1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 165 // If we've been provided with a context instruction, then use that (provided 166 // it has been inserted). 167 if (CxtI && CxtI->getParent()) 168 return CxtI; 169 170 // If the value is really an already-inserted instruction, then use that. 171 CxtI = dyn_cast<Instruction>(V1); 172 if (CxtI && CxtI->getParent()) 173 return CxtI; 174 175 CxtI = dyn_cast<Instruction>(V2); 176 if (CxtI && CxtI->getParent()) 177 return CxtI; 178 179 return nullptr; 180 } 181 182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 183 const APInt &DemandedElts, 184 APInt &DemandedLHS, APInt &DemandedRHS) { 185 // The length of scalable vectors is unknown at compile time, thus we 186 // cannot check their values 187 if (isa<ScalableVectorType>(Shuf->getType())) 188 return false; 189 190 int NumElts = 191 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 192 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 193 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 194 if (DemandedElts.isNullValue()) 195 return true; 196 // Simple case of a shuffle with zeroinitializer. 197 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 198 DemandedLHS.setBit(0); 199 return true; 200 } 201 for (int i = 0; i != NumMaskElts; ++i) { 202 if (!DemandedElts[i]) 203 continue; 204 int M = Shuf->getMaskValue(i); 205 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 206 207 // For undef elements, we don't know anything about the common state of 208 // the shuffle result. 209 if (M == -1) 210 return false; 211 if (M < NumElts) 212 DemandedLHS.setBit(M % NumElts); 213 else 214 DemandedRHS.setBit(M % NumElts); 215 } 216 217 return true; 218 } 219 220 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 221 KnownBits &Known, unsigned Depth, const Query &Q); 222 223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 224 const Query &Q) { 225 // FIXME: We currently have no way to represent the DemandedElts of a scalable 226 // vector 227 if (isa<ScalableVectorType>(V->getType())) { 228 Known.resetAll(); 229 return; 230 } 231 232 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 233 APInt DemandedElts = 234 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 235 computeKnownBits(V, DemandedElts, Known, Depth, Q); 236 } 237 238 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 239 const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, 242 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 243 ::computeKnownBits(V, Known, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 245 } 246 247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 248 KnownBits &Known, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, const DominatorTree *DT, 251 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 252 ::computeKnownBits(V, DemandedElts, Known, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 257 unsigned Depth, const Query &Q); 258 259 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 260 const Query &Q); 261 262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 263 unsigned Depth, AssumptionCache *AC, 264 const Instruction *CxtI, 265 const DominatorTree *DT, 266 OptimizationRemarkEmitter *ORE, 267 bool UseInstrInfo) { 268 return ::computeKnownBits( 269 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 270 } 271 272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 273 const DataLayout &DL, unsigned Depth, 274 AssumptionCache *AC, const Instruction *CxtI, 275 const DominatorTree *DT, 276 OptimizationRemarkEmitter *ORE, 277 bool UseInstrInfo) { 278 return ::computeKnownBits( 279 V, DemandedElts, Depth, 280 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 281 } 282 283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 284 const DataLayout &DL, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT, 286 bool UseInstrInfo) { 287 assert(LHS->getType() == RHS->getType() && 288 "LHS and RHS should have the same type"); 289 assert(LHS->getType()->isIntOrIntVectorTy() && 290 "LHS and RHS should be integers"); 291 // Look for an inverted mask: (X & ~M) op (Y & M). 292 Value *M; 293 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 294 match(RHS, m_c_And(m_Specific(M), m_Value()))) 295 return true; 296 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 297 match(LHS, m_c_And(m_Specific(M), m_Value()))) 298 return true; 299 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 300 KnownBits LHSKnown(IT->getBitWidth()); 301 KnownBits RHSKnown(IT->getBitWidth()); 302 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 303 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 304 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 305 } 306 307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 308 for (const User *U : CxtI->users()) { 309 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 310 if (IC->isEquality()) 311 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 312 if (C->isNullValue()) 313 continue; 314 return false; 315 } 316 return true; 317 } 318 319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 320 const Query &Q); 321 322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 323 bool OrZero, unsigned Depth, 324 AssumptionCache *AC, const Instruction *CxtI, 325 const DominatorTree *DT, bool UseInstrInfo) { 326 return ::isKnownToBeAPowerOfTwo( 327 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 328 } 329 330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 331 unsigned Depth, const Query &Q); 332 333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 334 335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 return ::isKnownNonZero(V, Depth, 339 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 340 } 341 342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 343 unsigned Depth, AssumptionCache *AC, 344 const Instruction *CxtI, const DominatorTree *DT, 345 bool UseInstrInfo) { 346 KnownBits Known = 347 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 348 return Known.isNonNegative(); 349 } 350 351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 352 AssumptionCache *AC, const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 if (auto *CI = dyn_cast<ConstantInt>(V)) 355 return CI->getValue().isStrictlyPositive(); 356 357 // TODO: We'd doing two recursive queries here. We should factor this such 358 // that only a single query is needed. 359 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 360 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 361 } 362 363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 364 AssumptionCache *AC, const Instruction *CxtI, 365 const DominatorTree *DT, bool UseInstrInfo) { 366 KnownBits Known = 367 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 368 return Known.isNegative(); 369 } 370 371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 372 const Query &Q); 373 374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 375 const DataLayout &DL, AssumptionCache *AC, 376 const Instruction *CxtI, const DominatorTree *DT, 377 bool UseInstrInfo) { 378 return ::isKnownNonEqual(V1, V2, 0, 379 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 380 UseInstrInfo, /*ORE=*/nullptr)); 381 } 382 383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 384 const Query &Q); 385 386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 387 const DataLayout &DL, unsigned Depth, 388 AssumptionCache *AC, const Instruction *CxtI, 389 const DominatorTree *DT, bool UseInstrInfo) { 390 return ::MaskedValueIsZero( 391 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 392 } 393 394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 395 unsigned Depth, const Query &Q); 396 397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 398 const Query &Q) { 399 // FIXME: We currently have no way to represent the DemandedElts of a scalable 400 // vector 401 if (isa<ScalableVectorType>(V->getType())) 402 return 1; 403 404 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 405 APInt DemandedElts = 406 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 407 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 408 } 409 410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 411 unsigned Depth, AssumptionCache *AC, 412 const Instruction *CxtI, 413 const DominatorTree *DT, bool UseInstrInfo) { 414 return ::ComputeNumSignBits( 415 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 416 } 417 418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 419 bool NSW, const APInt &DemandedElts, 420 KnownBits &KnownOut, KnownBits &Known2, 421 unsigned Depth, const Query &Q) { 422 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 423 424 // If one operand is unknown and we have no nowrap information, 425 // the result will be unknown independently of the second operand. 426 if (KnownOut.isUnknown() && !NSW) 427 return; 428 429 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 430 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 431 } 432 433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 434 const APInt &DemandedElts, KnownBits &Known, 435 KnownBits &Known2, unsigned Depth, 436 const Query &Q) { 437 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 438 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 439 440 bool isKnownNegative = false; 441 bool isKnownNonNegative = false; 442 // If the multiplication is known not to overflow, compute the sign bit. 443 if (NSW) { 444 if (Op0 == Op1) { 445 // The product of a number with itself is non-negative. 446 isKnownNonNegative = true; 447 } else { 448 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 449 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 450 bool isKnownNegativeOp1 = Known.isNegative(); 451 bool isKnownNegativeOp0 = Known2.isNegative(); 452 // The product of two numbers with the same sign is non-negative. 453 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 454 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 455 // The product of a negative number and a non-negative number is either 456 // negative or zero. 457 if (!isKnownNonNegative) 458 isKnownNegative = 459 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 460 Known2.isNonZero()) || 461 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 462 } 463 } 464 465 Known = KnownBits::mul(Known, Known2); 466 467 // Only make use of no-wrap flags if we failed to compute the sign bit 468 // directly. This matters if the multiplication always overflows, in 469 // which case we prefer to follow the result of the direct computation, 470 // though as the program is invoking undefined behaviour we can choose 471 // whatever we like here. 472 if (isKnownNonNegative && !Known.isNegative()) 473 Known.makeNonNegative(); 474 else if (isKnownNegative && !Known.isNonNegative()) 475 Known.makeNegative(); 476 } 477 478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 479 KnownBits &Known) { 480 unsigned BitWidth = Known.getBitWidth(); 481 unsigned NumRanges = Ranges.getNumOperands() / 2; 482 assert(NumRanges >= 1); 483 484 Known.Zero.setAllBits(); 485 Known.One.setAllBits(); 486 487 for (unsigned i = 0; i < NumRanges; ++i) { 488 ConstantInt *Lower = 489 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 490 ConstantInt *Upper = 491 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 492 ConstantRange Range(Lower->getValue(), Upper->getValue()); 493 494 // The first CommonPrefixBits of all values in Range are equal. 495 unsigned CommonPrefixBits = 496 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 497 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 498 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 499 Known.One &= UnsignedMax & Mask; 500 Known.Zero &= ~UnsignedMax & Mask; 501 } 502 } 503 504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 505 SmallVector<const Value *, 16> WorkSet(1, I); 506 SmallPtrSet<const Value *, 32> Visited; 507 SmallPtrSet<const Value *, 16> EphValues; 508 509 // The instruction defining an assumption's condition itself is always 510 // considered ephemeral to that assumption (even if it has other 511 // non-ephemeral users). See r246696's test case for an example. 512 if (is_contained(I->operands(), E)) 513 return true; 514 515 while (!WorkSet.empty()) { 516 const Value *V = WorkSet.pop_back_val(); 517 if (!Visited.insert(V).second) 518 continue; 519 520 // If all uses of this value are ephemeral, then so is this value. 521 if (llvm::all_of(V->users(), [&](const User *U) { 522 return EphValues.count(U); 523 })) { 524 if (V == E) 525 return true; 526 527 if (V == I || isSafeToSpeculativelyExecute(V)) { 528 EphValues.insert(V); 529 if (const User *U = dyn_cast<User>(V)) 530 append_range(WorkSet, U->operands()); 531 } 532 } 533 } 534 535 return false; 536 } 537 538 // Is this an intrinsic that cannot be speculated but also cannot trap? 539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 540 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 541 return CI->isAssumeLikeIntrinsic(); 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 // We limit the scan distance between the assume and its context instruction 573 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 574 // it can be adjusted if needed (could be turned into a cl::opt). 