1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <array> 74 #include <cassert> 75 #include <cstdint> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace llvm::PatternMatch; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 // According to the LangRef, branching on a poison condition is absolutely 88 // immediate full UB. However, historically we haven't implemented that 89 // consistently as we have an important transformation (non-trivial unswitch) 90 // which introduces instances of branch on poison/undef to otherwise well 91 // defined programs. This flag exists to let us test optimization benefit 92 // of exploiting the specified behavior (in combination with enabling the 93 // unswitch fix.) 94 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 95 cl::Hidden, cl::init(false)); 96 97 98 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 99 /// returns the element type's bitwidth. 100 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 101 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 102 return BitWidth; 103 104 return DL.getPointerTypeSizeInBits(Ty); 105 } 106 107 namespace { 108 109 // Simplifying using an assume can only be done in a particular control-flow 110 // context (the context instruction provides that context). If an assume and 111 // the context instruction are not in the same block then the DT helps in 112 // figuring out if we can use it. 113 struct Query { 114 const DataLayout &DL; 115 AssumptionCache *AC; 116 const Instruction *CxtI; 117 const DominatorTree *DT; 118 119 // Unlike the other analyses, this may be a nullptr because not all clients 120 // provide it currently. 121 OptimizationRemarkEmitter *ORE; 122 123 /// If true, it is safe to use metadata during simplification. 124 InstrInfoQuery IIQ; 125 126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT, bool UseInstrInfo, 128 OptimizationRemarkEmitter *ORE = nullptr) 129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 130 }; 131 132 } // end anonymous namespace 133 134 // Given the provided Value and, potentially, a context instruction, return 135 // the preferred context instruction (if any). 136 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 137 // If we've been provided with a context instruction, then use that (provided 138 // it has been inserted). 139 if (CxtI && CxtI->getParent()) 140 return CxtI; 141 142 // If the value is really an already-inserted instruction, then use that. 143 CxtI = dyn_cast<Instruction>(V); 144 if (CxtI && CxtI->getParent()) 145 return CxtI; 146 147 return nullptr; 148 } 149 150 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V1); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 CxtI = dyn_cast<Instruction>(V2); 162 if (CxtI && CxtI->getParent()) 163 return CxtI; 164 165 return nullptr; 166 } 167 168 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 169 const APInt &DemandedElts, 170 APInt &DemandedLHS, APInt &DemandedRHS) { 171 // The length of scalable vectors is unknown at compile time, thus we 172 // cannot check their values 173 if (isa<ScalableVectorType>(Shuf->getType())) 174 return false; 175 176 int NumElts = 177 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 178 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 179 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 180 if (DemandedElts.isZero()) 181 return true; 182 // Simple case of a shuffle with zeroinitializer. 183 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 184 DemandedLHS.setBit(0); 185 return true; 186 } 187 for (int i = 0; i != NumMaskElts; ++i) { 188 if (!DemandedElts[i]) 189 continue; 190 int M = Shuf->getMaskValue(i); 191 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 192 193 // For undef elements, we don't know anything about the common state of 194 // the shuffle result. 195 if (M == -1) 196 return false; 197 if (M < NumElts) 198 DemandedLHS.setBit(M % NumElts); 199 else 200 DemandedRHS.setBit(M % NumElts); 201 } 202 203 return true; 204 } 205 206 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 207 KnownBits &Known, unsigned Depth, const Query &Q); 208 209 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 210 const Query &Q) { 211 // FIXME: We currently have no way to represent the DemandedElts of a scalable 212 // vector 213 if (isa<ScalableVectorType>(V->getType())) { 214 Known.resetAll(); 215 return; 216 } 217 218 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 219 APInt DemandedElts = 220 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 221 computeKnownBits(V, DemandedElts, Known, Depth, Q); 222 } 223 224 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 225 const DataLayout &DL, unsigned Depth, 226 AssumptionCache *AC, const Instruction *CxtI, 227 const DominatorTree *DT, 228 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 229 ::computeKnownBits(V, Known, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 231 } 232 233 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 234 KnownBits &Known, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, const DominatorTree *DT, 237 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 238 ::computeKnownBits(V, DemandedElts, Known, Depth, 239 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 240 } 241 242 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 243 unsigned Depth, const Query &Q); 244 245 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 246 const Query &Q); 247 248 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, 251 const DominatorTree *DT, 252 OptimizationRemarkEmitter *ORE, 253 bool UseInstrInfo) { 254 return ::computeKnownBits( 255 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 256 } 257 258 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 259 const DataLayout &DL, unsigned Depth, 260 AssumptionCache *AC, const Instruction *CxtI, 261 const DominatorTree *DT, 262 OptimizationRemarkEmitter *ORE, 263 bool UseInstrInfo) { 264 return ::computeKnownBits( 265 V, DemandedElts, Depth, 266 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 267 } 268 269 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 270 const DataLayout &DL, AssumptionCache *AC, 271 const Instruction *CxtI, const DominatorTree *DT, 272 bool UseInstrInfo) { 273 assert(LHS->getType() == RHS->getType() && 274 "LHS and RHS should have the same type"); 275 assert(LHS->getType()->isIntOrIntVectorTy() && 276 "LHS and RHS should be integers"); 277 // Look for an inverted mask: (X & ~M) op (Y & M). 278 Value *M; 279 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 280 match(RHS, m_c_And(m_Specific(M), m_Value()))) 281 return true; 282 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 283 match(LHS, m_c_And(m_Specific(M), m_Value()))) 284 return true; 285 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 286 KnownBits LHSKnown(IT->getBitWidth()); 287 KnownBits RHSKnown(IT->getBitWidth()); 288 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 289 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 290 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 291 } 292 293 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 294 return !I->user_empty() && all_of(I->users(), [](const User *U) { 295 ICmpInst::Predicate P; 296 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 297 }); 298 } 299 300 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 301 const Query &Q); 302 303 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 304 bool OrZero, unsigned Depth, 305 AssumptionCache *AC, const Instruction *CxtI, 306 const DominatorTree *DT, bool UseInstrInfo) { 307 return ::isKnownToBeAPowerOfTwo( 308 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 309 } 310 311 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 312 unsigned Depth, const Query &Q); 313 314 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 315 316 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 317 AssumptionCache *AC, const Instruction *CxtI, 318 const DominatorTree *DT, bool UseInstrInfo) { 319 return ::isKnownNonZero(V, Depth, 320 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 321 } 322 323 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 324 unsigned Depth, AssumptionCache *AC, 325 const Instruction *CxtI, const DominatorTree *DT, 326 bool UseInstrInfo) { 327 KnownBits Known = 328 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 329 return Known.isNonNegative(); 330 } 331 332 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 333 AssumptionCache *AC, const Instruction *CxtI, 334 const DominatorTree *DT, bool UseInstrInfo) { 335 if (auto *CI = dyn_cast<ConstantInt>(V)) 336 return CI->getValue().isStrictlyPositive(); 337 338 // TODO: We'd doing two recursive queries here. We should factor this such 339 // that only a single query is needed. 340 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 341 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 342 } 343 344 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 345 AssumptionCache *AC, const Instruction *CxtI, 346 const DominatorTree *DT, bool UseInstrInfo) { 347 KnownBits Known = 348 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 349 return Known.isNegative(); 350 } 351 352 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 353 const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 0, 360 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::mul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || (isa<Instruction>(V) && 509 !cast<Instruction>(V)->mayHaveSideEffects() && 510 !cast<Instruction>(V)->isTerminator())) { 511 EphValues.insert(V); 512 if (const User *U = dyn_cast<User>(V)) 513 append_range(WorkSet, U->operands()); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 524 return CI->isAssumeLikeIntrinsic(); 525 526 return false; 527 } 528 529 bool llvm::isValidAssumeForContext(const Instruction *Inv, 530 const Instruction *CxtI, 531 const DominatorTree *DT) { 532 // There are two restrictions on the use of an assume: 533 // 1. The assume must dominate the context (or the control flow must 534 // reach the assume whenever it reaches the context). 535 // 2. The context must not be in the assume's set of ephemeral values 536 // (otherwise we will use the assume to prove that the condition 537 // feeding the assume is trivially true, thus causing the removal of 538 // the assume). 539 540 if (Inv->getParent() == CxtI->getParent()) { 541 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 542 // in the BB. 543 if (Inv->comesBefore(CxtI)) 544 return true; 545 546 // Don't let an assume affect itself - this would cause the problems 547 // `isEphemeralValueOf` is trying to prevent, and it would also make 548 // the loop below go out of bounds. 549 if (Inv == CxtI) 550 return false; 551 552 // The context comes first, but they're both in the same block. 553 // Make sure there is nothing in between that might interrupt 554 // the control flow, not even CxtI itself. 555 // We limit the scan distance between the assume and its context instruction 556 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 557 // it can be adjusted if needed (could be turned into a cl::opt). 558 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 559 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 560 return false; 561 562 return !isEphemeralValueOf(Inv, CxtI); 563 } 564 565 // Inv and CxtI are in different blocks. 566 if (DT) { 567 if (DT->dominates(Inv, CxtI)) 568 return true; 569 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 570 // We don't have a DT, but this trivially dominates. 571 return true; 572 } 573 574 return false; 575 } 576 577 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 578 // v u> y implies v != 0. 579 if (Pred == ICmpInst::ICMP_UGT) 580 return true; 581 582 // Special-case v != 0 to also handle v != null. 583 if (Pred == ICmpInst::ICMP_NE) 584 return match(RHS, m_Zero()); 585 586 // All other predicates - rely on generic ConstantRange handling. 587 const APInt *C; 588 if (!match(RHS, m_APInt(C))) 589 return false; 590 591 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 592 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 593 } 594 595 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 596 // Use of assumptions is context-sensitive. If we don't have a context, we 597 // cannot use them! 598 if (!Q.AC || !Q.CxtI) 599 return false; 600 601 if (Q.CxtI && V->getType()->isPointerTy()) { 602 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 603 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 604 V->getType()->getPointerAddressSpace())) 605 AttrKinds.push_back(Attribute::Dereferenceable); 606 607 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 608 return true; 609 } 610 611 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 612 if (!AssumeVH) 613 continue; 614 CallInst *I = cast<CallInst>(AssumeVH); 615 assert(I->getFunction() == Q.CxtI->getFunction() && 616 "Got assumption for the wrong function!"); 617 618 // Warning: This loop can end up being somewhat performance sensitive. 619 // We're running this loop for once for each value queried resulting in a 620 // runtime of ~O(#assumes * #values). 621 622 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 623 "must be an assume intrinsic"); 624 625 Value *RHS; 626 CmpInst::Predicate Pred; 627 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 628 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 629 return false; 630 631 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 632 return true; 633 } 634 635 return false; 636 } 637 638 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 639 unsigned Depth, const Query &Q) { 640 // Use of assumptions is context-sensitive. If we don't have a context, we 641 // cannot use them! 642 if (!Q.AC || !Q.CxtI) 643 return; 644 645 unsigned BitWidth = Known.getBitWidth(); 646 647 // Refine Known set if the pointer alignment is set by assume bundles. 648 if (V->getType()->isPointerTy()) { 649 if (RetainedKnowledge RK = getKnowledgeValidInContext( 650 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 651 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 652 } 653 } 654 655 // Note that the patterns below need to be kept in sync with the code 656 // in AssumptionCache::updateAffectedValues. 657 658 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 659 if (!AssumeVH) 660 continue; 661 CallInst *I = cast<CallInst>(AssumeVH); 662 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 663 "Got assumption for the wrong function!"); 664 665 // Warning: This loop can end up being somewhat performance sensitive. 666 // We're running this loop for once for each value queried resulting in a 667 // runtime of ~O(#assumes * #values). 668 669 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 670 "must be an assume intrinsic"); 671 672 Value *Arg = I->getArgOperand(0); 673 674 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 675 assert(BitWidth == 1 && "assume operand is not i1?"); 676 Known.setAllOnes(); 677 return; 678 } 679 if (match(Arg, m_Not(m_Specific(V))) && 680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 681 assert(BitWidth == 1 && "assume operand is not i1?"); 682 Known.setAllZero(); 683 return; 684 } 685 686 // The remaining tests are all recursive, so bail out if we hit the limit. 687 if (Depth == MaxAnalysisRecursionDepth) 688 continue; 689 690 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 691 if (!Cmp) 692 continue; 693 694 // We are attempting to compute known bits for the operands of an assume. 695 // Do not try to use other assumptions for those recursive calls because 696 // that can lead to mutual recursion and a compile-time explosion. 697 // An example of the mutual recursion: computeKnownBits can call 698 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 699 // and so on. 700 Query QueryNoAC = Q; 701 QueryNoAC.AC = nullptr; 702 703 // Note that ptrtoint may change the bitwidth. 704 Value *A, *B; 705 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 706 707 CmpInst::Predicate Pred; 708 uint64_t C; 709 switch (Cmp->getPredicate()) { 710 default: 711 break; 712 case ICmpInst::ICMP_EQ: 713 // assume(v = a) 714 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown = 717 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 718 Known.Zero |= RHSKnown.Zero; 719 Known.One |= RHSKnown.One; 720 // assume(v & b = a) 721 } else if (match(Cmp, 722 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 724 KnownBits RHSKnown = 725 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 726 KnownBits MaskKnown = 727 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 728 729 // For those bits in the mask that are known to be one, we can propagate 730 // known bits from the RHS to V. 731 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 732 Known.One |= RHSKnown.One & MaskKnown.One; 733 // assume(~(v & b) = a) 734 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 735 m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // inverted known bits from the RHS to V. 744 Known.Zero |= RHSKnown.One & MaskKnown.One; 745 Known.One |= RHSKnown.Zero & MaskKnown.One; 746 // assume(v | b = a) 747 } else if (match(Cmp, 748 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 752 KnownBits BKnown = 753 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 754 755 // For those bits in B that are known to be zero, we can propagate known 756 // bits from the RHS to V. 757 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 758 Known.One |= RHSKnown.One & BKnown.Zero; 759 // assume(~(v | b) = a) 760 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 761 m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate 769 // inverted known bits from the RHS to V. 770 Known.Zero |= RHSKnown.One & BKnown.Zero; 771 Known.One |= RHSKnown.Zero & BKnown.Zero; 772 // assume(v ^ b = a) 773 } else if (match(Cmp, 774 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate known 782 // bits from the RHS to V. For those bits in B that are known to be one, 783 // we can propagate inverted known bits from the RHS to V. 784 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 785 Known.One |= RHSKnown.One & BKnown.Zero; 786 Known.Zero |= RHSKnown.One & BKnown.One; 787 Known.One |= RHSKnown.Zero & BKnown.One; 788 // assume(~(v ^ b) = a) 789 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 790 m_Value(A))) && 791 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 792 KnownBits RHSKnown = 793 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 794 KnownBits BKnown = 795 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 796 797 // For those bits in B that are known to be zero, we can propagate 798 // inverted known bits from the RHS to V. For those bits in B that are 799 // known to be one, we can propagate known bits from the RHS to V. 800 Known.Zero |= RHSKnown.One & BKnown.Zero; 801 Known.One |= RHSKnown.Zero & BKnown.Zero; 802 Known.Zero |= RHSKnown.Zero & BKnown.One; 803 Known.One |= RHSKnown.One & BKnown.One; 804 // assume(v << c = a) 805 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 806 m_Value(A))) && 807 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 808 KnownBits RHSKnown = 809 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 810 811 // For those bits in RHS that are known, we can propagate them to known 812 // bits in V shifted to the right by C. 813 RHSKnown.Zero.lshrInPlace(C); 814 Known.Zero |= RHSKnown.Zero; 815 RHSKnown.One.lshrInPlace(C); 816 Known.One |= RHSKnown.One; 817 // assume(~(v << c) = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 823 // For those bits in RHS that are known, we can propagate them inverted 824 // to known bits in V shifted to the right by C. 825 RHSKnown.One.lshrInPlace(C); 826 Known.Zero |= RHSKnown.One; 827 RHSKnown.Zero.lshrInPlace(C); 828 Known.One |= RHSKnown.Zero; 829 // assume(v >> c = a) 830 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 831 m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 835 // For those bits in RHS that are known, we can propagate them to known 836 // bits in V shifted to the right by C. 837 Known.Zero |= RHSKnown.Zero << C; 838 Known.One |= RHSKnown.One << C; 839 // assume(~(v >> c) = a) 840 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 841 m_Value(A))) && 842 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 843 KnownBits RHSKnown = 844 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 845 // For those bits in RHS that are known, we can propagate them inverted 846 // to known bits in V shifted to the right by C. 847 Known.Zero |= RHSKnown.One << C; 848 Known.One |= RHSKnown.Zero << C; 849 } 850 break; 851 case ICmpInst::ICMP_SGE: 852 // assume(v >=_s c) where c is non-negative 853 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 854 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 855 KnownBits RHSKnown = 856 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 857 858 if (RHSKnown.isNonNegative()) { 859 // We know that the sign bit is zero. 860 Known.makeNonNegative(); 861 } 862 } 863 break; 864 case ICmpInst::ICMP_SGT: 865 // assume(v >_s c) where c is at least -1. 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SLE: 878 // assume(v <=_s c) where c is negative 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isNegative()) { 885 // We know that the sign bit is one. 886 Known.makeNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLT: 891 // assume(v <_s c) where c is non-positive 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_ULE: 904 // assume(v <=_u c) 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 909 910 // Whatever high bits in c are zero are known to be zero. 911 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 912 } 913 break; 914 case ICmpInst::ICMP_ULT: 915 // assume(v <_u c) 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 920 921 // If the RHS is known zero, then this assumption must be wrong (nothing 922 // is unsigned less than zero). Signal a conflict and get out of here. 923 if (RHSKnown.isZero()) { 924 Known.Zero.setAllBits(); 925 Known.One.setAllBits(); 926 break; 927 } 928 929 // Whatever high bits in c are zero are known to be zero (if c is a power 930 // of 2, then one more). 931 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 932 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 933 else 934 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 935 } 936 break; 937 } 938 } 939 940 // If assumptions conflict with each other or previous known bits, then we 941 // have a logical fallacy. It's possible that the assumption is not reachable, 942 // so this isn't a real bug. On the other hand, the program may have undefined 943 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 944 // clear out the known bits, try to warn the user, and hope for the best. 945 if (Known.Zero.intersects(Known.One)) { 946 Known.resetAll(); 947 948 if (Q.ORE) 949 Q.ORE->emit([&]() { 950 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 951 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 952 CxtI) 953 << "Detected conflicting code assumptions. Program may " 954 "have undefined behavior, or compiler may have " 955 "internal error."; 956 }); 957 } 958 } 959 960 /// Compute known bits from a shift operator, including those with a 961 /// non-constant shift amount. Known is the output of this function. Known2 is a 962 /// pre-allocated temporary with the same bit width as Known and on return 963 /// contains the known bit of the shift value source. KF is an 964 /// operator-specific function that, given the known-bits and a shift amount, 965 /// compute the implied known-bits of the shift operator's result respectively 966 /// for that shift amount. The results from calling KF are conservatively 967 /// combined for all permitted shift amounts. 968 static void computeKnownBitsFromShiftOperator( 969 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 970 KnownBits &Known2, unsigned Depth, const Query &Q, 971 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 972 unsigned BitWidth = Known.getBitWidth(); 973 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 974 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 975 976 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 977 // BitWidth > 64 and any upper bits are known, we'll end up returning the 978 // limit value (which implies all bits are known). 979 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 980 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 981 bool ShiftAmtIsConstant = Known.isConstant(); 982 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 983 984 if (ShiftAmtIsConstant) { 985 Known = KF(Known2, Known); 986 987 // If the known bits conflict, this must be an overflowing left shift, so 988 // the shift result is poison. We can return anything we want. Choose 0 for 989 // the best folding opportunity. 990 if (Known.hasConflict()) 991 Known.setAllZero(); 992 993 return; 994 } 995 996 // If the shift amount could be greater than or equal to the bit-width of the 997 // LHS, the value could be poison, but bail out because the check below is 998 // expensive. 999 // TODO: Should we just carry on? 1000 if (MaxShiftAmtIsOutOfRange) { 1001 Known.resetAll(); 1002 return; 1003 } 1004 1005 // It would be more-clearly correct to use the two temporaries for this 1006 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1007 Known.resetAll(); 1008 1009 // If we know the shifter operand is nonzero, we can sometimes infer more 1010 // known bits. However this is expensive to compute, so be lazy about it and 1011 // only compute it when absolutely necessary. 1012 Optional<bool> ShifterOperandIsNonZero; 1013 1014 // Early exit if we can't constrain any well-defined shift amount. 1015 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1016 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1017 ShifterOperandIsNonZero = 1018 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1019 if (!*ShifterOperandIsNonZero) 1020 return; 1021 } 1022 1023 Known.Zero.setAllBits(); 1024 Known.One.setAllBits(); 1025 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1026 // Combine the shifted known input bits only for those shift amounts 1027 // compatible with its known constraints. 1028 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1029 continue; 1030 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1031 continue; 1032 // If we know the shifter is nonzero, we may be able to infer more known 1033 // bits. This check is sunk down as far as possible to avoid the expensive 1034 // call to isKnownNonZero if the cheaper checks above fail. 1035 if (ShiftAmt == 0) { 1036 if (!ShifterOperandIsNonZero.hasValue()) 1037 ShifterOperandIsNonZero = 1038 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1039 if (*ShifterOperandIsNonZero) 1040 continue; 1041 } 1042 1043 Known = KnownBits::commonBits( 1044 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1045 } 1046 1047 // If the known bits conflict, the result is poison. Return a 0 and hope the 1048 // caller can further optimize that. 1049 if (Known.hasConflict()) 1050 Known.setAllZero(); 1051 } 1052 1053 static void computeKnownBitsFromOperator(const Operator *I, 1054 const APInt &DemandedElts, 1055 KnownBits &Known, unsigned Depth, 1056 const Query &Q) { 1057 unsigned BitWidth = Known.getBitWidth(); 1058 1059 KnownBits Known2(BitWidth); 1060 switch (I->getOpcode()) { 1061 default: break; 1062 case Instruction::Load: 1063 if (MDNode *MD = 1064 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1065 computeKnownBitsFromRangeMetadata(*MD, Known); 1066 break; 1067 case Instruction::And: { 1068 // If either the LHS or the RHS are Zero, the result is zero. 1069 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1070 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1071 1072 Known &= Known2; 1073 1074 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1075 // here we handle the more general case of adding any odd number by 1076 // matching the form add(x, add(x, y)) where y is odd. 1077 // TODO: This could be generalized to clearing any bit set in y where the 1078 // following bit is known to be unset in y. 1079 Value *X = nullptr, *Y = nullptr; 1080 if (!Known.Zero[0] && !Known.One[0] && 1081 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1082 Known2.resetAll(); 1083 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1084 if (Known2.countMinTrailingOnes() > 0) 1085 Known.Zero.setBit(0); 1086 } 1087 break; 1088 } 1089 case Instruction::Or: 1090 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1091 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1092 1093 Known |= Known2; 1094 break; 1095 case Instruction::Xor: 1096 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1097 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1098 1099 Known ^= Known2; 1100 break; 1101 case Instruction::Mul: { 1102 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1103 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1104 Known, Known2, Depth, Q); 1105 break; 1106 } 1107 case Instruction::UDiv: { 1108 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1109 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1110 Known = KnownBits::udiv(Known, Known2); 1111 break; 1112 } 1113 case Instruction::Select: { 1114 const Value *LHS = nullptr, *RHS = nullptr; 1115 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1116 if (SelectPatternResult::isMinOrMax(SPF)) { 1117 computeKnownBits(RHS, Known, Depth + 1, Q); 1118 computeKnownBits(LHS, Known2, Depth + 1, Q); 1119 switch (SPF) { 1120 default: 1121 llvm_unreachable("Unhandled select pattern flavor!"); 1122 case SPF_SMAX: 1123 Known = KnownBits::smax(Known, Known2); 1124 break; 1125 case SPF_SMIN: 1126 Known = KnownBits::smin(Known, Known2); 1127 break; 1128 case SPF_UMAX: 1129 Known = KnownBits::umax(Known, Known2); 1130 break; 1131 case SPF_UMIN: 1132 Known = KnownBits::umin(Known, Known2); 1133 break; 1134 } 1135 break; 1136 } 1137 1138 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1139 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1140 1141 // Only known if known in both the LHS and RHS. 1142 Known = KnownBits::commonBits(Known, Known2); 1143 1144 if (SPF == SPF_ABS) { 1145 // RHS from matchSelectPattern returns the negation part of abs pattern. 1146 // If the negate has an NSW flag we can assume the sign bit of the result 1147 // will be 0 because that makes abs(INT_MIN) undefined. 1148 if (match(RHS, m_Neg(m_Specific(LHS))) && 1149 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1150 Known.Zero.setSignBit(); 1151 } 1152 1153 break; 1154 } 1155 case Instruction::FPTrunc: 1156 case Instruction::FPExt: 1157 case Instruction::FPToUI: 1158 case Instruction::FPToSI: 1159 case Instruction::SIToFP: 1160 case Instruction::UIToFP: 1161 break; // Can't work with floating point. 