEP->getNumOperands() != 3) 2968 return false; 2969 2970 // Make sure the index-ee is a pointer to array of \p CharSize integers. 2971 // CharSize. 2972 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2973 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 2974 return false; 2975 2976 // Check to make sure that the first operand of the GEP is an integer and 2977 // has value 0 so that we are sure we're indexing into the initializer. 2978 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2979 if (!FirstIdx || !FirstIdx->isZero()) 2980 return false; 2981 2982 return true; 2983 } 2984 2985 bool llvm::getConstantDataArrayInfo(const Value *V, 2986 ConstantDataArraySlice &Slice, 2987 unsigned ElementSize, uint64_t Offset) { 2988 assert(V); 2989 2990 // Look through bitcast instructions and geps. 2991 V = V->stripPointerCasts(); 2992 2993 // If the value is a GEP instruction or constant expression, treat it as an 2994 // offset. 2995 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2996 // The GEP operator should be based on a pointer to string constant, and is 2997 // indexing into the string constant. 2998 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 2999 return false; 3000 3001 // If the second index isn't a ConstantInt, then this is a variable index 3002 // into the array. If this occurs, we can't say anything meaningful about 3003 // the string. 3004 uint64_t StartIdx = 0; 3005 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3006 StartIdx = CI->getZExtValue(); 3007 else 3008 return false; 3009 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3010 StartIdx + Offset); 3011 } 3012 3013 // The GEP instruction, constant or instruction, must reference a global 3014 // variable that is a constant and is initialized. The referenced constant 3015 // initializer is the array that we'll use for optimization. 3016 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3017 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3018 return false; 3019 3020 const ConstantDataArray *Array; 3021 ArrayType *ArrayTy; 3022 if (GV->getInitializer()->isNullValue()) { 3023 Type *GVTy = GV->getValueType(); 3024 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3025 // A zeroinitializer for the array; there is no ConstantDataArray. 3026 Array = nullptr; 3027 } else { 3028 const DataLayout &DL = GV->getParent()->getDataLayout(); 3029 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3030 uint64_t Length = SizeInBytes / (ElementSize / 8); 3031 if (Length <= Offset) 3032 return false; 3033 3034 Slice.Array = nullptr; 3035 Slice.Offset = 0; 3036 Slice.Length = Length - Offset; 3037 return true; 3038 } 3039 } else { 3040 // This must be a ConstantDataArray. 3041 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3042 if (!Array) 3043 return false; 3044 ArrayTy = Array->getType(); 3045 } 3046 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3047 return false; 3048 3049 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3050 if (Offset > NumElts) 3051 return false; 3052 3053 Slice.Array = Array; 3054 Slice.Offset = Offset; 3055 Slice.Length = NumElts - Offset; 3056 return true; 3057 } 3058 3059 /// This function computes the length of a null-terminated C string pointed to 3060 /// by V. If successful, it returns true and returns the string in Str. 3061 /// If unsuccessful, it returns false. 3062 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3063 uint64_t Offset, bool TrimAtNul) { 3064 ConstantDataArraySlice Slice; 3065 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3066 return false; 3067 3068 if (Slice.Array == nullptr) { 3069 if (TrimAtNul) { 3070 Str = StringRef(); 3071 return true; 3072 } 3073 if (Slice.Length == 1) { 3074 Str = StringRef("", 1); 3075 return true; 3076 } 3077 // We cannot instantiate a StringRef as we do not have an appropriate string 3078 // of 0s at hand. 3079 return false; 3080 } 3081 3082 // Start out with the entire array in the StringRef. 3083 Str = Slice.Array->getAsString(); 3084 // Skip over 'offset' bytes. 3085 Str = Str.substr(Slice.Offset); 3086 3087 if (TrimAtNul) { 3088 // Trim off the \0 and anything after it. If the array is not nul 3089 // terminated, we just return the whole end of string. The client may know 3090 // some other way that the string is length-bound. 3091 Str = Str.substr(0, Str.find('\0')); 3092 } 3093 return true; 3094 } 3095 3096 // These next two are very similar to the above, but also look through PHI 3097 // nodes. 3098 // TODO: See if we can integrate these two together. 3099 3100 /// If we can compute the length of the string pointed to by 3101 /// the specified pointer, return 'len+1'. If we can't, return 0. 3102 static uint64_t GetStringLengthH(const Value *V, 3103 SmallPtrSetImpl<const PHINode*> &PHIs, 3104 unsigned CharSize) { 3105 // Look through noop bitcast instructions. 3106 V = V->stripPointerCasts(); 3107 3108 // If this is a PHI node, there are two cases: either we have already seen it 3109 // or we haven't. 3110 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3111 if (!PHIs.insert(PN).second) 3112 return ~0ULL; // already in the set. 3113 3114 // If it was new, see if all the input strings are the same length. 3115 uint64_t LenSoFar = ~0ULL; 3116 for (Value *IncValue : PN->incoming_values()) { 3117 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3118 if (Len == 0) return 0; // Unknown length -> unknown. 3119 3120 if (Len == ~0ULL) continue; 3121 3122 if (Len != LenSoFar && LenSoFar != ~0ULL) 3123 return 0; // Disagree -> unknown. 3124 LenSoFar = Len; 3125 } 3126 3127 // Success, all agree. 3128 return LenSoFar; 3129 } 3130 3131 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3132 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3133 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3134 if (Len1 == 0) return 0; 3135 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3136 if (Len2 == 0) return 0; 3137 if (Len1 == ~0ULL) return Len2; 3138 if (Len2 == ~0ULL) return Len1; 3139 if (Len1 != Len2) return 0; 3140 return Len1; 3141 } 3142 3143 // Otherwise, see if we can read the string. 3144 ConstantDataArraySlice Slice; 3145 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3146 return 0; 3147 3148 if (Slice.Array == nullptr) 3149 return 1; 3150 3151 // Search for nul characters 3152 unsigned NullIndex = 0; 3153 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3154 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3155 break; 3156 } 3157 3158 return NullIndex + 1; 3159 } 3160 3161 /// If we can compute the length of the string pointed to by 3162 /// the specified pointer, return 'len+1'. If we can't, return 0. 