575 unsigned ScanLimit = 15; 576 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 577 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 578 return false; 579 580 return !isEphemeralValueOf(Inv, CxtI); 581 } 582 583 // Inv and CxtI are in different blocks. 584 if (DT) { 585 if (DT->dominates(Inv, CxtI)) 586 return true; 587 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 588 // We don't have a DT, but this trivially dominates. 589 return true; 590 } 591 592 return false; 593 } 594 595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 596 // v u> y implies v != 0. 597 if (Pred == ICmpInst::ICMP_UGT) 598 return true; 599 600 // Special-case v != 0 to also handle v != null. 601 if (Pred == ICmpInst::ICMP_NE) 602 return match(RHS, m_Zero()); 603 604 // All other predicates - rely on generic ConstantRange handling. 605 const APInt *C; 606 if (!match(RHS, m_APInt(C))) 607 return false; 608 609 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 610 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 611 } 612 613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 614 // Use of assumptions is context-sensitive. If we don't have a context, we 615 // cannot use them! 616 if (!Q.AC || !Q.CxtI) 617 return false; 618 619 if (Q.CxtI && V->getType()->isPointerTy()) { 620 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 621 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 622 V->getType()->getPointerAddressSpace())) 623 AttrKinds.push_back(Attribute::Dereferenceable); 624 625 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 626 return true; 627 } 628 629 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 630 if (!AssumeVH) 631 continue; 632 CallInst *I = cast<CallInst>(AssumeVH); 633 assert(I->getFunction() == Q.CxtI->getFunction() && 634 "Got assumption for the wrong function!"); 635 if (Q.isExcluded(I)) 636 continue; 637 638 // Warning: This loop can end up being somewhat performance sensitive. 639 // We're running this loop for once for each value queried resulting in a 640 // runtime of ~O(#assumes * #values). 641 642 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 643 "must be an assume intrinsic"); 644 645 Value *RHS; 646 CmpInst::Predicate Pred; 647 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 648 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 649 return false; 650 651 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 652 return true; 653 } 654 655 return false; 656 } 657 658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 659 unsigned Depth, const Query &Q) { 660 // Use of assumptions is context-sensitive. If we don't have a context, we 661 // cannot use them! 662 if (!Q.AC || !Q.CxtI) 663 return; 664 665 unsigned BitWidth = Known.getBitWidth(); 666 667 // Refine Known set if the pointer alignment is set by assume bundles. 668 if (V->getType()->isPointerTy()) { 669 if (RetainedKnowledge RK = getKnowledgeValidInContext( 670 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 671 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 672 } 673 } 674 675 // Note that the patterns below need to be kept in sync with the code 676 // in AssumptionCache::updateAffectedValues. 677 678 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 679 if (!AssumeVH) 680 continue; 681 CallInst *I = cast<CallInst>(AssumeVH); 682 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 683 "Got assumption for the wrong function!"); 684 if (Q.isExcluded(I)) 685 continue; 686 687 // Warning: This loop can end up being somewhat performance sensitive. 688 // We're running this loop for once for each value queried resulting in a 689 // runtime of ~O(#assumes * #values). 690 691 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 692 "must be an assume intrinsic"); 693 694 Value *Arg = I->getArgOperand(0); 695 696 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 assert(BitWidth == 1 && "assume operand is not i1?"); 698 Known.setAllOnes(); 699 return; 700 } 701 if (match(Arg, m_Not(m_Specific(V))) && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllZero(); 705 return; 706 } 707 708 // The remaining tests are all recursive, so bail out if we hit the limit. 709 if (Depth == MaxAnalysisRecursionDepth) 710 continue; 711 712 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 713 if (!Cmp) 714 continue; 715 716 // Note that ptrtoint may change the bitwidth. 717 Value *A, *B; 718 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 719 720 CmpInst::Predicate Pred; 721 uint64_t C; 722 switch (Cmp->getPredicate()) { 723 default: 724 break; 725 case ICmpInst::ICMP_EQ: 726 // assume(v = a) 727 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 731 Known.Zero |= RHSKnown.Zero; 732 Known.One |= RHSKnown.One; 733 // assume(v & b = a) 734 } else if (match(Cmp, 735 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // known bits from the RHS to V. 744 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 745 Known.One |= RHSKnown.One & MaskKnown.One; 746 // assume(~(v & b) = a) 747 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 748 m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 KnownBits MaskKnown = 753 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 754 755 // For those bits in the mask that are known to be one, we can propagate 756 // inverted known bits from the RHS to V. 757 Known.Zero |= RHSKnown.One & MaskKnown.One; 758 Known.One |= RHSKnown.Zero & MaskKnown.One; 759 // assume(v | b = a) 760 } else if (match(Cmp, 761 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate known 769 // bits from the RHS to V. 770 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 771 Known.One |= RHSKnown.One & BKnown.Zero; 772 // assume(~(v | b) = a) 773 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 774 m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate 782 // inverted known bits from the RHS to V. 783 Known.Zero |= RHSKnown.One & BKnown.Zero; 784 Known.One |= RHSKnown.Zero & BKnown.Zero; 785 // assume(v ^ b = a) 786 } else if (match(Cmp, 787 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 789 KnownBits RHSKnown = 790 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 KnownBits BKnown = 792 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 793 794 // For those bits in B that are known to be zero, we can propagate known 795 // bits from the RHS to V. For those bits in B that are known to be one, 796 // we can propagate inverted known bits from the RHS to V. 797 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 798 Known.One |= RHSKnown.One & BKnown.Zero; 799 Known.Zero |= RHSKnown.One & BKnown.One; 800 Known.One |= RHSKnown.Zero & BKnown.One; 801 // assume(~(v ^ b) = a) 802 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 803 m_Value(A))) && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown = 806 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 KnownBits BKnown = 808 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 810 // For those bits in B that are known to be zero, we can propagate 811 // inverted known bits from the RHS to V. For those bits in B that are 812 // known to be one, we can propagate known bits from the RHS to V. 813 Known.Zero |= RHSKnown.One & BKnown.Zero; 814 Known.One |= RHSKnown.Zero & BKnown.Zero; 815 Known.Zero |= RHSKnown.Zero & BKnown.One; 816 Known.One |= RHSKnown.One & BKnown.One; 817 // assume(v << c = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 823 824 // For those bits in RHS that are known, we can propagate them to known 825 // bits in V shifted to the right by C. 826 RHSKnown.Zero.lshrInPlace(C); 827 Known.Zero |= RHSKnown.Zero; 828 RHSKnown.One.lshrInPlace(C); 829 Known.One |= RHSKnown.One; 830 // assume(~(v << c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 RHSKnown.One.lshrInPlace(C); 839 Known.Zero |= RHSKnown.One; 840 RHSKnown.Zero.lshrInPlace(C); 841 Known.One |= RHSKnown.Zero; 842 // assume(v >> c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 Known.Zero |= RHSKnown.Zero << C; 851 Known.One |= RHSKnown.One << C; 852 // assume(~(v >> c) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 856 KnownBits RHSKnown = 857 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 858 // For those bits in RHS that are known, we can propagate them inverted 859 // to known bits in V shifted to the right by C. 860 Known.Zero |= RHSKnown.One << C; 861 Known.One |= RHSKnown.Zero << C; 862 } 863 break; 864 case ICmpInst::ICMP_SGE: 865 // assume(v >=_s c) where c is non-negative 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SGT: 878 // assume(v >_s c) where c is at least -1. 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 885 // We know that the sign bit is zero. 886 Known.makeNonNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLE: 891 // assume(v <=_s c) where c is negative 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_SLT: 904 // assume(v <_s c) where c is non-positive 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 909 910 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 911 // We know that the sign bit is one. 912 Known.makeNegative(); 913 } 914 } 915 break; 916 case ICmpInst::ICMP_ULE: 917 // assume(v <=_u c) 918 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 919 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 920 KnownBits RHSKnown = 921 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 922 923 // Whatever high bits in c are zero are known to be zero. 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 925 } 926 break; 927 case ICmpInst::ICMP_ULT: 928 // assume(v <_u c) 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 933 934 // If the RHS is known zero, then this assumption must be wrong (nothing 935 // is unsigned less than zero). Signal a conflict and get out of here. 936 if (RHSKnown.isZero()) { 937 Known.Zero.setAllBits(); 938 Known.One.setAllBits(); 939 break; 940 } 941 942 // Whatever high bits in c are zero are known to be zero (if c is a power 943 // of 2, then one more). 944 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 946 else 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 } 951 } 952 953 // If assumptions conflict with each other or previous known bits, then we 954 // have a logical fallacy. It's possible that the assumption is not reachable, 955 // so this isn't a real bug. On the other hand, the program may have undefined 956 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 957 // clear out the known bits, try to warn the user, and hope for the best. 958 if (Known.Zero.intersects(Known.One)) { 959 Known.resetAll(); 960 961 if (Q.ORE) 962 Q.ORE->emit([&]() { 963 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 964 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 965 CxtI) 966 << "Detected conflicting code assumptions. Program may " 967 "have undefined behavior, or compiler may have " 968 "internal error."; 969 }); 970 } 971 } 972 973 /// Compute known bits from a shift operator, including those with a 974 /// non-constant shift amount. Known is the output of this function. Known2 is a 975 /// pre-allocated temporary with the same bit width as Known and on return 976 /// contains the known bit of the shift value source. KF is an 977 /// operator-specific function that, given the known-bits and a shift amount, 978 /// compute the implied known-bits of the shift operator's result respectively 979 /// for that shift amount. The results from calling KF are conservatively 980 /// combined for all permitted shift amounts. 981 static void computeKnownBitsFromShiftOperator( 982 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 983 KnownBits &Known2, unsigned Depth, const Query &Q, 984 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 985 unsigned BitWidth = Known.getBitWidth(); 986 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 988 989 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 990 // BitWidth > 64 and any upper bits are known, we'll end up returning the 991 // limit value (which implies all bits are known). 992 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 993 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 994 bool ShiftAmtIsConstant = Known.isConstant(); 995 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 996 997 if (ShiftAmtIsConstant) { 998 Known = KF(Known2, Known); 999 1000 // If the known bits conflict, this must be an overflowing left shift, so 1001 // the shift result is poison. We can return anything we want. Choose 0 for 1002 // the best folding opportunity. 