1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 440 isKnownNonZero(Op0, Depth, Q)) || 441 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 442 isKnownNonZero(Op1, Depth, Q)); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Note that the patterns below need to be kept in sync with the code 674 // in AssumptionCache::updateAffectedValues. 675 676 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 677 if (!AssumeVH) 678 continue; 679 CallInst *I = cast<CallInst>(AssumeVH); 680 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 681 "Got assumption for the wrong function!"); 682 if (Q.isExcluded(I)) 683 continue; 684 685 // Warning: This loop can end up being somewhat performance sensitive. 686 // We're running this loop for once for each value queried resulting in a 687 // runtime of ~O(#assumes * #values). 688 689 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 690 "must be an assume intrinsic"); 691 692 Value *Arg = I->getArgOperand(0); 693 694 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 695 assert(BitWidth == 1 && "assume operand is not i1?"); 696 Known.setAllOnes(); 697 return; 698 } 699 if (match(Arg, m_Not(m_Specific(V))) && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 assert(BitWidth == 1 && "assume operand is not i1?"); 702 Known.setAllZero(); 703 return; 704 } 705 706 // The remaining tests are all recursive, so bail out if we hit the limit. 707 if (Depth == MaxAnalysisRecursionDepth) 708 continue; 709 710 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 711 if (!Cmp) 712 continue; 713 714 // Note that ptrtoint may change the bitwidth. 715 Value *A, *B; 716 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 717 718 CmpInst::Predicate Pred; 719 uint64_t C; 720 switch (Cmp->getPredicate()) { 721 default: 722 break; 723 case ICmpInst::ICMP_EQ: 724 // assume(v = a) 725 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 726 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 727 KnownBits RHSKnown = 728 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 729 Known.Zero |= RHSKnown.Zero; 730 Known.One |= RHSKnown.One; 731 // assume(v & b = a) 732 } else if (match(Cmp, 733 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 KnownBits MaskKnown = 738 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 740 // For those bits in the mask that are known to be one, we can propagate 741 // known bits from the RHS to V. 742 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 743 Known.One |= RHSKnown.One & MaskKnown.One; 744 // assume(~(v & b) = a) 745 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 746 m_Value(A))) && 747 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 748 KnownBits RHSKnown = 749 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 750 KnownBits MaskKnown = 751 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 753 // For those bits in the mask that are known to be one, we can propagate 754 // inverted known bits from the RHS to V. 755 Known.Zero |= RHSKnown.One & MaskKnown.One; 756 Known.One |= RHSKnown.Zero & MaskKnown.One; 757 // assume(v | b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 763 KnownBits BKnown = 764 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 766 // For those bits in B that are known to be zero, we can propagate known 767 // bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 769 Known.One |= RHSKnown.One & BKnown.Zero; 770 // assume(~(v | b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 776 KnownBits BKnown = 777 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 779 // For those bits in B that are known to be zero, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & BKnown.Zero; 782 Known.One |= RHSKnown.Zero & BKnown.Zero; 783 // assume(v ^ b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. For those bits in B that are known to be one, 794 // we can propagate inverted known bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 796 Known.One |= RHSKnown.One & BKnown.Zero; 797 Known.Zero |= RHSKnown.One & BKnown.One; 798 Known.One |= RHSKnown.Zero & BKnown.One; 799 // assume(~(v ^ b) = a) 800 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 801 m_Value(A))) && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 803 KnownBits RHSKnown = 804 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 805 KnownBits BKnown = 806 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 808 // For those bits in B that are known to be zero, we can propagate 809 // inverted known bits from the RHS to V. For those bits in B that are 810 // known to be one, we can propagate known bits from the RHS to V. 811 Known.Zero |= RHSKnown.One & BKnown.Zero; 812 Known.One |= RHSKnown.Zero & BKnown.Zero; 813 Known.Zero |= RHSKnown.Zero & BKnown.One; 814 Known.One |= RHSKnown.One & BKnown.One; 815 // assume(v << c = a) 816 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 817 m_Value(A))) && 818 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 819 KnownBits RHSKnown = 820 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 821 822 // For those bits in RHS that are known, we can propagate them to known 823 // bits in V shifted to the right by C. 824 RHSKnown.Zero.lshrInPlace(C); 825 Known.Zero |= RHSKnown.Zero; 826 RHSKnown.One.lshrInPlace(C); 827 Known.One |= RHSKnown.One; 828 // assume(~(v << c) = a) 829 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 830 m_Value(A))) && 831 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 832 KnownBits RHSKnown = 833 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 834 // For those bits in RHS that are known, we can propagate them inverted 835 // to known bits in V shifted to the right by C. 836 RHSKnown.One.lshrInPlace(C); 837 Known.Zero |= RHSKnown.One; 838 RHSKnown.Zero.lshrInPlace(C); 839 Known.One |= RHSKnown.Zero; 840 // assume(v >> c = a) 841 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 842 m_Value(A))) && 843 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 844 KnownBits RHSKnown = 845 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 846 // For those bits in RHS that are known, we can propagate them to known 847 // bits in V shifted to the right by C. 848 Known.Zero |= RHSKnown.Zero << C; 849 Known.One |= RHSKnown.One << C; 850 // assume(~(v >> c) = a) 851 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 852 m_Value(A))) && 853 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 854 KnownBits RHSKnown = 855 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 856 // For those bits in RHS that are known, we can propagate them inverted 857 // to known bits in V shifted to the right by C. 858 Known.Zero |= RHSKnown.One << C; 859 Known.One |= RHSKnown.Zero << C; 860 } 861 break; 862 case ICmpInst::ICMP_SGE: 863 // assume(v >=_s c) where c is non-negative 864 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 865 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 866 KnownBits RHSKnown = 867 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 868 869 if (RHSKnown.isNonNegative()) { 870 // We know that the sign bit is zero. 871 Known.makeNonNegative(); 872 } 873 } 874 break; 875 case ICmpInst::ICMP_SGT: 876 // assume(v >_s c) where c is at least -1. 877 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 878 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 879 KnownBits RHSKnown = 880 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 881 882 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 883 // We know that the sign bit is zero. 884 Known.makeNonNegative(); 885 } 886 } 887 break; 888 case ICmpInst::ICMP_SLE: 889 // assume(v <=_s c) where c is negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isNegative()) { 896 // We know that the sign bit is one. 897 Known.makeNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SLT: 902 // assume(v <_s c) where c is non-positive 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 909 // We know that the sign bit is one. 910 Known.makeNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_ULE: 915 // assume(v <=_u c) 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 920 921 // Whatever high bits in c are zero are known to be zero. 922 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 923 } 924 break; 925 case ICmpInst::ICMP_ULT: 926 // assume(v <_u c) 927 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 928 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 929 KnownBits RHSKnown = 930 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 931 932 // If the RHS is known zero, then this assumption must be wrong (nothing 933 // is unsigned less than zero). Signal a conflict and get out of here. 934 if (RHSKnown.isZero()) { 935 Known.Zero.setAllBits(); 936 Known.One.setAllBits(); 937 break; 938 } 939 940 // Whatever high bits in c are zero are known to be zero (if c is a power 941 // of 2, then one more). 942 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 943 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 944 else 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 946 } 947 break; 948 } 949 } 950 951 // If assumptions conflict with each other or previous known bits, then we 952 // have a logical fallacy. It's possible that the assumption is not reachable, 953 // so this isn't a real bug. On the other hand, the program may have undefined 954 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 955 // clear out the known bits, try to warn the user, and hope for the best. 956 if (Known.Zero.intersects(Known.One)) { 957 Known.resetAll(); 958 959 if (Q.ORE) 960 Q.ORE->emit([&]() { 961 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 962 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 963 CxtI) 964 << "Detected conflicting code assumptions. Program may " 965 "have undefined behavior, or compiler may have " 966 "internal error."; 967 }); 968 } 969 } 970 971 /// Compute known bits from a shift operator, including those with a 972 /// non-constant shift amount. Known is the output of this function. Known2 is a 973 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 974 /// operator-specific functions that, given the known-zero or known-one bits 975 /// respectively, and a shift amount, compute the implied known-zero or 976 /// known-one bits of the shift operator's result respectively for that shift 977 /// amount. The results from calling KZF and KOF are conservatively combined for 978 /// all permitted shift amounts. 979 static void computeKnownBitsFromShiftOperator( 980 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 981 KnownBits &Known2, unsigned Depth, const Query &Q, 982 function_ref<APInt(const APInt &, unsigned)> KZF, 983 function_ref<APInt(const APInt &, unsigned)> KOF) { 984 unsigned BitWidth = Known.getBitWidth(); 985 986 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 987 if (Known.isConstant()) { 988 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 989 990 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 991 Known.Zero = KZF(Known.Zero, ShiftAmt); 992 Known.One = KOF(Known.One, ShiftAmt); 993 // If the known bits conflict, this must be an overflowing left shift, so 994 // the shift result is poison. We can return anything we want. Choose 0 for 995 // the best folding opportunity. 996 if (Known.hasConflict()) 997 Known.setAllZero(); 998 999 return; 1000 } 1001 1002 // If the shift amount could be greater than or equal to the bit-width of the 1003 // LHS, the value could be poison, but bail out because the check below is 1004 // expensive. 1005 // TODO: Should we just carry on? 1006 if (Known.getMaxValue().uge(BitWidth)) { 1007 Known.resetAll(); 1008 return; 1009 } 1010 1011 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1012 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1013 // limit value (which implies all bits are known). 1014 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1015 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1016 1017 // It would be more-clearly correct to use the two temporaries for this 1018 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1019 Known.resetAll(); 1020 1021 // If we know the shifter operand is nonzero, we can sometimes infer more 1022 // known bits. However this is expensive to compute, so be lazy about it and 1023 // only compute it when absolutely necessary. 1024 Optional<bool> ShifterOperandIsNonZero; 1025 1026 // Early exit if we can't constrain any well-defined shift amount. 1027 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1028 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (!*ShifterOperandIsNonZero) 1032 return; 1033 } 1034 1035 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1036 1037 Known.Zero.setAllBits(); 1038 Known.One.setAllBits(); 1039 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1040 // Combine the shifted known input bits only for those shift amounts 1041 // compatible with its known constraints. 1042 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1043 continue; 1044 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1045 continue; 1046 // If we know the shifter is nonzero, we may be able to infer more known 1047 // bits. This check is sunk down as far as possible to avoid the expensive 1048 // call to isKnownNonZero if the cheaper checks above fail. 1049 if (ShiftAmt == 0) { 1050 if (!ShifterOperandIsNonZero.hasValue()) 1051 ShifterOperandIsNonZero = 1052 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1053 if (*ShifterOperandIsNonZero) 1054 continue; 1055 } 1056 1057 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1058 Known.One &= KOF(Known2.One, ShiftAmt); 1059 } 1060 1061 // If the known bits conflict, the result is poison. Return a 0 and hope the 1062 // caller can further optimize that. 1063 if (Known.hasConflict()) 1064 Known.setAllZero(); 1065 } 1066 1067 static void computeKnownBitsFromOperator(const Operator *I, 1068 const APInt &DemandedElts, 1069 KnownBits &Known, unsigned Depth, 1070 const Query &Q) { 1071 unsigned BitWidth = Known.getBitWidth(); 1072 1073 KnownBits Known2(BitWidth); 1074 switch (I->getOpcode()) { 1075 default: break; 1076 case Instruction::Load: 1077 if (MDNode *MD = 1078 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1079 computeKnownBitsFromRangeMetadata(*MD, Known); 1080 break; 1081 case Instruction::And: { 1082 // If either the LHS or the RHS are Zero, the result is zero. 1083 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1084 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1085 1086 Known &= Known2; 1087 1088 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1089 // here we handle the more general case of adding any odd number by 1090 // matching the form add(x, add(x, y)) where y is odd. 1091 // TODO: This could be generalized to clearing any bit set in y where the 1092 // following bit is known to be unset in y. 1093 Value *X = nullptr, *Y = nullptr; 1094 if (!Known.Zero[0] && !Known.One[0] && 1095 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1096 Known2.resetAll(); 1097 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1098 if (Known2.countMinTrailingOnes() > 0) 1099 Known.Zero.setBit(0); 1100 } 1101 break; 1102 } 1103 case Instruction::Or: 1104 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1105 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1106 1107 Known |= Known2; 1108 break; 1109 case Instruction::Xor: 1110 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1111 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1112 1113 Known ^= Known2; 1114 break; 1115 case Instruction::Mul: { 1116 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1117 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1118 Known, Known2, Depth, Q); 1119 break; 1120 } 1121 case Instruction::UDiv: { 1122 // For the purposes of computing leading zeros we can conservatively 1123 // treat a udiv as a logical right shift by the power of 2 known to 1124 // be less than the denominator. 1125 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1126 unsigned LeadZ = Known2.countMinLeadingZeros(); 1127 1128 Known2.resetAll(); 1129 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1130 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1131 if (RHSMaxLeadingZeros != BitWidth) 1132 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1133 1134 Known.Zero.setHighBits(LeadZ); 1135 break; 1136 } 1137 case Instruction::Select: { 1138 const Value *LHS = nullptr, *RHS = nullptr; 1139 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1140 if (SelectPatternResult::isMinOrMax(SPF)) { 1141 computeKnownBits(RHS, Known, Depth + 1, Q); 1142 computeKnownBits(LHS, Known2, Depth + 1, Q); 1143 switch (SPF) { 1144 default: 1145 llvm_unreachable("Unhandled select pattern flavor!"); 1146 case SPF_SMAX: 1147 Known = KnownBits::smax(Known, Known2); 1148 break; 1149 case SPF_SMIN: 1150 Known = KnownBits::smin(Known, Known2); 1151 break; 1152 case SPF_UMAX: 1153 Known = KnownBits::umax(Known, Known2); 1154 break; 1155 case SPF_UMIN: 1156 Known = KnownBits::umin(Known, Known2); 1157 break; 1158 } 1159 break; 1160 } 1161 1162 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1163 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1164 1165 // Only known if known in both the LHS and RHS. 1166 Known.One &= Known2.One; 1167 Known.Zero &= Known2.Zero; 1168 1169 if (SPF == SPF_ABS) { 1170 // RHS from matchSelectPattern returns the negation part of abs pattern. 1171 // If the negate has an NSW flag we can assume the sign bit of the result 1172 // will be 0 because that makes abs(INT_MIN) undefined. 1173 if (match(RHS, m_Neg(m_Specific(LHS))) && 1174 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1175 Known.Zero.setSignBit(); 1176 } 1177 1178 break; 1179 } 1180 case Instruction::FPTrunc: 1181 case Instruction::FPExt: 1182 case Instruction::FPToUI: 1183 case Instruction::FPToSI: 1184 case Instruction::SIToFP: 1185 case Instruction::UIToFP: 1186 break; // Can't work with floating point. 1187 case Instruction::PtrToInt: 1188 case Instruction::IntToPtr: 1189 // Fall through and handle them the same as zext/trunc. 1190 LLVM_FALLTHROUGH; 1191 case Instruction::ZExt: 1192 case Instruction::Trunc: { 1193 Type *SrcTy = I->getOperand(0)->getType(); 1194 1195 unsigned SrcBitWidth; 1196 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1197 // which fall through here. 1198 Type *ScalarTy = SrcTy->getScalarType(); 1199 SrcBitWidth = ScalarTy->isPointerTy() ? 1200 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1201 Q.DL.getTypeSizeInBits(ScalarTy); 1202 1203 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1204 Known = Known.anyextOrTrunc(SrcBitWidth); 1205 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1206 Known = Known.zextOrTrunc(BitWidth); 1207 break; 1208 } 1209 case Instruction::BitCast: { 1210 Type *SrcTy = I->getOperand(0)->getType(); 1211 if (SrcTy->isIntOrPtrTy() && 1212 // TODO: For now, not handling conversions like: 1213 // (bitcast i64 %x to <2 x i32>) 1214 !I->getType()->isVectorTy()) { 1215 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1216 break; 1217 } 1218 break; 1219 } 1220 case Instruction::SExt: { 1221 // Compute the bits in the result that are not present in the input. 1222 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1223 1224 Known = Known.trunc(SrcBitWidth); 1225 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1226 // If the sign bit of the input is known set or clear, then we know the 1227 // top bits of the result. 1228 Known = Known.sext(BitWidth); 1229 break; 1230 } 1231 case Instruction::Shl: { 1232 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1233 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1234 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1235 APInt KZResult = KnownZero << ShiftAmt; 1236 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1237 // If this shift has "nsw" keyword, then the result is either a poison 1238 // value or has the same sign bit as the first operand. 1239 if (NSW && KnownZero.isSignBitSet()) 1240 KZResult.setSignBit(); 1241 return KZResult; 1242 }; 1243 1244 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1245 APInt KOResult = KnownOne << ShiftAmt; 1246 if (NSW && KnownOne.isSignBitSet()) 1247 KOResult.setSignBit(); 1248 return KOResult; 1249 }; 1250 1251 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1252 KZF, KOF); 1253 break; 1254 } 1255 case Instruction::LShr: { 1256 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1257 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1258 APInt KZResult = KnownZero.lshr(ShiftAmt); 1259 // High bits known zero. 1260 KZResult.setHighBits(ShiftAmt); 1261 return KZResult; 1262 }; 1263 1264 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1265 return KnownOne.lshr(ShiftAmt); 1266 }; 1267 1268 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1269 KZF, KOF); 1270 break; 1271 } 1272 case Instruction::AShr: { 1273 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1274 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1275 return KnownZero.ashr(ShiftAmt); 1276 }; 1277 1278 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1279 return KnownOne.ashr(ShiftAmt); 1280 }; 1281 1282 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1283 KZF, KOF); 1284 break; 1285 } 1286 case Instruction::Sub: { 1287 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1288 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1289 DemandedElts, Known, Known2, Depth, Q); 1290 break; 1291 } 1292 case Instruction::Add: { 1293 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1294 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1295 DemandedElts, Known, Known2, Depth, Q); 1296 break; 1297 } 1298 case Instruction::SRem: 1299 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1300 APInt RA = Rem->getValue().abs(); 1301 if (RA.isPowerOf2()) { 1302 APInt LowBits = RA - 1; 1303 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1304 1305 // The low bits of the first operand are unchanged by the srem. 1306 Known.Zero = Known2.Zero & LowBits; 1307 Known.One = Known2.One & LowBits; 1308 1309 // If the first operand is non-negative or has all low bits zero, then 1310 // the upper bits are all zero. 1311 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1312 Known.Zero |= ~LowBits; 1313 1314 // If the first operand is negative and not all low bits are zero, then 1315 // the upper bits are all one. 1316 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1317 Known.One |= ~LowBits; 1318 1319 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1320 break; 1321 } 1322 } 1323 1324 // The sign bit is the LHS's sign bit, except when the result of the 1325 // remainder is zero. 1326 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1327 // If it's known zero, our sign bit is also zero. 1328 if (Known2.isNonNegative()) 1329 Known.makeNonNegative(); 1330 1331 break; 1332 case Instruction::URem: { 1333 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1334 const APInt &RA = Rem->getValue(); 1335 if (RA.isPowerOf2()) { 1336 APInt LowBits = (RA - 1); 1337 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1338 Known.Zero |= ~LowBits; 1339 Known.One &= LowBits; 1340 break; 1341 } 1342 } 1343 1344 // Since the result is less than or equal to either operand, any leading 1345 // zero bits in either operand must also exist in the result. 1346 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1347 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1348 1349 unsigned Leaders = 1350 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1351 Known.resetAll(); 1352 Known.Zero.setHighBits(Leaders); 1353 break; 1354 } 1355 case Instruction::Alloca: 1356 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1357 break; 1358 case Instruction::GetElementPtr: { 1359 // Analyze all of the subscripts of this getelementptr instruction 1360 // to determine if we can prove known low zero bits. 1361 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1362 // Accumulate the constant indices in a separate variable 1363 // to minimize the number of calls to computeForAddSub. 1364 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1365 1366 gep_type_iterator GTI = gep_type_begin(I); 1367 // If the inbounds keyword is not present, the offsets are added to the 1368 // base address with silently-wrapping two’s complement arithmetic. 1369 bool IsInBounds = cast<GEPOperator>(I)->isInBounds(); 1370 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1371 // TrailZ can only become smaller, short-circuit if we hit zero. 1372 if (Known.isUnknown()) 1373 break; 1374 1375 Value *Index = I->getOperand(i); 1376 1377 // Handle case when index is zero. 1378 Constant *CIndex = dyn_cast<Constant>(Index); 1379 if (CIndex && CIndex->isZeroValue()) 1380 continue; 1381 1382 if (StructType *STy = GTI.getStructTypeOrNull()) { 1383 // Handle struct member offset arithmetic. 1384 1385 assert(CIndex && 1386 "Access to structure field must be known at compile time"); 1387 1388 if (CIndex->getType()->isVectorTy()) 1389 Index = CIndex->getSplatValue(); 1390 1391 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1392 const StructLayout *SL = Q.DL.getStructLayout(STy); 1393 uint64_t Offset = SL->getElementOffset(Idx); 1394 AccConstIndices += Offset; 1395 continue; 1396 } 1397 1398 // Handle array index arithmetic. 1399 Type *IndexedTy = GTI.getIndexedType(); 1400 if (!IndexedTy->isSized()) { 1401 Known.resetAll(); 1402 break; 1403 } 1404 1405 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1406 KnownBits IndexBits(IndexBitWidth); 1407 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1408 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1409 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1410 KnownBits ScalingFactor(IndexBitWidth); 1411 // Multiply by current sizeof type. 1412 // &A[i] == A + i * sizeof(*A[i]). 1413 if (IndexTypeSize.isScalable()) { 1414 // For scalable types the only thing we know about sizeof is 1415 // that this is a multiple of the minimum size. 1416 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1417 } else if (IndexBits.isConstant()) { 1418 APInt IndexConst = IndexBits.getConstant(); 1419 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1420 IndexConst *= ScalingFactor; 1421 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1422 continue; 1423 } else { 1424 ScalingFactor.Zero = ~TypeSizeInBytes; 1425 ScalingFactor.One = TypeSizeInBytes; 1426 } 1427 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1428 1429 // If the offsets have a different width from the pointer, according 1430 // to the language reference we need to sign-extend or truncate them 1431 // to the width of the pointer. 