3163 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3164 if (!V->getType()->isPointerTy()) return 0; 3165 3166 SmallPtrSet<const PHINode*, 32> PHIs; 3167 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3168 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3169 // an empty string as a length. 3170 return Len == ~0ULL ? 1 : Len; 3171 } 3172 3173 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3174 /// previous iteration of the loop was referring to the same object as \p PN. 3175 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3176 const LoopInfo *LI) { 3177 // Find the loop-defined value. 3178 Loop *L = LI->getLoopFor(PN->getParent()); 3179 if (PN->getNumIncomingValues() != 2) 3180 return true; 3181 3182 // Find the value from previous iteration. 3183 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3184 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3185 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3186 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3187 return true; 3188 3189 // If a new pointer is loaded in the loop, the pointer references a different 3190 // object in every iteration. E.g.: 3191 // for (i) 3192 // int *p = a[i]; 3193 // ... 3194 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3195 if (!L->isLoopInvariant(Load->getPointerOperand())) 3196 return false; 3197 return true; 3198 } 3199 3200 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3201 unsigned MaxLookup) { 3202 if (!V->getType()->isPointerTy()) 3203 return V; 3204 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3205 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3206 V = GEP->getPointerOperand(); 3207 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3208 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3209 V = cast<Operator>(V)->getOperand(0); 3210 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3211 if (GA->isInterposable()) 3212 return V; 3213 V = GA->getAliasee(); 3214 } else if (isa<AllocaInst>(V)) { 3215 // An alloca can't be further simplified. 3216 return V; 3217 } else { 3218 if (auto CS = CallSite(V)) 3219 if (Value *RV = CS.getReturnedArgOperand()) { 3220 V = RV; 3221 continue; 3222 } 3223 3224 // See if InstructionSimplify knows any relevant tricks. 3225 if (Instruction *I = dyn_cast<Instruction>(V)) 3226 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3227 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3228 V = Simplified; 3229 continue; 3230 } 3231 3232 return V; 3233 } 3234 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3235 } 3236 return V; 3237 } 3238 3239 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3240 const DataLayout &DL, LoopInfo *LI, 3241 unsigned MaxLookup) { 3242 SmallPtrSet<Value *, 4> Visited; 3243 SmallVector<Value *, 4> Worklist; 3244 Worklist.push_back(V); 3245 do { 3246 Value *P = Worklist.pop_back_val(); 3247 P = GetUnderlyingObject(P, DL, MaxLookup); 3248 3249 if (!Visited.insert(P).second) 3250 continue; 3251 3252 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3253 Worklist.push_back(SI->getTrueValue()); 3254 Worklist.push_back(SI->getFalseValue()); 3255 continue; 3256 } 3257 3258 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3259 // If this PHI changes the underlying object in every iteration of the 3260 // loop, don't look through it. Consider: 3261 // int **A; 3262 // for (i) { 3263 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3264 // Curr = A[i]; 3265 // *Prev, *Curr; 3266 // 3267 // Prev is tracking Curr one iteration behind so they refer to different 3268 // underlying objects. 3269 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3270 isSameUnderlyingObjectInLoop(PN, LI)) 3271 for (Value *IncValue : PN->incoming_values()) 3272 Worklist.push_back(IncValue); 3273 continue; 3274 } 3275 3276 Objects.push_back(P); 3277 } while (!Worklist.empty()); 3278 } 3279 3280 /// Return true if the only users of this pointer are lifetime markers. 3281 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3282 for (const User *U : V->users()) { 3283 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3284 if (!II) return false; 3285 3286 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3287 II->getIntrinsicID() != Intrinsic::lifetime_end) 3288 return false; 3289 } 3290 return true; 3291 } 3292 3293 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3294 const Instruction *CtxI, 3295 const DominatorTree *DT) { 3296 const Operator *Inst = dyn_cast<Operator>(V); 3297 if (!Inst) 3298 return false; 3299 3300 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3301 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3302 if (C->canTrap()) 3303 return false; 3304 3305 switch (Inst->getOpcode()) { 3306 default: 3307 return true; 3308 case Instruction::UDiv: 3309 case Instruction::URem: { 3310 // x / y is undefined if y == 0. 3311 const APInt *V; 3312 if (match(Inst->getOperand(1), m_APInt(V))) 3313 return *V != 0; 3314 return false; 3315 } 3316 case Instruction::SDiv: 3317 case Instruction::SRem: { 3318 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3319 const APInt *Numerator, *Denominator; 3320 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3321 return false; 3322 // We cannot hoist this division if the denominator is 0. 3323 if (*Denominator == 0) 3324 return false; 3325 // It's safe to hoist if the denominator is not 0 or -1. 3326 if (*Denominator != -1) 3327 return true; 3328 // At this point we know that the denominator is -1. It is safe to hoist as 3329 // long we know that the numerator is not INT_MIN. 3330 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3331 return !Numerator->isMinSignedValue(); 3332 // The numerator *might* be MinSignedValue. 3333 return false; 3334 } 3335 case Instruction::Load: { 3336 const LoadInst *LI = cast<LoadInst>(Inst); 3337 if (!LI->isUnordered() || 3338 // Speculative load may create a race that did not exist in the source. 3339 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3340 // Speculative load may load data from dirty regions. 3341 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3342 return false; 3343 const DataLayout &DL = LI->getModule()->getDataLayout(); 3344 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3345 LI->getAlignment(), DL, CtxI, DT); 3346 } 3347 case Instruction::Call: { 3348 auto *CI = cast<const CallInst>(Inst); 3349 const Function *Callee = CI->getCalledFunction(); 3350 3351 // The called function could have undefined behavior or side-effects, even 3352 // if marked readnone nounwind. 