1162 case Instruction::PtrToInt: 1163 case Instruction::IntToPtr: 1164 // Fall through and handle them the same as zext/trunc. 1165 LLVM_FALLTHROUGH; 1166 case Instruction::ZExt: 1167 case Instruction::Trunc: { 1168 Type *SrcTy = I->getOperand(0)->getType(); 1169 1170 unsigned SrcBitWidth; 1171 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1172 // which fall through here. 1173 Type *ScalarTy = SrcTy->getScalarType(); 1174 SrcBitWidth = ScalarTy->isPointerTy() ? 1175 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1176 Q.DL.getTypeSizeInBits(ScalarTy); 1177 1178 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1179 Known = Known.anyextOrTrunc(SrcBitWidth); 1180 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1181 Known = Known.zextOrTrunc(BitWidth); 1182 break; 1183 } 1184 case Instruction::BitCast: { 1185 Type *SrcTy = I->getOperand(0)->getType(); 1186 if (SrcTy->isIntOrPtrTy() && 1187 // TODO: For now, not handling conversions like: 1188 // (bitcast i64 %x to <2 x i32>) 1189 !I->getType()->isVectorTy()) { 1190 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1191 break; 1192 } 1193 1194 // Handle cast from vector integer type to scalar or vector integer. 1195 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1196 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1197 !I->getType()->isIntOrIntVectorTy()) 1198 break; 1199 1200 // Look through a cast from narrow vector elements to wider type. 1201 // Examples: v4i32 -> v2i64, v3i8 -> v24 1202 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1203 if (BitWidth % SubBitWidth == 0) { 1204 // Known bits are automatically intersected across demanded elements of a 1205 // vector. So for example, if a bit is computed as known zero, it must be 1206 // zero across all demanded elements of the vector. 1207 // 1208 // For this bitcast, each demanded element of the output is sub-divided 1209 // across a set of smaller vector elements in the source vector. To get 1210 // the known bits for an entire element of the output, compute the known 1211 // bits for each sub-element sequentially. This is done by shifting the 1212 // one-set-bit demanded elements parameter across the sub-elements for 1213 // consecutive calls to computeKnownBits. We are using the demanded 1214 // elements parameter as a mask operator. 1215 // 1216 // The known bits of each sub-element are then inserted into place 1217 // (dependent on endian) to form the full result of known bits. 1218 unsigned NumElts = DemandedElts.getBitWidth(); 1219 unsigned SubScale = BitWidth / SubBitWidth; 1220 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1221 for (unsigned i = 0; i != NumElts; ++i) { 1222 if (DemandedElts[i]) 1223 SubDemandedElts.setBit(i * SubScale); 1224 } 1225 1226 KnownBits KnownSrc(SubBitWidth); 1227 for (unsigned i = 0; i != SubScale; ++i) { 1228 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1229 Depth + 1, Q); 1230 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1231 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1232 } 1233 } 1234 break; 1235 } 1236 case Instruction::SExt: { 1237 // Compute the bits in the result that are not present in the input. 1238 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1239 1240 Known = Known.trunc(SrcBitWidth); 1241 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1242 // If the sign bit of the input is known set or clear, then we know the 1243 // top bits of the result. 1244 Known = Known.sext(BitWidth); 1245 break; 1246 } 1247 case Instruction::Shl: { 1248 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1249 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1250 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1251 // If this shift has "nsw" keyword, then the result is either a poison 1252 // value or has the same sign bit as the first operand. 1253 if (NSW) { 1254 if (KnownVal.Zero.isSignBitSet()) 1255 Result.Zero.setSignBit(); 1256 if (KnownVal.One.isSignBitSet()) 1257 Result.One.setSignBit(); 1258 } 1259 return Result; 1260 }; 1261 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1262 KF); 1263 // Trailing zeros of a right-shifted constant never decrease. 1264 const APInt *C; 1265 if (match(I->getOperand(0), m_APInt(C))) 1266 Known.Zero.setLowBits(C->countTrailingZeros()); 1267 break; 1268 } 1269 case Instruction::LShr: { 1270 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1271 return KnownBits::lshr(KnownVal, KnownAmt); 1272 }; 1273 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1274 KF); 1275 // Leading zeros of a left-shifted constant never decrease. 1276 const APInt *C; 1277 if (match(I->getOperand(0), m_APInt(C))) 1278 Known.Zero.setHighBits(C->countLeadingZeros()); 1279 break; 1280 } 1281 case Instruction::AShr: { 1282 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1283 return KnownBits::ashr(KnownVal, KnownAmt); 1284 }; 1285 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1286 KF); 1287 break; 1288 } 1289 case Instruction::Sub: { 1290 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1291 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1292 DemandedElts, Known, Known2, Depth, Q); 1293 break; 1294 } 1295 case Instruction::Add: { 1296 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1297 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1298 DemandedElts, Known, Known2, Depth, Q); 1299 break; 1300 } 1301 case Instruction::SRem: 1302 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1303 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1304 Known = KnownBits::srem(Known, Known2); 1305 break; 1306 1307 case Instruction::URem: 1308 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1309 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1310 Known = KnownBits::urem(Known, Known2); 1311 break; 1312 case Instruction::Alloca: 1313 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1314 break; 1315 case Instruction::GetElementPtr: { 1316 // Analyze all of the subscripts of this getelementptr instruction 1317 // to determine if we can prove known low zero bits. 1318 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1319 // Accumulate the constant indices in a separate variable 1320 // to minimize the number of calls to computeForAddSub. 1321 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1322 1323 gep_type_iterator GTI = gep_type_begin(I); 1324 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1325 // TrailZ can only become smaller, short-circuit if we hit zero. 1326 if (Known.isUnknown()) 1327 break; 1328 1329 Value *Index = I->getOperand(i); 1330 1331 // Handle case when index is zero. 1332 Constant *CIndex = dyn_cast<Constant>(Index); 1333 if (CIndex && CIndex->isZeroValue()) 1334 continue; 1335 1336 if (StructType *STy = GTI.getStructTypeOrNull()) { 1337 // Handle struct member offset arithmetic. 1338 1339 assert(CIndex && 1340 "Access to structure field must be known at compile time"); 1341 1342 if (CIndex->getType()->isVectorTy()) 1343 Index = CIndex->getSplatValue(); 1344 1345 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1346 const StructLayout *SL = Q.DL.getStructLayout(STy); 1347 uint64_t Offset = SL->getElementOffset(Idx); 1348 AccConstIndices += Offset; 1349 continue; 1350 } 1351 1352 // Handle array index arithmetic. 1353 Type *IndexedTy = GTI.getIndexedType(); 1354 if (!IndexedTy->isSized()) { 1355 Known.resetAll(); 1356 break; 1357 } 1358 1359 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1360 KnownBits IndexBits(IndexBitWidth); 1361 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1362 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1363 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1364 KnownBits ScalingFactor(IndexBitWidth); 1365 // Multiply by current sizeof type. 1366 // &A[i] == A + i * sizeof(*A[i]). 1367 if (IndexTypeSize.isScalable()) { 1368 // For scalable types the only thing we know about sizeof is 1369 // that this is a multiple of the minimum size. 1370 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1371 } else if (IndexBits.isConstant()) { 1372 APInt IndexConst = IndexBits.getConstant(); 1373 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1374 IndexConst *= ScalingFactor; 1375 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1376 continue; 1377 } else { 1378 ScalingFactor = 1379 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1380 } 1381 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1382 1383 // If the offsets have a different width from the pointer, according 1384 // to the language reference we need to sign-extend or truncate them 1385 // to the width of the pointer. 1386 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1387 1388 // Note that inbounds does *not* guarantee nsw for the addition, as only 1389 // the offset is signed, while the base address is unsigned. 1390 Known = KnownBits::computeForAddSub( 1391 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1392 } 1393 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1394 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1395 Known = KnownBits::computeForAddSub( 1396 /*Add=*/true, /*NSW=*/false, Known, Index); 1397 } 1398 break; 1399 } 1400 case Instruction::PHI: { 1401 const PHINode *P = cast<PHINode>(I); 1402 BinaryOperator *BO = nullptr; 1403 Value *R = nullptr, *L = nullptr; 1404 if (matchSimpleRecurrence(P, BO, R, L)) { 1405 // Handle the case of a simple two-predecessor recurrence PHI. 1406 // There's a lot more that could theoretically be done here, but 1407 // this is sufficient to catch some interesting cases. 1408 unsigned Opcode = BO->getOpcode(); 1409 1410 // If this is a shift recurrence, we know the bits being shifted in. 1411 // We can combine that with information about the start value of the 1412 // recurrence to conclude facts about the result. 1413 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1414 Opcode == Instruction::Shl) && 1415 BO->getOperand(0) == I) { 1416 1417 // We have matched a recurrence of the form: 1418 // %iv = [R, %entry], [%iv.next, %backedge] 1419 // %iv.next = shift_op %iv, L 1420 1421 // Recurse with the phi context to avoid concern about whether facts 1422 // inferred hold at original context instruction. TODO: It may be 1423 // correct to use the original context. IF warranted, explore and 1424 // add sufficient tests to cover. 1425 Query RecQ = Q; 1426 RecQ.CxtI = P; 1427 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1428 switch (Opcode) { 1429 case Instruction::Shl: 1430 // A shl recurrence will only increase the tailing zeros 1431 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1432 break; 1433 case Instruction::LShr: 1434 // A lshr recurrence will preserve the leading zeros of the 1435 // start value 1436 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1437 break; 1438 case Instruction::AShr: 1439 // An ashr recurrence will extend the initial sign bit 1440 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1441 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1442 break; 1443 }; 1444 } 1445 1446 // Check for operations that have the property that if 1447 // both their operands have low zero bits, the result 1448 // will have low zero bits. 1449 if (Opcode == Instruction::Add || 1450 Opcode == Instruction::Sub || 1451 Opcode == Instruction::And || 1452 Opcode == Instruction::Or || 1453 Opcode == Instruction::Mul) { 1454 // Change the context instruction to the "edge" that flows into the 1455 // phi. This is important because that is where the value is actually 1456 // "evaluated" even though it is used later somewhere else. (see also 1457 // D69571). 1458 Query RecQ = Q; 1459 1460 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1461 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1462 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1463 1464 // Ok, we have a PHI of the form L op= R. Check for low 1465 // zero bits. 1466 RecQ.CxtI = RInst; 1467 computeKnownBits(R, Known2, Depth + 1, RecQ); 1468 1469 // We need to take the minimum number of known bits 1470 KnownBits Known3(BitWidth); 1471 RecQ.CxtI = LInst; 1472 computeKnownBits(L, Known3, Depth + 1, RecQ); 1473 1474 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1475 Known3.countMinTrailingZeros())); 1476 1477 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1478 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1479 // If initial value of recurrence is nonnegative, and we are adding 1480 // a nonnegative number with nsw, the result can only be nonnegative 1481 // or poison value regardless of the number of times we execute the 1482 // add in phi recurrence. If initial value is negative and we are 1483 // adding a negative number with nsw, the result can only be 1484 // negative or poison value. Similar arguments apply to sub and mul. 1485 // 1486 // (add non-negative, non-negative) --> non-negative 1487 // (add negative, negative) --> negative 1488 if (Opcode == Instruction::Add) { 1489 if (Known2.isNonNegative() && Known3.isNonNegative()) 1490 Known.makeNonNegative(); 1491 else if (Known2.isNegative() && Known3.isNegative()) 1492 Known.makeNegative(); 1493 } 1494 1495 // (sub nsw non-negative, negative) --> non-negative 1496 // (sub nsw negative, non-negative) --> negative 1497 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1498 if (Known2.isNonNegative() && Known3.isNegative()) 1499 Known.makeNonNegative(); 1500 else if (Known2.isNegative() && Known3.isNonNegative()) 1501 Known.makeNegative(); 1502 } 1503 1504 // (mul nsw non-negative, non-negative) --> non-negative 1505 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1506 Known3.isNonNegative()) 1507 Known.makeNonNegative(); 1508 } 1509 1510 break; 1511 } 1512 } 1513 1514 // Unreachable blocks may have zero-operand PHI nodes. 1515 if (P->getNumIncomingValues() == 0) 1516 break; 1517 1518 // Otherwise take the unions of the known bit sets of the operands, 1519 // taking conservative care to avoid excessive recursion. 1520 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1521 // Skip if every incoming value references to ourself. 1522 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1523 break; 1524 1525 Known.Zero.setAllBits(); 1526 Known.One.setAllBits(); 1527 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1528 Value *IncValue = P->getIncomingValue(u); 1529 // Skip direct self references. 1530 if (IncValue == P) continue; 1531 1532 // Change the context instruction to the "edge" that flows into the 1533 // phi. This is important because that is where the value is actually 1534 // "evaluated" even though it is used later somewhere else. (see also 1535 // D69571). 1536 Query RecQ = Q; 1537 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1538 1539 Known2 = KnownBits(BitWidth); 1540 // Recurse, but cap the recursion to one level, because we don't 1541 // want to waste time spinning around in loops. 1542 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1543 Known = KnownBits::commonBits(Known, Known2); 1544 // If all bits have been ruled out, there's no need to check 1545 // more operands. 1546 if (Known.isUnknown()) 1547 break; 1548 } 1549 } 1550 break; 1551 } 1552 case Instruction::Call: 1553 case Instruction::Invoke: 1554 // If range metadata is attached to this call, set known bits from that, 1555 // and then intersect with known bits based on other properties of the 1556 // function. 1557 if (MDNode *MD = 1558 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1559 computeKnownBitsFromRangeMetadata(*MD, Known); 1560 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1561 computeKnownBits(RV, Known2, Depth + 1, Q); 1562 Known.Zero |= Known2.Zero; 1563 Known.One |= Known2.One; 1564 } 1565 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1566 switch (II->getIntrinsicID()) { 1567 default: break; 1568 case Intrinsic::abs: { 1569 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1570 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1571 Known = Known2.abs(IntMinIsPoison); 1572 break; 1573 } 1574 case Intrinsic::bitreverse: 1575 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1576 Known.Zero |= Known2.Zero.reverseBits(); 1577 Known.One |= Known2.One.reverseBits(); 1578 break; 1579 case Intrinsic::bswap: 1580 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1581 Known.Zero |= Known2.Zero.byteSwap(); 1582 Known.One |= Known2.One.byteSwap(); 1583 break; 1584 case Intrinsic::ctlz: { 1585 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1586 // If we have a known 1, its position is our upper bound. 1587 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1588 // If this call is undefined for 0, the result will be less than 2^n. 1589 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1590 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1591 unsigned LowBits = Log2_32(PossibleLZ)+1; 1592 Known.Zero.setBitsFrom(LowBits); 1593 break; 1594 } 1595 case Intrinsic::cttz: { 1596 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1597 // If we have a known 1, its position is our upper bound. 1598 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1599 // If this call is undefined for 0, the result will be less than 2^n. 1600 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1601 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1602 unsigned LowBits = Log2_32(PossibleTZ)+1; 1603 Known.Zero.setBitsFrom(LowBits); 1604 break; 1605 } 1606 case Intrinsic::ctpop: { 1607 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1608 // We can bound the space the count needs. Also, bits known to be zero 1609 // can't contribute to the population. 1610 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1611 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1612 Known.Zero.setBitsFrom(LowBits); 1613 // TODO: we could bound KnownOne using the lower bound on the number 1614 // of bits which might be set provided by popcnt KnownOne2. 1615 break; 1616 } 1617 case Intrinsic::fshr: 1618 case Intrinsic::fshl: { 1619 const APInt *SA; 1620 if (!match(I->getOperand(2), m_APInt(SA))) 1621 break; 1622 1623 // Normalize to funnel shift left. 1624 uint64_t ShiftAmt = SA->urem(BitWidth); 1625 if (II->getIntrinsicID() == Intrinsic::fshr) 1626 ShiftAmt = BitWidth - ShiftAmt; 1627 1628 KnownBits Known3(BitWidth); 1629 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1630 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1631 1632 Known.Zero = 1633 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1634 Known.One = 1635 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1636 break; 1637 } 1638 case Intrinsic::uadd_sat: 1639 case Intrinsic::usub_sat: { 1640 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1641 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1642 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1643 1644 // Add: Leading ones of either operand are preserved. 1645 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1646 // as leading zeros in the result. 1647 unsigned LeadingKnown; 1648 if (IsAdd) 1649 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1650 Known2.countMinLeadingOnes()); 1651 else 1652 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1653 Known2.countMinLeadingOnes()); 1654 1655 Known = KnownBits::computeForAddSub( 1656 IsAdd, /* NSW */ false, Known, Known2); 1657 1658 // We select between the operation result and all-ones/zero 1659 // respectively, so we can preserve known ones/zeros. 1660 if (IsAdd) { 1661 Known.One.setHighBits(LeadingKnown); 1662 Known.Zero.clearAllBits(); 1663 } else { 1664 Known.Zero.setHighBits(LeadingKnown); 1665 Known.One.clearAllBits(); 1666 } 1667 break; 1668 } 1669 case Intrinsic::umin: 1670 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1671 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1672 Known = KnownBits::umin(Known, Known2); 1673 break; 1674 case Intrinsic::umax: 1675 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1676 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1677 Known = KnownBits::umax(Known, Known2); 1678 break; 1679 case Intrinsic::smin: 1680 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1681 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1682 Known = KnownBits::smin(Known, Known2); 1683 break; 1684 case Intrinsic::smax: 1685 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1686 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1687 Known = KnownBits::smax(Known, Known2); 1688 break; 1689 case Intrinsic::x86_sse42_crc32_64_64: 1690 Known.Zero.setBitsFrom(32); 1691 break; 1692 case Intrinsic::riscv_vsetvli: 1693 case Intrinsic::riscv_vsetvlimax: 1694 // Assume that VL output is positive and would fit in an int32_t. 1695 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1696 if (BitWidth >= 32) 1697 Known.Zero.setBitsFrom(31); 1698 break; 1699 case Intrinsic::vscale: { 1700 if (!II->getParent() || !II->getFunction() || 1701 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1702 break; 1703 1704 auto VScaleRange = II->getFunction() 1705 ->getFnAttribute(Attribute::VScaleRange) 1706 .getVScaleRangeArgs(); 1707 1708 if (VScaleRange.second == 0) 1709 break; 1710 1711 // If vscale min = max then we know the exact value at compile time 1712 // and hence we know the exact bits. 1713 if (VScaleRange.first == VScaleRange.second) { 1714 Known.One = VScaleRange.first; 1715 Known.Zero = VScaleRange.first; 1716 Known.Zero.flipAllBits(); 1717 break; 1718 } 1719 1720 unsigned FirstZeroHighBit = 32 - countLeadingZeros(VScaleRange.second); 1721 if (FirstZeroHighBit < BitWidth) 1722 Known.Zero.setBitsFrom(FirstZeroHighBit); 1723 1724 break; 1725 } 1726 } 1727 } 1728 break; 1729 case Instruction::ShuffleVector: { 1730 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1731 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1732 if (!Shuf) { 1733 Known.resetAll(); 1734 return; 1735 } 1736 // For undef elements, we don't know anything about the common state of 1737 // the shuffle result. 1738 APInt DemandedLHS, DemandedRHS; 1739 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1740 Known.resetAll(); 1741 return; 1742 } 1743 Known.One.setAllBits(); 1744 Known.Zero.setAllBits(); 1745 if (!!DemandedLHS) { 1746 const Value *LHS = Shuf->getOperand(0); 1747 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1748 // If we don't know any bits, early out. 1749 if (Known.isUnknown()) 1750 break; 1751 } 1752 if (!!DemandedRHS) { 1753 const Value *RHS = Shuf->getOperand(1); 1754 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1755 Known = KnownBits::commonBits(Known, Known2); 1756 } 1757 break; 1758 } 1759 case Instruction::InsertElement: { 1760 const Value *Vec = I->getOperand(0); 1761 const Value *Elt = I->getOperand(1); 1762 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1763 // Early out if the index is non-constant or out-of-range. 1764 unsigned NumElts = DemandedElts.getBitWidth(); 1765 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1766 Known.resetAll(); 1767 return; 1768 } 1769 Known.One.setAllBits(); 1770 Known.Zero.setAllBits(); 1771 unsigned EltIdx = CIdx->getZExtValue(); 1772 // Do we demand the inserted element? 1773 if (DemandedElts[EltIdx]) { 1774 computeKnownBits(Elt, Known, Depth + 1, Q); 1775 // If we don't know any bits, early out. 1776 if (Known.isUnknown()) 1777 break; 1778 } 1779 // We don't need the base vector element that has been inserted. 1780 APInt DemandedVecElts = DemandedElts; 1781 DemandedVecElts.clearBit(EltIdx); 1782 if (!!DemandedVecElts) { 1783 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1784 Known = KnownBits::commonBits(Known, Known2); 1785 } 1786 break; 1787 } 1788 case Instruction::ExtractElement: { 1789 // Look through extract element. If the index is non-constant or 1790 // out-of-range demand all elements, otherwise just the extracted element. 1791 const Value *Vec = I->getOperand(0); 1792 const Value *Idx = I->getOperand(1); 1793 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1794 if (isa<ScalableVectorType>(Vec->getType())) { 1795 // FIXME: there's probably *something* we can do with scalable vectors 1796 Known.resetAll(); 1797 break; 1798 } 1799 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1800 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1801 if (CIdx && CIdx->getValue().ult(NumElts)) 1802 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1803 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1804 break; 1805 } 1806 case Instruction::ExtractValue: 1807 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1808 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1809 if (EVI->getNumIndices() != 1) break; 1810 if (EVI->getIndices()[0] == 0) { 1811 switch (II->getIntrinsicID()) { 1812 default: break; 1813 case Intrinsic::uadd_with_overflow: 1814 case Intrinsic::sadd_with_overflow: 1815 computeKnownBitsAddSub(true, II->getArgOperand(0), 1816 II->getArgOperand(1), false, DemandedElts, 1817 Known, Known2, Depth, Q); 1818 break; 1819 case Intrinsic::usub_with_overflow: 1820 case Intrinsic::ssub_with_overflow: 1821 computeKnownBitsAddSub(false, II->getArgOperand(0), 1822 II->getArgOperand(1), false, DemandedElts, 1823 Known, Known2, Depth, Q); 1824 break; 1825 case Intrinsic::umul_with_overflow: 1826 case Intrinsic::smul_with_overflow: 1827 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1828 DemandedElts, Known, Known2, Depth, Q); 1829 break; 1830 } 1831 } 1832 } 1833 break; 1834 case Instruction::Freeze: 1835 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1836 Depth + 1)) 1837 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1838 break; 1839 } 1840 } 1841 1842 /// Determine which bits of V are known to be either zero or one and return 1843 /// them. 1844 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1845 unsigned Depth, const Query &Q) { 1846 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1847 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1848 return Known; 1849 } 1850 1851 /// Determine which bits of V are known to be either zero or one and return 1852 /// them. 1853 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1854 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1855 computeKnownBits(V, Known, Depth, Q); 1856 return Known; 1857 } 1858 1859 /// Determine which bits of V are known to be either zero or one and return 1860 /// them in the Known bit set. 1861 /// 1862 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1863 /// we cannot optimize based on the assumption that it is zero without changing 1864 /// it to be an explicit zero. If we don't change it to zero, other code could 1865 /// optimized based on the contradictory assumption that it is non-zero. 1866 /// Because instcombine aggressively folds operations with undef args anyway, 1867 /// this won't lose us code quality. 1868 /// 1869 /// This function is defined on values with integer type, values with pointer 1870 /// type, and vectors of integers. In the case 1871 /// where V is a vector, known zero, and known one values are the 1872 /// same width as the vector element, and the bit is set only if it is true 1873 /// for all of the demanded elements in the vector specified by DemandedElts. 1874 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1875 KnownBits &Known, unsigned Depth, const Query &Q) { 1876 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1877 // No demanded elts or V is a scalable vector, better to assume we don't 1878 // know anything. 1879 Known.resetAll(); 1880 return; 1881 } 1882 1883 assert(V && "No Value?"); 1884 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1885 1886 #ifndef NDEBUG 1887 Type *Ty = V->getType(); 1888 unsigned BitWidth = Known.getBitWidth(); 1889 1890 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1891 "Not integer or pointer type!"); 1892 1893 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1894 assert( 1895 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1896 "DemandedElt width should equal the fixed vector number of elements"); 1897 } else { 1898 assert(DemandedElts == APInt(1, 1) && 1899 "DemandedElt width should be 1 for scalars"); 1900 } 1901 1902 Type *ScalarTy = Ty->getScalarType(); 1903 if (ScalarTy->isPointerTy()) { 1904 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1905 "V and Known should have same BitWidth"); 1906 } else { 1907 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1908 "V and Known should have same BitWidth"); 1909 } 1910 #endif 1911 1912 const APInt *C; 1913 if (match(V, m_APInt(C))) { 1914 // We know all of the bits for a scalar constant or a splat vector constant! 1915 Known = KnownBits::makeConstant(*C); 1916 return; 1917 } 1918 // Null and aggregate-zero are all-zeros. 1919 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1920 Known.setAllZero(); 1921 return; 1922 } 1923 // Handle a constant vector by taking the intersection of the known bits of 1924 // each element. 1925 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1926 // We know that CDV must be a vector of integers. Take the intersection of 1927 // each element. 1928 Known.Zero.setAllBits(); Known.One.setAllBits(); 1929 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1930 if (!DemandedElts[i]) 1931 continue; 1932 APInt Elt = CDV->getElementAsAPInt(i); 1933 Known.Zero &= ~Elt; 1934 Known.One &= Elt; 1935 } 1936 return; 1937 } 1938 1939 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1940 // We know that CV must be a vector of integers. Take the intersection of 1941 // each element. 1942 Known.Zero.setAllBits(); Known.One.setAllBits(); 1943 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1944 if (!DemandedElts[i]) 1945 continue; 1946 Constant *Element = CV->getAggregateElement(i); 1947 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1948 if (!ElementCI) { 1949 Known.resetAll(); 1950 return; 1951 } 1952 const APInt &Elt = ElementCI->getValue(); 1953 Known.Zero &= ~Elt; 1954 Known.One &= Elt; 1955 } 1956 return; 1957 } 1958 1959 // Start out not knowing anything. 1960 Known.resetAll(); 1961 1962 // We can't imply anything about undefs. 1963 if (isa<UndefValue>(V)) 1964 return; 1965 1966 // There's no point in looking through other users of ConstantData for 1967 // assumptions. Confirm that we've handled them all. 1968 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1969 1970 // All recursive calls that increase depth must come after this. 1971 if (Depth == MaxAnalysisRecursionDepth) 1972 return; 1973 1974 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1975 // the bits of its aliasee. 