1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::pseudoprobe: 531 case Intrinsic::dbg_declare: 532 case Intrinsic::dbg_value: 533 case Intrinsic::dbg_label: 534 case Intrinsic::invariant_start: 535 case Intrinsic::invariant_end: 536 case Intrinsic::lifetime_start: 537 case Intrinsic::lifetime_end: 538 case Intrinsic::objectsize: 539 case Intrinsic::ptr_annotation: 540 case Intrinsic::var_annotation: 541 return true; 542 } 543 544 return false; 545 } 546 547 bool llvm::isValidAssumeForContext(const Instruction *Inv, 548 const Instruction *CxtI, 549 const DominatorTree *DT) { 550 // There are two restrictions on the use of an assume: 551 // 1. The assume must dominate the context (or the control flow must 552 // reach the assume whenever it reaches the context). 553 // 2. The context must not be in the assume's set of ephemeral values 554 // (otherwise we will use the assume to prove that the condition 555 // feeding the assume is trivially true, thus causing the removal of 556 // the assume). 557 558 if (Inv->getParent() == CxtI->getParent()) { 559 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 560 // in the BB. 561 if (Inv->comesBefore(CxtI)) 562 return true; 563 564 // Don't let an assume affect itself - this would cause the problems 565 // `isEphemeralValueOf` is trying to prevent, and it would also make 566 // the loop below go out of bounds. 567 if (Inv == CxtI) 568 return false; 569 570 // The context comes first, but they're both in the same block. 571 // Make sure there is nothing in between that might interrupt 572 // the control flow, not even CxtI itself. 573 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 574 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 575 return false; 576 577 return !isEphemeralValueOf(Inv, CxtI); 578 } 579 580 // Inv and CxtI are in different blocks. 581 if (DT) { 582 if (DT->dominates(Inv, CxtI)) 583 return true; 584 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 585 // We don't have a DT, but this trivially dominates. 586 return true; 587 } 588 589 return false; 590 } 591 592 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 593 // Use of assumptions is context-sensitive. If we don't have a context, we 594 // cannot use them! 595 if (!Q.AC || !Q.CxtI) 596 return false; 597 598 // Note that the patterns below need to be kept in sync with the code 599 // in AssumptionCache::updateAffectedValues. 600 601 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 602 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 603 604 Value *RHS; 605 CmpInst::Predicate Pred; 606 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 607 return false; 608 // assume(v u> y) -> assume(v != 0) 609 if (Pred == ICmpInst::ICMP_UGT) 610 return true; 611 612 // assume(v != 0) 613 // We special-case this one to ensure that we handle `assume(v != null)`. 614 if (Pred == ICmpInst::ICMP_NE) 615 return match(RHS, m_Zero()); 616 617 // All other predicates - rely on generic ConstantRange handling. 618 ConstantInt *CI; 619 if (!match(RHS, m_ConstantInt(CI))) 620 return false; 621 ConstantRange RHSRange(CI->getValue()); 622 ConstantRange TrueValues = 623 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 624 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 625 }; 626 627 if (Q.CxtI && V->getType()->isPointerTy()) { 628 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 629 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 630 V->getType()->getPointerAddressSpace())) 631 AttrKinds.push_back(Attribute::Dereferenceable); 632 633 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 634 return true; 635 } 636 637 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 638 if (!AssumeVH) 639 continue; 640 CallInst *I = cast<CallInst>(AssumeVH); 641 assert(I->getFunction() == Q.CxtI->getFunction() && 642 "Got assumption for the wrong function!"); 643 if (Q.isExcluded(I)) 644 continue; 645 646 // Warning: This loop can end up being somewhat performance sensitive. 647 // We're running this loop for once for each value queried resulting in a 648 // runtime of ~O(#assumes * #values). 649 650 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 651 "must be an assume intrinsic"); 652 653 Value *Arg = I->getArgOperand(0); 654 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 655 if (!Cmp) 656 continue; 657 658 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 659 return true; 660 } 661 662 return false; 663 } 664 665 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 666 unsigned Depth, const Query &Q) { 667 // Use of assumptions is context-sensitive. If we don't have a context, we 668 // cannot use them! 669 if (!Q.AC || !Q.CxtI) 670 return; 671 672 unsigned BitWidth = Known.getBitWidth(); 673 674 // Refine Known set if the pointer alignment is set by assume bundles. 675 if (V->getType()->isPointerTy()) { 676 if (RetainedKnowledge RK = getKnowledgeValidInContext( 677 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 678 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 679 } 680 } 681 682 // Note that the patterns below need to be kept in sync with the code 683 // in AssumptionCache::updateAffectedValues. 684 685 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 686 if (!AssumeVH) 687 continue; 688 CallInst *I = cast<CallInst>(AssumeVH); 689 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 690 "Got assumption for the wrong function!"); 691 if (Q.isExcluded(I)) 692 continue; 693 694 // Warning: This loop can end up being somewhat performance sensitive. 695 // We're running this loop for once for each value queried resulting in a 696 // runtime of ~O(#assumes * #values). 697 698 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 699 "must be an assume intrinsic"); 700 701 Value *Arg = I->getArgOperand(0); 702 703 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 704 assert(BitWidth == 1 && "assume operand is not i1?"); 705 Known.setAllOnes(); 706 return; 707 } 708 if (match(Arg, m_Not(m_Specific(V))) && 709 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 710 assert(BitWidth == 1 && "assume operand is not i1?"); 711 Known.setAllZero(); 712 return; 713 } 714 715 // The remaining tests are all recursive, so bail out if we hit the limit. 716 if (Depth == MaxAnalysisRecursionDepth) 717 continue; 718 719 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 720 if (!Cmp) 721 continue; 722 723 // Note that ptrtoint may change the bitwidth. 724 Value *A, *B; 725 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 726 727 CmpInst::Predicate Pred; 728 uint64_t C; 729 switch (Cmp->getPredicate()) { 730 default: 731 break; 732 case ICmpInst::ICMP_EQ: 733 // assume(v = a) 734 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 736 KnownBits RHSKnown = 737 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 738 Known.Zero |= RHSKnown.Zero; 739 Known.One |= RHSKnown.One; 740 // assume(v & b = a) 741 } else if (match(Cmp, 742 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 743 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 744 KnownBits RHSKnown = 745 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 746 KnownBits MaskKnown = 747 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 748 749 // For those bits in the mask that are known to be one, we can propagate 750 // known bits from the RHS to V. 751 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 752 Known.One |= RHSKnown.One & MaskKnown.One; 753 // assume(~(v & b) = a) 754 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 755 m_Value(A))) && 756 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 757 KnownBits RHSKnown = 758 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 759 KnownBits MaskKnown = 760 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 761 762 // For those bits in the mask that are known to be one, we can propagate 763 // inverted known bits from the RHS to V. 764 Known.Zero |= RHSKnown.One & MaskKnown.One; 765 Known.One |= RHSKnown.Zero & MaskKnown.One; 766 // assume(v | b = a) 767 } else if (match(Cmp, 768 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 769 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 770 KnownBits RHSKnown = 771 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 772 KnownBits BKnown = 773 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 774 775 // For those bits in B that are known to be zero, we can propagate known 776 // bits from the RHS to V. 777 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 778 Known.One |= RHSKnown.One & BKnown.Zero; 779 // assume(~(v | b) = a) 780 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 781 m_Value(A))) && 782 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 783 KnownBits RHSKnown = 784 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 785 KnownBits BKnown = 786 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 787 788 // For those bits in B that are known to be zero, we can propagate 789 // inverted known bits from the RHS to V. 790 Known.Zero |= RHSKnown.One & BKnown.Zero; 791 Known.One |= RHSKnown.Zero & BKnown.Zero; 792 // assume(v ^ b = a) 793 } else if (match(Cmp, 794 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 795 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 796 KnownBits RHSKnown = 797 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 798 KnownBits BKnown = 799 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 800 801 // For those bits in B that are known to be zero, we can propagate known 802 // bits from the RHS to V. For those bits in B that are known to be one, 803 // we can propagate inverted known bits from the RHS to V. 804 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 805 Known.One |= RHSKnown.One & BKnown.Zero; 806 Known.Zero |= RHSKnown.One & BKnown.One; 807 Known.One |= RHSKnown.Zero & BKnown.One; 808 // assume(~(v ^ b) = a) 809 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 810 m_Value(A))) && 811 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 812 KnownBits RHSKnown = 813 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 814 KnownBits BKnown = 815 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 816 817 // For those bits in B that are known to be zero, we can propagate 818 // inverted known bits from the RHS to V. For those bits in B that are 819 // known to be one, we can propagate known bits from the RHS to V. 820 Known.Zero |= RHSKnown.One & BKnown.Zero; 821 Known.One |= RHSKnown.Zero & BKnown.Zero; 822 Known.Zero |= RHSKnown.Zero & BKnown.One; 823 Known.One |= RHSKnown.One & BKnown.One; 824 // assume(v << c = a) 825 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 826 m_Value(A))) && 827 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 828 KnownBits RHSKnown = 829 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 830 831 // For those bits in RHS that are known, we can propagate them to known 832 // bits in V shifted to the right by C. 833 RHSKnown.Zero.lshrInPlace(C); 834 Known.Zero |= RHSKnown.Zero; 835 RHSKnown.One.lshrInPlace(C); 836 Known.One |= RHSKnown.One; 837 // assume(~(v << c) = a) 838 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 839 m_Value(A))) && 840 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 841 KnownBits RHSKnown = 842 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 843 // For those bits in RHS that are known, we can propagate them inverted 844 // to known bits in V shifted to the right by C. 845 RHSKnown.One.lshrInPlace(C); 846 Known.Zero |= RHSKnown.One; 847 RHSKnown.Zero.lshrInPlace(C); 848 Known.One |= RHSKnown.Zero; 849 // assume(v >> c = a) 850 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 851 m_Value(A))) && 852 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 853 KnownBits RHSKnown = 854 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 855 // For those bits in RHS that are known, we can propagate them to known 856 // bits in V shifted to the right by C. 857 Known.Zero |= RHSKnown.Zero << C; 858 Known.One |= RHSKnown.One << C; 859 // assume(~(v >> c) = a) 860 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 861 m_Value(A))) && 862 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 863 KnownBits RHSKnown = 864 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 865 // For those bits in RHS that are known, we can propagate them inverted 866 // to known bits in V shifted to the right by C. 867 Known.Zero |= RHSKnown.One << C; 868 Known.One |= RHSKnown.Zero << C; 869 } 870 break; 871 case ICmpInst::ICMP_SGE: 872 // assume(v >=_s c) where c is non-negative 873 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 874 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 875 KnownBits RHSKnown = 876 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 877 878 if (RHSKnown.isNonNegative()) { 879 // We know that the sign bit is zero. 880 Known.makeNonNegative(); 881 } 882 } 883 break; 884 case ICmpInst::ICMP_SGT: 885 // assume(v >_s c) where c is at least -1. 886 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 887 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 888 KnownBits RHSKnown = 889 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 890 891 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 892 // We know that the sign bit is zero. 893 Known.makeNonNegative(); 894 } 895 } 896 break; 897 case ICmpInst::ICMP_SLE: 898 // assume(v <=_s c) where c is negative 899 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 900 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 901 KnownBits RHSKnown = 902 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 903 904 if (RHSKnown.isNegative()) { 905 // We know that the sign bit is one. 906 Known.makeNegative(); 907 } 908 } 909 break; 910 case ICmpInst::ICMP_SLT: 911 // assume(v <_s c) where c is non-positive 912 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 913 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 914 KnownBits RHSKnown = 915 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 916 917 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 918 // We know that the sign bit is one. 919 Known.makeNegative(); 920 } 921 } 922 break; 923 case ICmpInst::ICMP_ULE: 924 // assume(v <=_u c) 925 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 926 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 927 KnownBits RHSKnown = 928 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 929 930 // Whatever high bits in c are zero are known to be zero. 931 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 932 } 933 break; 934 case ICmpInst::ICMP_ULT: 935 // assume(v <_u c) 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown = 939 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 940 941 // If the RHS is known zero, then this assumption must be wrong (nothing 942 // is unsigned less than zero). Signal a conflict and get out of here. 943 if (RHSKnown.isZero()) { 944 Known.Zero.setAllBits(); 945 Known.One.setAllBits(); 946 break; 947 } 948 949 // Whatever high bits in c are zero are known to be zero (if c is a power 950 // of 2, then one more). 951 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 952 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 953 else 954 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 955 } 956 break; 957 } 958 } 959 960 // If assumptions conflict with each other or previous known bits, then we 961 // have a logical fallacy. It's possible that the assumption is not reachable, 962 // so this isn't a real bug. On the other hand, the program may have undefined 963 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 964 // clear out the known bits, try to warn the user, and hope for the best. 965 if (Known.Zero.intersects(Known.One)) { 966 Known.resetAll(); 967 968 if (Q.ORE) 969 Q.ORE->emit([&]() { 970 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 971 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 972 CxtI) 973 << "Detected conflicting code assumptions. Program may " 974 "have undefined behavior, or compiler may have " 975 "internal error."; 976 }); 977 } 978 } 979 980 /// Compute known bits from a shift operator, including those with a 981 /// non-constant shift amount. Known is the output of this function. Known2 is a 982 /// pre-allocated temporary with the same bit width as Known and on return 983 /// contains the known bit of the shift value source. KF is an 984 /// operator-specific function that, given the known-bits and a shift amount, 985 /// compute the implied known-bits of the shift operator's result respectively 986 /// for that shift amount. The results from calling KF are conservatively 987 /// combined for all permitted shift amounts. 988 static void computeKnownBitsFromShiftOperator( 989 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 990 KnownBits &Known2, unsigned Depth, const Query &Q, 991 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 992 unsigned BitWidth = Known.getBitWidth(); 993 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 994 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 995 996 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 997 // BitWidth > 64 and any upper bits are known, we'll end up returning the 998 // limit value (which implies all bits are known). 999 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1000 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1001 bool ShiftAmtIsConstant = Known.isConstant(); 1002 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1003 1004 if (ShiftAmtIsConstant) { 1005 Known = KF(Known2, Known); 1006 1007 // If the known bits conflict, this must be an overflowing left shift, so 1008 // the shift result is poison. We can return anything we want. Choose 0 for 1009 // the best folding opportunity. 1010 if (Known.hasConflict()) 1011 Known.setAllZero(); 1012 1013 return; 1014 } 1015 1016 // If the shift amount could be greater than or equal to the bit-width of the 1017 // LHS, the value could be poison, but bail out because the check below is 1018 // expensive. 1019 // TODO: Should we just carry on? 1020 if (MaxShiftAmtIsOutOfRange) { 1021 Known.resetAll(); 1022 return; 1023 } 1024 1025 // It would be more-clearly correct to use the two temporaries for this 1026 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1027 Known.resetAll(); 1028 1029 // If we know the shifter operand is nonzero, we can sometimes infer more 1030 // known bits. However this is expensive to compute, so be lazy about it and 1031 // only compute it when absolutely necessary. 1032 Optional<bool> ShifterOperandIsNonZero; 1033 1034 // Early exit if we can't constrain any well-defined shift amount. 1035 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1036 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1037 ShifterOperandIsNonZero = 1038 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1039 if (!*ShifterOperandIsNonZero) 1040 return; 1041 } 1042 1043 Known.Zero.setAllBits(); 1044 Known.One.setAllBits(); 1045 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1046 // Combine the shifted known input bits only for those shift amounts 1047 // compatible with its known constraints. 1048 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1049 continue; 1050 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1051 continue; 1052 // If we know the shifter is nonzero, we may be able to infer more known 1053 // bits. This check is sunk down as far as possible to avoid the expensive 1054 // call to isKnownNonZero if the cheaper checks above fail. 1055 if (ShiftAmt == 0) { 1056 if (!ShifterOperandIsNonZero.hasValue()) 1057 ShifterOperandIsNonZero = 1058 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1059 if (*ShifterOperandIsNonZero) 1060 continue; 1061 } 1062 1063 Known = KnownBits::commonBits( 1064 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1065 } 1066 1067 // If the known bits conflict, the result is poison. Return a 0 and hope the 1068 // caller can further optimize that. 1069 if (Known.hasConflict()) 1070 Known.setAllZero(); 1071 } 1072 1073 static void computeKnownBitsFromOperator(const Operator *I, 1074 const APInt &DemandedElts, 1075 KnownBits &Known, unsigned Depth, 1076 const Query &Q) { 1077 unsigned BitWidth = Known.getBitWidth(); 1078 1079 KnownBits Known2(BitWidth); 1080 switch (I->getOpcode()) { 1081 default: break; 1082 case Instruction::Load: 1083 if (MDNode *MD = 1084 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1085 computeKnownBitsFromRangeMetadata(*MD, Known); 1086 break; 1087 case Instruction::And: { 1088 // If either the LHS or the RHS are Zero, the result is zero. 1089 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1090 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1091 1092 Known &= Known2; 1093 1094 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1095 // here we handle the more general case of adding any odd number by 1096 // matching the form add(x, add(x, y)) where y is odd. 1097 // TODO: This could be generalized to clearing any bit set in y where the 1098 // following bit is known to be unset in y. 1099 Value *X = nullptr, *Y = nullptr; 1100 if (!Known.Zero[0] && !Known.One[0] && 1101 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1102 Known2.resetAll(); 1103 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1104 if (Known2.countMinTrailingOnes() > 0) 1105 Known.Zero.setBit(0); 1106 } 1107 break; 1108 } 1109 case Instruction::Or: 1110 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1111 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1112 1113 Known |= Known2; 1114 break; 1115 case Instruction::Xor: 1116 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1117 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1118 1119 Known ^= Known2; 1120 break; 1121 case Instruction::Mul: { 1122 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1123 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1124 Known, Known2, Depth, Q); 1125 break; 1126 } 1127 case Instruction::UDiv: { 1128 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1129 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1130 Known = KnownBits::udiv(Known, Known2); 1131 break; 1132 } 1133 case Instruction::Select: { 1134 const Value *LHS = nullptr, *RHS = nullptr; 1135 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1136 if (SelectPatternResult::isMinOrMax(SPF)) { 1137 computeKnownBits(RHS, Known, Depth + 1, Q); 1138 computeKnownBits(LHS, Known2, Depth + 1, Q); 1139 switch (SPF) { 1140 default: 1141 llvm_unreachable("Unhandled select pattern flavor!"); 1142 case SPF_SMAX: 1143 Known = KnownBits::smax(Known, Known2); 1144 break; 1145 case SPF_SMIN: 1146 Known = KnownBits::smin(Known, Known2); 1147 break; 1148 case SPF_UMAX: 1149 Known = KnownBits::umax(Known, Known2); 1150 break; 1151 case SPF_UMIN: 1152 Known = KnownBits::umin(Known, Known2); 1153 break; 1154 } 1155 break; 1156 } 1157 1158 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1159 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1160 1161 // Only known if known in both the LHS and RHS. 1162 Known = KnownBits::commonBits(Known, Known2); 1163 1164 if (SPF == SPF_ABS) { 1165 // RHS from matchSelectPattern returns the negation part of abs pattern. 1166 // If the negate has an NSW flag we can assume the sign bit of the result 1167 // will be 0 because that makes abs(INT_MIN) undefined. 1168 if (match(RHS, m_Neg(m_Specific(LHS))) && 1169 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1170 Known.Zero.setSignBit(); 1171 } 1172 1173 break; 1174 } 1175 case Instruction::FPTrunc: 1176 case Instruction::FPExt: 1177 case Instruction::FPToUI: 1178 case Instruction::FPToSI: 1179 case Instruction::SIToFP: 1180 case Instruction::UIToFP: 1181 break; // Can't work with floating point. 1182 case Instruction::PtrToInt: 1183 case Instruction::IntToPtr: 1184 // Fall through and handle them the same as zext/trunc. 1185 LLVM_FALLTHROUGH; 1186 case Instruction::ZExt: 1187 case Instruction::Trunc: { 1188 Type *SrcTy = I->getOperand(0)->getType(); 1189 1190 unsigned SrcBitWidth; 1191 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1192 // which fall through here. 1193 Type *ScalarTy = SrcTy->getScalarType(); 1194 SrcBitWidth = ScalarTy->isPointerTy() ? 1195 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1196 Q.DL.getTypeSizeInBits(ScalarTy); 1197 1198 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1199 Known = Known.anyextOrTrunc(SrcBitWidth); 1200 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1201 Known = Known.zextOrTrunc(BitWidth); 1202 break; 1203 } 1204 case Instruction::BitCast: { 1205 Type *SrcTy = I->getOperand(0)->getType(); 1206 if (SrcTy->isIntOrPtrTy() && 1207 // TODO: For now, not handling conversions like: 1208 // (bitcast i64 %x to <2 x i32>) 1209 !I->getType()->isVectorTy()) { 1210 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1211 break; 1212 } 1213 break; 1214 } 1215 case Instruction::SExt: { 1216 // Compute the bits in the result that are not present in the input. 1217 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1218 1219 Known = Known.trunc(SrcBitWidth); 1220 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1221 // If the sign bit of the input is known set or clear, then we know the 1222 // top bits of the result. 1223 Known = Known.sext(BitWidth); 1224 break; 1225 } 1226 case Instruction::Shl: { 1227 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1228 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1229 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1230 // If this shift has "nsw" keyword, then the result is either a poison 1231 // value or has the same sign bit as the first operand. 1232 if (NSW) { 1233 if (KnownVal.Zero.isSignBitSet()) 1234 Result.Zero.setSignBit(); 1235 if (KnownVal.One.isSignBitSet()) 1236 Result.One.setSignBit(); 1237 } 1238 return Result; 1239 }; 1240 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1241 KF); 1242 break; 1243 } 1244 case Instruction::LShr: { 1245 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1246 return KnownBits::lshr(KnownVal, KnownAmt); 1247 }; 1248 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1249 KF); 1250 break; 1251 } 1252 case Instruction::AShr: { 1253 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1254 return KnownBits::ashr(KnownVal, KnownAmt); 1255 }; 1256 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1257 KF); 1258 break; 1259 } 1260 case Instruction::Sub: { 1261 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1262 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1263 DemandedElts, Known, Known2, Depth, Q); 1264 break; 1265 } 1266 case Instruction::Add: { 1267 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1268 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1269 DemandedElts, Known, Known2, Depth, Q); 1270 break; 1271 } 1272 case Instruction::SRem: 1273 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1274 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1275 Known = KnownBits::srem(Known, Known2); 1276 break; 1277 1278 case Instruction::URem: 1279 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1280 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1281 Known = KnownBits::urem(Known, Known2); 1282 break; 1283 case Instruction::Alloca: 1284 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1285 break; 1286 case Instruction::GetElementPtr: { 1287 // Analyze all of the subscripts of this getelementptr instruction 1288 // to determine if we can prove known low zero bits. 1289 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1290 // Accumulate the constant indices in a separate variable 1291 // to minimize the number of calls to computeForAddSub. 