3353 return Callee && Callee->isSpeculatable(); 3354 } 3355 case Instruction::VAArg: 3356 case Instruction::Alloca: 3357 case Instruction::Invoke: 3358 case Instruction::PHI: 3359 case Instruction::Store: 3360 case Instruction::Ret: 3361 case Instruction::Br: 3362 case Instruction::IndirectBr: 3363 case Instruction::Switch: 3364 case Instruction::Unreachable: 3365 case Instruction::Fence: 3366 case Instruction::AtomicRMW: 3367 case Instruction::AtomicCmpXchg: 3368 case Instruction::LandingPad: 3369 case Instruction::Resume: 3370 case Instruction::CatchSwitch: 3371 case Instruction::CatchPad: 3372 case Instruction::CatchRet: 3373 case Instruction::CleanupPad: 3374 case Instruction::CleanupRet: 3375 return false; // Misc instructions which have effects 3376 } 3377 } 3378 3379 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3380 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3381 } 3382 3383 /// Return true if we know that the specified value is never null. 3384 bool llvm::isKnownNonNull(const Value *V) { 3385 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3386 3387 // Alloca never returns null, malloc might. 3388 if (isa<AllocaInst>(V)) return true; 3389 3390 // A byval, inalloca, or nonnull argument is never null. 3391 if (const Argument *A = dyn_cast<Argument>(V)) 3392 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3393 3394 // A global variable in address space 0 is non null unless extern weak 3395 // or an absolute symbol reference. Other address spaces may have null as a 3396 // valid address for a global, so we can't assume anything. 3397 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3398 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3399 GV->getType()->getAddressSpace() == 0; 3400 3401 // A Load tagged with nonnull metadata is never null. 3402 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3403 return LI->getMetadata(LLVMContext::MD_nonnull); 3404 3405 if (auto CS = ImmutableCallSite(V)) 3406 if (CS.isReturnNonNull()) 3407 return true; 3408 3409 return false; 3410 } 3411 3412 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3413 const Instruction *CtxI, 3414 const DominatorTree *DT) { 3415 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3416 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3417 assert(CtxI && "Context instruction required for analysis"); 3418 assert(DT && "Dominator tree required for analysis"); 3419 3420 unsigned NumUsesExplored = 0; 3421 for (auto *U : V->users()) { 3422 // Avoid massive lists 3423 if (NumUsesExplored >= DomConditionsMaxUses) 3424 break; 3425 NumUsesExplored++; 3426 3427 // If the value is used as an argument to a call or invoke, then argument 3428 // attributes may provide an answer about null-ness. 3429 if (auto CS = ImmutableCallSite(U)) 3430 if (auto *CalledFunc = CS.getCalledFunction()) 3431 for (const Argument &Arg : CalledFunc->args()) 3432 if (CS.getArgOperand(Arg.getArgNo()) == V && 3433 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3434 return true; 3435 3436 // Consider only compare instructions uniquely controlling a branch 3437 CmpInst::Predicate Pred; 3438 if (!match(const_cast<User *>(U), 3439 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3440 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3441 continue; 3442 3443 for (auto *CmpU : U->users()) { 3444 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3445 assert(BI->isConditional() && "uses a comparison!"); 3446 3447 BasicBlock *NonNullSuccessor = 3448 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3449 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3450 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3451 return true; 3452 } else if (Pred == ICmpInst::ICMP_NE && 3453 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3454 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3455 return true; 3456 } 3457 } 3458 } 3459 3460 return false; 3461 } 3462 3463 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3464 const DominatorTree *DT) { 3465 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3466 return false; 3467 3468 if (isKnownNonNull(V)) 3469 return true; 3470 3471 if (!CtxI || !DT) 3472 return false; 3473 3474 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3475 } 3476 3477 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3478 const Value *RHS, 3479 const DataLayout &DL, 3480 AssumptionCache *AC, 3481 const Instruction *CxtI, 3482 const DominatorTree *DT) { 3483 // Multiplying n * m significant bits yields a result of n + m significant 3484 // bits. If the total number of significant bits does not exceed the 3485 // result bit width (minus 1), there is no overflow. 3486 // This means if we have enough leading zero bits in the operands 3487 // we can guarantee that the result does not overflow. 3488 // Ref: "Hacker's Delight" by Henry Warren 3489 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3490 KnownBits LHSKnown(BitWidth); 3491 KnownBits RHSKnown(BitWidth); 3492 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3493 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3494 // Note that underestimating the number of zero bits gives a more 3495 // conservative answer. 3496 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3497 RHSKnown.countMinLeadingZeros(); 3498 // First handle the easy case: if we have enough zero bits there's 3499 // definitely no overflow. 3500 if (ZeroBits >= BitWidth) 3501 return OverflowResult::NeverOverflows; 3502 3503 // Get the largest possible values for each operand. 3504 APInt LHSMax = ~LHSKnown.Zero; 3505 APInt RHSMax = ~RHSKnown.Zero; 3506 3507 // We know the multiply operation doesn't overflow if the maximum values for 3508 // each operand will not overflow after we multiply them together. 3509 bool MaxOverflow; 3510 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3511 if (!MaxOverflow) 3512 return OverflowResult::NeverOverflows; 3513 3514 // We know it always overflows if multiplying the smallest possible values for 3515 // the operands also results in overflow. 3516 bool MinOverflow; 3517 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3518 if (MinOverflow) 3519 return OverflowResult::AlwaysOverflows; 3520 3521 return OverflowResult::MayOverflow; 3522 } 3523 3524 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3525 const Value *RHS, 3526 const DataLayout &DL, 3527 AssumptionCache *AC, 3528 const Instruction *CxtI, 3529 const DominatorTree *DT) { 3530 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3531 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3532 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3533 3534 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3535 // The sign bit is set in both cases: this MUST overflow. 3536 // Create a simple add instruction, and insert it into the struct. 3537 return OverflowResult::AlwaysOverflows; 3538 } 3539 3540 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3541 // The sign bit is clear in both cases: this CANNOT overflow. 