1432 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1433 1434 Known = KnownBits::computeForAddSub( 1435 /*Add=*/true, 1436 /*NSW=*/IsInBounds, Known, IndexBits); 1437 } 1438 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1439 KnownBits Index(BitWidth); 1440 Index.Zero = ~AccConstIndices; 1441 Index.One = AccConstIndices; 1442 Known = KnownBits::computeForAddSub( 1443 /*Add=*/true, 1444 /*NSW=*/IsInBounds, Known, Index); 1445 } 1446 break; 1447 } 1448 case Instruction::PHI: { 1449 const PHINode *P = cast<PHINode>(I); 1450 // Handle the case of a simple two-predecessor recurrence PHI. 1451 // There's a lot more that could theoretically be done here, but 1452 // this is sufficient to catch some interesting cases. 1453 if (P->getNumIncomingValues() == 2) { 1454 for (unsigned i = 0; i != 2; ++i) { 1455 Value *L = P->getIncomingValue(i); 1456 Value *R = P->getIncomingValue(!i); 1457 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1458 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1459 Operator *LU = dyn_cast<Operator>(L); 1460 if (!LU) 1461 continue; 1462 unsigned Opcode = LU->getOpcode(); 1463 // Check for operations that have the property that if 1464 // both their operands have low zero bits, the result 1465 // will have low zero bits. 1466 if (Opcode == Instruction::Add || 1467 Opcode == Instruction::Sub || 1468 Opcode == Instruction::And || 1469 Opcode == Instruction::Or || 1470 Opcode == Instruction::Mul) { 1471 Value *LL = LU->getOperand(0); 1472 Value *LR = LU->getOperand(1); 1473 // Find a recurrence. 1474 if (LL == I) 1475 L = LR; 1476 else if (LR == I) 1477 L = LL; 1478 else 1479 continue; // Check for recurrence with L and R flipped. 1480 1481 // Change the context instruction to the "edge" that flows into the 1482 // phi. This is important because that is where the value is actually 1483 // "evaluated" even though it is used later somewhere else. (see also 1484 // D69571). 1485 Query RecQ = Q; 1486 1487 // Ok, we have a PHI of the form L op= R. Check for low 1488 // zero bits. 1489 RecQ.CxtI = RInst; 1490 computeKnownBits(R, Known2, Depth + 1, RecQ); 1491 1492 // We need to take the minimum number of known bits 1493 KnownBits Known3(BitWidth); 1494 RecQ.CxtI = LInst; 1495 computeKnownBits(L, Known3, Depth + 1, RecQ); 1496 1497 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1498 Known3.countMinTrailingZeros())); 1499 1500 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1501 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1502 // If initial value of recurrence is nonnegative, and we are adding 1503 // a nonnegative number with nsw, the result can only be nonnegative 1504 // or poison value regardless of the number of times we execute the 1505 // add in phi recurrence. If initial value is negative and we are 1506 // adding a negative number with nsw, the result can only be 1507 // negative or poison value. Similar arguments apply to sub and mul. 1508 // 1509 // (add non-negative, non-negative) --> non-negative 1510 // (add negative, negative) --> negative 1511 if (Opcode == Instruction::Add) { 1512 if (Known2.isNonNegative() && Known3.isNonNegative()) 1513 Known.makeNonNegative(); 1514 else if (Known2.isNegative() && Known3.isNegative()) 1515 Known.makeNegative(); 1516 } 1517 1518 // (sub nsw non-negative, negative) --> non-negative 1519 // (sub nsw negative, non-negative) --> negative 1520 else if (Opcode == Instruction::Sub && LL == I) { 1521 if (Known2.isNonNegative() && Known3.isNegative()) 1522 Known.makeNonNegative(); 1523 else if (Known2.isNegative() && Known3.isNonNegative()) 1524 Known.makeNegative(); 1525 } 1526 1527 // (mul nsw non-negative, non-negative) --> non-negative 1528 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1529 Known3.isNonNegative()) 1530 Known.makeNonNegative(); 1531 } 1532 1533 break; 1534 } 1535 } 1536 } 1537 1538 // Unreachable blocks may have zero-operand PHI nodes. 1539 if (P->getNumIncomingValues() == 0) 1540 break; 1541 1542 // Otherwise take the unions of the known bit sets of the operands, 1543 // taking conservative care to avoid excessive recursion. 1544 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1545 // Skip if every incoming value references to ourself. 1546 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1547 break; 1548 1549 Known.Zero.setAllBits(); 1550 Known.One.setAllBits(); 1551 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1552 Value *IncValue = P->getIncomingValue(u); 1553 // Skip direct self references. 1554 if (IncValue == P) continue; 1555 1556 // Change the context instruction to the "edge" that flows into the 1557 // phi. This is important because that is where the value is actually 1558 // "evaluated" even though it is used later somewhere else. (see also 1559 // D69571). 1560 Query RecQ = Q; 1561 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1562 1563 Known2 = KnownBits(BitWidth); 1564 // Recurse, but cap the recursion to one level, because we don't 1565 // want to waste time spinning around in loops. 1566 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1567 Known.Zero &= Known2.Zero; 1568 Known.One &= Known2.One; 1569 // If all bits have been ruled out, there's no need to check 1570 // more operands. 1571 if (!Known.Zero && !Known.One) 1572 break; 1573 } 1574 } 1575 break; 1576 } 1577 case Instruction::Call: 1578 case Instruction::Invoke: 1579 // If range metadata is attached to this call, set known bits from that, 1580 // and then intersect with known bits based on other properties of the 1581 // function. 1582 if (MDNode *MD = 1583 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1584 computeKnownBitsFromRangeMetadata(*MD, Known); 1585 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1586 computeKnownBits(RV, Known2, Depth + 1, Q); 1587 Known.Zero |= Known2.Zero; 1588 Known.One |= Known2.One; 1589 } 1590 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1591 switch (II->getIntrinsicID()) { 1592 default: break; 1593 case Intrinsic::abs: 1594 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1595 1596 // If the source's MSB is zero then we know the rest of the bits. 1597 if (Known2.isNonNegative()) { 1598 Known.Zero |= Known2.Zero; 1599 Known.One |= Known2.One; 1600 break; 1601 } 1602 1603 // Absolute value preserves trailing zero count. 1604 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1605 1606 // If this call is undefined for INT_MIN, the result is positive. We 1607 // also know it can't be INT_MIN if there is a set bit that isn't the 1608 // sign bit. 1609 Known2.One.clearSignBit(); 1610 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1611 Known.Zero.setSignBit(); 1612 // FIXME: Handle known negative input? 1613 // FIXME: Calculate the negated Known bits and combine them? 1614 break; 1615 case Intrinsic::bitreverse: 1616 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1617 Known.Zero |= Known2.Zero.reverseBits(); 1618 Known.One |= Known2.One.reverseBits(); 1619 break; 1620 case Intrinsic::bswap: 1621 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1622 Known.Zero |= Known2.Zero.byteSwap(); 1623 Known.One |= Known2.One.byteSwap(); 1624 break; 1625 case Intrinsic::ctlz: { 1626 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1627 // If we have a known 1, its position is our upper bound. 1628 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1629 // If this call is undefined for 0, the result will be less than 2^n. 1630 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1631 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1632 unsigned LowBits = Log2_32(PossibleLZ)+1; 1633 Known.Zero.setBitsFrom(LowBits); 1634 break; 1635 } 1636 case Intrinsic::cttz: { 1637 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1638 // If we have a known 1, its position is our upper bound. 1639 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1640 // If this call is undefined for 0, the result will be less than 2^n. 1641 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1642 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1643 unsigned LowBits = Log2_32(PossibleTZ)+1; 1644 Known.Zero.setBitsFrom(LowBits); 1645 break; 1646 } 1647 case Intrinsic::ctpop: { 1648 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1649 // We can bound the space the count needs. Also, bits known to be zero 1650 // can't contribute to the population. 1651 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1652 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1653 Known.Zero.setBitsFrom(LowBits); 1654 // TODO: we could bound KnownOne using the lower bound on the number 1655 // of bits which might be set provided by popcnt KnownOne2. 1656 break; 1657 } 1658 case Intrinsic::fshr: 1659 case Intrinsic::fshl: { 1660 const APInt *SA; 1661 if (!match(I->getOperand(2), m_APInt(SA))) 1662 break; 1663 1664 // Normalize to funnel shift left. 1665 uint64_t ShiftAmt = SA->urem(BitWidth); 1666 if (II->getIntrinsicID() == Intrinsic::fshr) 1667 ShiftAmt = BitWidth - ShiftAmt; 1668 1669 KnownBits Known3(BitWidth); 1670 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1671 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1672 1673 Known.Zero = 1674 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1675 Known.One = 1676 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1677 break; 1678 } 1679 case Intrinsic::uadd_sat: 1680 case Intrinsic::usub_sat: { 1681 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1682 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1683 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1684 1685 // Add: Leading ones of either operand are preserved. 1686 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1687 // as leading zeros in the result. 1688 unsigned LeadingKnown; 1689 if (IsAdd) 1690 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1691 Known2.countMinLeadingOnes()); 1692 else 1693 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1694 Known2.countMinLeadingOnes()); 1695 1696 Known = KnownBits::computeForAddSub( 1697 IsAdd, /* NSW */ false, Known, Known2); 1698 1699 // We select between the operation result and all-ones/zero 1700 // respectively, so we can preserve known ones/zeros. 1701 if (IsAdd) { 1702 Known.One.setHighBits(LeadingKnown); 1703 Known.Zero.clearAllBits(); 1704 } else { 1705 Known.Zero.setHighBits(LeadingKnown); 1706 Known.One.clearAllBits(); 1707 } 1708 break; 1709 } 1710 case Intrinsic::umin: 1711 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1712 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1713 Known = KnownBits::umin(Known, Known2); 1714 break; 1715 case Intrinsic::umax: 1716 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1717 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1718 Known = KnownBits::umax(Known, Known2); 1719 break; 1720 case Intrinsic::smin: 1721 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1722 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1723 Known = KnownBits::smin(Known, Known2); 1724 break; 1725 case Intrinsic::smax: 1726 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1727 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1728 Known = KnownBits::smax(Known, Known2); 1729 break; 1730 case Intrinsic::x86_sse42_crc32_64_64: 1731 Known.Zero.setBitsFrom(32); 1732 break; 1733 } 1734 } 1735 break; 1736 case Instruction::ShuffleVector: { 1737 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1738 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1739 if (!Shuf) { 1740 Known.resetAll(); 1741 return; 1742 } 1743 // For undef elements, we don't know anything about the common state of 1744 // the shuffle result. 1745 APInt DemandedLHS, DemandedRHS; 1746 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1747 Known.resetAll(); 1748 return; 1749 } 1750 Known.One.setAllBits(); 1751 Known.Zero.setAllBits(); 1752 if (!!DemandedLHS) { 1753 const Value *LHS = Shuf->getOperand(0); 1754 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1755 // If we don't know any bits, early out. 1756 if (Known.isUnknown()) 1757 break; 1758 } 1759 if (!!DemandedRHS) { 1760 const Value *RHS = Shuf->getOperand(1); 1761 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1762 Known.One &= Known2.One; 1763 Known.Zero &= Known2.Zero; 1764 } 1765 break; 1766 } 1767 case Instruction::InsertElement: { 1768 const Value *Vec = I->getOperand(0); 1769 const Value *Elt = I->getOperand(1); 1770 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1771 // Early out if the index is non-constant or out-of-range. 1772 unsigned NumElts = DemandedElts.getBitWidth(); 1773 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1774 Known.resetAll(); 1775 return; 1776 } 1777 Known.One.setAllBits(); 1778 Known.Zero.setAllBits(); 1779 unsigned EltIdx = CIdx->getZExtValue(); 1780 // Do we demand the inserted element? 1781 if (DemandedElts[EltIdx]) { 1782 computeKnownBits(Elt, Known, Depth + 1, Q); 1783 // If we don't know any bits, early out. 1784 if (Known.isUnknown()) 1785 break; 1786 } 1787 // We don't need the base vector element that has been inserted. 1788 APInt DemandedVecElts = DemandedElts; 1789 DemandedVecElts.clearBit(EltIdx); 1790 if (!!DemandedVecElts) { 1791 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1792 Known.One &= Known2.One; 1793 Known.Zero &= Known2.Zero; 1794 } 1795 break; 1796 } 1797 case Instruction::ExtractElement: { 1798 // Look through extract element. If the index is non-constant or 1799 // out-of-range demand all elements, otherwise just the extracted element. 1800 const Value *Vec = I->getOperand(0); 1801 const Value *Idx = I->getOperand(1); 1802 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1803 if (isa<ScalableVectorType>(Vec->getType())) { 1804 // FIXME: there's probably *something* we can do with scalable vectors 1805 Known.resetAll(); 1806 break; 1807 } 1808 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1809 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1810 if (CIdx && CIdx->getValue().ult(NumElts)) 1811 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1812 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1813 break; 1814 } 1815 case Instruction::ExtractValue: 1816 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1817 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1818 if (EVI->getNumIndices() != 1) break; 1819 if (EVI->getIndices()[0] == 0) { 1820 switch (II->getIntrinsicID()) { 1821 default: break; 1822 case Intrinsic::uadd_with_overflow: 1823 case Intrinsic::sadd_with_overflow: 1824 computeKnownBitsAddSub(true, II->getArgOperand(0), 1825 II->getArgOperand(1), false, DemandedElts, 1826 Known, Known2, Depth, Q); 1827 break; 1828 case Intrinsic::usub_with_overflow: 1829 case Intrinsic::ssub_with_overflow: 1830 computeKnownBitsAddSub(false, II->getArgOperand(0), 1831 II->getArgOperand(1), false, DemandedElts, 1832 Known, Known2, Depth, Q); 1833 break; 1834 case Intrinsic::umul_with_overflow: 1835 case Intrinsic::smul_with_overflow: 1836 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1837 DemandedElts, Known, Known2, Depth, Q); 1838 break; 1839 } 1840 } 1841 } 1842 break; 1843 case Instruction::Freeze: 1844 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1845 Depth + 1)) 1846 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1847 break; 1848 } 1849 } 1850 1851 /// Determine which bits of V are known to be either zero or one and return 1852 /// them. 1853 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1854 unsigned Depth, const Query &Q) { 1855 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1856 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1857 return Known; 1858 } 1859 1860 /// Determine which bits of V are known to be either zero or one and return 1861 /// them. 1862 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1863 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1864 computeKnownBits(V, Known, Depth, Q); 1865 return Known; 1866 } 1867 1868 /// Determine which bits of V are known to be either zero or one and return 1869 /// them in the Known bit set. 1870 /// 1871 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1872 /// we cannot optimize based on the assumption that it is zero without changing 1873 /// it to be an explicit zero. If we don't change it to zero, other code could 1874 /// optimized based on the contradictory assumption that it is non-zero. 1875 /// Because instcombine aggressively folds operations with undef args anyway, 1876 /// this won't lose us code quality. 1877 /// 1878 /// This function is defined on values with integer type, values with pointer 1879 /// type, and vectors of integers. In the case 1880 /// where V is a vector, known zero, and known one values are the 1881 /// same width as the vector element, and the bit is set only if it is true 1882 /// for all of the demanded elements in the vector specified by DemandedElts. 1883 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1884 KnownBits &Known, unsigned Depth, const Query &Q) { 1885 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1886 // No demanded elts or V is a scalable vector, better to assume we don't 1887 // know anything. 1888 Known.resetAll(); 1889 return; 1890 } 1891 1892 assert(V && "No Value?"); 1893 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1894 1895 #ifndef NDEBUG 1896 Type *Ty = V->getType(); 1897 unsigned BitWidth = Known.getBitWidth(); 1898 1899 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1900 "Not integer or pointer type!"); 1901 1902 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1903 assert( 1904 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1905 "DemandedElt width should equal the fixed vector number of elements"); 1906 } else { 1907 assert(DemandedElts == APInt(1, 1) && 1908 "DemandedElt width should be 1 for scalars"); 1909 } 1910 1911 Type *ScalarTy = Ty->getScalarType(); 1912 if (ScalarTy->isPointerTy()) { 1913 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1914 "V and Known should have same BitWidth"); 1915 } else { 1916 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1917 "V and Known should have same BitWidth"); 1918 } 1919 #endif 1920 1921 const APInt *C; 1922 if (match(V, m_APInt(C))) { 1923 // We know all of the bits for a scalar constant or a splat vector constant! 1924 Known.One = *C; 1925 Known.Zero = ~Known.One; 1926 return; 1927 } 1928 // Null and aggregate-zero are all-zeros. 1929 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1930 Known.setAllZero(); 1931 return; 1932 } 1933 // Handle a constant vector by taking the intersection of the known bits of 1934 // each element. 1935 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1936 // We know that CDV must be a vector of integers. Take the intersection of 1937 // each element. 1938 Known.Zero.setAllBits(); Known.One.setAllBits(); 1939 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1940 if (!DemandedElts[i]) 1941 continue; 1942 APInt Elt = CDV->getElementAsAPInt(i); 1943 Known.Zero &= ~Elt; 1944 Known.One &= Elt; 1945 } 1946 return; 1947 } 1948 1949 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1950 // We know that CV must be a vector of integers. Take the intersection of 1951 // each element. 1952 Known.Zero.setAllBits(); Known.One.setAllBits(); 1953 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1954 if (!DemandedElts[i]) 1955 continue; 1956 Constant *Element = CV->getAggregateElement(i); 1957 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1958 if (!ElementCI) { 1959 Known.resetAll(); 1960 return; 1961 } 1962 const APInt &Elt = ElementCI->getValue(); 1963 Known.Zero &= ~Elt; 1964 Known.One &= Elt; 1965 } 1966 return; 1967 } 1968 1969 // Start out not knowing anything. 1970 Known.resetAll(); 1971 1972 // We can't imply anything about undefs. 1973 if (isa<UndefValue>(V)) 1974 return; 1975 1976 // There's no point in looking through other users of ConstantData for 1977 // assumptions. Confirm that we've handled them all. 1978 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1979 1980 // All recursive calls that increase depth must come after this. 1981 if (Depth == MaxAnalysisRecursionDepth) 1982 return; 1983 1984 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1985 // the bits of its aliasee. 1986 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1987 if (!GA->isInterposable()) 1988 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1989 return; 1990 } 1991 1992 if (const Operator *I = dyn_cast<Operator>(V)) 1993 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1994 1995 // Aligned pointers have trailing zeros - refine Known.Zero set 1996 if (isa<PointerType>(V->getType())) { 1997 Align Alignment = V->getPointerAlignment(Q.DL); 1998 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 1999 } 2000 2001 // computeKnownBitsFromAssume strictly refines Known. 2002 // Therefore, we run them after computeKnownBitsFromOperator. 2003 2004 // Check whether a nearby assume intrinsic can determine some known bits. 2005 computeKnownBitsFromAssume(V, Known, Depth, Q); 2006 2007 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2008 } 2009 2010 /// Return true if the given value is known to have exactly one 2011 /// bit set when defined. For vectors return true if every element is known to 2012 /// be a power of two when defined. Supports values with integer or pointer 2013 /// types and vectors of integers. 2014 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2015 const Query &Q) { 2016 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2017 2018 // Attempt to match against constants. 2019 if (OrZero && match(V, m_Power2OrZero())) 2020 return true; 2021 if (match(V, m_Power2())) 2022 return true; 2023 2024 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2025 // it is shifted off the end then the result is undefined. 2026 if (match(V, m_Shl(m_One(), m_Value()))) 2027 return true; 2028 2029 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2030 // the bottom. If it is shifted off the bottom then the result is undefined. 2031 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2032 return true; 2033 2034 // The remaining tests are all recursive, so bail out if we hit the limit. 2035 if (Depth++ == MaxAnalysisRecursionDepth) 2036 return false; 2037 2038 Value *X = nullptr, *Y = nullptr; 2039 // A shift left or a logical shift right of a power of two is a power of two 2040 // or zero. 2041 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2042 match(V, m_LShr(m_Value(X), m_Value())))) 2043 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2044 2045 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2046 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2047 2048 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2049 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2050 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2051 2052 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2053 // A power of two and'd with anything is a power of two or zero. 2054 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2055 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2056 return true; 2057 // X & (-X) is always a power of two or zero. 2058 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2059 return true; 2060 return false; 2061 } 2062 2063 // Adding a power-of-two or zero to the same power-of-two or zero yields 2064 // either the original power-of-two, a larger power-of-two or zero. 2065 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2066 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2067 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2068 Q.IIQ.hasNoSignedWrap(VOBO)) { 2069 if (match(X, m_And(m_Specific(Y), m_Value())) || 2070 match(X, m_And(m_Value(), m_Specific(Y)))) 2071 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2072 return true; 2073 if (match(Y, m_And(m_Specific(X), m_Value())) || 2074 match(Y, m_And(m_Value(), m_Specific(X)))) 2075 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2076 return true; 2077 2078 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2079 KnownBits LHSBits(BitWidth); 2080 computeKnownBits(X, LHSBits, Depth, Q); 2081 2082 KnownBits RHSBits(BitWidth); 2083 computeKnownBits(Y, RHSBits, Depth, Q); 2084 // If i8 V is a power of two or zero: 2085 // ZeroBits: 1 1 1 0 1 1 1 1 2086 // ~ZeroBits: 0 0 0 1 0 0 0 0 2087 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2088 // If OrZero isn't set, we cannot give back a zero result. 2089 // Make sure either the LHS or RHS has a bit set. 2090 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2091 return true; 2092 } 2093 } 2094 2095 // An exact divide or right shift can only shift off zero bits, so the result 2096 // is a power of two only if the first operand is a power of two and not 2097 // copying a sign bit (sdiv int_min, 2). 2098 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2099 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2100 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2101 Depth, Q); 2102 } 2103 2104 return false; 2105 } 2106 2107 /// Test whether a GEP's result is known to be non-null. 2108 /// 2109 /// Uses properties inherent in a GEP to try to determine whether it is known 2110 /// to be non-null. 2111 /// 2112 /// Currently this routine does not support vector GEPs. 2113 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2114 const Query &Q) { 2115 const Function *F = nullptr; 2116 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2117 F = I->getFunction(); 2118 2119 if (!GEP->isInBounds() || 2120 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2121 return false; 2122 2123 // FIXME: Support vector-GEPs. 2124 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2125 2126 // If the base pointer is non-null, we cannot walk to a null address with an 2127 // inbounds GEP in address space zero. 2128 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2129 return true; 2130 2131 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2132 // If so, then the GEP cannot produce a null pointer, as doing so would 2133 // inherently violate the inbounds contract within address space zero. 2134 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2135 GTI != GTE; ++GTI) { 2136 // Struct types are easy -- they must always be indexed by a constant. 2137 if (StructType *STy = GTI.getStructTypeOrNull()) { 2138 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2139 unsigned ElementIdx = OpC->getZExtValue(); 2140 const StructLayout *SL = Q.DL.getStructLayout(STy); 2141 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2142 if (ElementOffset > 0) 2143 return true; 2144 continue; 2145 } 2146 2147 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2148 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2149 continue; 2150 2151 // Fast path the constant operand case both for efficiency and so we don't 2152 // increment Depth when just zipping down an all-constant GEP. 2153 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2154 if (!OpC->isZero()) 2155 return true; 2156 continue; 2157 } 2158 2159 // We post-increment Depth here because while isKnownNonZero increments it 2160 // as well, when we pop back up that increment won't persist. We don't want 2161 // to recurse 10k times just because we have 10k GEP operands. We don't 2162 // bail completely out because we want to handle constant GEPs regardless 2163 // of depth. 