1292 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1293 1294 gep_type_iterator GTI = gep_type_begin(I); 1295 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1296 // TrailZ can only become smaller, short-circuit if we hit zero. 1297 if (Known.isUnknown()) 1298 break; 1299 1300 Value *Index = I->getOperand(i); 1301 1302 // Handle case when index is zero. 1303 Constant *CIndex = dyn_cast<Constant>(Index); 1304 if (CIndex && CIndex->isZeroValue()) 1305 continue; 1306 1307 if (StructType *STy = GTI.getStructTypeOrNull()) { 1308 // Handle struct member offset arithmetic. 1309 1310 assert(CIndex && 1311 "Access to structure field must be known at compile time"); 1312 1313 if (CIndex->getType()->isVectorTy()) 1314 Index = CIndex->getSplatValue(); 1315 1316 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1317 const StructLayout *SL = Q.DL.getStructLayout(STy); 1318 uint64_t Offset = SL->getElementOffset(Idx); 1319 AccConstIndices += Offset; 1320 continue; 1321 } 1322 1323 // Handle array index arithmetic. 1324 Type *IndexedTy = GTI.getIndexedType(); 1325 if (!IndexedTy->isSized()) { 1326 Known.resetAll(); 1327 break; 1328 } 1329 1330 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1331 KnownBits IndexBits(IndexBitWidth); 1332 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1333 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1334 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1335 KnownBits ScalingFactor(IndexBitWidth); 1336 // Multiply by current sizeof type. 1337 // &A[i] == A + i * sizeof(*A[i]). 1338 if (IndexTypeSize.isScalable()) { 1339 // For scalable types the only thing we know about sizeof is 1340 // that this is a multiple of the minimum size. 1341 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1342 } else if (IndexBits.isConstant()) { 1343 APInt IndexConst = IndexBits.getConstant(); 1344 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1345 IndexConst *= ScalingFactor; 1346 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1347 continue; 1348 } else { 1349 ScalingFactor.Zero = ~TypeSizeInBytes; 1350 ScalingFactor.One = TypeSizeInBytes; 1351 } 1352 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1353 1354 // If the offsets have a different width from the pointer, according 1355 // to the language reference we need to sign-extend or truncate them 1356 // to the width of the pointer. 1357 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1358 1359 // Note that inbounds does *not* guarantee nsw for the addition, as only 1360 // the offset is signed, while the base address is unsigned. 1361 Known = KnownBits::computeForAddSub( 1362 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1363 } 1364 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1365 KnownBits Index(BitWidth); 1366 Index.Zero = ~AccConstIndices; 1367 Index.One = AccConstIndices; 1368 Known = KnownBits::computeForAddSub( 1369 /*Add=*/true, /*NSW=*/false, Known, Index); 1370 } 1371 break; 1372 } 1373 case Instruction::PHI: { 1374 const PHINode *P = cast<PHINode>(I); 1375 // Handle the case of a simple two-predecessor recurrence PHI. 1376 // There's a lot more that could theoretically be done here, but 1377 // this is sufficient to catch some interesting cases. 1378 if (P->getNumIncomingValues() == 2) { 1379 for (unsigned i = 0; i != 2; ++i) { 1380 Value *L = P->getIncomingValue(i); 1381 Value *R = P->getIncomingValue(!i); 1382 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1383 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1384 Operator *LU = dyn_cast<Operator>(L); 1385 if (!LU) 1386 continue; 1387 unsigned Opcode = LU->getOpcode(); 1388 // Check for operations that have the property that if 1389 // both their operands have low zero bits, the result 1390 // will have low zero bits. 1391 if (Opcode == Instruction::Add || 1392 Opcode == Instruction::Sub || 1393 Opcode == Instruction::And || 1394 Opcode == Instruction::Or || 1395 Opcode == Instruction::Mul) { 1396 Value *LL = LU->getOperand(0); 1397 Value *LR = LU->getOperand(1); 1398 // Find a recurrence. 1399 if (LL == I) 1400 L = LR; 1401 else if (LR == I) 1402 L = LL; 1403 else 1404 continue; // Check for recurrence with L and R flipped. 1405 1406 // Change the context instruction to the "edge" that flows into the 1407 // phi. This is important because that is where the value is actually 1408 // "evaluated" even though it is used later somewhere else. (see also 1409 // D69571). 1410 Query RecQ = Q; 1411 1412 // Ok, we have a PHI of the form L op= R. Check for low 1413 // zero bits. 1414 RecQ.CxtI = RInst; 1415 computeKnownBits(R, Known2, Depth + 1, RecQ); 1416 1417 // We need to take the minimum number of known bits 1418 KnownBits Known3(BitWidth); 1419 RecQ.CxtI = LInst; 1420 computeKnownBits(L, Known3, Depth + 1, RecQ); 1421 1422 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1423 Known3.countMinTrailingZeros())); 1424 1425 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1426 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1427 // If initial value of recurrence is nonnegative, and we are adding 1428 // a nonnegative number with nsw, the result can only be nonnegative 1429 // or poison value regardless of the number of times we execute the 1430 // add in phi recurrence. If initial value is negative and we are 1431 // adding a negative number with nsw, the result can only be 1432 // negative or poison value. Similar arguments apply to sub and mul. 1433 // 1434 // (add non-negative, non-negative) --> non-negative 1435 // (add negative, negative) --> negative 1436 if (Opcode == Instruction::Add) { 1437 if (Known2.isNonNegative() && Known3.isNonNegative()) 1438 Known.makeNonNegative(); 1439 else if (Known2.isNegative() && Known3.isNegative()) 1440 Known.makeNegative(); 1441 } 1442 1443 // (sub nsw non-negative, negative) --> non-negative 1444 // (sub nsw negative, non-negative) --> negative 1445 else if (Opcode == Instruction::Sub && LL == I) { 1446 if (Known2.isNonNegative() && Known3.isNegative()) 1447 Known.makeNonNegative(); 1448 else if (Known2.isNegative() && Known3.isNonNegative()) 1449 Known.makeNegative(); 1450 } 1451 1452 // (mul nsw non-negative, non-negative) --> non-negative 1453 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1454 Known3.isNonNegative()) 1455 Known.makeNonNegative(); 1456 } 1457 1458 break; 1459 } 1460 } 1461 } 1462 1463 // Unreachable blocks may have zero-operand PHI nodes. 1464 if (P->getNumIncomingValues() == 0) 1465 break; 1466 1467 // Otherwise take the unions of the known bit sets of the operands, 1468 // taking conservative care to avoid excessive recursion. 1469 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1470 // Skip if every incoming value references to ourself. 1471 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1472 break; 1473 1474 Known.Zero.setAllBits(); 1475 Known.One.setAllBits(); 1476 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1477 Value *IncValue = P->getIncomingValue(u); 1478 // Skip direct self references. 1479 if (IncValue == P) continue; 1480 1481 // Change the context instruction to the "edge" that flows into the 1482 // phi. This is important because that is where the value is actually 1483 // "evaluated" even though it is used later somewhere else. (see also 1484 // D69571). 1485 Query RecQ = Q; 1486 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1487 1488 Known2 = KnownBits(BitWidth); 1489 // Recurse, but cap the recursion to one level, because we don't 1490 // want to waste time spinning around in loops. 1491 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1492 Known = KnownBits::commonBits(Known, Known2); 1493 // If all bits have been ruled out, there's no need to check 1494 // more operands. 1495 if (Known.isUnknown()) 1496 break; 1497 } 1498 } 1499 break; 1500 } 1501 case Instruction::Call: 1502 case Instruction::Invoke: 1503 // If range metadata is attached to this call, set known bits from that, 1504 // and then intersect with known bits based on other properties of the 1505 // function. 1506 if (MDNode *MD = 1507 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1508 computeKnownBitsFromRangeMetadata(*MD, Known); 1509 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1510 computeKnownBits(RV, Known2, Depth + 1, Q); 1511 Known.Zero |= Known2.Zero; 1512 Known.One |= Known2.One; 1513 } 1514 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1515 switch (II->getIntrinsicID()) { 1516 default: break; 1517 case Intrinsic::abs: { 1518 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1519 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1520 Known = Known2.abs(IntMinIsPoison); 1521 break; 1522 } 1523 case Intrinsic::bitreverse: 1524 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1525 Known.Zero |= Known2.Zero.reverseBits(); 1526 Known.One |= Known2.One.reverseBits(); 1527 break; 1528 case Intrinsic::bswap: 1529 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1530 Known.Zero |= Known2.Zero.byteSwap(); 1531 Known.One |= Known2.One.byteSwap(); 1532 break; 1533 case Intrinsic::ctlz: { 1534 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1535 // If we have a known 1, its position is our upper bound. 1536 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1537 // If this call is undefined for 0, the result will be less than 2^n. 1538 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1539 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1540 unsigned LowBits = Log2_32(PossibleLZ)+1; 1541 Known.Zero.setBitsFrom(LowBits); 1542 break; 1543 } 1544 case Intrinsic::cttz: { 1545 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1546 // If we have a known 1, its position is our upper bound. 1547 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1548 // If this call is undefined for 0, the result will be less than 2^n. 1549 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1550 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1551 unsigned LowBits = Log2_32(PossibleTZ)+1; 1552 Known.Zero.setBitsFrom(LowBits); 1553 break; 1554 } 1555 case Intrinsic::ctpop: { 1556 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1557 // We can bound the space the count needs. Also, bits known to be zero 1558 // can't contribute to the population. 1559 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1560 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1561 Known.Zero.setBitsFrom(LowBits); 1562 // TODO: we could bound KnownOne using the lower bound on the number 1563 // of bits which might be set provided by popcnt KnownOne2. 1564 break; 1565 } 1566 case Intrinsic::fshr: 1567 case Intrinsic::fshl: { 1568 const APInt *SA; 1569 if (!match(I->getOperand(2), m_APInt(SA))) 1570 break; 1571 1572 // Normalize to funnel shift left. 1573 uint64_t ShiftAmt = SA->urem(BitWidth); 1574 if (II->getIntrinsicID() == Intrinsic::fshr) 1575 ShiftAmt = BitWidth - ShiftAmt; 1576 1577 KnownBits Known3(BitWidth); 1578 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1579 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1580 1581 Known.Zero = 1582 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1583 Known.One = 1584 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1585 break; 1586 } 1587 case Intrinsic::uadd_sat: 1588 case Intrinsic::usub_sat: { 1589 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1590 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1591 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1592 1593 // Add: Leading ones of either operand are preserved. 1594 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1595 // as leading zeros in the result. 1596 unsigned LeadingKnown; 1597 if (IsAdd) 1598 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1599 Known2.countMinLeadingOnes()); 1600 else 1601 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1602 Known2.countMinLeadingOnes()); 1603 1604 Known = KnownBits::computeForAddSub( 1605 IsAdd, /* NSW */ false, Known, Known2); 1606 1607 // We select between the operation result and all-ones/zero 1608 // respectively, so we can preserve known ones/zeros. 1609 if (IsAdd) { 1610 Known.One.setHighBits(LeadingKnown); 1611 Known.Zero.clearAllBits(); 1612 } else { 1613 Known.Zero.setHighBits(LeadingKnown); 1614 Known.One.clearAllBits(); 1615 } 1616 break; 1617 } 1618 case Intrinsic::umin: 1619 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1620 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1621 Known = KnownBits::umin(Known, Known2); 1622 break; 1623 case Intrinsic::umax: 1624 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1625 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1626 Known = KnownBits::umax(Known, Known2); 1627 break; 1628 case Intrinsic::smin: 1629 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1630 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1631 Known = KnownBits::smin(Known, Known2); 1632 break; 1633 case Intrinsic::smax: 1634 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1635 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1636 Known = KnownBits::smax(Known, Known2); 1637 break; 1638 case Intrinsic::x86_sse42_crc32_64_64: 1639 Known.Zero.setBitsFrom(32); 1640 break; 1641 } 1642 } 1643 break; 1644 case Instruction::ShuffleVector: { 1645 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1646 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1647 if (!Shuf) { 1648 Known.resetAll(); 1649 return; 1650 } 1651 // For undef elements, we don't know anything about the common state of 1652 // the shuffle result. 1653 APInt DemandedLHS, DemandedRHS; 1654 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1655 Known.resetAll(); 1656 return; 1657 } 1658 Known.One.setAllBits(); 1659 Known.Zero.setAllBits(); 1660 if (!!DemandedLHS) { 1661 const Value *LHS = Shuf->getOperand(0); 1662 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1663 // If we don't know any bits, early out. 1664 if (Known.isUnknown()) 1665 break; 1666 } 1667 if (!!DemandedRHS) { 1668 const Value *RHS = Shuf->getOperand(1); 1669 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1670 Known = KnownBits::commonBits(Known, Known2); 1671 } 1672 break; 1673 } 1674 case Instruction::InsertElement: { 1675 const Value *Vec = I->getOperand(0); 1676 const Value *Elt = I->getOperand(1); 1677 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1678 // Early out if the index is non-constant or out-of-range. 1679 unsigned NumElts = DemandedElts.getBitWidth(); 1680 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1681 Known.resetAll(); 1682 return; 1683 } 1684 Known.One.setAllBits(); 1685 Known.Zero.setAllBits(); 1686 unsigned EltIdx = CIdx->getZExtValue(); 1687 // Do we demand the inserted element? 1688 if (DemandedElts[EltIdx]) { 1689 computeKnownBits(Elt, Known, Depth + 1, Q); 1690 // If we don't know any bits, early out. 1691 if (Known.isUnknown()) 1692 break; 1693 } 1694 // We don't need the base vector element that has been inserted. 1695 APInt DemandedVecElts = DemandedElts; 1696 DemandedVecElts.clearBit(EltIdx); 1697 if (!!DemandedVecElts) { 1698 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1699 Known = KnownBits::commonBits(Known, Known2); 1700 } 1701 break; 1702 } 1703 case Instruction::ExtractElement: { 1704 // Look through extract element. If the index is non-constant or 1705 // out-of-range demand all elements, otherwise just the extracted element. 1706 const Value *Vec = I->getOperand(0); 1707 const Value *Idx = I->getOperand(1); 1708 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1709 if (isa<ScalableVectorType>(Vec->getType())) { 1710 // FIXME: there's probably *something* we can do with scalable vectors 1711 Known.resetAll(); 1712 break; 1713 } 1714 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1715 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1716 if (CIdx && CIdx->getValue().ult(NumElts)) 1717 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1718 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1719 break; 1720 } 1721 case Instruction::ExtractValue: 1722 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1723 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1724 if (EVI->getNumIndices() != 1) break; 1725 if (EVI->getIndices()[0] == 0) { 1726 switch (II->getIntrinsicID()) { 1727 default: break; 1728 case Intrinsic::uadd_with_overflow: 1729 case Intrinsic::sadd_with_overflow: 1730 computeKnownBitsAddSub(true, II->getArgOperand(0), 1731 II->getArgOperand(1), false, DemandedElts, 1732 Known, Known2, Depth, Q); 1733 break; 1734 case Intrinsic::usub_with_overflow: 1735 case Intrinsic::ssub_with_overflow: 1736 computeKnownBitsAddSub(false, II->getArgOperand(0), 1737 II->getArgOperand(1), false, DemandedElts, 1738 Known, Known2, Depth, Q); 1739 break; 1740 case Intrinsic::umul_with_overflow: 1741 case Intrinsic::smul_with_overflow: 1742 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1743 DemandedElts, Known, Known2, Depth, Q); 1744 break; 1745 } 1746 } 1747 } 1748 break; 1749 case Instruction::Freeze: 1750 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1751 Depth + 1)) 1752 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1753 break; 1754 } 1755 } 1756 1757 /// Determine which bits of V are known to be either zero or one and return 1758 /// them. 1759 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1760 unsigned Depth, const Query &Q) { 1761 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1762 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1763 return Known; 1764 } 1765 1766 /// Determine which bits of V are known to be either zero or one and return 1767 /// them. 1768 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1769 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1770 computeKnownBits(V, Known, Depth, Q); 1771 return Known; 1772 } 1773 1774 /// Determine which bits of V are known to be either zero or one and return 1775 /// them in the Known bit set. 1776 /// 1777 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1778 /// we cannot optimize based on the assumption that it is zero without changing 1779 /// it to be an explicit zero. If we don't change it to zero, other code could 1780 /// optimized based on the contradictory assumption that it is non-zero. 1781 /// Because instcombine aggressively folds operations with undef args anyway, 1782 /// this won't lose us code quality. 1783 /// 1784 /// This function is defined on values with integer type, values with pointer 1785 /// type, and vectors of integers. In the case 1786 /// where V is a vector, known zero, and known one values are the 1787 /// same width as the vector element, and the bit is set only if it is true 1788 /// for all of the demanded elements in the vector specified by DemandedElts. 1789 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1790 KnownBits &Known, unsigned Depth, const Query &Q) { 1791 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1792 // No demanded elts or V is a scalable vector, better to assume we don't 1793 // know anything. 1794 Known.resetAll(); 1795 return; 1796 } 1797 1798 assert(V && "No Value?"); 1799 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1800 1801 #ifndef NDEBUG 1802 Type *Ty = V->getType(); 1803 unsigned BitWidth = Known.getBitWidth(); 1804 1805 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1806 "Not integer or pointer type!"); 1807 1808 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1809 assert( 1810 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1811 "DemandedElt width should equal the fixed vector number of elements"); 1812 } else { 1813 assert(DemandedElts == APInt(1, 1) && 1814 "DemandedElt width should be 1 for scalars"); 1815 } 1816 1817 Type *ScalarTy = Ty->getScalarType(); 1818 if (ScalarTy->isPointerTy()) { 1819 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1820 "V and Known should have same BitWidth"); 1821 } else { 1822 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1823 "V and Known should have same BitWidth"); 1824 } 1825 #endif 1826 1827 const APInt *C; 1828 if (match(V, m_APInt(C))) { 1829 // We know all of the bits for a scalar constant or a splat vector constant! 1830 Known.One = *C; 1831 Known.Zero = ~Known.One; 1832 return; 1833 } 1834 // Null and aggregate-zero are all-zeros. 1835 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1836 Known.setAllZero(); 1837 return; 1838 } 1839 // Handle a constant vector by taking the intersection of the known bits of 1840 // each element. 1841 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1842 // We know that CDV must be a vector of integers. Take the intersection of 1843 // each element. 1844 Known.Zero.setAllBits(); Known.One.setAllBits(); 1845 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1846 if (!DemandedElts[i]) 1847 continue; 1848 APInt Elt = CDV->getElementAsAPInt(i); 1849 Known.Zero &= ~Elt; 1850 Known.One &= Elt; 1851 } 1852 return; 1853 } 1854 1855 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1856 // We know that CV must be a vector of integers. Take the intersection of 1857 // each element. 1858 Known.Zero.setAllBits(); Known.One.setAllBits(); 1859 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1860 if (!DemandedElts[i]) 1861 continue; 1862 Constant *Element = CV->getAggregateElement(i); 1863 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1864 if (!ElementCI) { 1865 Known.resetAll(); 1866 return; 1867 } 1868 const APInt &Elt = ElementCI->getValue(); 1869 Known.Zero &= ~Elt; 1870 Known.One &= Elt; 1871 } 1872 return; 1873 } 1874 1875 // Start out not knowing anything. 1876 Known.resetAll(); 1877 1878 // We can't imply anything about undefs. 1879 if (isa<UndefValue>(V)) 1880 return; 1881 1882 // There's no point in looking through other users of ConstantData for 1883 // assumptions. Confirm that we've handled them all. 1884 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1885 1886 // All recursive calls that increase depth must come after this. 1887 if (Depth == MaxAnalysisRecursionDepth) 1888 return; 1889 1890 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1891 // the bits of its aliasee. 1892 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1893 if (!GA->isInterposable()) 1894 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1895 return; 1896 } 1897 1898 if (const Operator *I = dyn_cast<Operator>(V)) 1899 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1900 1901 // Aligned pointers have trailing zeros - refine Known.Zero set 1902 if (isa<PointerType>(V->getType())) { 1903 Align Alignment = V->getPointerAlignment(Q.DL); 1904 Known.Zero.setLowBits(Log2(Alignment)); 1905 } 1906 1907 // computeKnownBitsFromAssume strictly refines Known. 1908 // Therefore, we run them after computeKnownBitsFromOperator. 1909 1910 // Check whether a nearby assume intrinsic can determine some known bits. 1911 computeKnownBitsFromAssume(V, Known, Depth, Q); 1912 1913 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1914 } 1915 1916 /// Return true if the given value is known to have exactly one 1917 /// bit set when defined. For vectors return true if every element is known to 1918 /// be a power of two when defined. Supports values with integer or pointer 1919 /// types and vectors of integers. 1920 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1921 const Query &Q) { 1922 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1923 1924 // Attempt to match against constants. 1925 if (OrZero && match(V, m_Power2OrZero())) 1926 return true; 1927 if (match(V, m_Power2())) 1928 return true; 1929 1930 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1931 // it is shifted off the end then the result is undefined. 1932 if (match(V, m_Shl(m_One(), m_Value()))) 1933 return true; 1934 1935 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1936 // the bottom. If it is shifted off the bottom then the result is undefined. 1937 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1938 return true; 1939 1940 // The remaining tests are all recursive, so bail out if we hit the limit. 1941 if (Depth++ == MaxAnalysisRecursionDepth) 1942 return false; 1943 1944 Value *X = nullptr, *Y = nullptr; 1945 // A shift left or a logical shift right of a power of two is a power of two 1946 // or zero. 1947 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1948 match(V, m_LShr(m_Value(X), m_Value())))) 1949 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1950 1951 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1952 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1953 1954 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1955 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1956 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1957 1958 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1959 // A power of two and'd with anything is a power of two or zero. 1960 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1961 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1962 return true; 1963 // X & (-X) is always a power of two or zero. 1964 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1965 return true; 1966 return false; 1967 } 1968 1969 // Adding a power-of-two or zero to the same power-of-two or zero yields 1970 // either the original power-of-two, a larger power-of-two or zero. 1971 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1972 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1973 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1974 Q.IIQ.hasNoSignedWrap(VOBO)) { 1975 if (match(X, m_And(m_Specific(Y), m_Value())) || 1976 match(X, m_And(m_Value(), m_Specific(Y)))) 1977 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1978 return true; 1979 if (match(Y, m_And(m_Specific(X), m_Value())) || 1980 match(Y, m_And(m_Value(), m_Specific(X)))) 1981 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1982 return true; 1983 1984 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1985 KnownBits LHSBits(BitWidth); 1986 computeKnownBits(X, LHSBits, Depth, Q); 1987 1988 KnownBits RHSBits(BitWidth); 1989 computeKnownBits(Y, RHSBits, Depth, Q); 1990 // If i8 V is a power of two or zero: 1991 // ZeroBits: 1 1 1 0 1 1 1 1 1992 // ~ZeroBits: 0 0 0 1 0 0 0 0 1993 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1994 // If OrZero isn't set, we cannot give back a zero result. 1995 // Make sure either the LHS or RHS has a bit set. 1996 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1997 return true; 1998 } 1999 } 2000 2001 // An exact divide or right shift can only shift off zero bits, so the result 2002 // is a power of two only if the first operand is a power of two and not 2003 // copying a sign bit (sdiv int_min, 2). 2004 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2005 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2006 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2007 Depth, Q); 2008 } 2009 2010 return false; 2011 } 2012 2013 /// Test whether a GEP's result is known to be non-null. 2014 /// 2015 /// Uses properties inherent in a GEP to try to determine whether it is known 2016 /// to be non-null. 2017 /// 2018 /// Currently this routine does not support vector GEPs. 2019 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2020 const Query &Q) { 2021 const Function *F = nullptr; 2022 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2023 F = I->getFunction(); 2024 2025 if (!GEP->isInBounds() || 2026 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2027 return false; 2028 2029 // FIXME: Support vector-GEPs. 2030 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2031 2032 // If the base pointer is non-null, we cannot walk to a null address with an 2033 // inbounds GEP in address space zero. 2034 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2035 return true; 2036 2037 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2038 // If so, then the GEP cannot produce a null pointer, as doing so would 2039 // inherently violate the inbounds contract within address space zero. 2040 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2041 GTI != GTE; ++GTI) { 2042 // Struct types are easy -- they must always be indexed by a constant. 