3542 // Create a simple add instruction, and insert it into the struct. 3543 return OverflowResult::NeverOverflows; 3544 } 3545 } 3546 3547 return OverflowResult::MayOverflow; 3548 } 3549 3550 /// \brief Return true if we can prove that adding the two values of the 3551 /// knownbits will not overflow. 3552 /// Otherwise return false. 3553 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3554 const KnownBits &RHSKnown) { 3555 // Addition of two 2's complement numbers having opposite signs will never 3556 // overflow. 3557 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3558 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3559 return true; 3560 3561 // If either of the values is known to be non-negative, adding them can only 3562 // overflow if the second is also non-negative, so we can assume that. 3563 // Two non-negative numbers will only overflow if there is a carry to the 3564 // sign bit, so we can check if even when the values are as big as possible 3565 // there is no overflow to the sign bit. 3566 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3567 APInt MaxLHS = ~LHSKnown.Zero; 3568 MaxLHS.clearSignBit(); 3569 APInt MaxRHS = ~RHSKnown.Zero; 3570 MaxRHS.clearSignBit(); 3571 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3572 return Result.isSignBitClear(); 3573 } 3574 3575 // If either of the values is known to be negative, adding them can only 3576 // overflow if the second is also negative, so we can assume that. 3577 // Two negative number will only overflow if there is no carry to the sign 3578 // bit, so we can check if even when the values are as small as possible 3579 // there is overflow to the sign bit. 3580 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3581 APInt MinLHS = LHSKnown.One; 3582 MinLHS.clearSignBit(); 3583 APInt MinRHS = RHSKnown.One; 3584 MinRHS.clearSignBit(); 3585 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3586 return Result.isSignBitSet(); 3587 } 3588 3589 // If we reached here it means that we know nothing about the sign bits. 3590 // In this case we can't know if there will be an overflow, since by 3591 // changing the sign bits any two values can be made to overflow. 3592 return false; 3593 } 3594 3595 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3596 const Value *RHS, 3597 const AddOperator *Add, 3598 const DataLayout &DL, 3599 AssumptionCache *AC, 3600 const Instruction *CxtI, 3601 const DominatorTree *DT) { 3602 if (Add && Add->hasNoSignedWrap()) { 3603 return OverflowResult::NeverOverflows; 3604 } 3605 3606 // If LHS and RHS each have at least two sign bits, the addition will look 3607 // like 3608 // 3609 // XX..... + 3610 // YY..... 3611 // 3612 // If the carry into the most significant position is 0, X and Y can't both 3613 // be 1 and therefore the carry out of the addition is also 0. 3614 // 3615 // If the carry into the most significant position is 1, X and Y can't both 3616 // be 0 and therefore the carry out of the addition is also 1. 3617 // 3618 // Since the carry into the most significant position is always equal to 3619 // the carry out of the addition, there is no signed overflow. 3620 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3621 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3622 return OverflowResult::NeverOverflows; 3623 3624 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3625 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3626 3627 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3628 return OverflowResult::NeverOverflows; 3629 3630 // The remaining code needs Add to be available. Early returns if not so. 3631 if (!Add) 3632 return OverflowResult::MayOverflow; 3633 3634 // If the sign of Add is the same as at least one of the operands, this add 3635 // CANNOT overflow. This is particularly useful when the sum is 3636 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3637 // operands. 3638 bool LHSOrRHSKnownNonNegative = 3639 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3640 bool LHSOrRHSKnownNegative = 3641 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3642 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3643 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3644 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3645 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3646 return OverflowResult::NeverOverflows; 3647 } 3648 } 3649 3650 return OverflowResult::MayOverflow; 3651 } 3652 3653 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3654 const DominatorTree &DT) { 3655 #ifndef NDEBUG 3656 auto IID = II->getIntrinsicID(); 3657 assert((IID == Intrinsic::sadd_with_overflow || 3658 IID == Intrinsic::uadd_with_overflow || 3659 IID == Intrinsic::ssub_with_overflow || 3660 IID == Intrinsic::usub_with_overflow || 3661 IID == Intrinsic::smul_with_overflow || 3662 IID == Intrinsic::umul_with_overflow) && 3663 "Not an overflow intrinsic!"); 3664 #endif 3665 3666 SmallVector<const BranchInst *, 2> GuardingBranches; 3667 SmallVector<const ExtractValueInst *, 2> Results; 3668 3669 for (const User *U : II->users()) { 3670 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3671 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3672 3673 if (EVI->getIndices()[0] == 0) 3674 Results.push_back(EVI); 3675 else { 3676 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3677 3678 for (const auto *U : EVI->users()) 3679 if (const auto *B = dyn_cast<BranchInst>(U)) { 3680 assert(B->isConditional() && "How else is it using an i1?"); 3681 GuardingBranches.push_back(B); 3682 } 3683 } 3684 } else { 3685 // We are using the aggregate directly in a way we don't want to analyze 3686 // here (storing it to a global, say). 3687 return false; 3688 } 3689 } 3690 3691 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3692 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3693 if (!NoWrapEdge.isSingleEdge()) 3694 return false; 3695 3696 // Check if all users of the add are provably no-wrap. 3697 for (const auto *Result : Results) { 3698 // If the extractvalue itself is not executed on overflow, the we don't 3699 // need to check each use separately, since domination is transitive. 