2164 if (Depth++ >= MaxAnalysisRecursionDepth) 2165 continue; 2166 2167 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2168 return true; 2169 } 2170 2171 return false; 2172 } 2173 2174 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2175 const Instruction *CtxI, 2176 const DominatorTree *DT) { 2177 if (isa<Constant>(V)) 2178 return false; 2179 2180 if (!CtxI || !DT) 2181 return false; 2182 2183 unsigned NumUsesExplored = 0; 2184 for (auto *U : V->users()) { 2185 // Avoid massive lists 2186 if (NumUsesExplored >= DomConditionsMaxUses) 2187 break; 2188 NumUsesExplored++; 2189 2190 // If the value is used as an argument to a call or invoke, then argument 2191 // attributes may provide an answer about null-ness. 2192 if (const auto *CB = dyn_cast<CallBase>(U)) 2193 if (auto *CalledFunc = CB->getCalledFunction()) 2194 for (const Argument &Arg : CalledFunc->args()) 2195 if (CB->getArgOperand(Arg.getArgNo()) == V && 2196 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2197 return true; 2198 2199 // If the value is used as a load/store, then the pointer must be non null. 2200 if (V == getLoadStorePointerOperand(U)) { 2201 const Instruction *I = cast<Instruction>(U); 2202 if (!NullPointerIsDefined(I->getFunction(), 2203 V->getType()->getPointerAddressSpace()) && 2204 DT->dominates(I, CtxI)) 2205 return true; 2206 } 2207 2208 // Consider only compare instructions uniquely controlling a branch 2209 CmpInst::Predicate Pred; 2210 if (!match(const_cast<User *>(U), 2211 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2212 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2213 continue; 2214 2215 SmallVector<const User *, 4> WorkList; 2216 SmallPtrSet<const User *, 4> Visited; 2217 for (auto *CmpU : U->users()) { 2218 assert(WorkList.empty() && "Should be!"); 2219 if (Visited.insert(CmpU).second) 2220 WorkList.push_back(CmpU); 2221 2222 while (!WorkList.empty()) { 2223 auto *Curr = WorkList.pop_back_val(); 2224 2225 // If a user is an AND, add all its users to the work list. We only 2226 // propagate "pred != null" condition through AND because it is only 2227 // correct to assume that all conditions of AND are met in true branch. 2228 // TODO: Support similar logic of OR and EQ predicate? 2229 if (Pred == ICmpInst::ICMP_NE) 2230 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2231 if (BO->getOpcode() == Instruction::And) { 2232 for (auto *BOU : BO->users()) 2233 if (Visited.insert(BOU).second) 2234 WorkList.push_back(BOU); 2235 continue; 2236 } 2237 2238 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2239 assert(BI->isConditional() && "uses a comparison!"); 2240 2241 BasicBlock *NonNullSuccessor = 2242 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2243 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2244 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2245 return true; 2246 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2247 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2248 return true; 2249 } 2250 } 2251 } 2252 } 2253 2254 return false; 2255 } 2256 2257 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2258 /// ensure that the value it's attached to is never Value? 'RangeType' is 2259 /// is the type of the value described by the range. 2260 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2261 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2262 assert(NumRanges >= 1); 2263 for (unsigned i = 0; i < NumRanges; ++i) { 2264 ConstantInt *Lower = 2265 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2266 ConstantInt *Upper = 2267 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2268 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2269 if (Range.contains(Value)) 2270 return false; 2271 } 2272 return true; 2273 } 2274 2275 /// Return true if the given value is known to be non-zero when defined. For 2276 /// vectors, return true if every demanded element is known to be non-zero when 2277 /// defined. For pointers, if the context instruction and dominator tree are 2278 /// specified, perform context-sensitive analysis and return true if the 2279 /// pointer couldn't possibly be null at the specified instruction. 2280 /// Supports values with integer or pointer type and vectors of integers. 2281 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2282 const Query &Q) { 2283 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2284 // vector 2285 if (isa<ScalableVectorType>(V->getType())) 2286 return false; 2287 2288 if (auto *C = dyn_cast<Constant>(V)) { 2289 if (C->isNullValue()) 2290 return false; 2291 if (isa<ConstantInt>(C)) 2292 // Must be non-zero due to null test above. 2293 return true; 2294 2295 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2296 // See the comment for IntToPtr/PtrToInt instructions below. 2297 if (CE->getOpcode() == Instruction::IntToPtr || 2298 CE->getOpcode() == Instruction::PtrToInt) 2299 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2300 .getFixedSize() <= 2301 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2302 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2303 } 2304 2305 // For constant vectors, check that all elements are undefined or known 2306 // non-zero to determine that the whole vector is known non-zero. 2307 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2308 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2309 if (!DemandedElts[i]) 2310 continue; 2311 Constant *Elt = C->getAggregateElement(i); 2312 if (!Elt || Elt->isNullValue()) 2313 return false; 2314 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2315 return false; 2316 } 2317 return true; 2318 } 2319 2320 // A global variable in address space 0 is non null unless extern weak 2321 // or an absolute symbol reference. Other address spaces may have null as a 2322 // valid address for a global, so we can't assume anything. 2323 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2324 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2325 GV->getType()->getAddressSpace() == 0) 2326 return true; 2327 } else 2328 return false; 2329 } 2330 2331 if (auto *I = dyn_cast<Instruction>(V)) { 2332 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2333 // If the possible ranges don't contain zero, then the value is 2334 // definitely non-zero. 2335 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2336 const APInt ZeroValue(Ty->getBitWidth(), 0); 2337 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2338 return true; 2339 } 2340 } 2341 } 2342 2343 if (isKnownNonZeroFromAssume(V, Q)) 2344 return true; 2345 2346 // Some of the tests below are recursive, so bail out if we hit the limit. 2347 if (Depth++ >= MaxAnalysisRecursionDepth) 2348 return false; 2349 2350 // Check for pointer simplifications. 2351 2352 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2353 // Alloca never returns null, malloc might. 2354 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2355 return true; 2356 2357 // A byval, inalloca may not be null in a non-default addres space. A 2358 // nonnull argument is assumed never 0. 2359 if (const Argument *A = dyn_cast<Argument>(V)) { 2360 if (((A->hasPassPointeeByValueCopyAttr() && 2361 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2362 A->hasNonNullAttr())) 2363 return true; 2364 } 2365 2366 // A Load tagged with nonnull metadata is never null. 2367 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2368 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2369 return true; 2370 2371 if (const auto *Call = dyn_cast<CallBase>(V)) { 2372 if (Call->isReturnNonNull()) 2373 return true; 2374 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2375 return isKnownNonZero(RP, Depth, Q); 2376 } 2377 } 2378 2379 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2380 return true; 2381 2382 // Check for recursive pointer simplifications. 2383 if (V->getType()->isPointerTy()) { 2384 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2385 // do not alter the value, or at least not the nullness property of the 2386 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2387 // 2388 // Note that we have to take special care to avoid looking through 2389 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2390 // as casts that can alter the value, e.g., AddrSpaceCasts. 2391 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2392 return isGEPKnownNonNull(GEP, Depth, Q); 2393 2394 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2395 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2396 2397 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2398 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2399 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2400 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2401 } 2402 2403 // Similar to int2ptr above, we can look through ptr2int here if the cast 2404 // is a no-op or an extend and not a truncate. 2405 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2406 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2407 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2408 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2409 2410 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2411 2412 // X | Y != 0 if X != 0 or Y != 0. 2413 Value *X = nullptr, *Y = nullptr; 2414 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2415 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2416 isKnownNonZero(Y, DemandedElts, Depth, Q); 2417 2418 // ext X != 0 if X != 0. 2419 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2420 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2421 2422 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2423 // if the lowest bit is shifted off the end. 2424 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2425 // shl nuw can't remove any non-zero bits. 2426 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2427 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2428 return isKnownNonZero(X, Depth, Q); 2429 2430 KnownBits Known(BitWidth); 2431 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2432 if (Known.One[0]) 2433 return true; 2434 } 2435 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2436 // defined if the sign bit is shifted off the end. 2437 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2438 // shr exact can only shift out zero bits. 2439 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2440 if (BO->isExact()) 2441 return isKnownNonZero(X, Depth, Q); 2442 2443 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2444 if (Known.isNegative()) 2445 return true; 2446 2447 // If the shifter operand is a constant, and all of the bits shifted 2448 // out are known to be zero, and X is known non-zero then at least one 2449 // non-zero bit must remain. 2450 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2451 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2452 // Is there a known one in the portion not shifted out? 2453 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2454 return true; 2455 // Are all the bits to be shifted out known zero? 2456 if (Known.countMinTrailingZeros() >= ShiftVal) 2457 return isKnownNonZero(X, DemandedElts, Depth, Q); 2458 } 2459 } 2460 // div exact can only produce a zero if the dividend is zero. 2461 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2462 return isKnownNonZero(X, DemandedElts, Depth, Q); 2463 } 2464 // X + Y. 2465 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2466 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2467 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2468 2469 // If X and Y are both non-negative (as signed values) then their sum is not 2470 // zero unless both X and Y are zero. 2471 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2472 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2473 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2474 return true; 2475 2476 // If X and Y are both negative (as signed values) then their sum is not 2477 // zero unless both X and Y equal INT_MIN. 2478 if (XKnown.isNegative() && YKnown.isNegative()) { 2479 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2480 // The sign bit of X is set. If some other bit is set then X is not equal 2481 // to INT_MIN. 2482 if (XKnown.One.intersects(Mask)) 2483 return true; 2484 // The sign bit of Y is set. If some other bit is set then Y is not equal 2485 // to INT_MIN. 2486 if (YKnown.One.intersects(Mask)) 2487 return true; 2488 } 2489 2490 // The sum of a non-negative number and a power of two is not zero. 2491 if (XKnown.isNonNegative() && 2492 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2493 return true; 2494 if (YKnown.isNonNegative() && 2495 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2496 return true; 2497 } 2498 // X * Y. 2499 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2500 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2501 // If X and Y are non-zero then so is X * Y as long as the multiplication 2502 // does not overflow. 2503 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2504 isKnownNonZero(X, DemandedElts, Depth, Q) && 2505 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2506 return true; 2507 } 2508 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2509 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2510 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2511 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2512 return true; 2513 } 2514 // PHI 2515 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2516 // Try and detect a recurrence that monotonically increases from a 2517 // starting value, as these are common as induction variables. 2518 if (PN->getNumIncomingValues() == 2) { 2519 Value *Start = PN->getIncomingValue(0); 2520 Value *Induction = PN->getIncomingValue(1); 2521 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2522 std::swap(Start, Induction); 2523 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2524 if (!C->isZero() && !C->isNegative()) { 2525 ConstantInt *X; 2526 if (Q.IIQ.UseInstrInfo && 2527 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2528 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2529 !X->isNegative()) 2530 return true; 2531 } 2532 } 2533 } 2534 // Check if all incoming values are non-zero using recursion. 2535 Query RecQ = Q; 2536 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2537 return llvm::all_of(PN->operands(), [&](const Use &U) { 2538 if (U.get() == PN) 2539 return true; 2540 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2541 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2542 }); 2543 } 2544 // ExtractElement 2545 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2546 const Value *Vec = EEI->getVectorOperand(); 2547 const Value *Idx = EEI->getIndexOperand(); 2548 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2549 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2550 unsigned NumElts = VecTy->getNumElements(); 2551 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2552 if (CIdx && CIdx->getValue().ult(NumElts)) 2553 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2554 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2555 } 2556 } 2557 // Freeze 2558 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2559 auto *Op = FI->getOperand(0); 2560 if (isKnownNonZero(Op, Depth, Q) && 2561 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2562 return true; 2563 } 2564 2565 KnownBits Known(BitWidth); 2566 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2567 return Known.One != 0; 2568 } 2569 2570 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2571 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2572 // vector 2573 if (isa<ScalableVectorType>(V->getType())) 2574 return false; 2575 2576 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2577 APInt DemandedElts = 2578 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2579 return isKnownNonZero(V, DemandedElts, Depth, Q); 2580 } 2581 2582 /// Return true if V2 == V1 + X, where X is known non-zero. 2583 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2584 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2585 if (!BO || BO->getOpcode() != Instruction::Add) 2586 return false; 2587 Value *Op = nullptr; 2588 if (V2 == BO->getOperand(0)) 2589 Op = BO->getOperand(1); 2590 else if (V2 == BO->getOperand(1)) 2591 Op = BO->getOperand(0); 2592 else 2593 return false; 2594 return isKnownNonZero(Op, 0, Q); 2595 } 2596 2597 /// Return true if it is known that V1 != V2. 2598 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2599 if (V1 == V2) 2600 return false; 2601 if (V1->getType() != V2->getType()) 2602 // We can't look through casts yet. 2603 return false; 2604 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2605 return true; 2606 2607 if (V1->getType()->isIntOrIntVectorTy()) { 2608 // Are any known bits in V1 contradictory to known bits in V2? If V1 2609 // has a known zero where V2 has a known one, they must not be equal. 2610 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2611 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2612 2613 if (Known1.Zero.intersects(Known2.One) || 2614 Known2.Zero.intersects(Known1.One)) 2615 return true; 2616 } 2617 return false; 2618 } 2619 2620 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2621 /// simplify operations downstream. Mask is known to be zero for bits that V 2622 /// cannot have. 2623 /// 2624 /// This function is defined on values with integer type, values with pointer 2625 /// type, and vectors of integers. In the case 2626 /// where V is a vector, the mask, known zero, and known one values are the 2627 /// same width as the vector element, and the bit is set only if it is true 2628 /// for all of the elements in the vector. 2629 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2630 const Query &Q) { 2631 KnownBits Known(Mask.getBitWidth()); 2632 computeKnownBits(V, Known, Depth, Q); 2633 return Mask.isSubsetOf(Known.Zero); 2634 } 2635 2636 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2637 // Returns the input and lower/upper bounds. 2638 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2639 const APInt *&CLow, const APInt *&CHigh) { 2640 assert(isa<Operator>(Select) && 2641 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2642 "Input should be a Select!"); 2643 2644 const Value *LHS = nullptr, *RHS = nullptr; 2645 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2646 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2647 return false; 2648 2649 if (!match(RHS, m_APInt(CLow))) 2650 return false; 2651 2652 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2653 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2654 if (getInverseMinMaxFlavor(SPF) != SPF2) 2655 return false; 2656 2657 if (!match(RHS2, m_APInt(CHigh))) 2658 return false; 2659 2660 if (SPF == SPF_SMIN) 2661 std::swap(CLow, CHigh); 2662 2663 In = LHS2; 2664 return CLow->sle(*CHigh); 2665 } 2666 2667 /// For vector constants, loop over the elements and find the constant with the 2668 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2669 /// or if any element was not analyzed; otherwise, return the count for the 2670 /// element with the minimum number of sign bits. 2671 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2672 const APInt &DemandedElts, 2673 unsigned TyBits) { 2674 const auto *CV = dyn_cast<Constant>(V); 2675 if (!CV || !isa<FixedVectorType>(CV->getType())) 2676 return 0; 2677 2678 unsigned MinSignBits = TyBits; 2679 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2680 for (unsigned i = 0; i != NumElts; ++i) { 2681 if (!DemandedElts[i]) 2682 continue; 2683 // If we find a non-ConstantInt, bail out. 2684 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2685 if (!Elt) 2686 return 0; 2687 2688 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2689 } 2690 2691 return MinSignBits; 2692 } 2693 2694 static unsigned ComputeNumSignBitsImpl(const Value *V, 2695 const APInt &DemandedElts, 2696 unsigned Depth, const Query &Q); 2697 2698 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2699 unsigned Depth, const Query &Q) { 2700 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2701 assert(Result > 0 && "At least one sign bit needs to be present!"); 2702 return Result; 2703 } 2704 2705 /// Return the number of times the sign bit of the register is replicated into 2706 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2707 /// (itself), but other cases can give us information. For example, immediately 2708 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2709 /// other, so we return 3. For vectors, return the number of sign bits for the 2710 /// vector element with the minimum number of known sign bits of the demanded 2711 /// elements in the vector specified by DemandedElts. 2712 static unsigned ComputeNumSignBitsImpl(const Value *V, 2713 const APInt &DemandedElts, 2714 unsigned Depth, const Query &Q) { 2715 Type *Ty = V->getType(); 2716 2717 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2718 // vector 2719 if (isa<ScalableVectorType>(Ty)) 2720 return 1; 2721 2722 #ifndef NDEBUG 2723 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2724 2725 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2726 assert( 2727 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2728 "DemandedElt width should equal the fixed vector number of elements"); 2729 } else { 2730 assert(DemandedElts == APInt(1, 1) && 2731 "DemandedElt width should be 1 for scalars"); 2732 } 2733 #endif 2734 2735 // We return the minimum number of sign bits that are guaranteed to be present 2736 // in V, so for undef we have to conservatively return 1. We don't have the 2737 // same behavior for poison though -- that's a FIXME today. 2738 2739 Type *ScalarTy = Ty->getScalarType(); 2740 unsigned TyBits = ScalarTy->isPointerTy() ? 2741 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2742 Q.DL.getTypeSizeInBits(ScalarTy); 2743 2744 unsigned Tmp, Tmp2; 2745 unsigned FirstAnswer = 1; 2746 2747 // Note that ConstantInt is handled by the general computeKnownBits case 2748 // below. 2749 2750 if (Depth == MaxAnalysisRecursionDepth) 2751 return 1; 2752 2753 if (auto *U = dyn_cast<Operator>(V)) { 2754 switch (Operator::getOpcode(V)) { 2755 default: break; 2756 case Instruction::SExt: 2757 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2758 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2759 2760 case Instruction::SDiv: { 2761 const APInt *Denominator; 2762 // sdiv X, C -> adds log(C) sign bits. 2763 if (match(U->getOperand(1), m_APInt(Denominator))) { 2764 2765 // Ignore non-positive denominator. 2766 if (!Denominator->isStrictlyPositive()) 2767 break; 2768 2769 // Calculate the incoming numerator bits. 2770 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2771 2772 // Add floor(log(C)) bits to the numerator bits. 2773 return std::min(TyBits, NumBits + Denominator->logBase2()); 2774 } 2775 break; 2776 } 2777 2778 case Instruction::SRem: { 2779 const APInt *Denominator; 2780 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2781 // positive constant. This let us put a lower bound on the number of sign 2782 // bits. 2783 if (match(U->getOperand(1), m_APInt(Denominator))) { 2784 2785 // Ignore non-positive denominator. 2786 if (!Denominator->isStrictlyPositive()) 2787 break; 2788 2789 // Calculate the incoming numerator bits. SRem by a positive constant 2790 // can't lower the number of sign bits. 2791 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2792 2793 // Calculate the leading sign bit constraints by examining the 2794 // denominator. Given that the denominator is positive, there are two 2795 // cases: 2796 // 2797 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2798 // (1 << ceilLogBase2(C)). 2799 // 2800 // 2. the numerator is negative. Then the result range is (-C,0] and 2801 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2802 // 2803 // Thus a lower bound on the number of sign bits is `TyBits - 2804 // ceilLogBase2(C)`. 2805 2806 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2807 return std::max(NumrBits, ResBits); 2808 } 2809 break; 2810 } 2811 2812 case Instruction::AShr: { 2813 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2814 // ashr X, C -> adds C sign bits. Vectors too. 2815 const APInt *ShAmt; 2816 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2817 if (ShAmt->uge(TyBits)) 2818 break; // Bad shift. 2819 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2820 Tmp += ShAmtLimited; 2821 if (Tmp > TyBits) Tmp = TyBits; 2822 } 2823 return Tmp; 2824 } 2825 case Instruction::Shl: { 2826 const APInt *ShAmt; 2827 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2828 // shl destroys sign bits. 2829 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2830 if (ShAmt->uge(TyBits) || // Bad shift. 2831 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2832 Tmp2 = ShAmt->getZExtValue(); 2833 return Tmp - Tmp2; 2834 } 2835 break; 2836 } 2837 case Instruction::And: 2838 case Instruction::Or: 2839 case Instruction::Xor: // NOT is handled here. 2840 // Logical binary ops preserve the number of sign bits at the worst. 2841 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2842 if (Tmp != 1) { 2843 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2844 FirstAnswer = std::min(Tmp, Tmp2); 2845 // We computed what we know about the sign bits as our first 2846 // answer. Now proceed to the generic code that uses 2847 // computeKnownBits, and pick whichever answer is better. 2848 } 2849 break; 2850 2851 case Instruction::Select: { 2852 // If we have a clamp pattern, we know that the number of sign bits will 2853 // be the minimum of the clamp min/max range. 2854 const Value *X; 2855 const APInt *CLow, *CHigh; 2856 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2857 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2858 2859 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2860 if (Tmp == 1) break; 2861 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2862 return std::min(Tmp, Tmp2); 2863 } 2864 2865 case Instruction::Add: 2866 // Add can have at most one carry bit. Thus we know that the output 2867 // is, at worst, one more bit than the inputs. 2868 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2869 if (Tmp == 1) break; 2870 2871 // Special case decrementing a value (ADD X, -1): 2872 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2873 if (CRHS->isAllOnesValue()) { 2874 KnownBits Known(TyBits); 2875 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2876 2877 // If the input is known to be 0 or 1, the output is 0/-1, which is 2878 // all sign bits set. 2879 if ((Known.Zero | 1).isAllOnesValue()) 2880 return TyBits; 2881 2882 // If we are subtracting one from a positive number, there is no carry 2883 // out of the result. 