2043 if (StructType *STy = GTI.getStructTypeOrNull()) { 2044 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2045 unsigned ElementIdx = OpC->getZExtValue(); 2046 const StructLayout *SL = Q.DL.getStructLayout(STy); 2047 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2048 if (ElementOffset > 0) 2049 return true; 2050 continue; 2051 } 2052 2053 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2054 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2055 continue; 2056 2057 // Fast path the constant operand case both for efficiency and so we don't 2058 // increment Depth when just zipping down an all-constant GEP. 2059 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2060 if (!OpC->isZero()) 2061 return true; 2062 continue; 2063 } 2064 2065 // We post-increment Depth here because while isKnownNonZero increments it 2066 // as well, when we pop back up that increment won't persist. We don't want 2067 // to recurse 10k times just because we have 10k GEP operands. We don't 2068 // bail completely out because we want to handle constant GEPs regardless 2069 // of depth. 2070 if (Depth++ >= MaxAnalysisRecursionDepth) 2071 continue; 2072 2073 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2074 return true; 2075 } 2076 2077 return false; 2078 } 2079 2080 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2081 const Instruction *CtxI, 2082 const DominatorTree *DT) { 2083 if (isa<Constant>(V)) 2084 return false; 2085 2086 if (!CtxI || !DT) 2087 return false; 2088 2089 unsigned NumUsesExplored = 0; 2090 for (auto *U : V->users()) { 2091 // Avoid massive lists 2092 if (NumUsesExplored >= DomConditionsMaxUses) 2093 break; 2094 NumUsesExplored++; 2095 2096 // If the value is used as an argument to a call or invoke, then argument 2097 // attributes may provide an answer about null-ness. 2098 if (const auto *CB = dyn_cast<CallBase>(U)) 2099 if (auto *CalledFunc = CB->getCalledFunction()) 2100 for (const Argument &Arg : CalledFunc->args()) 2101 if (CB->getArgOperand(Arg.getArgNo()) == V && 2102 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2103 return true; 2104 2105 // If the value is used as a load/store, then the pointer must be non null. 2106 if (V == getLoadStorePointerOperand(U)) { 2107 const Instruction *I = cast<Instruction>(U); 2108 if (!NullPointerIsDefined(I->getFunction(), 2109 V->getType()->getPointerAddressSpace()) && 2110 DT->dominates(I, CtxI)) 2111 return true; 2112 } 2113 2114 // Consider only compare instructions uniquely controlling a branch 2115 CmpInst::Predicate Pred; 2116 if (!match(const_cast<User *>(U), 2117 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2118 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2119 continue; 2120 2121 SmallVector<const User *, 4> WorkList; 2122 SmallPtrSet<const User *, 4> Visited; 2123 for (auto *CmpU : U->users()) { 2124 assert(WorkList.empty() && "Should be!"); 2125 if (Visited.insert(CmpU).second) 2126 WorkList.push_back(CmpU); 2127 2128 while (!WorkList.empty()) { 2129 auto *Curr = WorkList.pop_back_val(); 2130 2131 // If a user is an AND, add all its users to the work list. We only 2132 // propagate "pred != null" condition through AND because it is only 2133 // correct to assume that all conditions of AND are met in true branch. 2134 // TODO: Support similar logic of OR and EQ predicate? 2135 if (Pred == ICmpInst::ICMP_NE) 2136 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2137 if (BO->getOpcode() == Instruction::And) { 2138 for (auto *BOU : BO->users()) 2139 if (Visited.insert(BOU).second) 2140 WorkList.push_back(BOU); 2141 continue; 2142 } 2143 2144 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2145 assert(BI->isConditional() && "uses a comparison!"); 2146 2147 BasicBlock *NonNullSuccessor = 2148 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2149 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2150 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2151 return true; 2152 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2153 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2154 return true; 2155 } 2156 } 2157 } 2158 } 2159 2160 return false; 2161 } 2162 2163 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2164 /// ensure that the value it's attached to is never Value? 'RangeType' is 2165 /// is the type of the value described by the range. 2166 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2167 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2168 assert(NumRanges >= 1); 2169 for (unsigned i = 0; i < NumRanges; ++i) { 2170 ConstantInt *Lower = 2171 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2172 ConstantInt *Upper = 2173 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2174 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2175 if (Range.contains(Value)) 2176 return false; 2177 } 2178 return true; 2179 } 2180 2181 /// Return true if the given value is known to be non-zero when defined. For 2182 /// vectors, return true if every demanded element is known to be non-zero when 2183 /// defined. For pointers, if the context instruction and dominator tree are 2184 /// specified, perform context-sensitive analysis and return true if the 2185 /// pointer couldn't possibly be null at the specified instruction. 2186 /// Supports values with integer or pointer type and vectors of integers. 2187 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2188 const Query &Q) { 2189 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2190 // vector 2191 if (isa<ScalableVectorType>(V->getType())) 2192 return false; 2193 2194 if (auto *C = dyn_cast<Constant>(V)) { 2195 if (C->isNullValue()) 2196 return false; 2197 if (isa<ConstantInt>(C)) 2198 // Must be non-zero due to null test above. 2199 return true; 2200 2201 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2202 // See the comment for IntToPtr/PtrToInt instructions below. 2203 if (CE->getOpcode() == Instruction::IntToPtr || 2204 CE->getOpcode() == Instruction::PtrToInt) 2205 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2206 .getFixedSize() <= 2207 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2208 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2209 } 2210 2211 // For constant vectors, check that all elements are undefined or known 2212 // non-zero to determine that the whole vector is known non-zero. 2213 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2214 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2215 if (!DemandedElts[i]) 2216 continue; 2217 Constant *Elt = C->getAggregateElement(i); 2218 if (!Elt || Elt->isNullValue()) 2219 return false; 2220 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2221 return false; 2222 } 2223 return true; 2224 } 2225 2226 // A global variable in address space 0 is non null unless extern weak 2227 // or an absolute symbol reference. Other address spaces may have null as a 2228 // valid address for a global, so we can't assume anything. 2229 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2230 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2231 GV->getType()->getAddressSpace() == 0) 2232 return true; 2233 } else 2234 return false; 2235 } 2236 2237 if (auto *I = dyn_cast<Instruction>(V)) { 2238 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2239 // If the possible ranges don't contain zero, then the value is 2240 // definitely non-zero. 2241 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2242 const APInt ZeroValue(Ty->getBitWidth(), 0); 2243 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2244 return true; 2245 } 2246 } 2247 } 2248 2249 if (isKnownNonZeroFromAssume(V, Q)) 2250 return true; 2251 2252 // Some of the tests below are recursive, so bail out if we hit the limit. 2253 if (Depth++ >= MaxAnalysisRecursionDepth) 2254 return false; 2255 2256 // Check for pointer simplifications. 2257 2258 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2259 // Alloca never returns null, malloc might. 2260 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2261 return true; 2262 2263 // A byval, inalloca may not be null in a non-default addres space. A 2264 // nonnull argument is assumed never 0. 2265 if (const Argument *A = dyn_cast<Argument>(V)) { 2266 if (((A->hasPassPointeeByValueCopyAttr() && 2267 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2268 A->hasNonNullAttr())) 2269 return true; 2270 } 2271 2272 // A Load tagged with nonnull metadata is never null. 2273 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2274 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2275 return true; 2276 2277 if (const auto *Call = dyn_cast<CallBase>(V)) { 2278 if (Call->isReturnNonNull()) 2279 return true; 2280 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2281 return isKnownNonZero(RP, Depth, Q); 2282 } 2283 } 2284 2285 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2286 return true; 2287 2288 // Check for recursive pointer simplifications. 2289 if (V->getType()->isPointerTy()) { 2290 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2291 // do not alter the value, or at least not the nullness property of the 2292 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2293 // 2294 // Note that we have to take special care to avoid looking through 2295 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2296 // as casts that can alter the value, e.g., AddrSpaceCasts. 2297 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2298 return isGEPKnownNonNull(GEP, Depth, Q); 2299 2300 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2301 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2302 2303 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2304 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2305 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2306 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2307 } 2308 2309 // Similar to int2ptr above, we can look through ptr2int here if the cast 2310 // is a no-op or an extend and not a truncate. 2311 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2312 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2313 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2314 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2315 2316 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2317 2318 // X | Y != 0 if X != 0 or Y != 0. 2319 Value *X = nullptr, *Y = nullptr; 2320 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2321 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2322 isKnownNonZero(Y, DemandedElts, Depth, Q); 2323 2324 // ext X != 0 if X != 0. 2325 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2326 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2327 2328 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2329 // if the lowest bit is shifted off the end. 2330 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2331 // shl nuw can't remove any non-zero bits. 2332 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2333 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2334 return isKnownNonZero(X, Depth, Q); 2335 2336 KnownBits Known(BitWidth); 2337 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2338 if (Known.One[0]) 2339 return true; 2340 } 2341 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2342 // defined if the sign bit is shifted off the end. 2343 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2344 // shr exact can only shift out zero bits. 2345 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2346 if (BO->isExact()) 2347 return isKnownNonZero(X, Depth, Q); 2348 2349 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2350 if (Known.isNegative()) 2351 return true; 2352 2353 // If the shifter operand is a constant, and all of the bits shifted 2354 // out are known to be zero, and X is known non-zero then at least one 2355 // non-zero bit must remain. 2356 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2357 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2358 // Is there a known one in the portion not shifted out? 2359 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2360 return true; 2361 // Are all the bits to be shifted out known zero? 2362 if (Known.countMinTrailingZeros() >= ShiftVal) 2363 return isKnownNonZero(X, DemandedElts, Depth, Q); 2364 } 2365 } 2366 // div exact can only produce a zero if the dividend is zero. 2367 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2368 return isKnownNonZero(X, DemandedElts, Depth, Q); 2369 } 2370 // X + Y. 2371 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2372 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2373 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2374 2375 // If X and Y are both non-negative (as signed values) then their sum is not 2376 // zero unless both X and Y are zero. 2377 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2378 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2379 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2380 return true; 2381 2382 // If X and Y are both negative (as signed values) then their sum is not 2383 // zero unless both X and Y equal INT_MIN. 2384 if (XKnown.isNegative() && YKnown.isNegative()) { 2385 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2386 // The sign bit of X is set. If some other bit is set then X is not equal 2387 // to INT_MIN. 2388 if (XKnown.One.intersects(Mask)) 2389 return true; 2390 // The sign bit of Y is set. If some other bit is set then Y is not equal 2391 // to INT_MIN. 2392 if (YKnown.One.intersects(Mask)) 2393 return true; 2394 } 2395 2396 // The sum of a non-negative number and a power of two is not zero. 2397 if (XKnown.isNonNegative() && 2398 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2399 return true; 2400 if (YKnown.isNonNegative() && 2401 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2402 return true; 2403 } 2404 // X * Y. 2405 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2406 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2407 // If X and Y are non-zero then so is X * Y as long as the multiplication 2408 // does not overflow. 2409 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2410 isKnownNonZero(X, DemandedElts, Depth, Q) && 2411 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2412 return true; 2413 } 2414 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2415 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2416 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2417 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2418 return true; 2419 } 2420 // PHI 2421 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2422 // Try and detect a recurrence that monotonically increases from a 2423 // starting value, as these are common as induction variables. 2424 if (PN->getNumIncomingValues() == 2) { 2425 Value *Start = PN->getIncomingValue(0); 2426 Value *Induction = PN->getIncomingValue(1); 2427 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2428 std::swap(Start, Induction); 2429 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2430 if (!C->isZero() && !C->isNegative()) { 2431 ConstantInt *X; 2432 if (Q.IIQ.UseInstrInfo && 2433 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2434 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2435 !X->isNegative()) 2436 return true; 2437 } 2438 } 2439 } 2440 // Check if all incoming values are non-zero using recursion. 2441 Query RecQ = Q; 2442 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2443 return llvm::all_of(PN->operands(), [&](const Use &U) { 2444 if (U.get() == PN) 2445 return true; 2446 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2447 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2448 }); 2449 } 2450 // ExtractElement 2451 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2452 const Value *Vec = EEI->getVectorOperand(); 2453 const Value *Idx = EEI->getIndexOperand(); 2454 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2455 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2456 unsigned NumElts = VecTy->getNumElements(); 2457 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2458 if (CIdx && CIdx->getValue().ult(NumElts)) 2459 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2460 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2461 } 2462 } 2463 // Freeze 2464 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2465 auto *Op = FI->getOperand(0); 2466 if (isKnownNonZero(Op, Depth, Q) && 2467 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2468 return true; 2469 } 2470 2471 KnownBits Known(BitWidth); 2472 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2473 return Known.One != 0; 2474 } 2475 2476 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2477 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2478 // vector 2479 if (isa<ScalableVectorType>(V->getType())) 2480 return false; 2481 2482 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2483 APInt DemandedElts = 2484 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2485 return isKnownNonZero(V, DemandedElts, Depth, Q); 2486 } 2487 2488 /// Return true if V2 == V1 + X, where X is known non-zero. 2489 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2490 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2491 if (!BO || BO->getOpcode() != Instruction::Add) 2492 return false; 2493 Value *Op = nullptr; 2494 if (V2 == BO->getOperand(0)) 2495 Op = BO->getOperand(1); 2496 else if (V2 == BO->getOperand(1)) 2497 Op = BO->getOperand(0); 2498 else 2499 return false; 2500 return isKnownNonZero(Op, 0, Q); 2501 } 2502 2503 /// Return true if it is known that V1 != V2. 2504 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2505 if (V1 == V2) 2506 return false; 2507 if (V1->getType() != V2->getType()) 2508 // We can't look through casts yet. 2509 return false; 2510 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2511 return true; 2512 2513 if (V1->getType()->isIntOrIntVectorTy()) { 2514 // Are any known bits in V1 contradictory to known bits in V2? If V1 2515 // has a known zero where V2 has a known one, they must not be equal. 2516 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2517 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2518 2519 if (Known1.Zero.intersects(Known2.One) || 2520 Known2.Zero.intersects(Known1.One)) 2521 return true; 2522 } 2523 return false; 2524 } 2525 2526 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2527 /// simplify operations downstream. Mask is known to be zero for bits that V 2528 /// cannot have. 2529 /// 2530 /// This function is defined on values with integer type, values with pointer 2531 /// type, and vectors of integers. In the case 2532 /// where V is a vector, the mask, known zero, and known one values are the 2533 /// same width as the vector element, and the bit is set only if it is true 2534 /// for all of the elements in the vector. 2535 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2536 const Query &Q) { 2537 KnownBits Known(Mask.getBitWidth()); 2538 computeKnownBits(V, Known, Depth, Q); 2539 return Mask.isSubsetOf(Known.Zero); 2540 } 2541 2542 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2543 // Returns the input and lower/upper bounds. 2544 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2545 const APInt *&CLow, const APInt *&CHigh) { 2546 assert(isa<Operator>(Select) && 2547 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2548 "Input should be a Select!"); 2549 2550 const Value *LHS = nullptr, *RHS = nullptr; 2551 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2552 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2553 return false; 2554 2555 if (!match(RHS, m_APInt(CLow))) 2556 return false; 2557 2558 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2559 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2560 if (getInverseMinMaxFlavor(SPF) != SPF2) 2561 return false; 2562 2563 if (!match(RHS2, m_APInt(CHigh))) 2564 return false; 2565 2566 if (SPF == SPF_SMIN) 2567 std::swap(CLow, CHigh); 2568 2569 In = LHS2; 2570 return CLow->sle(*CHigh); 2571 } 2572 2573 /// For vector constants, loop over the elements and find the constant with the 2574 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2575 /// or if any element was not analyzed; otherwise, return the count for the 2576 /// element with the minimum number of sign bits. 2577 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2578 const APInt &DemandedElts, 2579 unsigned TyBits) { 2580 const auto *CV = dyn_cast<Constant>(V); 2581 if (!CV || !isa<FixedVectorType>(CV->getType())) 2582 return 0; 2583 2584 unsigned MinSignBits = TyBits; 2585 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2586 for (unsigned i = 0; i != NumElts; ++i) { 2587 if (!DemandedElts[i]) 2588 continue; 2589 // If we find a non-ConstantInt, bail out. 2590 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2591 if (!Elt) 2592 return 0; 2593 2594 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2595 } 2596 2597 return MinSignBits; 2598 } 2599 2600 static unsigned ComputeNumSignBitsImpl(const Value *V, 2601 const APInt &DemandedElts, 2602 unsigned Depth, const Query &Q); 2603 2604 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2605 unsigned Depth, const Query &Q) { 2606 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2607 assert(Result > 0 && "At least one sign bit needs to be present!"); 2608 return Result; 2609 } 2610 2611 /// Return the number of times the sign bit of the register is replicated into 2612 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2613 /// (itself), but other cases can give us information. For example, immediately 2614 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2615 /// other, so we return 3. For vectors, return the number of sign bits for the 2616 /// vector element with the minimum number of known sign bits of the demanded 2617 /// elements in the vector specified by DemandedElts. 2618 static unsigned ComputeNumSignBitsImpl(const Value *V, 2619 const APInt &DemandedElts, 2620 unsigned Depth, const Query &Q) { 2621 Type *Ty = V->getType(); 2622 2623 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2624 // vector 2625 if (isa<ScalableVectorType>(Ty)) 2626 return 1; 2627 2628 #ifndef NDEBUG 2629 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2630 2631 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2632 assert( 2633 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2634 "DemandedElt width should equal the fixed vector number of elements"); 2635 } else { 2636 assert(DemandedElts == APInt(1, 1) && 2637 "DemandedElt width should be 1 for scalars"); 2638 } 2639 #endif 2640 2641 // We return the minimum number of sign bits that are guaranteed to be present 2642 // in V, so for undef we have to conservatively return 1. We don't have the 2643 // same behavior for poison though -- that's a FIXME today. 2644 2645 Type *ScalarTy = Ty->getScalarType(); 2646 unsigned TyBits = ScalarTy->isPointerTy() ? 2647 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2648 Q.DL.getTypeSizeInBits(ScalarTy); 2649 2650 unsigned Tmp, Tmp2; 2651 unsigned FirstAnswer = 1; 2652 2653 // Note that ConstantInt is handled by the general computeKnownBits case 2654 // below. 2655 2656 if (Depth == MaxAnalysisRecursionDepth) 2657 return 1; 2658 2659 if (auto *U = dyn_cast<Operator>(V)) { 2660 switch (Operator::getOpcode(V)) { 2661 default: break; 2662 case Instruction::SExt: 2663 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2664 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2665 2666 case Instruction::SDiv: { 2667 const APInt *Denominator; 2668 // sdiv X, C -> adds log(C) sign bits. 2669 if (match(U->getOperand(1), m_APInt(Denominator))) { 2670 2671 // Ignore non-positive denominator. 2672 if (!Denominator->isStrictlyPositive()) 2673 break; 2674 2675 // Calculate the incoming numerator bits. 2676 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2677 2678 // Add floor(log(C)) bits to the numerator bits. 2679 return std::min(TyBits, NumBits + Denominator->logBase2()); 2680 } 2681 break; 2682 } 2683 2684 case Instruction::SRem: { 2685 const APInt *Denominator; 2686 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2687 // positive constant. This let us put a lower bound on the number of sign 2688 // bits. 2689 if (match(U->getOperand(1), m_APInt(Denominator))) { 2690 2691 // Ignore non-positive denominator. 2692 if (!Denominator->isStrictlyPositive()) 2693 break; 2694 2695 // Calculate the incoming numerator bits. SRem by a positive constant 2696 // can't lower the number of sign bits. 2697 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2698 2699 // Calculate the leading sign bit constraints by examining the 2700 // denominator. Given that the denominator is positive, there are two 2701 // cases: 2702 // 2703 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2704 // (1 << ceilLogBase2(C)). 2705 // 2706 // 2. the numerator is negative. Then the result range is (-C,0] and 2707 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2708 // 2709 // Thus a lower bound on the number of sign bits is `TyBits - 2710 // ceilLogBase2(C)`. 2711 2712 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2713 return std::max(NumrBits, ResBits); 2714 } 2715 break; 2716 } 2717 2718 case Instruction::AShr: { 2719 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2720 // ashr X, C -> adds C sign bits. Vectors too. 2721 const APInt *ShAmt; 2722 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2723 if (ShAmt->uge(TyBits)) 2724 break; // Bad shift. 2725 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2726 Tmp += ShAmtLimited; 2727 if (Tmp > TyBits) Tmp = TyBits; 2728 } 2729 return Tmp; 2730 } 2731 case Instruction::Shl: { 2732 const APInt *ShAmt; 2733 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2734 // shl destroys sign bits. 2735 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2736 if (ShAmt->uge(TyBits) || // Bad shift. 2737 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2738 Tmp2 = ShAmt->getZExtValue(); 2739 return Tmp - Tmp2; 2740 } 2741 break; 2742 } 2743 case Instruction::And: 2744 case Instruction::Or: 2745 case Instruction::Xor: // NOT is handled here. 2746 // Logical binary ops preserve the number of sign bits at the worst. 2747 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2748 if (Tmp != 1) { 2749 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2750 FirstAnswer = std::min(Tmp, Tmp2); 2751 // We computed what we know about the sign bits as our first 2752 // answer. Now proceed to the generic code that uses 2753 // computeKnownBits, and pick whichever answer is better. 2754 } 2755 break; 2756 2757 case Instruction::Select: { 2758 // If we have a clamp pattern, we know that the number of sign bits will 2759 // be the minimum of the clamp min/max range. 