3700 if (DT.dominates(NoWrapEdge, Result->getParent())) 3701 continue; 3702 3703 for (auto &RU : Result->uses()) 3704 if (!DT.dominates(NoWrapEdge, RU)) 3705 return false; 3706 } 3707 3708 return true; 3709 }; 3710 3711 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3712 } 3713 3714 3715 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3716 const DataLayout &DL, 3717 AssumptionCache *AC, 3718 const Instruction *CxtI, 3719 const DominatorTree *DT) { 3720 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3721 Add, DL, AC, CxtI, DT); 3722 } 3723 3724 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3725 const Value *RHS, 3726 const DataLayout &DL, 3727 AssumptionCache *AC, 3728 const Instruction *CxtI, 3729 const DominatorTree *DT) { 3730 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3731 } 3732 3733 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3734 // A memory operation returns normally if it isn't volatile. A volatile 3735 // operation is allowed to trap. 3736 // 3737 // An atomic operation isn't guaranteed to return in a reasonable amount of 3738 // time because it's possible for another thread to interfere with it for an 3739 // arbitrary length of time, but programs aren't allowed to rely on that. 3740 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3741 return !LI->isVolatile(); 3742 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3743 return !SI->isVolatile(); 3744 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3745 return !CXI->isVolatile(); 3746 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3747 return !RMWI->isVolatile(); 3748 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3749 return !MII->isVolatile(); 3750 3751 // If there is no successor, then execution can't transfer to it. 3752 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3753 return !CRI->unwindsToCaller(); 3754 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3755 return !CatchSwitch->unwindsToCaller(); 3756 if (isa<ResumeInst>(I)) 3757 return false; 3758 if (isa<ReturnInst>(I)) 3759 return false; 3760 if (isa<UnreachableInst>(I)) 3761 return false; 3762 3763 // Calls can throw, or contain an infinite loop, or kill the process. 3764 if (auto CS = ImmutableCallSite(I)) { 3765 // Call sites that throw have implicit non-local control flow. 3766 if (!CS.doesNotThrow()) 3767 return false; 3768 3769 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3770 // etc. and thus not return. However, LLVM already assumes that 3771 // 3772 // - Thread exiting actions are modeled as writes to memory invisible to 3773 // the program. 3774 // 3775 // - Loops that don't have side effects (side effects are volatile/atomic 3776 // stores and IO) always terminate (see http://llvm.org/PR965). 3777 // Furthermore IO itself is also modeled as writes to memory invisible to 3778 // the program. 3779 // 3780 // We rely on those assumptions here, and use the memory effects of the call 3781 // target as a proxy for checking that it always returns. 3782 3783 // FIXME: This isn't aggressive enough; a call which only writes to a global 3784 // is guaranteed to return. 3785 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3786 match(I, m_Intrinsic<Intrinsic::assume>()); 3787 } 3788 3789 // Other instructions return normally. 3790 return true; 3791 } 3792 3793 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3794 const Loop *L) { 3795 // The loop header is guaranteed to be executed for every iteration. 3796 // 3797 // FIXME: Relax this constraint to cover all basic blocks that are 3798 // guaranteed to be executed at every iteration. 3799 if (I->getParent() != L->getHeader()) return false; 3800 3801 for (const Instruction &LI : *L->getHeader()) { 3802 if (&LI == I) return true; 3803 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3804 } 3805 llvm_unreachable("Instruction not contained in its own parent basic block."); 3806 } 3807 3808 bool llvm::propagatesFullPoison(const Instruction *I) { 3809 switch (I->getOpcode()) { 3810 case Instruction::Add: 3811 case Instruction::Sub: 3812 case Instruction::Xor: 3813 case Instruction::Trunc: 3814 case Instruction::BitCast: 3815 case Instruction::AddrSpaceCast: 3816 case Instruction::Mul: 3817 case Instruction::Shl: 3818 case Instruction::GetElementPtr: 3819 // These operations all propagate poison unconditionally. Note that poison 3820 // is not any particular value, so xor or subtraction of poison with 3821 // itself still yields poison, not zero. 3822 return true; 3823 3824 case Instruction::AShr: 3825 case Instruction::SExt: 3826 // For these operations, one bit of the input is replicated across 3827 // multiple output bits. A replicated poison bit is still poison. 3828 return true; 3829 3830 case Instruction::ICmp: 3831 // Comparing poison with any value yields poison. This is why, for 3832 // instance, x s< (x +nsw 1) can be folded to true. 3833 return true; 3834 3835 default: 3836 return false; 3837 } 3838 } 3839 3840 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3841 switch (I->getOpcode()) { 3842 case Instruction::Store: 3843 return cast<StoreInst>(I)->getPointerOperand(); 3844 3845 case Instruction::Load: 3846 return cast<LoadInst>(I)->getPointerOperand(); 3847 3848 case Instruction::AtomicCmpXchg: 3849 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3850 3851 case Instruction::AtomicRMW: 3852 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3853 3854 case Instruction::UDiv: 3855 case Instruction::SDiv: 3856 case Instruction::URem: 3857 case Instruction::SRem: 3858 return I->getOperand(1); 3859 3860 default: 3861 return nullptr; 3862 } 3863 } 3864 3865 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 3866 // We currently only look for uses of poison values within the same basic 3867 // block, as that makes it easier to guarantee that the uses will be 3868 // executed given that PoisonI is executed. 3869 // 3870 // FIXME: Expand this to consider uses beyond the same basic block. To do 3871 // this, look out for the distinction between post-dominance and strong 3872 // post-dominance. 3873 const BasicBlock *BB = PoisonI->getParent(); 3874 3875 // Set of instructions that we have proved will yield poison if PoisonI 3876 // does. 3877 SmallSet<const Value *, 16> YieldsPoison; 3878 SmallSet<const BasicBlock *, 4> Visited; 3879 YieldsPoison.insert(PoisonI); 3880 Visited.insert(PoisonI->getParent()); 3881 3882 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3883 3884 unsigned Iter = 0; 3885 while (Iter++ < MaxDepth) { 3886 for (auto &I : make_range(Begin, End)) { 3887 if (&I != PoisonI) { 3888 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3889 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3890 return true; 3891 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3892 return false; 3893 } 3894 3895 // Mark poison that propagates from I through uses of I. 3896 if (YieldsPoison.count(&I)) { 3897 for (const User *User : I.users()) { 3898 const Instruction *UserI = cast<Instruction>(User); 3899 if (propagatesFullPoison(UserI)) 3900 YieldsPoison.insert(User); 3901 } 3902 } 3903 } 3904 3905 if (auto *NextBB = BB->getSingleSuccessor()) { 3906 if (Visited.insert(NextBB).second) { 3907 BB = NextBB; 3908 Begin = BB->getFirstNonPHI()->getIterator(); 3909 End = BB->end(); 3910 continue; 3911 } 3912 } 3913 3914 break; 3915 }; 3916 return false; 3917 } 3918 3919 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3920 if (FMF.noNaNs()) 3921 return true; 3922 3923 if (auto *C = dyn_cast<ConstantFP>(V)) 3924 return !C->isNaN(); 3925 return false; 3926 } 3927 3928 static bool isKnownNonZero(const Value *V) { 3929 if (auto *C = dyn_cast<ConstantFP>(V)) 3930 return !C->isZero(); 3931 return false; 3932 } 3933 3934 /// Match non-obvious integer minimum and maximum sequences. 