2884 if (Known.isNonNegative()) 2885 return Tmp; 2886 } 2887 2888 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2889 if (Tmp2 == 1) break; 2890 return std::min(Tmp, Tmp2) - 1; 2891 2892 case Instruction::Sub: 2893 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2894 if (Tmp2 == 1) break; 2895 2896 // Handle NEG. 2897 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2898 if (CLHS->isNullValue()) { 2899 KnownBits Known(TyBits); 2900 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2901 // If the input is known to be 0 or 1, the output is 0/-1, which is 2902 // all sign bits set. 2903 if ((Known.Zero | 1).isAllOnesValue()) 2904 return TyBits; 2905 2906 // If the input is known to be positive (the sign bit is known clear), 2907 // the output of the NEG has the same number of sign bits as the 2908 // input. 2909 if (Known.isNonNegative()) 2910 return Tmp2; 2911 2912 // Otherwise, we treat this like a SUB. 2913 } 2914 2915 // Sub can have at most one carry bit. Thus we know that the output 2916 // is, at worst, one more bit than the inputs. 2917 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2918 if (Tmp == 1) break; 2919 return std::min(Tmp, Tmp2) - 1; 2920 2921 case Instruction::Mul: { 2922 // The output of the Mul can be at most twice the valid bits in the 2923 // inputs. 2924 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2925 if (SignBitsOp0 == 1) break; 2926 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2927 if (SignBitsOp1 == 1) break; 2928 unsigned OutValidBits = 2929 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2930 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2931 } 2932 2933 case Instruction::PHI: { 2934 const PHINode *PN = cast<PHINode>(U); 2935 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2936 // Don't analyze large in-degree PHIs. 2937 if (NumIncomingValues > 4) break; 2938 // Unreachable blocks may have zero-operand PHI nodes. 2939 if (NumIncomingValues == 0) break; 2940 2941 // Take the minimum of all incoming values. This can't infinitely loop 2942 // because of our depth threshold. 2943 Query RecQ = Q; 2944 Tmp = TyBits; 2945 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2946 if (Tmp == 1) return Tmp; 2947 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2948 Tmp = std::min( 2949 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2950 } 2951 return Tmp; 2952 } 2953 2954 case Instruction::Trunc: 2955 // FIXME: it's tricky to do anything useful for this, but it is an 2956 // important case for targets like X86. 2957 break; 2958 2959 case Instruction::ExtractElement: 2960 // Look through extract element. At the moment we keep this simple and 2961 // skip tracking the specific element. But at least we might find 2962 // information valid for all elements of the vector (for example if vector 2963 // is sign extended, shifted, etc). 2964 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2965 2966 case Instruction::ShuffleVector: { 2967 // Collect the minimum number of sign bits that are shared by every vector 2968 // element referenced by the shuffle. 2969 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2970 if (!Shuf) { 2971 // FIXME: Add support for shufflevector constant expressions. 2972 return 1; 2973 } 2974 APInt DemandedLHS, DemandedRHS; 2975 // For undef elements, we don't know anything about the common state of 2976 // the shuffle result. 2977 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2978 return 1; 2979 Tmp = std::numeric_limits<unsigned>::max(); 2980 if (!!DemandedLHS) { 2981 const Value *LHS = Shuf->getOperand(0); 2982 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2983 } 2984 // If we don't know anything, early out and try computeKnownBits 2985 // fall-back. 2986 if (Tmp == 1) 2987 break; 2988 if (!!DemandedRHS) { 2989 const Value *RHS = Shuf->getOperand(1); 2990 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2991 Tmp = std::min(Tmp, Tmp2); 2992 } 2993 // If we don't know anything, early out and try computeKnownBits 2994 // fall-back. 2995 if (Tmp == 1) 2996 break; 2997 assert(Tmp <= Ty->getScalarSizeInBits() && 2998 "Failed to determine minimum sign bits"); 2999 return Tmp; 3000 } 3001 case Instruction::Call: { 3002 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3003 switch (II->getIntrinsicID()) { 3004 default: break; 3005 case Intrinsic::abs: 3006 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3007 if (Tmp == 1) break; 3008 3009 // Absolute value reduces number of sign bits by at most 1. 3010 return Tmp - 1; 3011 } 3012 } 3013 } 3014 } 3015 } 3016 3017 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3018 // use this information. 3019 3020 // If we can examine all elements of a vector constant successfully, we're 3021 // done (we can't do any better than that). If not, keep trying. 3022 if (unsigned VecSignBits = 3023 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3024 return VecSignBits; 3025 3026 KnownBits Known(TyBits); 3027 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3028 3029 // If we know that the sign bit is either zero or one, determine the number of 3030 // identical bits in the top of the input value. 3031 return std::max(FirstAnswer, Known.countMinSignBits()); 3032 } 3033 3034 /// This function computes the integer multiple of Base that equals V. 3035 /// If successful, it returns true and returns the multiple in 3036 /// Multiple. If unsuccessful, it returns false. It looks 3037 /// through SExt instructions only if LookThroughSExt is true. 3038 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3039 bool LookThroughSExt, unsigned Depth) { 3040 assert(V && "No Value?"); 3041 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3042 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3043 3044 Type *T = V->getType(); 3045 3046 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3047 3048 if (Base == 0) 3049 return false; 3050 3051 if (Base == 1) { 3052 Multiple = V; 3053 return true; 3054 } 3055 3056 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3057 Constant *BaseVal = ConstantInt::get(T, Base); 3058 if (CO && CO == BaseVal) { 3059 // Multiple is 1. 3060 Multiple = ConstantInt::get(T, 1); 3061 return true; 3062 } 3063 3064 if (CI && CI->getZExtValue() % Base == 0) { 3065 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3066 return true; 3067 } 3068 3069 if (Depth == MaxAnalysisRecursionDepth) return false; 3070 3071 Operator *I = dyn_cast<Operator>(V); 3072 if (!I) return false; 3073 3074 switch (I->getOpcode()) { 3075 default: break; 3076 case Instruction::SExt: 3077 if (!LookThroughSExt) return false; 3078 // otherwise fall through to ZExt 3079 LLVM_FALLTHROUGH; 3080 case Instruction::ZExt: 3081 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3082 LookThroughSExt, Depth+1); 3083 case Instruction::Shl: 3084 case Instruction::Mul: { 3085 Value *Op0 = I->getOperand(0); 3086 Value *Op1 = I->getOperand(1); 3087 3088 if (I->getOpcode() == Instruction::Shl) { 3089 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3090 if (!Op1CI) return false; 3091 // Turn Op0 << Op1 into Op0 * 2^Op1 3092 APInt Op1Int = Op1CI->getValue(); 3093 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3094 APInt API(Op1Int.getBitWidth(), 0); 3095 API.setBit(BitToSet); 3096 Op1 = ConstantInt::get(V->getContext(), API); 3097 } 3098 3099 Value *Mul0 = nullptr; 3100 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3101 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3102 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3103 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3104 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3105 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3106 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3107 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3108 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3109 3110 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3111 Multiple = ConstantExpr::getMul(MulC, Op1C); 3112 return true; 3113 } 3114 3115 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3116 if (Mul0CI->getValue() == 1) { 3117 // V == Base * Op1, so return Op1 3118 Multiple = Op1; 3119 return true; 3120 } 3121 } 3122 3123 Value *Mul1 = nullptr; 3124 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3125 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3126 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3127 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3128 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3129 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3130 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3131 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3132 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3133 3134 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3135 Multiple = ConstantExpr::getMul(MulC, Op0C); 3136 return true; 3137 } 3138 3139 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3140 if (Mul1CI->getValue() == 1) { 3141 // V == Base * Op0, so return Op0 3142 Multiple = Op0; 3143 return true; 3144 } 3145 } 3146 } 3147 } 3148 3149 // We could not determine if V is a multiple of Base. 3150 return false; 3151 } 3152 3153 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3154 const TargetLibraryInfo *TLI) { 3155 const Function *F = CB.getCalledFunction(); 3156 if (!F) 3157 return Intrinsic::not_intrinsic; 3158 3159 if (F->isIntrinsic()) 3160 return F->getIntrinsicID(); 3161 3162 // We are going to infer semantics of a library function based on mapping it 3163 // to an LLVM intrinsic. Check that the library function is available from 3164 // this callbase and in this environment. 3165 LibFunc Func; 3166 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3167 !CB.onlyReadsMemory()) 3168 return Intrinsic::not_intrinsic; 3169 3170 switch (Func) { 3171 default: 3172 break; 3173 case LibFunc_sin: 3174 case LibFunc_sinf: 3175 case LibFunc_sinl: 3176 return Intrinsic::sin; 3177 case LibFunc_cos: 3178 case LibFunc_cosf: 3179 case LibFunc_cosl: 3180 return Intrinsic::cos; 3181 case LibFunc_exp: 3182 case LibFunc_expf: 3183 case LibFunc_expl: 3184 return Intrinsic::exp; 3185 case LibFunc_exp2: 3186 case LibFunc_exp2f: 3187 case LibFunc_exp2l: 3188 return Intrinsic::exp2; 3189 case LibFunc_log: 3190 case LibFunc_logf: 3191 case LibFunc_logl: 3192 return Intrinsic::log; 3193 case LibFunc_log10: 3194 case LibFunc_log10f: 3195 case LibFunc_log10l: 3196 return Intrinsic::log10; 3197 case LibFunc_log2: 3198 case LibFunc_log2f: 3199 case LibFunc_log2l: 3200 return Intrinsic::log2; 3201 case LibFunc_fabs: 3202 case LibFunc_fabsf: 3203 case LibFunc_fabsl: 3204 return Intrinsic::fabs; 3205 case LibFunc_fmin: 3206 case LibFunc_fminf: 3207 case LibFunc_fminl: 3208 return Intrinsic::minnum; 3209 case LibFunc_fmax: 3210 case LibFunc_fmaxf: 3211 case LibFunc_fmaxl: 3212 return Intrinsic::maxnum; 3213 case LibFunc_copysign: 3214 case LibFunc_copysignf: 3215 case LibFunc_copysignl: 3216 return Intrinsic::copysign; 3217 case LibFunc_floor: 3218 case LibFunc_floorf: 3219 case LibFunc_floorl: 3220 return Intrinsic::floor; 3221 case LibFunc_ceil: 3222 case LibFunc_ceilf: 3223 case LibFunc_ceill: 3224 return Intrinsic::ceil; 3225 case LibFunc_trunc: 3226 case LibFunc_truncf: 3227 case LibFunc_truncl: 3228 return Intrinsic::trunc; 3229 case LibFunc_rint: 3230 case LibFunc_rintf: 3231 case LibFunc_rintl: 3232 return Intrinsic::rint; 3233 case LibFunc_nearbyint: 3234 case LibFunc_nearbyintf: 3235 case LibFunc_nearbyintl: 3236 return Intrinsic::nearbyint; 3237 case LibFunc_round: 3238 case LibFunc_roundf: 3239 case LibFunc_roundl: 3240 return Intrinsic::round; 3241 case LibFunc_roundeven: 3242 case LibFunc_roundevenf: 3243 case LibFunc_roundevenl: 3244 return Intrinsic::roundeven; 3245 case LibFunc_pow: 3246 case LibFunc_powf: 3247 case LibFunc_powl: 3248 return Intrinsic::pow; 3249 case LibFunc_sqrt: 3250 case LibFunc_sqrtf: 3251 case LibFunc_sqrtl: 3252 return Intrinsic::sqrt; 3253 } 3254 3255 return Intrinsic::not_intrinsic; 3256 } 3257 3258 /// Return true if we can prove that the specified FP value is never equal to 3259 /// -0.0. 3260 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3261 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3262 /// the same as +0.0 in floating-point ops. 3263 /// 3264 /// NOTE: this function will need to be revisited when we support non-default 3265 /// rounding modes! 3266 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3267 unsigned Depth) { 3268 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3269 return !CFP->getValueAPF().isNegZero(); 3270 3271 if (Depth == MaxAnalysisRecursionDepth) 3272 return false; 3273 3274 auto *Op = dyn_cast<Operator>(V); 3275 if (!Op) 3276 return false; 3277 3278 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3279 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3280 return true; 3281 3282 // sitofp and uitofp turn into +0.0 for zero. 3283 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3284 return true; 3285 3286 if (auto *Call = dyn_cast<CallInst>(Op)) { 3287 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3288 switch (IID) { 3289 default: 3290 break; 3291 // sqrt(-0.0) = -0.0, no other negative results are possible. 3292 case Intrinsic::sqrt: 3293 case Intrinsic::canonicalize: 3294 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3295 // fabs(x) != -0.0 3296 case Intrinsic::fabs: 3297 return true; 3298 } 3299 } 3300 3301 return false; 3302 } 3303 3304 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3305 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3306 /// bit despite comparing equal. 3307 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3308 const TargetLibraryInfo *TLI, 3309 bool SignBitOnly, 3310 unsigned Depth) { 3311 // TODO: This function does not do the right thing when SignBitOnly is true 3312 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3313 // which flips the sign bits of NaNs. See 3314 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3315 3316 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3317 return !CFP->getValueAPF().isNegative() || 3318 (!SignBitOnly && CFP->getValueAPF().isZero()); 3319 } 3320 3321 // Handle vector of constants. 3322 if (auto *CV = dyn_cast<Constant>(V)) { 3323 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3324 unsigned NumElts = CVFVTy->getNumElements(); 3325 for (unsigned i = 0; i != NumElts; ++i) { 3326 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3327 if (!CFP) 3328 return false; 3329 if (CFP->getValueAPF().isNegative() && 3330 (SignBitOnly || !CFP->getValueAPF().isZero())) 3331 return false; 3332 } 3333 3334 // All non-negative ConstantFPs. 3335 return true; 3336 } 3337 } 3338 3339 if (Depth == MaxAnalysisRecursionDepth) 3340 return false; 3341 3342 const Operator *I = dyn_cast<Operator>(V); 3343 if (!I) 3344 return false; 3345 3346 switch (I->getOpcode()) { 3347 default: 3348 break; 3349 // Unsigned integers are always nonnegative. 3350 case Instruction::UIToFP: 3351 return true; 3352 case Instruction::FMul: 3353 case Instruction::FDiv: 3354 // X * X is always non-negative or a NaN. 3355 // X / X is always exactly 1.0 or a NaN. 3356 if (I->getOperand(0) == I->getOperand(1) && 3357 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3358 return true; 3359 3360 LLVM_FALLTHROUGH; 3361 case Instruction::FAdd: 3362 case Instruction::FRem: 3363 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3364 Depth + 1) && 3365 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3366 Depth + 1); 3367 case Instruction::Select: 3368 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3369 Depth + 1) && 3370 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3371 Depth + 1); 3372 case Instruction::FPExt: 3373 case Instruction::FPTrunc: 3374 // Widening/narrowing never change sign. 3375 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3376 Depth + 1); 3377 case Instruction::ExtractElement: 3378 // Look through extract element. At the moment we keep this simple and skip 3379 // tracking the specific element. But at least we might find information 3380 // valid for all elements of the vector. 3381 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3382 Depth + 1); 3383 case Instruction::Call: 3384 const auto *CI = cast<CallInst>(I); 3385 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3386 switch (IID) { 3387 default: 3388 break; 3389 case Intrinsic::maxnum: { 3390 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3391 auto isPositiveNum = [&](Value *V) { 3392 if (SignBitOnly) { 3393 // With SignBitOnly, this is tricky because the result of 3394 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3395 // a constant strictly greater than 0.0. 3396 const APFloat *C; 3397 return match(V, m_APFloat(C)) && 3398 *C > APFloat::getZero(C->getSemantics()); 3399 } 3400 3401 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3402 // maxnum can't be ordered-less-than-zero. 3403 return isKnownNeverNaN(V, TLI) && 3404 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3405 }; 3406 3407 // TODO: This could be improved. We could also check that neither operand 3408 // has its sign bit set (and at least 1 is not-NAN?). 3409 return isPositiveNum(V0) || isPositiveNum(V1); 3410 } 3411 3412 case Intrinsic::maximum: 3413 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3414 Depth + 1) || 3415 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3416 Depth + 1); 3417 case Intrinsic::minnum: 3418 case Intrinsic::minimum: 3419 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3420 Depth + 1) && 3421 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3422 Depth + 1); 3423 case Intrinsic::exp: 3424 case Intrinsic::exp2: 3425 case Intrinsic::fabs: 3426 return true; 3427 3428 case Intrinsic::sqrt: 3429 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3430 if (!SignBitOnly) 3431 return true; 3432 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3433 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3434 3435 case Intrinsic::powi: 3436 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3437 // powi(x,n) is non-negative if n is even. 3438 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3439 return true; 3440 } 3441 // TODO: This is not correct. Given that exp is an integer, here are the 3442 // ways that pow can return a negative value: 3443 // 3444 // pow(x, exp) --> negative if exp is odd and x is negative. 3445 // pow(-0, exp) --> -inf if exp is negative odd. 3446 // pow(-0, exp) --> -0 if exp is positive odd. 3447 // pow(-inf, exp) --> -0 if exp is negative odd. 3448 // pow(-inf, exp) --> -inf if exp is positive odd. 3449 // 3450 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3451 // but we must return false if x == -0. Unfortunately we do not currently 3452 // have a way of expressing this constraint. See details in 3453 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3454 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3455 Depth + 1); 3456 3457 case Intrinsic::fma: 3458 case Intrinsic::fmuladd: 3459 // x*x+y is non-negative if y is non-negative. 3460 return I->getOperand(0) == I->getOperand(1) && 3461 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3462 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3463 Depth + 1); 3464 } 3465 break; 3466 } 3467 return false; 3468 } 3469 3470 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3471 const TargetLibraryInfo *TLI) { 3472 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3473 } 3474 3475 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3476 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3477 } 3478 3479 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3480 unsigned Depth) { 3481 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3482 3483 // If we're told that infinities won't happen, assume they won't. 3484 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3485 if (FPMathOp->hasNoInfs()) 3486 return true; 3487 3488 // Handle scalar constants. 3489 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3490 return !CFP->isInfinity(); 3491 3492 if (Depth == MaxAnalysisRecursionDepth) 3493 return false; 3494 3495 if (auto *Inst = dyn_cast<Instruction>(V)) { 3496 switch (Inst->getOpcode()) { 3497 case Instruction::Select: { 3498 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3499 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3500 } 3501 case Instruction::SIToFP: 3502 case Instruction::UIToFP: { 3503 // Get width of largest magnitude integer (remove a bit if signed). 3504 // This still works for a signed minimum value because the largest FP 3505 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3506 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3507 if (Inst->getOpcode() == Instruction::SIToFP) 3508 --IntSize; 3509 3510 // If the exponent of the largest finite FP value can hold the largest 3511 // integer, the result of the cast must be finite. 3512 Type *FPTy = Inst->getType()->getScalarType(); 3513 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3514 } 3515 default: 3516 break; 3517 } 3518 } 3519 3520 // try to handle fixed width vector constants 3521 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3522 if (VFVTy && isa<Constant>(V)) { 3523 // For vectors, verify that each element is not infinity. 3524 unsigned NumElts = VFVTy->getNumElements(); 3525 for (unsigned i = 0; i != NumElts; ++i) { 3526 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3527 if (!Elt) 3528 return false; 3529 if (isa<UndefValue>(Elt)) 3530 continue; 3531 auto *CElt = dyn_cast<ConstantFP>(Elt); 3532 if (!CElt || CElt->isInfinity()) 3533 return false; 3534 } 3535 // All elements were confirmed non-infinity or undefined. 3536 return true; 3537 } 3538 3539 // was not able to prove that V never contains infinity 3540 return false; 3541 } 3542 3543 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3544 unsigned Depth) { 3545 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3546 3547 // If we're told that NaNs won't happen, assume they won't. 3548 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3549 if (FPMathOp->hasNoNaNs()) 3550 return true; 3551 3552 // Handle scalar constants. 3553 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3554 return !CFP->isNaN(); 3555 3556 if (Depth == MaxAnalysisRecursionDepth) 3557 return false; 3558 3559 if (auto *Inst = dyn_cast<Instruction>(V)) { 3560 switch (Inst->getOpcode()) { 3561 case Instruction::FAdd: 3562 case Instruction::FSub: 3563 // Adding positive and negative infinity produces NaN. 3564 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3565 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3566 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3567 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3568 3569 case Instruction::FMul: 3570 // Zero multiplied with infinity produces NaN. 3571 // FIXME: If neither side can be zero fmul never produces NaN. 3572 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3573 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3574 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3575 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3576 3577 case Instruction::FDiv: 3578 case Instruction::FRem: 3579 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3580 return false; 3581 3582 case Instruction::Select: { 3583 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3584 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3585 } 3586 case Instruction::SIToFP: 3587 case Instruction::UIToFP: 3588 return true; 3589 case Instruction::FPTrunc: 3590 case Instruction::FPExt: 3591 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3592 default: 3593 break; 3594 } 3595 } 3596 3597 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3598 switch (II->getIntrinsicID()) { 3599 case Intrinsic::canonicalize: 3600 case Intrinsic::fabs: 3601 case Intrinsic::copysign: 3602 case Intrinsic::exp: 3603 case Intrinsic::exp2: 3604 case Intrinsic::floor: 3605 case Intrinsic::ceil: 3606 case Intrinsic::trunc: 3607 case Intrinsic::rint: 3608 case Intrinsic::nearbyint: 3609 case Intrinsic::round: 3610 case Intrinsic::roundeven: 3611 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3612 case Intrinsic::sqrt: 3613 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3614 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3615 case Intrinsic::minnum: 3616 case Intrinsic::maxnum: 3617 // If either operand is not NaN, the result is not NaN. 3618 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3619 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3620 default: 3621 return false; 3622 } 3623 } 3624 3625 // Try to handle fixed width vector constants 3626 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3627 if (VFVTy && isa<Constant>(V)) { 3628 // For vectors, verify that each element is not NaN. 3629 unsigned NumElts = VFVTy->getNumElements(); 3630 for (unsigned i = 0; i != NumElts; ++i) { 3631 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3632 if (!Elt) 3633 return false; 3634 if (isa<UndefValue>(Elt)) 3635 continue; 3636 auto *CElt = dyn_cast<ConstantFP>(Elt); 3637 if (!CElt || CElt->isNaN()) 3638 return false; 3639 } 3640 // All elements were confirmed not-NaN or undefined. 3641 return true; 3642 } 3643 3644 // Was not able to prove that V never contains NaN 3645 return false; 3646 } 3647 3648 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3649 3650 // All byte-wide stores are splatable, even of arbitrary variables. 3651 if (V->getType()->isIntegerTy(8)) 3652 return V; 3653 3654 LLVMContext &Ctx = V->getContext(); 3655 3656 // Undef don't care. 3657 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3658 if (isa<UndefValue>(V)) 3659 return UndefInt8; 3660 3661 // Return Undef for zero-sized type. 3662 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3663 return UndefInt8; 3664 3665 Constant *C = dyn_cast<Constant>(V); 3666 if (!C) { 3667 // Conceptually, we could handle things like: 3668 // %a = zext i8 %X to i16 3669 // %b = shl i16 %a, 8 3670 // %c = or i16 %a, %b 3671 // but until there is an example that actually needs this, it doesn't seem 3672 // worth worrying about. 3673 return nullptr; 3674 } 3675 3676 // Handle 'null' ConstantArrayZero etc. 3677 if (C->isNullValue()) 3678 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3679 3680 // Constant floating-point values can be handled as integer values if the 3681 // corresponding integer value is "byteable". An important case is 0.0. 3682 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3683 Type *Ty = nullptr; 3684 if (CFP->getType()->isHalfTy()) 3685 Ty = Type::getInt16Ty(Ctx); 3686 else if (CFP->getType()->isFloatTy()) 3687 Ty = Type::getInt32Ty(Ctx); 3688 else if (CFP->getType()->isDoubleTy()) 3689 Ty = Type::getInt64Ty(Ctx); 3690 // Don't handle long double formats, which have strange constraints. 