1003 if (Known.hasConflict()) 1004 Known.setAllZero(); 1005 1006 return; 1007 } 1008 1009 // If the shift amount could be greater than or equal to the bit-width of the 1010 // LHS, the value could be poison, but bail out because the check below is 1011 // expensive. 1012 // TODO: Should we just carry on? 1013 if (MaxShiftAmtIsOutOfRange) { 1014 Known.resetAll(); 1015 return; 1016 } 1017 1018 // It would be more-clearly correct to use the two temporaries for this 1019 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1020 Known.resetAll(); 1021 1022 // If we know the shifter operand is nonzero, we can sometimes infer more 1023 // known bits. However this is expensive to compute, so be lazy about it and 1024 // only compute it when absolutely necessary. 1025 Optional<bool> ShifterOperandIsNonZero; 1026 1027 // Early exit if we can't constrain any well-defined shift amount. 1028 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1029 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1032 if (!*ShifterOperandIsNonZero) 1033 return; 1034 } 1035 1036 Known.Zero.setAllBits(); 1037 Known.One.setAllBits(); 1038 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1039 // Combine the shifted known input bits only for those shift amounts 1040 // compatible with its known constraints. 1041 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1042 continue; 1043 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1044 continue; 1045 // If we know the shifter is nonzero, we may be able to infer more known 1046 // bits. This check is sunk down as far as possible to avoid the expensive 1047 // call to isKnownNonZero if the cheaper checks above fail. 1048 if (ShiftAmt == 0) { 1049 if (!ShifterOperandIsNonZero.hasValue()) 1050 ShifterOperandIsNonZero = 1051 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1052 if (*ShifterOperandIsNonZero) 1053 continue; 1054 } 1055 1056 Known = KnownBits::commonBits( 1057 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1058 } 1059 1060 // If the known bits conflict, the result is poison. Return a 0 and hope the 1061 // caller can further optimize that. 1062 if (Known.hasConflict()) 1063 Known.setAllZero(); 1064 } 1065 1066 static void computeKnownBitsFromOperator(const Operator *I, 1067 const APInt &DemandedElts, 1068 KnownBits &Known, unsigned Depth, 1069 const Query &Q) { 1070 unsigned BitWidth = Known.getBitWidth(); 1071 1072 KnownBits Known2(BitWidth); 1073 switch (I->getOpcode()) { 1074 default: break; 1075 case Instruction::Load: 1076 if (MDNode *MD = 1077 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1078 computeKnownBitsFromRangeMetadata(*MD, Known); 1079 break; 1080 case Instruction::And: { 1081 // If either the LHS or the RHS are Zero, the result is zero. 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known &= Known2; 1086 1087 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1088 // here we handle the more general case of adding any odd number by 1089 // matching the form add(x, add(x, y)) where y is odd. 1090 // TODO: This could be generalized to clearing any bit set in y where the 1091 // following bit is known to be unset in y. 1092 Value *X = nullptr, *Y = nullptr; 1093 if (!Known.Zero[0] && !Known.One[0] && 1094 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1095 Known2.resetAll(); 1096 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1097 if (Known2.countMinTrailingOnes() > 0) 1098 Known.Zero.setBit(0); 1099 } 1100 break; 1101 } 1102 case Instruction::Or: 1103 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1104 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1105 1106 Known |= Known2; 1107 break; 1108 case Instruction::Xor: 1109 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1111 1112 Known ^= Known2; 1113 break; 1114 case Instruction::Mul: { 1115 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1116 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1117 Known, Known2, Depth, Q); 1118 break; 1119 } 1120 case Instruction::UDiv: { 1121 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1123 Known = KnownBits::udiv(Known, Known2); 1124 break; 1125 } 1126 case Instruction::Select: { 1127 const Value *LHS = nullptr, *RHS = nullptr; 1128 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1129 if (SelectPatternResult::isMinOrMax(SPF)) { 1130 computeKnownBits(RHS, Known, Depth + 1, Q); 1131 computeKnownBits(LHS, Known2, Depth + 1, Q); 1132 switch (SPF) { 1133 default: 1134 llvm_unreachable("Unhandled select pattern flavor!"); 1135 case SPF_SMAX: 1136 Known = KnownBits::smax(Known, Known2); 1137 break; 1138 case SPF_SMIN: 1139 Known = KnownBits::smin(Known, Known2); 1140 break; 1141 case SPF_UMAX: 1142 Known = KnownBits::umax(Known, Known2); 1143 break; 1144 case SPF_UMIN: 1145 Known = KnownBits::umin(Known, Known2); 1146 break; 1147 } 1148 break; 1149 } 1150 1151 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1152 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1153 1154 // Only known if known in both the LHS and RHS. 1155 Known = KnownBits::commonBits(Known, Known2); 1156 1157 if (SPF == SPF_ABS) { 1158 // RHS from matchSelectPattern returns the negation part of abs pattern. 1159 // If the negate has an NSW flag we can assume the sign bit of the result 1160 // will be 0 because that makes abs(INT_MIN) undefined. 1161 if (match(RHS, m_Neg(m_Specific(LHS))) && 1162 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1163 Known.Zero.setSignBit(); 1164 } 1165 1166 break; 1167 } 1168 case Instruction::FPTrunc: 1169 case Instruction::FPExt: 1170 case Instruction::FPToUI: 1171 case Instruction::FPToSI: 1172 case Instruction::SIToFP: 1173 case Instruction::UIToFP: 1174 break; // Can't work with floating point. 1175 case Instruction::PtrToInt: 1176 case Instruction::IntToPtr: 1177 // Fall through and handle them the same as zext/trunc. 1178 LLVM_FALLTHROUGH; 1179 case Instruction::ZExt: 1180 case Instruction::Trunc: { 1181 Type *SrcTy = I->getOperand(0)->getType(); 1182 1183 unsigned SrcBitWidth; 1184 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1185 // which fall through here. 1186 Type *ScalarTy = SrcTy->getScalarType(); 1187 SrcBitWidth = ScalarTy->isPointerTy() ? 1188 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1189 Q.DL.getTypeSizeInBits(ScalarTy); 1190 1191 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1192 Known = Known.anyextOrTrunc(SrcBitWidth); 1193 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1194 Known = Known.zextOrTrunc(BitWidth); 1195 break; 1196 } 1197 case Instruction::BitCast: { 1198 Type *SrcTy = I->getOperand(0)->getType(); 1199 if (SrcTy->isIntOrPtrTy() && 1200 // TODO: For now, not handling conversions like: 1201 // (bitcast i64 %x to <2 x i32>) 1202 !I->getType()->isVectorTy()) { 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 break; 1205 } 1206 break; 1207 } 1208 case Instruction::SExt: { 1209 // Compute the bits in the result that are not present in the input. 1210 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1211 1212 Known = Known.trunc(SrcBitWidth); 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 // If the sign bit of the input is known set or clear, then we know the 1215 // top bits of the result. 1216 Known = Known.sext(BitWidth); 1217 break; 1218 } 1219 case Instruction::Shl: { 1220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1221 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1222 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1223 // If this shift has "nsw" keyword, then the result is either a poison 1224 // value or has the same sign bit as the first operand. 1225 if (NSW) { 1226 if (KnownVal.Zero.isSignBitSet()) 1227 Result.Zero.setSignBit(); 1228 if (KnownVal.One.isSignBitSet()) 1229 Result.One.setSignBit(); 1230 } 1231 return Result; 1232 }; 1233 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1234 KF); 1235 // Trailing zeros of a right-shifted constant never decrease. 1236 const APInt *C; 1237 if (match(I->getOperand(0), m_APInt(C))) 1238 Known.Zero.setLowBits(C->countTrailingZeros()); 1239 break; 1240 } 1241 case Instruction::LShr: { 1242 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1243 return KnownBits::lshr(KnownVal, KnownAmt); 1244 }; 1245 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1246 KF); 1247 // Leading zeros of a left-shifted constant never decrease. 1248 const APInt *C; 1249 if (match(I->getOperand(0), m_APInt(C))) 1250 Known.Zero.setHighBits(C->countLeadingZeros()); 1251 break; 1252 } 1253 case Instruction::AShr: { 1254 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1255 return KnownBits::ashr(KnownVal, KnownAmt); 1256 }; 1257 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1258 KF); 1259 break; 1260 } 1261 case Instruction::Sub: { 1262 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1263 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1264 DemandedElts, Known, Known2, Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 DemandedElts, Known, Known2, Depth, Q); 1271 break; 1272 } 1273 case Instruction::SRem: 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 Known = KnownBits::srem(Known, Known2); 1277 break; 1278 1279 case Instruction::URem: 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1282 Known = KnownBits::urem(Known, Known2); 1283 break; 1284 case Instruction::Alloca: 1285 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1286 break; 1287 case Instruction::GetElementPtr: { 1288 // Analyze all of the subscripts of this getelementptr instruction 1289 // to determine if we can prove known low zero bits. 1290 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1291 // Accumulate the constant indices in a separate variable 1292 // to minimize the number of calls to computeForAddSub. 1293 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1294 1295 gep_type_iterator GTI = gep_type_begin(I); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor = 1351 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1352 } 1353 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 // Note that inbounds does *not* guarantee nsw for the addition, as only 1361 // the offset is signed, while the base address is unsigned. 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1364 } 1365 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1366 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1367 Known = KnownBits::computeForAddSub( 1368 /*Add=*/true, /*NSW=*/false, Known, Index); 1369 } 1370 break; 1371 } 1372 case Instruction::PHI: { 1373 const PHINode *P = cast<PHINode>(I); 1374 BinaryOperator *BO = nullptr; 1375 Value *R = nullptr, *L = nullptr; 1376 if (matchSimpleRecurrence(P, BO, R, L)) { 1377 // Handle the case of a simple two-predecessor recurrence PHI. 1378 // There's a lot more that could theoretically be done here, but 1379 // this is sufficient to catch some interesting cases. 1380 unsigned Opcode = BO->getOpcode(); 1381 1382 // If this is a shift recurrence, we know the bits being shifted in. 1383 // We can combine that with information about the start value of the 1384 // recurrence to conclude facts about the result. 1385 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1386 Opcode == Instruction::Shl) && 1387 BO->getOperand(0) == I) { 1388 1389 // We have matched a recurrence of the form: 1390 // %iv = [R, %entry], [%iv.next, %backedge] 1391 // %iv.next = shift_op %iv, L 1392 1393 // Recurse with the phi context to avoid concern about whether facts 1394 // inferred hold at original context instruction. TODO: It may be 1395 // correct to use the original context. IF warranted, explore and 1396 // add sufficient tests to cover. 1397 Query RecQ = Q; 1398 RecQ.CxtI = P; 1399 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1400 switch (Opcode) { 1401 case Instruction::Shl: 1402 // A shl recurrence will only increase the tailing zeros 1403 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1404 break; 1405 case Instruction::LShr: 1406 // A lshr recurrence will preserve the leading zeros of the 1407 // start value 1408 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1409 break; 1410 case Instruction::AShr: 1411 // An ashr recurrence will extend the initial sign bit 1412 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1413 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1414 break; 1415 }; 1416 } 1417 1418 // Check for operations that have the property that if 1419 // both their operands have low zero bits, the result 1420 // will have low zero bits. 1421 if (Opcode == Instruction::Add || 1422 Opcode == Instruction::Sub || 1423 Opcode == Instruction::And || 1424 Opcode == Instruction::Or || 1425 Opcode == Instruction::Mul) { 1426 // Change the context instruction to the "edge" that flows into the 1427 // phi. This is important because that is where the value is actually 1428 // "evaluated" even though it is used later somewhere else. (see also 1429 // D69571). 