1976 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1977 if (!GA->isInterposable()) 1978 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1979 return; 1980 } 1981 1982 if (const Operator *I = dyn_cast<Operator>(V)) 1983 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1984 1985 // Aligned pointers have trailing zeros - refine Known.Zero set 1986 if (isa<PointerType>(V->getType())) { 1987 Align Alignment = V->getPointerAlignment(Q.DL); 1988 Known.Zero.setLowBits(Log2(Alignment)); 1989 } 1990 1991 // computeKnownBitsFromAssume strictly refines Known. 1992 // Therefore, we run them after computeKnownBitsFromOperator. 1993 1994 // Check whether a nearby assume intrinsic can determine some known bits. 1995 computeKnownBitsFromAssume(V, Known, Depth, Q); 1996 1997 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1998 } 1999 2000 /// Return true if the given value is known to have exactly one 2001 /// bit set when defined. For vectors return true if every element is known to 2002 /// be a power of two when defined. Supports values with integer or pointer 2003 /// types and vectors of integers. 2004 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2005 const Query &Q) { 2006 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2007 2008 // Attempt to match against constants. 2009 if (OrZero && match(V, m_Power2OrZero())) 2010 return true; 2011 if (match(V, m_Power2())) 2012 return true; 2013 2014 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2015 // it is shifted off the end then the result is undefined. 2016 if (match(V, m_Shl(m_One(), m_Value()))) 2017 return true; 2018 2019 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2020 // the bottom. If it is shifted off the bottom then the result is undefined. 2021 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2022 return true; 2023 2024 // The remaining tests are all recursive, so bail out if we hit the limit. 2025 if (Depth++ == MaxAnalysisRecursionDepth) 2026 return false; 2027 2028 Value *X = nullptr, *Y = nullptr; 2029 // A shift left or a logical shift right of a power of two is a power of two 2030 // or zero. 2031 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2032 match(V, m_LShr(m_Value(X), m_Value())))) 2033 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2034 2035 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2036 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2037 2038 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2039 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2040 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2041 2042 // Peek through min/max. 2043 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2044 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2045 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2046 } 2047 2048 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2049 // A power of two and'd with anything is a power of two or zero. 2050 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2051 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2052 return true; 2053 // X & (-X) is always a power of two or zero. 2054 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2055 return true; 2056 return false; 2057 } 2058 2059 // Adding a power-of-two or zero to the same power-of-two or zero yields 2060 // either the original power-of-two, a larger power-of-two or zero. 2061 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2062 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2063 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2064 Q.IIQ.hasNoSignedWrap(VOBO)) { 2065 if (match(X, m_And(m_Specific(Y), m_Value())) || 2066 match(X, m_And(m_Value(), m_Specific(Y)))) 2067 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2068 return true; 2069 if (match(Y, m_And(m_Specific(X), m_Value())) || 2070 match(Y, m_And(m_Value(), m_Specific(X)))) 2071 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2072 return true; 2073 2074 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2075 KnownBits LHSBits(BitWidth); 2076 computeKnownBits(X, LHSBits, Depth, Q); 2077 2078 KnownBits RHSBits(BitWidth); 2079 computeKnownBits(Y, RHSBits, Depth, Q); 2080 // If i8 V is a power of two or zero: 2081 // ZeroBits: 1 1 1 0 1 1 1 1 2082 // ~ZeroBits: 0 0 0 1 0 0 0 0 2083 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2084 // If OrZero isn't set, we cannot give back a zero result. 2085 // Make sure either the LHS or RHS has a bit set. 2086 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2087 return true; 2088 } 2089 } 2090 2091 // An exact divide or right shift can only shift off zero bits, so the result 2092 // is a power of two only if the first operand is a power of two and not 2093 // copying a sign bit (sdiv int_min, 2). 2094 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2095 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2096 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2097 Depth, Q); 2098 } 2099 2100 return false; 2101 } 2102 2103 /// Test whether a GEP's result is known to be non-null. 2104 /// 2105 /// Uses properties inherent in a GEP to try to determine whether it is known 2106 /// to be non-null. 2107 /// 2108 /// Currently this routine does not support vector GEPs. 2109 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2110 const Query &Q) { 2111 const Function *F = nullptr; 2112 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2113 F = I->getFunction(); 2114 2115 if (!GEP->isInBounds() || 2116 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2117 return false; 2118 2119 // FIXME: Support vector-GEPs. 2120 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2121 2122 // If the base pointer is non-null, we cannot walk to a null address with an 2123 // inbounds GEP in address space zero. 2124 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2125 return true; 2126 2127 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2128 // If so, then the GEP cannot produce a null pointer, as doing so would 2129 // inherently violate the inbounds contract within address space zero. 2130 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2131 GTI != GTE; ++GTI) { 2132 // Struct types are easy -- they must always be indexed by a constant. 2133 if (StructType *STy = GTI.getStructTypeOrNull()) { 2134 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2135 unsigned ElementIdx = OpC->getZExtValue(); 2136 const StructLayout *SL = Q.DL.getStructLayout(STy); 2137 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2138 if (ElementOffset > 0) 2139 return true; 2140 continue; 2141 } 2142 2143 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2144 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2145 continue; 2146 2147 // Fast path the constant operand case both for efficiency and so we don't 2148 // increment Depth when just zipping down an all-constant GEP. 2149 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2150 if (!OpC->isZero()) 2151 return true; 2152 continue; 2153 } 2154 2155 // We post-increment Depth here because while isKnownNonZero increments it 2156 // as well, when we pop back up that increment won't persist. We don't want 2157 // to recurse 10k times just because we have 10k GEP operands. We don't 2158 // bail completely out because we want to handle constant GEPs regardless 2159 // of depth. 2160 if (Depth++ >= MaxAnalysisRecursionDepth) 2161 continue; 2162 2163 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2164 return true; 2165 } 2166 2167 return false; 2168 } 2169 2170 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2171 const Instruction *CtxI, 2172 const DominatorTree *DT) { 2173 if (isa<Constant>(V)) 2174 return false; 2175 2176 if (!CtxI || !DT) 2177 return false; 2178 2179 unsigned NumUsesExplored = 0; 2180 for (auto *U : V->users()) { 2181 // Avoid massive lists 2182 if (NumUsesExplored >= DomConditionsMaxUses) 2183 break; 2184 NumUsesExplored++; 2185 2186 // If the value is used as an argument to a call or invoke, then argument 2187 // attributes may provide an answer about null-ness. 2188 if (const auto *CB = dyn_cast<CallBase>(U)) 2189 if (auto *CalledFunc = CB->getCalledFunction()) 2190 for (const Argument &Arg : CalledFunc->args()) 2191 if (CB->getArgOperand(Arg.getArgNo()) == V && 2192 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2193 DT->dominates(CB, CtxI)) 2194 return true; 2195 2196 // If the value is used as a load/store, then the pointer must be non null. 2197 if (V == getLoadStorePointerOperand(U)) { 2198 const Instruction *I = cast<Instruction>(U); 2199 if (!NullPointerIsDefined(I->getFunction(), 2200 V->getType()->getPointerAddressSpace()) && 2201 DT->dominates(I, CtxI)) 2202 return true; 2203 } 2204 2205 // Consider only compare instructions uniquely controlling a branch 2206 Value *RHS; 2207 CmpInst::Predicate Pred; 2208 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2209 continue; 2210 2211 bool NonNullIfTrue; 2212 if (cmpExcludesZero(Pred, RHS)) 2213 NonNullIfTrue = true; 2214 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2215 NonNullIfTrue = false; 2216 else 2217 continue; 2218 2219 SmallVector<const User *, 4> WorkList; 2220 SmallPtrSet<const User *, 4> Visited; 2221 for (auto *CmpU : U->users()) { 2222 assert(WorkList.empty() && "Should be!"); 2223 if (Visited.insert(CmpU).second) 2224 WorkList.push_back(CmpU); 2225 2226 while (!WorkList.empty()) { 2227 auto *Curr = WorkList.pop_back_val(); 2228 2229 // If a user is an AND, add all its users to the work list. We only 2230 // propagate "pred != null" condition through AND because it is only 2231 // correct to assume that all conditions of AND are met in true branch. 2232 // TODO: Support similar logic of OR and EQ predicate? 2233 if (NonNullIfTrue) 2234 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2235 for (auto *CurrU : Curr->users()) 2236 if (Visited.insert(CurrU).second) 2237 WorkList.push_back(CurrU); 2238 continue; 2239 } 2240 2241 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2242 assert(BI->isConditional() && "uses a comparison!"); 2243 2244 BasicBlock *NonNullSuccessor = 2245 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2246 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2247 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2248 return true; 2249 } else if (NonNullIfTrue && isGuard(Curr) && 2250 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2251 return true; 2252 } 2253 } 2254 } 2255 } 2256 2257 return false; 2258 } 2259 2260 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2261 /// ensure that the value it's attached to is never Value? 'RangeType' is 2262 /// is the type of the value described by the range. 2263 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2264 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2265 assert(NumRanges >= 1); 2266 for (unsigned i = 0; i < NumRanges; ++i) { 2267 ConstantInt *Lower = 2268 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2269 ConstantInt *Upper = 2270 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2271 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2272 if (Range.contains(Value)) 2273 return false; 2274 } 2275 return true; 2276 } 2277 2278 /// Try to detect a recurrence that monotonically increases/decreases from a 2279 /// non-zero starting value. These are common as induction variables. 2280 static bool isNonZeroRecurrence(const PHINode *PN) { 2281 BinaryOperator *BO = nullptr; 2282 Value *Start = nullptr, *Step = nullptr; 2283 const APInt *StartC, *StepC; 2284 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2285 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2286 return false; 2287 2288 switch (BO->getOpcode()) { 2289 case Instruction::Add: 2290 // Starting from non-zero and stepping away from zero can never wrap back 2291 // to zero. 2292 return BO->hasNoUnsignedWrap() || 2293 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2294 StartC->isNegative() == StepC->isNegative()); 2295 case Instruction::Mul: 2296 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2297 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2298 case Instruction::Shl: 2299 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2300 case Instruction::AShr: 2301 case Instruction::LShr: 2302 return BO->isExact(); 2303 default: 2304 return false; 2305 } 2306 } 2307 2308 /// Return true if the given value is known to be non-zero when defined. For 2309 /// vectors, return true if every demanded element is known to be non-zero when 2310 /// defined. For pointers, if the context instruction and dominator tree are 2311 /// specified, perform context-sensitive analysis and return true if the 2312 /// pointer couldn't possibly be null at the specified instruction. 2313 /// Supports values with integer or pointer type and vectors of integers. 2314 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2315 const Query &Q) { 2316 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2317 // vector 2318 if (isa<ScalableVectorType>(V->getType())) 2319 return false; 2320 2321 if (auto *C = dyn_cast<Constant>(V)) { 2322 if (C->isNullValue()) 2323 return false; 2324 if (isa<ConstantInt>(C)) 2325 // Must be non-zero due to null test above. 2326 return true; 2327 2328 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2329 // See the comment for IntToPtr/PtrToInt instructions below. 2330 if (CE->getOpcode() == Instruction::IntToPtr || 2331 CE->getOpcode() == Instruction::PtrToInt) 2332 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2333 .getFixedSize() <= 2334 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2335 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2336 } 2337 2338 // For constant vectors, check that all elements are undefined or known 2339 // non-zero to determine that the whole vector is known non-zero. 2340 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2341 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2342 if (!DemandedElts[i]) 2343 continue; 2344 Constant *Elt = C->getAggregateElement(i); 2345 if (!Elt || Elt->isNullValue()) 2346 return false; 2347 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2348 return false; 2349 } 2350 return true; 2351 } 2352 2353 // A global variable in address space 0 is non null unless extern weak 2354 // or an absolute symbol reference. Other address spaces may have null as a 2355 // valid address for a global, so we can't assume anything. 2356 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2357 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2358 GV->getType()->getAddressSpace() == 0) 2359 return true; 2360 } else 2361 return false; 2362 } 2363 2364 if (auto *I = dyn_cast<Instruction>(V)) { 2365 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2366 // If the possible ranges don't contain zero, then the value is 2367 // definitely non-zero. 2368 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2369 const APInt ZeroValue(Ty->getBitWidth(), 0); 2370 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2371 return true; 2372 } 2373 } 2374 } 2375 2376 if (isKnownNonZeroFromAssume(V, Q)) 2377 return true; 2378 2379 // Some of the tests below are recursive, so bail out if we hit the limit. 2380 if (Depth++ >= MaxAnalysisRecursionDepth) 2381 return false; 2382 2383 // Check for pointer simplifications. 2384 2385 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2386 // Alloca never returns null, malloc might. 2387 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2388 return true; 2389 2390 // A byval, inalloca may not be null in a non-default addres space. A 2391 // nonnull argument is assumed never 0. 2392 if (const Argument *A = dyn_cast<Argument>(V)) { 2393 if (((A->hasPassPointeeByValueCopyAttr() && 2394 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2395 A->hasNonNullAttr())) 2396 return true; 2397 } 2398 2399 // A Load tagged with nonnull metadata is never null. 2400 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2401 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2402 return true; 2403 2404 if (const auto *Call = dyn_cast<CallBase>(V)) { 2405 if (Call->isReturnNonNull()) 2406 return true; 2407 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2408 return isKnownNonZero(RP, Depth, Q); 2409 } 2410 } 2411 2412 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2413 return true; 2414 2415 // Check for recursive pointer simplifications. 2416 if (V->getType()->isPointerTy()) { 2417 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2418 // do not alter the value, or at least not the nullness property of the 2419 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2420 // 2421 // Note that we have to take special care to avoid looking through 2422 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2423 // as casts that can alter the value, e.g., AddrSpaceCasts. 2424 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2425 return isGEPKnownNonNull(GEP, Depth, Q); 2426 2427 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2428 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2429 2430 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2431 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2432 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2433 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2434 } 2435 2436 // Similar to int2ptr above, we can look through ptr2int here if the cast 2437 // is a no-op or an extend and not a truncate. 2438 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2439 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2440 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2441 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2442 2443 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2444 2445 // X | Y != 0 if X != 0 or Y != 0. 2446 Value *X = nullptr, *Y = nullptr; 2447 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2448 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2449 isKnownNonZero(Y, DemandedElts, Depth, Q); 2450 2451 // ext X != 0 if X != 0. 2452 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2453 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2454 2455 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2456 // if the lowest bit is shifted off the end. 2457 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2458 // shl nuw can't remove any non-zero bits. 2459 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2460 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2461 return isKnownNonZero(X, Depth, Q); 2462 2463 KnownBits Known(BitWidth); 2464 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2465 if (Known.One[0]) 2466 return true; 2467 } 2468 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2469 // defined if the sign bit is shifted off the end. 2470 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2471 // shr exact can only shift out zero bits. 2472 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2473 if (BO->isExact()) 2474 return isKnownNonZero(X, Depth, Q); 2475 2476 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2477 if (Known.isNegative()) 2478 return true; 2479 2480 // If the shifter operand is a constant, and all of the bits shifted 2481 // out are known to be zero, and X is known non-zero then at least one 2482 // non-zero bit must remain. 2483 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2484 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2485 // Is there a known one in the portion not shifted out? 2486 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2487 return true; 2488 // Are all the bits to be shifted out known zero? 2489 if (Known.countMinTrailingZeros() >= ShiftVal) 2490 return isKnownNonZero(X, DemandedElts, Depth, Q); 2491 } 2492 } 2493 // div exact can only produce a zero if the dividend is zero. 2494 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2495 return isKnownNonZero(X, DemandedElts, Depth, Q); 2496 } 2497 // X + Y. 2498 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2499 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2500 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2501 2502 // If X and Y are both non-negative (as signed values) then their sum is not 2503 // zero unless both X and Y are zero. 2504 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2505 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2506 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2507 return true; 2508 2509 // If X and Y are both negative (as signed values) then their sum is not 2510 // zero unless both X and Y equal INT_MIN. 2511 if (XKnown.isNegative() && YKnown.isNegative()) { 2512 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2513 // The sign bit of X is set. If some other bit is set then X is not equal 2514 // to INT_MIN. 2515 if (XKnown.One.intersects(Mask)) 2516 return true; 2517 // The sign bit of Y is set. If some other bit is set then Y is not equal 2518 // to INT_MIN. 2519 if (YKnown.One.intersects(Mask)) 2520 return true; 2521 } 2522 2523 // The sum of a non-negative number and a power of two is not zero. 2524 if (XKnown.isNonNegative() && 2525 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2526 return true; 2527 if (YKnown.isNonNegative() && 2528 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2529 return true; 2530 } 2531 // X * Y. 2532 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2533 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2534 // If X and Y are non-zero then so is X * Y as long as the multiplication 2535 // does not overflow. 2536 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2537 isKnownNonZero(X, DemandedElts, Depth, Q) && 2538 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2539 return true; 2540 } 2541 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2542 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2543 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2544 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2545 return true; 2546 } 2547 // PHI 2548 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2549 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2550 return true; 2551 2552 // Check if all incoming values are non-zero using recursion. 2553 Query RecQ = Q; 2554 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2555 return llvm::all_of(PN->operands(), [&](const Use &U) { 2556 if (U.get() == PN) 2557 return true; 2558 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2559 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2560 }); 2561 } 2562 // ExtractElement 2563 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2564 const Value *Vec = EEI->getVectorOperand(); 2565 const Value *Idx = EEI->getIndexOperand(); 2566 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2567 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2568 unsigned NumElts = VecTy->getNumElements(); 2569 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2570 if (CIdx && CIdx->getValue().ult(NumElts)) 2571 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2572 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2573 } 2574 } 2575 // Freeze 2576 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2577 auto *Op = FI->getOperand(0); 2578 if (isKnownNonZero(Op, Depth, Q) && 2579 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2580 return true; 2581 } 2582 2583 KnownBits Known(BitWidth); 2584 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2585 return Known.One != 0; 2586 } 2587 2588 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2589 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2590 // vector 2591 if (isa<ScalableVectorType>(V->getType())) 2592 return false; 2593 2594 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2595 APInt DemandedElts = 2596 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2597 return isKnownNonZero(V, DemandedElts, Depth, Q); 2598 } 2599 2600 /// If the pair of operators are the same invertible function, return the 2601 /// the operands of the function corresponding to each input. Otherwise, 2602 /// return None. An invertible function is one that is 1-to-1 and maps 2603 /// every input value to exactly one output value. This is equivalent to 2604 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2605 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2606 static Optional<std::pair<Value*, Value*>> 2607 getInvertibleOperands(const Operator *Op1, 2608 const Operator *Op2) { 2609 if (Op1->getOpcode() != Op2->getOpcode()) 2610 return None; 2611 2612 auto getOperands = [&](unsigned OpNum) -> auto { 2613 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2614 }; 2615 2616 switch (Op1->getOpcode()) { 2617 default: 2618 break; 2619 case Instruction::Add: 2620 case Instruction::Sub: 2621 if (Op1->getOperand(0) == Op2->getOperand(0)) 2622 return getOperands(1); 2623 if (Op1->getOperand(1) == Op2->getOperand(1)) 2624 return getOperands(0); 2625 break; 2626 case Instruction::Mul: { 2627 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2628 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2629 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2630 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2631 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2632 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2633 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2634 break; 2635 2636 // Assume operand order has been canonicalized 2637 if (Op1->getOperand(1) == Op2->getOperand(1) && 2638 isa<ConstantInt>(Op1->getOperand(1)) && 2639 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2640 return getOperands(0); 2641 break; 2642 } 2643 case Instruction::Shl: { 2644 // Same as multiplies, with the difference that we don't need to check 2645 // for a non-zero multiply. Shifts always multiply by non-zero. 2646 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2647 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2648 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2649 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2650 break; 2651 2652 if (Op1->getOperand(1) == Op2->getOperand(1)) 2653 return getOperands(0); 2654 break; 2655 } 2656 case Instruction::AShr: 2657 case Instruction::LShr: { 2658 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2659 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2660 if (!PEO1->isExact() || !PEO2->isExact()) 2661 break; 2662 2663 if (Op1->getOperand(1) == Op2->getOperand(1)) 2664 return getOperands(0); 2665 break; 2666 } 2667 case Instruction::SExt: 2668 case Instruction::ZExt: 2669 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2670 return getOperands(0); 2671 break; 2672 case Instruction::PHI: { 2673 const PHINode *PN1 = cast<PHINode>(Op1); 2674 const PHINode *PN2 = cast<PHINode>(Op2); 2675 2676 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2677 // are a single invertible function of the start values? Note that repeated 2678 // application of an invertible function is also invertible 2679 BinaryOperator *BO1 = nullptr; 2680 Value *Start1 = nullptr, *Step1 = nullptr; 2681 BinaryOperator *BO2 = nullptr; 2682 Value *Start2 = nullptr, *Step2 = nullptr; 2683 if (PN1->getParent() != PN2->getParent() || 2684 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2685 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2686 break; 2687 2688 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2689 cast<Operator>(BO2)); 2690 if (!Values) 2691 break; 2692 2693 // We have to be careful of mutually defined recurrences here. Ex: 2694 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2695 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2696 // The invertibility of these is complicated, and not worth reasoning 2697 // about (yet?). 2698 if (Values->first != PN1 || Values->second != PN2) 2699 break; 2700 2701 return std::make_pair(Start1, Start2); 2702 } 2703 } 2704 return None; 2705 } 2706 2707 /// Return true if V2 == V1 + X, where X is known non-zero. 2708 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2709 const Query &Q) { 2710 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2711 if (!BO || BO->getOpcode() != Instruction::Add) 2712 return false; 2713 Value *Op = nullptr; 2714 if (V2 == BO->getOperand(0)) 2715 Op = BO->getOperand(1); 2716 else if (V2 == BO->getOperand(1)) 2717 Op = BO->getOperand(0); 2718 else 2719 return false; 2720 return isKnownNonZero(Op, Depth + 1, Q); 2721 } 2722 2723 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2724 /// the multiplication is nuw or nsw. 2725 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2726 const Query &Q) { 2727 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2728 const APInt *C; 2729 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2730 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2731 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2732 } 2733 return false; 2734 } 2735 2736 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2737 /// the shift is nuw or nsw. 2738 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2739 const Query &Q) { 2740 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2741 const APInt *C; 2742 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2743 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2744 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2745 } 2746 return false; 2747 } 2748 2749 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2750 unsigned Depth, const Query &Q) { 2751 // Check two PHIs are in same block. 2752 if (PN1->getParent() != PN2->getParent()) 2753 return false; 2754 2755 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2756 bool UsedFullRecursion = false; 2757 for (const BasicBlock *IncomBB : PN1->blocks()) { 2758 if (!VisitedBBs.insert(IncomBB).second) 2759 continue; // Don't reprocess blocks that we have dealt with already. 2760 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2761 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2762 const APInt *C1, *C2; 2763 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2764 continue; 2765 2766 // Only one pair of phi operands is allowed for full recursion. 2767 if (UsedFullRecursion) 2768 return false; 2769 2770 Query RecQ = Q; 2771 RecQ.CxtI = IncomBB->getTerminator(); 2772 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2773 return false; 2774 UsedFullRecursion = true; 2775 } 2776 return true; 2777 } 2778 2779 /// Return true if it is known that V1 != V2. 2780 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2781 const Query &Q) { 2782 if (V1 == V2) 2783 return false; 2784 if (V1->getType() != V2->getType()) 2785 // We can't look through casts yet. 2786 return false; 2787 2788 if (Depth >= MaxAnalysisRecursionDepth) 2789 return false; 2790 2791 // See if we can recurse through (exactly one of) our operands. This 2792 // requires our operation be 1-to-1 and map every input value to exactly 2793 // one output value. Such an operation is invertible. 