3691 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3692 : nullptr; 3693 } 3694 3695 // We can handle constant integers that are multiple of 8 bits. 3696 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3697 if (CI->getBitWidth() % 8 == 0) { 3698 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3699 if (!CI->getValue().isSplat(8)) 3700 return nullptr; 3701 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3702 } 3703 } 3704 3705 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3706 if (CE->getOpcode() == Instruction::IntToPtr) { 3707 auto PS = DL.getPointerSizeInBits( 3708 cast<PointerType>(CE->getType())->getAddressSpace()); 3709 return isBytewiseValue( 3710 ConstantExpr::getIntegerCast(CE->getOperand(0), 3711 Type::getIntNTy(Ctx, PS), false), 3712 DL); 3713 } 3714 } 3715 3716 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3717 if (LHS == RHS) 3718 return LHS; 3719 if (!LHS || !RHS) 3720 return nullptr; 3721 if (LHS == UndefInt8) 3722 return RHS; 3723 if (RHS == UndefInt8) 3724 return LHS; 3725 return nullptr; 3726 }; 3727 3728 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3729 Value *Val = UndefInt8; 3730 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3731 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3732 return nullptr; 3733 return Val; 3734 } 3735 3736 if (isa<ConstantAggregate>(C)) { 3737 Value *Val = UndefInt8; 3738 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3739 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3740 return nullptr; 3741 return Val; 3742 } 3743 3744 // Don't try to handle the handful of other constants. 3745 return nullptr; 3746 } 3747 3748 // This is the recursive version of BuildSubAggregate. It takes a few different 3749 // arguments. Idxs is the index within the nested struct From that we are 3750 // looking at now (which is of type IndexedType). IdxSkip is the number of 3751 // indices from Idxs that should be left out when inserting into the resulting 3752 // struct. To is the result struct built so far, new insertvalue instructions 3753 // build on that. 3754 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3755 SmallVectorImpl<unsigned> &Idxs, 3756 unsigned IdxSkip, 3757 Instruction *InsertBefore) { 3758 StructType *STy = dyn_cast<StructType>(IndexedType); 3759 if (STy) { 3760 // Save the original To argument so we can modify it 3761 Value *OrigTo = To; 3762 // General case, the type indexed by Idxs is a struct 3763 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3764 // Process each struct element recursively 3765 Idxs.push_back(i); 3766 Value *PrevTo = To; 3767 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3768 InsertBefore); 3769 Idxs.pop_back(); 3770 if (!To) { 3771 // Couldn't find any inserted value for this index? Cleanup 3772 while (PrevTo != OrigTo) { 3773 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3774 PrevTo = Del->getAggregateOperand(); 3775 Del->eraseFromParent(); 3776 } 3777 // Stop processing elements 3778 break; 3779 } 3780 } 3781 // If we successfully found a value for each of our subaggregates 3782 if (To) 3783 return To; 3784 } 3785 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3786 // the struct's elements had a value that was inserted directly. In the latter 3787 // case, perhaps we can't determine each of the subelements individually, but 3788 // we might be able to find the complete struct somewhere. 3789 3790 // Find the value that is at that particular spot 3791 Value *V = FindInsertedValue(From, Idxs); 3792 3793 if (!V) 3794 return nullptr; 3795 3796 // Insert the value in the new (sub) aggregate 3797 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3798 "tmp", InsertBefore); 3799 } 3800 3801 // This helper takes a nested struct and extracts a part of it (which is again a 3802 // struct) into a new value. For example, given the struct: 3803 // { a, { b, { c, d }, e } } 3804 // and the indices "1, 1" this returns 3805 // { c, d }. 3806 // 3807 // It does this by inserting an insertvalue for each element in the resulting 3808 // struct, as opposed to just inserting a single struct. This will only work if 3809 // each of the elements of the substruct are known (ie, inserted into From by an 3810 // insertvalue instruction somewhere). 3811 // 3812 // All inserted insertvalue instructions are inserted before InsertBefore 3813 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3814 Instruction *InsertBefore) { 3815 assert(InsertBefore && "Must have someplace to insert!"); 3816 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3817 idx_range); 3818 Value *To = UndefValue::get(IndexedType); 3819 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3820 unsigned IdxSkip = Idxs.size(); 3821 3822 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3823 } 3824 3825 /// Given an aggregate and a sequence of indices, see if the scalar value 3826 /// indexed is already around as a register, for example if it was inserted 3827 /// directly into the aggregate. 3828 /// 3829 /// If InsertBefore is not null, this function will duplicate (modified) 3830 /// insertvalues when a part of a nested struct is extracted. 3831 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3832 Instruction *InsertBefore) { 3833 // Nothing to index? Just return V then (this is useful at the end of our 3834 // recursion). 3835 if (idx_range.empty()) 3836 return V; 3837 // We have indices, so V should have an indexable type. 3838 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3839 "Not looking at a struct or array?"); 3840 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3841 "Invalid indices for type?"); 3842 3843 if (Constant *C = dyn_cast<Constant>(V)) { 3844 C = C->getAggregateElement(idx_range[0]); 3845 if (!C) return nullptr; 3846 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3847 } 3848 3849 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3850 // Loop the indices for the insertvalue instruction in parallel with the 3851 // requested indices 3852 const unsigned *req_idx = idx_range.begin(); 3853 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3854 i != e; ++i, ++req_idx) { 3855 if (req_idx == idx_range.end()) { 3856 // We can't handle this without inserting insertvalues 3857 if (!InsertBefore) 3858 return nullptr; 3859 3860 // The requested index identifies a part of a nested aggregate. Handle 3861 // this specially. For example, 3862 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3863 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3864 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3865 // This can be changed into 3866 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3867 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3868 // which allows the unused 0,0 element from the nested struct to be 3869 // removed. 3870 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3871 InsertBefore); 3872 } 3873 3874 // This insert value inserts something else than what we are looking for. 3875 // See if the (aggregate) value inserted into has the value we are 3876 // looking for, then. 3877 if (*req_idx != *i) 3878 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3879 InsertBefore); 3880 } 3881 // If we end up here, the indices of the insertvalue match with those 3882 // requested (though possibly only partially). Now we recursively look at 3883 // the inserted value, passing any remaining indices. 3884 return FindInsertedValue(I->getInsertedValueOperand(), 3885 makeArrayRef(req_idx, idx_range.end()), 3886 InsertBefore); 3887 } 3888 3889 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3890 // If we're extracting a value from an aggregate that was extracted from 3891 // something else, we can extract from that something else directly instead. 3892 // However, we will need to chain I's indices with the requested indices. 3893 3894 // Calculate the number of indices required 3895 unsigned size = I->getNumIndices() + idx_range.size(); 3896 // Allocate some space to put the new indices in 3897 SmallVector<unsigned, 5> Idxs; 3898 Idxs.reserve(size); 3899 // Add indices from the extract value instruction 3900 Idxs.append(I->idx_begin(), I->idx_end()); 3901 3902 // Add requested indices 3903 Idxs.append(idx_range.begin(), idx_range.end()); 3904 3905 assert(Idxs.size() == size 3906 && "Number of indices added not correct?"); 3907 3908 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3909 } 3910 // Otherwise, we don't know (such as, extracting from a function return value 3911 // or load instruction) 3912 return nullptr; 3913 } 3914 3915 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3916 unsigned CharSize) { 3917 // Make sure the GEP has exactly three arguments. 3918 if (GEP->getNumOperands() != 3) 3919 return false; 3920 3921 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3922 // CharSize. 3923 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3924 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3925 return false; 3926 3927 // Check to make sure that the first operand of the GEP is an integer and 3928 // has value 0 so that we are sure we're indexing into the initializer. 3929 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3930 if (!FirstIdx || !FirstIdx->isZero()) 3931 return false; 3932 3933 return true; 3934 } 3935 3936 bool llvm::getConstantDataArrayInfo(const Value *V, 3937 ConstantDataArraySlice &Slice, 3938 unsigned ElementSize, uint64_t Offset) { 3939 assert(V); 3940 3941 // Look through bitcast instructions and geps. 3942 V = V->stripPointerCasts(); 3943 3944 // If the value is a GEP instruction or constant expression, treat it as an 3945 // offset. 3946 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3947 // The GEP operator should be based on a pointer to string constant, and is 3948 // indexing into the string constant. 3949 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3950 return false; 3951 3952 // If the second index isn't a ConstantInt, then this is a variable index 3953 // into the array. If this occurs, we can't say anything meaningful about 3954 // the string. 3955 uint64_t StartIdx = 0; 3956 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3957 StartIdx = CI->getZExtValue(); 3958 else 3959 return false; 3960 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3961 StartIdx + Offset); 3962 } 3963 3964 // The GEP instruction, constant or instruction, must reference a global 3965 // variable that is a constant and is initialized. The referenced constant 3966 // initializer is the array that we'll use for optimization. 3967 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3968 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3969 return false; 3970 3971 const ConstantDataArray *Array; 3972 ArrayType *ArrayTy; 3973 if (GV->getInitializer()->isNullValue()) { 3974 Type *GVTy = GV->getValueType(); 3975 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3976 // A zeroinitializer for the array; there is no ConstantDataArray. 3977 Array = nullptr; 3978 } else { 3979 const DataLayout &DL = GV->getParent()->getDataLayout(); 3980 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3981 uint64_t Length = SizeInBytes / (ElementSize / 8); 3982 if (Length <= Offset) 3983 return false; 3984 3985 Slice.Array = nullptr; 3986 Slice.Offset = 0; 3987 Slice.Length = Length - Offset; 3988 return true; 3989 } 3990 } else { 3991 // This must be a ConstantDataArray. 3992 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3993 if (!Array) 3994 return false; 3995 ArrayTy = Array->getType(); 3996 } 3997 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3998 return false; 3999 4000 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4001 if (Offset > NumElts) 4002 return false; 4003 4004 Slice.Array = Array; 4005 Slice.Offset = Offset; 4006 Slice.Length = NumElts - Offset; 4007 return true; 4008 } 4009 4010 /// This function computes the length of a null-terminated C string pointed to 4011 /// by V. If successful, it returns true and returns the string in Str. 4012 /// If unsuccessful, it returns false. 4013 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4014 uint64_t Offset, bool TrimAtNul) { 4015 ConstantDataArraySlice Slice; 4016 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4017 return false; 4018 4019 if (Slice.Array == nullptr) { 4020 if (TrimAtNul) { 4021 Str = StringRef(); 4022 return true; 4023 } 4024 if (Slice.Length == 1) { 4025 Str = StringRef("", 1); 4026 return true; 4027 } 4028 // We cannot instantiate a StringRef as we do not have an appropriate string 4029 // of 0s at hand. 4030 return false; 4031 } 4032 4033 // Start out with the entire array in the StringRef. 4034 Str = Slice.Array->getAsString(); 4035 // Skip over 'offset' bytes. 4036 Str = Str.substr(Slice.Offset); 4037 4038 if (TrimAtNul) { 4039 // Trim off the \0 and anything after it. If the array is not nul 4040 // terminated, we just return the whole end of string. The client may know 4041 // some other way that the string is length-bound. 4042 Str = Str.substr(0, Str.find('\0')); 4043 } 4044 return true; 4045 } 4046 4047 // These next two are very similar to the above, but also look through PHI 4048 // nodes. 4049 // TODO: See if we can integrate these two together. 4050 4051 /// If we can compute the length of the string pointed to by 4052 /// the specified pointer, return 'len+1'. If we can't, return 0. 4053 static uint64_t GetStringLengthH(const Value *V, 4054 SmallPtrSetImpl<const PHINode*> &PHIs, 4055 unsigned CharSize) { 4056 // Look through noop bitcast instructions. 4057 V = V->stripPointerCasts(); 4058 4059 // If this is a PHI node, there are two cases: either we have already seen it 4060 // or we haven't. 4061 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4062 if (!PHIs.insert(PN).second) 4063 return ~0ULL; // already in the set. 4064 4065 // If it was new, see if all the input strings are the same length. 4066 uint64_t LenSoFar = ~0ULL; 4067 for (Value *IncValue : PN->incoming_values()) { 4068 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4069 if (Len == 0) return 0; // Unknown length -> unknown. 4070 4071 if (Len == ~0ULL) continue; 4072 4073 if (Len != LenSoFar && LenSoFar != ~0ULL) 4074 return 0; // Disagree -> unknown. 4075 LenSoFar = Len; 4076 } 4077 4078 // Success, all agree. 4079 return LenSoFar; 4080 } 4081 4082 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4083 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4084 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4085 if (Len1 == 0) return 0; 4086 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4087 if (Len2 == 0) return 0; 4088 if (Len1 == ~0ULL) return Len2; 4089 if (Len2 == ~0ULL) return Len1; 4090 if (Len1 != Len2) return 0; 4091 return Len1; 4092 } 4093 4094 // Otherwise, see if we can read the string. 4095 ConstantDataArraySlice Slice; 4096 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4097 return 0; 4098 4099 if (Slice.Array == nullptr) 4100 return 1; 4101 4102 // Search for nul characters 4103 unsigned NullIndex = 0; 4104 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4105 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4106 break; 4107 } 4108 4109 return NullIndex + 1; 4110 } 4111 4112 /// If we can compute the length of the string pointed to by 4113 /// the specified pointer, return 'len+1'. If we can't, return 0. 4114 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4115 if (!V->getType()->isPointerTy()) 4116 return 0; 4117 4118 SmallPtrSet<const PHINode*, 32> PHIs; 4119 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4120 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4121 // an empty string as a length. 4122 return Len == ~0ULL ? 1 : Len; 4123 } 4124 4125 const Value * 4126 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4127 bool MustPreserveNullness) { 4128 assert(Call && 4129 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4130 if (const Value *RV = Call->getReturnedArgOperand()) 4131 return RV; 4132 // This can be used only as a aliasing property. 4133 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4134 Call, MustPreserveNullness)) 4135 return Call->getArgOperand(0); 4136 return nullptr; 4137 } 4138 4139 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4140 const CallBase *Call, bool MustPreserveNullness) { 4141 switch (Call->getIntrinsicID()) { 4142 case Intrinsic::launder_invariant_group: 4143 case Intrinsic::strip_invariant_group: 4144 case Intrinsic::aarch64_irg: 4145 case Intrinsic::aarch64_tagp: 4146 return true; 4147 case Intrinsic::ptrmask: 4148 return !MustPreserveNullness; 4149 default: 4150 return false; 4151 } 4152 } 4153 4154 /// \p PN defines a loop-variant pointer to an object. Check if the 4155 /// previous iteration of the loop was referring to the same object as \p PN. 4156 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4157 const LoopInfo *LI) { 4158 // Find the loop-defined value. 4159 Loop *L = LI->getLoopFor(PN->getParent()); 4160 if (PN->getNumIncomingValues() != 2) 4161 return true; 4162 4163 // Find the value from previous iteration. 4164 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4165 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4166 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4167 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4168 return true; 4169 4170 // If a new pointer is loaded in the loop, the pointer references a different 4171 // object in every iteration. E.g.: 4172 // for (i) 4173 // int *p = a[i]; 4174 // ... 4175 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4176 if (!L->isLoopInvariant(Load->getPointerOperand())) 4177 return false; 4178 return true; 4179 } 4180 4181 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4182 if (!V->getType()->isPointerTy()) 4183 return V; 4184 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4185 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4186 V = GEP->getPointerOperand(); 4187 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4188 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4189 V = cast<Operator>(V)->getOperand(0); 4190 if (!V->getType()->isPointerTy()) 4191 return V; 4192 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4193 if (GA->isInterposable()) 4194 return V; 4195 V = GA->getAliasee(); 4196 } else { 4197 if (auto *PHI = dyn_cast<PHINode>(V)) { 4198 // Look through single-arg phi nodes created by LCSSA. 4199 if (PHI->getNumIncomingValues() == 1) { 4200 V = PHI->getIncomingValue(0); 4201 continue; 4202 } 4203 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4204 // CaptureTracking can know about special capturing properties of some 4205 // intrinsics like launder.invariant.group, that can't be expressed with 4206 // the attributes, but have properties like returning aliasing pointer. 4207 // Because some analysis may assume that nocaptured pointer is not 4208 // returned from some special intrinsic (because function would have to 4209 // be marked with returns attribute), it is crucial to use this function 4210 // because it should be in sync with CaptureTracking. Not using it may 4211 // cause weird miscompilations where 2 aliasing pointers are assumed to 4212 // noalias. 4213 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4214 V = RP; 4215 continue; 4216 } 4217 } 4218 4219 return V; 4220 } 4221 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4222 } 4223 return V; 4224 } 4225 4226 void llvm::getUnderlyingObjects(const Value *V, 4227 SmallVectorImpl<const Value *> &Objects, 4228 LoopInfo *LI, unsigned MaxLookup) { 4229 SmallPtrSet<const Value *, 4> Visited; 4230 SmallVector<const Value *, 4> Worklist; 4231 Worklist.push_back(V); 4232 do { 4233 const Value *P = Worklist.pop_back_val(); 4234 P = getUnderlyingObject(P, MaxLookup); 4235 4236 if (!Visited.insert(P).second) 4237 continue; 4238 4239 if (auto *SI = dyn_cast<SelectInst>(P)) { 4240 Worklist.push_back(SI->getTrueValue()); 4241 Worklist.push_back(SI->getFalseValue()); 4242 continue; 4243 } 4244 4245 if (auto *PN = dyn_cast<PHINode>(P)) { 4246 // If this PHI changes the underlying object in every iteration of the 4247 // loop, don't look through it. Consider: 4248 // int **A; 4249 // for (i) { 4250 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4251 // Curr = A[i]; 4252 // *Prev, *Curr; 4253 // 4254 // Prev is tracking Curr one iteration behind so they refer to different 4255 // underlying objects. 4256 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4257 isSameUnderlyingObjectInLoop(PN, LI)) 4258 for (Value *IncValue : PN->incoming_values()) 4259 Worklist.push_back(IncValue); 4260 continue; 4261 } 4262 4263 Objects.push_back(P); 4264 } while (!Worklist.empty()); 4265 } 4266 4267 /// This is the function that does the work of looking through basic 4268 /// ptrtoint+arithmetic+inttoptr sequences. 4269 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4270 do { 4271 if (const Operator *U = dyn_cast<Operator>(V)) { 4272 // If we find a ptrtoint, we can transfer control back to the 4273 // regular getUnderlyingObjectFromInt. 4274 if (U->getOpcode() == Instruction::PtrToInt) 4275 return U->getOperand(0); 4276 // If we find an add of a constant, a multiplied value, or a phi, it's 4277 // likely that the other operand will lead us to the base 4278 // object. We don't have to worry about the case where the 4279 // object address is somehow being computed by the multiply, 4280 // because our callers only care when the result is an 4281 // identifiable object. 4282 if (U->getOpcode() != Instruction::Add || 4283 (!isa<ConstantInt>(U->getOperand(1)) && 4284 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4285 !isa<PHINode>(U->getOperand(1)))) 4286 return V; 4287 V = U->getOperand(0); 4288 } else { 4289 return V; 4290 } 4291 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4292 } while (true); 4293 } 4294 4295 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4296 /// ptrtoint+arithmetic+inttoptr sequences. 4297 /// It returns false if unidentified object is found in getUnderlyingObjects. 4298 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4299 SmallVectorImpl<Value *> &Objects) { 4300 SmallPtrSet<const Value *, 16> Visited; 4301 SmallVector<const Value *, 4> Working(1, V); 4302 do { 4303 V = Working.pop_back_val(); 4304 4305 SmallVector<const Value *, 4> Objs; 4306 getUnderlyingObjects(V, Objs); 4307 4308 for (const Value *V : Objs) { 4309 if (!Visited.insert(V).second) 4310 continue; 4311 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4312 const Value *O = 4313 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4314 if (O->getType()->isPointerTy()) { 4315 Working.push_back(O); 4316 continue; 4317 } 4318 } 4319 // If getUnderlyingObjects fails to find an identifiable object, 4320 // getUnderlyingObjectsForCodeGen also fails for safety. 4321 if (!isIdentifiedObject(V)) { 4322 Objects.clear(); 4323 return false; 4324 } 4325 Objects.push_back(const_cast<Value *>(V)); 4326 } 4327 } while (!Working.empty()); 4328 return true; 4329 } 4330 4331 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4332 AllocaInst *Result = nullptr; 4333 SmallPtrSet<Value *, 4> Visited; 4334 SmallVector<Value *, 4> Worklist; 4335 4336 auto AddWork = [&](Value *V) { 4337 if (Visited.insert(V).second) 4338 Worklist.push_back(V); 4339 }; 4340 4341 AddWork(V); 4342 do { 4343 V = Worklist.pop_back_val(); 4344 assert(Visited.count(V)); 4345 4346 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4347 if (Result && Result != AI) 4348 return nullptr; 4349 Result = AI; 4350 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4351 AddWork(CI->getOperand(0)); 4352 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4353 for (Value *IncValue : PN->incoming_values()) 4354 AddWork(IncValue); 4355 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4356 AddWork(SI->getTrueValue()); 4357 AddWork(SI->getFalseValue()); 4358 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4359 if (OffsetZero && !GEP->hasAllZeroIndices()) 4360 return nullptr; 4361 AddWork(GEP->getPointerOperand()); 4362 } else { 4363 return nullptr; 4364 } 4365 } while (!Worklist.empty()); 4366 4367 return Result; 4368 } 4369 4370 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4371 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4372 for (const User *U : V->users()) { 4373 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4374 if (!II) 4375 return false; 4376 4377 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4378 continue; 4379 4380 if (AllowDroppable && II->isDroppable()) 4381 continue; 4382 4383 return false; 4384 } 4385 return true; 4386 } 4387 4388 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4389 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4390 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4391 } 4392 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4393 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4394 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4395 } 4396 4397 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4398 if (!LI.isUnordered()) 4399 return true; 4400 const Function &F = *LI.getFunction(); 4401 // Speculative load may create a race that did not exist in the source. 4402 return F.hasFnAttribute(Attribute::SanitizeThread) || 4403 // Speculative load may load data from dirty regions. 4404 F.hasFnAttribute(Attribute::SanitizeAddress) || 4405 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4406 } 4407 4408 4409 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4410 const Instruction *CtxI, 4411 const DominatorTree *DT) { 4412 const Operator *Inst = dyn_cast<Operator>(V); 4413 if (!Inst) 4414 return false; 4415 4416 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4417 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4418 if (C->canTrap()) 4419 return false; 4420 4421 switch (Inst->getOpcode()) { 4422 default: 4423 return true; 4424 case Instruction::UDiv: 4425 case Instruction::URem: { 4426 // x / y is undefined if y == 0. 4427 const APInt *V; 4428 if (match(Inst->getOperand(1), m_APInt(V))) 4429 return *V != 0; 4430 return false; 4431 } 4432 case Instruction::SDiv: 4433 case Instruction::SRem: { 4434 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4435 const APInt *Numerator, *Denominator; 4436 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4437 return false; 4438 // We cannot hoist this division if the denominator is 0. 4439 if (*Denominator == 0) 4440 return false; 4441 // It's safe to hoist if the denominator is not 0 or -1. 4442 if (*Denominator != -1) 4443 return true; 4444 // At this point we know that the denominator is -1. It is safe to hoist as 4445 // long we know that the numerator is not INT_MIN. 4446 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4447 return !Numerator->isMinSignedValue(); 4448 // The numerator *might* be MinSignedValue. 4449 return false; 4450 } 4451 case Instruction::Load: { 4452 const LoadInst *LI = cast<LoadInst>(Inst); 4453 if (mustSuppressSpeculation(*LI)) 4454 return false; 4455 const DataLayout &DL = LI->getModule()->getDataLayout(); 4456 return isDereferenceableAndAlignedPointer( 4457 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4458 DL, CtxI, DT); 4459 } 4460 case Instruction::Call: { 4461 auto *CI = cast<const CallInst>(Inst); 4462 const Function *Callee = CI->getCalledFunction(); 4463 4464 // The called function could have undefined behavior or side-effects, even 4465 // if marked readnone nounwind. 