1430 Query RecQ = Q; 1431 1432 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1433 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1434 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1435 1436 // Ok, we have a PHI of the form L op= R. Check for low 1437 // zero bits. 1438 RecQ.CxtI = RInst; 1439 computeKnownBits(R, Known2, Depth + 1, RecQ); 1440 1441 // We need to take the minimum number of known bits 1442 KnownBits Known3(BitWidth); 1443 RecQ.CxtI = LInst; 1444 computeKnownBits(L, Known3, Depth + 1, RecQ); 1445 1446 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1447 Known3.countMinTrailingZeros())); 1448 1449 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1450 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1451 // If initial value of recurrence is nonnegative, and we are adding 1452 // a nonnegative number with nsw, the result can only be nonnegative 1453 // or poison value regardless of the number of times we execute the 1454 // add in phi recurrence. If initial value is negative and we are 1455 // adding a negative number with nsw, the result can only be 1456 // negative or poison value. Similar arguments apply to sub and mul. 1457 // 1458 // (add non-negative, non-negative) --> non-negative 1459 // (add negative, negative) --> negative 1460 if (Opcode == Instruction::Add) { 1461 if (Known2.isNonNegative() && Known3.isNonNegative()) 1462 Known.makeNonNegative(); 1463 else if (Known2.isNegative() && Known3.isNegative()) 1464 Known.makeNegative(); 1465 } 1466 1467 // (sub nsw non-negative, negative) --> non-negative 1468 // (sub nsw negative, non-negative) --> negative 1469 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1470 if (Known2.isNonNegative() && Known3.isNegative()) 1471 Known.makeNonNegative(); 1472 else if (Known2.isNegative() && Known3.isNonNegative()) 1473 Known.makeNegative(); 1474 } 1475 1476 // (mul nsw non-negative, non-negative) --> non-negative 1477 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1478 Known3.isNonNegative()) 1479 Known.makeNonNegative(); 1480 } 1481 1482 break; 1483 } 1484 } 1485 1486 // Unreachable blocks may have zero-operand PHI nodes. 1487 if (P->getNumIncomingValues() == 0) 1488 break; 1489 1490 // Otherwise take the unions of the known bit sets of the operands, 1491 // taking conservative care to avoid excessive recursion. 1492 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1493 // Skip if every incoming value references to ourself. 1494 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1495 break; 1496 1497 Known.Zero.setAllBits(); 1498 Known.One.setAllBits(); 1499 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1500 Value *IncValue = P->getIncomingValue(u); 1501 // Skip direct self references. 1502 if (IncValue == P) continue; 1503 1504 // Change the context instruction to the "edge" that flows into the 1505 // phi. This is important because that is where the value is actually 1506 // "evaluated" even though it is used later somewhere else. (see also 1507 // D69571). 1508 Query RecQ = Q; 1509 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1510 1511 Known2 = KnownBits(BitWidth); 1512 // Recurse, but cap the recursion to one level, because we don't 1513 // want to waste time spinning around in loops. 1514 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1515 Known = KnownBits::commonBits(Known, Known2); 1516 // If all bits have been ruled out, there's no need to check 1517 // more operands. 1518 if (Known.isUnknown()) 1519 break; 1520 } 1521 } 1522 break; 1523 } 1524 case Instruction::Call: 1525 case Instruction::Invoke: 1526 // If range metadata is attached to this call, set known bits from that, 1527 // and then intersect with known bits based on other properties of the 1528 // function. 1529 if (MDNode *MD = 1530 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1531 computeKnownBitsFromRangeMetadata(*MD, Known); 1532 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1533 computeKnownBits(RV, Known2, Depth + 1, Q); 1534 Known.Zero |= Known2.Zero; 1535 Known.One |= Known2.One; 1536 } 1537 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1538 switch (II->getIntrinsicID()) { 1539 default: break; 1540 case Intrinsic::abs: { 1541 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1542 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1543 Known = Known2.abs(IntMinIsPoison); 1544 break; 1545 } 1546 case Intrinsic::bitreverse: 1547 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1548 Known.Zero |= Known2.Zero.reverseBits(); 1549 Known.One |= Known2.One.reverseBits(); 1550 break; 1551 case Intrinsic::bswap: 1552 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1553 Known.Zero |= Known2.Zero.byteSwap(); 1554 Known.One |= Known2.One.byteSwap(); 1555 break; 1556 case Intrinsic::ctlz: { 1557 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1558 // If we have a known 1, its position is our upper bound. 1559 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1560 // If this call is undefined for 0, the result will be less than 2^n. 1561 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1562 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1563 unsigned LowBits = Log2_32(PossibleLZ)+1; 1564 Known.Zero.setBitsFrom(LowBits); 1565 break; 1566 } 1567 case Intrinsic::cttz: { 1568 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1569 // If we have a known 1, its position is our upper bound. 1570 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1571 // If this call is undefined for 0, the result will be less than 2^n. 1572 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1573 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1574 unsigned LowBits = Log2_32(PossibleTZ)+1; 1575 Known.Zero.setBitsFrom(LowBits); 1576 break; 1577 } 1578 case Intrinsic::ctpop: { 1579 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1580 // We can bound the space the count needs. Also, bits known to be zero 1581 // can't contribute to the population. 1582 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1583 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1584 Known.Zero.setBitsFrom(LowBits); 1585 // TODO: we could bound KnownOne using the lower bound on the number 1586 // of bits which might be set provided by popcnt KnownOne2. 1587 break; 1588 } 1589 case Intrinsic::fshr: 1590 case Intrinsic::fshl: { 1591 const APInt *SA; 1592 if (!match(I->getOperand(2), m_APInt(SA))) 1593 break; 1594 1595 // Normalize to funnel shift left. 1596 uint64_t ShiftAmt = SA->urem(BitWidth); 1597 if (II->getIntrinsicID() == Intrinsic::fshr) 1598 ShiftAmt = BitWidth - ShiftAmt; 1599 1600 KnownBits Known3(BitWidth); 1601 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1602 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1603 1604 Known.Zero = 1605 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1606 Known.One = 1607 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1608 break; 1609 } 1610 case Intrinsic::uadd_sat: 1611 case Intrinsic::usub_sat: { 1612 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1613 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1614 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1615 1616 // Add: Leading ones of either operand are preserved. 1617 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1618 // as leading zeros in the result. 1619 unsigned LeadingKnown; 1620 if (IsAdd) 1621 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1622 Known2.countMinLeadingOnes()); 1623 else 1624 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1625 Known2.countMinLeadingOnes()); 1626 1627 Known = KnownBits::computeForAddSub( 1628 IsAdd, /* NSW */ false, Known, Known2); 1629 1630 // We select between the operation result and all-ones/zero 1631 // respectively, so we can preserve known ones/zeros. 1632 if (IsAdd) { 1633 Known.One.setHighBits(LeadingKnown); 1634 Known.Zero.clearAllBits(); 1635 } else { 1636 Known.Zero.setHighBits(LeadingKnown); 1637 Known.One.clearAllBits(); 1638 } 1639 break; 1640 } 1641 case Intrinsic::umin: 1642 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1644 Known = KnownBits::umin(Known, Known2); 1645 break; 1646 case Intrinsic::umax: 1647 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1648 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1649 Known = KnownBits::umax(Known, Known2); 1650 break; 1651 case Intrinsic::smin: 1652 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1653 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1654 Known = KnownBits::smin(Known, Known2); 1655 break; 1656 case Intrinsic::smax: 1657 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1658 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1659 Known = KnownBits::smax(Known, Known2); 1660 break; 1661 case Intrinsic::x86_sse42_crc32_64_64: 1662 Known.Zero.setBitsFrom(32); 1663 break; 1664 } 1665 } 1666 break; 1667 case Instruction::ShuffleVector: { 1668 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1669 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1670 if (!Shuf) { 1671 Known.resetAll(); 1672 return; 1673 } 1674 // For undef elements, we don't know anything about the common state of 1675 // the shuffle result. 1676 APInt DemandedLHS, DemandedRHS; 1677 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1678 Known.resetAll(); 1679 return; 1680 } 1681 Known.One.setAllBits(); 1682 Known.Zero.setAllBits(); 1683 if (!!DemandedLHS) { 1684 const Value *LHS = Shuf->getOperand(0); 1685 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1686 // If we don't know any bits, early out. 1687 if (Known.isUnknown()) 1688 break; 1689 } 1690 if (!!DemandedRHS) { 1691 const Value *RHS = Shuf->getOperand(1); 1692 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1693 Known = KnownBits::commonBits(Known, Known2); 1694 } 1695 break; 1696 } 1697 case Instruction::InsertElement: { 1698 const Value *Vec = I->getOperand(0); 1699 const Value *Elt = I->getOperand(1); 1700 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1701 // Early out if the index is non-constant or out-of-range. 1702 unsigned NumElts = DemandedElts.getBitWidth(); 1703 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1704 Known.resetAll(); 1705 return; 1706 } 1707 Known.One.setAllBits(); 1708 Known.Zero.setAllBits(); 1709 unsigned EltIdx = CIdx->getZExtValue(); 1710 // Do we demand the inserted element? 1711 if (DemandedElts[EltIdx]) { 1712 computeKnownBits(Elt, Known, Depth + 1, Q); 1713 // If we don't know any bits, early out. 1714 if (Known.isUnknown()) 1715 break; 1716 } 1717 // We don't need the base vector element that has been inserted. 1718 APInt DemandedVecElts = DemandedElts; 1719 DemandedVecElts.clearBit(EltIdx); 1720 if (!!DemandedVecElts) { 1721 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1722 Known = KnownBits::commonBits(Known, Known2); 1723 } 1724 break; 1725 } 1726 case Instruction::ExtractElement: { 1727 // Look through extract element. If the index is non-constant or 1728 // out-of-range demand all elements, otherwise just the extracted element. 1729 const Value *Vec = I->getOperand(0); 1730 const Value *Idx = I->getOperand(1); 1731 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1732 if (isa<ScalableVectorType>(Vec->getType())) { 1733 // FIXME: there's probably *something* we can do with scalable vectors 1734 Known.resetAll(); 1735 break; 1736 } 1737 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1738 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1739 if (CIdx && CIdx->getValue().ult(NumElts)) 1740 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1741 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1742 break; 1743 } 1744 case Instruction::ExtractValue: 1745 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1746 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1747 if (EVI->getNumIndices() != 1) break; 1748 if (EVI->getIndices()[0] == 0) { 1749 switch (II->getIntrinsicID()) { 1750 default: break; 1751 case Intrinsic::uadd_with_overflow: 1752 case Intrinsic::sadd_with_overflow: 1753 computeKnownBitsAddSub(true, II->getArgOperand(0), 1754 II->getArgOperand(1), false, DemandedElts, 1755 Known, Known2, Depth, Q); 1756 break; 1757 case Intrinsic::usub_with_overflow: 1758 case Intrinsic::ssub_with_overflow: 1759 computeKnownBitsAddSub(false, II->getArgOperand(0), 1760 II->getArgOperand(1), false, DemandedElts, 1761 Known, Known2, Depth, Q); 1762 break; 1763 case Intrinsic::umul_with_overflow: 1764 case Intrinsic::smul_with_overflow: 1765 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1766 DemandedElts, Known, Known2, Depth, Q); 1767 break; 1768 } 1769 } 1770 } 1771 break; 1772 case Instruction::Freeze: 1773 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1774 Depth + 1)) 1775 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1776 break; 1777 } 1778 } 1779 1780 /// Determine which bits of V are known to be either zero or one and return 1781 /// them. 1782 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1783 unsigned Depth, const Query &Q) { 1784 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1785 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1786 return Known; 1787 } 1788 1789 /// Determine which bits of V are known to be either zero or one and return 1790 /// them. 1791 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1792 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1793 computeKnownBits(V, Known, Depth, Q); 1794 return Known; 1795 } 1796 1797 /// Determine which bits of V are known to be either zero or one and return 1798 /// them in the Known bit set. 1799 /// 1800 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1801 /// we cannot optimize based on the assumption that it is zero without changing 1802 /// it to be an explicit zero. If we don't change it to zero, other code could 1803 /// optimized based on the contradictory assumption that it is non-zero. 1804 /// Because instcombine aggressively folds operations with undef args anyway, 1805 /// this won't lose us code quality. 