3935 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3936 Value *CmpLHS, Value *CmpRHS, 3937 Value *TrueVal, Value *FalseVal, 3938 Value *&LHS, Value *&RHS) { 3939 // Assume success. If there's no match, callers should not use these anyway. 3940 LHS = TrueVal; 3941 RHS = FalseVal; 3942 3943 // Recognize variations of: 3944 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3945 const APInt *C1; 3946 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3947 const APInt *C2; 3948 3949 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3950 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3951 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3952 return {SPF_SMAX, SPNB_NA, false}; 3953 3954 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3955 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3956 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3957 return {SPF_SMIN, SPNB_NA, false}; 3958 3959 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3960 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3961 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3962 return {SPF_UMAX, SPNB_NA, false}; 3963 3964 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3965 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3966 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3967 return {SPF_UMIN, SPNB_NA, false}; 3968 } 3969 3970 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3971 return {SPF_UNKNOWN, SPNB_NA, false}; 3972 3973 // Z = X -nsw Y 3974 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3975 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3976 if (match(TrueVal, m_Zero()) && 3977 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3978 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3979 3980 // Z = X -nsw Y 3981 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3982 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3983 if (match(FalseVal, m_Zero()) && 3984 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3985 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3986 3987 if (!match(CmpRHS, m_APInt(C1))) 3988 return {SPF_UNKNOWN, SPNB_NA, false}; 3989 3990 // An unsigned min/max can be written with a signed compare. 3991 const APInt *C2; 3992 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 3993 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 3994 // Is the sign bit set? 3995 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 3996 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 3997 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 3998 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3999 4000 // Is the sign bit clear? 4001 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4002 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4003 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4004 C2->isMinSignedValue()) 4005 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4006 } 4007 4008 // Look through 'not' ops to find disguised signed min/max. 4009 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4010 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4011 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4012 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4013 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4014 4015 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4016 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4017 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4018 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4019 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4020 4021 return {SPF_UNKNOWN, SPNB_NA, false}; 4022 } 4023 4024 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4025 FastMathFlags FMF, 4026 Value *CmpLHS, Value *CmpRHS, 4027 Value *TrueVal, Value *FalseVal, 4028 Value *&LHS, Value *&RHS) { 4029 LHS = CmpLHS; 4030 RHS = CmpRHS; 4031 4032 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4033 // return inconsistent results between implementations. 4034 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4035 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4036 // Therefore we behave conservatively and only proceed if at least one of the 4037 // operands is known to not be zero, or if we don't care about signed zeroes. 4038 switch (Pred) { 4039 default: break; 4040 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4041 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4042 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4043 !isKnownNonZero(CmpRHS)) 4044 return {SPF_UNKNOWN, SPNB_NA, false}; 4045 } 4046 4047 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4048 bool Ordered = false; 4049 4050 // When given one NaN and one non-NaN input: 4051 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4052 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4053 // ordered comparison fails), which could be NaN or non-NaN. 4054 // so here we discover exactly what NaN behavior is required/accepted. 4055 if (CmpInst::isFPPredicate(Pred)) { 4056 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4057 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4058 4059 if (LHSSafe && RHSSafe) { 4060 // Both operands are known non-NaN. 4061 NaNBehavior = SPNB_RETURNS_ANY; 4062 } else if (CmpInst::isOrdered(Pred)) { 4063 // An ordered comparison will return false when given a NaN, so it 4064 // returns the RHS. 4065 Ordered = true; 4066 if (LHSSafe) 4067 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4068 NaNBehavior = SPNB_RETURNS_NAN; 4069 else if (RHSSafe) 4070 NaNBehavior = SPNB_RETURNS_OTHER; 4071 else 4072 // Completely unsafe. 4073 return {SPF_UNKNOWN, SPNB_NA, false}; 4074 } else { 4075 Ordered = false; 4076 // An unordered comparison will return true when given a NaN, so it 4077 // returns the LHS. 4078 if (LHSSafe) 4079 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4080 NaNBehavior = SPNB_RETURNS_OTHER; 4081 else if (RHSSafe) 4082 NaNBehavior = SPNB_RETURNS_NAN; 4083 else 4084 // Completely unsafe. 