2794 auto *O1 = dyn_cast<Operator>(V1); 2795 auto *O2 = dyn_cast<Operator>(V2); 2796 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2797 if (auto Values = getInvertibleOperands(O1, O2)) 2798 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2799 2800 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2801 const PHINode *PN2 = cast<PHINode>(V2); 2802 // FIXME: This is missing a generalization to handle the case where one is 2803 // a PHI and another one isn't. 2804 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2805 return true; 2806 }; 2807 } 2808 2809 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2810 return true; 2811 2812 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2813 return true; 2814 2815 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2816 return true; 2817 2818 if (V1->getType()->isIntOrIntVectorTy()) { 2819 // Are any known bits in V1 contradictory to known bits in V2? If V1 2820 // has a known zero where V2 has a known one, they must not be equal. 2821 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2822 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2823 2824 if (Known1.Zero.intersects(Known2.One) || 2825 Known2.Zero.intersects(Known1.One)) 2826 return true; 2827 } 2828 return false; 2829 } 2830 2831 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2832 /// simplify operations downstream. Mask is known to be zero for bits that V 2833 /// cannot have. 2834 /// 2835 /// This function is defined on values with integer type, values with pointer 2836 /// type, and vectors of integers. In the case 2837 /// where V is a vector, the mask, known zero, and known one values are the 2838 /// same width as the vector element, and the bit is set only if it is true 2839 /// for all of the elements in the vector. 2840 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2841 const Query &Q) { 2842 KnownBits Known(Mask.getBitWidth()); 2843 computeKnownBits(V, Known, Depth, Q); 2844 return Mask.isSubsetOf(Known.Zero); 2845 } 2846 2847 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2848 // Returns the input and lower/upper bounds. 2849 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2850 const APInt *&CLow, const APInt *&CHigh) { 2851 assert(isa<Operator>(Select) && 2852 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2853 "Input should be a Select!"); 2854 2855 const Value *LHS = nullptr, *RHS = nullptr; 2856 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2857 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2858 return false; 2859 2860 if (!match(RHS, m_APInt(CLow))) 2861 return false; 2862 2863 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2864 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2865 if (getInverseMinMaxFlavor(SPF) != SPF2) 2866 return false; 2867 2868 if (!match(RHS2, m_APInt(CHigh))) 2869 return false; 2870 2871 if (SPF == SPF_SMIN) 2872 std::swap(CLow, CHigh); 2873 2874 In = LHS2; 2875 return CLow->sle(*CHigh); 2876 } 2877 2878 /// For vector constants, loop over the elements and find the constant with the 2879 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2880 /// or if any element was not analyzed; otherwise, return the count for the 2881 /// element with the minimum number of sign bits. 2882 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2883 const APInt &DemandedElts, 2884 unsigned TyBits) { 2885 const auto *CV = dyn_cast<Constant>(V); 2886 if (!CV || !isa<FixedVectorType>(CV->getType())) 2887 return 0; 2888 2889 unsigned MinSignBits = TyBits; 2890 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2891 for (unsigned i = 0; i != NumElts; ++i) { 2892 if (!DemandedElts[i]) 2893 continue; 2894 // If we find a non-ConstantInt, bail out. 2895 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2896 if (!Elt) 2897 return 0; 2898 2899 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2900 } 2901 2902 return MinSignBits; 2903 } 2904 2905 static unsigned ComputeNumSignBitsImpl(const Value *V, 2906 const APInt &DemandedElts, 2907 unsigned Depth, const Query &Q); 2908 2909 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2910 unsigned Depth, const Query &Q) { 2911 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2912 assert(Result > 0 && "At least one sign bit needs to be present!"); 2913 return Result; 2914 } 2915 2916 /// Return the number of times the sign bit of the register is replicated into 2917 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2918 /// (itself), but other cases can give us information. For example, immediately 2919 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2920 /// other, so we return 3. For vectors, return the number of sign bits for the 2921 /// vector element with the minimum number of known sign bits of the demanded 2922 /// elements in the vector specified by DemandedElts. 2923 static unsigned ComputeNumSignBitsImpl(const Value *V, 2924 const APInt &DemandedElts, 2925 unsigned Depth, const Query &Q) { 2926 Type *Ty = V->getType(); 2927 2928 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2929 // vector 2930 if (isa<ScalableVectorType>(Ty)) 2931 return 1; 2932 2933 #ifndef NDEBUG 2934 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2935 2936 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2937 assert( 2938 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2939 "DemandedElt width should equal the fixed vector number of elements"); 2940 } else { 2941 assert(DemandedElts == APInt(1, 1) && 2942 "DemandedElt width should be 1 for scalars"); 2943 } 2944 #endif 2945 2946 // We return the minimum number of sign bits that are guaranteed to be present 2947 // in V, so for undef we have to conservatively return 1. We don't have the 2948 // same behavior for poison though -- that's a FIXME today. 2949 2950 Type *ScalarTy = Ty->getScalarType(); 2951 unsigned TyBits = ScalarTy->isPointerTy() ? 2952 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2953 Q.DL.getTypeSizeInBits(ScalarTy); 2954 2955 unsigned Tmp, Tmp2; 2956 unsigned FirstAnswer = 1; 2957 2958 // Note that ConstantInt is handled by the general computeKnownBits case 2959 // below. 2960 2961 if (Depth == MaxAnalysisRecursionDepth) 2962 return 1; 2963 2964 if (auto *U = dyn_cast<Operator>(V)) { 2965 switch (Operator::getOpcode(V)) { 2966 default: break; 2967 case Instruction::SExt: 2968 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2969 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2970 2971 case Instruction::SDiv: { 2972 const APInt *Denominator; 2973 // sdiv X, C -> adds log(C) sign bits. 2974 if (match(U->getOperand(1), m_APInt(Denominator))) { 2975 2976 // Ignore non-positive denominator. 2977 if (!Denominator->isStrictlyPositive()) 2978 break; 2979 2980 // Calculate the incoming numerator bits. 2981 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2982 2983 // Add floor(log(C)) bits to the numerator bits. 2984 return std::min(TyBits, NumBits + Denominator->logBase2()); 2985 } 2986 break; 2987 } 2988 2989 case Instruction::SRem: { 2990 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2991 2992 const APInt *Denominator; 2993 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2994 // positive constant. This let us put a lower bound on the number of sign 2995 // bits. 2996 if (match(U->getOperand(1), m_APInt(Denominator))) { 2997 2998 // Ignore non-positive denominator. 2999 if (Denominator->isStrictlyPositive()) { 3000 // Calculate the leading sign bit constraints by examining the 3001 // denominator. Given that the denominator is positive, there are two 3002 // cases: 3003 // 3004 // 1. The numerator is positive. The result range is [0,C) and 3005 // [0,C) u< (1 << ceilLogBase2(C)). 3006 // 3007 // 2. The numerator is negative. Then the result range is (-C,0] and 3008 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3009 // 3010 // Thus a lower bound on the number of sign bits is `TyBits - 3011 // ceilLogBase2(C)`. 3012 3013 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3014 Tmp = std::max(Tmp, ResBits); 3015 } 3016 } 3017 return Tmp; 3018 } 3019 3020 case Instruction::AShr: { 3021 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3022 // ashr X, C -> adds C sign bits. Vectors too. 3023 const APInt *ShAmt; 3024 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3025 if (ShAmt->uge(TyBits)) 3026 break; // Bad shift. 3027 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3028 Tmp += ShAmtLimited; 3029 if (Tmp > TyBits) Tmp = TyBits; 3030 } 3031 return Tmp; 3032 } 3033 case Instruction::Shl: { 3034 const APInt *ShAmt; 3035 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3036 // shl destroys sign bits. 3037 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3038 if (ShAmt->uge(TyBits) || // Bad shift. 3039 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3040 Tmp2 = ShAmt->getZExtValue(); 3041 return Tmp - Tmp2; 3042 } 3043 break; 3044 } 3045 case Instruction::And: 3046 case Instruction::Or: 3047 case Instruction::Xor: // NOT is handled here. 3048 // Logical binary ops preserve the number of sign bits at the worst. 3049 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3050 if (Tmp != 1) { 3051 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3052 FirstAnswer = std::min(Tmp, Tmp2); 3053 // We computed what we know about the sign bits as our first 3054 // answer. Now proceed to the generic code that uses 3055 // computeKnownBits, and pick whichever answer is better. 3056 } 3057 break; 3058 3059 case Instruction::Select: { 3060 // If we have a clamp pattern, we know that the number of sign bits will 3061 // be the minimum of the clamp min/max range. 3062 const Value *X; 3063 const APInt *CLow, *CHigh; 3064 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3065 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3066 3067 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3068 if (Tmp == 1) break; 3069 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3070 return std::min(Tmp, Tmp2); 3071 } 3072 3073 case Instruction::Add: 3074 // Add can have at most one carry bit. Thus we know that the output 3075 // is, at worst, one more bit than the inputs. 3076 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3077 if (Tmp == 1) break; 3078 3079 // Special case decrementing a value (ADD X, -1): 3080 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3081 if (CRHS->isAllOnesValue()) { 3082 KnownBits Known(TyBits); 3083 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3084 3085 // If the input is known to be 0 or 1, the output is 0/-1, which is 3086 // all sign bits set. 3087 if ((Known.Zero | 1).isAllOnes()) 3088 return TyBits; 3089 3090 // If we are subtracting one from a positive number, there is no carry 3091 // out of the result. 3092 if (Known.isNonNegative()) 3093 return Tmp; 3094 } 3095 3096 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3097 if (Tmp2 == 1) break; 3098 return std::min(Tmp, Tmp2) - 1; 3099 3100 case Instruction::Sub: 3101 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3102 if (Tmp2 == 1) break; 3103 3104 // Handle NEG. 3105 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3106 if (CLHS->isNullValue()) { 3107 KnownBits Known(TyBits); 3108 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3109 // If the input is known to be 0 or 1, the output is 0/-1, which is 3110 // all sign bits set. 3111 if ((Known.Zero | 1).isAllOnes()) 3112 return TyBits; 3113 3114 // If the input is known to be positive (the sign bit is known clear), 3115 // the output of the NEG has the same number of sign bits as the 3116 // input. 3117 if (Known.isNonNegative()) 3118 return Tmp2; 3119 3120 // Otherwise, we treat this like a SUB. 3121 } 3122 3123 // Sub can have at most one carry bit. Thus we know that the output 3124 // is, at worst, one more bit than the inputs. 3125 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3126 if (Tmp == 1) break; 3127 return std::min(Tmp, Tmp2) - 1; 3128 3129 case Instruction::Mul: { 3130 // The output of the Mul can be at most twice the valid bits in the 3131 // inputs. 3132 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3133 if (SignBitsOp0 == 1) break; 3134 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3135 if (SignBitsOp1 == 1) break; 3136 unsigned OutValidBits = 3137 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3138 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3139 } 3140 3141 case Instruction::PHI: { 3142 const PHINode *PN = cast<PHINode>(U); 3143 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3144 // Don't analyze large in-degree PHIs. 3145 if (NumIncomingValues > 4) break; 3146 // Unreachable blocks may have zero-operand PHI nodes. 3147 if (NumIncomingValues == 0) break; 3148 3149 // Take the minimum of all incoming values. This can't infinitely loop 3150 // because of our depth threshold. 3151 Query RecQ = Q; 3152 Tmp = TyBits; 3153 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3154 if (Tmp == 1) return Tmp; 3155 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3156 Tmp = std::min( 3157 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3158 } 3159 return Tmp; 3160 } 3161 3162 case Instruction::Trunc: 3163 // FIXME: it's tricky to do anything useful for this, but it is an 3164 // important case for targets like X86. 3165 break; 3166 3167 case Instruction::ExtractElement: 3168 // Look through extract element. At the moment we keep this simple and 3169 // skip tracking the specific element. But at least we might find 3170 // information valid for all elements of the vector (for example if vector 3171 // is sign extended, shifted, etc). 3172 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3173 3174 case Instruction::ShuffleVector: { 3175 // Collect the minimum number of sign bits that are shared by every vector 3176 // element referenced by the shuffle. 3177 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3178 if (!Shuf) { 3179 // FIXME: Add support for shufflevector constant expressions. 3180 return 1; 3181 } 3182 APInt DemandedLHS, DemandedRHS; 3183 // For undef elements, we don't know anything about the common state of 3184 // the shuffle result. 3185 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3186 return 1; 3187 Tmp = std::numeric_limits<unsigned>::max(); 3188 if (!!DemandedLHS) { 3189 const Value *LHS = Shuf->getOperand(0); 3190 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3191 } 3192 // If we don't know anything, early out and try computeKnownBits 3193 // fall-back. 3194 if (Tmp == 1) 3195 break; 3196 if (!!DemandedRHS) { 3197 const Value *RHS = Shuf->getOperand(1); 3198 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3199 Tmp = std::min(Tmp, Tmp2); 3200 } 3201 // If we don't know anything, early out and try computeKnownBits 3202 // fall-back. 3203 if (Tmp == 1) 3204 break; 3205 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3206 return Tmp; 3207 } 3208 case Instruction::Call: { 3209 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3210 switch (II->getIntrinsicID()) { 3211 default: break; 3212 case Intrinsic::abs: 3213 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3214 if (Tmp == 1) break; 3215 3216 // Absolute value reduces number of sign bits by at most 1. 3217 return Tmp - 1; 3218 } 3219 } 3220 } 3221 } 3222 } 3223 3224 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3225 // use this information. 3226 3227 // If we can examine all elements of a vector constant successfully, we're 3228 // done (we can't do any better than that). If not, keep trying. 3229 if (unsigned VecSignBits = 3230 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3231 return VecSignBits; 3232 3233 KnownBits Known(TyBits); 3234 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3235 3236 // If we know that the sign bit is either zero or one, determine the number of 3237 // identical bits in the top of the input value. 3238 return std::max(FirstAnswer, Known.countMinSignBits()); 3239 } 3240 3241 /// This function computes the integer multiple of Base that equals V. 3242 /// If successful, it returns true and returns the multiple in 3243 /// Multiple. If unsuccessful, it returns false. It looks 3244 /// through SExt instructions only if LookThroughSExt is true. 3245 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3246 bool LookThroughSExt, unsigned Depth) { 3247 assert(V && "No Value?"); 3248 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3249 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3250 3251 Type *T = V->getType(); 3252 3253 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3254 3255 if (Base == 0) 3256 return false; 3257 3258 if (Base == 1) { 3259 Multiple = V; 3260 return true; 3261 } 3262 3263 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3264 Constant *BaseVal = ConstantInt::get(T, Base); 3265 if (CO && CO == BaseVal) { 3266 // Multiple is 1. 3267 Multiple = ConstantInt::get(T, 1); 3268 return true; 3269 } 3270 3271 if (CI && CI->getZExtValue() % Base == 0) { 3272 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3273 return true; 3274 } 3275 3276 if (Depth == MaxAnalysisRecursionDepth) return false; 3277 3278 Operator *I = dyn_cast<Operator>(V); 3279 if (!I) return false; 3280 3281 switch (I->getOpcode()) { 3282 default: break; 3283 case Instruction::SExt: 3284 if (!LookThroughSExt) return false; 3285 // otherwise fall through to ZExt 3286 LLVM_FALLTHROUGH; 3287 case Instruction::ZExt: 3288 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3289 LookThroughSExt, Depth+1); 3290 case Instruction::Shl: 3291 case Instruction::Mul: { 3292 Value *Op0 = I->getOperand(0); 3293 Value *Op1 = I->getOperand(1); 3294 3295 if (I->getOpcode() == Instruction::Shl) { 3296 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3297 if (!Op1CI) return false; 3298 // Turn Op0 << Op1 into Op0 * 2^Op1 3299 APInt Op1Int = Op1CI->getValue(); 3300 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3301 APInt API(Op1Int.getBitWidth(), 0); 3302 API.setBit(BitToSet); 3303 Op1 = ConstantInt::get(V->getContext(), API); 3304 } 3305 3306 Value *Mul0 = nullptr; 3307 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3308 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3309 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3310 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3311 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3312 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3313 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3314 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3315 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3316 3317 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3318 Multiple = ConstantExpr::getMul(MulC, Op1C); 3319 return true; 3320 } 3321 3322 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3323 if (Mul0CI->getValue() == 1) { 3324 // V == Base * Op1, so return Op1 3325 Multiple = Op1; 3326 return true; 3327 } 3328 } 3329 3330 Value *Mul1 = nullptr; 3331 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3332 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3333 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3334 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3335 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3336 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3337 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3338 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3339 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3340 3341 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3342 Multiple = ConstantExpr::getMul(MulC, Op0C); 3343 return true; 3344 } 3345 3346 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3347 if (Mul1CI->getValue() == 1) { 3348 // V == Base * Op0, so return Op0 3349 Multiple = Op0; 3350 return true; 3351 } 3352 } 3353 } 3354 } 3355 3356 // We could not determine if V is a multiple of Base. 3357 return false; 3358 } 3359 3360 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3361 const TargetLibraryInfo *TLI) { 3362 const Function *F = CB.getCalledFunction(); 3363 if (!F) 3364 return Intrinsic::not_intrinsic; 3365 3366 if (F->isIntrinsic()) 3367 return F->getIntrinsicID(); 3368 3369 // We are going to infer semantics of a library function based on mapping it 3370 // to an LLVM intrinsic. Check that the library function is available from 3371 // this callbase and in this environment. 3372 LibFunc Func; 3373 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3374 !CB.onlyReadsMemory()) 3375 return Intrinsic::not_intrinsic; 3376 3377 switch (Func) { 3378 default: 3379 break; 3380 case LibFunc_sin: 3381 case LibFunc_sinf: 3382 case LibFunc_sinl: 3383 return Intrinsic::sin; 3384 case LibFunc_cos: 3385 case LibFunc_cosf: 3386 case LibFunc_cosl: 3387 return Intrinsic::cos; 3388 case LibFunc_exp: 3389 case LibFunc_expf: 3390 case LibFunc_expl: 3391 return Intrinsic::exp; 3392 case LibFunc_exp2: 3393 case LibFunc_exp2f: 3394 case LibFunc_exp2l: 3395 return Intrinsic::exp2; 3396 case LibFunc_log: 3397 case LibFunc_logf: 3398 case LibFunc_logl: 3399 return Intrinsic::log; 3400 case LibFunc_log10: 3401 case LibFunc_log10f: 3402 case LibFunc_log10l: 3403 return Intrinsic::log10; 3404 case LibFunc_log2: 3405 case LibFunc_log2f: 3406 case LibFunc_log2l: 3407 return Intrinsic::log2; 3408 case LibFunc_fabs: 3409 case LibFunc_fabsf: 3410 case LibFunc_fabsl: 3411 return Intrinsic::fabs; 3412 case LibFunc_fmin: 3413 case LibFunc_fminf: 3414 case LibFunc_fminl: 3415 return Intrinsic::minnum; 3416 case LibFunc_fmax: 3417 case LibFunc_fmaxf: 3418 case LibFunc_fmaxl: 3419 return Intrinsic::maxnum; 3420 case LibFunc_copysign: 3421 case LibFunc_copysignf: 3422 case LibFunc_copysignl: 3423 return Intrinsic::copysign; 3424 case LibFunc_floor: 3425 case LibFunc_floorf: 3426 case LibFunc_floorl: 3427 return Intrinsic::floor; 3428 case LibFunc_ceil: 3429 case LibFunc_ceilf: 3430 case LibFunc_ceill: 3431 return Intrinsic::ceil; 3432 case LibFunc_trunc: 3433 case LibFunc_truncf: 3434 case LibFunc_truncl: 3435 return Intrinsic::trunc; 3436 case LibFunc_rint: 3437 case LibFunc_rintf: 3438 case LibFunc_rintl: 3439 return Intrinsic::rint; 3440 case LibFunc_nearbyint: 3441 case LibFunc_nearbyintf: 3442 case LibFunc_nearbyintl: 3443 return Intrinsic::nearbyint; 3444 case LibFunc_round: 3445 case LibFunc_roundf: 3446 case LibFunc_roundl: 3447 return Intrinsic::round; 3448 case LibFunc_roundeven: 3449 case LibFunc_roundevenf: 3450 case LibFunc_roundevenl: 3451 return Intrinsic::roundeven; 3452 case LibFunc_pow: 3453 case LibFunc_powf: 3454 case LibFunc_powl: 3455 return Intrinsic::pow; 3456 case LibFunc_sqrt: 3457 case LibFunc_sqrtf: 3458 case LibFunc_sqrtl: 3459 return Intrinsic::sqrt; 3460 } 3461 3462 return Intrinsic::not_intrinsic; 3463 } 3464 3465 /// Return true if we can prove that the specified FP value is never equal to 3466 /// -0.0. 3467 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3468 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3469 /// the same as +0.0 in floating-point ops. 3470 /// 3471 /// NOTE: this function will need to be revisited when we support non-default 3472 /// rounding modes! 3473 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3474 unsigned Depth) { 3475 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3476 return !CFP->getValueAPF().isNegZero(); 3477 3478 if (Depth == MaxAnalysisRecursionDepth) 3479 return false; 3480 3481 auto *Op = dyn_cast<Operator>(V); 3482 if (!Op) 3483 return false; 3484 3485 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3486 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3487 return true; 3488 3489 // sitofp and uitofp turn into +0.0 for zero. 3490 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3491 return true; 3492 3493 if (auto *Call = dyn_cast<CallInst>(Op)) { 3494 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3495 switch (IID) { 3496 default: 3497 break; 3498 // sqrt(-0.0) = -0.0, no other negative results are possible. 3499 case Intrinsic::sqrt: 3500 case Intrinsic::canonicalize: 3501 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3502 // fabs(x) != -0.0 3503 case Intrinsic::fabs: 3504 return true; 3505 } 3506 } 3507 3508 return false; 3509 } 3510 3511 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3512 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3513 /// bit despite comparing equal. 3514 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3515 const TargetLibraryInfo *TLI, 3516 bool SignBitOnly, 3517 unsigned Depth) { 3518 // TODO: This function does not do the right thing when SignBitOnly is true 3519 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3520 // which flips the sign bits of NaNs. See 3521 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3522 3523 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3524 return !CFP->getValueAPF().isNegative() || 3525 (!SignBitOnly && CFP->getValueAPF().isZero()); 3526 } 3527 3528 // Handle vector of constants. 3529 if (auto *CV = dyn_cast<Constant>(V)) { 3530 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3531 unsigned NumElts = CVFVTy->getNumElements(); 3532 for (unsigned i = 0; i != NumElts; ++i) { 3533 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3534 if (!CFP) 3535 return false; 3536 if (CFP->getValueAPF().isNegative() && 3537 (SignBitOnly || !CFP->getValueAPF().isZero())) 3538 return false; 3539 } 3540 3541 // All non-negative ConstantFPs. 3542 return true; 3543 } 3544 } 3545 3546 if (Depth == MaxAnalysisRecursionDepth) 3547 return false; 3548 3549 const Operator *I = dyn_cast<Operator>(V); 3550 if (!I) 3551 return false; 3552 3553 switch (I->getOpcode()) { 3554 default: 3555 break; 3556 // Unsigned integers are always nonnegative. 3557 case Instruction::UIToFP: 3558 return true; 3559 case Instruction::FMul: 3560 case Instruction::FDiv: 3561 // X * X is always non-negative or a NaN. 3562 // X / X is always exactly 1.0 or a NaN. 3563 if (I->getOperand(0) == I->getOperand(1) && 3564 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3565 return true; 3566 3567 LLVM_FALLTHROUGH; 3568 case Instruction::FAdd: 3569 case Instruction::FRem: 3570 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3571 Depth + 1) && 3572 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3573 Depth + 1); 3574 case Instruction::Select: 3575 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3576 Depth + 1) && 3577 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3578 Depth + 1); 3579 case Instruction::FPExt: 3580 case Instruction::FPTrunc: 3581 // Widening/narrowing never change sign. 3582 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3583 Depth + 1); 3584 case Instruction::ExtractElement: 3585 // Look through extract element. At the moment we keep this simple and skip 3586 // tracking the specific element. But at least we might find information 3587 // valid for all elements of the vector. 3588 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3589 Depth + 1); 3590 case Instruction::Call: 3591 const auto *CI = cast<CallInst>(I); 3592 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3593 switch (IID) { 3594 default: 3595 break; 3596 case Intrinsic::maxnum: { 3597 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3598 auto isPositiveNum = [&](Value *V) { 3599 if (SignBitOnly) { 3600 // With SignBitOnly, this is tricky because the result of 3601 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3602 // a constant strictly greater than 0.0. 3603 const APFloat *C; 3604 return match(V, m_APFloat(C)) && 3605 *C > APFloat::getZero(C->getSemantics()); 3606 } 3607 3608 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3609 // maxnum can't be ordered-less-than-zero. 3610 return isKnownNeverNaN(V, TLI) && 3611 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3612 }; 3613 3614 // TODO: This could be improved. We could also check that neither operand 3615 // has its sign bit set (and at least 1 is not-NAN?). 3616 return isPositiveNum(V0) || isPositiveNum(V1); 3617 } 3618 3619 case Intrinsic::maximum: 3620 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3621 Depth + 1) || 3622 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3623 Depth + 1); 3624 case Intrinsic::minnum: 3625 case Intrinsic::minimum: 3626 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3627 Depth + 1) && 3628 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3629 Depth + 1); 3630 case Intrinsic::exp: 3631 case Intrinsic::exp2: 3632 case Intrinsic::fabs: 3633 return true; 3634 3635 case Intrinsic::sqrt: 3636 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3637 if (!SignBitOnly) 3638 return true; 3639 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3640 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3641 3642 case Intrinsic::powi: 3643 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3644 // powi(x,n) is non-negative if n is even. 3645 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3646 return true; 3647 } 3648 // TODO: This is not correct. Given that exp is an integer, here are the 3649 // ways that pow can return a negative value: 3650 // 3651 // pow(x, exp) --> negative if exp is odd and x is negative. 3652 // pow(-0, exp) --> -inf if exp is negative odd. 3653 // pow(-0, exp) --> -0 if exp is positive odd. 3654 // pow(-inf, exp) --> -0 if exp is negative odd. 3655 // pow(-inf, exp) --> -inf if exp is positive odd. 3656 // 3657 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3658 // but we must return false if x == -0. Unfortunately we do not currently 3659 // have a way of expressing this constraint. See details in 3660 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3661 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3662 Depth + 1); 3663 3664 case Intrinsic::fma: 3665 case Intrinsic::fmuladd: 3666 // x*x+y is non-negative if y is non-negative. 3667 return I->getOperand(0) == I->getOperand(1) && 3668 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3669 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3670 Depth + 1); 3671 } 3672 break; 3673 } 3674 return false; 3675 } 3676 3677 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3678 const TargetLibraryInfo *TLI) { 3679 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3680 } 3681 3682 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3683 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3684 } 3685 3686 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3687 unsigned Depth) { 3688 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3689 3690 // If we're told that infinities won't happen, assume they won't. 3691 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3692 if (FPMathOp->hasNoInfs()) 3693 return true; 3694 3695 // Handle scalar constants. 