2760 const Value *X; 2761 const APInt *CLow, *CHigh; 2762 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2763 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2764 2765 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2766 if (Tmp == 1) break; 2767 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2768 return std::min(Tmp, Tmp2); 2769 } 2770 2771 case Instruction::Add: 2772 // Add can have at most one carry bit. Thus we know that the output 2773 // is, at worst, one more bit than the inputs. 2774 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2775 if (Tmp == 1) break; 2776 2777 // Special case decrementing a value (ADD X, -1): 2778 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2779 if (CRHS->isAllOnesValue()) { 2780 KnownBits Known(TyBits); 2781 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2782 2783 // If the input is known to be 0 or 1, the output is 0/-1, which is 2784 // all sign bits set. 2785 if ((Known.Zero | 1).isAllOnesValue()) 2786 return TyBits; 2787 2788 // If we are subtracting one from a positive number, there is no carry 2789 // out of the result. 2790 if (Known.isNonNegative()) 2791 return Tmp; 2792 } 2793 2794 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2795 if (Tmp2 == 1) break; 2796 return std::min(Tmp, Tmp2) - 1; 2797 2798 case Instruction::Sub: 2799 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2800 if (Tmp2 == 1) break; 2801 2802 // Handle NEG. 2803 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2804 if (CLHS->isNullValue()) { 2805 KnownBits Known(TyBits); 2806 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2807 // If the input is known to be 0 or 1, the output is 0/-1, which is 2808 // all sign bits set. 2809 if ((Known.Zero | 1).isAllOnesValue()) 2810 return TyBits; 2811 2812 // If the input is known to be positive (the sign bit is known clear), 2813 // the output of the NEG has the same number of sign bits as the 2814 // input. 2815 if (Known.isNonNegative()) 2816 return Tmp2; 2817 2818 // Otherwise, we treat this like a SUB. 2819 } 2820 2821 // Sub can have at most one carry bit. Thus we know that the output 2822 // is, at worst, one more bit than the inputs. 2823 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2824 if (Tmp == 1) break; 2825 return std::min(Tmp, Tmp2) - 1; 2826 2827 case Instruction::Mul: { 2828 // The output of the Mul can be at most twice the valid bits in the 2829 // inputs. 2830 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2831 if (SignBitsOp0 == 1) break; 2832 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2833 if (SignBitsOp1 == 1) break; 2834 unsigned OutValidBits = 2835 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2836 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2837 } 2838 2839 case Instruction::PHI: { 2840 const PHINode *PN = cast<PHINode>(U); 2841 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2842 // Don't analyze large in-degree PHIs. 2843 if (NumIncomingValues > 4) break; 2844 // Unreachable blocks may have zero-operand PHI nodes. 2845 if (NumIncomingValues == 0) break; 2846 2847 // Take the minimum of all incoming values. This can't infinitely loop 2848 // because of our depth threshold. 2849 Query RecQ = Q; 2850 Tmp = TyBits; 2851 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2852 if (Tmp == 1) return Tmp; 2853 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2854 Tmp = std::min( 2855 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2856 } 2857 return Tmp; 2858 } 2859 2860 case Instruction::Trunc: 2861 // FIXME: it's tricky to do anything useful for this, but it is an 2862 // important case for targets like X86. 2863 break; 2864 2865 case Instruction::ExtractElement: 2866 // Look through extract element. At the moment we keep this simple and 2867 // skip tracking the specific element. But at least we might find 2868 // information valid for all elements of the vector (for example if vector 2869 // is sign extended, shifted, etc). 2870 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2871 2872 case Instruction::ShuffleVector: { 2873 // Collect the minimum number of sign bits that are shared by every vector 2874 // element referenced by the shuffle. 2875 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2876 if (!Shuf) { 2877 // FIXME: Add support for shufflevector constant expressions. 2878 return 1; 2879 } 2880 APInt DemandedLHS, DemandedRHS; 2881 // For undef elements, we don't know anything about the common state of 2882 // the shuffle result. 2883 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2884 return 1; 2885 Tmp = std::numeric_limits<unsigned>::max(); 2886 if (!!DemandedLHS) { 2887 const Value *LHS = Shuf->getOperand(0); 2888 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2889 } 2890 // If we don't know anything, early out and try computeKnownBits 2891 // fall-back. 2892 if (Tmp == 1) 2893 break; 2894 if (!!DemandedRHS) { 2895 const Value *RHS = Shuf->getOperand(1); 2896 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2897 Tmp = std::min(Tmp, Tmp2); 2898 } 2899 // If we don't know anything, early out and try computeKnownBits 2900 // fall-back. 2901 if (Tmp == 1) 2902 break; 2903 assert(Tmp <= Ty->getScalarSizeInBits() && 2904 "Failed to determine minimum sign bits"); 2905 return Tmp; 2906 } 2907 case Instruction::Call: { 2908 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2909 switch (II->getIntrinsicID()) { 2910 default: break; 2911 case Intrinsic::abs: 2912 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2913 if (Tmp == 1) break; 2914 2915 // Absolute value reduces number of sign bits by at most 1. 2916 return Tmp - 1; 2917 } 2918 } 2919 } 2920 } 2921 } 2922 2923 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2924 // use this information. 2925 2926 // If we can examine all elements of a vector constant successfully, we're 2927 // done (we can't do any better than that). If not, keep trying. 2928 if (unsigned VecSignBits = 2929 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2930 return VecSignBits; 2931 2932 KnownBits Known(TyBits); 2933 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2934 2935 // If we know that the sign bit is either zero or one, determine the number of 2936 // identical bits in the top of the input value. 2937 return std::max(FirstAnswer, Known.countMinSignBits()); 2938 } 2939 2940 /// This function computes the integer multiple of Base that equals V. 2941 /// If successful, it returns true and returns the multiple in 2942 /// Multiple. If unsuccessful, it returns false. It looks 2943 /// through SExt instructions only if LookThroughSExt is true. 2944 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2945 bool LookThroughSExt, unsigned Depth) { 2946 assert(V && "No Value?"); 2947 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2948 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2949 2950 Type *T = V->getType(); 2951 2952 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2953 2954 if (Base == 0) 2955 return false; 2956 2957 if (Base == 1) { 2958 Multiple = V; 2959 return true; 2960 } 2961 2962 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2963 Constant *BaseVal = ConstantInt::get(T, Base); 2964 if (CO && CO == BaseVal) { 2965 // Multiple is 1. 2966 Multiple = ConstantInt::get(T, 1); 2967 return true; 2968 } 2969 2970 if (CI && CI->getZExtValue() % Base == 0) { 2971 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2972 return true; 2973 } 2974 2975 if (Depth == MaxAnalysisRecursionDepth) return false; 2976 2977 Operator *I = dyn_cast<Operator>(V); 2978 if (!I) return false; 2979 2980 switch (I->getOpcode()) { 2981 default: break; 2982 case Instruction::SExt: 2983 if (!LookThroughSExt) return false; 2984 // otherwise fall through to ZExt 2985 LLVM_FALLTHROUGH; 2986 case Instruction::ZExt: 2987 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2988 LookThroughSExt, Depth+1); 2989 case Instruction::Shl: 2990 case Instruction::Mul: { 2991 Value *Op0 = I->getOperand(0); 2992 Value *Op1 = I->getOperand(1); 2993 2994 if (I->getOpcode() == Instruction::Shl) { 2995 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2996 if (!Op1CI) return false; 2997 // Turn Op0 << Op1 into Op0 * 2^Op1 2998 APInt Op1Int = Op1CI->getValue(); 2999 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3000 APInt API(Op1Int.getBitWidth(), 0); 3001 API.setBit(BitToSet); 3002 Op1 = ConstantInt::get(V->getContext(), API); 3003 } 3004 3005 Value *Mul0 = nullptr; 3006 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3007 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3008 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3009 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3010 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3011 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3012 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3013 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3014 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3015 3016 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3017 Multiple = ConstantExpr::getMul(MulC, Op1C); 3018 return true; 3019 } 3020 3021 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3022 if (Mul0CI->getValue() == 1) { 3023 // V == Base * Op1, so return Op1 3024 Multiple = Op1; 3025 return true; 3026 } 3027 } 3028 3029 Value *Mul1 = nullptr; 3030 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3031 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3032 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3033 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3034 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3035 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3036 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3037 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3038 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3039 3040 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3041 Multiple = ConstantExpr::getMul(MulC, Op0C); 3042 return true; 3043 } 3044 3045 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3046 if (Mul1CI->getValue() == 1) { 3047 // V == Base * Op0, so return Op0 3048 Multiple = Op0; 3049 return true; 3050 } 3051 } 3052 } 3053 } 3054 3055 // We could not determine if V is a multiple of Base. 3056 return false; 3057 } 3058 3059 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3060 const TargetLibraryInfo *TLI) { 3061 const Function *F = CB.getCalledFunction(); 3062 if (!F) 3063 return Intrinsic::not_intrinsic; 3064 3065 if (F->isIntrinsic()) 3066 return F->getIntrinsicID(); 3067 3068 // We are going to infer semantics of a library function based on mapping it 3069 // to an LLVM intrinsic. Check that the library function is available from 3070 // this callbase and in this environment. 3071 LibFunc Func; 3072 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3073 !CB.onlyReadsMemory()) 3074 return Intrinsic::not_intrinsic; 3075 3076 switch (Func) { 3077 default: 3078 break; 3079 case LibFunc_sin: 3080 case LibFunc_sinf: 3081 case LibFunc_sinl: 3082 return Intrinsic::sin; 3083 case LibFunc_cos: 3084 case LibFunc_cosf: 3085 case LibFunc_cosl: 3086 return Intrinsic::cos; 3087 case LibFunc_exp: 3088 case LibFunc_expf: 3089 case LibFunc_expl: 3090 return Intrinsic::exp; 3091 case LibFunc_exp2: 3092 case LibFunc_exp2f: 3093 case LibFunc_exp2l: 3094 return Intrinsic::exp2; 3095 case LibFunc_log: 3096 case LibFunc_logf: 3097 case LibFunc_logl: 3098 return Intrinsic::log; 3099 case LibFunc_log10: 3100 case LibFunc_log10f: 3101 case LibFunc_log10l: 3102 return Intrinsic::log10; 3103 case LibFunc_log2: 3104 case LibFunc_log2f: 3105 case LibFunc_log2l: 3106 return Intrinsic::log2; 3107 case LibFunc_fabs: 3108 case LibFunc_fabsf: 3109 case LibFunc_fabsl: 3110 return Intrinsic::fabs; 3111 case LibFunc_fmin: 3112 case LibFunc_fminf: 3113 case LibFunc_fminl: 3114 return Intrinsic::minnum; 3115 case LibFunc_fmax: 3116 case LibFunc_fmaxf: 3117 case LibFunc_fmaxl: 3118 return Intrinsic::maxnum; 3119 case LibFunc_copysign: 3120 case LibFunc_copysignf: 3121 case LibFunc_copysignl: 3122 return Intrinsic::copysign; 3123 case LibFunc_floor: 3124 case LibFunc_floorf: 3125 case LibFunc_floorl: 3126 return Intrinsic::floor; 3127 case LibFunc_ceil: 3128 case LibFunc_ceilf: 3129 case LibFunc_ceill: 3130 return Intrinsic::ceil; 3131 case LibFunc_trunc: 3132 case LibFunc_truncf: 3133 case LibFunc_truncl: 3134 return Intrinsic::trunc; 3135 case LibFunc_rint: 3136 case LibFunc_rintf: 3137 case LibFunc_rintl: 3138 return Intrinsic::rint; 3139 case LibFunc_nearbyint: 3140 case LibFunc_nearbyintf: 3141 case LibFunc_nearbyintl: 3142 return Intrinsic::nearbyint; 3143 case LibFunc_round: 3144 case LibFunc_roundf: 3145 case LibFunc_roundl: 3146 return Intrinsic::round; 3147 case LibFunc_roundeven: 3148 case LibFunc_roundevenf: 3149 case LibFunc_roundevenl: 3150 return Intrinsic::roundeven; 3151 case LibFunc_pow: 3152 case LibFunc_powf: 3153 case LibFunc_powl: 3154 return Intrinsic::pow; 3155 case LibFunc_sqrt: 3156 case LibFunc_sqrtf: 3157 case LibFunc_sqrtl: 3158 return Intrinsic::sqrt; 3159 } 3160 3161 return Intrinsic::not_intrinsic; 3162 } 3163 3164 /// Return true if we can prove that the specified FP value is never equal to 3165 /// -0.0. 3166 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3167 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3168 /// the same as +0.0 in floating-point ops. 3169 /// 3170 /// NOTE: this function will need to be revisited when we support non-default 3171 /// rounding modes! 3172 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3173 unsigned Depth) { 3174 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3175 return !CFP->getValueAPF().isNegZero(); 3176 3177 if (Depth == MaxAnalysisRecursionDepth) 3178 return false; 3179 3180 auto *Op = dyn_cast<Operator>(V); 3181 if (!Op) 3182 return false; 3183 3184 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3185 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3186 return true; 3187 3188 // sitofp and uitofp turn into +0.0 for zero. 3189 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3190 return true; 3191 3192 if (auto *Call = dyn_cast<CallInst>(Op)) { 3193 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3194 switch (IID) { 3195 default: 3196 break; 3197 // sqrt(-0.0) = -0.0, no other negative results are possible. 3198 case Intrinsic::sqrt: 3199 case Intrinsic::canonicalize: 3200 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3201 // fabs(x) != -0.0 3202 case Intrinsic::fabs: 3203 return true; 3204 } 3205 } 3206 3207 return false; 3208 } 3209 3210 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3211 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3212 /// bit despite comparing equal. 3213 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3214 const TargetLibraryInfo *TLI, 3215 bool SignBitOnly, 3216 unsigned Depth) { 3217 // TODO: This function does not do the right thing when SignBitOnly is true 3218 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3219 // which flips the sign bits of NaNs. See 3220 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3221 3222 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3223 return !CFP->getValueAPF().isNegative() || 3224 (!SignBitOnly && CFP->getValueAPF().isZero()); 3225 } 3226 3227 // Handle vector of constants. 3228 if (auto *CV = dyn_cast<Constant>(V)) { 3229 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3230 unsigned NumElts = CVFVTy->getNumElements(); 3231 for (unsigned i = 0; i != NumElts; ++i) { 3232 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3233 if (!CFP) 3234 return false; 3235 if (CFP->getValueAPF().isNegative() && 3236 (SignBitOnly || !CFP->getValueAPF().isZero())) 3237 return false; 3238 } 3239 3240 // All non-negative ConstantFPs. 3241 return true; 3242 } 3243 } 3244 3245 if (Depth == MaxAnalysisRecursionDepth) 3246 return false; 3247 3248 const Operator *I = dyn_cast<Operator>(V); 3249 if (!I) 3250 return false; 3251 3252 switch (I->getOpcode()) { 3253 default: 3254 break; 3255 // Unsigned integers are always nonnegative. 3256 case Instruction::UIToFP: 3257 return true; 3258 case Instruction::FMul: 3259 case Instruction::FDiv: 3260 // X * X is always non-negative or a NaN. 3261 // X / X is always exactly 1.0 or a NaN. 3262 if (I->getOperand(0) == I->getOperand(1) && 3263 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3264 return true; 3265 3266 LLVM_FALLTHROUGH; 3267 case Instruction::FAdd: 3268 case Instruction::FRem: 3269 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3270 Depth + 1) && 3271 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3272 Depth + 1); 3273 case Instruction::Select: 3274 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3275 Depth + 1) && 3276 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3277 Depth + 1); 3278 case Instruction::FPExt: 3279 case Instruction::FPTrunc: 3280 // Widening/narrowing never change sign. 3281 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3282 Depth + 1); 3283 case Instruction::ExtractElement: 3284 // Look through extract element. At the moment we keep this simple and skip 3285 // tracking the specific element. But at least we might find information 3286 // valid for all elements of the vector. 3287 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3288 Depth + 1); 3289 case Instruction::Call: 3290 const auto *CI = cast<CallInst>(I); 3291 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3292 switch (IID) { 3293 default: 3294 break; 3295 case Intrinsic::maxnum: { 3296 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3297 auto isPositiveNum = [&](Value *V) { 3298 if (SignBitOnly) { 3299 // With SignBitOnly, this is tricky because the result of 3300 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3301 // a constant strictly greater than 0.0. 3302 const APFloat *C; 3303 return match(V, m_APFloat(C)) && 3304 *C > APFloat::getZero(C->getSemantics()); 3305 } 3306 3307 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3308 // maxnum can't be ordered-less-than-zero. 3309 return isKnownNeverNaN(V, TLI) && 3310 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3311 }; 3312 3313 // TODO: This could be improved. We could also check that neither operand 3314 // has its sign bit set (and at least 1 is not-NAN?). 3315 return isPositiveNum(V0) || isPositiveNum(V1); 3316 } 3317 3318 case Intrinsic::maximum: 3319 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3320 Depth + 1) || 3321 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3322 Depth + 1); 3323 case Intrinsic::minnum: 3324 case Intrinsic::minimum: 3325 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3326 Depth + 1) && 3327 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3328 Depth + 1); 3329 case Intrinsic::exp: 3330 case Intrinsic::exp2: 3331 case Intrinsic::fabs: 3332 return true; 3333 3334 case Intrinsic::sqrt: 3335 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3336 if (!SignBitOnly) 3337 return true; 3338 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3339 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3340 3341 case Intrinsic::powi: 3342 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3343 // powi(x,n) is non-negative if n is even. 3344 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3345 return true; 3346 } 3347 // TODO: This is not correct. Given that exp is an integer, here are the 3348 // ways that pow can return a negative value: 3349 // 3350 // pow(x, exp) --> negative if exp is odd and x is negative. 3351 // pow(-0, exp) --> -inf if exp is negative odd. 3352 // pow(-0, exp) --> -0 if exp is positive odd. 3353 // pow(-inf, exp) --> -0 if exp is negative odd. 3354 // pow(-inf, exp) --> -inf if exp is positive odd. 3355 // 3356 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3357 // but we must return false if x == -0. Unfortunately we do not currently 3358 // have a way of expressing this constraint. See details in 3359 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3360 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3361 Depth + 1); 3362 3363 case Intrinsic::fma: 3364 case Intrinsic::fmuladd: 3365 // x*x+y is non-negative if y is non-negative. 3366 return I->getOperand(0) == I->getOperand(1) && 3367 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3368 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3369 Depth + 1); 3370 } 3371 break; 3372 } 3373 return false; 3374 } 3375 3376 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3377 const TargetLibraryInfo *TLI) { 3378 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3379 } 3380 3381 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3382 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3383 } 3384 3385 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3386 unsigned Depth) { 3387 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3388 3389 // If we're told that infinities won't happen, assume they won't. 3390 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3391 if (FPMathOp->hasNoInfs()) 3392 return true; 3393 3394 // Handle scalar constants. 3395 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3396 return !CFP->isInfinity(); 3397 3398 if (Depth == MaxAnalysisRecursionDepth) 3399 return false; 3400 3401 if (auto *Inst = dyn_cast<Instruction>(V)) { 3402 switch (Inst->getOpcode()) { 3403 case Instruction::Select: { 3404 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3405 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3406 } 3407 case Instruction::SIToFP: 3408 case Instruction::UIToFP: { 3409 // Get width of largest magnitude integer (remove a bit if signed). 3410 // This still works for a signed minimum value because the largest FP 3411 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3412 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3413 if (Inst->getOpcode() == Instruction::SIToFP) 3414 --IntSize; 3415 3416 // If the exponent of the largest finite FP value can hold the largest 3417 // integer, the result of the cast must be finite. 3418 Type *FPTy = Inst->getType()->getScalarType(); 3419 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3420 } 3421 default: 3422 break; 3423 } 3424 } 3425 3426 // try to handle fixed width vector constants 3427 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3428 if (VFVTy && isa<Constant>(V)) { 3429 // For vectors, verify that each element is not infinity. 3430 unsigned NumElts = VFVTy->getNumElements(); 3431 for (unsigned i = 0; i != NumElts; ++i) { 3432 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3433 if (!Elt) 3434 return false; 3435 if (isa<UndefValue>(Elt)) 3436 continue; 3437 auto *CElt = dyn_cast<ConstantFP>(Elt); 3438 if (!CElt || CElt->isInfinity()) 3439 return false; 3440 } 3441 // All elements were confirmed non-infinity or undefined. 3442 return true; 3443 } 3444 3445 // was not able to prove that V never contains infinity 3446 return false; 3447 } 3448 3449 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3450 unsigned Depth) { 3451 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3452 3453 // If we're told that NaNs won't happen, assume they won't. 3454 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3455 if (FPMathOp->hasNoNaNs()) 3456 return true; 3457 3458 // Handle scalar constants. 3459 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3460 return !CFP->isNaN(); 3461 3462 if (Depth == MaxAnalysisRecursionDepth) 3463 return false; 3464 3465 if (auto *Inst = dyn_cast<Instruction>(V)) { 3466 switch (Inst->getOpcode()) { 3467 case Instruction::FAdd: 3468 case Instruction::FSub: 3469 // Adding positive and negative infinity produces NaN. 3470 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3471 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3472 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3473 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3474 3475 case Instruction::FMul: 3476 // Zero multiplied with infinity produces NaN. 3477 // FIXME: If neither side can be zero fmul never produces NaN. 3478 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3479 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3480 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3481 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3482 3483 case Instruction::FDiv: 3484 case Instruction::FRem: 3485 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3486 return false; 3487 3488 case Instruction::Select: { 3489 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3490 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3491 } 3492 case Instruction::SIToFP: 3493 case Instruction::UIToFP: 3494 return true; 3495 case Instruction::FPTrunc: 3496 case Instruction::FPExt: 3497 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3498 default: 3499 break; 3500 } 3501 } 3502 3503 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3504 switch (II->getIntrinsicID()) { 3505 case Intrinsic::canonicalize: 3506 case Intrinsic::fabs: 3507 case Intrinsic::copysign: 3508 case Intrinsic::exp: 3509 case Intrinsic::exp2: 3510 case Intrinsic::floor: 3511 case Intrinsic::ceil: 3512 case Intrinsic::trunc: 3513 case Intrinsic::rint: 3514 case Intrinsic::nearbyint: 3515 case Intrinsic::round: 3516 case Intrinsic::roundeven: 3517 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3518 case Intrinsic::sqrt: 3519 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3520 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3521 case Intrinsic::minnum: 3522 case Intrinsic::maxnum: 3523 // If either operand is not NaN, the result is not NaN. 3524 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3525 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3526 default: 3527 return false; 3528 } 3529 } 3530 3531 // Try to handle fixed width vector constants 3532 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3533 if (VFVTy && isa<Constant>(V)) { 3534 // For vectors, verify that each element is not NaN. 3535 unsigned NumElts = VFVTy->getNumElements(); 3536 for (unsigned i = 0; i != NumElts; ++i) { 3537 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3538 if (!Elt) 3539 return false; 3540 if (isa<UndefValue>(Elt)) 3541 continue; 3542 auto *CElt = dyn_cast<ConstantFP>(Elt); 3543 if (!CElt || CElt->isNaN()) 3544 return false; 3545 } 3546 // All elements were confirmed not-NaN or undefined. 3547 return true; 3548 } 3549 3550 // Was not able to prove that V never contains NaN 3551 return false; 3552 } 3553 3554 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3555 3556 // All byte-wide stores are splatable, even of arbitrary variables. 3557 if (V->getType()->isIntegerTy(8)) 3558 return V; 3559 3560 LLVMContext &Ctx = V->getContext(); 3561 3562 // Undef don't care. 3563 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3564 if (isa<UndefValue>(V)) 3565 return UndefInt8; 3566 3567 // Return Undef for zero-sized type. 3568 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3569 return UndefInt8; 3570 3571 Constant *C = dyn_cast<Constant>(V); 3572 if (!C) { 3573 // Conceptually, we could handle things like: 3574 // %a = zext i8 %X to i16 3575 // %b = shl i16 %a, 8 3576 // %c = or i16 %a, %b 3577 // but until there is an example that actually needs this, it doesn't seem 3578 // worth worrying about. 3579 return nullptr; 3580 } 3581 3582 // Handle 'null' ConstantArrayZero etc. 3583 if (C->isNullValue()) 3584 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3585 3586 // Constant floating-point values can be handled as integer values if the 3587 // corresponding integer value is "byteable". An important case is 0.0. 