4466 return Callee && Callee->isSpeculatable(); 4467 } 4468 case Instruction::VAArg: 4469 case Instruction::Alloca: 4470 case Instruction::Invoke: 4471 case Instruction::CallBr: 4472 case Instruction::PHI: 4473 case Instruction::Store: 4474 case Instruction::Ret: 4475 case Instruction::Br: 4476 case Instruction::IndirectBr: 4477 case Instruction::Switch: 4478 case Instruction::Unreachable: 4479 case Instruction::Fence: 4480 case Instruction::AtomicRMW: 4481 case Instruction::AtomicCmpXchg: 4482 case Instruction::LandingPad: 4483 case Instruction::Resume: 4484 case Instruction::CatchSwitch: 4485 case Instruction::CatchPad: 4486 case Instruction::CatchRet: 4487 case Instruction::CleanupPad: 4488 case Instruction::CleanupRet: 4489 return false; // Misc instructions which have effects 4490 } 4491 } 4492 4493 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4494 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4495 } 4496 4497 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4498 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4499 switch (OR) { 4500 case ConstantRange::OverflowResult::MayOverflow: 4501 return OverflowResult::MayOverflow; 4502 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4503 return OverflowResult::AlwaysOverflowsLow; 4504 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4505 return OverflowResult::AlwaysOverflowsHigh; 4506 case ConstantRange::OverflowResult::NeverOverflows: 4507 return OverflowResult::NeverOverflows; 4508 } 4509 llvm_unreachable("Unknown OverflowResult"); 4510 } 4511 4512 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4513 static ConstantRange computeConstantRangeIncludingKnownBits( 4514 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4515 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4516 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4517 KnownBits Known = computeKnownBits( 4518 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4519 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4520 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4521 ConstantRange::PreferredRangeType RangeType = 4522 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4523 return CR1.intersectWith(CR2, RangeType); 4524 } 4525 4526 OverflowResult llvm::computeOverflowForUnsignedMul( 4527 const Value *LHS, const Value *RHS, const DataLayout &DL, 4528 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4529 bool UseInstrInfo) { 4530 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4531 nullptr, UseInstrInfo); 4532 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4533 nullptr, UseInstrInfo); 4534 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4535 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4536 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4537 } 4538 4539 OverflowResult 4540 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4541 const DataLayout &DL, AssumptionCache *AC, 4542 const Instruction *CxtI, 4543 const DominatorTree *DT, bool UseInstrInfo) { 4544 // Multiplying n * m significant bits yields a result of n + m significant 4545 // bits. If the total number of significant bits does not exceed the 4546 // result bit width (minus 1), there is no overflow. 4547 // This means if we have enough leading sign bits in the operands 4548 // we can guarantee that the result does not overflow. 4549 // Ref: "Hacker's Delight" by Henry Warren 4550 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4551 4552 // Note that underestimating the number of sign bits gives a more 4553 // conservative answer. 4554 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4555 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4556 4557 // First handle the easy case: if we have enough sign bits there's 4558 // definitely no overflow. 4559 if (SignBits > BitWidth + 1) 4560 return OverflowResult::NeverOverflows; 4561 4562 // There are two ambiguous cases where there can be no overflow: 4563 // SignBits == BitWidth + 1 and 4564 // SignBits == BitWidth 4565 // The second case is difficult to check, therefore we only handle the 4566 // first case. 4567 if (SignBits == BitWidth + 1) { 4568 // It overflows only when both arguments are negative and the true 4569 // product is exactly the minimum negative number. 4570 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4571 // For simplicity we just check if at least one side is not negative. 4572 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4573 nullptr, UseInstrInfo); 4574 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4575 nullptr, UseInstrInfo); 4576 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4577 return OverflowResult::NeverOverflows; 4578 } 4579 return OverflowResult::MayOverflow; 4580 } 4581 4582 OverflowResult llvm::computeOverflowForUnsignedAdd( 4583 const Value *LHS, const Value *RHS, const DataLayout &DL, 4584 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4585 bool UseInstrInfo) { 4586 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4587 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4588 nullptr, UseInstrInfo); 4589 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4590 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4591 nullptr, UseInstrInfo); 4592 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4593 } 4594 4595 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4596 const Value *RHS, 4597 const AddOperator *Add, 4598 const DataLayout &DL, 4599 AssumptionCache *AC, 4600 const Instruction *CxtI, 4601 const DominatorTree *DT) { 4602 if (Add && Add->hasNoSignedWrap()) { 4603 return OverflowResult::NeverOverflows; 4604 } 4605 4606 // If LHS and RHS each have at least two sign bits, the addition will look 4607 // like 4608 // 4609 // XX..... + 4610 // YY..... 4611 // 4612 // If the carry into the most significant position is 0, X and Y can't both 4613 // be 1 and therefore the carry out of the addition is also 0. 4614 // 4615 // If the carry into the most significant position is 1, X and Y can't both 4616 // be 0 and therefore the carry out of the addition is also 1. 4617 // 4618 // Since the carry into the most significant position is always equal to 4619 // the carry out of the addition, there is no signed overflow. 4620 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4621 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4622 return OverflowResult::NeverOverflows; 4623 4624 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4625 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4626 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4627 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4628 OverflowResult OR = 4629 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4630 if (OR != OverflowResult::MayOverflow) 4631 return OR; 4632 4633 // The remaining code needs Add to be available. Early returns if not so. 4634 if (!Add) 4635 return OverflowResult::MayOverflow; 4636 4637 // If the sign of Add is the same as at least one of the operands, this add 4638 // CANNOT overflow. If this can be determined from the known bits of the 4639 // operands the above signedAddMayOverflow() check will have already done so. 4640 // The only other way to improve on the known bits is from an assumption, so 4641 // call computeKnownBitsFromAssume() directly. 4642 bool LHSOrRHSKnownNonNegative = 4643 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4644 bool LHSOrRHSKnownNegative = 4645 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4646 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4647 KnownBits AddKnown(LHSRange.getBitWidth()); 4648 computeKnownBitsFromAssume( 4649 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4650 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4651 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4652 return OverflowResult::NeverOverflows; 4653 } 4654 4655 return OverflowResult::MayOverflow; 4656 } 4657 4658 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4659 const Value *RHS, 4660 const DataLayout &DL, 4661 AssumptionCache *AC, 4662 const Instruction *CxtI, 4663 const DominatorTree *DT) { 4664 // Checking for conditions implied by dominating conditions may be expensive. 4665 // Limit it to usub_with_overflow calls for now. 4666 if (match(CxtI, 4667 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4668 if (auto C = 4669 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4670 if (*C) 4671 return OverflowResult::NeverOverflows; 4672 return OverflowResult::AlwaysOverflowsLow; 4673 } 4674 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4675 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4676 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4677 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4678 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4679 } 4680 4681 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4682 const Value *RHS, 4683 const DataLayout &DL, 4684 AssumptionCache *AC, 4685 const Instruction *CxtI, 4686 const DominatorTree *DT) { 4687 // If LHS and RHS each have at least two sign bits, the subtraction 4688 // cannot overflow. 4689 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4690 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4691 return OverflowResult::NeverOverflows; 4692 4693 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4694 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4695 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4696 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4697 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4698 } 4699 4700 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4701 const DominatorTree &DT) { 4702 SmallVector<const BranchInst *, 2> GuardingBranches; 4703 SmallVector<const ExtractValueInst *, 2> Results; 4704 4705 for (const User *U : WO->users()) { 4706 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4707 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4708 4709 if (EVI->getIndices()[0] == 0) 4710 Results.push_back(EVI); 4711 else { 4712 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4713 4714 for (const auto *U : EVI->users()) 4715 if (const auto *B = dyn_cast<BranchInst>(U)) { 4716 assert(B->isConditional() && "How else is it using an i1?"); 4717 GuardingBranches.push_back(B); 4718 } 4719 } 4720 } else { 4721 // We are using the aggregate directly in a way we don't want to analyze 4722 // here (storing it to a global, say). 4723 return false; 4724 } 4725 } 4726 4727 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4728 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4729 if (!NoWrapEdge.isSingleEdge()) 4730 return false; 4731 4732 // Check if all users of the add are provably no-wrap. 4733 for (const auto *Result : Results) { 4734 // If the extractvalue itself is not executed on overflow, the we don't 4735 // need to check each use separately, since domination is transitive. 4736 if (DT.dominates(NoWrapEdge, Result->getParent())) 4737 continue; 4738 4739 for (auto &RU : Result->uses()) 4740 if (!DT.dominates(NoWrapEdge, RU)) 4741 return false; 4742 } 4743 4744 return true; 4745 }; 4746 4747 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4748 } 4749 4750 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4751 // See whether I has flags that may create poison 4752 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4753 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4754 return true; 4755 } 4756 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4757 if (ExactOp->isExact()) 4758 return true; 4759 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4760 auto FMF = FP->getFastMathFlags(); 4761 if (FMF.noNaNs() || FMF.noInfs()) 4762 return true; 4763 } 4764 4765 unsigned Opcode = Op->getOpcode(); 4766 4767 // Check whether opcode is a poison/undef-generating operation 4768 switch (Opcode) { 4769 case Instruction::Shl: 4770 case Instruction::AShr: 4771 case Instruction::LShr: { 4772 // Shifts return poison if shiftwidth is larger than the bitwidth. 4773 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4774 SmallVector<Constant *, 4> ShiftAmounts; 4775 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4776 unsigned NumElts = FVTy->getNumElements(); 4777 for (unsigned i = 0; i < NumElts; ++i) 4778 ShiftAmounts.push_back(C->getAggregateElement(i)); 4779 } else if (isa<ScalableVectorType>(C->getType())) 4780 return true; // Can't tell, just return true to be safe 4781 else 4782 ShiftAmounts.push_back(C); 4783 4784 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4785 auto *CI = dyn_cast<ConstantInt>(C); 4786 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4787 }); 4788 return !Safe; 4789 } 4790 return true; 4791 } 4792 case Instruction::FPToSI: 4793 case Instruction::FPToUI: 4794 // fptosi/ui yields poison if the resulting value does not fit in the 4795 // destination type. 4796 return true; 4797 case Instruction::Call: 4798 case Instruction::CallBr: 4799 case Instruction::Invoke: { 4800 const auto *CB = cast<CallBase>(Op); 4801 return !CB->hasRetAttr(Attribute::NoUndef); 4802 } 4803 case Instruction::InsertElement: 4804 case Instruction::ExtractElement: { 4805 // If index exceeds the length of the vector, it returns poison 4806 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4807 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4808 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4809 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4810 return true; 4811 return false; 4812 } 4813 case Instruction::ShuffleVector: { 4814 // shufflevector may return undef. 4815 if (PoisonOnly) 4816 return false; 4817 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4818 ? cast<ConstantExpr>(Op)->getShuffleMask() 4819 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4820 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4821 } 4822 case Instruction::FNeg: 4823 case Instruction::PHI: 4824 case Instruction::Select: 4825 case Instruction::URem: 4826 case Instruction::SRem: 4827 case Instruction::ExtractValue: 4828 case Instruction::InsertValue: 4829 case Instruction::Freeze: 4830 case Instruction::ICmp: 4831 case Instruction::FCmp: 4832 return false; 4833 case Instruction::GetElementPtr: { 4834 const auto *GEP = cast<GEPOperator>(Op); 4835 return GEP->isInBounds(); 4836 } 4837 default: { 4838 const auto *CE = dyn_cast<ConstantExpr>(Op); 4839 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4840 return false; 4841 else if (Instruction::isBinaryOp(Opcode)) 4842 return false; 4843 // Be conservative and return true. 4844 return true; 4845 } 4846 } 4847 } 4848 4849 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4850 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4851 } 4852 4853 bool llvm::canCreatePoison(const Operator *Op) { 4854 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4855 } 4856 4857 static bool programUndefinedIfUndefOrPoison(const Value *V, 4858 bool PoisonOnly); 4859 4860 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4861 AssumptionCache *AC, 4862 const Instruction *CtxI, 4863 const DominatorTree *DT, 4864 unsigned Depth, bool PoisonOnly) { 4865 if (Depth >= MaxAnalysisRecursionDepth) 4866 return false; 4867 4868 if (isa<MetadataAsValue>(V)) 4869 return false; 4870 4871 if (const auto *A = dyn_cast<Argument>(V)) { 4872 if (A->hasAttribute(Attribute::NoUndef)) 4873 return true; 4874 } 4875 4876 if (auto *C = dyn_cast<Constant>(V)) { 4877 if (isa<UndefValue>(C)) 4878 return PoisonOnly; 4879 4880 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4881 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4882 return true; 4883 4884 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4885 return (PoisonOnly || !C->containsUndefElement()) && 4886 !C->containsConstantExpression(); 4887 } 4888 4889 // Strip cast operations from a pointer value. 4890 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4891 // inbounds with zero offset. To guarantee that the result isn't poison, the 4892 // stripped pointer is checked as it has to be pointing into an allocated 4893 // object or be null `null` to ensure `inbounds` getelement pointers with a 4894 // zero offset could not produce poison. 4895 // It can strip off addrspacecast that do not change bit representation as 4896 // well. We believe that such addrspacecast is equivalent to no-op. 4897 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4898 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4899 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4900 return true; 4901 4902 auto OpCheck = [&](const Value *V) { 4903 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4904 PoisonOnly); 4905 }; 4906 4907 if (auto *Opr = dyn_cast<Operator>(V)) { 4908 // If the value is a freeze instruction, then it can never 4909 // be undef or poison. 4910 if (isa<FreezeInst>(V)) 4911 return true; 4912 4913 if (const auto *CB = dyn_cast<CallBase>(V)) { 4914 if (CB->hasRetAttr(Attribute::NoUndef)) 4915 return true; 4916 } 4917 4918 if (const auto *PN = dyn_cast<PHINode>(V)) { 4919 unsigned Num = PN->getNumIncomingValues(); 4920 bool IsWellDefined = true; 4921 for (unsigned i = 0; i < Num; ++i) { 4922 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4923 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4924 DT, Depth + 1, PoisonOnly)) { 4925 IsWellDefined = false; 4926 break; 4927 } 4928 } 4929 if (IsWellDefined) 4930 return true; 4931 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4932 return true; 4933 } 4934 4935 if (auto *I = dyn_cast<LoadInst>(V)) 4936 if (I->getMetadata(LLVMContext::MD_noundef)) 4937 return true; 4938 4939 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4940 return true; 4941 4942 // CxtI may be null or a cloned instruction. 4943 if (!CtxI || !CtxI->getParent() || !DT) 4944 return false; 4945 4946 auto *DNode = DT->getNode(CtxI->getParent()); 4947 if (!DNode) 4948 // Unreachable block 4949 return false; 4950 4951 // If V is used as a branch condition before reaching CtxI, V cannot be 4952 // undef or poison. 4953 // br V, BB1, BB2 4954 // BB1: 4955 // CtxI ; V cannot be undef or poison here 4956 auto *Dominator = DNode->getIDom(); 4957 while (Dominator) { 4958 auto *TI = Dominator->getBlock()->getTerminator(); 4959 4960 Value *Cond = nullptr; 4961 if (auto BI = dyn_cast<BranchInst>(TI)) { 4962 if (BI->isConditional()) 4963 Cond = BI->getCondition(); 4964 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4965 Cond = SI->getCondition(); 4966 } 4967 4968 if (Cond) { 4969 if (Cond == V) 4970 return true; 4971 else if (PoisonOnly && isa<Operator>(Cond)) { 4972 // For poison, we can analyze further 4973 auto *Opr = cast<Operator>(Cond); 4974 if (propagatesPoison(Opr) && 4975 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4976 return true; 4977 } 4978 } 4979 4980 Dominator = Dominator->getIDom(); 4981 } 4982 4983 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4984 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4985 return true; 4986 4987 return false; 4988 } 4989 4990 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4991 const Instruction *CtxI, 4992 const DominatorTree *DT, 4993 unsigned Depth) { 4994 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4995 } 4996 4997 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4998 const Instruction *CtxI, 4999 const DominatorTree *DT, unsigned Depth) { 5000 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5001 } 5002 5003 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5004 const DataLayout &DL, 5005 AssumptionCache *AC, 5006 const Instruction *CxtI, 5007 const DominatorTree *DT) { 5008 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5009 Add, DL, AC, CxtI, DT); 5010 } 5011 5012 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5013 const Value *RHS, 5014 const DataLayout &DL, 5015 AssumptionCache *AC, 5016 const Instruction *CxtI, 5017 const DominatorTree *DT) { 5018 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5019 } 5020 5021 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5022 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5023 // of time because it's possible for another thread to interfere with it for an 5024 // arbitrary length of time, but programs aren't allowed to rely on that. 5025 5026 // If there is no successor, then execution can't transfer to it. 5027 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5028 return !CRI->unwindsToCaller(); 5029 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5030 return !CatchSwitch->unwindsToCaller(); 5031 if (isa<ResumeInst>(I)) 5032 return false; 5033 if (isa<ReturnInst>(I)) 5034 return false; 5035 if (isa<UnreachableInst>(I)) 5036 return false; 5037 5038 // Calls can throw, or contain an infinite loop, or kill the process. 5039 if (const auto *CB = dyn_cast<CallBase>(I)) { 5040 // Call sites that throw have implicit non-local control flow. 5041 if (!CB->doesNotThrow()) 5042 return false; 5043 5044 // A function which doens't throw and has "willreturn" attribute will 5045 // always return. 5046 if (CB->hasFnAttr(Attribute::WillReturn)) 5047 return true; 5048 5049 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5050 // etc. and thus not return. However, LLVM already assumes that 5051 // 5052 // - Thread exiting actions are modeled as writes to memory invisible to 5053 // the program. 5054 // 5055 // - Loops that don't have side effects (side effects are volatile/atomic 5056 // stores and IO) always terminate (see http://llvm.org/PR965). 5057 // Furthermore IO itself is also modeled as writes to memory invisible to 5058 // the program. 5059 // 5060 // We rely on those assumptions here, and use the memory effects of the call 5061 // target as a proxy for checking that it always returns. 5062 5063 // FIXME: This isn't aggressive enough; a call which only writes to a global 5064 // is guaranteed to return. 5065 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5066 } 5067 5068 // Other instructions return normally. 5069 return true; 5070 } 5071 5072 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5073 // TODO: This is slightly conservative for invoke instruction since exiting 5074 // via an exception *is* normal control for them. 5075 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5076 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5077 return false; 5078 return true; 5079 } 5080 5081 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5082 const Loop *L) { 5083 // The loop header is guaranteed to be executed for every iteration. 5084 // 5085 // FIXME: Relax this constraint to cover all basic blocks that are 5086 // guaranteed to be executed at every iteration. 5087 if (I->getParent() != L->getHeader()) return false; 5088 5089 for (const Instruction &LI : *L->getHeader()) { 5090 if (&LI == I) return true; 5091 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5092 } 5093 llvm_unreachable("Instruction not contained in its own parent basic block."); 5094 } 5095 5096 bool llvm::propagatesPoison(const Operator *I) { 5097 switch (I->getOpcode()) { 5098 case Instruction::Freeze: 5099 case Instruction::Select: 5100 case Instruction::PHI: 5101 case Instruction::Call: 5102 case Instruction::Invoke: 5103 return false; 5104 case Instruction::ICmp: 5105 case Instruction::FCmp: 5106 case Instruction::GetElementPtr: 5107 return true; 5108 default: 5109 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5110 return true; 5111 5112 // Be conservative and return false. 5113 return false; 5114 } 5115 } 5116 5117 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5118 SmallPtrSetImpl<const Value *> &Operands) { 5119 switch (I->getOpcode()) { 5120 case Instruction::Store: 5121 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5122 break; 5123 5124 case Instruction::Load: 5125 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5126 break; 5127 5128 case Instruction::AtomicCmpXchg: 5129 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5130 break; 5131 5132 case Instruction::AtomicRMW: 5133 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5134 break; 5135 5136 case Instruction::UDiv: 5137 case Instruction::SDiv: 5138 case Instruction::URem: 5139 case Instruction::SRem: 5140 Operands.insert(I->getOperand(1)); 5141 break; 5142 5143 case Instruction::Call: 5144 case Instruction::Invoke: { 5145 const CallBase *CB = cast<CallBase>(I); 5146 if (CB->isIndirectCall()) 5147 Operands.insert(CB->getCalledOperand()); 5148 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5149 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5150 Operands.insert(CB->getArgOperand(i)); 5151 } 5152 break; 5153 } 5154 5155 default: 5156 break; 5157 } 5158 } 5159 5160 bool llvm::mustTriggerUB(const Instruction *I, 5161 const SmallSet<const Value *, 16>& KnownPoison) { 5162 SmallPtrSet<const Value *, 4> NonPoisonOps; 5163 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5164 5165 for (const auto *V : NonPoisonOps) 5166 if (KnownPoison.count(V)) 5167 return true; 5168 5169 return false; 5170 } 5171 5172 static bool programUndefinedIfUndefOrPoison(const Value *V, 5173 bool PoisonOnly) { 5174 // We currently only look for uses of values within the same basic 5175 // block, as that makes it easier to guarantee that the uses will be 5176 // executed given that Inst is executed. 5177 // 5178 // FIXME: Expand this to consider uses beyond the same basic block. To do 5179 // this, look out for the distinction between post-dominance and strong 5180 // post-dominance. 5181 const BasicBlock *BB = nullptr; 5182 BasicBlock::const_iterator Begin; 5183 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5184 BB = Inst->getParent(); 5185 Begin = Inst->getIterator(); 5186 Begin++; 5187 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5188 BB = &Arg->getParent()->getEntryBlock(); 5189 Begin = BB->begin(); 5190 } else { 5191 return false; 5192 } 5193 5194 BasicBlock::const_iterator End = BB->end(); 5195 5196 if (!PoisonOnly) { 5197 // Be conservative & just check whether a value is passed to a noundef 5198 // argument. 5199 // Instructions that raise UB with a poison operand are well-defined 5200 // or have unclear semantics when the input is partially undef. 