3696 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3697 return !CFP->isInfinity(); 3698 3699 if (Depth == MaxAnalysisRecursionDepth) 3700 return false; 3701 3702 if (auto *Inst = dyn_cast<Instruction>(V)) { 3703 switch (Inst->getOpcode()) { 3704 case Instruction::Select: { 3705 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3706 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3707 } 3708 case Instruction::SIToFP: 3709 case Instruction::UIToFP: { 3710 // Get width of largest magnitude integer (remove a bit if signed). 3711 // This still works for a signed minimum value because the largest FP 3712 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3713 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3714 if (Inst->getOpcode() == Instruction::SIToFP) 3715 --IntSize; 3716 3717 // If the exponent of the largest finite FP value can hold the largest 3718 // integer, the result of the cast must be finite. 3719 Type *FPTy = Inst->getType()->getScalarType(); 3720 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3721 } 3722 default: 3723 break; 3724 } 3725 } 3726 3727 // try to handle fixed width vector constants 3728 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3729 if (VFVTy && isa<Constant>(V)) { 3730 // For vectors, verify that each element is not infinity. 3731 unsigned NumElts = VFVTy->getNumElements(); 3732 for (unsigned i = 0; i != NumElts; ++i) { 3733 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3734 if (!Elt) 3735 return false; 3736 if (isa<UndefValue>(Elt)) 3737 continue; 3738 auto *CElt = dyn_cast<ConstantFP>(Elt); 3739 if (!CElt || CElt->isInfinity()) 3740 return false; 3741 } 3742 // All elements were confirmed non-infinity or undefined. 3743 return true; 3744 } 3745 3746 // was not able to prove that V never contains infinity 3747 return false; 3748 } 3749 3750 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3751 unsigned Depth) { 3752 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3753 3754 // If we're told that NaNs won't happen, assume they won't. 3755 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3756 if (FPMathOp->hasNoNaNs()) 3757 return true; 3758 3759 // Handle scalar constants. 3760 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3761 return !CFP->isNaN(); 3762 3763 if (Depth == MaxAnalysisRecursionDepth) 3764 return false; 3765 3766 if (auto *Inst = dyn_cast<Instruction>(V)) { 3767 switch (Inst->getOpcode()) { 3768 case Instruction::FAdd: 3769 case Instruction::FSub: 3770 // Adding positive and negative infinity produces NaN. 3771 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3772 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3773 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3774 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3775 3776 case Instruction::FMul: 3777 // Zero multiplied with infinity produces NaN. 3778 // FIXME: If neither side can be zero fmul never produces NaN. 3779 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3780 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3781 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3782 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3783 3784 case Instruction::FDiv: 3785 case Instruction::FRem: 3786 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3787 return false; 3788 3789 case Instruction::Select: { 3790 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3791 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3792 } 3793 case Instruction::SIToFP: 3794 case Instruction::UIToFP: 3795 return true; 3796 case Instruction::FPTrunc: 3797 case Instruction::FPExt: 3798 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3799 default: 3800 break; 3801 } 3802 } 3803 3804 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3805 switch (II->getIntrinsicID()) { 3806 case Intrinsic::canonicalize: 3807 case Intrinsic::fabs: 3808 case Intrinsic::copysign: 3809 case Intrinsic::exp: 3810 case Intrinsic::exp2: 3811 case Intrinsic::floor: 3812 case Intrinsic::ceil: 3813 case Intrinsic::trunc: 3814 case Intrinsic::rint: 3815 case Intrinsic::nearbyint: 3816 case Intrinsic::round: 3817 case Intrinsic::roundeven: 3818 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3819 case Intrinsic::sqrt: 3820 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3821 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3822 case Intrinsic::minnum: 3823 case Intrinsic::maxnum: 3824 // If either operand is not NaN, the result is not NaN. 3825 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3826 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3827 default: 3828 return false; 3829 } 3830 } 3831 3832 // Try to handle fixed width vector constants 3833 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3834 if (VFVTy && isa<Constant>(V)) { 3835 // For vectors, verify that each element is not NaN. 3836 unsigned NumElts = VFVTy->getNumElements(); 3837 for (unsigned i = 0; i != NumElts; ++i) { 3838 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3839 if (!Elt) 3840 return false; 3841 if (isa<UndefValue>(Elt)) 3842 continue; 3843 auto *CElt = dyn_cast<ConstantFP>(Elt); 3844 if (!CElt || CElt->isNaN()) 3845 return false; 3846 } 3847 // All elements were confirmed not-NaN or undefined. 3848 return true; 3849 } 3850 3851 // Was not able to prove that V never contains NaN 3852 return false; 3853 } 3854 3855 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3856 3857 // All byte-wide stores are splatable, even of arbitrary variables. 3858 if (V->getType()->isIntegerTy(8)) 3859 return V; 3860 3861 LLVMContext &Ctx = V->getContext(); 3862 3863 // Undef don't care. 3864 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3865 if (isa<UndefValue>(V)) 3866 return UndefInt8; 3867 3868 // Return Undef for zero-sized type. 3869 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3870 return UndefInt8; 3871 3872 Constant *C = dyn_cast<Constant>(V); 3873 if (!C) { 3874 // Conceptually, we could handle things like: 3875 // %a = zext i8 %X to i16 3876 // %b = shl i16 %a, 8 3877 // %c = or i16 %a, %b 3878 // but until there is an example that actually needs this, it doesn't seem 3879 // worth worrying about. 3880 return nullptr; 3881 } 3882 3883 // Handle 'null' ConstantArrayZero etc. 3884 if (C->isNullValue()) 3885 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3886 3887 // Constant floating-point values can be handled as integer values if the 3888 // corresponding integer value is "byteable". An important case is 0.0. 3889 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3890 Type *Ty = nullptr; 3891 if (CFP->getType()->isHalfTy()) 3892 Ty = Type::getInt16Ty(Ctx); 3893 else if (CFP->getType()->isFloatTy()) 3894 Ty = Type::getInt32Ty(Ctx); 3895 else if (CFP->getType()->isDoubleTy()) 3896 Ty = Type::getInt64Ty(Ctx); 3897 // Don't handle long double formats, which have strange constraints. 3898 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3899 : nullptr; 3900 } 3901 3902 // We can handle constant integers that are multiple of 8 bits. 3903 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3904 if (CI->getBitWidth() % 8 == 0) { 3905 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3906 if (!CI->getValue().isSplat(8)) 3907 return nullptr; 3908 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3909 } 3910 } 3911 3912 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3913 if (CE->getOpcode() == Instruction::IntToPtr) { 3914 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3915 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3916 return isBytewiseValue( 3917 ConstantExpr::getIntegerCast(CE->getOperand(0), 3918 Type::getIntNTy(Ctx, BitWidth), false), 3919 DL); 3920 } 3921 } 3922 } 3923 3924 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3925 if (LHS == RHS) 3926 return LHS; 3927 if (!LHS || !RHS) 3928 return nullptr; 3929 if (LHS == UndefInt8) 3930 return RHS; 3931 if (RHS == UndefInt8) 3932 return LHS; 3933 return nullptr; 3934 }; 3935 3936 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3937 Value *Val = UndefInt8; 3938 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3939 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3940 return nullptr; 3941 return Val; 3942 } 3943 3944 if (isa<ConstantAggregate>(C)) { 3945 Value *Val = UndefInt8; 3946 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3947 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3948 return nullptr; 3949 return Val; 3950 } 3951 3952 // Don't try to handle the handful of other constants. 3953 return nullptr; 3954 } 3955 3956 // This is the recursive version of BuildSubAggregate. It takes a few different 3957 // arguments. Idxs is the index within the nested struct From that we are 3958 // looking at now (which is of type IndexedType). IdxSkip is the number of 3959 // indices from Idxs that should be left out when inserting into the resulting 3960 // struct. To is the result struct built so far, new insertvalue instructions 3961 // build on that. 3962 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3963 SmallVectorImpl<unsigned> &Idxs, 3964 unsigned IdxSkip, 3965 Instruction *InsertBefore) { 3966 StructType *STy = dyn_cast<StructType>(IndexedType); 3967 if (STy) { 3968 // Save the original To argument so we can modify it 3969 Value *OrigTo = To; 3970 // General case, the type indexed by Idxs is a struct 3971 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3972 // Process each struct element recursively 3973 Idxs.push_back(i); 3974 Value *PrevTo = To; 3975 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3976 InsertBefore); 3977 Idxs.pop_back(); 3978 if (!To) { 3979 // Couldn't find any inserted value for this index? Cleanup 3980 while (PrevTo != OrigTo) { 3981 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3982 PrevTo = Del->getAggregateOperand(); 3983 Del->eraseFromParent(); 3984 } 3985 // Stop processing elements 3986 break; 3987 } 3988 } 3989 // If we successfully found a value for each of our subaggregates 3990 if (To) 3991 return To; 3992 } 3993 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3994 // the struct's elements had a value that was inserted directly. In the latter 3995 // case, perhaps we can't determine each of the subelements individually, but 3996 // we might be able to find the complete struct somewhere. 3997 3998 // Find the value that is at that particular spot 3999 Value *V = FindInsertedValue(From, Idxs); 4000 4001 if (!V) 4002 return nullptr; 4003 4004 // Insert the value in the new (sub) aggregate 4005 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 4006 "tmp", InsertBefore); 4007 } 4008 4009 // This helper takes a nested struct and extracts a part of it (which is again a 4010 // struct) into a new value. For example, given the struct: 4011 // { a, { b, { c, d }, e } } 4012 // and the indices "1, 1" this returns 4013 // { c, d }. 4014 // 4015 // It does this by inserting an insertvalue for each element in the resulting 4016 // struct, as opposed to just inserting a single struct. This will only work if 4017 // each of the elements of the substruct are known (ie, inserted into From by an 4018 // insertvalue instruction somewhere). 4019 // 4020 // All inserted insertvalue instructions are inserted before InsertBefore 4021 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 4022 Instruction *InsertBefore) { 4023 assert(InsertBefore && "Must have someplace to insert!"); 4024 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 4025 idx_range); 4026 Value *To = UndefValue::get(IndexedType); 4027 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 4028 unsigned IdxSkip = Idxs.size(); 4029 4030 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 4031 } 4032 4033 /// Given an aggregate and a sequence of indices, see if the scalar value 4034 /// indexed is already around as a register, for example if it was inserted 4035 /// directly into the aggregate. 4036 /// 4037 /// If InsertBefore is not null, this function will duplicate (modified) 4038 /// insertvalues when a part of a nested struct is extracted. 4039 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4040 Instruction *InsertBefore) { 4041 // Nothing to index? Just return V then (this is useful at the end of our 4042 // recursion). 4043 if (idx_range.empty()) 4044 return V; 4045 // We have indices, so V should have an indexable type. 4046 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4047 "Not looking at a struct or array?"); 4048 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4049 "Invalid indices for type?"); 4050 4051 if (Constant *C = dyn_cast<Constant>(V)) { 4052 C = C->getAggregateElement(idx_range[0]); 4053 if (!C) return nullptr; 4054 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4055 } 4056 4057 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4058 // Loop the indices for the insertvalue instruction in parallel with the 4059 // requested indices 4060 const unsigned *req_idx = idx_range.begin(); 4061 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4062 i != e; ++i, ++req_idx) { 4063 if (req_idx == idx_range.end()) { 4064 // We can't handle this without inserting insertvalues 4065 if (!InsertBefore) 4066 return nullptr; 4067 4068 // The requested index identifies a part of a nested aggregate. Handle 4069 // this specially. For example, 4070 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4071 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4072 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4073 // This can be changed into 4074 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4075 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4076 // which allows the unused 0,0 element from the nested struct to be 4077 // removed. 4078 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4079 InsertBefore); 4080 } 4081 4082 // This insert value inserts something else than what we are looking for. 4083 // See if the (aggregate) value inserted into has the value we are 4084 // looking for, then. 4085 if (*req_idx != *i) 4086 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4087 InsertBefore); 4088 } 4089 // If we end up here, the indices of the insertvalue match with those 4090 // requested (though possibly only partially). Now we recursively look at 4091 // the inserted value, passing any remaining indices. 4092 return FindInsertedValue(I->getInsertedValueOperand(), 4093 makeArrayRef(req_idx, idx_range.end()), 4094 InsertBefore); 4095 } 4096 4097 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4098 // If we're extracting a value from an aggregate that was extracted from 4099 // something else, we can extract from that something else directly instead. 4100 // However, we will need to chain I's indices with the requested indices. 4101 4102 // Calculate the number of indices required 4103 unsigned size = I->getNumIndices() + idx_range.size(); 4104 // Allocate some space to put the new indices in 4105 SmallVector<unsigned, 5> Idxs; 4106 Idxs.reserve(size); 4107 // Add indices from the extract value instruction 4108 Idxs.append(I->idx_begin(), I->idx_end()); 4109 4110 // Add requested indices 4111 Idxs.append(idx_range.begin(), idx_range.end()); 4112 4113 assert(Idxs.size() == size 4114 && "Number of indices added not correct?"); 4115 4116 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4117 } 4118 // Otherwise, we don't know (such as, extracting from a function return value 4119 // or load instruction) 4120 return nullptr; 4121 } 4122 4123 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4124 unsigned CharSize) { 4125 // Make sure the GEP has exactly three arguments. 4126 if (GEP->getNumOperands() != 3) 4127 return false; 4128 4129 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4130 // CharSize. 4131 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4132 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4133 return false; 4134 4135 // Check to make sure that the first operand of the GEP is an integer and 4136 // has value 0 so that we are sure we're indexing into the initializer. 4137 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4138 if (!FirstIdx || !FirstIdx->isZero()) 4139 return false; 4140 4141 return true; 4142 } 4143 4144 bool llvm::getConstantDataArrayInfo(const Value *V, 4145 ConstantDataArraySlice &Slice, 4146 unsigned ElementSize, uint64_t Offset) { 4147 assert(V); 4148 4149 // Look through bitcast instructions and geps. 4150 V = V->stripPointerCasts(); 4151 4152 // If the value is a GEP instruction or constant expression, treat it as an 4153 // offset. 4154 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4155 // The GEP operator should be based on a pointer to string constant, and is 4156 // indexing into the string constant. 4157 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4158 return false; 4159 4160 // If the second index isn't a ConstantInt, then this is a variable index 4161 // into the array. If this occurs, we can't say anything meaningful about 4162 // the string. 4163 uint64_t StartIdx = 0; 4164 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4165 StartIdx = CI->getZExtValue(); 4166 else 4167 return false; 4168 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4169 StartIdx + Offset); 4170 } 4171 4172 // The GEP instruction, constant or instruction, must reference a global 4173 // variable that is a constant and is initialized. The referenced constant 4174 // initializer is the array that we'll use for optimization. 4175 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4176 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4177 return false; 4178 4179 const ConstantDataArray *Array; 4180 ArrayType *ArrayTy; 4181 if (GV->getInitializer()->isNullValue()) { 4182 Type *GVTy = GV->getValueType(); 4183 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4184 // A zeroinitializer for the array; there is no ConstantDataArray. 4185 Array = nullptr; 4186 } else { 4187 const DataLayout &DL = GV->getParent()->getDataLayout(); 4188 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4189 uint64_t Length = SizeInBytes / (ElementSize / 8); 4190 if (Length <= Offset) 4191 return false; 4192 4193 Slice.Array = nullptr; 4194 Slice.Offset = 0; 4195 Slice.Length = Length - Offset; 4196 return true; 4197 } 4198 } else { 4199 // This must be a ConstantDataArray. 4200 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4201 if (!Array) 4202 return false; 4203 ArrayTy = Array->getType(); 4204 } 4205 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4206 return false; 4207 4208 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4209 if (Offset > NumElts) 4210 return false; 4211 4212 Slice.Array = Array; 4213 Slice.Offset = Offset; 4214 Slice.Length = NumElts - Offset; 4215 return true; 4216 } 4217 4218 /// This function computes the length of a null-terminated C string pointed to 4219 /// by V. If successful, it returns true and returns the string in Str. 4220 /// If unsuccessful, it returns false. 4221 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4222 uint64_t Offset, bool TrimAtNul) { 4223 ConstantDataArraySlice Slice; 4224 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4225 return false; 4226 4227 if (Slice.Array == nullptr) { 4228 if (TrimAtNul) { 4229 Str = StringRef(); 4230 return true; 4231 } 4232 if (Slice.Length == 1) { 4233 Str = StringRef("", 1); 4234 return true; 4235 } 4236 // We cannot instantiate a StringRef as we do not have an appropriate string 4237 // of 0s at hand. 4238 return false; 4239 } 4240 4241 // Start out with the entire array in the StringRef. 4242 Str = Slice.Array->getAsString(); 4243 // Skip over 'offset' bytes. 4244 Str = Str.substr(Slice.Offset); 4245 4246 if (TrimAtNul) { 4247 // Trim off the \0 and anything after it. If the array is not nul 4248 // terminated, we just return the whole end of string. The client may know 4249 // some other way that the string is length-bound. 4250 Str = Str.substr(0, Str.find('\0')); 4251 } 4252 return true; 4253 } 4254 4255 // These next two are very similar to the above, but also look through PHI 4256 // nodes. 4257 // TODO: See if we can integrate these two together. 4258 4259 /// If we can compute the length of the string pointed to by 4260 /// the specified pointer, return 'len+1'. If we can't, return 0. 4261 static uint64_t GetStringLengthH(const Value *V, 4262 SmallPtrSetImpl<const PHINode*> &PHIs, 4263 unsigned CharSize) { 4264 // Look through noop bitcast instructions. 4265 V = V->stripPointerCasts(); 4266 4267 // If this is a PHI node, there are two cases: either we have already seen it 4268 // or we haven't. 4269 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4270 if (!PHIs.insert(PN).second) 4271 return ~0ULL; // already in the set. 4272 4273 // If it was new, see if all the input strings are the same length. 4274 uint64_t LenSoFar = ~0ULL; 4275 for (Value *IncValue : PN->incoming_values()) { 4276 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4277 if (Len == 0) return 0; // Unknown length -> unknown. 4278 4279 if (Len == ~0ULL) continue; 4280 4281 if (Len != LenSoFar && LenSoFar != ~0ULL) 4282 return 0; // Disagree -> unknown. 4283 LenSoFar = Len; 4284 } 4285 4286 // Success, all agree. 4287 return LenSoFar; 4288 } 4289 4290 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4291 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4292 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4293 if (Len1 == 0) return 0; 4294 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4295 if (Len2 == 0) return 0; 4296 if (Len1 == ~0ULL) return Len2; 4297 if (Len2 == ~0ULL) return Len1; 4298 if (Len1 != Len2) return 0; 4299 return Len1; 4300 } 4301 4302 // Otherwise, see if we can read the string. 4303 ConstantDataArraySlice Slice; 4304 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4305 return 0; 4306 4307 if (Slice.Array == nullptr) 4308 return 1; 4309 4310 // Search for nul characters 4311 unsigned NullIndex = 0; 4312 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4313 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4314 break; 4315 } 4316 4317 return NullIndex + 1; 4318 } 4319 4320 /// If we can compute the length of the string pointed to by 4321 /// the specified pointer, return 'len+1'. If we can't, return 0. 4322 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4323 if (!V->getType()->isPointerTy()) 4324 return 0; 4325 4326 SmallPtrSet<const PHINode*, 32> PHIs; 4327 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4328 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4329 // an empty string as a length. 4330 return Len == ~0ULL ? 1 : Len; 4331 } 4332 4333 const Value * 4334 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4335 bool MustPreserveNullness) { 4336 assert(Call && 4337 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4338 if (const Value *RV = Call->getReturnedArgOperand()) 4339 return RV; 4340 // This can be used only as a aliasing property. 4341 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4342 Call, MustPreserveNullness)) 4343 return Call->getArgOperand(0); 4344 return nullptr; 4345 } 4346 4347 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4348 const CallBase *Call, bool MustPreserveNullness) { 4349 switch (Call->getIntrinsicID()) { 4350 case Intrinsic::launder_invariant_group: 4351 case Intrinsic::strip_invariant_group: 4352 case Intrinsic::aarch64_irg: 4353 case Intrinsic::aarch64_tagp: 4354 return true; 4355 case Intrinsic::ptrmask: 4356 return !MustPreserveNullness; 4357 default: 4358 return false; 4359 } 4360 } 4361 4362 /// \p PN defines a loop-variant pointer to an object. Check if the 4363 /// previous iteration of the loop was referring to the same object as \p PN. 4364 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4365 const LoopInfo *LI) { 4366 // Find the loop-defined value. 4367 Loop *L = LI->getLoopFor(PN->getParent()); 4368 if (PN->getNumIncomingValues() != 2) 4369 return true; 4370 4371 // Find the value from previous iteration. 4372 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4373 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4374 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4375 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4376 return true; 4377 4378 // If a new pointer is loaded in the loop, the pointer references a different 4379 // object in every iteration. E.g.: 4380 // for (i) 4381 // int *p = a[i]; 4382 // ... 4383 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4384 if (!L->isLoopInvariant(Load->getPointerOperand())) 4385 return false; 4386 return true; 4387 } 4388 4389 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4390 if (!V->getType()->isPointerTy()) 4391 return V; 4392 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4393 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4394 V = GEP->getPointerOperand(); 4395 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4396 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4397 V = cast<Operator>(V)->getOperand(0); 4398 if (!V->getType()->isPointerTy()) 4399 return V; 4400 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4401 if (GA->isInterposable()) 4402 return V; 4403 V = GA->getAliasee(); 4404 } else { 4405 if (auto *PHI = dyn_cast<PHINode>(V)) { 4406 // Look through single-arg phi nodes created by LCSSA. 4407 if (PHI->getNumIncomingValues() == 1) { 4408 V = PHI->getIncomingValue(0); 4409 continue; 4410 } 4411 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4412 // CaptureTracking can know about special capturing properties of some 4413 // intrinsics like launder.invariant.group, that can't be expressed with 4414 // the attributes, but have properties like returning aliasing pointer. 4415 // Because some analysis may assume that nocaptured pointer is not 4416 // returned from some special intrinsic (because function would have to 4417 // be marked with returns attribute), it is crucial to use this function 4418 // because it should be in sync with CaptureTracking. Not using it may 4419 // cause weird miscompilations where 2 aliasing pointers are assumed to 4420 // noalias. 4421 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4422 V = RP; 4423 continue; 4424 } 4425 } 4426 4427 return V; 4428 } 4429 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4430 } 4431 return V; 4432 } 4433 4434 void llvm::getUnderlyingObjects(const Value *V, 4435 SmallVectorImpl<const Value *> &Objects, 4436 LoopInfo *LI, unsigned MaxLookup) { 4437 SmallPtrSet<const Value *, 4> Visited; 4438 SmallVector<const Value *, 4> Worklist; 4439 Worklist.push_back(V); 4440 do { 4441 const Value *P = Worklist.pop_back_val(); 4442 P = getUnderlyingObject(P, MaxLookup); 4443 4444 if (!Visited.insert(P).second) 4445 continue; 4446 4447 if (auto *SI = dyn_cast<SelectInst>(P)) { 4448 Worklist.push_back(SI->getTrueValue()); 4449 Worklist.push_back(SI->getFalseValue()); 4450 continue; 4451 } 4452 4453 if (auto *PN = dyn_cast<PHINode>(P)) { 4454 // If this PHI changes the underlying object in every iteration of the 4455 // loop, don't look through it. Consider: 4456 // int **A; 4457 // for (i) { 4458 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4459 // Curr = A[i]; 4460 // *Prev, *Curr; 4461 // 4462 // Prev is tracking Curr one iteration behind so they refer to different 4463 // underlying objects. 4464 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4465 isSameUnderlyingObjectInLoop(PN, LI)) 4466 append_range(Worklist, PN->incoming_values()); 4467 continue; 4468 } 4469 4470 Objects.push_back(P); 4471 } while (!Worklist.empty()); 4472 } 4473 4474 /// This is the function that does the work of looking through basic 4475 /// ptrtoint+arithmetic+inttoptr sequences. 4476 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4477 do { 4478 if (const Operator *U = dyn_cast<Operator>(V)) { 4479 // If we find a ptrtoint, we can transfer control back to the 4480 // regular getUnderlyingObjectFromInt. 4481 if (U->getOpcode() == Instruction::PtrToInt) 4482 return U->getOperand(0); 4483 // If we find an add of a constant, a multiplied value, or a phi, it's 4484 // likely that the other operand will lead us to the base 4485 // object. We don't have to worry about the case where the 4486 // object address is somehow being computed by the multiply, 4487 // because our callers only care when the result is an 4488 // identifiable object. 4489 if (U->getOpcode() != Instruction::Add || 4490 (!isa<ConstantInt>(U->getOperand(1)) && 4491 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4492 !isa<PHINode>(U->getOperand(1)))) 4493 return V; 4494 V = U->getOperand(0); 4495 } else { 4496 return V; 4497 } 4498 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4499 } while (true); 4500 } 4501 4502 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4503 /// ptrtoint+arithmetic+inttoptr sequences. 4504 /// It returns false if unidentified object is found in getUnderlyingObjects. 4505 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4506 SmallVectorImpl<Value *> &Objects) { 4507 SmallPtrSet<const Value *, 16> Visited; 4508 SmallVector<const Value *, 4> Working(1, V); 4509 do { 4510 V = Working.pop_back_val(); 4511 4512 SmallVector<const Value *, 4> Objs; 4513 getUnderlyingObjects(V, Objs); 4514 4515 for (const Value *V : Objs) { 4516 if (!Visited.insert(V).second) 4517 continue; 4518 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4519 const Value *O = 4520 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4521 if (O->getType()->isPointerTy()) { 4522 Working.push_back(O); 4523 continue; 4524 } 4525 } 4526 // If getUnderlyingObjects fails to find an identifiable object, 4527 // getUnderlyingObjectsForCodeGen also fails for safety. 