4085 return {SPF_UNKNOWN, SPNB_NA, false}; 4086 } 4087 } 4088 4089 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4090 std::swap(CmpLHS, CmpRHS); 4091 Pred = CmpInst::getSwappedPredicate(Pred); 4092 if (NaNBehavior == SPNB_RETURNS_NAN) 4093 NaNBehavior = SPNB_RETURNS_OTHER; 4094 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4095 NaNBehavior = SPNB_RETURNS_NAN; 4096 Ordered = !Ordered; 4097 } 4098 4099 // ([if]cmp X, Y) ? X : Y 4100 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4101 switch (Pred) { 4102 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4103 case ICmpInst::ICMP_UGT: 4104 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4105 case ICmpInst::ICMP_SGT: 4106 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4107 case ICmpInst::ICMP_ULT: 4108 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4109 case ICmpInst::ICMP_SLT: 4110 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4111 case FCmpInst::FCMP_UGT: 4112 case FCmpInst::FCMP_UGE: 4113 case FCmpInst::FCMP_OGT: 4114 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4115 case FCmpInst::FCMP_ULT: 4116 case FCmpInst::FCMP_ULE: 4117 case FCmpInst::FCMP_OLT: 4118 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4119 } 4120 } 4121 4122 const APInt *C1; 4123 if (match(CmpRHS, m_APInt(C1))) { 4124 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4125 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4126 4127 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4128 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4129 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4130 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4131 } 4132 4133 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4134 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4135 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4136 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4137 } 4138 } 4139 } 4140 4141 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4142 } 4143 4144 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4145 Instruction::CastOps *CastOp) { 4146 auto *Cast1 = dyn_cast<CastInst>(V1); 4147 if (!Cast1) 4148 return nullptr; 4149 4150 *CastOp = Cast1->getOpcode(); 4151 Type *SrcTy = Cast1->getSrcTy(); 4152 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4153 // If V1 and V2 are both the same cast from the same type, look through V1. 4154 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4155 return Cast2->getOperand(0); 4156 return nullptr; 4157 } 4158 4159 auto *C = dyn_cast<Constant>(V2); 4160 if (!C) 4161 return nullptr; 4162 4163 Constant *CastedTo = nullptr; 4164 switch (*CastOp) { 4165 case Instruction::ZExt: 4166 if (CmpI->isUnsigned()) 4167 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4168 break; 4169 case Instruction::SExt: 4170 if (CmpI->isSigned()) 4171 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4172 break; 4173 case Instruction::Trunc: 4174 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4175 break; 4176 case Instruction::FPTrunc: 4177 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4178 break; 4179 case Instruction::FPExt: 4180 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4181 break; 4182 case Instruction::FPToUI: 4183 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4184 break; 4185 case Instruction::FPToSI: 4186 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4187 break; 4188 case Instruction::UIToFP: 4189 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4190 break; 4191 case Instruction::SIToFP: 4192 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4193 break; 4194 default: 4195 break; 4196 } 4197 4198 if (!CastedTo) 4199 return nullptr; 4200 4201 // Make sure the cast doesn't lose any information. 4202 Constant *CastedBack = 4203 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4204 if (CastedBack != C) 4205 return nullptr; 4206 4207 return CastedTo; 4208 } 4209 4210 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4211 Instruction::CastOps *CastOp) { 4212 SelectInst *SI = dyn_cast<SelectInst>(V); 4213 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4214 4215 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4216 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4217 4218 CmpInst::Predicate Pred = CmpI->getPredicate(); 4219 Value *CmpLHS = CmpI->getOperand(0); 4220 Value *CmpRHS = CmpI->getOperand(1); 4221 Value *TrueVal = SI->getTrueValue(); 4222 Value *FalseVal = SI->getFalseValue(); 4223 FastMathFlags FMF; 4224 if (isa<FPMathOperator>(CmpI)) 4225 FMF = CmpI->getFastMathFlags(); 4226 4227 // Bail out early. 4228 if (CmpI->isEquality()) 4229 return {SPF_UNKNOWN, SPNB_NA, false}; 4230 4231 // Deal with type mismatches. 4232 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4233 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4234 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4235 cast<CastInst>(TrueVal)->getOperand(0), C, 4236 LHS, RHS); 4237 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4238 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4239 C, cast<CastInst>(FalseVal)->getOperand(0), 4240 LHS, RHS); 4241 } 4242 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4243 LHS, RHS); 4244 } 4245 4246 /// Return true if "icmp Pred LHS RHS" is always true. 4247 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4248 const Value *RHS, const DataLayout &DL, 4249 unsigned Depth) { 4250 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4251 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4252 return true; 4253 4254 switch (Pred) { 4255 default: 4256 return false; 4257 4258 case CmpInst::ICMP_SLE: { 4259 const APInt *C; 4260 4261 // LHS s<= LHS +_{nsw} C if C >= 0 4262 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4263 return !C->isNegative(); 4264 return false; 4265 } 4266 4267 case CmpInst::ICMP_ULE: { 4268 const APInt *C; 4269 4270 // LHS u<= LHS +_{nuw} C for any C 4271 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4272 return true; 4273 4274 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4275 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4276 const Value *&X, 4277 const APInt *&CA, const APInt *&CB) { 4278 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4279 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4280 return true; 4281 4282 // If X & C == 0 then (X | C) == X +_{nuw} C 4283 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4284 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4285 KnownBits Known(CA->getBitWidth()); 4286 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4287 /*CxtI*/ nullptr, /*DT*/ nullptr); 4288 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4289 return true; 4290 } 4291 4292 return false; 4293 }; 4294 4295 const Value *X; 4296 const