3588 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3589 Type *Ty = nullptr; 3590 if (CFP->getType()->isHalfTy()) 3591 Ty = Type::getInt16Ty(Ctx); 3592 else if (CFP->getType()->isFloatTy()) 3593 Ty = Type::getInt32Ty(Ctx); 3594 else if (CFP->getType()->isDoubleTy()) 3595 Ty = Type::getInt64Ty(Ctx); 3596 // Don't handle long double formats, which have strange constraints. 3597 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3598 : nullptr; 3599 } 3600 3601 // We can handle constant integers that are multiple of 8 bits. 3602 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3603 if (CI->getBitWidth() % 8 == 0) { 3604 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3605 if (!CI->getValue().isSplat(8)) 3606 return nullptr; 3607 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3608 } 3609 } 3610 3611 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3612 if (CE->getOpcode() == Instruction::IntToPtr) { 3613 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3614 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3615 return isBytewiseValue( 3616 ConstantExpr::getIntegerCast(CE->getOperand(0), 3617 Type::getIntNTy(Ctx, BitWidth), false), 3618 DL); 3619 } 3620 } 3621 } 3622 3623 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3624 if (LHS == RHS) 3625 return LHS; 3626 if (!LHS || !RHS) 3627 return nullptr; 3628 if (LHS == UndefInt8) 3629 return RHS; 3630 if (RHS == UndefInt8) 3631 return LHS; 3632 return nullptr; 3633 }; 3634 3635 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3636 Value *Val = UndefInt8; 3637 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3638 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3639 return nullptr; 3640 return Val; 3641 } 3642 3643 if (isa<ConstantAggregate>(C)) { 3644 Value *Val = UndefInt8; 3645 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3646 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3647 return nullptr; 3648 return Val; 3649 } 3650 3651 // Don't try to handle the handful of other constants. 3652 return nullptr; 3653 } 3654 3655 // This is the recursive version of BuildSubAggregate. It takes a few different 3656 // arguments. Idxs is the index within the nested struct From that we are 3657 // looking at now (which is of type IndexedType). IdxSkip is the number of 3658 // indices from Idxs that should be left out when inserting into the resulting 3659 // struct. To is the result struct built so far, new insertvalue instructions 3660 // build on that. 3661 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3662 SmallVectorImpl<unsigned> &Idxs, 3663 unsigned IdxSkip, 3664 Instruction *InsertBefore) { 3665 StructType *STy = dyn_cast<StructType>(IndexedType); 3666 if (STy) { 3667 // Save the original To argument so we can modify it 3668 Value *OrigTo = To; 3669 // General case, the type indexed by Idxs is a struct 3670 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3671 // Process each struct element recursively 3672 Idxs.push_back(i); 3673 Value *PrevTo = To; 3674 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3675 InsertBefore); 3676 Idxs.pop_back(); 3677 if (!To) { 3678 // Couldn't find any inserted value for this index? Cleanup 3679 while (PrevTo != OrigTo) { 3680 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3681 PrevTo = Del->getAggregateOperand(); 3682 Del->eraseFromParent(); 3683 } 3684 // Stop processing elements 3685 break; 3686 } 3687 } 3688 // If we successfully found a value for each of our subaggregates 3689 if (To) 3690 return To; 3691 } 3692 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3693 // the struct's elements had a value that was inserted directly. In the latter 3694 // case, perhaps we can't determine each of the subelements individually, but 3695 // we might be able to find the complete struct somewhere. 3696 3697 // Find the value that is at that particular spot 3698 Value *V = FindInsertedValue(From, Idxs); 3699 3700 if (!V) 3701 return nullptr; 3702 3703 // Insert the value in the new (sub) aggregate 3704 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3705 "tmp", InsertBefore); 3706 } 3707 3708 // This helper takes a nested struct and extracts a part of it (which is again a 3709 // struct) into a new value. For example, given the struct: 3710 // { a, { b, { c, d }, e } } 3711 // and the indices "1, 1" this returns 3712 // { c, d }. 3713 // 3714 // It does this by inserting an insertvalue for each element in the resulting 3715 // struct, as opposed to just inserting a single struct. This will only work if 3716 // each of the elements of the substruct are known (ie, inserted into From by an 3717 // insertvalue instruction somewhere). 3718 // 3719 // All inserted insertvalue instructions are inserted before InsertBefore 3720 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3721 Instruction *InsertBefore) { 3722 assert(InsertBefore && "Must have someplace to insert!"); 3723 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3724 idx_range); 3725 Value *To = UndefValue::get(IndexedType); 3726 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3727 unsigned IdxSkip = Idxs.size(); 3728 3729 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3730 } 3731 3732 /// Given an aggregate and a sequence of indices, see if the scalar value 3733 /// indexed is already around as a register, for example if it was inserted 3734 /// directly into the aggregate. 3735 /// 3736 /// If InsertBefore is not null, this function will duplicate (modified) 3737 /// insertvalues when a part of a nested struct is extracted. 3738 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3739 Instruction *InsertBefore) { 3740 // Nothing to index? Just return V then (this is useful at the end of our 3741 // recursion). 3742 if (idx_range.empty()) 3743 return V; 3744 // We have indices, so V should have an indexable type. 3745 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3746 "Not looking at a struct or array?"); 3747 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3748 "Invalid indices for type?"); 3749 3750 if (Constant *C = dyn_cast<Constant>(V)) { 3751 C = C->getAggregateElement(idx_range[0]); 3752 if (!C) return nullptr; 3753 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3754 } 3755 3756 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3757 // Loop the indices for the insertvalue instruction in parallel with the 3758 // requested indices 3759 const unsigned *req_idx = idx_range.begin(); 3760 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3761 i != e; ++i, ++req_idx) { 3762 if (req_idx == idx_range.end()) { 3763 // We can't handle this without inserting insertvalues 3764 if (!InsertBefore) 3765 return nullptr; 3766 3767 // The requested index identifies a part of a nested aggregate. Handle 3768 // this specially. For example, 3769 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3770 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3771 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3772 // This can be changed into 3773 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3774 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3775 // which allows the unused 0,0 element from the nested struct to be 3776 // removed. 3777 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3778 InsertBefore); 3779 } 3780 3781 // This insert value inserts something else than what we are looking for. 3782 // See if the (aggregate) value inserted into has the value we are 3783 // looking for, then. 3784 if (*req_idx != *i) 3785 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3786 InsertBefore); 3787 } 3788 // If we end up here, the indices of the insertvalue match with those 3789 // requested (though possibly only partially). Now we recursively look at 3790 // the inserted value, passing any remaining indices. 3791 return FindInsertedValue(I->getInsertedValueOperand(), 3792 makeArrayRef(req_idx, idx_range.end()), 3793 InsertBefore); 3794 } 3795 3796 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3797 // If we're extracting a value from an aggregate that was extracted from 3798 // something else, we can extract from that something else directly instead. 3799 // However, we will need to chain I's indices with the requested indices. 3800 3801 // Calculate the number of indices required 3802 unsigned size = I->getNumIndices() + idx_range.size(); 3803 // Allocate some space to put the new indices in 3804 SmallVector<unsigned, 5> Idxs; 3805 Idxs.reserve(size); 3806 // Add indices from the extract value instruction 3807 Idxs.append(I->idx_begin(), I->idx_end()); 3808 3809 // Add requested indices 3810 Idxs.append(idx_range.begin(), idx_range.end()); 3811 3812 assert(Idxs.size() == size 3813 && "Number of indices added not correct?"); 3814 3815 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3816 } 3817 // Otherwise, we don't know (such as, extracting from a function return value 3818 // or load instruction) 3819 return nullptr; 3820 } 3821 3822 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3823 unsigned CharSize) { 3824 // Make sure the GEP has exactly three arguments. 3825 if (GEP->getNumOperands() != 3) 3826 return false; 3827 3828 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3829 // CharSize. 3830 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3831 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3832 return false; 3833 3834 // Check to make sure that the first operand of the GEP is an integer and 3835 // has value 0 so that we are sure we're indexing into the initializer. 3836 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3837 if (!FirstIdx || !FirstIdx->isZero()) 3838 return false; 3839 3840 return true; 3841 } 3842 3843 bool llvm::getConstantDataArrayInfo(const Value *V, 3844 ConstantDataArraySlice &Slice, 3845 unsigned ElementSize, uint64_t Offset) { 3846 assert(V); 3847 3848 // Look through bitcast instructions and geps. 3849 V = V->stripPointerCasts(); 3850 3851 // If the value is a GEP instruction or constant expression, treat it as an 3852 // offset. 3853 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3854 // The GEP operator should be based on a pointer to string constant, and is 3855 // indexing into the string constant. 3856 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3857 return false; 3858 3859 // If the second index isn't a ConstantInt, then this is a variable index 3860 // into the array. If this occurs, we can't say anything meaningful about 3861 // the string. 3862 uint64_t StartIdx = 0; 3863 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3864 StartIdx = CI->getZExtValue(); 3865 else 3866 return false; 3867 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3868 StartIdx + Offset); 3869 } 3870 3871 // The GEP instruction, constant or instruction, must reference a global 3872 // variable that is a constant and is initialized. The referenced constant 3873 // initializer is the array that we'll use for optimization. 3874 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3875 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3876 return false; 3877 3878 const ConstantDataArray *Array; 3879 ArrayType *ArrayTy; 3880 if (GV->getInitializer()->isNullValue()) { 3881 Type *GVTy = GV->getValueType(); 3882 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3883 // A zeroinitializer for the array; there is no ConstantDataArray. 3884 Array = nullptr; 3885 } else { 3886 const DataLayout &DL = GV->getParent()->getDataLayout(); 3887 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3888 uint64_t Length = SizeInBytes / (ElementSize / 8); 3889 if (Length <= Offset) 3890 return false; 3891 3892 Slice.Array = nullptr; 3893 Slice.Offset = 0; 3894 Slice.Length = Length - Offset; 3895 return true; 3896 } 3897 } else { 3898 // This must be a ConstantDataArray. 3899 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3900 if (!Array) 3901 return false; 3902 ArrayTy = Array->getType(); 3903 } 3904 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3905 return false; 3906 3907 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3908 if (Offset > NumElts) 3909 return false; 3910 3911 Slice.Array = Array; 3912 Slice.Offset = Offset; 3913 Slice.Length = NumElts - Offset; 3914 return true; 3915 } 3916 3917 /// This function computes the length of a null-terminated C string pointed to 3918 /// by V. If successful, it returns true and returns the string in Str. 3919 /// If unsuccessful, it returns false. 3920 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3921 uint64_t Offset, bool TrimAtNul) { 3922 ConstantDataArraySlice Slice; 3923 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3924 return false; 3925 3926 if (Slice.Array == nullptr) { 3927 if (TrimAtNul) { 3928 Str = StringRef(); 3929 return true; 3930 } 3931 if (Slice.Length == 1) { 3932 Str = StringRef("", 1); 3933 return true; 3934 } 3935 // We cannot instantiate a StringRef as we do not have an appropriate string 3936 // of 0s at hand. 3937 return false; 3938 } 3939 3940 // Start out with the entire array in the StringRef. 3941 Str = Slice.Array->getAsString(); 3942 // Skip over 'offset' bytes. 3943 Str = Str.substr(Slice.Offset); 3944 3945 if (TrimAtNul) { 3946 // Trim off the \0 and anything after it. If the array is not nul 3947 // terminated, we just return the whole end of string. The client may know 3948 // some other way that the string is length-bound. 3949 Str = Str.substr(0, Str.find('\0')); 3950 } 3951 return true; 3952 } 3953 3954 // These next two are very similar to the above, but also look through PHI 3955 // nodes. 3956 // TODO: See if we can integrate these two together. 3957 3958 /// If we can compute the length of the string pointed to by 3959 /// the specified pointer, return 'len+1'. If we can't, return 0. 3960 static uint64_t GetStringLengthH(const Value *V, 3961 SmallPtrSetImpl<const PHINode*> &PHIs, 3962 unsigned CharSize) { 3963 // Look through noop bitcast instructions. 3964 V = V->stripPointerCasts(); 3965 3966 // If this is a PHI node, there are two cases: either we have already seen it 3967 // or we haven't. 3968 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3969 if (!PHIs.insert(PN).second) 3970 return ~0ULL; // already in the set. 3971 3972 // If it was new, see if all the input strings are the same length. 3973 uint64_t LenSoFar = ~0ULL; 3974 for (Value *IncValue : PN->incoming_values()) { 3975 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3976 if (Len == 0) return 0; // Unknown length -> unknown. 3977 3978 if (Len == ~0ULL) continue; 3979 3980 if (Len != LenSoFar && LenSoFar != ~0ULL) 3981 return 0; // Disagree -> unknown. 3982 LenSoFar = Len; 3983 } 3984 3985 // Success, all agree. 3986 return LenSoFar; 3987 } 3988 3989 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3990 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3991 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3992 if (Len1 == 0) return 0; 3993 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3994 if (Len2 == 0) return 0; 3995 if (Len1 == ~0ULL) return Len2; 3996 if (Len2 == ~0ULL) return Len1; 3997 if (Len1 != Len2) return 0; 3998 return Len1; 3999 } 4000 4001 // Otherwise, see if we can read the string. 4002 ConstantDataArraySlice Slice; 4003 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4004 return 0; 4005 4006 if (Slice.Array == nullptr) 4007 return 1; 4008 4009 // Search for nul characters 4010 unsigned NullIndex = 0; 4011 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4012 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4013 break; 4014 } 4015 4016 return NullIndex + 1; 4017 } 4018 4019 /// If we can compute the length of the string pointed to by 4020 /// the specified pointer, return 'len+1'. If we can't, return 0. 4021 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4022 if (!V->getType()->isPointerTy()) 4023 return 0; 4024 4025 SmallPtrSet<const PHINode*, 32> PHIs; 4026 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4027 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4028 // an empty string as a length. 4029 return Len == ~0ULL ? 1 : Len; 4030 } 4031 4032 const Value * 4033 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4034 bool MustPreserveNullness) { 4035 assert(Call && 4036 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4037 if (const Value *RV = Call->getReturnedArgOperand()) 4038 return RV; 4039 // This can be used only as a aliasing property. 4040 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4041 Call, MustPreserveNullness)) 4042 return Call->getArgOperand(0); 4043 return nullptr; 4044 } 4045 4046 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4047 const CallBase *Call, bool MustPreserveNullness) { 4048 switch (Call->getIntrinsicID()) { 4049 case Intrinsic::launder_invariant_group: 4050 case Intrinsic::strip_invariant_group: 4051 case Intrinsic::aarch64_irg: 4052 case Intrinsic::aarch64_tagp: 4053 return true; 4054 case Intrinsic::ptrmask: 4055 return !MustPreserveNullness; 4056 default: 4057 return false; 4058 } 4059 } 4060 4061 /// \p PN defines a loop-variant pointer to an object. Check if the 4062 /// previous iteration of the loop was referring to the same object as \p PN. 4063 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4064 const LoopInfo *LI) { 4065 // Find the loop-defined value. 4066 Loop *L = LI->getLoopFor(PN->getParent()); 4067 if (PN->getNumIncomingValues() != 2) 4068 return true; 4069 4070 // Find the value from previous iteration. 4071 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4072 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4073 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4074 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4075 return true; 4076 4077 // If a new pointer is loaded in the loop, the pointer references a different 4078 // object in every iteration. E.g.: 4079 // for (i) 4080 // int *p = a[i]; 4081 // ... 4082 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4083 if (!L->isLoopInvariant(Load->getPointerOperand())) 4084 return false; 4085 return true; 4086 } 4087 4088 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4089 if (!V->getType()->isPointerTy()) 4090 return V; 4091 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4092 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4093 V = GEP->getPointerOperand(); 4094 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4095 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4096 V = cast<Operator>(V)->getOperand(0); 4097 if (!V->getType()->isPointerTy()) 4098 return V; 4099 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4100 if (GA->isInterposable()) 4101 return V; 4102 V = GA->getAliasee(); 4103 } else { 4104 if (auto *PHI = dyn_cast<PHINode>(V)) { 4105 // Look through single-arg phi nodes created by LCSSA. 4106 if (PHI->getNumIncomingValues() == 1) { 4107 V = PHI->getIncomingValue(0); 4108 continue; 4109 } 4110 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4111 // CaptureTracking can know about special capturing properties of some 4112 // intrinsics like launder.invariant.group, that can't be expressed with 4113 // the attributes, but have properties like returning aliasing pointer. 4114 // Because some analysis may assume that nocaptured pointer is not 4115 // returned from some special intrinsic (because function would have to 4116 // be marked with returns attribute), it is crucial to use this function 4117 // because it should be in sync with CaptureTracking. Not using it may 4118 // cause weird miscompilations where 2 aliasing pointers are assumed to 4119 // noalias. 4120 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4121 V = RP; 4122 continue; 4123 } 4124 } 4125 4126 return V; 4127 } 4128 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4129 } 4130 return V; 4131 } 4132 4133 void llvm::getUnderlyingObjects(const Value *V, 4134 SmallVectorImpl<const Value *> &Objects, 4135 LoopInfo *LI, unsigned MaxLookup) { 4136 SmallPtrSet<const Value *, 4> Visited; 4137 SmallVector<const Value *, 4> Worklist; 4138 Worklist.push_back(V); 4139 do { 4140 const Value *P = Worklist.pop_back_val(); 4141 P = getUnderlyingObject(P, MaxLookup); 4142 4143 if (!Visited.insert(P).second) 4144 continue; 4145 4146 if (auto *SI = dyn_cast<SelectInst>(P)) { 4147 Worklist.push_back(SI->getTrueValue()); 4148 Worklist.push_back(SI->getFalseValue()); 4149 continue; 4150 } 4151 4152 if (auto *PN = dyn_cast<PHINode>(P)) { 4153 // If this PHI changes the underlying object in every iteration of the 4154 // loop, don't look through it. Consider: 4155 // int **A; 4156 // for (i) { 4157 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4158 // Curr = A[i]; 4159 // *Prev, *Curr; 4160 // 4161 // Prev is tracking Curr one iteration behind so they refer to different 4162 // underlying objects. 4163 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4164 isSameUnderlyingObjectInLoop(PN, LI)) 4165 for (Value *IncValue : PN->incoming_values()) 4166 Worklist.push_back(IncValue); 4167 continue; 4168 } 4169 4170 Objects.push_back(P); 4171 } while (!Worklist.empty()); 4172 } 4173 4174 /// This is the function that does the work of looking through basic 4175 /// ptrtoint+arithmetic+inttoptr sequences. 4176 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4177 do { 4178 if (const Operator *U = dyn_cast<Operator>(V)) { 4179 // If we find a ptrtoint, we can transfer control back to the 4180 // regular getUnderlyingObjectFromInt. 4181 if (U->getOpcode() == Instruction::PtrToInt) 4182 return U->getOperand(0); 4183 // If we find an add of a constant, a multiplied value, or a phi, it's 4184 // likely that the other operand will lead us to the base 4185 // object. We don't have to worry about the case where the 4186 // object address is somehow being computed by the multiply, 4187 // because our callers only care when the result is an 4188 // identifiable object. 4189 if (U->getOpcode() != Instruction::Add || 4190 (!isa<ConstantInt>(U->getOperand(1)) && 4191 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4192 !isa<PHINode>(U->getOperand(1)))) 4193 return V; 4194 V = U->getOperand(0); 4195 } else { 4196 return V; 4197 } 4198 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4199 } while (true); 4200 } 4201 4202 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4203 /// ptrtoint+arithmetic+inttoptr sequences. 4204 /// It returns false if unidentified object is found in getUnderlyingObjects. 4205 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4206 SmallVectorImpl<Value *> &Objects) { 4207 SmallPtrSet<const Value *, 16> Visited; 4208 SmallVector<const Value *, 4> Working(1, V); 4209 do { 4210 V = Working.pop_back_val(); 4211 4212 SmallVector<const Value *, 4> Objs; 4213 getUnderlyingObjects(V, Objs); 4214 4215 for (const Value *V : Objs) { 4216 if (!Visited.insert(V).second) 4217 continue; 4218 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4219 const Value *O = 4220 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4221 if (O->getType()->isPointerTy()) { 4222 Working.push_back(O); 4223 continue; 4224 } 4225 } 4226 // If getUnderlyingObjects fails to find an identifiable object, 4227 // getUnderlyingObjectsForCodeGen also fails for safety. 4228 if (!isIdentifiedObject(V)) { 4229 Objects.clear(); 4230 return false; 4231 } 4232 Objects.push_back(const_cast<Value *>(V)); 4233 } 4234 } while (!Working.empty()); 4235 return true; 4236 } 4237 4238 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4239 AllocaInst *Result = nullptr; 4240 SmallPtrSet<Value *, 4> Visited; 4241 SmallVector<Value *, 4> Worklist; 4242 4243 auto AddWork = [&](Value *V) { 4244 if (Visited.insert(V).second) 4245 Worklist.push_back(V); 4246 }; 4247 4248 AddWork(V); 4249 do { 4250 V = Worklist.pop_back_val(); 4251 assert(Visited.count(V)); 4252 4253 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4254 if (Result && Result != AI) 4255 return nullptr; 4256 Result = AI; 4257 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4258 AddWork(CI->getOperand(0)); 4259 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4260 for (Value *IncValue : PN->incoming_values()) 4261 AddWork(IncValue); 4262 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4263 AddWork(SI->getTrueValue()); 4264 AddWork(SI->getFalseValue()); 4265 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4266 if (OffsetZero && !GEP->hasAllZeroIndices()) 4267 return nullptr; 4268 AddWork(GEP->getPointerOperand()); 4269 } else { 4270 return nullptr; 4271 } 4272 } while (!Worklist.empty()); 4273 4274 return Result; 4275 } 4276 4277 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4278 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4279 for (const User *U : V->users()) { 4280 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4281 if (!II) 4282 return false; 4283 4284 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4285 continue; 4286 4287 if (AllowDroppable && II->isDroppable()) 4288 continue; 4289 4290 return false; 4291 } 4292 return true; 4293 } 4294 4295 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4296 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4297 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4298 } 4299 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4300 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4301 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4302 } 4303 4304 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4305 if (!LI.isUnordered()) 4306 return true; 4307 const Function &F = *LI.getFunction(); 4308 // Speculative load may create a race that did not exist in the source. 4309 return F.hasFnAttribute(Attribute::SanitizeThread) || 4310 // Speculative load may load data from dirty regions. 4311 F.hasFnAttribute(Attribute::SanitizeAddress) || 4312 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4313 } 4314 4315 4316 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4317 const Instruction *CtxI, 4318 const DominatorTree *DT) { 4319 const Operator *Inst = dyn_cast<Operator>(V); 4320 if (!Inst) 4321 return false; 4322 4323 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4324 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4325 if (C->canTrap()) 4326 return false; 4327 4328 switch (Inst->getOpcode()) { 4329 default: 4330 return true; 4331 case Instruction::UDiv: 4332 case Instruction::URem: { 4333 // x / y is undefined if y == 0. 4334 const APInt *V; 4335 if (match(Inst->getOperand(1), m_APInt(V))) 4336 return *V != 0; 4337 return false; 4338 } 4339 case Instruction::SDiv: 4340 case Instruction::SRem: { 4341 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4342 const APInt *Numerator, *Denominator; 4343 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4344 return false; 4345 // We cannot hoist this division if the denominator is 0. 4346 if (*Denominator == 0) 4347 return false; 4348 // It's safe to hoist if the denominator is not 0 or -1. 4349 if (*Denominator != -1) 4350 return true; 4351 // At this point we know that the denominator is -1. It is safe to hoist as 4352 // long we know that the numerator is not INT_MIN. 4353 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4354 return !Numerator->isMinSignedValue(); 4355 // The numerator *might* be MinSignedValue. 4356 return false; 4357 } 4358 case Instruction::Load: { 4359 const LoadInst *LI = cast<LoadInst>(Inst); 4360 if (mustSuppressSpeculation(*LI)) 4361 return false; 4362 const DataLayout &DL = LI->getModule()->getDataLayout(); 4363 return isDereferenceableAndAlignedPointer( 4364 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4365 DL, CtxI, DT); 4366 } 4367 case Instruction::Call: { 4368 auto *CI = cast<const CallInst>(Inst); 4369 const Function *Callee = CI->getCalledFunction(); 4370 4371 // The called function could have undefined behavior or side-effects, even 4372 // if marked readnone nounwind. 