4528 if (!isIdentifiedObject(V)) { 4529 Objects.clear(); 4530 return false; 4531 } 4532 Objects.push_back(const_cast<Value *>(V)); 4533 } 4534 } while (!Working.empty()); 4535 return true; 4536 } 4537 4538 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4539 AllocaInst *Result = nullptr; 4540 SmallPtrSet<Value *, 4> Visited; 4541 SmallVector<Value *, 4> Worklist; 4542 4543 auto AddWork = [&](Value *V) { 4544 if (Visited.insert(V).second) 4545 Worklist.push_back(V); 4546 }; 4547 4548 AddWork(V); 4549 do { 4550 V = Worklist.pop_back_val(); 4551 assert(Visited.count(V)); 4552 4553 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4554 if (Result && Result != AI) 4555 return nullptr; 4556 Result = AI; 4557 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4558 AddWork(CI->getOperand(0)); 4559 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4560 for (Value *IncValue : PN->incoming_values()) 4561 AddWork(IncValue); 4562 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4563 AddWork(SI->getTrueValue()); 4564 AddWork(SI->getFalseValue()); 4565 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4566 if (OffsetZero && !GEP->hasAllZeroIndices()) 4567 return nullptr; 4568 AddWork(GEP->getPointerOperand()); 4569 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4570 Value *Returned = CB->getReturnedArgOperand(); 4571 if (Returned) 4572 AddWork(Returned); 4573 else 4574 return nullptr; 4575 } else { 4576 return nullptr; 4577 } 4578 } while (!Worklist.empty()); 4579 4580 return Result; 4581 } 4582 4583 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4584 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4585 for (const User *U : V->users()) { 4586 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4587 if (!II) 4588 return false; 4589 4590 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4591 continue; 4592 4593 if (AllowDroppable && II->isDroppable()) 4594 continue; 4595 4596 return false; 4597 } 4598 return true; 4599 } 4600 4601 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4602 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4603 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4604 } 4605 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4606 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4607 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4608 } 4609 4610 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4611 if (!LI.isUnordered()) 4612 return true; 4613 const Function &F = *LI.getFunction(); 4614 // Speculative load may create a race that did not exist in the source. 4615 return F.hasFnAttribute(Attribute::SanitizeThread) || 4616 // Speculative load may load data from dirty regions. 4617 F.hasFnAttribute(Attribute::SanitizeAddress) || 4618 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4619 } 4620 4621 4622 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4623 const Instruction *CtxI, 4624 const DominatorTree *DT, 4625 const TargetLibraryInfo *TLI) { 4626 const Operator *Inst = dyn_cast<Operator>(V); 4627 if (!Inst) 4628 return false; 4629 4630 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4631 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4632 if (C->canTrap()) 4633 return false; 4634 4635 switch (Inst->getOpcode()) { 4636 default: 4637 return true; 4638 case Instruction::UDiv: 4639 case Instruction::URem: { 4640 // x / y is undefined if y == 0. 4641 const APInt *V; 4642 if (match(Inst->getOperand(1), m_APInt(V))) 4643 return *V != 0; 4644 return false; 4645 } 4646 case Instruction::SDiv: 4647 case Instruction::SRem: { 4648 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4649 const APInt *Numerator, *Denominator; 4650 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4651 return false; 4652 // We cannot hoist this division if the denominator is 0. 4653 if (*Denominator == 0) 4654 return false; 4655 // It's safe to hoist if the denominator is not 0 or -1. 4656 if (!Denominator->isAllOnes()) 4657 return true; 4658 // At this point we know that the denominator is -1. It is safe to hoist as 4659 // long we know that the numerator is not INT_MIN. 4660 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4661 return !Numerator->isMinSignedValue(); 4662 // The numerator *might* be MinSignedValue. 4663 return false; 4664 } 4665 case Instruction::Load: { 4666 const LoadInst *LI = cast<LoadInst>(Inst); 4667 if (mustSuppressSpeculation(*LI)) 4668 return false; 4669 const DataLayout &DL = LI->getModule()->getDataLayout(); 4670 return isDereferenceableAndAlignedPointer( 4671 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4672 DL, CtxI, DT, TLI); 4673 } 4674 case Instruction::Call: { 4675 auto *CI = cast<const CallInst>(Inst); 4676 const Function *Callee = CI->getCalledFunction(); 4677 4678 // The called function could have undefined behavior or side-effects, even 4679 // if marked readnone nounwind. 4680 return Callee && Callee->isSpeculatable(); 4681 } 4682 case Instruction::VAArg: 4683 case Instruction::Alloca: 4684 case Instruction::Invoke: 4685 case Instruction::CallBr: 4686 case Instruction::PHI: 4687 case Instruction::Store: 4688 case Instruction::Ret: 4689 case Instruction::Br: 4690 case Instruction::IndirectBr: 4691 case Instruction::Switch: 4692 case Instruction::Unreachable: 4693 case Instruction::Fence: 4694 case Instruction::AtomicRMW: 4695 case Instruction::AtomicCmpXchg: 4696 case Instruction::LandingPad: 4697 case Instruction::Resume: 4698 case Instruction::CatchSwitch: 4699 case Instruction::CatchPad: 4700 case Instruction::CatchRet: 4701 case Instruction::CleanupPad: 4702 case Instruction::CleanupRet: 4703 return false; // Misc instructions which have effects 4704 } 4705 } 4706 4707 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4708 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4709 } 4710 4711 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4712 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4713 switch (OR) { 4714 case ConstantRange::OverflowResult::MayOverflow: 4715 return OverflowResult::MayOverflow; 4716 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4717 return OverflowResult::AlwaysOverflowsLow; 4718 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4719 return OverflowResult::AlwaysOverflowsHigh; 4720 case ConstantRange::OverflowResult::NeverOverflows: 4721 return OverflowResult::NeverOverflows; 4722 } 4723 llvm_unreachable("Unknown OverflowResult"); 4724 } 4725 4726 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4727 static ConstantRange computeConstantRangeIncludingKnownBits( 4728 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4729 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4730 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4731 KnownBits Known = computeKnownBits( 4732 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4733 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4734 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4735 ConstantRange::PreferredRangeType RangeType = 4736 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4737 return CR1.intersectWith(CR2, RangeType); 4738 } 4739 4740 OverflowResult llvm::computeOverflowForUnsignedMul( 4741 const Value *LHS, const Value *RHS, const DataLayout &DL, 4742 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4743 bool UseInstrInfo) { 4744 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4745 nullptr, UseInstrInfo); 4746 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4747 nullptr, UseInstrInfo); 4748 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4749 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4750 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4751 } 4752 4753 OverflowResult 4754 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4755 const DataLayout &DL, AssumptionCache *AC, 4756 const Instruction *CxtI, 4757 const DominatorTree *DT, bool UseInstrInfo) { 4758 // Multiplying n * m significant bits yields a result of n + m significant 4759 // bits. If the total number of significant bits does not exceed the 4760 // result bit width (minus 1), there is no overflow. 4761 // This means if we have enough leading sign bits in the operands 4762 // we can guarantee that the result does not overflow. 4763 // Ref: "Hacker's Delight" by Henry Warren 4764 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4765 4766 // Note that underestimating the number of sign bits gives a more 4767 // conservative answer. 4768 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4769 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4770 4771 // First handle the easy case: if we have enough sign bits there's 4772 // definitely no overflow. 4773 if (SignBits > BitWidth + 1) 4774 return OverflowResult::NeverOverflows; 4775 4776 // There are two ambiguous cases where there can be no overflow: 4777 // SignBits == BitWidth + 1 and 4778 // SignBits == BitWidth 4779 // The second case is difficult to check, therefore we only handle the 4780 // first case. 4781 if (SignBits == BitWidth + 1) { 4782 // It overflows only when both arguments are negative and the true 4783 // product is exactly the minimum negative number. 4784 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4785 // For simplicity we just check if at least one side is not negative. 4786 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4787 nullptr, UseInstrInfo); 4788 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4789 nullptr, UseInstrInfo); 4790 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4791 return OverflowResult::NeverOverflows; 4792 } 4793 return OverflowResult::MayOverflow; 4794 } 4795 4796 OverflowResult llvm::computeOverflowForUnsignedAdd( 4797 const Value *LHS, const Value *RHS, const DataLayout &DL, 4798 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4799 bool UseInstrInfo) { 4800 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4801 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4802 nullptr, UseInstrInfo); 4803 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4804 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4805 nullptr, UseInstrInfo); 4806 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4807 } 4808 4809 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4810 const Value *RHS, 4811 const AddOperator *Add, 4812 const DataLayout &DL, 4813 AssumptionCache *AC, 4814 const Instruction *CxtI, 4815 const DominatorTree *DT) { 4816 if (Add && Add->hasNoSignedWrap()) { 4817 return OverflowResult::NeverOverflows; 4818 } 4819 4820 // If LHS and RHS each have at least two sign bits, the addition will look 4821 // like 4822 // 4823 // XX..... + 4824 // YY..... 4825 // 4826 // If the carry into the most significant position is 0, X and Y can't both 4827 // be 1 and therefore the carry out of the addition is also 0. 4828 // 4829 // If the carry into the most significant position is 1, X and Y can't both 4830 // be 0 and therefore the carry out of the addition is also 1. 4831 // 4832 // Since the carry into the most significant position is always equal to 4833 // the carry out of the addition, there is no signed overflow. 4834 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4835 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4836 return OverflowResult::NeverOverflows; 4837 4838 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4839 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4840 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4841 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4842 OverflowResult OR = 4843 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4844 if (OR != OverflowResult::MayOverflow) 4845 return OR; 4846 4847 // The remaining code needs Add to be available. Early returns if not so. 4848 if (!Add) 4849 return OverflowResult::MayOverflow; 4850 4851 // If the sign of Add is the same as at least one of the operands, this add 4852 // CANNOT overflow. If this can be determined from the known bits of the 4853 // operands the above signedAddMayOverflow() check will have already done so. 4854 // The only other way to improve on the known bits is from an assumption, so 4855 // call computeKnownBitsFromAssume() directly. 4856 bool LHSOrRHSKnownNonNegative = 4857 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4858 bool LHSOrRHSKnownNegative = 4859 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4860 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4861 KnownBits AddKnown(LHSRange.getBitWidth()); 4862 computeKnownBitsFromAssume( 4863 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4864 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4865 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4866 return OverflowResult::NeverOverflows; 4867 } 4868 4869 return OverflowResult::MayOverflow; 4870 } 4871 4872 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4873 const Value *RHS, 4874 const DataLayout &DL, 4875 AssumptionCache *AC, 4876 const Instruction *CxtI, 4877 const DominatorTree *DT) { 4878 // Checking for conditions implied by dominating conditions may be expensive. 4879 // Limit it to usub_with_overflow calls for now. 4880 if (match(CxtI, 4881 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4882 if (auto C = 4883 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4884 if (*C) 4885 return OverflowResult::NeverOverflows; 4886 return OverflowResult::AlwaysOverflowsLow; 4887 } 4888 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4889 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4890 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4891 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4892 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4893 } 4894 4895 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4896 const Value *RHS, 4897 const DataLayout &DL, 4898 AssumptionCache *AC, 4899 const Instruction *CxtI, 4900 const DominatorTree *DT) { 4901 // If LHS and RHS each have at least two sign bits, the subtraction 4902 // cannot overflow. 4903 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4904 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4905 return OverflowResult::NeverOverflows; 4906 4907 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4908 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4909 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4910 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4911 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4912 } 4913 4914 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4915 const DominatorTree &DT) { 4916 SmallVector<const BranchInst *, 2> GuardingBranches; 4917 SmallVector<const ExtractValueInst *, 2> Results; 4918 4919 for (const User *U : WO->users()) { 4920 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4921 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4922 4923 if (EVI->getIndices()[0] == 0) 4924 Results.push_back(EVI); 4925 else { 4926 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4927 4928 for (const auto *U : EVI->users()) 4929 if (const auto *B = dyn_cast<BranchInst>(U)) { 4930 assert(B->isConditional() && "How else is it using an i1?"); 4931 GuardingBranches.push_back(B); 4932 } 4933 } 4934 } else { 4935 // We are using the aggregate directly in a way we don't want to analyze 4936 // here (storing it to a global, say). 4937 return false; 4938 } 4939 } 4940 4941 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4942 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4943 if (!NoWrapEdge.isSingleEdge()) 4944 return false; 4945 4946 // Check if all users of the add are provably no-wrap. 4947 for (const auto *Result : Results) { 4948 // If the extractvalue itself is not executed on overflow, the we don't 4949 // need to check each use separately, since domination is transitive. 4950 if (DT.dominates(NoWrapEdge, Result->getParent())) 4951 continue; 4952 4953 for (auto &RU : Result->uses()) 4954 if (!DT.dominates(NoWrapEdge, RU)) 4955 return false; 4956 } 4957 4958 return true; 4959 }; 4960 4961 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4962 } 4963 4964 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4965 bool ConsiderFlags) { 4966 4967 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 4968 return true; 4969 4970 // TODO: this should really be under the ConsiderFlags block, but currently 4971 // these are not dropped by dropPoisonGeneratingFlags 4972 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4973 auto FMF = FP->getFastMathFlags(); 4974 if (FMF.noNaNs() || FMF.noInfs()) 4975 return true; 4976 } 4977 4978 unsigned Opcode = Op->getOpcode(); 4979 4980 // Check whether opcode is a poison/undef-generating operation 4981 switch (Opcode) { 4982 case Instruction::Shl: 4983 case Instruction::AShr: 4984 case Instruction::LShr: { 4985 // Shifts return poison if shiftwidth is larger than the bitwidth. 4986 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4987 SmallVector<Constant *, 4> ShiftAmounts; 4988 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4989 unsigned NumElts = FVTy->getNumElements(); 4990 for (unsigned i = 0; i < NumElts; ++i) 4991 ShiftAmounts.push_back(C->getAggregateElement(i)); 4992 } else if (isa<ScalableVectorType>(C->getType())) 4993 return true; // Can't tell, just return true to be safe 4994 else 4995 ShiftAmounts.push_back(C); 4996 4997 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4998 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4999 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 5000 }); 5001 return !Safe; 5002 } 5003 return true; 5004 } 5005 case Instruction::FPToSI: 5006 case Instruction::FPToUI: 5007 // fptosi/ui yields poison if the resulting value does not fit in the 5008 // destination type. 5009 return true; 5010 case Instruction::Call: 5011 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 5012 switch (II->getIntrinsicID()) { 5013 // TODO: Add more intrinsics. 5014 case Intrinsic::ctpop: 5015 case Intrinsic::sadd_with_overflow: 5016 case Intrinsic::ssub_with_overflow: 5017 case Intrinsic::smul_with_overflow: 5018 case Intrinsic::uadd_with_overflow: 5019 case Intrinsic::usub_with_overflow: 5020 case Intrinsic::umul_with_overflow: 5021 return false; 5022 } 5023 } 5024 LLVM_FALLTHROUGH; 5025 case Instruction::CallBr: 5026 case Instruction::Invoke: { 5027 const auto *CB = cast<CallBase>(Op); 5028 return !CB->hasRetAttr(Attribute::NoUndef); 5029 } 5030 case Instruction::InsertElement: 5031 case Instruction::ExtractElement: { 5032 // If index exceeds the length of the vector, it returns poison 5033 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5034 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5035 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5036 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5037 return true; 5038 return false; 5039 } 5040 case Instruction::ShuffleVector: { 5041 // shufflevector may return undef. 5042 if (PoisonOnly) 5043 return false; 5044 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5045 ? cast<ConstantExpr>(Op)->getShuffleMask() 5046 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5047 return is_contained(Mask, UndefMaskElem); 5048 } 5049 case Instruction::FNeg: 5050 case Instruction::PHI: 5051 case Instruction::Select: 5052 case Instruction::URem: 5053 case Instruction::SRem: 5054 case Instruction::ExtractValue: 5055 case Instruction::InsertValue: 5056 case Instruction::Freeze: 5057 case Instruction::ICmp: 5058 case Instruction::FCmp: 5059 return false; 5060 case Instruction::GetElementPtr: 5061 // inbounds is handled above 5062 // TODO: what about inrange on constexpr? 5063 return false; 5064 default: { 5065 const auto *CE = dyn_cast<ConstantExpr>(Op); 5066 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5067 return false; 5068 else if (Instruction::isBinaryOp(Opcode)) 5069 return false; 5070 // Be conservative and return true. 5071 return true; 5072 } 5073 } 5074 } 5075 5076 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5077 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5078 } 5079 5080 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5081 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5082 } 5083 5084 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5085 const Value *V, unsigned Depth) { 5086 if (ValAssumedPoison == V) 5087 return true; 5088 5089 const unsigned MaxDepth = 2; 5090 if (Depth >= MaxDepth) 5091 return false; 5092 5093 if (const auto *I = dyn_cast<Instruction>(V)) { 5094 if (propagatesPoison(cast<Operator>(I))) 5095 return any_of(I->operands(), [=](const Value *Op) { 5096 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5097 }); 5098 5099 // 'select ValAssumedPoison, _, _' is poison. 5100 if (const auto *SI = dyn_cast<SelectInst>(I)) 5101 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5102 Depth + 1); 5103 // V = extractvalue V0, idx 5104 // V2 = extractvalue V0, idx2 5105 // V0's elements are all poison or not. (e.g., add_with_overflow) 5106 const WithOverflowInst *II; 5107 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5108 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5109 llvm::is_contained(II->args(), ValAssumedPoison))) 5110 return true; 5111 } 5112 return false; 5113 } 5114 5115 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5116 unsigned Depth) { 5117 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5118 return true; 5119 5120 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5121 return true; 5122 5123 const unsigned MaxDepth = 2; 5124 if (Depth >= MaxDepth) 5125 return false; 5126 5127 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5128 if (I && !canCreatePoison(cast<Operator>(I))) { 5129 return all_of(I->operands(), [=](const Value *Op) { 5130 return impliesPoison(Op, V, Depth + 1); 5131 }); 5132 } 5133 return false; 5134 } 5135 5136 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5137 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5138 } 5139 5140 static bool programUndefinedIfUndefOrPoison(const Value *V, 5141 bool PoisonOnly); 5142 5143 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5144 AssumptionCache *AC, 5145 const Instruction *CtxI, 5146 const DominatorTree *DT, 5147 unsigned Depth, bool PoisonOnly) { 5148 if (Depth >= MaxAnalysisRecursionDepth) 5149 return false; 5150 5151 if (isa<MetadataAsValue>(V)) 5152 return false; 5153 5154 if (const auto *A = dyn_cast<Argument>(V)) { 5155 if (A->hasAttribute(Attribute::NoUndef)) 5156 return true; 5157 } 5158 5159 if (auto *C = dyn_cast<Constant>(V)) { 5160 if (isa<UndefValue>(C)) 5161 return PoisonOnly && !isa<PoisonValue>(C); 5162 5163 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5164 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5165 return true; 5166 5167 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5168 return (PoisonOnly ? !C->containsPoisonElement() 5169 : !C->containsUndefOrPoisonElement()) && 5170 !C->containsConstantExpression(); 5171 } 5172 5173 // Strip cast operations from a pointer value. 5174 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5175 // inbounds with zero offset. To guarantee that the result isn't poison, the 5176 // stripped pointer is checked as it has to be pointing into an allocated 5177 // object or be null `null` to ensure `inbounds` getelement pointers with a 5178 // zero offset could not produce poison. 5179 // It can strip off addrspacecast that do not change bit representation as 5180 // well. We believe that such addrspacecast is equivalent to no-op. 5181 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5182 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5183 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5184 return true; 5185 5186 auto OpCheck = [&](const Value *V) { 5187 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5188 PoisonOnly); 5189 }; 5190 5191 if (auto *Opr = dyn_cast<Operator>(V)) { 5192 // If the value is a freeze instruction, then it can never 5193 // be undef or poison. 5194 if (isa<FreezeInst>(V)) 5195 return true; 5196 5197 if (const auto *CB = dyn_cast<CallBase>(V)) { 5198 if (CB->hasRetAttr(Attribute::NoUndef)) 5199 return true; 5200 } 5201 5202 if (const auto *PN = dyn_cast<PHINode>(V)) { 5203 unsigned Num = PN->getNumIncomingValues(); 5204 bool IsWellDefined = true; 5205 for (unsigned i = 0; i < Num; ++i) { 5206 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5207 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5208 DT, Depth + 1, PoisonOnly)) { 5209 IsWellDefined = false; 5210 break; 5211 } 5212 } 5213 if (IsWellDefined) 5214 return true; 5215 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5216 return true; 5217 } 5218 5219 if (auto *I = dyn_cast<LoadInst>(V)) 5220 if (I->getMetadata(LLVMContext::MD_noundef)) 5221 return true; 5222 5223 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5224 return true; 5225 5226 // CxtI may be null or a cloned instruction. 5227 if (!CtxI || !CtxI->getParent() || !DT) 5228 return false; 5229 5230 auto *DNode = DT->getNode(CtxI->getParent()); 5231 if (!DNode) 5232 // Unreachable block 5233 return false; 5234 5235 // If V is used as a branch condition before reaching CtxI, V cannot be 5236 // undef or poison. 5237 // br V, BB1, BB2 5238 // BB1: 5239 // CtxI ; V cannot be undef or poison here 5240 auto *Dominator = DNode->getIDom(); 5241 while (Dominator) { 5242 auto *TI = Dominator->getBlock()->getTerminator(); 5243 5244 Value *Cond = nullptr; 5245 if (auto BI = dyn_cast<BranchInst>(TI)) { 5246 if (BI->isConditional()) 5247 Cond = BI->getCondition(); 5248 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5249 Cond = SI->getCondition(); 5250 } 5251 5252 if (Cond) { 5253 if (Cond == V) 5254 return true; 5255 else if (PoisonOnly && isa<Operator>(Cond)) { 5256 // For poison, we can analyze further 5257 auto *Opr = cast<Operator>(Cond); 5258 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5259 return true; 5260 } 5261 } 5262 5263 Dominator = Dominator->getIDom(); 5264 } 5265 5266 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5267 return true; 5268 5269 return false; 5270 } 5271 5272 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5273 const Instruction *CtxI, 5274 const DominatorTree *DT, 5275 unsigned Depth) { 5276 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5277 } 5278 5279 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5280 const Instruction *CtxI, 5281 const DominatorTree *DT, unsigned Depth) { 5282 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5283 } 5284 5285 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5286 const DataLayout &DL, 5287 AssumptionCache *AC, 5288 const Instruction *CxtI, 5289 const DominatorTree *DT) { 5290 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5291 Add, DL, AC, CxtI, DT); 5292 } 5293 5294 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5295 const Value *RHS, 5296 const DataLayout &DL, 5297 AssumptionCache *AC, 5298 const Instruction *CxtI, 5299 const DominatorTree *DT) { 5300 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5301 } 5302 5303 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5304 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5305 // of time because it's possible for another thread to interfere with it for an 5306 // arbitrary length of time, but programs aren't allowed to rely on that. 5307 5308 // If there is no successor, then execution can't transfer to it. 5309 if (isa<ReturnInst>(I)) 5310 return false; 5311 if (isa<UnreachableInst>(I)) 5312 return false; 5313 5314 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5315 // Instruction::willReturn. 5316 // 5317 // FIXME: Move this check into Instruction::willReturn. 5318 if (isa<CatchPadInst>(I)) { 5319 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5320 default: 5321 // A catchpad may invoke exception object constructors and such, which 5322 // in some languages can be arbitrary code, so be conservative by default. 5323 return false; 5324 case EHPersonality::CoreCLR: 5325 // For CoreCLR, it just involves a type test. 5326 return true; 5327 } 5328 } 5329 5330 // An instruction that returns without throwing must transfer control flow 5331 // to a successor. 5332 return !I->mayThrow() && I->willReturn(); 5333 } 5334 5335 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5336 // TODO: This is slightly conservative for invoke instruction since exiting 5337 // via an exception *is* normal control for them. 5338 for (const Instruction &I : *BB) 5339 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5340 return false; 5341 return true; 5342 } 5343 5344 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5345 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5346 unsigned ScanLimit) { 5347 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5348 ScanLimit); 5349 } 5350 5351 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5352 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5353 assert(ScanLimit && "scan limit must be non-zero"); 5354 for (const Instruction &I : Range) { 5355 if (isa<DbgInfoIntrinsic>(I)) 5356 continue; 5357 if (--ScanLimit == 0) 5358 return false; 5359 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5360 return false; 5361 } 5362 return true; 5363 } 5364 5365 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5366 const Loop *L) { 5367 // The loop header is guaranteed to be executed for every iteration. 5368 // 5369 // FIXME: Relax this constraint to cover all basic blocks that are 5370 // guaranteed to be executed at every iteration. 5371 if (I->getParent() != L->getHeader()) return false; 5372 5373 for (const Instruction &LI : *L->getHeader()) { 5374 if (&LI == I) return true; 5375 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5376 } 5377 llvm_unreachable("Instruction not contained in its own parent basic block."); 5378 } 5379 5380 bool llvm::propagatesPoison(const Operator *I) { 5381 switch (I->getOpcode()) { 5382 case Instruction::Freeze: 5383 case Instruction::Select: 5384 case Instruction::PHI: 5385 case Instruction::Invoke: 5386 return false; 5387 case Instruction::Call: 5388 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5389 switch (II->getIntrinsicID()) { 5390 // TODO: Add more intrinsics. 5391 case Intrinsic::sadd_with_overflow: 5392 case Intrinsic::ssub_with_overflow: 5393 case Intrinsic::smul_with_overflow: 5394 case Intrinsic::uadd_with_overflow: 5395 case Intrinsic::usub_with_overflow: 5396 case Intrinsic::umul_with_overflow: 5397 // If an input is a vector containing a poison element, the 5398 // two output vectors (calculated results, overflow bits)' 5399 // corresponding lanes are poison. 5400 return true; 5401 case Intrinsic::ctpop: 5402 return true; 5403 } 5404 } 5405 return false; 5406 case Instruction::ICmp: 5407 case Instruction::FCmp: 5408 case Instruction::GetElementPtr: 5409 return true; 5410 default: 5411 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5412 return true; 5413 5414 // Be conservative and return false. 5415 return false; 5416 } 5417 } 5418 5419 void llvm::getGuaranteedWellDefinedOps( 5420 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5421 switch (I->getOpcode()) { 5422 case Instruction::Store: 5423 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5424 break; 5425 5426 case Instruction::Load: 5427 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5428 break; 5429 5430 // Since dereferenceable attribute imply noundef, atomic operations 5431 // also implicitly have noundef pointers too 5432 case Instruction::AtomicCmpXchg: 5433 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5434 break; 5435 5436 case Instruction::AtomicRMW: 5437 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5438 break; 5439 5440 case Instruction::Call: 5441 case Instruction::Invoke: { 5442 const CallBase *CB = cast<CallBase>(I); 5443 if (CB->isIndirectCall()) 5444 Operands.insert(CB->getCalledOperand()); 5445 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5446 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5447 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5448 Operands.insert(CB->getArgOperand(i)); 5449 } 5450 break; 5451 } 5452 case Instruction::Ret: 5453 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5454 Operands.insert(I->getOperand(0)); 5455 break; 5456 default: 5457 break; 5458 } 5459 } 5460 5461 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5462 SmallPtrSetImpl<const Value *> &Operands) { 5463 getGuaranteedWellDefinedOps(I, Operands); 5464 switch (I->getOpcode()) { 5465 // Divisors of these operations are allowed to be partially undef. 