1806 /// 1807 /// This function is defined on values with integer type, values with pointer 1808 /// type, and vectors of integers. In the case 1809 /// where V is a vector, known zero, and known one values are the 1810 /// same width as the vector element, and the bit is set only if it is true 1811 /// for all of the demanded elements in the vector specified by DemandedElts. 1812 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1813 KnownBits &Known, unsigned Depth, const Query &Q) { 1814 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1815 // No demanded elts or V is a scalable vector, better to assume we don't 1816 // know anything. 1817 Known.resetAll(); 1818 return; 1819 } 1820 1821 assert(V && "No Value?"); 1822 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1823 1824 #ifndef NDEBUG 1825 Type *Ty = V->getType(); 1826 unsigned BitWidth = Known.getBitWidth(); 1827 1828 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1829 "Not integer or pointer type!"); 1830 1831 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1832 assert( 1833 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1834 "DemandedElt width should equal the fixed vector number of elements"); 1835 } else { 1836 assert(DemandedElts == APInt(1, 1) && 1837 "DemandedElt width should be 1 for scalars"); 1838 } 1839 1840 Type *ScalarTy = Ty->getScalarType(); 1841 if (ScalarTy->isPointerTy()) { 1842 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1843 "V and Known should have same BitWidth"); 1844 } else { 1845 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1846 "V and Known should have same BitWidth"); 1847 } 1848 #endif 1849 1850 const APInt *C; 1851 if (match(V, m_APInt(C))) { 1852 // We know all of the bits for a scalar constant or a splat vector constant! 1853 Known = KnownBits::makeConstant(*C); 1854 return; 1855 } 1856 // Null and aggregate-zero are all-zeros. 1857 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1858 Known.setAllZero(); 1859 return; 1860 } 1861 // Handle a constant vector by taking the intersection of the known bits of 1862 // each element. 1863 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1864 // We know that CDV must be a vector of integers. Take the intersection of 1865 // each element. 1866 Known.Zero.setAllBits(); Known.One.setAllBits(); 1867 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1868 if (!DemandedElts[i]) 1869 continue; 1870 APInt Elt = CDV->getElementAsAPInt(i); 1871 Known.Zero &= ~Elt; 1872 Known.One &= Elt; 1873 } 1874 return; 1875 } 1876 1877 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1878 // We know that CV must be a vector of integers. Take the intersection of 1879 // each element. 1880 Known.Zero.setAllBits(); Known.One.setAllBits(); 1881 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1882 if (!DemandedElts[i]) 1883 continue; 1884 Constant *Element = CV->getAggregateElement(i); 1885 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1886 if (!ElementCI) { 1887 Known.resetAll(); 1888 return; 1889 } 1890 const APInt &Elt = ElementCI->getValue(); 1891 Known.Zero &= ~Elt; 1892 Known.One &= Elt; 1893 } 1894 return; 1895 } 1896 1897 // Start out not knowing anything. 1898 Known.resetAll(); 1899 1900 // We can't imply anything about undefs. 1901 if (isa<UndefValue>(V)) 1902 return; 1903 1904 // There's no point in looking through other users of ConstantData for 1905 // assumptions. Confirm that we've handled them all. 1906 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1907 1908 // All recursive calls that increase depth must come after this. 1909 if (Depth == MaxAnalysisRecursionDepth) 1910 return; 1911 1912 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1913 // the bits of its aliasee. 1914 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1915 if (!GA->isInterposable()) 1916 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1917 return; 1918 } 1919 1920 if (const Operator *I = dyn_cast<Operator>(V)) 1921 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1922 1923 // Aligned pointers have trailing zeros - refine Known.Zero set 1924 if (isa<PointerType>(V->getType())) { 1925 Align Alignment = V->getPointerAlignment(Q.DL); 1926 Known.Zero.setLowBits(Log2(Alignment)); 1927 } 1928 1929 // computeKnownBitsFromAssume strictly refines Known. 1930 // Therefore, we run them after computeKnownBitsFromOperator. 1931 1932 // Check whether a nearby assume intrinsic can determine some known bits. 1933 computeKnownBitsFromAssume(V, Known, Depth, Q); 1934 1935 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1936 } 1937 1938 /// Return true if the given value is known to have exactly one 1939 /// bit set when defined. For vectors return true if every element is known to 1940 /// be a power of two when defined. Supports values with integer or pointer 1941 /// types and vectors of integers. 1942 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1943 const Query &Q) { 1944 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1945 1946 // Attempt to match against constants. 1947 if (OrZero && match(V, m_Power2OrZero())) 1948 return true; 1949 if (match(V, m_Power2())) 1950 return true; 1951 1952 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1953 // it is shifted off the end then the result is undefined. 1954 if (match(V, m_Shl(m_One(), m_Value()))) 1955 return true; 1956 1957 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1958 // the bottom. If it is shifted off the bottom then the result is undefined. 1959 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1960 return true; 1961 1962 // The remaining tests are all recursive, so bail out if we hit the limit. 1963 if (Depth++ == MaxAnalysisRecursionDepth) 1964 return false; 1965 1966 Value *X = nullptr, *Y = nullptr; 1967 // A shift left or a logical shift right of a power of two is a power of two 1968 // or zero. 1969 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1970 match(V, m_LShr(m_Value(X), m_Value())))) 1971 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1972 1973 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1974 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1975 1976 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1977 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1978 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1979 1980 // Peek through min/max. 1981 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 1982 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 1983 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 1984 } 1985 1986 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1987 // A power of two and'd with anything is a power of two or zero. 1988 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1989 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1990 return true; 1991 // X & (-X) is always a power of two or zero. 1992 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1993 return true; 1994 return false; 1995 } 1996 1997 // Adding a power-of-two or zero to the same power-of-two or zero yields 1998 // either the original power-of-two, a larger power-of-two or zero. 1999 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2000 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2001 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2002 Q.IIQ.hasNoSignedWrap(VOBO)) { 2003 if (match(X, m_And(m_Specific(Y), m_Value())) || 2004 match(X, m_And(m_Value(), m_Specific(Y)))) 2005 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2006 return true; 2007 if (match(Y, m_And(m_Specific(X), m_Value())) || 2008 match(Y, m_And(m_Value(), m_Specific(X)))) 2009 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2010 return true; 2011 2012 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2013 KnownBits LHSBits(BitWidth); 2014 computeKnownBits(X, LHSBits, Depth, Q); 2015 2016 KnownBits RHSBits(BitWidth); 2017 computeKnownBits(Y, RHSBits, Depth, Q); 2018 // If i8 V is a power of two or zero: 2019 // ZeroBits: 1 1 1 0 1 1 1 1 2020 // ~ZeroBits: 0 0 0 1 0 0 0 0 2021 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2022 // If OrZero isn't set, we cannot give back a zero result. 2023 // Make sure either the LHS or RHS has a bit set. 2024 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2025 return true; 2026 } 2027 } 2028 2029 // An exact divide or right shift can only shift off zero bits, so the result 2030 // is a power of two only if the first operand is a power of two and not 2031 // copying a sign bit (sdiv int_min, 2). 2032 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2033 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2034 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2035 Depth, Q); 2036 } 2037 2038 return false; 2039 } 2040 2041 /// Test whether a GEP's result is known to be non-null. 2042 /// 2043 /// Uses properties inherent in a GEP to try to determine whether it is known 2044 /// to be non-null. 2045 /// 2046 /// Currently this routine does not support vector GEPs. 2047 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2048 const Query &Q) { 2049 const Function *F = nullptr; 2050 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2051 F = I->getFunction(); 2052 2053 if (!GEP->isInBounds() || 2054 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2055 return false; 2056 2057 // FIXME: Support vector-GEPs. 2058 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2059 2060 // If the base pointer is non-null, we cannot walk to a null address with an 2061 // inbounds GEP in address space zero. 2062 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2063 return true; 2064 2065 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2066 // If so, then the GEP cannot produce a null pointer, as doing so would 2067 // inherently violate the inbounds contract within address space zero. 2068 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2069 GTI != GTE; ++GTI) { 2070 // Struct types are easy -- they must always be indexed by a constant. 2071 if (StructType *STy = GTI.getStructTypeOrNull()) { 2072 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2073 unsigned ElementIdx = OpC->getZExtValue(); 2074 const StructLayout *SL = Q.DL.getStructLayout(STy); 2075 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2076 if (ElementOffset > 0) 2077 return true; 2078 continue; 2079 } 2080 2081 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2082 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2083 continue; 2084 2085 // Fast path the constant operand case both for efficiency and so we don't 2086 // increment Depth when just zipping down an all-constant GEP. 2087 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2088 if (!OpC->isZero()) 2089 return true; 2090 continue; 2091 } 2092 2093 // We post-increment Depth here because while isKnownNonZero increments it 2094 // as well, when we pop back up that increment won't persist. We don't want 2095 // to recurse 10k times just because we have 10k GEP operands. We don't 2096 // bail completely out because we want to handle constant GEPs regardless 2097 // of depth. 