4373 return Callee && Callee->isSpeculatable(); 4374 } 4375 case Instruction::VAArg: 4376 case Instruction::Alloca: 4377 case Instruction::Invoke: 4378 case Instruction::CallBr: 4379 case Instruction::PHI: 4380 case Instruction::Store: 4381 case Instruction::Ret: 4382 case Instruction::Br: 4383 case Instruction::IndirectBr: 4384 case Instruction::Switch: 4385 case Instruction::Unreachable: 4386 case Instruction::Fence: 4387 case Instruction::AtomicRMW: 4388 case Instruction::AtomicCmpXchg: 4389 case Instruction::LandingPad: 4390 case Instruction::Resume: 4391 case Instruction::CatchSwitch: 4392 case Instruction::CatchPad: 4393 case Instruction::CatchRet: 4394 case Instruction::CleanupPad: 4395 case Instruction::CleanupRet: 4396 return false; // Misc instructions which have effects 4397 } 4398 } 4399 4400 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4401 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4402 } 4403 4404 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4405 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4406 switch (OR) { 4407 case ConstantRange::OverflowResult::MayOverflow: 4408 return OverflowResult::MayOverflow; 4409 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4410 return OverflowResult::AlwaysOverflowsLow; 4411 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4412 return OverflowResult::AlwaysOverflowsHigh; 4413 case ConstantRange::OverflowResult::NeverOverflows: 4414 return OverflowResult::NeverOverflows; 4415 } 4416 llvm_unreachable("Unknown OverflowResult"); 4417 } 4418 4419 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4420 static ConstantRange computeConstantRangeIncludingKnownBits( 4421 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4422 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4423 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4424 KnownBits Known = computeKnownBits( 4425 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4426 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4427 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4428 ConstantRange::PreferredRangeType RangeType = 4429 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4430 return CR1.intersectWith(CR2, RangeType); 4431 } 4432 4433 OverflowResult llvm::computeOverflowForUnsignedMul( 4434 const Value *LHS, const Value *RHS, const DataLayout &DL, 4435 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4436 bool UseInstrInfo) { 4437 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4438 nullptr, UseInstrInfo); 4439 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4440 nullptr, UseInstrInfo); 4441 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4442 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4443 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4444 } 4445 4446 OverflowResult 4447 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4448 const DataLayout &DL, AssumptionCache *AC, 4449 const Instruction *CxtI, 4450 const DominatorTree *DT, bool UseInstrInfo) { 4451 // Multiplying n * m significant bits yields a result of n + m significant 4452 // bits. If the total number of significant bits does not exceed the 4453 // result bit width (minus 1), there is no overflow. 4454 // This means if we have enough leading sign bits in the operands 4455 // we can guarantee that the result does not overflow. 4456 // Ref: "Hacker's Delight" by Henry Warren 4457 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4458 4459 // Note that underestimating the number of sign bits gives a more 4460 // conservative answer. 4461 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4462 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4463 4464 // First handle the easy case: if we have enough sign bits there's 4465 // definitely no overflow. 4466 if (SignBits > BitWidth + 1) 4467 return OverflowResult::NeverOverflows; 4468 4469 // There are two ambiguous cases where there can be no overflow: 4470 // SignBits == BitWidth + 1 and 4471 // SignBits == BitWidth 4472 // The second case is difficult to check, therefore we only handle the 4473 // first case. 4474 if (SignBits == BitWidth + 1) { 4475 // It overflows only when both arguments are negative and the true 4476 // product is exactly the minimum negative number. 4477 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4478 // For simplicity we just check if at least one side is not negative. 4479 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4480 nullptr, UseInstrInfo); 4481 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4482 nullptr, UseInstrInfo); 4483 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4484 return OverflowResult::NeverOverflows; 4485 } 4486 return OverflowResult::MayOverflow; 4487 } 4488 4489 OverflowResult llvm::computeOverflowForUnsignedAdd( 4490 const Value *LHS, const Value *RHS, const DataLayout &DL, 4491 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4492 bool UseInstrInfo) { 4493 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4494 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4495 nullptr, UseInstrInfo); 4496 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4497 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4498 nullptr, UseInstrInfo); 4499 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4500 } 4501 4502 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4503 const Value *RHS, 4504 const AddOperator *Add, 4505 const DataLayout &DL, 4506 AssumptionCache *AC, 4507 const Instruction *CxtI, 4508 const DominatorTree *DT) { 4509 if (Add && Add->hasNoSignedWrap()) { 4510 return OverflowResult::NeverOverflows; 4511 } 4512 4513 // If LHS and RHS each have at least two sign bits, the addition will look 4514 // like 4515 // 4516 // XX..... + 4517 // YY..... 4518 // 4519 // If the carry into the most significant position is 0, X and Y can't both 4520 // be 1 and therefore the carry out of the addition is also 0. 4521 // 4522 // If the carry into the most significant position is 1, X and Y can't both 4523 // be 0 and therefore the carry out of the addition is also 1. 4524 // 4525 // Since the carry into the most significant position is always equal to 4526 // the carry out of the addition, there is no signed overflow. 4527 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4528 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4529 return OverflowResult::NeverOverflows; 4530 4531 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4532 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4533 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4534 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4535 OverflowResult OR = 4536 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4537 if (OR != OverflowResult::MayOverflow) 4538 return OR; 4539 4540 // The remaining code needs Add to be available. Early returns if not so. 4541 if (!Add) 4542 return OverflowResult::MayOverflow; 4543 4544 // If the sign of Add is the same as at least one of the operands, this add 4545 // CANNOT overflow. If this can be determined from the known bits of the 4546 // operands the above signedAddMayOverflow() check will have already done so. 4547 // The only other way to improve on the known bits is from an assumption, so 4548 // call computeKnownBitsFromAssume() directly. 4549 bool LHSOrRHSKnownNonNegative = 4550 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4551 bool LHSOrRHSKnownNegative = 4552 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4553 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4554 KnownBits AddKnown(LHSRange.getBitWidth()); 4555 computeKnownBitsFromAssume( 4556 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4557 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4558 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4559 return OverflowResult::NeverOverflows; 4560 } 4561 4562 return OverflowResult::MayOverflow; 4563 } 4564 4565 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4566 const Value *RHS, 4567 const DataLayout &DL, 4568 AssumptionCache *AC, 4569 const Instruction *CxtI, 4570 const DominatorTree *DT) { 4571 // Checking for conditions implied by dominating conditions may be expensive. 4572 // Limit it to usub_with_overflow calls for now. 4573 if (match(CxtI, 4574 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4575 if (auto C = 4576 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4577 if (*C) 4578 return OverflowResult::NeverOverflows; 4579 return OverflowResult::AlwaysOverflowsLow; 4580 } 4581 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4582 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4583 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4584 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4585 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4586 } 4587 4588 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4589 const Value *RHS, 4590 const DataLayout &DL, 4591 AssumptionCache *AC, 4592 const Instruction *CxtI, 4593 const DominatorTree *DT) { 4594 // If LHS and RHS each have at least two sign bits, the subtraction 4595 // cannot overflow. 4596 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4597 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4598 return OverflowResult::NeverOverflows; 4599 4600 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4601 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4602 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4603 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4604 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4605 } 4606 4607 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4608 const DominatorTree &DT) { 4609 SmallVector<const BranchInst *, 2> GuardingBranches; 4610 SmallVector<const ExtractValueInst *, 2> Results; 4611 4612 for (const User *U : WO->users()) { 4613 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4614 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4615 4616 if (EVI->getIndices()[0] == 0) 4617 Results.push_back(EVI); 4618 else { 4619 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4620 4621 for (const auto *U : EVI->users()) 4622 if (const auto *B = dyn_cast<BranchInst>(U)) { 4623 assert(B->isConditional() && "How else is it using an i1?"); 4624 GuardingBranches.push_back(B); 4625 } 4626 } 4627 } else { 4628 // We are using the aggregate directly in a way we don't want to analyze 4629 // here (storing it to a global, say). 4630 return false; 4631 } 4632 } 4633 4634 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4635 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4636 if (!NoWrapEdge.isSingleEdge()) 4637 return false; 4638 4639 // Check if all users of the add are provably no-wrap. 4640 for (const auto *Result : Results) { 4641 // If the extractvalue itself is not executed on overflow, the we don't 4642 // need to check each use separately, since domination is transitive. 4643 if (DT.dominates(NoWrapEdge, Result->getParent())) 4644 continue; 4645 4646 for (auto &RU : Result->uses()) 4647 if (!DT.dominates(NoWrapEdge, RU)) 4648 return false; 4649 } 4650 4651 return true; 4652 }; 4653 4654 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4655 } 4656 4657 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4658 // See whether I has flags that may create poison 4659 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4660 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4661 return true; 4662 } 4663 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4664 if (ExactOp->isExact()) 4665 return true; 4666 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4667 auto FMF = FP->getFastMathFlags(); 4668 if (FMF.noNaNs() || FMF.noInfs()) 4669 return true; 4670 } 4671 4672 unsigned Opcode = Op->getOpcode(); 4673 4674 // Check whether opcode is a poison/undef-generating operation 4675 switch (Opcode) { 4676 case Instruction::Shl: 4677 case Instruction::AShr: 4678 case Instruction::LShr: { 4679 // Shifts return poison if shiftwidth is larger than the bitwidth. 4680 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4681 SmallVector<Constant *, 4> ShiftAmounts; 4682 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4683 unsigned NumElts = FVTy->getNumElements(); 4684 for (unsigned i = 0; i < NumElts; ++i) 4685 ShiftAmounts.push_back(C->getAggregateElement(i)); 4686 } else if (isa<ScalableVectorType>(C->getType())) 4687 return true; // Can't tell, just return true to be safe 4688 else 4689 ShiftAmounts.push_back(C); 4690 4691 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4692 auto *CI = dyn_cast<ConstantInt>(C); 4693 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4694 }); 4695 return !Safe; 4696 } 4697 return true; 4698 } 4699 case Instruction::FPToSI: 4700 case Instruction::FPToUI: 4701 // fptosi/ui yields poison if the resulting value does not fit in the 4702 // destination type. 4703 return true; 4704 case Instruction::Call: 4705 case Instruction::CallBr: 4706 case Instruction::Invoke: { 4707 const auto *CB = cast<CallBase>(Op); 4708 return !CB->hasRetAttr(Attribute::NoUndef); 4709 } 4710 case Instruction::InsertElement: 4711 case Instruction::ExtractElement: { 4712 // If index exceeds the length of the vector, it returns poison 4713 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4714 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4715 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4716 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4717 return true; 4718 return false; 4719 } 4720 case Instruction::ShuffleVector: { 4721 // shufflevector may return undef. 4722 if (PoisonOnly) 4723 return false; 4724 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4725 ? cast<ConstantExpr>(Op)->getShuffleMask() 4726 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4727 return is_contained(Mask, UndefMaskElem); 4728 } 4729 case Instruction::FNeg: 4730 case Instruction::PHI: 4731 case Instruction::Select: 4732 case Instruction::URem: 4733 case Instruction::SRem: 4734 case Instruction::ExtractValue: 4735 case Instruction::InsertValue: 4736 case Instruction::Freeze: 4737 case Instruction::ICmp: 4738 case Instruction::FCmp: 4739 return false; 4740 case Instruction::GetElementPtr: { 4741 const auto *GEP = cast<GEPOperator>(Op); 4742 return GEP->isInBounds(); 4743 } 4744 default: { 4745 const auto *CE = dyn_cast<ConstantExpr>(Op); 4746 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4747 return false; 4748 else if (Instruction::isBinaryOp(Opcode)) 4749 return false; 4750 // Be conservative and return true. 4751 return true; 4752 } 4753 } 4754 } 4755 4756 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4757 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4758 } 4759 4760 bool llvm::canCreatePoison(const Operator *Op) { 4761 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4762 } 4763 4764 static bool programUndefinedIfUndefOrPoison(const Value *V, 4765 bool PoisonOnly); 4766 4767 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4768 AssumptionCache *AC, 4769 const Instruction *CtxI, 4770 const DominatorTree *DT, 4771 unsigned Depth, bool PoisonOnly) { 4772 if (Depth >= MaxAnalysisRecursionDepth) 4773 return false; 4774 4775 if (isa<MetadataAsValue>(V)) 4776 return false; 4777 4778 if (const auto *A = dyn_cast<Argument>(V)) { 4779 if (A->hasAttribute(Attribute::NoUndef)) 4780 return true; 4781 } 4782 4783 if (auto *C = dyn_cast<Constant>(V)) { 4784 if (isa<UndefValue>(C)) 4785 return PoisonOnly; 4786 4787 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4788 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4789 return true; 4790 4791 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4792 return (PoisonOnly || !C->containsUndefElement()) && 4793 !C->containsConstantExpression(); 4794 } 4795 4796 // Strip cast operations from a pointer value. 4797 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4798 // inbounds with zero offset. To guarantee that the result isn't poison, the 4799 // stripped pointer is checked as it has to be pointing into an allocated 4800 // object or be null `null` to ensure `inbounds` getelement pointers with a 4801 // zero offset could not produce poison. 4802 // It can strip off addrspacecast that do not change bit representation as 4803 // well. We believe that such addrspacecast is equivalent to no-op. 4804 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4805 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4806 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4807 return true; 4808 4809 auto OpCheck = [&](const Value *V) { 4810 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4811 PoisonOnly); 4812 }; 4813 4814 if (auto *Opr = dyn_cast<Operator>(V)) { 4815 // If the value is a freeze instruction, then it can never 4816 // be undef or poison. 4817 if (isa<FreezeInst>(V)) 4818 return true; 4819 4820 if (const auto *CB = dyn_cast<CallBase>(V)) { 4821 if (CB->hasRetAttr(Attribute::NoUndef)) 4822 return true; 4823 } 4824 4825 if (const auto *PN = dyn_cast<PHINode>(V)) { 4826 unsigned Num = PN->getNumIncomingValues(); 4827 bool IsWellDefined = true; 4828 for (unsigned i = 0; i < Num; ++i) { 4829 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4830 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4831 DT, Depth + 1, PoisonOnly)) { 4832 IsWellDefined = false; 4833 break; 4834 } 4835 } 4836 if (IsWellDefined) 4837 return true; 4838 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4839 return true; 4840 } 4841 4842 if (auto *I = dyn_cast<LoadInst>(V)) 4843 if (I->getMetadata(LLVMContext::MD_noundef)) 4844 return true; 4845 4846 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4847 return true; 4848 4849 // CxtI may be null or a cloned instruction. 4850 if (!CtxI || !CtxI->getParent() || !DT) 4851 return false; 4852 4853 auto *DNode = DT->getNode(CtxI->getParent()); 4854 if (!DNode) 4855 // Unreachable block 4856 return false; 4857 4858 // If V is used as a branch condition before reaching CtxI, V cannot be 4859 // undef or poison. 4860 // br V, BB1, BB2 4861 // BB1: 4862 // CtxI ; V cannot be undef or poison here 4863 auto *Dominator = DNode->getIDom(); 4864 while (Dominator) { 4865 auto *TI = Dominator->getBlock()->getTerminator(); 4866 4867 Value *Cond = nullptr; 4868 if (auto BI = dyn_cast<BranchInst>(TI)) { 4869 if (BI->isConditional()) 4870 Cond = BI->getCondition(); 4871 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4872 Cond = SI->getCondition(); 4873 } 4874 4875 if (Cond) { 4876 if (Cond == V) 4877 return true; 4878 else if (PoisonOnly && isa<Operator>(Cond)) { 4879 // For poison, we can analyze further 4880 auto *Opr = cast<Operator>(Cond); 4881 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 4882 return true; 4883 } 4884 } 4885 4886 Dominator = Dominator->getIDom(); 4887 } 4888 4889 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4890 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4891 return true; 4892 4893 return false; 4894 } 4895 4896 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4897 const Instruction *CtxI, 4898 const DominatorTree *DT, 4899 unsigned Depth) { 4900 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4901 } 4902 4903 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4904 const Instruction *CtxI, 4905 const DominatorTree *DT, unsigned Depth) { 4906 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4907 } 4908 4909 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4910 const DataLayout &DL, 4911 AssumptionCache *AC, 4912 const Instruction *CxtI, 4913 const DominatorTree *DT) { 4914 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4915 Add, DL, AC, CxtI, DT); 4916 } 4917 4918 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4919 const Value *RHS, 4920 const DataLayout &DL, 4921 AssumptionCache *AC, 4922 const Instruction *CxtI, 4923 const DominatorTree *DT) { 4924 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4925 } 4926 4927 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4928 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4929 // of time because it's possible for another thread to interfere with it for an 4930 // arbitrary length of time, but programs aren't allowed to rely on that. 4931 4932 // If there is no successor, then execution can't transfer to it. 4933 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4934 return !CRI->unwindsToCaller(); 4935 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4936 return !CatchSwitch->unwindsToCaller(); 4937 if (isa<ResumeInst>(I)) 4938 return false; 4939 if (isa<ReturnInst>(I)) 4940 return false; 4941 if (isa<UnreachableInst>(I)) 4942 return false; 4943 4944 // Calls can throw, or contain an infinite loop, or kill the process. 4945 if (const auto *CB = dyn_cast<CallBase>(I)) { 4946 // Call sites that throw have implicit non-local control flow. 4947 if (!CB->doesNotThrow()) 4948 return false; 4949 4950 // A function which doens't throw and has "willreturn" attribute will 4951 // always return. 4952 if (CB->hasFnAttr(Attribute::WillReturn)) 4953 return true; 4954 4955 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4956 // etc. and thus not return. However, LLVM already assumes that 4957 // 4958 // - Thread exiting actions are modeled as writes to memory invisible to 4959 // the program. 4960 // 4961 // - Loops that don't have side effects (side effects are volatile/atomic 4962 // stores and IO) always terminate (see http://llvm.org/PR965). 4963 // Furthermore IO itself is also modeled as writes to memory invisible to 4964 // the program. 4965 // 4966 // We rely on those assumptions here, and use the memory effects of the call 4967 // target as a proxy for checking that it always returns. 4968 4969 // FIXME: This isn't aggressive enough; a call which only writes to a global 4970 // is guaranteed to return. 4971 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4972 } 4973 4974 // Other instructions return normally. 4975 return true; 4976 } 4977 4978 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4979 // TODO: This is slightly conservative for invoke instruction since exiting 4980 // via an exception *is* normal control for them. 4981 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4982 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4983 return false; 4984 return true; 4985 } 4986 4987 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4988 const Loop *L) { 4989 // The loop header is guaranteed to be executed for every iteration. 4990 // 4991 // FIXME: Relax this constraint to cover all basic blocks that are 4992 // guaranteed to be executed at every iteration. 4993 if (I->getParent() != L->getHeader()) return false; 4994 4995 for (const Instruction &LI : *L->getHeader()) { 4996 if (&LI == I) return true; 4997 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4998 } 4999 llvm_unreachable("Instruction not contained in its own parent basic block."); 5000 } 5001 5002 bool llvm::propagatesPoison(const Operator *I) { 5003 switch (I->getOpcode()) { 5004 case Instruction::Freeze: 5005 case Instruction::Select: 5006 case Instruction::PHI: 5007 case Instruction::Call: 5008 case Instruction::Invoke: 5009 return false; 5010 case Instruction::ICmp: 5011 case Instruction::FCmp: 5012 case Instruction::GetElementPtr: 5013 return true; 5014 default: 5015 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5016 return true; 5017 5018 // Be conservative and return false. 5019 return false; 5020 } 5021 } 5022 5023 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5024 SmallPtrSetImpl<const Value *> &Operands) { 5025 switch (I->getOpcode()) { 5026 case Instruction::Store: 5027 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5028 break; 5029 5030 case Instruction::Load: 5031 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5032 break; 5033 5034 case Instruction::AtomicCmpXchg: 5035 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5036 break; 5037 5038 case Instruction::AtomicRMW: 5039 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5040 break; 5041 5042 case Instruction::UDiv: 5043 case Instruction::SDiv: 5044 case Instruction::URem: 5045 case Instruction::SRem: 5046 Operands.insert(I->getOperand(1)); 5047 break; 5048 5049 case Instruction::Call: 5050 case Instruction::Invoke: { 5051 const CallBase *CB = cast<CallBase>(I); 5052 if (CB->isIndirectCall()) 5053 Operands.insert(CB->getCalledOperand()); 5054 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5055 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5056 Operands.insert(CB->getArgOperand(i)); 5057 } 5058 break; 5059 } 5060 5061 default: 5062 break; 5063 } 5064 } 5065 5066 bool llvm::mustTriggerUB(const Instruction *I, 5067 const SmallSet<const Value *, 16>& KnownPoison) { 5068 SmallPtrSet<const Value *, 4> NonPoisonOps; 5069 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5070 5071 for (const auto *V : NonPoisonOps) 5072 if (KnownPoison.count(V)) 5073 return true; 5074 5075 return false; 5076 } 5077 5078 static bool programUndefinedIfUndefOrPoison(const Value *V, 5079 bool PoisonOnly) { 5080 // We currently only look for uses of values within the same basic 5081 // block, as that makes it easier to guarantee that the uses will be 5082 // executed given that Inst is executed. 5083 // 5084 // FIXME: Expand this to consider uses beyond the same basic block. To do 5085 // this, look out for the distinction between post-dominance and strong 5086 // post-dominance. 5087 const BasicBlock *BB = nullptr; 5088 BasicBlock::const_iterator Begin; 5089 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5090 BB = Inst->getParent(); 5091 Begin = Inst->getIterator(); 5092 Begin++; 5093 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5094 BB = &Arg->getParent()->getEntryBlock(); 5095 Begin = BB->begin(); 5096 } else { 5097 return false; 5098 } 5099 5100 BasicBlock::const_iterator End = BB->end(); 5101 5102 if (!PoisonOnly) { 5103 // Be conservative & just check whether a value is passed to a noundef 5104 // argument. 5105 // Instructions that raise UB with a poison operand are well-defined 5106 // or have unclear semantics when the input is partially undef. 