5466 case Instruction::UDiv: 5467 case Instruction::SDiv: 5468 case Instruction::URem: 5469 case Instruction::SRem: 5470 Operands.insert(I->getOperand(1)); 5471 break; 5472 case Instruction::Switch: 5473 if (BranchOnPoisonAsUB) 5474 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5475 break; 5476 case Instruction::Br: { 5477 auto *BR = cast<BranchInst>(I); 5478 if (BranchOnPoisonAsUB && BR->isConditional()) 5479 Operands.insert(BR->getCondition()); 5480 break; 5481 } 5482 default: 5483 break; 5484 } 5485 } 5486 5487 bool llvm::mustTriggerUB(const Instruction *I, 5488 const SmallSet<const Value *, 16>& KnownPoison) { 5489 SmallPtrSet<const Value *, 4> NonPoisonOps; 5490 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5491 5492 for (const auto *V : NonPoisonOps) 5493 if (KnownPoison.count(V)) 5494 return true; 5495 5496 return false; 5497 } 5498 5499 static bool programUndefinedIfUndefOrPoison(const Value *V, 5500 bool PoisonOnly) { 5501 // We currently only look for uses of values within the same basic 5502 // block, as that makes it easier to guarantee that the uses will be 5503 // executed given that Inst is executed. 5504 // 5505 // FIXME: Expand this to consider uses beyond the same basic block. To do 5506 // this, look out for the distinction between post-dominance and strong 5507 // post-dominance. 5508 const BasicBlock *BB = nullptr; 5509 BasicBlock::const_iterator Begin; 5510 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5511 BB = Inst->getParent(); 5512 Begin = Inst->getIterator(); 5513 Begin++; 5514 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5515 BB = &Arg->getParent()->getEntryBlock(); 5516 Begin = BB->begin(); 5517 } else { 5518 return false; 5519 } 5520 5521 // Limit number of instructions we look at, to avoid scanning through large 5522 // blocks. The current limit is chosen arbitrarily. 5523 unsigned ScanLimit = 32; 5524 BasicBlock::const_iterator End = BB->end(); 5525 5526 if (!PoisonOnly) { 5527 // Since undef does not propagate eagerly, be conservative & just check 5528 // whether a value is directly passed to an instruction that must take 5529 // well-defined operands. 5530 5531 for (auto &I : make_range(Begin, End)) { 5532 if (isa<DbgInfoIntrinsic>(I)) 5533 continue; 5534 if (--ScanLimit == 0) 5535 break; 5536 5537 SmallPtrSet<const Value *, 4> WellDefinedOps; 5538 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5539 if (WellDefinedOps.contains(V)) 5540 return true; 5541 5542 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5543 break; 5544 } 5545 return false; 5546 } 5547 5548 // Set of instructions that we have proved will yield poison if Inst 5549 // does. 5550 SmallSet<const Value *, 16> YieldsPoison; 5551 SmallSet<const BasicBlock *, 4> Visited; 5552 5553 YieldsPoison.insert(V); 5554 auto Propagate = [&](const User *User) { 5555 if (propagatesPoison(cast<Operator>(User))) 5556 YieldsPoison.insert(User); 5557 }; 5558 for_each(V->users(), Propagate); 5559 Visited.insert(BB); 5560 5561 while (true) { 5562 for (auto &I : make_range(Begin, End)) { 5563 if (isa<DbgInfoIntrinsic>(I)) 5564 continue; 5565 if (--ScanLimit == 0) 5566 return false; 5567 if (mustTriggerUB(&I, YieldsPoison)) 5568 return true; 5569 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5570 return false; 5571 5572 // Mark poison that propagates from I through uses of I. 5573 if (YieldsPoison.count(&I)) 5574 for_each(I.users(), Propagate); 5575 } 5576 5577 BB = BB->getSingleSuccessor(); 5578 if (!BB || !Visited.insert(BB).second) 5579 break; 5580 5581 Begin = BB->getFirstNonPHI()->getIterator(); 5582 End = BB->end(); 5583 } 5584 return false; 5585 } 5586 5587 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5588 return ::programUndefinedIfUndefOrPoison(Inst, false); 5589 } 5590 5591 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5592 return ::programUndefinedIfUndefOrPoison(Inst, true); 5593 } 5594 5595 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5596 if (FMF.noNaNs()) 5597 return true; 5598 5599 if (auto *C = dyn_cast<ConstantFP>(V)) 5600 return !C->isNaN(); 5601 5602 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5603 if (!C->getElementType()->isFloatingPointTy()) 5604 return false; 5605 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5606 if (C->getElementAsAPFloat(I).isNaN()) 5607 return false; 5608 } 5609 return true; 5610 } 5611 5612 if (isa<ConstantAggregateZero>(V)) 5613 return true; 5614 5615 return false; 5616 } 5617 5618 static bool isKnownNonZero(const Value *V) { 5619 if (auto *C = dyn_cast<ConstantFP>(V)) 5620 return !C->isZero(); 5621 5622 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5623 if (!C->getElementType()->isFloatingPointTy()) 5624 return false; 5625 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5626 if (C->getElementAsAPFloat(I).isZero()) 5627 return false; 5628 } 5629 return true; 5630 } 5631 5632 return false; 5633 } 5634 5635 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5636 /// Given non-min/max outer cmp/select from the clamp pattern this 5637 /// function recognizes if it can be substitued by a "canonical" min/max 5638 /// pattern. 5639 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5640 Value *CmpLHS, Value *CmpRHS, 5641 Value *TrueVal, Value *FalseVal, 5642 Value *&LHS, Value *&RHS) { 5643 // Try to match 5644 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5645 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5646 // and return description of the outer Max/Min. 5647 5648 // First, check if select has inverse order: 5649 if (CmpRHS == FalseVal) { 5650 std::swap(TrueVal, FalseVal); 5651 Pred = CmpInst::getInversePredicate(Pred); 5652 } 5653 5654 // Assume success now. If there's no match, callers should not use these anyway. 5655 LHS = TrueVal; 5656 RHS = FalseVal; 5657 5658 const APFloat *FC1; 5659 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5660 return {SPF_UNKNOWN, SPNB_NA, false}; 5661 5662 const APFloat *FC2; 5663 switch (Pred) { 5664 case CmpInst::FCMP_OLT: 5665 case CmpInst::FCMP_OLE: 5666 case CmpInst::FCMP_ULT: 5667 case CmpInst::FCMP_ULE: 5668 if (match(FalseVal, 5669 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5670 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5671 *FC1 < *FC2) 5672 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5673 break; 5674 case CmpInst::FCMP_OGT: 5675 case CmpInst::FCMP_OGE: 5676 case CmpInst::FCMP_UGT: 5677 case CmpInst::FCMP_UGE: 5678 if (match(FalseVal, 5679 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5680 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5681 *FC1 > *FC2) 5682 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5683 break; 5684 default: 5685 break; 5686 } 5687 5688 return {SPF_UNKNOWN, SPNB_NA, false}; 5689 } 5690 5691 /// Recognize variations of: 5692 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5693 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5694 Value *CmpLHS, Value *CmpRHS, 5695 Value *TrueVal, Value *FalseVal) { 5696 // Swap the select operands and predicate to match the patterns below. 5697 if (CmpRHS != TrueVal) { 5698 Pred = ICmpInst::getSwappedPredicate(Pred); 5699 std::swap(TrueVal, FalseVal); 5700 } 5701 const APInt *C1; 5702 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5703 const APInt *C2; 5704 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5705 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5706 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5707 return {SPF_SMAX, SPNB_NA, false}; 5708 5709 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5710 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5711 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5712 return {SPF_SMIN, SPNB_NA, false}; 5713 5714 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5715 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5716 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5717 return {SPF_UMAX, SPNB_NA, false}; 5718 5719 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5720 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5721 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5722 return {SPF_UMIN, SPNB_NA, false}; 5723 } 5724 return {SPF_UNKNOWN, SPNB_NA, false}; 5725 } 5726 5727 /// Recognize variations of: 5728 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5729 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5730 Value *CmpLHS, Value *CmpRHS, 5731 Value *TVal, Value *FVal, 5732 unsigned Depth) { 5733 // TODO: Allow FP min/max with nnan/nsz. 5734 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5735 5736 Value *A = nullptr, *B = nullptr; 5737 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5738 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5739 return {SPF_UNKNOWN, SPNB_NA, false}; 5740 5741 Value *C = nullptr, *D = nullptr; 5742 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5743 if (L.Flavor != R.Flavor) 5744 return {SPF_UNKNOWN, SPNB_NA, false}; 5745 5746 // We have something like: x Pred y ? min(a, b) : min(c, d). 5747 // Try to match the compare to the min/max operations of the select operands. 5748 // First, make sure we have the right compare predicate. 5749 switch (L.Flavor) { 5750 case SPF_SMIN: 5751 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5752 Pred = ICmpInst::getSwappedPredicate(Pred); 5753 std::swap(CmpLHS, CmpRHS); 5754 } 5755 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5756 break; 5757 return {SPF_UNKNOWN, SPNB_NA, false}; 5758 case SPF_SMAX: 5759 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5760 Pred = ICmpInst::getSwappedPredicate(Pred); 5761 std::swap(CmpLHS, CmpRHS); 5762 } 5763 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5764 break; 5765 return {SPF_UNKNOWN, SPNB_NA, false}; 5766 case SPF_UMIN: 5767 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5768 Pred = ICmpInst::getSwappedPredicate(Pred); 5769 std::swap(CmpLHS, CmpRHS); 5770 } 5771 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5772 break; 5773 return {SPF_UNKNOWN, SPNB_NA, false}; 5774 case SPF_UMAX: 5775 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5776 Pred = ICmpInst::getSwappedPredicate(Pred); 5777 std::swap(CmpLHS, CmpRHS); 5778 } 5779 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5780 break; 5781 return {SPF_UNKNOWN, SPNB_NA, false}; 5782 default: 5783 return {SPF_UNKNOWN, SPNB_NA, false}; 5784 } 5785 5786 // If there is a common operand in the already matched min/max and the other 5787 // min/max operands match the compare operands (either directly or inverted), 5788 // then this is min/max of the same flavor. 5789 5790 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5791 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5792 if (D == B) { 5793 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5794 match(A, m_Not(m_Specific(CmpRHS))))) 5795 return {L.Flavor, SPNB_NA, false}; 5796 } 5797 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5798 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5799 if (C == B) { 5800 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5801 match(A, m_Not(m_Specific(CmpRHS))))) 5802 return {L.Flavor, SPNB_NA, false}; 5803 } 5804 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5805 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5806 if (D == A) { 5807 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5808 match(B, m_Not(m_Specific(CmpRHS))))) 5809 return {L.Flavor, SPNB_NA, false}; 5810 } 5811 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5812 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5813 if (C == A) { 5814 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5815 match(B, m_Not(m_Specific(CmpRHS))))) 5816 return {L.Flavor, SPNB_NA, false}; 5817 } 5818 5819 return {SPF_UNKNOWN, SPNB_NA, false}; 5820 } 5821 5822 /// If the input value is the result of a 'not' op, constant integer, or vector 5823 /// splat of a constant integer, return the bitwise-not source value. 5824 /// TODO: This could be extended to handle non-splat vector integer constants. 5825 static Value *getNotValue(Value *V) { 5826 Value *NotV; 5827 if (match(V, m_Not(m_Value(NotV)))) 5828 return NotV; 5829 5830 const APInt *C; 5831 if (match(V, m_APInt(C))) 5832 return ConstantInt::get(V->getType(), ~(*C)); 5833 5834 return nullptr; 5835 } 5836 5837 /// Match non-obvious integer minimum and maximum sequences. 5838 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5839 Value *CmpLHS, Value *CmpRHS, 5840 Value *TrueVal, Value *FalseVal, 5841 Value *&LHS, Value *&RHS, 5842 unsigned Depth) { 5843 // Assume success. If there's no match, callers should not use these anyway. 5844 LHS = TrueVal; 5845 RHS = FalseVal; 5846 5847 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5848 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5849 return SPR; 5850 5851 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5852 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5853 return SPR; 5854 5855 // Look through 'not' ops to find disguised min/max. 5856 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5857 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5858 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5859 switch (Pred) { 5860 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5861 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5862 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5863 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5864 default: break; 5865 } 5866 } 5867 5868 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5869 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5870 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5871 switch (Pred) { 5872 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5873 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5874 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5875 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5876 default: break; 5877 } 5878 } 5879 5880 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5881 return {SPF_UNKNOWN, SPNB_NA, false}; 5882 5883 // Z = X -nsw Y 5884 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5885 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5886 if (match(TrueVal, m_Zero()) && 5887 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5888 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5889 5890 // Z = X -nsw Y 5891 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5892 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5893 if (match(FalseVal, m_Zero()) && 5894 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5895 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5896 5897 const APInt *C1; 5898 if (!match(CmpRHS, m_APInt(C1))) 5899 return {SPF_UNKNOWN, SPNB_NA, false}; 5900 5901 // An unsigned min/max can be written with a signed compare. 5902 const APInt *C2; 5903 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5904 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5905 // Is the sign bit set? 5906 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5907 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5908 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5909 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5910 5911 // Is the sign bit clear? 5912 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5913 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5914 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5915 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5916 } 5917 5918 return {SPF_UNKNOWN, SPNB_NA, false}; 5919 } 5920 5921 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5922 assert(X && Y && "Invalid operand"); 5923 5924 // X = sub (0, Y) || X = sub nsw (0, Y) 5925 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5926 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5927 return true; 5928 5929 // Y = sub (0, X) || Y = sub nsw (0, X) 5930 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5931 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5932 return true; 5933 5934 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5935 Value *A, *B; 5936 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5937 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5938 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5939 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5940 } 5941 5942 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5943 FastMathFlags FMF, 5944 Value *CmpLHS, Value *CmpRHS, 5945 Value *TrueVal, Value *FalseVal, 5946 Value *&LHS, Value *&RHS, 5947 unsigned Depth) { 5948 if (CmpInst::isFPPredicate(Pred)) { 5949 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5950 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5951 // purpose of identifying min/max. Disregard vector constants with undefined 5952 // elements because those can not be back-propagated for analysis. 5953 Value *OutputZeroVal = nullptr; 5954 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5955 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5956 OutputZeroVal = TrueVal; 5957 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5958 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5959 OutputZeroVal = FalseVal; 5960 5961 if (OutputZeroVal) { 5962 if (match(CmpLHS, m_AnyZeroFP())) 5963 CmpLHS = OutputZeroVal; 5964 if (match(CmpRHS, m_AnyZeroFP())) 5965 CmpRHS = OutputZeroVal; 5966 } 5967 } 5968 5969 LHS = CmpLHS; 5970 RHS = CmpRHS; 5971 5972 // Signed zero may return inconsistent results between implementations. 5973 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5974 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5975 // Therefore, we behave conservatively and only proceed if at least one of the 5976 // operands is known to not be zero or if we don't care about signed zero. 5977 switch (Pred) { 5978 default: break; 5979 // FIXME: Include OGT/OLT/UGT/ULT. 5980 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5981 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5982 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5983 !isKnownNonZero(CmpRHS)) 5984 return {SPF_UNKNOWN, SPNB_NA, false}; 5985 } 5986 5987 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5988 bool Ordered = false; 5989 5990 // When given one NaN and one non-NaN input: 5991 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5992 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5993 // ordered comparison fails), which could be NaN or non-NaN. 5994 // so here we discover exactly what NaN behavior is required/accepted. 5995 if (CmpInst::isFPPredicate(Pred)) { 5996 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5997 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5998 5999 if (LHSSafe && RHSSafe) { 6000 // Both operands are known non-NaN. 6001 NaNBehavior = SPNB_RETURNS_ANY; 6002 } else if (CmpInst::isOrdered(Pred)) { 6003 // An ordered comparison will return false when given a NaN, so it 6004 // returns the RHS. 6005 Ordered = true; 6006 if (LHSSafe) 6007 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 6008 NaNBehavior = SPNB_RETURNS_NAN; 6009 else if (RHSSafe) 6010 NaNBehavior = SPNB_RETURNS_OTHER; 6011 else 6012 // Completely unsafe. 6013 return {SPF_UNKNOWN, SPNB_NA, false}; 6014 } else { 6015 Ordered = false; 6016 // An unordered comparison will return true when given a NaN, so it 6017 // returns the LHS. 6018 if (LHSSafe) 6019 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 6020 NaNBehavior = SPNB_RETURNS_OTHER; 6021 else if (RHSSafe) 6022 NaNBehavior = SPNB_RETURNS_NAN; 6023 else 6024 // Completely unsafe. 6025 return {SPF_UNKNOWN, SPNB_NA, false}; 6026 } 6027 } 6028 6029 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 6030 std::swap(CmpLHS, CmpRHS); 6031 Pred = CmpInst::getSwappedPredicate(Pred); 6032 if (NaNBehavior == SPNB_RETURNS_NAN) 6033 NaNBehavior = SPNB_RETURNS_OTHER; 6034 else if (NaNBehavior == SPNB_RETURNS_OTHER) 6035 NaNBehavior = SPNB_RETURNS_NAN; 6036 Ordered = !Ordered; 6037 } 6038 6039 // ([if]cmp X, Y) ? X : Y 6040 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6041 switch (Pred) { 6042 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6043 case ICmpInst::ICMP_UGT: 6044 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6045 case ICmpInst::ICMP_SGT: 6046 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6047 case ICmpInst::ICMP_ULT: 6048 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6049 case ICmpInst::ICMP_SLT: 6050 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6051 case FCmpInst::FCMP_UGT: 6052 case FCmpInst::FCMP_UGE: 6053 case FCmpInst::FCMP_OGT: 6054 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6055 case FCmpInst::FCMP_ULT: 6056 case FCmpInst::FCMP_ULE: 6057 case FCmpInst::FCMP_OLT: 6058 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6059 } 6060 } 6061 6062 if (isKnownNegation(TrueVal, FalseVal)) { 6063 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6064 // match against either LHS or sext(LHS). 6065 auto MaybeSExtCmpLHS = 6066 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6067 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6068 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6069 if (match(TrueVal, MaybeSExtCmpLHS)) { 6070 // Set the return values. If the compare uses the negated value (-X >s 0), 6071 // swap the return values because the negated value is always 'RHS'. 6072 LHS = TrueVal; 6073 RHS = FalseVal; 6074 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6075 std::swap(LHS, RHS); 6076 6077 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6078 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6079 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6080 return {SPF_ABS, SPNB_NA, false}; 6081 6082 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6083 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6084 return {SPF_ABS, SPNB_NA, false}; 6085 6086 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6087 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6088 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6089 return {SPF_NABS, SPNB_NA, false}; 6090 } 6091 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6092 // Set the return values. If the compare uses the negated value (-X >s 0), 6093 // swap the return values because the negated value is always 'RHS'. 6094 LHS = FalseVal; 6095 RHS = TrueVal; 6096 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6097 std::swap(LHS, RHS); 6098 6099 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6100 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6101 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6102 return {SPF_NABS, SPNB_NA, false}; 6103 6104 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6105 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6106 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6107 return {SPF_ABS, SPNB_NA, false}; 6108 } 6109 } 6110 6111 if (CmpInst::isIntPredicate(Pred)) 6112 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6113 6114 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6115 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6116 // semantics than minNum. Be conservative in such case. 6117 if (NaNBehavior != SPNB_RETURNS_ANY || 6118 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6119 !isKnownNonZero(CmpRHS))) 6120 return {SPF_UNKNOWN, SPNB_NA, false}; 6121 6122 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6123 } 6124 6125 /// Helps to match a select pattern in case of a type mismatch. 6126 /// 6127 /// The function processes the case when type of true and false values of a 6128 /// select instruction differs from type of the cmp instruction operands because 6129 /// of a cast instruction. The function checks if it is legal to move the cast 6130 /// operation after "select". If yes, it returns the new second value of 6131 /// "select" (with the assumption that cast is moved): 6132 /// 1. As operand of cast instruction when both values of "select" are same cast 6133 /// instructions. 6134 /// 2. As restored constant (by applying reverse cast operation) when the first 6135 /// value of the "select" is a cast operation and the second value is a 6136 /// constant. 6137 /// NOTE: We return only the new second value because the first value could be 6138 /// accessed as operand of cast instruction. 6139 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6140 Instruction::CastOps *CastOp) { 6141 auto *Cast1 = dyn_cast<CastInst>(V1); 6142 if (!Cast1) 6143 return nullptr; 6144 6145 *CastOp = Cast1->getOpcode(); 6146 Type *SrcTy = Cast1->getSrcTy(); 6147 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6148 // If V1 and V2 are both the same cast from the same type, look through V1. 6149 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6150 return Cast2->getOperand(0); 6151 return nullptr; 6152 } 6153 6154 auto *C = dyn_cast<Constant>(V2); 6155 if (!C) 6156 return nullptr; 6157 6158 Constant *CastedTo = nullptr; 6159 switch (*CastOp) { 6160 case Instruction::ZExt: 6161 if (CmpI->isUnsigned()) 6162 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6163 break; 6164 case Instruction::SExt: 6165 if (CmpI->isSigned()) 6166 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6167 break; 6168 case Instruction::Trunc: 6169 Constant *CmpConst; 6170 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6171 CmpConst->getType() == SrcTy) { 6172 // Here we have the following case: 6173 // 6174 // %cond = cmp iN %x, CmpConst 6175 // %tr = trunc iN %x to iK 6176 // %narrowsel = select i1 %cond, iK %t, iK C 6177 // 6178 // We can always move trunc after select operation: 6179 // 6180 // %cond = cmp iN %x, CmpConst 6181 // %widesel = select i1 %cond, iN %x, iN CmpConst 6182 // %tr = trunc iN %widesel to iK 6183 // 6184 // Note that C could be extended in any way because we don't care about 6185 // upper bits after truncation. It can't be abs pattern, because it would 6186 // look like: 6187 // 6188 // select i1 %cond, x, -x. 6189 // 6190 // So only min/max pattern could be matched. Such match requires widened C 6191 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6192 // CmpConst == C is checked below. 6193 CastedTo = CmpConst; 6194 } else { 6195 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6196 } 6197 break; 6198 case Instruction::FPTrunc: 6199 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6200 break; 6201 case Instruction::FPExt: 6202 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6203 break; 6204 case Instruction::FPToUI: 6205 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6206 break; 6207 case Instruction::FPToSI: 6208 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6209 break; 6210 case Instruction::UIToFP: 6211 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6212 break; 6213 case Instruction::SIToFP: 6214 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6215 break; 6216 default: 6217 break; 6218 } 6219 6220 if (!CastedTo) 6221 return nullptr; 6222 6223 // Make sure the cast doesn't lose any information. 6224 Constant *CastedBack = 6225 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6226 if (CastedBack != C) 6227 return nullptr; 6228 6229 return CastedTo; 6230 } 6231 6232 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6233 Instruction::CastOps *CastOp, 6234 unsigned Depth) { 6235 if (Depth >= MaxAnalysisRecursionDepth) 6236 return {SPF_UNKNOWN, SPNB_NA, false}; 6237 6238 SelectInst *SI = dyn_cast<SelectInst>(V); 6239 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6240 6241 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6242 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6243 6244 Value *TrueVal = SI->getTrueValue(); 6245 Value *FalseVal = SI->getFalseValue(); 6246 6247 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6248 CastOp, Depth); 6249 } 6250 6251 SelectPatternResult llvm::matchDecomposedSelectPattern( 6252 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6253 Instruction::CastOps *CastOp, unsigned Depth) { 6254 CmpInst::Predicate Pred = CmpI->getPredicate(); 6255 Value *CmpLHS = CmpI->getOperand(0); 6256 Value *CmpRHS = CmpI->getOperand(1); 6257 FastMathFlags FMF; 6258 if (isa<FPMathOperator>(CmpI)) 6259 FMF = CmpI->getFastMathFlags(); 6260 6261 // Bail out early. 6262 if (CmpI->isEquality()) 6263 return {SPF_UNKNOWN, SPNB_NA, false}; 6264 6265 // Deal with type mismatches. 6266 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6267 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6268 // If this is a potential fmin/fmax with a cast to integer, then ignore 6269 // -0.0 because there is no corresponding integer value. 6270 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6271 FMF.setNoSignedZeros(); 6272 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6273 cast<CastInst>(TrueVal)->getOperand(0), C, 6274 LHS, RHS, Depth); 6275 } 6276 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6277 // If this is a potential fmin/fmax with a cast to integer, then ignore 6278 // -0.0 because there is no corresponding integer value. 6279 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6280 FMF.setNoSignedZeros(); 6281 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6282 C, cast<CastInst>(FalseVal)->getOperand(0), 6283 LHS, RHS, Depth); 6284 } 6285 } 6286 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6287 LHS, RHS, Depth); 6288 } 6289 6290 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6291 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6292 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6293 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6294 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6295 if (SPF == SPF_FMINNUM) 6296 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6297 if (SPF == SPF_FMAXNUM) 6298 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6299 llvm_unreachable("unhandled!"); 6300 } 6301 6302 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6303 if (SPF == SPF_SMIN) return SPF_SMAX; 6304 if (SPF == SPF_UMIN) return SPF_UMAX; 6305 if (SPF == SPF_SMAX) return SPF_SMIN; 6306 if (SPF == SPF_UMAX) return SPF_UMIN; 6307 llvm_unreachable("unhandled!"); 6308 } 6309 6310 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6311 switch (MinMaxID) { 6312 case Intrinsic::smax: return Intrinsic::smin; 6313 case Intrinsic::smin: return Intrinsic::smax; 6314 case Intrinsic::umax: return Intrinsic::umin; 6315 case Intrinsic::umin: return Intrinsic::umax; 6316 default: llvm_unreachable("Unexpected intrinsic"); 6317 } 6318 } 6319 6320 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6321 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6322 } 6323 6324 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6325 switch (SPF) { 6326 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6327 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6328 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6329 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6330 default: llvm_unreachable("Unexpected flavor"); 6331 } 6332 } 6333 6334 std::pair<Intrinsic::ID, bool> 6335 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6336 // Check if VL contains select instructions that can be folded into a min/max 6337 // vector intrinsic and return the intrinsic if it is possible. 