2098 if (Depth++ >= MaxAnalysisRecursionDepth) 2099 continue; 2100 2101 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2102 return true; 2103 } 2104 2105 return false; 2106 } 2107 2108 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2109 const Instruction *CtxI, 2110 const DominatorTree *DT) { 2111 if (isa<Constant>(V)) 2112 return false; 2113 2114 if (!CtxI || !DT) 2115 return false; 2116 2117 unsigned NumUsesExplored = 0; 2118 for (auto *U : V->users()) { 2119 // Avoid massive lists 2120 if (NumUsesExplored >= DomConditionsMaxUses) 2121 break; 2122 NumUsesExplored++; 2123 2124 // If the value is used as an argument to a call or invoke, then argument 2125 // attributes may provide an answer about null-ness. 2126 if (const auto *CB = dyn_cast<CallBase>(U)) 2127 if (auto *CalledFunc = CB->getCalledFunction()) 2128 for (const Argument &Arg : CalledFunc->args()) 2129 if (CB->getArgOperand(Arg.getArgNo()) == V && 2130 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2131 DT->dominates(CB, CtxI)) 2132 return true; 2133 2134 // If the value is used as a load/store, then the pointer must be non null. 2135 if (V == getLoadStorePointerOperand(U)) { 2136 const Instruction *I = cast<Instruction>(U); 2137 if (!NullPointerIsDefined(I->getFunction(), 2138 V->getType()->getPointerAddressSpace()) && 2139 DT->dominates(I, CtxI)) 2140 return true; 2141 } 2142 2143 // Consider only compare instructions uniquely controlling a branch 2144 Value *RHS; 2145 CmpInst::Predicate Pred; 2146 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2147 continue; 2148 2149 bool NonNullIfTrue; 2150 if (cmpExcludesZero(Pred, RHS)) 2151 NonNullIfTrue = true; 2152 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2153 NonNullIfTrue = false; 2154 else 2155 continue; 2156 2157 SmallVector<const User *, 4> WorkList; 2158 SmallPtrSet<const User *, 4> Visited; 2159 for (auto *CmpU : U->users()) { 2160 assert(WorkList.empty() && "Should be!"); 2161 if (Visited.insert(CmpU).second) 2162 WorkList.push_back(CmpU); 2163 2164 while (!WorkList.empty()) { 2165 auto *Curr = WorkList.pop_back_val(); 2166 2167 // If a user is an AND, add all its users to the work list. We only 2168 // propagate "pred != null" condition through AND because it is only 2169 // correct to assume that all conditions of AND are met in true branch. 2170 // TODO: Support similar logic of OR and EQ predicate? 2171 if (NonNullIfTrue) 2172 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2173 for (auto *CurrU : Curr->users()) 2174 if (Visited.insert(CurrU).second) 2175 WorkList.push_back(CurrU); 2176 continue; 2177 } 2178 2179 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2180 assert(BI->isConditional() && "uses a comparison!"); 2181 2182 BasicBlock *NonNullSuccessor = 2183 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2184 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2185 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2186 return true; 2187 } else if (NonNullIfTrue && isGuard(Curr) && 2188 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2189 return true; 2190 } 2191 } 2192 } 2193 } 2194 2195 return false; 2196 } 2197 2198 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2199 /// ensure that the value it's attached to is never Value? 'RangeType' is 2200 /// is the type of the value described by the range. 2201 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2202 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2203 assert(NumRanges >= 1); 2204 for (unsigned i = 0; i < NumRanges; ++i) { 2205 ConstantInt *Lower = 2206 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2207 ConstantInt *Upper = 2208 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2209 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2210 if (Range.contains(Value)) 2211 return false; 2212 } 2213 return true; 2214 } 2215 2216 static bool isNonZeroRecurrence(const PHINode *PN) { 2217 // Try and detect a recurrence that monotonically increases from a 2218 // starting value, as these are common as induction variables. 2219 BinaryOperator *BO = nullptr; 2220 Value *Start = nullptr, *Step = nullptr; 2221 const APInt *StartC, *StepC; 2222 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2223 !match(Start, m_APInt(StartC))) 2224 return false; 2225 2226 switch (BO->getOpcode()) { 2227 case Instruction::Add: 2228 return match(Step, m_APInt(StepC)) && 2229 ((BO->hasNoUnsignedWrap() && !StartC->isNullValue() && 2230 !StepC->isNullValue()) || 2231 (BO->hasNoSignedWrap() && StartC->isStrictlyPositive() && 2232 StepC->isNonNegative())); 2233 case Instruction::Mul: 2234 return !StartC->isNullValue() && match(Step, m_APInt(StepC)) && 2235 ((BO->hasNoUnsignedWrap() && !StepC->isNullValue()) || 2236 (BO->hasNoSignedWrap() && StepC->isStrictlyPositive())); 2237 case Instruction::Shl: 2238 return !StartC->isNullValue() && 2239 (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()); 2240 case Instruction::AShr: 2241 case Instruction::LShr: 2242 return !StartC->isNullValue() && BO->isExact(); 2243 default: 2244 return false; 2245 } 2246 } 2247 2248 /// Return true if the given value is known to be non-zero when defined. For 2249 /// vectors, return true if every demanded element is known to be non-zero when 2250 /// defined. For pointers, if the context instruction and dominator tree are 2251 /// specified, perform context-sensitive analysis and return true if the 2252 /// pointer couldn't possibly be null at the specified instruction. 2253 /// Supports values with integer or pointer type and vectors of integers. 2254 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2255 const Query &Q) { 2256 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2257 // vector 2258 if (isa<ScalableVectorType>(V->getType())) 2259 return false; 2260 2261 if (auto *C = dyn_cast<Constant>(V)) { 2262 if (C->isNullValue()) 2263 return false; 2264 if (isa<ConstantInt>(C)) 2265 // Must be non-zero due to null test above. 2266 return true; 2267 2268 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2269 // See the comment for IntToPtr/PtrToInt instructions below. 2270 if (CE->getOpcode() == Instruction::IntToPtr || 2271 CE->getOpcode() == Instruction::PtrToInt) 2272 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2273 .getFixedSize() <= 2274 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2275 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2276 } 2277 2278 // For constant vectors, check that all elements are undefined or known 2279 // non-zero to determine that the whole vector is known non-zero. 2280 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2281 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2282 if (!DemandedElts[i]) 2283 continue; 2284 Constant *Elt = C->getAggregateElement(i); 2285 if (!Elt || Elt->isNullValue()) 2286 return false; 2287 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2288 return false; 2289 } 2290 return true; 2291 } 2292 2293 // A global variable in address space 0 is non null unless extern weak 2294 // or an absolute symbol reference. Other address spaces may have null as a 2295 // valid address for a global, so we can't assume anything. 2296 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2297 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2298 GV->getType()->getAddressSpace() == 0) 2299 return true; 2300 } else 2301 return false; 2302 } 2303 2304 if (auto *I = dyn_cast<Instruction>(V)) { 2305 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2306 // If the possible ranges don't contain zero, then the value is 2307 // definitely non-zero. 2308 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2309 const APInt ZeroValue(Ty->getBitWidth(), 0); 2310 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2311 return true; 2312 } 2313 } 2314 } 2315 2316 if (isKnownNonZeroFromAssume(V, Q)) 2317 return true; 2318 2319 // Some of the tests below are recursive, so bail out if we hit the limit. 2320 if (Depth++ >= MaxAnalysisRecursionDepth) 2321 return false; 2322 2323 // Check for pointer simplifications. 2324 2325 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2326 // Alloca never returns null, malloc might. 2327 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2328 return true; 2329 2330 // A byval, inalloca may not be null in a non-default addres space. A 2331 // nonnull argument is assumed never 0. 2332 if (const Argument *A = dyn_cast<Argument>(V)) { 2333 if (((A->hasPassPointeeByValueCopyAttr() && 2334 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2335 A->hasNonNullAttr())) 2336 return true; 2337 } 2338 2339 // A Load tagged with nonnull metadata is never null. 2340 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2341 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2342 return true; 2343 2344 if (const auto *Call = dyn_cast<CallBase>(V)) { 2345 if (Call->isReturnNonNull()) 2346 return true; 2347 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2348 return isKnownNonZero(RP, Depth, Q); 2349 } 2350 } 2351 2352 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2353 return true; 2354 2355 // Check for recursive pointer simplifications. 2356 if (V->getType()->isPointerTy()) { 2357 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2358 // do not alter the value, or at least not the nullness property of the 2359 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2360 // 2361 // Note that we have to take special care to avoid looking through 2362 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2363 // as casts that can alter the value, e.g., AddrSpaceCasts. 2364 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2365 return isGEPKnownNonNull(GEP, Depth, Q); 2366 2367 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2368 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2369 2370 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2371 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2372 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2373 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2374 } 2375 2376 // Similar to int2ptr above, we can look through ptr2int here if the cast 2377 // is a no-op or an extend and not a truncate. 2378 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2379 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2380 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2381 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2382 2383 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2384 2385 // X | Y != 0 if X != 0 or Y != 0. 2386 Value *X = nullptr, *Y = nullptr; 2387 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2388 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2389 isKnownNonZero(Y, DemandedElts, Depth, Q); 2390 2391 // ext X != 0 if X != 0. 2392 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2393 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2394 2395 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2396 // if the lowest bit is shifted off the end. 2397 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2398 // shl nuw can't remove any non-zero bits. 2399 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2400 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2401 return isKnownNonZero(X, Depth, Q); 2402 2403 KnownBits Known(BitWidth); 2404 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2405 if (Known.One[0]) 2406 return true; 2407 } 2408 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2409 // defined if the sign bit is shifted off the end. 2410 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2411 // shr exact can only shift out zero bits. 2412 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2413 if (BO->isExact()) 2414 return isKnownNonZero(X, Depth, Q); 2415 2416 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2417 if (Known.isNegative()) 2418 return true; 2419 2420 // If the shifter operand is a constant, and all of the bits shifted 2421 // out are known to be zero, and X is known non-zero then at least one 2422 // non-zero bit must remain. 2423 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2424 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2425 // Is there a known one in the portion not shifted out? 2426 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2427 return true; 2428 // Are all the bits to be shifted out known zero? 2429 if (Known.countMinTrailingZeros() >= ShiftVal) 2430 return isKnownNonZero(X, DemandedElts, Depth, Q); 2431 } 2432 } 2433 // div exact can only produce a zero if the dividend is zero. 2434 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2435 return isKnownNonZero(X, DemandedElts, Depth, Q); 2436 } 2437 // X + Y. 2438 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2439 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2440 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2441 2442 // If X and Y are both non-negative (as signed values) then their sum is not 2443 // zero unless both X and Y are zero. 2444 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2445 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2446 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2447 return true; 2448 2449 // If X and Y are both negative (as signed values) then their sum is not 2450 // zero unless both X and Y equal INT_MIN. 2451 if (XKnown.isNegative() && YKnown.isNegative()) { 2452 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2453 // The sign bit of X is set. If some other bit is set then X is not equal 2454 // to INT_MIN. 2455 if (XKnown.One.intersects(Mask)) 2456 return true; 2457 // The sign bit of Y is set. If some other bit is set then Y is not equal 2458 // to INT_MIN. 2459 if (YKnown.One.intersects(Mask)) 2460 return true; 2461 } 2462 2463 // The sum of a non-negative number and a power of two is not zero. 2464 if (XKnown.isNonNegative() && 2465 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2466 return true; 2467 if (YKnown.isNonNegative() && 2468 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2469 return true; 2470 } 2471 // X * Y. 2472 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2473 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2474 // If X and Y are non-zero then so is X * Y as long as the multiplication 2475 // does not overflow. 