5107 // For example, 'udiv x, (undef | 1)' isn't UB. 5108 5109 for (auto &I : make_range(Begin, End)) { 5110 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5111 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5112 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5113 CB->getArgOperand(i) == V) 5114 return true; 5115 } 5116 } 5117 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5118 break; 5119 } 5120 return false; 5121 } 5122 5123 // Set of instructions that we have proved will yield poison if Inst 5124 // does. 5125 SmallSet<const Value *, 16> YieldsPoison; 5126 SmallSet<const BasicBlock *, 4> Visited; 5127 5128 YieldsPoison.insert(V); 5129 auto Propagate = [&](const User *User) { 5130 if (propagatesPoison(cast<Operator>(User))) 5131 YieldsPoison.insert(User); 5132 }; 5133 for_each(V->users(), Propagate); 5134 Visited.insert(BB); 5135 5136 unsigned Iter = 0; 5137 while (Iter++ < MaxAnalysisRecursionDepth) { 5138 for (auto &I : make_range(Begin, End)) { 5139 if (mustTriggerUB(&I, YieldsPoison)) 5140 return true; 5141 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5142 return false; 5143 5144 // Mark poison that propagates from I through uses of I. 5145 if (YieldsPoison.count(&I)) 5146 for_each(I.users(), Propagate); 5147 } 5148 5149 if (auto *NextBB = BB->getSingleSuccessor()) { 5150 if (Visited.insert(NextBB).second) { 5151 BB = NextBB; 5152 Begin = BB->getFirstNonPHI()->getIterator(); 5153 End = BB->end(); 5154 continue; 5155 } 5156 } 5157 5158 break; 5159 } 5160 return false; 5161 } 5162 5163 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5164 return ::programUndefinedIfUndefOrPoison(Inst, false); 5165 } 5166 5167 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5168 return ::programUndefinedIfUndefOrPoison(Inst, true); 5169 } 5170 5171 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5172 if (FMF.noNaNs()) 5173 return true; 5174 5175 if (auto *C = dyn_cast<ConstantFP>(V)) 5176 return !C->isNaN(); 5177 5178 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5179 if (!C->getElementType()->isFloatingPointTy()) 5180 return false; 5181 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5182 if (C->getElementAsAPFloat(I).isNaN()) 5183 return false; 5184 } 5185 return true; 5186 } 5187 5188 if (isa<ConstantAggregateZero>(V)) 5189 return true; 5190 5191 return false; 5192 } 5193 5194 static bool isKnownNonZero(const Value *V) { 5195 if (auto *C = dyn_cast<ConstantFP>(V)) 5196 return !C->isZero(); 5197 5198 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5199 if (!C->getElementType()->isFloatingPointTy()) 5200 return false; 5201 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5202 if (C->getElementAsAPFloat(I).isZero()) 5203 return false; 5204 } 5205 return true; 5206 } 5207 5208 return false; 5209 } 5210 5211 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5212 /// Given non-min/max outer cmp/select from the clamp pattern this 5213 /// function recognizes if it can be substitued by a "canonical" min/max 5214 /// pattern. 5215 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5216 Value *CmpLHS, Value *CmpRHS, 5217 Value *TrueVal, Value *FalseVal, 5218 Value *&LHS, Value *&RHS) { 5219 // Try to match 5220 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5221 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5222 // and return description of the outer Max/Min. 5223 5224 // First, check if select has inverse order: 5225 if (CmpRHS == FalseVal) { 5226 std::swap(TrueVal, FalseVal); 5227 Pred = CmpInst::getInversePredicate(Pred); 5228 } 5229 5230 // Assume success now. If there's no match, callers should not use these anyway. 5231 LHS = TrueVal; 5232 RHS = FalseVal; 5233 5234 const APFloat *FC1; 5235 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5236 return {SPF_UNKNOWN, SPNB_NA, false}; 5237 5238 const APFloat *FC2; 5239 switch (Pred) { 5240 case CmpInst::FCMP_OLT: 5241 case CmpInst::FCMP_OLE: 5242 case CmpInst::FCMP_ULT: 5243 case CmpInst::FCMP_ULE: 5244 if (match(FalseVal, 5245 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5246 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5247 *FC1 < *FC2) 5248 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5249 break; 5250 case CmpInst::FCMP_OGT: 5251 case CmpInst::FCMP_OGE: 5252 case CmpInst::FCMP_UGT: 5253 case CmpInst::FCMP_UGE: 5254 if (match(FalseVal, 5255 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5256 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5257 *FC1 > *FC2) 5258 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5259 break; 5260 default: 5261 break; 5262 } 5263 5264 return {SPF_UNKNOWN, SPNB_NA, false}; 5265 } 5266 5267 /// Recognize variations of: 5268 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5269 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5270 Value *CmpLHS, Value *CmpRHS, 5271 Value *TrueVal, Value *FalseVal) { 5272 // Swap the select operands and predicate to match the patterns below. 5273 if (CmpRHS != TrueVal) { 5274 Pred = ICmpInst::getSwappedPredicate(Pred); 5275 std::swap(TrueVal, FalseVal); 5276 } 5277 const APInt *C1; 5278 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5279 const APInt *C2; 5280 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5281 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5282 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5283 return {SPF_SMAX, SPNB_NA, false}; 5284 5285 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5286 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5287 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5288 return {SPF_SMIN, SPNB_NA, false}; 5289 5290 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5291 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5292 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5293 return {SPF_UMAX, SPNB_NA, false}; 5294 5295 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5296 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5297 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5298 return {SPF_UMIN, SPNB_NA, false}; 5299 } 5300 return {SPF_UNKNOWN, SPNB_NA, false}; 5301 } 5302 5303 /// Recognize variations of: 5304 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5305 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5306 Value *CmpLHS, Value *CmpRHS, 5307 Value *TVal, Value *FVal, 5308 unsigned Depth) { 5309 // TODO: Allow FP min/max with nnan/nsz. 5310 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5311 5312 Value *A = nullptr, *B = nullptr; 5313 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5314 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5315 return {SPF_UNKNOWN, SPNB_NA, false}; 5316 5317 Value *C = nullptr, *D = nullptr; 5318 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5319 if (L.Flavor != R.Flavor) 5320 return {SPF_UNKNOWN, SPNB_NA, false}; 5321 5322 // We have something like: x Pred y ? min(a, b) : min(c, d). 5323 // Try to match the compare to the min/max operations of the select operands. 5324 // First, make sure we have the right compare predicate. 5325 switch (L.Flavor) { 5326 case SPF_SMIN: 5327 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5328 Pred = ICmpInst::getSwappedPredicate(Pred); 5329 std::swap(CmpLHS, CmpRHS); 5330 } 5331 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5332 break; 5333 return {SPF_UNKNOWN, SPNB_NA, false}; 5334 case SPF_SMAX: 5335 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5336 Pred = ICmpInst::getSwappedPredicate(Pred); 5337 std::swap(CmpLHS, CmpRHS); 5338 } 5339 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5340 break; 5341 return {SPF_UNKNOWN, SPNB_NA, false}; 5342 case SPF_UMIN: 5343 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5344 Pred = ICmpInst::getSwappedPredicate(Pred); 5345 std::swap(CmpLHS, CmpRHS); 5346 } 5347 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5348 break; 5349 return {SPF_UNKNOWN, SPNB_NA, false}; 5350 case SPF_UMAX: 5351 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5352 Pred = ICmpInst::getSwappedPredicate(Pred); 5353 std::swap(CmpLHS, CmpRHS); 5354 } 5355 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5356 break; 5357 return {SPF_UNKNOWN, SPNB_NA, false}; 5358 default: 5359 return {SPF_UNKNOWN, SPNB_NA, false}; 5360 } 5361 5362 // If there is a common operand in the already matched min/max and the other 5363 // min/max operands match the compare operands (either directly or inverted), 5364 // then this is min/max of the same flavor. 5365 5366 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5367 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5368 if (D == B) { 5369 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5370 match(A, m_Not(m_Specific(CmpRHS))))) 5371 return {L.Flavor, SPNB_NA, false}; 5372 } 5373 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5374 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5375 if (C == B) { 5376 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5377 match(A, m_Not(m_Specific(CmpRHS))))) 5378 return {L.Flavor, SPNB_NA, false}; 5379 } 5380 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5381 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5382 if (D == A) { 5383 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5384 match(B, m_Not(m_Specific(CmpRHS))))) 5385 return {L.Flavor, SPNB_NA, false}; 5386 } 5387 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5388 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5389 if (C == A) { 5390 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5391 match(B, m_Not(m_Specific(CmpRHS))))) 5392 return {L.Flavor, SPNB_NA, false}; 5393 } 5394 5395 return {SPF_UNKNOWN, SPNB_NA, false}; 5396 } 5397 5398 /// If the input value is the result of a 'not' op, constant integer, or vector 5399 /// splat of a constant integer, return the bitwise-not source value. 5400 /// TODO: This could be extended to handle non-splat vector integer constants. 5401 static Value *getNotValue(Value *V) { 5402 Value *NotV; 5403 if (match(V, m_Not(m_Value(NotV)))) 5404 return NotV; 5405 5406 const APInt *C; 5407 if (match(V, m_APInt(C))) 5408 return ConstantInt::get(V->getType(), ~(*C)); 5409 5410 return nullptr; 5411 } 5412 5413 /// Match non-obvious integer minimum and maximum sequences. 5414 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5415 Value *CmpLHS, Value *CmpRHS, 5416 Value *TrueVal, Value *FalseVal, 5417 Value *&LHS, Value *&RHS, 5418 unsigned Depth) { 5419 // Assume success. If there's no match, callers should not use these anyway. 5420 LHS = TrueVal; 5421 RHS = FalseVal; 5422 5423 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5424 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5425 return SPR; 5426 5427 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5428 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5429 return SPR; 5430 5431 // Look through 'not' ops to find disguised min/max. 5432 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5433 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5434 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5435 switch (Pred) { 5436 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5437 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5438 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5439 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5440 default: break; 5441 } 5442 } 5443 5444 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5445 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5446 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5447 switch (Pred) { 5448 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5449 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5450 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5451 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5452 default: break; 5453 } 5454 } 5455 5456 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5457 return {SPF_UNKNOWN, SPNB_NA, false}; 5458 5459 // Z = X -nsw Y 5460 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5461 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5462 if (match(TrueVal, m_Zero()) && 5463 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5464 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5465 5466 // Z = X -nsw Y 5467 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5468 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5469 if (match(FalseVal, m_Zero()) && 5470 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5471 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5472 5473 const APInt *C1; 5474 if (!match(CmpRHS, m_APInt(C1))) 5475 return {SPF_UNKNOWN, SPNB_NA, false}; 5476 5477 // An unsigned min/max can be written with a signed compare. 5478 const APInt *C2; 5479 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5480 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5481 // Is the sign bit set? 5482 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5483 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5484 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5485 C2->isMaxSignedValue()) 5486 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5487 5488 // Is the sign bit clear? 5489 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5490 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5491 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5492 C2->isMinSignedValue()) 5493 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5494 } 5495 5496 return {SPF_UNKNOWN, SPNB_NA, false}; 5497 } 5498 5499 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5500 assert(X && Y && "Invalid operand"); 5501 5502 // X = sub (0, Y) || X = sub nsw (0, Y) 5503 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5504 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5505 return true; 5506 5507 // Y = sub (0, X) || Y = sub nsw (0, X) 5508 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5509 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5510 return true; 5511 5512 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5513 Value *A, *B; 5514 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5515 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5516 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5517 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5518 } 5519 5520 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5521 FastMathFlags FMF, 5522 Value *CmpLHS, Value *CmpRHS, 5523 Value *TrueVal, Value *FalseVal, 5524 Value *&LHS, Value *&RHS, 5525 unsigned Depth) { 5526 if (CmpInst::isFPPredicate(Pred)) { 5527 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5528 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5529 // purpose of identifying min/max. Disregard vector constants with undefined 5530 // elements because those can not be back-propagated for analysis. 5531 Value *OutputZeroVal = nullptr; 5532 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5533 !cast<Constant>(TrueVal)->containsUndefElement()) 5534 OutputZeroVal = TrueVal; 5535 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5536 !cast<Constant>(FalseVal)->containsUndefElement()) 5537 OutputZeroVal = FalseVal; 5538 5539 if (OutputZeroVal) { 5540 if (match(CmpLHS, m_AnyZeroFP())) 5541 CmpLHS = OutputZeroVal; 5542 if (match(CmpRHS, m_AnyZeroFP())) 5543 CmpRHS = OutputZeroVal; 5544 } 5545 } 5546 5547 LHS = CmpLHS; 5548 RHS = CmpRHS; 5549 5550 // Signed zero may return inconsistent results between implementations. 5551 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5552 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5553 // Therefore, we behave conservatively and only proceed if at least one of the 5554 // operands is known to not be zero or if we don't care about signed zero. 5555 switch (Pred) { 5556 default: break; 5557 // FIXME: Include OGT/OLT/UGT/ULT. 5558 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5559 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5560 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5561 !isKnownNonZero(CmpRHS)) 5562 return {SPF_UNKNOWN, SPNB_NA, false}; 5563 } 5564 5565 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5566 bool Ordered = false; 5567 5568 // When given one NaN and one non-NaN input: 5569 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5570 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5571 // ordered comparison fails), which could be NaN or non-NaN. 5572 // so here we discover exactly what NaN behavior is required/accepted. 5573 if (CmpInst::isFPPredicate(Pred)) { 5574 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5575 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5576 5577 if (LHSSafe && RHSSafe) { 5578 // Both operands are known non-NaN. 5579 NaNBehavior = SPNB_RETURNS_ANY; 5580 } else if (CmpInst::isOrdered(Pred)) { 5581 // An ordered comparison will return false when given a NaN, so it 5582 // returns the RHS. 5583 Ordered = true; 5584 if (LHSSafe) 5585 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5586 NaNBehavior = SPNB_RETURNS_NAN; 5587 else if (RHSSafe) 5588 NaNBehavior = SPNB_RETURNS_OTHER; 5589 else 5590 // Completely unsafe. 5591 return {SPF_UNKNOWN, SPNB_NA, false}; 5592 } else { 5593 Ordered = false; 5594 // An unordered comparison will return true when given a NaN, so it 5595 // returns the LHS. 5596 if (LHSSafe) 5597 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5598 NaNBehavior = SPNB_RETURNS_OTHER; 5599 else if (RHSSafe) 5600 NaNBehavior = SPNB_RETURNS_NAN; 5601 else 5602 // Completely unsafe. 5603 return {SPF_UNKNOWN, SPNB_NA, false}; 5604 } 5605 } 5606 5607 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5608 std::swap(CmpLHS, CmpRHS); 5609 Pred = CmpInst::getSwappedPredicate(Pred); 5610 if (NaNBehavior == SPNB_RETURNS_NAN) 5611 NaNBehavior = SPNB_RETURNS_OTHER; 5612 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5613 NaNBehavior = SPNB_RETURNS_NAN; 5614 Ordered = !Ordered; 5615 } 5616 5617 // ([if]cmp X, Y) ? X : Y 5618 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5619 switch (Pred) { 5620 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5621 case ICmpInst::ICMP_UGT: 5622 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5623 case ICmpInst::ICMP_SGT: 5624 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5625 case ICmpInst::ICMP_ULT: 5626 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5627 case ICmpInst::ICMP_SLT: 5628 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5629 case FCmpInst::FCMP_UGT: 5630 case FCmpInst::FCMP_UGE: 5631 case FCmpInst::FCMP_OGT: 5632 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5633 case FCmpInst::FCMP_ULT: 5634 case FCmpInst::FCMP_ULE: 5635 case FCmpInst::FCMP_OLT: 5636 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5637 } 5638 } 5639 5640 if (isKnownNegation(TrueVal, FalseVal)) { 5641 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5642 // match against either LHS or sext(LHS). 5643 auto MaybeSExtCmpLHS = 5644 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5645 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5646 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5647 if (match(TrueVal, MaybeSExtCmpLHS)) { 5648 // Set the return values. If the compare uses the negated value (-X >s 0), 5649 // swap the return values because the negated value is always 'RHS'. 5650 LHS = TrueVal; 5651 RHS = FalseVal; 5652 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5653 std::swap(LHS, RHS); 5654 5655 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5656 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5657 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5658 return {SPF_ABS, SPNB_NA, false}; 5659 5660 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5661 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5662 return {SPF_ABS, SPNB_NA, false}; 5663 5664 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5665 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5666 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5667 return {SPF_NABS, SPNB_NA, false}; 5668 } 5669 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5670 // Set the return values. If the compare uses the negated value (-X >s 0), 5671 // swap the return values because the negated value is always 'RHS'. 5672 LHS = FalseVal; 5673 RHS = TrueVal; 5674 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5675 std::swap(LHS, RHS); 5676 5677 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5678 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5679 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5680 return {SPF_NABS, SPNB_NA, false}; 5681 5682 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5683 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5684 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5685 return {SPF_ABS, SPNB_NA, false}; 5686 } 5687 } 5688 5689 if (CmpInst::isIntPredicate(Pred)) 5690 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5691 5692 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5693 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5694 // semantics than minNum. Be conservative in such case. 5695 if (NaNBehavior != SPNB_RETURNS_ANY || 5696 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5697 !isKnownNonZero(CmpRHS))) 5698 return {SPF_UNKNOWN, SPNB_NA, false}; 5699 5700 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5701 } 5702 5703 /// Helps to match a select pattern in case of a type mismatch. 5704 /// 5705 /// The function processes the case when type of true and false values of a 5706 /// select instruction differs from type of the cmp instruction operands because 5707 /// of a cast instruction. The function checks if it is legal to move the cast 5708 /// operation after "select". If yes, it returns the new second value of 5709 /// "select" (with the assumption that cast is moved): 5710 /// 1. As operand of cast instruction when both values of "select" are same cast 5711 /// instructions. 5712 /// 2. As restored constant (by applying reverse cast operation) when the first 5713 /// value of the "select" is a cast operation and the second value is a 5714 /// constant. 5715 /// NOTE: We return only the new second value because the first value could be 5716 /// accessed as operand of cast instruction. 5717 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5718 Instruction::CastOps *CastOp) { 5719 auto *Cast1 = dyn_cast<CastInst>(V1); 5720 if (!Cast1) 5721 return nullptr; 5722 5723 *CastOp = Cast1->getOpcode(); 5724 Type *SrcTy = Cast1->getSrcTy(); 5725 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5726 // If V1 and V2 are both the same cast from the same type, look through V1. 5727 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5728 return Cast2->getOperand(0); 5729 return nullptr; 5730 } 5731 5732 auto *C = dyn_cast<Constant>(V2); 5733 if (!C) 5734 return nullptr; 5735 5736 Constant *CastedTo = nullptr; 5737 switch (*CastOp) { 5738 case Instruction::ZExt: 5739 if (CmpI->isUnsigned()) 5740 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5741 break; 5742 case Instruction::SExt: 5743 if (CmpI->isSigned()) 5744 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5745 break; 5746 case Instruction::Trunc: 5747 Constant *CmpConst; 5748 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5749 CmpConst->getType() == SrcTy) { 5750 // Here we have the following case: 5751 // 5752 // %cond = cmp iN %x, CmpConst 5753 // %tr = trunc iN %x to iK 5754 // %narrowsel = select i1 %cond, iK %t, iK C 5755 // 5756 // We can always move trunc after select operation: 5757 // 5758 // %cond = cmp iN %x, CmpConst 5759 // %widesel = select i1 %cond, iN %x, iN CmpConst 5760 // %tr = trunc iN %widesel to iK 5761 // 5762 // Note that C could be extended in any way because we don't care about 5763 // upper bits after truncation. It can't be abs pattern, because it would 5764 // look like: 5765 // 5766 // select i1 %cond, x, -x. 5767 // 5768 // So only min/max pattern could be matched. Such match requires widened C 5769 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5770 // CmpConst == C is checked below. 5771 CastedTo = CmpConst; 5772 } else { 5773 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5774 } 5775 break; 5776 case Instruction::FPTrunc: 5777 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5778 break; 5779 case Instruction::FPExt: 5780 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5781 break; 5782 case Instruction::FPToUI: 5783 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5784 break; 5785 case Instruction::FPToSI: 5786 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5787 break; 5788 case Instruction::UIToFP: 5789 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5790 break; 5791 case Instruction::SIToFP: 5792 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5793 break; 5794 default: 5795 break; 5796 } 5797 5798 if (!CastedTo) 5799 return nullptr; 5800 5801 // Make sure the cast doesn't lose any information. 5802 Constant *CastedBack = 5803 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5804 if (CastedBack != C) 5805 return nullptr; 5806 5807 return CastedTo; 5808 } 5809 5810 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5811 Instruction::CastOps *CastOp, 5812 unsigned Depth) { 5813 if (Depth >= MaxAnalysisRecursionDepth) 5814 return {SPF_UNKNOWN, SPNB_NA, false}; 5815 5816 SelectInst *SI = dyn_cast<SelectInst>(V); 5817 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5818 5819 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5820 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5821 5822 Value *TrueVal = SI->getTrueValue(); 5823 Value *FalseVal = SI->getFalseValue(); 5824 5825 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5826 CastOp, Depth); 5827 } 5828 5829 SelectPatternResult llvm::matchDecomposedSelectPattern( 5830 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5831 Instruction::CastOps *CastOp, unsigned Depth) { 5832 CmpInst::Predicate Pred = CmpI->getPredicate(); 5833 Value *CmpLHS = CmpI->getOperand(0); 5834 Value *CmpRHS = CmpI->getOperand(1); 5835 FastMathFlags FMF; 5836 if (isa<FPMathOperator>(CmpI)) 5837 FMF = CmpI->getFastMathFlags(); 5838 5839 // Bail out early. 5840 if (CmpI->isEquality()) 5841 return {SPF_UNKNOWN, SPNB_NA, false}; 5842 5843 // Deal with type mismatches. 5844 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5845 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5846 // If this is a potential fmin/fmax with a cast to integer, then ignore 5847 // -0.0 because there is no corresponding integer value. 5848 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5849 FMF.setNoSignedZeros(); 5850 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5851 cast<CastInst>(TrueVal)->getOperand(0), C, 5852 LHS, RHS, Depth); 5853 } 5854 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5855 // If this is a potential fmin/fmax with a cast to integer, then ignore 5856 // -0.0 because there is no corresponding integer value. 5857 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5858 FMF.setNoSignedZeros(); 5859 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5860 C, cast<CastInst>(FalseVal)->getOperand(0), 5861 LHS, RHS, Depth); 5862 } 5863 } 5864 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5865 LHS, RHS, Depth); 5866 } 5867 5868 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5869 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5870 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5871 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5872 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5873 if (SPF == SPF_FMINNUM) 5874 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5875 if (SPF == SPF_FMAXNUM) 5876 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5877 llvm_unreachable("unhandled!"); 5878 } 5879 5880 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5881 if (SPF == SPF_SMIN) return SPF_SMAX; 5882 if (SPF == SPF_UMIN) return SPF_UMAX; 5883 if (SPF == SPF_SMAX) return SPF_SMIN; 5884 if (SPF == SPF_UMAX) return SPF_UMIN; 5885 llvm_unreachable("unhandled!"); 5886 } 5887 5888 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5889 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5890 } 5891 5892 std::pair<Intrinsic::ID, bool> 5893 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5894 // Check if VL contains select instructions that can be folded into a min/max 5895 // vector intrinsic and return the intrinsic if it is possible. 