6338 // TODO: Support floating point min/max. 6339 bool AllCmpSingleUse = true; 6340 SelectPatternResult SelectPattern; 6341 SelectPattern.Flavor = SPF_UNKNOWN; 6342 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6343 Value *LHS, *RHS; 6344 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6345 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6346 CurrentPattern.Flavor == SPF_FMINNUM || 6347 CurrentPattern.Flavor == SPF_FMAXNUM || 6348 !I->getType()->isIntOrIntVectorTy()) 6349 return false; 6350 if (SelectPattern.Flavor != SPF_UNKNOWN && 6351 SelectPattern.Flavor != CurrentPattern.Flavor) 6352 return false; 6353 SelectPattern = CurrentPattern; 6354 AllCmpSingleUse &= 6355 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6356 return true; 6357 })) { 6358 switch (SelectPattern.Flavor) { 6359 case SPF_SMIN: 6360 return {Intrinsic::smin, AllCmpSingleUse}; 6361 case SPF_UMIN: 6362 return {Intrinsic::umin, AllCmpSingleUse}; 6363 case SPF_SMAX: 6364 return {Intrinsic::smax, AllCmpSingleUse}; 6365 case SPF_UMAX: 6366 return {Intrinsic::umax, AllCmpSingleUse}; 6367 default: 6368 llvm_unreachable("unexpected select pattern flavor"); 6369 } 6370 } 6371 return {Intrinsic::not_intrinsic, false}; 6372 } 6373 6374 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6375 Value *&Start, Value *&Step) { 6376 // Handle the case of a simple two-predecessor recurrence PHI. 6377 // There's a lot more that could theoretically be done here, but 6378 // this is sufficient to catch some interesting cases. 6379 if (P->getNumIncomingValues() != 2) 6380 return false; 6381 6382 for (unsigned i = 0; i != 2; ++i) { 6383 Value *L = P->getIncomingValue(i); 6384 Value *R = P->getIncomingValue(!i); 6385 Operator *LU = dyn_cast<Operator>(L); 6386 if (!LU) 6387 continue; 6388 unsigned Opcode = LU->getOpcode(); 6389 6390 switch (Opcode) { 6391 default: 6392 continue; 6393 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6394 case Instruction::LShr: 6395 case Instruction::AShr: 6396 case Instruction::Shl: 6397 case Instruction::Add: 6398 case Instruction::Sub: 6399 case Instruction::And: 6400 case Instruction::Or: 6401 case Instruction::Mul: { 6402 Value *LL = LU->getOperand(0); 6403 Value *LR = LU->getOperand(1); 6404 // Find a recurrence. 6405 if (LL == P) 6406 L = LR; 6407 else if (LR == P) 6408 L = LL; 6409 else 6410 continue; // Check for recurrence with L and R flipped. 6411 6412 break; // Match! 6413 } 6414 }; 6415 6416 // We have matched a recurrence of the form: 6417 // %iv = [R, %entry], [%iv.next, %backedge] 6418 // %iv.next = binop %iv, L 6419 // OR 6420 // %iv = [R, %entry], [%iv.next, %backedge] 6421 // %iv.next = binop L, %iv 6422 BO = cast<BinaryOperator>(LU); 6423 Start = R; 6424 Step = L; 6425 return true; 6426 } 6427 return false; 6428 } 6429 6430 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6431 Value *&Start, Value *&Step) { 6432 BinaryOperator *BO = nullptr; 6433 P = dyn_cast<PHINode>(I->getOperand(0)); 6434 if (!P) 6435 P = dyn_cast<PHINode>(I->getOperand(1)); 6436 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6437 } 6438 6439 /// Return true if "icmp Pred LHS RHS" is always true. 6440 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6441 const Value *RHS, const DataLayout &DL, 6442 unsigned Depth) { 6443 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6444 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6445 return true; 6446 6447 switch (Pred) { 6448 default: 6449 return false; 6450 6451 case CmpInst::ICMP_SLE: { 6452 const APInt *C; 6453 6454 // LHS s<= LHS +_{nsw} C if C >= 0 6455 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6456 return !C->isNegative(); 6457 return false; 6458 } 6459 6460 case CmpInst::ICMP_ULE: { 6461 const APInt *C; 6462 6463 // LHS u<= LHS +_{nuw} C for any C 6464 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6465 return true; 6466 6467 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6468 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6469 const Value *&X, 6470 const APInt *&CA, const APInt *&CB) { 6471 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6472 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6473 return true; 6474 6475 // If X & C == 0 then (X | C) == X +_{nuw} C 6476 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6477 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6478 KnownBits Known(CA->getBitWidth()); 6479 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6480 /*CxtI*/ nullptr, /*DT*/ nullptr); 6481 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6482 return true; 6483 } 6484 6485 return false; 6486 }; 6487 6488 const Value *X; 6489 const APInt *CLHS, *CRHS; 6490 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6491 return CLHS->ule(*CRHS); 6492 6493 return false; 6494 } 6495 } 6496 } 6497 6498 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6499 /// ALHS ARHS" is true. Otherwise, return None. 6500 static Optional<bool> 6501 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6502 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6503 const DataLayout &DL, unsigned Depth) { 6504 switch (Pred) { 6505 default: 6506 return None; 6507 6508 case CmpInst::ICMP_SLT: 6509 case CmpInst::ICMP_SLE: 6510 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6511 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6512 return true; 6513 return None; 6514 6515 case CmpInst::ICMP_ULT: 6516 case CmpInst::ICMP_ULE: 6517 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6518 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6519 return true; 6520 return None; 6521 } 6522 } 6523 6524 /// Return true if the operands of the two compares match. IsSwappedOps is true 6525 /// when the operands match, but are swapped. 6526 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6527 const Value *BLHS, const Value *BRHS, 6528 bool &IsSwappedOps) { 6529 6530 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6531 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6532 return IsMatchingOps || IsSwappedOps; 6533 } 6534 6535 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6536 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6537 /// Otherwise, return None if we can't infer anything. 6538 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6539 CmpInst::Predicate BPred, 6540 bool AreSwappedOps) { 6541 // Canonicalize the predicate as if the operands were not commuted. 6542 if (AreSwappedOps) 6543 BPred = ICmpInst::getSwappedPredicate(BPred); 6544 6545 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6546 return true; 6547 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6548 return false; 6549 6550 return None; 6551 } 6552 6553 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6554 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6555 /// Otherwise, return None if we can't infer anything. 6556 static Optional<bool> 6557 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6558 const ConstantInt *C1, 6559 CmpInst::Predicate BPred, 6560 const ConstantInt *C2) { 6561 ConstantRange DomCR = 6562 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6563 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6564 ConstantRange Intersection = DomCR.intersectWith(CR); 6565 ConstantRange Difference = DomCR.difference(CR); 6566 if (Intersection.isEmptySet()) 6567 return false; 6568 if (Difference.isEmptySet()) 6569 return true; 6570 return None; 6571 } 6572 6573 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6574 /// false. Otherwise, return None if we can't infer anything. 6575 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6576 CmpInst::Predicate BPred, 6577 const Value *BLHS, const Value *BRHS, 6578 const DataLayout &DL, bool LHSIsTrue, 6579 unsigned Depth) { 6580 Value *ALHS = LHS->getOperand(0); 6581 Value *ARHS = LHS->getOperand(1); 6582 6583 // The rest of the logic assumes the LHS condition is true. If that's not the 6584 // case, invert the predicate to make it so. 6585 CmpInst::Predicate APred = 6586 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6587 6588 // Can we infer anything when the two compares have matching operands? 6589 bool AreSwappedOps; 6590 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6591 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6592 APred, BPred, AreSwappedOps)) 6593 return Implication; 6594 // No amount of additional analysis will infer the second condition, so 6595 // early exit. 6596 return None; 6597 } 6598 6599 // Can we infer anything when the LHS operands match and the RHS operands are 6600 // constants (not necessarily matching)? 6601 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6602 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6603 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6604 return Implication; 6605 // No amount of additional analysis will infer the second condition, so 6606 // early exit. 6607 return None; 6608 } 6609 6610 if (APred == BPred) 6611 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6612 return None; 6613 } 6614 6615 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6616 /// false. Otherwise, return None if we can't infer anything. We expect the 6617 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6618 static Optional<bool> 6619 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6620 const Value *RHSOp0, const Value *RHSOp1, 6621 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6622 // The LHS must be an 'or', 'and', or a 'select' instruction. 6623 assert((LHS->getOpcode() == Instruction::And || 6624 LHS->getOpcode() == Instruction::Or || 6625 LHS->getOpcode() == Instruction::Select) && 6626 "Expected LHS to be 'and', 'or', or 'select'."); 6627 6628 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6629 6630 // If the result of an 'or' is false, then we know both legs of the 'or' are 6631 // false. Similarly, if the result of an 'and' is true, then we know both 6632 // legs of the 'and' are true. 6633 const Value *ALHS, *ARHS; 6634 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6635 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6636 // FIXME: Make this non-recursion. 6637 if (Optional<bool> Implication = isImpliedCondition( 6638 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6639 return Implication; 6640 if (Optional<bool> Implication = isImpliedCondition( 6641 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6642 return Implication; 6643 return None; 6644 } 6645 return None; 6646 } 6647 6648 Optional<bool> 6649 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6650 const Value *RHSOp0, const Value *RHSOp1, 6651 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6652 // Bail out when we hit the limit. 6653 if (Depth == MaxAnalysisRecursionDepth) 6654 return None; 6655 6656 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6657 // example. 6658 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6659 return None; 6660 6661 Type *OpTy = LHS->getType(); 6662 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6663 6664 // FIXME: Extending the code below to handle vectors. 6665 if (OpTy->isVectorTy()) 6666 return None; 6667 6668 assert(OpTy->isIntegerTy(1) && "implied by above"); 6669 6670 // Both LHS and RHS are icmps. 6671 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6672 if (LHSCmp) 6673 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6674 Depth); 6675 6676 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6677 /// the RHS to be an icmp. 6678 /// FIXME: Add support for and/or/select on the RHS. 6679 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6680 if ((LHSI->getOpcode() == Instruction::And || 6681 LHSI->getOpcode() == Instruction::Or || 6682 LHSI->getOpcode() == Instruction::Select)) 6683 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6684 Depth); 6685 } 6686 return None; 6687 } 6688 6689 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6690 const DataLayout &DL, bool LHSIsTrue, 6691 unsigned Depth) { 6692 // LHS ==> RHS by definition 6693 if (LHS == RHS) 6694 return LHSIsTrue; 6695 6696 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6697 if (RHSCmp) 6698 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6699 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6700 LHSIsTrue, Depth); 6701 return None; 6702 } 6703 6704 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6705 // condition dominating ContextI or nullptr, if no condition is found. 6706 static std::pair<Value *, bool> 6707 getDomPredecessorCondition(const Instruction *ContextI) { 6708 if (!ContextI || !ContextI->getParent()) 6709 return {nullptr, false}; 6710 6711 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6712 // dominator tree (eg, from a SimplifyQuery) instead? 6713 const BasicBlock *ContextBB = ContextI->getParent(); 6714 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6715 if (!PredBB) 6716 return {nullptr, false}; 6717 6718 // We need a conditional branch in the predecessor. 6719 Value *PredCond; 6720 BasicBlock *TrueBB, *FalseBB; 6721 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6722 return {nullptr, false}; 6723 6724 // The branch should get simplified. Don't bother simplifying this condition. 6725 if (TrueBB == FalseBB) 6726 return {nullptr, false}; 6727 6728 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6729 "Predecessor block does not point to successor?"); 6730 6731 // Is this condition implied by the predecessor condition? 6732 return {PredCond, TrueBB == ContextBB}; 6733 } 6734 6735 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6736 const Instruction *ContextI, 6737 const DataLayout &DL) { 6738 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6739 auto PredCond = getDomPredecessorCondition(ContextI); 6740 if (PredCond.first) 6741 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6742 return None; 6743 } 6744 6745 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6746 const Value *LHS, const Value *RHS, 6747 const Instruction *ContextI, 6748 const DataLayout &DL) { 6749 auto PredCond = getDomPredecessorCondition(ContextI); 6750 if (PredCond.first) 6751 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6752 PredCond.second); 6753 return None; 6754 } 6755 6756 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6757 APInt &Upper, const InstrInfoQuery &IIQ) { 6758 unsigned Width = Lower.getBitWidth(); 6759 const APInt *C; 6760 switch (BO.getOpcode()) { 6761 case Instruction::Add: 6762 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6763 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6764 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6765 // 'add nuw x, C' produces [C, UINT_MAX]. 6766 Lower = *C; 6767 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6768 if (C->isNegative()) { 6769 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6770 Lower = APInt::getSignedMinValue(Width); 6771 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6772 } else { 6773 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6774 Lower = APInt::getSignedMinValue(Width) + *C; 6775 Upper = APInt::getSignedMaxValue(Width) + 1; 6776 } 6777 } 6778 } 6779 break; 6780 6781 case Instruction::And: 6782 if (match(BO.getOperand(1), m_APInt(C))) 6783 // 'and x, C' produces [0, C]. 6784 Upper = *C + 1; 6785 break; 6786 6787 case Instruction::Or: 6788 if (match(BO.getOperand(1), m_APInt(C))) 6789 // 'or x, C' produces [C, UINT_MAX]. 6790 Lower = *C; 6791 break; 6792 6793 case Instruction::AShr: 6794 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6795 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6796 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6797 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6798 } else if (match(BO.getOperand(0), m_APInt(C))) { 6799 unsigned ShiftAmount = Width - 1; 6800 if (!C->isZero() && IIQ.isExact(&BO)) 6801 ShiftAmount = C->countTrailingZeros(); 6802 if (C->isNegative()) { 6803 // 'ashr C, x' produces [C, C >> (Width-1)] 6804 Lower = *C; 6805 Upper = C->ashr(ShiftAmount) + 1; 6806 } else { 6807 // 'ashr C, x' produces [C >> (Width-1), C] 6808 Lower = C->ashr(ShiftAmount); 6809 Upper = *C + 1; 6810 } 6811 } 6812 break; 6813 6814 case Instruction::LShr: 6815 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6816 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6817 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6818 } else if (match(BO.getOperand(0), m_APInt(C))) { 6819 // 'lshr C, x' produces [C >> (Width-1), C]. 6820 unsigned ShiftAmount = Width - 1; 6821 if (!C->isZero() && IIQ.isExact(&BO)) 6822 ShiftAmount = C->countTrailingZeros(); 6823 Lower = C->lshr(ShiftAmount); 6824 Upper = *C + 1; 6825 } 6826 break; 6827 6828 case Instruction::Shl: 6829 if (match(BO.getOperand(0), m_APInt(C))) { 6830 if (IIQ.hasNoUnsignedWrap(&BO)) { 6831 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6832 Lower = *C; 6833 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6834 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6835 if (C->isNegative()) { 6836 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6837 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6838 Lower = C->shl(ShiftAmount); 6839 Upper = *C + 1; 6840 } else { 6841 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6842 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6843 Lower = *C; 6844 Upper = C->shl(ShiftAmount) + 1; 6845 } 6846 } 6847 } 6848 break; 6849 6850 case Instruction::SDiv: 6851 if (match(BO.getOperand(1), m_APInt(C))) { 6852 APInt IntMin = APInt::getSignedMinValue(Width); 6853 APInt IntMax = APInt::getSignedMaxValue(Width); 6854 if (C->isAllOnes()) { 6855 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6856 // where C != -1 and C != 0 and C != 1 6857 Lower = IntMin + 1; 6858 Upper = IntMax + 1; 6859 } else if (C->countLeadingZeros() < Width - 1) { 6860 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6861 // where C != -1 and C != 0 and C != 1 6862 Lower = IntMin.sdiv(*C); 6863 Upper = IntMax.sdiv(*C); 6864 if (Lower.sgt(Upper)) 6865 std::swap(Lower, Upper); 6866 Upper = Upper + 1; 6867 assert(Upper != Lower && "Upper part of range has wrapped!"); 6868 } 6869 } else if (match(BO.getOperand(0), m_APInt(C))) { 6870 if (C->isMinSignedValue()) { 6871 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6872 Lower = *C; 6873 Upper = Lower.lshr(1) + 1; 6874 } else { 6875 // 'sdiv C, x' produces [-|C|, |C|]. 6876 Upper = C->abs() + 1; 6877 Lower = (-Upper) + 1; 6878 } 6879 } 6880 break; 6881 6882 case Instruction::UDiv: 6883 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6884 // 'udiv x, C' produces [0, UINT_MAX / C]. 6885 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6886 } else if (match(BO.getOperand(0), m_APInt(C))) { 6887 // 'udiv C, x' produces [0, C]. 6888 Upper = *C + 1; 6889 } 6890 break; 6891 6892 case Instruction::SRem: 6893 if (match(BO.getOperand(1), m_APInt(C))) { 6894 // 'srem x, C' produces (-|C|, |C|). 6895 Upper = C->abs(); 6896 Lower = (-Upper) + 1; 6897 } 6898 break; 6899 6900 case Instruction::URem: 6901 if (match(BO.getOperand(1), m_APInt(C))) 6902 // 'urem x, C' produces [0, C). 6903 Upper = *C; 6904 break; 6905 6906 default: 6907 break; 6908 } 6909 } 6910 6911 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6912 APInt &Upper) { 6913 unsigned Width = Lower.getBitWidth(); 6914 const APInt *C; 6915 switch (II.getIntrinsicID()) { 6916 case Intrinsic::ctpop: 6917 case Intrinsic::ctlz: 6918 case Intrinsic::cttz: 6919 // Maximum of set/clear bits is the bit width. 6920 assert(Lower == 0 && "Expected lower bound to be zero"); 6921 Upper = Width + 1; 6922 break; 6923 case Intrinsic::uadd_sat: 6924 // uadd.sat(x, C) produces [C, UINT_MAX]. 6925 if (match(II.getOperand(0), m_APInt(C)) || 6926 match(II.getOperand(1), m_APInt(C))) 6927 Lower = *C; 6928 break; 6929 case Intrinsic::sadd_sat: 6930 if (match(II.getOperand(0), m_APInt(C)) || 6931 match(II.getOperand(1), m_APInt(C))) { 6932 if (C->isNegative()) { 6933 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6934 Lower = APInt::getSignedMinValue(Width); 6935 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6936 } else { 6937 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6938 Lower = APInt::getSignedMinValue(Width) + *C; 6939 Upper = APInt::getSignedMaxValue(Width) + 1; 6940 } 6941 } 6942 break; 6943 case Intrinsic::usub_sat: 6944 // usub.sat(C, x) produces [0, C]. 6945 if (match(II.getOperand(0), m_APInt(C))) 6946 Upper = *C + 1; 6947 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6948 else if (match(II.getOperand(1), m_APInt(C))) 6949 Upper = APInt::getMaxValue(Width) - *C + 1; 6950 break; 6951 case Intrinsic::ssub_sat: 6952 if (match(II.getOperand(0), m_APInt(C))) { 6953 if (C->isNegative()) { 6954 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6955 Lower = APInt::getSignedMinValue(Width); 6956 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6957 } else { 6958 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6959 Lower = *C - APInt::getSignedMaxValue(Width); 6960 Upper = APInt::getSignedMaxValue(Width) + 1; 6961 } 6962 } else if (match(II.getOperand(1), m_APInt(C))) { 6963 if (C->isNegative()) { 6964 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6965 Lower = APInt::getSignedMinValue(Width) - *C; 6966 Upper = APInt::getSignedMaxValue(Width) + 1; 6967 } else { 6968 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6969 Lower = APInt::getSignedMinValue(Width); 6970 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6971 } 6972 } 6973 break; 6974 case Intrinsic::umin: 6975 case Intrinsic::umax: 6976 case Intrinsic::smin: 6977 case Intrinsic::smax: 6978 if (!match(II.getOperand(0), m_APInt(C)) && 6979 !match(II.getOperand(1), m_APInt(C))) 6980 break; 6981 6982 switch (II.getIntrinsicID()) { 6983 case Intrinsic::umin: 6984 Upper = *C + 1; 6985 break; 6986 case Intrinsic::umax: 6987 Lower = *C; 6988 break; 6989 case Intrinsic::smin: 6990 Lower = APInt::getSignedMinValue(Width); 6991 Upper = *C + 1; 6992 break; 6993 case Intrinsic::smax: 6994 Lower = *C; 6995 Upper = APInt::getSignedMaxValue(Width) + 1; 6996 break; 6997 default: 6998 llvm_unreachable("Must be min/max intrinsic"); 6999 } 7000 break; 7001 case Intrinsic::abs: 7002 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 7003 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7004 if (match(II.getOperand(1), m_One())) 7005 Upper = APInt::getSignedMaxValue(Width) + 1; 7006 else 7007 Upper = APInt::getSignedMinValue(Width) + 1; 7008 break; 7009 default: 7010 break; 7011 } 7012 } 7013 7014 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 7015 APInt &Upper, const InstrInfoQuery &IIQ) { 7016 const Value *LHS = nullptr, *RHS = nullptr; 7017 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 7018 if (R.Flavor == SPF_UNKNOWN) 7019 return; 7020 7021 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 7022 7023 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 7024 // If the negation part of the abs (in RHS) has the NSW flag, 7025 // then the result of abs(X) is [0..SIGNED_MAX], 7026 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7027 Lower = APInt::getZero(BitWidth); 7028 if (match(RHS, m_Neg(m_Specific(LHS))) && 7029 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 7030 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7031 else 7032 Upper = APInt::getSignedMinValue(BitWidth) + 1; 7033 return; 7034 } 7035 7036 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7037 // The result of -abs(X) is <= 0. 7038 Lower = APInt::getSignedMinValue(BitWidth); 7039 Upper = APInt(BitWidth, 1); 7040 return; 7041 } 7042 7043 const APInt *C; 7044 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7045 return; 7046 7047 switch (R.Flavor) { 7048 case SPF_UMIN: 7049 Upper = *C + 1; 7050 break; 7051 case SPF_UMAX: 7052 Lower = *C; 7053 break; 7054 case SPF_SMIN: 7055 Lower = APInt::getSignedMinValue(BitWidth); 7056 Upper = *C + 1; 7057 break; 7058 case SPF_SMAX: 7059 Lower = *C; 7060 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7061 break; 7062 default: 7063 break; 7064 } 7065 } 7066 7067 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 7068 AssumptionCache *AC, 7069 const Instruction *CtxI, 7070 const DominatorTree *DT, 7071 unsigned Depth) { 7072 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7073 7074 if (Depth == MaxAnalysisRecursionDepth) 7075 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7076 7077 const APInt *C; 7078 if (match(V, m_APInt(C))) 7079 return ConstantRange(*C); 7080 7081 InstrInfoQuery IIQ(UseInstrInfo); 7082 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7083 APInt Lower = APInt(BitWidth, 0); 7084 APInt Upper = APInt(BitWidth, 0); 7085 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7086 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 7087 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7088 setLimitsForIntrinsic(*II, Lower, Upper); 7089 else if (auto *SI = dyn_cast<SelectInst>(V)) 7090 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7091 7092 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7093 7094 if (auto *I = dyn_cast<Instruction>(V)) 7095 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7096 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7097 7098 if (CtxI && AC) { 7099 // Try to restrict the range based on information from assumptions. 7100 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7101 if (!AssumeVH) 7102 continue; 7103 CallInst *I = cast<CallInst>(AssumeVH); 7104 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7105 "Got assumption for the wrong function!"); 7106 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7107 "must be an assume intrinsic"); 7108 7109 if (!isValidAssumeForContext(I, CtxI, DT)) 7110 continue; 7111 Value *Arg = I->getArgOperand(0); 7112 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7113 // Currently we just use information from comparisons. 7114 if (!Cmp || Cmp->getOperand(0) != V) 7115 continue; 7116 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 7117 AC, I, DT, Depth + 1); 7118 CR = CR.intersectWith( 7119 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7120 } 7121 } 7122 7123 return CR; 7124 } 7125 7126 static Optional<int64_t> 7127 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7128 // Skip over the first indices. 7129 gep_type_iterator GTI = gep_type_begin(GEP); 7130 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7131 /*skip along*/; 7132 7133 // Compute the offset implied by the rest of the indices. 7134 int64_t Offset = 0; 7135 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7136 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7137 if (!OpC) 7138 return None; 7139 if (OpC->isZero()) 7140 continue; // No offset. 7141 7142 // Handle struct indices, which add their field offset to the pointer. 7143 if (StructType *STy = GTI.getStructTypeOrNull()) { 7144 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7145 continue; 7146 } 7147 7148 // Otherwise, we have a sequential type like an array or fixed-length 7149 // vector. Multiply the index by the ElementSize. 7150 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7151 if (Size.isScalable()) 7152 return None; 7153 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7154 } 7155 7156 return Offset; 7157 } 7158 7159 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7160 const DataLayout &DL) { 7161 Ptr1 = Ptr1->stripPointerCasts(); 7162 Ptr2 = Ptr2->stripPointerCasts(); 7163 7164 // Handle the trivial case first. 7165 if (Ptr1 == Ptr2) { 7166 return 0; 7167 } 7168 7169 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7170 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7171 7172 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7173 // as in "P" and "gep P, 1". 7174 // Also do this iteratively to handle the the following case: 7175 // Ptr_t1 = GEP Ptr1, c1 7176 // Ptr_t2 = GEP Ptr_t1, c2 7177 // Ptr2 = GEP Ptr_t2, c3 7178 // where we will return c1+c2+c3. 7179 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7180 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7181 // are the same, and return the difference between offsets. 7182 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7183 const Value *Ptr) -> Optional<int64_t> { 7184 const GEPOperator *GEP_T = GEP; 7185 int64_t OffsetVal = 0; 7186 bool HasSameBase = false; 7187 while (GEP_T) { 7188 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7189 if (!Offset) 7190 return None; 7191 OffsetVal += *Offset; 7192 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7193 if (Op0 == Ptr) { 7194 HasSameBase = true; 7195 break; 7196 } 7197 GEP_T = dyn_cast<GEPOperator>(Op0); 7198 } 7199 if (!HasSameBase) 7200 return None; 7201 return OffsetVal; 7202 }; 7203 7204 if (GEP1) { 7205 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7206 if (Offset) 7207 return -*Offset; 7208 } 7209 if (GEP2) { 7210 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7211 if (Offset) 7212 return Offset; 7213 } 7214 7215 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7216 // base. After that base, they may have some number of common (and 7217 // potentially variable) indices. After that they handle some constant 7218 // offset, which determines their offset from each other. At this point, we 7219 // handle no other case. 7220 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7221 return None; 7222 7223 // Skip any common indices and track the GEP types. 7224 unsigned Idx = 1; 7225 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7226 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7227 break; 7228 7229 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7230 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7231 if (!Offset1 || !Offset2) 7232 return None; 7233 return *Offset2 - *Offset1; 7234 } 7235