2476 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2477 isKnownNonZero(X, DemandedElts, Depth, Q) && 2478 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2479 return true; 2480 } 2481 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2482 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2483 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2484 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2485 return true; 2486 } 2487 // PHI 2488 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2489 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2490 return true; 2491 2492 // Check if all incoming values are non-zero using recursion. 2493 Query RecQ = Q; 2494 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2495 return llvm::all_of(PN->operands(), [&](const Use &U) { 2496 if (U.get() == PN) 2497 return true; 2498 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2499 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2500 }); 2501 } 2502 // ExtractElement 2503 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2504 const Value *Vec = EEI->getVectorOperand(); 2505 const Value *Idx = EEI->getIndexOperand(); 2506 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2507 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2508 unsigned NumElts = VecTy->getNumElements(); 2509 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2510 if (CIdx && CIdx->getValue().ult(NumElts)) 2511 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2512 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2513 } 2514 } 2515 // Freeze 2516 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2517 auto *Op = FI->getOperand(0); 2518 if (isKnownNonZero(Op, Depth, Q) && 2519 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2520 return true; 2521 } 2522 2523 KnownBits Known(BitWidth); 2524 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2525 return Known.One != 0; 2526 } 2527 2528 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2529 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2530 // vector 2531 if (isa<ScalableVectorType>(V->getType())) 2532 return false; 2533 2534 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2535 APInt DemandedElts = 2536 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2537 return isKnownNonZero(V, DemandedElts, Depth, Q); 2538 } 2539 2540 /// If the pair of operators are the same invertible function of a single 2541 /// operand return the index of that operand. Otherwise, return None. An 2542 /// invertible function is one that is 1-to-1 and maps every input value 2543 /// to exactly one output value. This is equivalent to saying that Op1 2544 /// and Op2 are equal exactly when the specified pair of operands are equal, 2545 /// (except that Op1 and Op2 may be poison more often.) 2546 static Optional<unsigned> getInvertibleOperand(const Operator *Op1, 2547 const Operator *Op2) { 2548 if (Op1->getOpcode() != Op2->getOpcode()) 2549 return None; 2550 2551 switch (Op1->getOpcode()) { 2552 default: 2553 break; 2554 case Instruction::Add: 2555 case Instruction::Sub: 2556 if (Op1->getOperand(0) == Op2->getOperand(0)) 2557 return 1; 2558 if (Op1->getOperand(1) == Op2->getOperand(1)) 2559 return 0; 2560 break; 2561 case Instruction::Mul: { 2562 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2563 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2564 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2565 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2566 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2567 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2568 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2569 break; 2570 2571 // Assume operand order has been canonicalized 2572 if (Op1->getOperand(1) == Op2->getOperand(1) && 2573 isa<ConstantInt>(Op1->getOperand(1)) && 2574 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2575 return 0; 2576 break; 2577 } 2578 case Instruction::Shl: { 2579 // Same as multiplies, with the difference that we don't need to check 2580 // for a non-zero multiply. Shifts always multiply by non-zero. 2581 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2582 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2583 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2584 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2585 break; 2586 2587 if (Op1->getOperand(1) == Op2->getOperand(1)) 2588 return 0; 2589 break; 2590 } 2591 case Instruction::AShr: 2592 case Instruction::LShr: { 2593 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2594 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2595 if (!PEO1->isExact() || !PEO2->isExact()) 2596 break; 2597 2598 if (Op1->getOperand(1) == Op2->getOperand(1)) 2599 return 0; 2600 break; 2601 } 2602 case Instruction::SExt: 2603 case Instruction::ZExt: 2604 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2605 return 0; 2606 break; 2607 } 2608 return None; 2609 } 2610 2611 /// Return true if V2 == V1 + X, where X is known non-zero. 2612 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2613 const Query &Q) { 2614 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2615 if (!BO || BO->getOpcode() != Instruction::Add) 2616 return false; 2617 Value *Op = nullptr; 2618 if (V2 == BO->getOperand(0)) 2619 Op = BO->getOperand(1); 2620 else if (V2 == BO->getOperand(1)) 2621 Op = BO->getOperand(0); 2622 else 2623 return false; 2624 return isKnownNonZero(Op, Depth + 1, Q); 2625 } 2626 2627 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2628 /// the multiplication is nuw or nsw. 2629 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2630 const Query &Q) { 2631 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2632 const APInt *C; 2633 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2634 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2635 !C->isNullValue() && !C->isOneValue() && 2636 isKnownNonZero(V1, Depth + 1, Q); 2637 } 2638 return false; 2639 } 2640 2641 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2642 /// the shift is nuw or nsw. 2643 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2644 const Query &Q) { 2645 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2646 const APInt *C; 2647 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2648 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2649 !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); 2650 } 2651 return false; 2652 } 2653 2654 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2655 unsigned Depth, const Query &Q) { 2656 // Check two PHIs are in same block. 2657 if (PN1->getParent() != PN2->getParent()) 2658 return false; 2659 2660 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2661 bool UsedFullRecursion = false; 2662 for (const BasicBlock *IncomBB : PN1->blocks()) { 2663 if (!VisitedBBs.insert(IncomBB).second) 2664 continue; // Don't reprocess blocks that we have dealt with already. 2665 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2666 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2667 const APInt *C1, *C2; 2668 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2669 continue; 2670 2671 // Only one pair of phi operands is allowed for full recursion. 2672 if (UsedFullRecursion) 2673 return false; 2674 2675 Query RecQ = Q; 2676 RecQ.CxtI = IncomBB->getTerminator(); 2677 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2678 return false; 2679 UsedFullRecursion = true; 2680 } 2681 return true; 2682 } 2683 2684 /// Return true if it is known that V1 != V2. 2685 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2686 const Query &Q) { 2687 if (V1 == V2) 2688 return false; 2689 if (V1->getType() != V2->getType()) 2690 // We can't look through casts yet. 2691 return false; 2692 2693 if (Depth >= MaxAnalysisRecursionDepth) 2694 return false; 2695 2696 // See if we can recurse through (exactly one of) our operands. This 2697 // requires our operation be 1-to-1 and map every input value to exactly 2698 // one output value. Such an operation is invertible. 2699 auto *O1 = dyn_cast<Operator>(V1); 2700 auto *O2 = dyn_cast<Operator>(V2); 2701 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2702 if (Optional<unsigned> Opt = getInvertibleOperand(O1, O2)) { 2703 unsigned Idx = *Opt; 2704 return isKnownNonEqual(O1->getOperand(Idx), O2->getOperand(Idx), 2705 Depth + 1, Q); 2706 } 2707 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2708 const PHINode *PN2 = cast<PHINode>(V2); 2709 // FIXME: This is missing a generalization to handle the case where one is 2710 // a PHI and another one isn't. 2711 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2712 return true; 2713 }; 2714 } 2715 2716 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2717 return true; 2718 2719 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2720 return true; 2721 2722 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2723 return true; 2724 2725 if (V1->getType()->isIntOrIntVectorTy()) { 2726 // Are any known bits in V1 contradictory to known bits in V2? If V1 2727 // has a known zero where V2 has a known one, they must not be equal. 2728 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2729 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2730 2731 if (Known1.Zero.intersects(Known2.One) || 2732 Known2.Zero.intersects(Known1.One)) 2733 return true; 2734 } 2735 return false; 2736 } 2737 2738 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2739 /// simplify operations downstream. Mask is known to be zero for bits that V 2740 /// cannot have. 2741 /// 2742 /// This function is defined on values with integer type, values with pointer 2743 /// type, and vectors of integers. In the case 2744 /// where V is a vector, the mask, known zero, and known one values are the 2745 /// same width as the vector element, and the bit is set only if it is true 2746 /// for all of the elements in the vector. 2747 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2748 const Query &Q) { 2749 KnownBits Known(Mask.getBitWidth()); 2750 computeKnownBits(V, Known, Depth, Q); 2751 return Mask.isSubsetOf(Known.Zero); 2752 } 2753 2754 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2755 // Returns the input and lower/upper bounds. 2756 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2757 const APInt *&CLow, const APInt *&CHigh) { 2758 assert(isa<Operator>(Select) && 2759 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2760 "Input should be a Select!"); 2761 2762 const Value *LHS = nullptr, *RHS = nullptr; 2763 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2764 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2765 return false; 2766 2767 if (!match(RHS, m_APInt(CLow))) 2768 return false; 2769 2770 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2771 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2772 if (getInverseMinMaxFlavor(SPF) != SPF2) 2773 return false; 2774 2775 if (!match(RHS2, m_APInt(CHigh))) 2776 return false; 2777 2778 if (SPF == SPF_SMIN) 2779 std::swap(CLow, CHigh); 2780 2781 In = LHS2; 2782 return CLow->sle(*CHigh); 2783 } 2784 2785 /// For vector constants, loop over the elements and find the constant with the 2786 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2787 /// or if any element was not analyzed; otherwise, return the count for the 2788 /// element with the minimum number of sign bits. 2789 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2790 const APInt &DemandedElts, 2791 unsigned TyBits) { 2792 const auto *CV = dyn_cast<Constant>(V); 2793 if (!CV || !isa<FixedVectorType>(CV->getType())) 2794 return 0; 2795 2796 unsigned MinSignBits = TyBits; 2797 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2798 for (unsigned i = 0; i != NumElts; ++i) { 2799 if (!DemandedElts[i]) 2800 continue; 2801 // If we find a non-ConstantInt, bail out. 2802 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2803 if (!Elt) 2804 return 0; 2805 2806 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2807 } 2808 2809 return MinSignBits; 2810 } 2811 2812 static unsigned ComputeNumSignBitsImpl(const Value *V, 2813 const APInt &DemandedElts, 2814 unsigned Depth, const Query &Q); 2815 2816 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2817 unsigned Depth, const Query &Q) { 2818 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2819 assert(Result > 0 && "At least one sign bit needs to be present!"); 2820 return Result; 2821 } 2822 2823 /// Return the number of times the sign bit of the register is replicated into 2824 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2825 /// (itself), but other cases can give us information. For example, immediately 2826 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2827 /// other, so we return 3. For vectors, return the number of sign bits for the 2828 /// vector element with the minimum number of known sign bits of the demanded 2829 /// elements in the vector specified by DemandedElts. 