5896 // TODO: Support floating point min/max. 5897 bool AllCmpSingleUse = true; 5898 SelectPatternResult SelectPattern; 5899 SelectPattern.Flavor = SPF_UNKNOWN; 5900 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5901 Value *LHS, *RHS; 5902 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5903 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5904 CurrentPattern.Flavor == SPF_FMINNUM || 5905 CurrentPattern.Flavor == SPF_FMAXNUM || 5906 !I->getType()->isIntOrIntVectorTy()) 5907 return false; 5908 if (SelectPattern.Flavor != SPF_UNKNOWN && 5909 SelectPattern.Flavor != CurrentPattern.Flavor) 5910 return false; 5911 SelectPattern = CurrentPattern; 5912 AllCmpSingleUse &= 5913 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5914 return true; 5915 })) { 5916 switch (SelectPattern.Flavor) { 5917 case SPF_SMIN: 5918 return {Intrinsic::smin, AllCmpSingleUse}; 5919 case SPF_UMIN: 5920 return {Intrinsic::umin, AllCmpSingleUse}; 5921 case SPF_SMAX: 5922 return {Intrinsic::smax, AllCmpSingleUse}; 5923 case SPF_UMAX: 5924 return {Intrinsic::umax, AllCmpSingleUse}; 5925 default: 5926 llvm_unreachable("unexpected select pattern flavor"); 5927 } 5928 } 5929 return {Intrinsic::not_intrinsic, false}; 5930 } 5931 5932 /// Return true if "icmp Pred LHS RHS" is always true. 5933 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5934 const Value *RHS, const DataLayout &DL, 5935 unsigned Depth) { 5936 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5937 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5938 return true; 5939 5940 switch (Pred) { 5941 default: 5942 return false; 5943 5944 case CmpInst::ICMP_SLE: { 5945 const APInt *C; 5946 5947 // LHS s<= LHS +_{nsw} C if C >= 0 5948 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5949 return !C->isNegative(); 5950 return false; 5951 } 5952 5953 case CmpInst::ICMP_ULE: { 5954 const APInt *C; 5955 5956 // LHS u<= LHS +_{nuw} C for any C 5957 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5958 return true; 5959 5960 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5961 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5962 const Value *&X, 5963 const APInt *&CA, const APInt *&CB) { 5964 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5965 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5966 return true; 5967 5968 // If X & C == 0 then (X | C) == X +_{nuw} C 5969 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5970 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5971 KnownBits Known(CA->getBitWidth()); 5972 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5973 /*CxtI*/ nullptr, /*DT*/ nullptr); 5974 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5975 return true; 5976 } 5977 5978 return false; 5979 }; 5980 5981 const Value *X; 5982 const APInt *CLHS, *CRHS; 5983 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5984 return CLHS->ule(*CRHS); 5985 5986 return false; 5987 } 5988 } 5989 } 5990 5991 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5992 /// ALHS ARHS" is true. Otherwise, return None. 5993 static Optional<bool> 5994 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5995 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5996 const DataLayout &DL, unsigned Depth) { 5997 switch (Pred) { 5998 default: 5999 return None; 6000 6001 case CmpInst::ICMP_SLT: 6002 case CmpInst::ICMP_SLE: 6003 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6004 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6005 return true; 6006 return None; 6007 6008 case CmpInst::ICMP_ULT: 6009 case CmpInst::ICMP_ULE: 6010 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6011 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6012 return true; 6013 return None; 6014 } 6015 } 6016 6017 /// Return true if the operands of the two compares match. IsSwappedOps is true 6018 /// when the operands match, but are swapped. 6019 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6020 const Value *BLHS, const Value *BRHS, 6021 bool &IsSwappedOps) { 6022 6023 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6024 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6025 return IsMatchingOps || IsSwappedOps; 6026 } 6027 6028 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6029 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6030 /// Otherwise, return None if we can't infer anything. 6031 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6032 CmpInst::Predicate BPred, 6033 bool AreSwappedOps) { 6034 // Canonicalize the predicate as if the operands were not commuted. 6035 if (AreSwappedOps) 6036 BPred = ICmpInst::getSwappedPredicate(BPred); 6037 6038 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6039 return true; 6040 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6041 return false; 6042 6043 return None; 6044 } 6045 6046 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6047 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6048 /// Otherwise, return None if we can't infer anything. 6049 static Optional<bool> 6050 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6051 const ConstantInt *C1, 6052 CmpInst::Predicate BPred, 6053 const ConstantInt *C2) { 6054 ConstantRange DomCR = 6055 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6056 ConstantRange CR = 6057 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6058 ConstantRange Intersection = DomCR.intersectWith(CR); 6059 ConstantRange Difference = DomCR.difference(CR); 6060 if (Intersection.isEmptySet()) 6061 return false; 6062 if (Difference.isEmptySet()) 6063 return true; 6064 return None; 6065 } 6066 6067 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6068 /// false. Otherwise, return None if we can't infer anything. 6069 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6070 CmpInst::Predicate BPred, 6071 const Value *BLHS, const Value *BRHS, 6072 const DataLayout &DL, bool LHSIsTrue, 6073 unsigned Depth) { 6074 Value *ALHS = LHS->getOperand(0); 6075 Value *ARHS = LHS->getOperand(1); 6076 6077 // The rest of the logic assumes the LHS condition is true. If that's not the 6078 // case, invert the predicate to make it so. 6079 CmpInst::Predicate APred = 6080 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6081 6082 // Can we infer anything when the two compares have matching operands? 6083 bool AreSwappedOps; 6084 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6085 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6086 APred, BPred, AreSwappedOps)) 6087 return Implication; 6088 // No amount of additional analysis will infer the second condition, so 6089 // early exit. 6090 return None; 6091 } 6092 6093 // Can we infer anything when the LHS operands match and the RHS operands are 6094 // constants (not necessarily matching)? 6095 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6096 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6097 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6098 return Implication; 6099 // No amount of additional analysis will infer the second condition, so 6100 // early exit. 6101 return None; 6102 } 6103 6104 if (APred == BPred) 6105 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6106 return None; 6107 } 6108 6109 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6110 /// false. Otherwise, return None if we can't infer anything. We expect the 6111 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6112 static Optional<bool> 6113 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6114 const Value *RHSOp0, const Value *RHSOp1, 6115 6116 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6117 // The LHS must be an 'or' or an 'and' instruction. 6118 assert((LHS->getOpcode() == Instruction::And || 6119 LHS->getOpcode() == Instruction::Or) && 6120 "Expected LHS to be 'and' or 'or'."); 6121 6122 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6123 6124 // If the result of an 'or' is false, then we know both legs of the 'or' are 6125 // false. Similarly, if the result of an 'and' is true, then we know both 6126 // legs of the 'and' are true. 6127 Value *ALHS, *ARHS; 6128 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6129 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6130 // FIXME: Make this non-recursion. 6131 if (Optional<bool> Implication = isImpliedCondition( 6132 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6133 return Implication; 6134 if (Optional<bool> Implication = isImpliedCondition( 6135 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6136 return Implication; 6137 return None; 6138 } 6139 return None; 6140 } 6141 6142 Optional<bool> 6143 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6144 const Value *RHSOp0, const Value *RHSOp1, 6145 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6146 // Bail out when we hit the limit. 6147 if (Depth == MaxAnalysisRecursionDepth) 6148 return None; 6149 6150 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6151 // example. 6152 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6153 return None; 6154 6155 Type *OpTy = LHS->getType(); 6156 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6157 6158 // FIXME: Extending the code below to handle vectors. 6159 if (OpTy->isVectorTy()) 6160 return None; 6161 6162 assert(OpTy->isIntegerTy(1) && "implied by above"); 6163 6164 // Both LHS and RHS are icmps. 6165 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6166 if (LHSCmp) 6167 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6168 Depth); 6169 6170 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6171 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6172 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6173 if (LHSBO) { 6174 if ((LHSBO->getOpcode() == Instruction::And || 6175 LHSBO->getOpcode() == Instruction::Or)) 6176 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6177 Depth); 6178 } 6179 return None; 6180 } 6181 6182 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6183 const DataLayout &DL, bool LHSIsTrue, 6184 unsigned Depth) { 6185 // LHS ==> RHS by definition 6186 if (LHS == RHS) 6187 return LHSIsTrue; 6188 6189 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6190 if (RHSCmp) 6191 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6192 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6193 LHSIsTrue, Depth); 6194 return None; 6195 } 6196 6197 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6198 // condition dominating ContextI or nullptr, if no condition is found. 6199 static std::pair<Value *, bool> 6200 getDomPredecessorCondition(const Instruction *ContextI) { 6201 if (!ContextI || !ContextI->getParent()) 6202 return {nullptr, false}; 6203 6204 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6205 // dominator tree (eg, from a SimplifyQuery) instead? 6206 const BasicBlock *ContextBB = ContextI->getParent(); 6207 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6208 if (!PredBB) 6209 return {nullptr, false}; 6210 6211 // We need a conditional branch in the predecessor. 6212 Value *PredCond; 6213 BasicBlock *TrueBB, *FalseBB; 6214 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6215 return {nullptr, false}; 6216 6217 // The branch should get simplified. Don't bother simplifying this condition. 6218 if (TrueBB == FalseBB) 6219 return {nullptr, false}; 6220 6221 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6222 "Predecessor block does not point to successor?"); 6223 6224 // Is this condition implied by the predecessor condition? 6225 return {PredCond, TrueBB == ContextBB}; 6226 } 6227 6228 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6229 const Instruction *ContextI, 6230 const DataLayout &DL) { 6231 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6232 auto PredCond = getDomPredecessorCondition(ContextI); 6233 if (PredCond.first) 6234 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6235 return None; 6236 } 6237 6238 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6239 const Value *LHS, const Value *RHS, 6240 const Instruction *ContextI, 6241 const DataLayout &DL) { 6242 auto PredCond = getDomPredecessorCondition(ContextI); 6243 if (PredCond.first) 6244 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6245 PredCond.second); 6246 return None; 6247 } 6248 6249 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6250 APInt &Upper, const InstrInfoQuery &IIQ) { 6251 unsigned Width = Lower.getBitWidth(); 6252 const APInt *C; 6253 switch (BO.getOpcode()) { 6254 case Instruction::Add: 6255 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6256 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6257 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6258 // 'add nuw x, C' produces [C, UINT_MAX]. 6259 Lower = *C; 6260 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6261 if (C->isNegative()) { 6262 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6263 Lower = APInt::getSignedMinValue(Width); 6264 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6265 } else { 6266 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6267 Lower = APInt::getSignedMinValue(Width) + *C; 6268 Upper = APInt::getSignedMaxValue(Width) + 1; 6269 } 6270 } 6271 } 6272 break; 6273 6274 case Instruction::And: 6275 if (match(BO.getOperand(1), m_APInt(C))) 6276 // 'and x, C' produces [0, C]. 6277 Upper = *C + 1; 6278 break; 6279 6280 case Instruction::Or: 6281 if (match(BO.getOperand(1), m_APInt(C))) 6282 // 'or x, C' produces [C, UINT_MAX]. 6283 Lower = *C; 6284 break; 6285 6286 case Instruction::AShr: 6287 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6288 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6289 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6290 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6291 } else if (match(BO.getOperand(0), m_APInt(C))) { 6292 unsigned ShiftAmount = Width - 1; 6293 if (!C->isNullValue() && IIQ.isExact(&BO)) 6294 ShiftAmount = C->countTrailingZeros(); 6295 if (C->isNegative()) { 6296 // 'ashr C, x' produces [C, C >> (Width-1)] 6297 Lower = *C; 6298 Upper = C->ashr(ShiftAmount) + 1; 6299 } else { 6300 // 'ashr C, x' produces [C >> (Width-1), C] 6301 Lower = C->ashr(ShiftAmount); 6302 Upper = *C + 1; 6303 } 6304 } 6305 break; 6306 6307 case Instruction::LShr: 6308 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6309 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6310 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6311 } else if (match(BO.getOperand(0), m_APInt(C))) { 6312 // 'lshr C, x' produces [C >> (Width-1), C]. 6313 unsigned ShiftAmount = Width - 1; 6314 if (!C->isNullValue() && IIQ.isExact(&BO)) 6315 ShiftAmount = C->countTrailingZeros(); 6316 Lower = C->lshr(ShiftAmount); 6317 Upper = *C + 1; 6318 } 6319 break; 6320 6321 case Instruction::Shl: 6322 if (match(BO.getOperand(0), m_APInt(C))) { 6323 if (IIQ.hasNoUnsignedWrap(&BO)) { 6324 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6325 Lower = *C; 6326 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6327 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6328 if (C->isNegative()) { 6329 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6330 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6331 Lower = C->shl(ShiftAmount); 6332 Upper = *C + 1; 6333 } else { 6334 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6335 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6336 Lower = *C; 6337 Upper = C->shl(ShiftAmount) + 1; 6338 } 6339 } 6340 } 6341 break; 6342 6343 case Instruction::SDiv: 6344 if (match(BO.getOperand(1), m_APInt(C))) { 6345 APInt IntMin = APInt::getSignedMinValue(Width); 6346 APInt IntMax = APInt::getSignedMaxValue(Width); 6347 if (C->isAllOnesValue()) { 6348 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6349 // where C != -1 and C != 0 and C != 1 6350 Lower = IntMin + 1; 6351 Upper = IntMax + 1; 6352 } else if (C->countLeadingZeros() < Width - 1) { 6353 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6354 // where C != -1 and C != 0 and C != 1 6355 Lower = IntMin.sdiv(*C); 6356 Upper = IntMax.sdiv(*C); 6357 if (Lower.sgt(Upper)) 6358 std::swap(Lower, Upper); 6359 Upper = Upper + 1; 6360 assert(Upper != Lower && "Upper part of range has wrapped!"); 6361 } 6362 } else if (match(BO.getOperand(0), m_APInt(C))) { 6363 if (C->isMinSignedValue()) { 6364 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6365 Lower = *C; 6366 Upper = Lower.lshr(1) + 1; 6367 } else { 6368 // 'sdiv C, x' produces [-|C|, |C|]. 6369 Upper = C->abs() + 1; 6370 Lower = (-Upper) + 1; 6371 } 6372 } 6373 break; 6374 6375 case Instruction::UDiv: 6376 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6377 // 'udiv x, C' produces [0, UINT_MAX / C]. 6378 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6379 } else if (match(BO.getOperand(0), m_APInt(C))) { 6380 // 'udiv C, x' produces [0, C]. 6381 Upper = *C + 1; 6382 } 6383 break; 6384 6385 case Instruction::SRem: 6386 if (match(BO.getOperand(1), m_APInt(C))) { 6387 // 'srem x, C' produces (-|C|, |C|). 6388 Upper = C->abs(); 6389 Lower = (-Upper) + 1; 6390 } 6391 break; 6392 6393 case Instruction::URem: 6394 if (match(BO.getOperand(1), m_APInt(C))) 6395 // 'urem x, C' produces [0, C). 6396 Upper = *C; 6397 break; 6398 6399 default: 6400 break; 6401 } 6402 } 6403 6404 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6405 APInt &Upper) { 6406 unsigned Width = Lower.getBitWidth(); 6407 const APInt *C; 6408 switch (II.getIntrinsicID()) { 6409 case Intrinsic::ctpop: 6410 case Intrinsic::ctlz: 6411 case Intrinsic::cttz: 6412 // Maximum of set/clear bits is the bit width. 6413 assert(Lower == 0 && "Expected lower bound to be zero"); 6414 Upper = Width + 1; 6415 break; 6416 case Intrinsic::uadd_sat: 6417 // uadd.sat(x, C) produces [C, UINT_MAX]. 6418 if (match(II.getOperand(0), m_APInt(C)) || 6419 match(II.getOperand(1), m_APInt(C))) 6420 Lower = *C; 6421 break; 6422 case Intrinsic::sadd_sat: 6423 if (match(II.getOperand(0), m_APInt(C)) || 6424 match(II.getOperand(1), m_APInt(C))) { 6425 if (C->isNegative()) { 6426 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6427 Lower = APInt::getSignedMinValue(Width); 6428 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6429 } else { 6430 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6431 Lower = APInt::getSignedMinValue(Width) + *C; 6432 Upper = APInt::getSignedMaxValue(Width) + 1; 6433 } 6434 } 6435 break; 6436 case Intrinsic::usub_sat: 6437 // usub.sat(C, x) produces [0, C]. 6438 if (match(II.getOperand(0), m_APInt(C))) 6439 Upper = *C + 1; 6440 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6441 else if (match(II.getOperand(1), m_APInt(C))) 6442 Upper = APInt::getMaxValue(Width) - *C + 1; 6443 break; 6444 case Intrinsic::ssub_sat: 6445 if (match(II.getOperand(0), m_APInt(C))) { 6446 if (C->isNegative()) { 6447 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6448 Lower = APInt::getSignedMinValue(Width); 6449 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6450 } else { 6451 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6452 Lower = *C - APInt::getSignedMaxValue(Width); 6453 Upper = APInt::getSignedMaxValue(Width) + 1; 6454 } 6455 } else if (match(II.getOperand(1), m_APInt(C))) { 6456 if (C->isNegative()) { 6457 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6458 Lower = APInt::getSignedMinValue(Width) - *C; 6459 Upper = APInt::getSignedMaxValue(Width) + 1; 6460 } else { 6461 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6462 Lower = APInt::getSignedMinValue(Width); 6463 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6464 } 6465 } 6466 break; 6467 case Intrinsic::umin: 6468 case Intrinsic::umax: 6469 case Intrinsic::smin: 6470 case Intrinsic::smax: 6471 if (!match(II.getOperand(0), m_APInt(C)) && 6472 !match(II.getOperand(1), m_APInt(C))) 6473 break; 6474 6475 switch (II.getIntrinsicID()) { 6476 case Intrinsic::umin: 6477 Upper = *C + 1; 6478 break; 6479 case Intrinsic::umax: 6480 Lower = *C; 6481 break; 6482 case Intrinsic::smin: 6483 Lower = APInt::getSignedMinValue(Width); 6484 Upper = *C + 1; 6485 break; 6486 case Intrinsic::smax: 6487 Lower = *C; 6488 Upper = APInt::getSignedMaxValue(Width) + 1; 6489 break; 6490 default: 6491 llvm_unreachable("Must be min/max intrinsic"); 6492 } 6493 break; 6494 case Intrinsic::abs: 6495 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6496 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6497 if (match(II.getOperand(1), m_One())) 6498 Upper = APInt::getSignedMaxValue(Width) + 1; 6499 else 6500 Upper = APInt::getSignedMinValue(Width) + 1; 6501 break; 6502 default: 6503 break; 6504 } 6505 } 6506 6507 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6508 APInt &Upper, const InstrInfoQuery &IIQ) { 6509 const Value *LHS = nullptr, *RHS = nullptr; 6510 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6511 if (R.Flavor == SPF_UNKNOWN) 6512 return; 6513 6514 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6515 6516 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6517 // If the negation part of the abs (in RHS) has the NSW flag, 6518 // then the result of abs(X) is [0..SIGNED_MAX], 6519 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6520 Lower = APInt::getNullValue(BitWidth); 6521 if (match(RHS, m_Neg(m_Specific(LHS))) && 6522 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6523 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6524 else 6525 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6526 return; 6527 } 6528 6529 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6530 // The result of -abs(X) is <= 0. 6531 Lower = APInt::getSignedMinValue(BitWidth); 6532 Upper = APInt(BitWidth, 1); 6533 return; 6534 } 6535 6536 const APInt *C; 6537 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6538 return; 6539 6540 switch (R.Flavor) { 6541 case SPF_UMIN: 6542 Upper = *C + 1; 6543 break; 6544 case SPF_UMAX: 6545 Lower = *C; 6546 break; 6547 case SPF_SMIN: 6548 Lower = APInt::getSignedMinValue(BitWidth); 6549 Upper = *C + 1; 6550 break; 6551 case SPF_SMAX: 6552 Lower = *C; 6553 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6554 break; 6555 default: 6556 break; 6557 } 6558 } 6559 6560 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6561 AssumptionCache *AC, 6562 const Instruction *CtxI, 6563 unsigned Depth) { 6564 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6565 6566 if (Depth == MaxAnalysisRecursionDepth) 6567 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6568 6569 const APInt *C; 6570 if (match(V, m_APInt(C))) 6571 return ConstantRange(*C); 6572 6573 InstrInfoQuery IIQ(UseInstrInfo); 6574 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6575 APInt Lower = APInt(BitWidth, 0); 6576 APInt Upper = APInt(BitWidth, 0); 6577 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6578 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6579 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6580 setLimitsForIntrinsic(*II, Lower, Upper); 6581 else if (auto *SI = dyn_cast<SelectInst>(V)) 6582 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6583 6584 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6585 6586 if (auto *I = dyn_cast<Instruction>(V)) 6587 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6588 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6589 6590 if (CtxI && AC) { 6591 // Try to restrict the range based on information from assumptions. 6592 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6593 if (!AssumeVH) 6594 continue; 6595 CallInst *I = cast<CallInst>(AssumeVH); 6596 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6597 "Got assumption for the wrong function!"); 6598 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6599 "must be an assume intrinsic"); 6600 6601 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6602 continue; 6603 Value *Arg = I->getArgOperand(0); 6604 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6605 // Currently we just use information from comparisons. 6606 if (!Cmp || Cmp->getOperand(0) != V) 6607 continue; 6608 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6609 AC, I, Depth + 1); 6610 CR = CR.intersectWith( 6611 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6612 } 6613 } 6614 6615 return CR; 6616 } 6617 6618 static Optional<int64_t> 6619 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6620 // Skip over the first indices. 6621 gep_type_iterator GTI = gep_type_begin(GEP); 6622 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6623 /*skip along*/; 6624 6625 // Compute the offset implied by the rest of the indices. 6626 int64_t Offset = 0; 6627 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6628 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6629 if (!OpC) 6630 return None; 6631 if (OpC->isZero()) 6632 continue; // No offset. 6633 6634 // Handle struct indices, which add their field offset to the pointer. 6635 if (StructType *STy = GTI.getStructTypeOrNull()) { 6636 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6637 continue; 6638 } 6639 6640 // Otherwise, we have a sequential type like an array or fixed-length 6641 // vector. Multiply the index by the ElementSize. 6642 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6643 if (Size.isScalable()) 6644 return None; 6645 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6646 } 6647 6648 return Offset; 6649 } 6650 6651 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6652 const DataLayout &DL) { 6653 Ptr1 = Ptr1->stripPointerCasts(); 6654 Ptr2 = Ptr2->stripPointerCasts(); 6655 6656 // Handle the trivial case first. 6657 if (Ptr1 == Ptr2) { 6658 return 0; 6659 } 6660 6661 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6662 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6663 6664 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6665 // as in "P" and "gep P, 1". 6666 // Also do this iteratively to handle the the following case: 6667 // Ptr_t1 = GEP Ptr1, c1 6668 // Ptr_t2 = GEP Ptr_t1, c2 6669 // Ptr2 = GEP Ptr_t2, c3 6670 // where we will return c1+c2+c3. 6671 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6672 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6673 // are the same, and return the difference between offsets. 6674 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6675 const Value *Ptr) -> Optional<int64_t> { 6676 const GEPOperator *GEP_T = GEP; 6677 int64_t OffsetVal = 0; 6678 bool HasSameBase = false; 6679 while (GEP_T) { 6680 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6681 if (!Offset) 6682 return None; 6683 OffsetVal += *Offset; 6684 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6685 if (Op0 == Ptr) { 6686 HasSameBase = true; 6687 break; 6688 } 6689 GEP_T = dyn_cast<GEPOperator>(Op0); 6690 } 6691 if (!HasSameBase) 6692 return None; 6693 return OffsetVal; 6694 }; 6695 6696 if (GEP1) { 6697 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6698 if (Offset) 6699 return -*Offset; 6700 } 6701 if (GEP2) { 6702 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6703 if (Offset) 6704 return Offset; 6705 } 6706 6707 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6708 // base. After that base, they may have some number of common (and 6709 // potentially variable) indices. After that they handle some constant 6710 // offset, which determines their offset from each other. At this point, we 6711 // handle no other case. 6712 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6713 return None; 6714 6715 // Skip any common indices and track the GEP types. 6716 unsigned Idx = 1; 6717 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6718 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6719 break; 6720 6721 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6722 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6723 if (!Offset1 || !Offset2) 6724 return None; 6725 return *Offset2 - *Offset1; 6726 } 6727