APInt *CLHS, *CRHS; 4297 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4298 return CLHS->ule(*CRHS); 4299 4300 return false; 4301 } 4302 } 4303 } 4304 4305 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4306 /// ALHS ARHS" is true. Otherwise, return None. 4307 static Optional<bool> 4308 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4309 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4310 const DataLayout &DL, unsigned Depth) { 4311 switch (Pred) { 4312 default: 4313 return None; 4314 4315 case CmpInst::ICMP_SLT: 4316 case CmpInst::ICMP_SLE: 4317 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4318 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4319 return true; 4320 return None; 4321 4322 case CmpInst::ICMP_ULT: 4323 case CmpInst::ICMP_ULE: 4324 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4325 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4326 return true; 4327 return None; 4328 } 4329 } 4330 4331 /// Return true if the operands of the two compares match. IsSwappedOps is true 4332 /// when the operands match, but are swapped. 4333 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4334 const Value *BLHS, const Value *BRHS, 4335 bool &IsSwappedOps) { 4336 4337 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4338 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4339 return IsMatchingOps || IsSwappedOps; 4340 } 4341 4342 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4343 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4344 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4345 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4346 const Value *ALHS, 4347 const Value *ARHS, 4348 CmpInst::Predicate BPred, 4349 const Value *BLHS, 4350 const Value *BRHS, 4351 bool IsSwappedOps) { 4352 // Canonicalize the operands so they're matching. 4353 if (IsSwappedOps) { 4354 std::swap(BLHS, BRHS); 4355 BPred = ICmpInst::getSwappedPredicate(BPred); 4356 } 4357 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4358 return true; 4359 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4360 return false; 4361 4362 return None; 4363 } 4364 4365 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4366 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4367 /// C2" is false. Otherwise, return None if we can't infer anything. 4368 static Optional<bool> 4369 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4370 const ConstantInt *C1, 4371 CmpInst::Predicate BPred, 4372 const Value *BLHS, const ConstantInt *C2) { 4373 assert(ALHS == BLHS && "LHS operands must match."); 4374 ConstantRange DomCR = 4375 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4376 ConstantRange CR = 4377 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4378 ConstantRange Intersection = DomCR.intersectWith(CR); 4379 ConstantRange Difference = DomCR.difference(CR); 4380 if (Intersection.isEmptySet()) 4381 return false; 4382 if (Difference.isEmptySet()) 4383 return true; 4384 return None; 4385 } 4386 4387 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4388 /// false. Otherwise, return None if we can't infer anything. 4389 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4390 const ICmpInst *RHS, 4391 const DataLayout &DL, bool LHSIsFalse, 4392 unsigned Depth) { 4393 Value *ALHS = LHS->getOperand(0); 4394 Value *ARHS = LHS->getOperand(1); 4395 // The rest of the logic assumes the LHS condition is true. If that's not the 4396 // case, invert the predicate to make it so. 4397 ICmpInst::Predicate APred = 4398 LHSIsFalse ? LHS->getInversePredicate() : LHS->getPredicate(); 4399 4400 Value *BLHS = RHS->getOperand(0); 4401 Value *BRHS = RHS->getOperand(1); 4402 ICmpInst::Predicate BPred = RHS->getPredicate(); 4403 4404 // Can we infer anything when the two compares have matching operands? 4405 bool IsSwappedOps; 4406 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4407 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4408 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4409 return Implication; 4410 // No amount of additional analysis will infer the second condition, so 4411 // early exit. 4412 return None; 4413 } 4414 4415 // Can we infer anything when the LHS operands match and the RHS operands are 4416 // constants (not necessarily matching)? 4417 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4418 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4419 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4420 cast<ConstantInt>(BRHS))) 4421 return Implication; 4422 // No amount of additional analysis will infer the second condition, so 4423 // early exit. 4424 return None; 4425 } 4426 4427 if (APred == BPred) 4428 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4429 return None; 4430 } 4431 4432 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4433 const DataLayout &DL, bool LHSIsFalse, 4434 unsigned Depth) { 4435 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4436 if (LHS->getType() != RHS->getType()) 4437 return None; 4438 4439 Type *OpTy = LHS->getType(); 4440 assert(OpTy->isIntOrIntVectorTy(1)); 4441 4442 // LHS ==> RHS by definition 4443 if (LHS == RHS) 4444 return !LHSIsFalse; 4445 4446 if (OpTy->isVectorTy()) 4447 // TODO: extending the code below to handle vectors 4448 return None; 4449 assert(OpTy->isIntegerTy(1) && "implied by above"); 4450 4451 // We expect the RHS to be an icmp. 4452 if (!isa<ICmpInst>(RHS)) 4453 return None; 4454 4455 // Both LHS and RHS are icmps. 4456 if (isa<ICmpInst>(LHS)) 4457 return isImpliedCondICmps(cast<ICmpInst>(LHS), cast<ICmpInst>(RHS), DL, 4458 LHSIsFalse, Depth); 4459 4460 // The LHS can be an 'or' or an 'and' instruction. 4461 const Instruction *LHSInst = dyn_cast<Instruction>(LHS); 4462 if (!LHSInst) 4463 return None; 4464 4465 switch (LHSInst->getOpcode()) { 4466 default: 4467 return None; 4468 case Instruction::Or: 4469 case Instruction::And: { 4470 // The remaining tests are all recursive, so bail out if we hit the limit. 4471 if (Depth == MaxDepth) 4472 return None; 4473 // If the result of an 'or' is false, then we know both legs of the 'or' are 4474 // false. Similarly, if the result of an 'and' is true, then we know both 4475 // legs of the 'and' are true. 4476 Value *ALHS, *ARHS; 4477 if ((LHSIsFalse && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 4478 (!LHSIsFalse && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 4479 if (Optional<bool> Implication = 4480 isImpliedCondition(ALHS, RHS, DL, LHSIsFalse, Depth + 1)) 4481 return Implication; 4482 if (Optional<bool> Implication = 4483 isImpliedCondition(ARHS, RHS, DL, LHSIsFalse, Depth + 1)) 4484 return Implication; 4485 return None; 4486 } 4487 return None; 4488 } 4489 } 4490 } 4491