5201 // For example, 'udiv x, (undef | 1)' isn't UB. 5202 5203 for (auto &I : make_range(Begin, End)) { 5204 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5205 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5206 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5207 CB->getArgOperand(i) == V) 5208 return true; 5209 } 5210 } 5211 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5212 break; 5213 } 5214 return false; 5215 } 5216 5217 // Set of instructions that we have proved will yield poison if Inst 5218 // does. 5219 SmallSet<const Value *, 16> YieldsPoison; 5220 SmallSet<const BasicBlock *, 4> Visited; 5221 5222 YieldsPoison.insert(V); 5223 auto Propagate = [&](const User *User) { 5224 if (propagatesPoison(cast<Operator>(User))) 5225 YieldsPoison.insert(User); 5226 }; 5227 for_each(V->users(), Propagate); 5228 Visited.insert(BB); 5229 5230 unsigned Iter = 0; 5231 while (Iter++ < MaxAnalysisRecursionDepth) { 5232 for (auto &I : make_range(Begin, End)) { 5233 if (mustTriggerUB(&I, YieldsPoison)) 5234 return true; 5235 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5236 return false; 5237 5238 // Mark poison that propagates from I through uses of I. 5239 if (YieldsPoison.count(&I)) 5240 for_each(I.users(), Propagate); 5241 } 5242 5243 if (auto *NextBB = BB->getSingleSuccessor()) { 5244 if (Visited.insert(NextBB).second) { 5245 BB = NextBB; 5246 Begin = BB->getFirstNonPHI()->getIterator(); 5247 End = BB->end(); 5248 continue; 5249 } 5250 } 5251 5252 break; 5253 } 5254 return false; 5255 } 5256 5257 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5258 return ::programUndefinedIfUndefOrPoison(Inst, false); 5259 } 5260 5261 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5262 return ::programUndefinedIfUndefOrPoison(Inst, true); 5263 } 5264 5265 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5266 if (FMF.noNaNs()) 5267 return true; 5268 5269 if (auto *C = dyn_cast<ConstantFP>(V)) 5270 return !C->isNaN(); 5271 5272 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5273 if (!C->getElementType()->isFloatingPointTy()) 5274 return false; 5275 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5276 if (C->getElementAsAPFloat(I).isNaN()) 5277 return false; 5278 } 5279 return true; 5280 } 5281 5282 if (isa<ConstantAggregateZero>(V)) 5283 return true; 5284 5285 return false; 5286 } 5287 5288 static bool isKnownNonZero(const Value *V) { 5289 if (auto *C = dyn_cast<ConstantFP>(V)) 5290 return !C->isZero(); 5291 5292 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5293 if (!C->getElementType()->isFloatingPointTy()) 5294 return false; 5295 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5296 if (C->getElementAsAPFloat(I).isZero()) 5297 return false; 5298 } 5299 return true; 5300 } 5301 5302 return false; 5303 } 5304 5305 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5306 /// Given non-min/max outer cmp/select from the clamp pattern this 5307 /// function recognizes if it can be substitued by a "canonical" min/max 5308 /// pattern. 5309 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5310 Value *CmpLHS, Value *CmpRHS, 5311 Value *TrueVal, Value *FalseVal, 5312 Value *&LHS, Value *&RHS) { 5313 // Try to match 5314 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5315 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5316 // and return description of the outer Max/Min. 5317 5318 // First, check if select has inverse order: 5319 if (CmpRHS == FalseVal) { 5320 std::swap(TrueVal, FalseVal); 5321 Pred = CmpInst::getInversePredicate(Pred); 5322 } 5323 5324 // Assume success now. If there's no match, callers should not use these anyway. 5325 LHS = TrueVal; 5326 RHS = FalseVal; 5327 5328 const APFloat *FC1; 5329 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5330 return {SPF_UNKNOWN, SPNB_NA, false}; 5331 5332 const APFloat *FC2; 5333 switch (Pred) { 5334 case CmpInst::FCMP_OLT: 5335 case CmpInst::FCMP_OLE: 5336 case CmpInst::FCMP_ULT: 5337 case CmpInst::FCMP_ULE: 5338 if (match(FalseVal, 5339 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5340 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5341 *FC1 < *FC2) 5342 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5343 break; 5344 case CmpInst::FCMP_OGT: 5345 case CmpInst::FCMP_OGE: 5346 case CmpInst::FCMP_UGT: 5347 case CmpInst::FCMP_UGE: 5348 if (match(FalseVal, 5349 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5350 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5351 *FC1 > *FC2) 5352 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5353 break; 5354 default: 5355 break; 5356 } 5357 5358 return {SPF_UNKNOWN, SPNB_NA, false}; 5359 } 5360 5361 /// Recognize variations of: 5362 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5363 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5364 Value *CmpLHS, Value *CmpRHS, 5365 Value *TrueVal, Value *FalseVal) { 5366 // Swap the select operands and predicate to match the patterns below. 5367 if (CmpRHS != TrueVal) { 5368 Pred = ICmpInst::getSwappedPredicate(Pred); 5369 std::swap(TrueVal, FalseVal); 5370 } 5371 const APInt *C1; 5372 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5373 const APInt *C2; 5374 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5375 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5376 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5377 return {SPF_SMAX, SPNB_NA, false}; 5378 5379 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5380 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5381 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5382 return {SPF_SMIN, SPNB_NA, false}; 5383 5384 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5385 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5386 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5387 return {SPF_UMAX, SPNB_NA, false}; 5388 5389 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5390 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5391 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5392 return {SPF_UMIN, SPNB_NA, false}; 5393 } 5394 return {SPF_UNKNOWN, SPNB_NA, false}; 5395 } 5396 5397 /// Recognize variations of: 5398 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5399 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5400 Value *CmpLHS, Value *CmpRHS, 5401 Value *TVal, Value *FVal, 5402 unsigned Depth) { 5403 // TODO: Allow FP min/max with nnan/nsz. 5404 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5405 5406 Value *A = nullptr, *B = nullptr; 5407 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5408 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5409 return {SPF_UNKNOWN, SPNB_NA, false}; 5410 5411 Value *C = nullptr, *D = nullptr; 5412 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5413 if (L.Flavor != R.Flavor) 5414 return {SPF_UNKNOWN, SPNB_NA, false}; 5415 5416 // We have something like: x Pred y ? min(a, b) : min(c, d). 5417 // Try to match the compare to the min/max operations of the select operands. 5418 // First, make sure we have the right compare predicate. 5419 switch (L.Flavor) { 5420 case SPF_SMIN: 5421 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5422 Pred = ICmpInst::getSwappedPredicate(Pred); 5423 std::swap(CmpLHS, CmpRHS); 5424 } 5425 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5426 break; 5427 return {SPF_UNKNOWN, SPNB_NA, false}; 5428 case SPF_SMAX: 5429 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5430 Pred = ICmpInst::getSwappedPredicate(Pred); 5431 std::swap(CmpLHS, CmpRHS); 5432 } 5433 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5434 break; 5435 return {SPF_UNKNOWN, SPNB_NA, false}; 5436 case SPF_UMIN: 5437 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5438 Pred = ICmpInst::getSwappedPredicate(Pred); 5439 std::swap(CmpLHS, CmpRHS); 5440 } 5441 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5442 break; 5443 return {SPF_UNKNOWN, SPNB_NA, false}; 5444 case SPF_UMAX: 5445 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5446 Pred = ICmpInst::getSwappedPredicate(Pred); 5447 std::swap(CmpLHS, CmpRHS); 5448 } 5449 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5450 break; 5451 return {SPF_UNKNOWN, SPNB_NA, false}; 5452 default: 5453 return {SPF_UNKNOWN, SPNB_NA, false}; 5454 } 5455 5456 // If there is a common operand in the already matched min/max and the other 5457 // min/max operands match the compare operands (either directly or inverted), 5458 // then this is min/max of the same flavor. 5459 5460 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5461 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5462 if (D == B) { 5463 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5464 match(A, m_Not(m_Specific(CmpRHS))))) 5465 return {L.Flavor, SPNB_NA, false}; 5466 } 5467 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5468 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5469 if (C == B) { 5470 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5471 match(A, m_Not(m_Specific(CmpRHS))))) 5472 return {L.Flavor, SPNB_NA, false}; 5473 } 5474 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5475 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5476 if (D == A) { 5477 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5478 match(B, m_Not(m_Specific(CmpRHS))))) 5479 return {L.Flavor, SPNB_NA, false}; 5480 } 5481 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5482 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5483 if (C == A) { 5484 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5485 match(B, m_Not(m_Specific(CmpRHS))))) 5486 return {L.Flavor, SPNB_NA, false}; 5487 } 5488 5489 return {SPF_UNKNOWN, SPNB_NA, false}; 5490 } 5491 5492 /// If the input value is the result of a 'not' op, constant integer, or vector 5493 /// splat of a constant integer, return the bitwise-not source value. 5494 /// TODO: This could be extended to handle non-splat vector integer constants. 5495 static Value *getNotValue(Value *V) { 5496 Value *NotV; 5497 if (match(V, m_Not(m_Value(NotV)))) 5498 return NotV; 5499 5500 const APInt *C; 5501 if (match(V, m_APInt(C))) 5502 return ConstantInt::get(V->getType(), ~(*C)); 5503 5504 return nullptr; 5505 } 5506 5507 /// Match non-obvious integer minimum and maximum sequences. 5508 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5509 Value *CmpLHS, Value *CmpRHS, 5510 Value *TrueVal, Value *FalseVal, 5511 Value *&LHS, Value *&RHS, 5512 unsigned Depth) { 5513 // Assume success. If there's no match, callers should not use these anyway. 5514 LHS = TrueVal; 5515 RHS = FalseVal; 5516 5517 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5518 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5519 return SPR; 5520 5521 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5522 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5523 return SPR; 5524 5525 // Look through 'not' ops to find disguised min/max. 5526 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5527 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5528 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5529 switch (Pred) { 5530 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5531 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5532 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5533 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5534 default: break; 5535 } 5536 } 5537 5538 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5539 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5540 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5541 switch (Pred) { 5542 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5543 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5544 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5545 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5546 default: break; 5547 } 5548 } 5549 5550 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5551 return {SPF_UNKNOWN, SPNB_NA, false}; 5552 5553 // Z = X -nsw Y 5554 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5555 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5556 if (match(TrueVal, m_Zero()) && 5557 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5558 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5559 5560 // Z = X -nsw Y 5561 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5562 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5563 if (match(FalseVal, m_Zero()) && 5564 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5565 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5566 5567 const APInt *C1; 5568 if (!match(CmpRHS, m_APInt(C1))) 5569 return {SPF_UNKNOWN, SPNB_NA, false}; 5570 5571 // An unsigned min/max can be written with a signed compare. 5572 const APInt *C2; 5573 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5574 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5575 // Is the sign bit set? 5576 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5577 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5578 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5579 C2->isMaxSignedValue()) 5580 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5581 5582 // Is the sign bit clear? 5583 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5584 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5585 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5586 C2->isMinSignedValue()) 5587 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5588 } 5589 5590 return {SPF_UNKNOWN, SPNB_NA, false}; 5591 } 5592 5593 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5594 assert(X && Y && "Invalid operand"); 5595 5596 // X = sub (0, Y) || X = sub nsw (0, Y) 5597 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5598 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5599 return true; 5600 5601 // Y = sub (0, X) || Y = sub nsw (0, X) 5602 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5603 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5604 return true; 5605 5606 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5607 Value *A, *B; 5608 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5609 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5610 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5611 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5612 } 5613 5614 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5615 FastMathFlags FMF, 5616 Value *CmpLHS, Value *CmpRHS, 5617 Value *TrueVal, Value *FalseVal, 5618 Value *&LHS, Value *&RHS, 5619 unsigned Depth) { 5620 if (CmpInst::isFPPredicate(Pred)) { 5621 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5622 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5623 // purpose of identifying min/max. Disregard vector constants with undefined 5624 // elements because those can not be back-propagated for analysis. 5625 Value *OutputZeroVal = nullptr; 5626 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5627 !cast<Constant>(TrueVal)->containsUndefElement()) 5628 OutputZeroVal = TrueVal; 5629 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5630 !cast<Constant>(FalseVal)->containsUndefElement()) 5631 OutputZeroVal = FalseVal; 5632 5633 if (OutputZeroVal) { 5634 if (match(CmpLHS, m_AnyZeroFP())) 5635 CmpLHS = OutputZeroVal; 5636 if (match(CmpRHS, m_AnyZeroFP())) 5637 CmpRHS = OutputZeroVal; 5638 } 5639 } 5640 5641 LHS = CmpLHS; 5642 RHS = CmpRHS; 5643 5644 // Signed zero may return inconsistent results between implementations. 5645 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5646 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5647 // Therefore, we behave conservatively and only proceed if at least one of the 5648 // operands is known to not be zero or if we don't care about signed zero. 5649 switch (Pred) { 5650 default: break; 5651 // FIXME: Include OGT/OLT/UGT/ULT. 5652 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5653 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5654 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5655 !isKnownNonZero(CmpRHS)) 5656 return {SPF_UNKNOWN, SPNB_NA, false}; 5657 } 5658 5659 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5660 bool Ordered = false; 5661 5662 // When given one NaN and one non-NaN input: 5663 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5664 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5665 // ordered comparison fails), which could be NaN or non-NaN. 5666 // so here we discover exactly what NaN behavior is required/accepted. 5667 if (CmpInst::isFPPredicate(Pred)) { 5668 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5669 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5670 5671 if (LHSSafe && RHSSafe) { 5672 // Both operands are known non-NaN. 5673 NaNBehavior = SPNB_RETURNS_ANY; 5674 } else if (CmpInst::isOrdered(Pred)) { 5675 // An ordered comparison will return false when given a NaN, so it 5676 // returns the RHS. 5677 Ordered = true; 5678 if (LHSSafe) 5679 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5680 NaNBehavior = SPNB_RETURNS_NAN; 5681 else if (RHSSafe) 5682 NaNBehavior = SPNB_RETURNS_OTHER; 5683 else 5684 // Completely unsafe. 5685 return {SPF_UNKNOWN, SPNB_NA, false}; 5686 } else { 5687 Ordered = false; 5688 // An unordered comparison will return true when given a NaN, so it 5689 // returns the LHS. 5690 if (LHSSafe) 5691 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5692 NaNBehavior = SPNB_RETURNS_OTHER; 5693 else if (RHSSafe) 5694 NaNBehavior = SPNB_RETURNS_NAN; 5695 else 5696 // Completely unsafe. 5697 return {SPF_UNKNOWN, SPNB_NA, false}; 5698 } 5699 } 5700 5701 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5702 std::swap(CmpLHS, CmpRHS); 5703 Pred = CmpInst::getSwappedPredicate(Pred); 5704 if (NaNBehavior == SPNB_RETURNS_NAN) 5705 NaNBehavior = SPNB_RETURNS_OTHER; 5706 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5707 NaNBehavior = SPNB_RETURNS_NAN; 5708 Ordered = !Ordered; 5709 } 5710 5711 // ([if]cmp X, Y) ? X : Y 5712 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5713 switch (Pred) { 5714 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5715 case ICmpInst::ICMP_UGT: 5716 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5717 case ICmpInst::ICMP_SGT: 5718 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5719 case ICmpInst::ICMP_ULT: 5720 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5721 case ICmpInst::ICMP_SLT: 5722 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5723 case FCmpInst::FCMP_UGT: 5724 case FCmpInst::FCMP_UGE: 5725 case FCmpInst::FCMP_OGT: 5726 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5727 case FCmpInst::FCMP_ULT: 5728 case FCmpInst::FCMP_ULE: 5729 case FCmpInst::FCMP_OLT: 5730 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5731 } 5732 } 5733 5734 if (isKnownNegation(TrueVal, FalseVal)) { 5735 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5736 // match against either LHS or sext(LHS). 5737 auto MaybeSExtCmpLHS = 5738 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5739 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5740 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5741 if (match(TrueVal, MaybeSExtCmpLHS)) { 5742 // Set the return values. If the compare uses the negated value (-X >s 0), 5743 // swap the return values because the negated value is always 'RHS'. 5744 LHS = TrueVal; 5745 RHS = FalseVal; 5746 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5747 std::swap(LHS, RHS); 5748 5749 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5750 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5751 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5752 return {SPF_ABS, SPNB_NA, false}; 5753 5754 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5755 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5756 return {SPF_ABS, SPNB_NA, false}; 5757 5758 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5759 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5760 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5761 return {SPF_NABS, SPNB_NA, false}; 5762 } 5763 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5764 // Set the return values. If the compare uses the negated value (-X >s 0), 5765 // swap the return values because the negated value is always 'RHS'. 5766 LHS = FalseVal; 5767 RHS = TrueVal; 5768 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5769 std::swap(LHS, RHS); 5770 5771 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5772 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5773 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5774 return {SPF_NABS, SPNB_NA, false}; 5775 5776 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5777 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5778 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5779 return {SPF_ABS, SPNB_NA, false}; 5780 } 5781 } 5782 5783 if (CmpInst::isIntPredicate(Pred)) 5784 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5785 5786 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5787 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5788 // semantics than minNum. Be conservative in such case. 5789 if (NaNBehavior != SPNB_RETURNS_ANY || 5790 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5791 !isKnownNonZero(CmpRHS))) 5792 return {SPF_UNKNOWN, SPNB_NA, false}; 5793 5794 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5795 } 5796 5797 /// Helps to match a select pattern in case of a type mismatch. 5798 /// 5799 /// The function processes the case when type of true and false values of a 5800 /// select instruction differs from type of the cmp instruction operands because 5801 /// of a cast instruction. The function checks if it is legal to move the cast 5802 /// operation after "select". If yes, it returns the new second value of 5803 /// "select" (with the assumption that cast is moved): 5804 /// 1. As operand of cast instruction when both values of "select" are same cast 5805 /// instructions. 5806 /// 2. As restored constant (by applying reverse cast operation) when the first 5807 /// value of the "select" is a cast operation and the second value is a 5808 /// constant. 5809 /// NOTE: We return only the new second value because the first value could be 5810 /// accessed as operand of cast instruction. 5811 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5812 Instruction::CastOps *CastOp) { 5813 auto *Cast1 = dyn_cast<CastInst>(V1); 5814 if (!Cast1) 5815 return nullptr; 5816 5817 *CastOp = Cast1->getOpcode(); 5818 Type *SrcTy = Cast1->getSrcTy(); 5819 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5820 // If V1 and V2 are both the same cast from the same type, look through V1. 5821 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5822 return Cast2->getOperand(0); 5823 return nullptr; 5824 } 5825 5826 auto *C = dyn_cast<Constant>(V2); 5827 if (!C) 5828 return nullptr; 5829 5830 Constant *CastedTo = nullptr; 5831 switch (*CastOp) { 5832 case Instruction::ZExt: 5833 if (CmpI->isUnsigned()) 5834 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5835 break; 5836 case Instruction::SExt: 5837 if (CmpI->isSigned()) 5838 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5839 break; 5840 case Instruction::Trunc: 5841 Constant *CmpConst; 5842 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5843 CmpConst->getType() == SrcTy) { 5844 // Here we have the following case: 5845 // 5846 // %cond = cmp iN %x, CmpConst 5847 // %tr = trunc iN %x to iK 5848 // %narrowsel = select i1 %cond, iK %t, iK C 5849 // 5850 // We can always move trunc after select operation: 5851 // 5852 // %cond = cmp iN %x, CmpConst 5853 // %widesel = select i1 %cond, iN %x, iN CmpConst 5854 // %tr = trunc iN %widesel to iK 5855 // 5856 // Note that C could be extended in any way because we don't care about 5857 // upper bits after truncation. It can't be abs pattern, because it would 5858 // look like: 5859 // 5860 // select i1 %cond, x, -x. 5861 // 5862 // So only min/max pattern could be matched. Such match requires widened C 5863 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5864 // CmpConst == C is checked below. 5865 CastedTo = CmpConst; 5866 } else { 5867 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5868 } 5869 break; 5870 case Instruction::FPTrunc: 5871 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5872 break; 5873 case Instruction::FPExt: 5874 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5875 break; 5876 case Instruction::FPToUI: 5877 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5878 break; 5879 case Instruction::FPToSI: 5880 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5881 break; 5882 case Instruction::UIToFP: 5883 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5884 break; 5885 case Instruction::SIToFP: 5886 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5887 break; 5888 default: 5889 break; 5890 } 5891 5892 if (!CastedTo) 5893 return nullptr; 5894 5895 // Make sure the cast doesn't lose any information. 5896 Constant *CastedBack = 5897 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5898 if (CastedBack != C) 5899 return nullptr; 5900 5901 return CastedTo; 5902 } 5903 5904 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5905 Instruction::CastOps *CastOp, 5906 unsigned Depth) { 5907 if (Depth >= MaxAnalysisRecursionDepth) 5908 return {SPF_UNKNOWN, SPNB_NA, false}; 5909 5910 SelectInst *SI = dyn_cast<SelectInst>(V); 5911 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5912 5913 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5914 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5915 5916 Value *TrueVal = SI->getTrueValue(); 5917 Value *FalseVal = SI->getFalseValue(); 5918 5919 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5920 CastOp, Depth); 5921 } 5922 5923 SelectPatternResult llvm::matchDecomposedSelectPattern( 5924 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5925 Instruction::CastOps *CastOp, unsigned Depth) { 5926 CmpInst::Predicate Pred = CmpI->getPredicate(); 5927 Value *CmpLHS = CmpI->getOperand(0); 5928 Value *CmpRHS = CmpI->getOperand(1); 5929 FastMathFlags FMF; 5930 if (isa<FPMathOperator>(CmpI)) 5931 FMF = CmpI->getFastMathFlags(); 5932 5933 // Bail out early. 5934 if (CmpI->isEquality()) 5935 return {SPF_UNKNOWN, SPNB_NA, false}; 5936 5937 // Deal with type mismatches. 5938 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5939 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5940 // If this is a potential fmin/fmax with a cast to integer, then ignore 5941 // -0.0 because there is no corresponding integer value. 5942 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5943 FMF.setNoSignedZeros(); 5944 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5945 cast<CastInst>(TrueVal)->getOperand(0), C, 5946 LHS, RHS, Depth); 5947 } 5948 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5949 // If this is a potential fmin/fmax with a cast to integer, then ignore 5950 // -0.0 because there is no corresponding integer value. 5951 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5952 FMF.setNoSignedZeros(); 5953 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5954 C, cast<CastInst>(FalseVal)->getOperand(0), 5955 LHS, RHS, Depth); 5956 } 5957 } 5958 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5959 LHS, RHS, Depth); 5960 } 5961 5962 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5963 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5964 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5965 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5966 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5967 if (SPF == SPF_FMINNUM) 5968 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5969 if (SPF == SPF_FMAXNUM) 5970 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5971 llvm_unreachable("unhandled!"); 5972 } 5973 5974 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5975 if (SPF == SPF_SMIN) return SPF_SMAX; 5976 if (SPF == SPF_UMIN) return SPF_UMAX; 5977 if (SPF == SPF_SMAX) return SPF_SMIN; 5978 if (SPF == SPF_UMAX) return SPF_UMIN; 5979 llvm_unreachable("unhandled!"); 5980 } 5981 5982 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5983 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5984 } 5985 5986 /// Return true if "icmp Pred LHS RHS" is always true. 5987 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5988 const Value *RHS, const DataLayout &DL, 5989 unsigned Depth) { 5990 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5991 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5992 return true; 5993 5994 switch (Pred) { 5995 default: 5996 return false; 5997 5998 case CmpInst::ICMP_SLE: { 5999 const APInt *C; 6000 6001 // LHS s<= LHS +_{nsw} C if C >= 0 6002 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6003 return !C->isNegative(); 6004 return false; 6005 } 6006 6007 case CmpInst::ICMP_ULE: { 6008 const APInt *C; 6009 6010 // LHS u<= LHS +_{nuw} C for any C 6011 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6012 return true; 6013 6014 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6015 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6016 const Value *&X, 6017 const APInt *&CA, const APInt *&CB) { 6018 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6019 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6020 return true; 6021 6022 // If X & C == 0 then (X | C) == X +_{nuw} C 6023 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6024 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6025 KnownBits Known(CA->getBitWidth()); 6026 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6027 /*CxtI*/ nullptr, /*DT*/ nullptr); 6028 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6029 return true; 6030 } 6031 6032 return false; 6033 }; 6034 6035 const Value *X; 6036 const APInt *CLHS, *CRHS; 6037 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6038 return CLHS->ule(*CRHS); 6039 6040 return false; 6041 } 6042 } 6043 } 6044 6045 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6046 /// ALHS ARHS" is true. Otherwise, return None. 6047 static Optional<bool> 6048 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6049 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6050 const DataLayout &DL, unsigned Depth) { 6051 switch (Pred) { 6052 default: 6053 return None; 6054 6055 case CmpInst::ICMP_SLT: 6056 case CmpInst::ICMP_SLE: 6057 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6058 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6059 return true; 6060 return None; 6061 6062 case CmpInst::ICMP_ULT: 6063 case CmpInst::ICMP_ULE: 6064 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6065 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6066 return true; 6067 return None; 6068 } 6069 } 6070 6071 /// Return true if the operands of the two compares match. IsSwappedOps is true 6072 /// when the operands match, but are swapped. 6073 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6074 const Value *BLHS, const Value *BRHS, 6075 bool &IsSwappedOps) { 6076 6077 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6078 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6079 return IsMatchingOps || IsSwappedOps; 6080 } 6081 6082 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6083 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6084 /// Otherwise, return None if we can't infer anything. 6085 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6086 CmpInst::Predicate BPred, 6087 bool AreSwappedOps) { 6088 // Canonicalize the predicate as if the operands were not commuted. 6089 if (AreSwappedOps) 6090 BPred = ICmpInst::getSwappedPredicate(BPred); 6091 6092 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6093 return true; 6094 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6095 return false; 6096 6097 return None; 6098 } 6099 6100 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6101 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6102 /// Otherwise, return None if we can't infer anything. 6103 static Optional<bool> 6104 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6105 const ConstantInt *C1, 6106 CmpInst::Predicate BPred, 6107 const ConstantInt *C2) { 6108 ConstantRange DomCR = 6109 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6110 ConstantRange CR = 6111 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6112 ConstantRange Intersection = DomCR.intersectWith(CR); 6113 ConstantRange Difference = DomCR.difference(CR); 6114 if (Intersection.isEmptySet()) 6115 return false; 6116 if (Difference.isEmptySet()) 6117 return true; 6118 return None; 6119 } 6120 6121 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6122 /// false. Otherwise, return None if we can't infer anything. 6123 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6124 CmpInst::Predicate BPred, 6125 const Value *BLHS, const Value *BRHS, 6126 const DataLayout &DL, bool LHSIsTrue, 6127 unsigned Depth) { 6128 Value *ALHS = LHS->getOperand(0); 6129 Value *ARHS = LHS->getOperand(1); 6130 6131 // The rest of the logic assumes the LHS condition is true. If that's not the 6132 // case, invert the predicate to make it so. 6133 CmpInst::Predicate APred = 6134 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6135 6136 // Can we infer anything when the two compares have matching operands? 6137 bool AreSwappedOps; 6138 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6139 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6140 APred, BPred, AreSwappedOps)) 6141 return Implication; 6142 // No amount of additional analysis will infer the second condition, so 6143 // early exit. 6144 return None; 6145 } 6146 6147 // Can we infer anything when the LHS operands match and the RHS operands are 6148 // constants (not necessarily matching)? 6149 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6150 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6151 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6152 return Implication; 6153 // No amount of additional analysis will infer the second condition, so 6154 // early exit. 6155 return None; 6156 } 6157 6158 if (APred == BPred) 6159 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6160 return None; 6161 } 6162 6163 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6164 /// false. Otherwise, return None if we can't infer anything. We expect the 6165 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6166 static Optional<bool> 6167 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6168 const Value *RHSOp0, const Value *RHSOp1, 6169 6170 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6171 // The LHS must be an 'or' or an 'and' instruction. 6172 assert((LHS->getOpcode() == Instruction::And || 6173 LHS->getOpcode() == Instruction::Or) && 6174 "Expected LHS to be 'and' or 'or'."); 6175 6176 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6177 6178 // If the result of an 'or' is false, then we know both legs of the 'or' are 6179 // false. Similarly, if the result of an 'and' is true, then we know both 6180 // legs of the 'and' are true. 6181 Value *ALHS, *ARHS; 6182 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6183 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6184 // FIXME: Make this non-recursion. 6185 if (Optional<bool> Implication = isImpliedCondition( 6186 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6187 return Implication; 6188 if (Optional<bool> Implication = isImpliedCondition( 6189 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6190 return Implication; 6191 return None; 6192 } 6193 return None; 6194 } 6195 6196 Optional<bool> 6197 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6198 const Value *RHSOp0, const Value *RHSOp1, 6199 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6200 // Bail out when we hit the limit. 6201 if (Depth == MaxAnalysisRecursionDepth) 6202 return None; 6203 6204 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6205 // example. 6206 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6207 return None; 6208 6209 Type *OpTy = LHS->getType(); 6210 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6211 6212 // FIXME: Extending the code below to handle vectors. 6213 if (OpTy->isVectorTy()) 6214 return None; 6215 6216 assert(OpTy->isIntegerTy(1) && "implied by above"); 6217 6218 // Both LHS and RHS are icmps. 6219 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6220 if (LHSCmp) 6221 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6222 Depth); 6223 6224 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6225 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6226 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6227 if (LHSBO) { 6228 if ((LHSBO->getOpcode() == Instruction::And || 6229 LHSBO->getOpcode() == Instruction::Or)) 6230 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6231 Depth); 6232 } 6233 return None; 6234 } 6235 6236 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6237 const DataLayout &DL, bool LHSIsTrue, 6238 unsigned Depth) { 6239 // LHS ==> RHS by definition 6240 if (LHS == RHS) 6241 return LHSIsTrue; 6242 6243 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6244 if (RHSCmp) 6245 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6246 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6247 LHSIsTrue, Depth); 6248 return None; 6249 } 6250 6251 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6252 // condition dominating ContextI or nullptr, if no condition is found. 6253 static std::pair<Value *, bool> 6254 getDomPredecessorCondition(const Instruction *ContextI) { 6255 if (!ContextI || !ContextI->getParent()) 6256 return {nullptr, false}; 6257 6258 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6259 // dominator tree (eg, from a SimplifyQuery) instead? 6260 const BasicBlock *ContextBB = ContextI->getParent(); 6261 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6262 if (!PredBB) 6263 return {nullptr, false}; 6264 6265 // We need a conditional branch in the predecessor. 6266 Value *PredCond; 6267 BasicBlock *TrueBB, *FalseBB; 6268 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6269 return {nullptr, false}; 6270 6271 // The branch should get simplified. Don't bother simplifying this condition. 6272 if (TrueBB == FalseBB) 6273 return {nullptr, false}; 6274 6275 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6276 "Predecessor block does not point to successor?"); 6277 6278 // Is this condition implied by the predecessor condition? 6279 return {PredCond, TrueBB == ContextBB}; 6280 } 6281 6282 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6283 const Instruction *ContextI, 6284 const DataLayout &DL) { 6285 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6286 auto PredCond = getDomPredecessorCondition(ContextI); 6287 if (PredCond.first) 6288 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6289 return None; 6290 } 6291 6292 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6293 const Value *LHS, const Value *RHS, 6294 const Instruction *ContextI, 6295 const DataLayout &DL) { 6296 auto PredCond = getDomPredecessorCondition(ContextI); 6297 if (PredCond.first) 6298 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6299 PredCond.second); 6300 return None; 6301 } 6302 6303 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6304 APInt &Upper, const InstrInfoQuery &IIQ) { 6305 unsigned Width = Lower.getBitWidth(); 6306 const APInt *C; 6307 switch (BO.getOpcode()) { 6308 case Instruction::Add: 6309 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6310 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6311 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6312 // 'add nuw x, C' produces [C, UINT_MAX]. 6313 Lower = *C; 6314 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6315 if (C->isNegative()) { 6316 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6317 Lower = APInt::getSignedMinValue(Width); 6318 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6319 } else { 6320 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6321 Lower = APInt::getSignedMinValue(Width) + *C; 6322 Upper = APInt::getSignedMaxValue(Width) + 1; 6323 } 6324 } 6325 } 6326 break; 6327 6328 case Instruction::And: 6329 if (match(BO.getOperand(1), m_APInt(C))) 6330 // 'and x, C' produces [0, C]. 6331 Upper = *C + 1; 6332 break; 6333 6334 case Instruction::Or: 6335 if (match(BO.getOperand(1), m_APInt(C))) 6336 // 'or x, C' produces [C, UINT_MAX]. 6337 Lower = *C; 6338 break; 6339 6340 case Instruction::AShr: 6341 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6342 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6343 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6344 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6345 } else if (match(BO.getOperand(0), m_APInt(C))) { 6346 unsigned ShiftAmount = Width - 1; 6347 if (!C->isNullValue() && IIQ.isExact(&BO)) 6348 ShiftAmount = C->countTrailingZeros(); 6349 if (C->isNegative()) { 6350 // 'ashr C, x' produces [C, C >> (Width-1)] 6351 Lower = *C; 6352 Upper = C->ashr(ShiftAmount) + 1; 6353 } else { 6354 // 'ashr C, x' produces [C >> (Width-1), C] 6355 Lower = C->ashr(ShiftAmount); 6356 Upper = *C + 1; 6357 } 6358 } 6359 break; 6360 6361 case Instruction::LShr: 6362 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6363 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6364 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6365 } else if (match(BO.getOperand(0), m_APInt(C))) { 6366 // 'lshr C, x' produces [C >> (Width-1), C]. 6367 unsigned ShiftAmount = Width - 1; 6368 if (!C->isNullValue() && IIQ.isExact(&BO)) 6369 ShiftAmount = C->countTrailingZeros(); 6370 Lower = C->lshr(ShiftAmount); 6371 Upper = *C + 1; 6372 } 6373 break; 6374 6375 case Instruction::Shl: 6376 if (match(BO.getOperand(0), m_APInt(C))) { 6377 if (IIQ.hasNoUnsignedWrap(&BO)) { 6378 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6379 Lower = *C; 6380 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6381 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6382 if (C->isNegative()) { 6383 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6384 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6385 Lower = C->shl(ShiftAmount); 6386 Upper = *C + 1; 6387 } else { 6388 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6389 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6390 Lower = *C; 6391 Upper = C->shl(ShiftAmount) + 1; 6392 } 6393 } 6394 } 6395 break; 6396 6397 case Instruction::SDiv: 6398 if (match(BO.getOperand(1), m_APInt(C))) { 6399 APInt IntMin = APInt::getSignedMinValue(Width); 6400 APInt IntMax = APInt::getSignedMaxValue(Width); 6401 if (C->isAllOnesValue()) { 6402 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6403 // where C != -1 and C != 0 and C != 1 6404 Lower = IntMin + 1; 6405 Upper = IntMax + 1; 6406 } else if (C->countLeadingZeros() < Width - 1) { 6407 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6408 // where C != -1 and C != 0 and C != 1 6409 Lower = IntMin.sdiv(*C); 6410 Upper = IntMax.sdiv(*C); 6411 if (Lower.sgt(Upper)) 6412 std::swap(Lower, Upper); 6413 Upper = Upper + 1; 6414 assert(Upper != Lower && "Upper part of range has wrapped!"); 6415 } 6416 } else if (match(BO.getOperand(0), m_APInt(C))) { 6417 if (C->isMinSignedValue()) { 6418 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6419 Lower = *C; 6420 Upper = Lower.lshr(1) + 1; 6421 } else { 6422 // 'sdiv C, x' produces [-|C|, |C|]. 6423 Upper = C->abs() + 1; 6424 Lower = (-Upper) + 1; 6425 } 6426 } 6427 break; 6428 6429 case Instruction::UDiv: 6430 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6431 // 'udiv x, C' produces [0, UINT_MAX / C]. 6432 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6433 } else if (match(BO.getOperand(0), m_APInt(C))) { 6434 // 'udiv C, x' produces [0, C]. 6435 Upper = *C + 1; 6436 } 6437 break; 6438 6439 case Instruction::SRem: 6440 if (match(BO.getOperand(1), m_APInt(C))) { 6441 // 'srem x, C' produces (-|C|, |C|). 6442 Upper = C->abs(); 6443 Lower = (-Upper) + 1; 6444 } 6445 break; 6446 6447 case Instruction::URem: 6448 if (match(BO.getOperand(1), m_APInt(C))) 6449 // 'urem x, C' produces [0, C). 6450 Upper = *C; 6451 break; 6452 6453 default: 6454 break; 6455 } 6456 } 6457 6458 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6459 APInt &Upper) { 6460 unsigned Width = Lower.getBitWidth(); 6461 const APInt *C; 6462 switch (II.getIntrinsicID()) { 6463 case Intrinsic::ctpop: 6464 case Intrinsic::ctlz: 6465 case Intrinsic::cttz: 6466 // Maximum of set/clear bits is the bit width. 6467 assert(Lower == 0 && "Expected lower bound to be zero"); 6468 Upper = Width + 1; 6469 break; 6470 case Intrinsic::uadd_sat: 6471 // uadd.sat(x, C) produces [C, UINT_MAX]. 6472 if (match(II.getOperand(0), m_APInt(C)) || 6473 match(II.getOperand(1), m_APInt(C))) 6474 Lower = *C; 6475 break; 6476 case Intrinsic::sadd_sat: 6477 if (match(II.getOperand(0), m_APInt(C)) || 6478 match(II.getOperand(1), m_APInt(C))) { 6479 if (C->isNegative()) { 6480 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6481 Lower = APInt::getSignedMinValue(Width); 6482 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6483 } else { 6484 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6485 Lower = APInt::getSignedMinValue(Width) + *C; 6486 Upper = APInt::getSignedMaxValue(Width) + 1; 6487 } 6488 } 6489 break; 6490 case Intrinsic::usub_sat: 6491 // usub.sat(C, x) produces [0, C]. 6492 if (match(II.getOperand(0), m_APInt(C))) 6493 Upper = *C + 1; 6494 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6495 else if (match(II.getOperand(1), m_APInt(C))) 6496 Upper = APInt::getMaxValue(Width) - *C + 1; 6497 break; 6498 case Intrinsic::ssub_sat: 6499 if (match(II.getOperand(0), m_APInt(C))) { 6500 if (C->isNegative()) { 6501 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6502 Lower = APInt::getSignedMinValue(Width); 6503 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6504 } else { 6505 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6506 Lower = *C - APInt::getSignedMaxValue(Width); 6507 Upper = APInt::getSignedMaxValue(Width) + 1; 6508 } 6509 } else if (match(II.getOperand(1), m_APInt(C))) { 6510 if (C->isNegative()) { 6511 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6512 Lower = APInt::getSignedMinValue(Width) - *C; 6513 Upper = APInt::getSignedMaxValue(Width) + 1; 6514 } else { 6515 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6516 Lower = APInt::getSignedMinValue(Width); 6517 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6518 } 6519 } 6520 break; 6521 case Intrinsic::umin: 6522 case Intrinsic::umax: 6523 case Intrinsic::smin: 6524 case Intrinsic::smax: 6525 if (!match(II.getOperand(0), m_APInt(C)) && 6526 !match(II.getOperand(1), m_APInt(C))) 6527 break; 6528 6529 switch (II.getIntrinsicID()) { 6530 case Intrinsic::umin: 6531 Upper = *C + 1; 6532 break; 6533 case Intrinsic::umax: 6534 Lower = *C; 6535 break; 6536 case Intrinsic::smin: 6537 Lower = APInt::getSignedMinValue(Width); 6538 Upper = *C + 1; 6539 break; 6540 case Intrinsic::smax: 6541 Lower = *C; 6542 Upper = APInt::getSignedMaxValue(Width) + 1; 6543 break; 6544 default: 6545 llvm_unreachable("Must be min/max intrinsic"); 6546 } 6547 break; 6548 case Intrinsic::abs: 6549 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6550 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6551 if (match(II.getOperand(1), m_One())) 6552 Upper = APInt::getSignedMaxValue(Width) + 1; 6553 else 6554 Upper = APInt::getSignedMinValue(Width) + 1; 6555 break; 6556 default: 6557 break; 6558 } 6559 } 6560 6561 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6562 APInt &Upper, const InstrInfoQuery &IIQ) { 6563 const Value *LHS = nullptr, *RHS = nullptr; 6564 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6565 if (R.Flavor == SPF_UNKNOWN) 6566 return; 6567 6568 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6569 6570 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6571 // If the negation part of the abs (in RHS) has the NSW flag, 6572 // then the result of abs(X) is [0..SIGNED_MAX], 6573 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6574 Lower = APInt::getNullValue(BitWidth); 6575 if (match(RHS, m_Neg(m_Specific(LHS))) && 6576 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6577 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6578 else 6579 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6580 return; 6581 } 6582 6583 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6584 // The result of -abs(X) is <= 0. 6585 Lower = APInt::getSignedMinValue(BitWidth); 6586 Upper = APInt(BitWidth, 1); 6587 return; 6588 } 6589 6590 const APInt *C; 6591 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6592 return; 6593 6594 switch (R.Flavor) { 6595 case SPF_UMIN: 6596 Upper = *C + 1; 6597 break; 6598 case SPF_UMAX: 6599 Lower = *C; 6600 break; 6601 case SPF_SMIN: 6602 Lower = APInt::getSignedMinValue(BitWidth); 6603 Upper = *C + 1; 6604 break; 6605 case SPF_SMAX: 6606 Lower = *C; 6607 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6608 break; 6609 default: 6610 break; 6611 } 6612 } 6613 6614 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6615 AssumptionCache *AC, 6616 const Instruction *CtxI, 6617 unsigned Depth) { 6618 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6619 6620 if (Depth == MaxAnalysisRecursionDepth) 6621 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6622 6623 const APInt *C; 6624 if (match(V, m_APInt(C))) 6625 return ConstantRange(*C); 6626 6627 InstrInfoQuery IIQ(UseInstrInfo); 6628 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6629 APInt Lower = APInt(BitWidth, 0); 6630 APInt Upper = APInt(BitWidth, 0); 6631 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6632 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6633 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6634 setLimitsForIntrinsic(*II, Lower, Upper); 6635 else if (auto *SI = dyn_cast<SelectInst>(V)) 6636 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6637 6638 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6639 6640 if (auto *I = dyn_cast<Instruction>(V)) 6641 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6642 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6643 6644 if (CtxI && AC) { 6645 // Try to restrict the range based on information from assumptions. 6646 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6647 if (!AssumeVH) 6648 continue; 6649 CallInst *I = cast<CallInst>(AssumeVH); 6650 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6651 "Got assumption for the wrong function!"); 6652 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6653 "must be an assume intrinsic"); 6654 6655 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6656 continue; 6657 Value *Arg = I->getArgOperand(0); 6658 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6659 // Currently we just use information from comparisons. 6660 if (!Cmp || Cmp->getOperand(0) != V) 6661 continue; 6662 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6663 AC, I, Depth + 1); 6664 CR = CR.intersectWith( 6665 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6666 } 6667 } 6668 6669 return CR; 6670 } 6671 6672 static Optional<int64_t> 6673 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6674 // Skip over the first indices. 6675 gep_type_iterator GTI = gep_type_begin(GEP); 6676 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6677 /*skip along*/; 6678 6679 // Compute the offset implied by the rest of the indices. 6680 int64_t Offset = 0; 6681 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6682 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6683 if (!OpC) 6684 return None; 6685 if (OpC->isZero()) 6686 continue; // No offset. 6687 6688 // Handle struct indices, which add their field offset to the pointer. 6689 if (StructType *STy = GTI.getStructTypeOrNull()) { 6690 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6691 continue; 6692 } 6693 6694 // Otherwise, we have a sequential type like an array or fixed-length 6695 // vector. Multiply the index by the ElementSize. 6696 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6697 if (Size.isScalable()) 6698 return None; 6699 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6700 } 6701 6702 return Offset; 6703 } 6704 6705 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6706 const DataLayout &DL) { 6707 Ptr1 = Ptr1->stripPointerCasts(); 6708 Ptr2 = Ptr2->stripPointerCasts(); 6709 6710 // Handle the trivial case first. 6711 if (Ptr1 == Ptr2) { 6712 return 0; 6713 } 6714 6715 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6716 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6717 6718 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6719 // as in "P" and "gep P, 1". 6720 // Also do this iteratively to handle the the following case: 6721 // Ptr_t1 = GEP Ptr1, c1 6722 // Ptr_t2 = GEP Ptr_t1, c2 6723 // Ptr2 = GEP Ptr_t2, c3 6724 // where we will return c1+c2+c3. 6725 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6726 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6727 // are the same, and return the difference between offsets. 6728 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6729 const Value *Ptr) -> Optional<int64_t> { 6730 const GEPOperator *GEP_T = GEP; 6731 int64_t OffsetVal = 0; 6732 bool HasSameBase = false; 6733 while (GEP_T) { 6734 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6735 if (!Offset) 6736 return None; 6737 OffsetVal += *Offset; 6738 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6739 if (Op0 == Ptr) { 6740 HasSameBase = true; 6741 break; 6742 } 6743 GEP_T = dyn_cast<GEPOperator>(Op0); 6744 } 6745 if (!HasSameBase) 6746 return None; 6747 return OffsetVal; 6748 }; 6749 6750 if (GEP1) { 6751 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6752 if (Offset) 6753 return -*Offset; 6754 } 6755 if (GEP2) { 6756 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6757 if (Offset) 6758 return Offset; 6759 } 6760 6761 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6762 // base. After that base, they may have some number of common (and 6763 // potentially variable) indices. After that they handle some constant 6764 // offset, which determines their offset from each other. At this point, we 6765 // handle no other case. 6766 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6767 return None; 6768 6769 // Skip any common indices and track the GEP types. 6770 unsigned Idx = 1; 6771 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6772 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6773 break; 6774 6775 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6776 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6777 if (!Offset1 || !Offset2) 6778 return None; 6779 return *Offset2 - *Offset1; 6780 } 6781