2830 static unsigned ComputeNumSignBitsImpl(const Value *V, 2831 const APInt &DemandedElts, 2832 unsigned Depth, const Query &Q) { 2833 Type *Ty = V->getType(); 2834 2835 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2836 // vector 2837 if (isa<ScalableVectorType>(Ty)) 2838 return 1; 2839 2840 #ifndef NDEBUG 2841 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2842 2843 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2844 assert( 2845 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2846 "DemandedElt width should equal the fixed vector number of elements"); 2847 } else { 2848 assert(DemandedElts == APInt(1, 1) && 2849 "DemandedElt width should be 1 for scalars"); 2850 } 2851 #endif 2852 2853 // We return the minimum number of sign bits that are guaranteed to be present 2854 // in V, so for undef we have to conservatively return 1. We don't have the 2855 // same behavior for poison though -- that's a FIXME today. 2856 2857 Type *ScalarTy = Ty->getScalarType(); 2858 unsigned TyBits = ScalarTy->isPointerTy() ? 2859 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2860 Q.DL.getTypeSizeInBits(ScalarTy); 2861 2862 unsigned Tmp, Tmp2; 2863 unsigned FirstAnswer = 1; 2864 2865 // Note that ConstantInt is handled by the general computeKnownBits case 2866 // below. 2867 2868 if (Depth == MaxAnalysisRecursionDepth) 2869 return 1; 2870 2871 if (auto *U = dyn_cast<Operator>(V)) { 2872 switch (Operator::getOpcode(V)) { 2873 default: break; 2874 case Instruction::SExt: 2875 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2876 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2877 2878 case Instruction::SDiv: { 2879 const APInt *Denominator; 2880 // sdiv X, C -> adds log(C) sign bits. 2881 if (match(U->getOperand(1), m_APInt(Denominator))) { 2882 2883 // Ignore non-positive denominator. 2884 if (!Denominator->isStrictlyPositive()) 2885 break; 2886 2887 // Calculate the incoming numerator bits. 2888 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2889 2890 // Add floor(log(C)) bits to the numerator bits. 2891 return std::min(TyBits, NumBits + Denominator->logBase2()); 2892 } 2893 break; 2894 } 2895 2896 case Instruction::SRem: { 2897 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2898 2899 const APInt *Denominator; 2900 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2901 // positive constant. This let us put a lower bound on the number of sign 2902 // bits. 2903 if (match(U->getOperand(1), m_APInt(Denominator))) { 2904 2905 // Ignore non-positive denominator. 2906 if (Denominator->isStrictlyPositive()) { 2907 // Calculate the leading sign bit constraints by examining the 2908 // denominator. Given that the denominator is positive, there are two 2909 // cases: 2910 // 2911 // 1. The numerator is positive. The result range is [0,C) and 2912 // [0,C) u< (1 << ceilLogBase2(C)). 2913 // 2914 // 2. The numerator is negative. Then the result range is (-C,0] and 2915 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2916 // 2917 // Thus a lower bound on the number of sign bits is `TyBits - 2918 // ceilLogBase2(C)`. 2919 2920 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2921 Tmp = std::max(Tmp, ResBits); 2922 } 2923 } 2924 return Tmp; 2925 } 2926 2927 case Instruction::AShr: { 2928 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2929 // ashr X, C -> adds C sign bits. Vectors too. 2930 const APInt *ShAmt; 2931 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2932 if (ShAmt->uge(TyBits)) 2933 break; // Bad shift. 2934 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2935 Tmp += ShAmtLimited; 2936 if (Tmp > TyBits) Tmp = TyBits; 2937 } 2938 return Tmp; 2939 } 2940 case Instruction::Shl: { 2941 const APInt *ShAmt; 2942 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2943 // shl destroys sign bits. 2944 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2945 if (ShAmt->uge(TyBits) || // Bad shift. 2946 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2947 Tmp2 = ShAmt->getZExtValue(); 2948 return Tmp - Tmp2; 2949 } 2950 break; 2951 } 2952 case Instruction::And: 2953 case Instruction::Or: 2954 case Instruction::Xor: // NOT is handled here. 2955 // Logical binary ops preserve the number of sign bits at the worst. 2956 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2957 if (Tmp != 1) { 2958 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2959 FirstAnswer = std::min(Tmp, Tmp2); 2960 // We computed what we know about the sign bits as our first 2961 // answer. Now proceed to the generic code that uses 2962 // computeKnownBits, and pick whichever answer is better. 2963 } 2964 break; 2965 2966 case Instruction::Select: { 2967 // If we have a clamp pattern, we know that the number of sign bits will 2968 // be the minimum of the clamp min/max range. 2969 const Value *X; 2970 const APInt *CLow, *CHigh; 2971 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2972 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2973 2974 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2975 if (Tmp == 1) break; 2976 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2977 return std::min(Tmp, Tmp2); 2978 } 2979 2980 case Instruction::Add: 2981 // Add can have at most one carry bit. Thus we know that the output 2982 // is, at worst, one more bit than the inputs. 2983 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2984 if (Tmp == 1) break; 2985 2986 // Special case decrementing a value (ADD X, -1): 2987 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2988 if (CRHS->isAllOnesValue()) { 2989 KnownBits Known(TyBits); 2990 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2991 2992 // If the input is known to be 0 or 1, the output is 0/-1, which is 2993 // all sign bits set. 2994 if ((Known.Zero | 1).isAllOnesValue()) 2995 return TyBits; 2996 2997 // If we are subtracting one from a positive number, there is no carry 2998 // out of the result. 2999 if (Known.isNonNegative()) 3000 return Tmp; 3001 } 3002 3003 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3004 if (Tmp2 == 1) break; 3005 return std::min(Tmp, Tmp2) - 1; 3006 3007 case Instruction::Sub: 3008 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3009 if (Tmp2 == 1) break; 3010 3011 // Handle NEG. 3012 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3013 if (CLHS->isNullValue()) { 3014 KnownBits Known(TyBits); 3015 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3016 // If the input is known to be 0 or 1, the output is 0/-1, which is 3017 // all sign bits set. 3018 if ((Known.Zero | 1).isAllOnesValue()) 3019 return TyBits; 3020 3021 // If the input is known to be positive (the sign bit is known clear), 3022 // the output of the NEG has the same number of sign bits as the 3023 // input. 3024 if (Known.isNonNegative()) 3025 return Tmp2; 3026 3027 // Otherwise, we treat this like a SUB. 3028 } 3029 3030 // Sub can have at most one carry bit. Thus we know that the output 3031 // is, at worst, one more bit than the inputs. 3032 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3033 if (Tmp == 1) break; 3034 return std::min(Tmp, Tmp2) - 1; 3035 3036 case Instruction::Mul: { 3037 // The output of the Mul can be at most twice the valid bits in the 3038 // inputs. 3039 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3040 if (SignBitsOp0 == 1) break; 3041 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3042 if (SignBitsOp1 == 1) break; 3043 unsigned OutValidBits = 3044 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3045 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3046 } 3047 3048 case Instruction::PHI: { 3049 const PHINode *PN = cast<PHINode>(U); 3050 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3051 // Don't analyze large in-degree PHIs. 3052 if (NumIncomingValues > 4) break; 3053 // Unreachable blocks may have zero-operand PHI nodes. 3054 if (NumIncomingValues == 0) break; 3055 3056 // Take the minimum of all incoming values. This can't infinitely loop 3057 // because of our depth threshold. 3058 Query RecQ = Q; 3059 Tmp = TyBits; 3060 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3061 if (Tmp == 1) return Tmp; 3062 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3063 Tmp = std::min( 3064 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3065 } 3066 return Tmp; 3067 } 3068 3069 case Instruction::Trunc: 3070 // FIXME: it's tricky to do anything useful for this, but it is an 3071 // important case for targets like X86. 3072 break; 3073 3074 case Instruction::ExtractElement: 3075 // Look through extract element. At the moment we keep this simple and 3076 // skip tracking the specific element. But at least we might find 3077 // information valid for all elements of the vector (for example if vector 3078 // is sign extended, shifted, etc). 3079 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3080 3081 case Instruction::ShuffleVector: { 3082 // Collect the minimum number of sign bits that are shared by every vector 3083 // element referenced by the shuffle. 3084 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3085 if (!Shuf) { 3086 // FIXME: Add support for shufflevector constant expressions. 3087 return 1; 3088 } 3089 APInt DemandedLHS, DemandedRHS; 3090 // For undef elements, we don't know anything about the common state of 3091 // the shuffle result. 3092 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3093 return 1; 3094 Tmp = std::numeric_limits<unsigned>::max(); 3095 if (!!DemandedLHS) { 3096 const Value *LHS = Shuf->getOperand(0); 3097 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3098 } 3099 // If we don't know anything, early out and try computeKnownBits 3100 // fall-back. 3101 if (Tmp == 1) 3102 break; 3103 if (!!DemandedRHS) { 3104 const Value *RHS = Shuf->getOperand(1); 3105 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3106 Tmp = std::min(Tmp, Tmp2); 3107 } 3108 // If we don't know anything, early out and try computeKnownBits 3109 // fall-back. 3110 if (Tmp == 1) 3111 break; 3112 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3113 return Tmp; 3114 } 3115 case Instruction::Call: { 3116 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3117 switch (II->getIntrinsicID()) { 3118 default: break; 3119 case Intrinsic::abs: 3120 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3121 if (Tmp == 1) break; 3122 3123 // Absolute value reduces number of sign bits by at most 1. 3124 return Tmp - 1; 3125 } 3126 } 3127 } 3128 } 3129 } 3130 3131 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3132 // use this information. 3133 3134 // If we can examine all elements of a vector constant successfully, we're 3135 // done (we can't do any better than that). If not, keep trying. 3136 if (unsigned VecSignBits = 3137 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3138 return VecSignBits; 3139 3140 KnownBits Known(TyBits); 3141 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3142 3143 // If we know that the sign bit is either zero or one, determine the number of 3144 // identical bits in the top of the input value. 3145 return std::max(FirstAnswer, Known.countMinSignBits()); 3146 } 3147 3148 /// This function computes the integer multiple of Base that equals V. 3149 /// If successful, it returns true and returns the multiple in 3150 /// Multiple. If unsuccessful, it returns false. It looks 3151 /// through SExt instructions only if LookThroughSExt is true. 3152 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3153 bool LookThroughSExt, unsigned Depth) { 3154 assert(V && "No Value?"); 3155 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3156 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3157 3158 Type *T = V->getType(); 3159 3160 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3161 3162 if (Base == 0) 3163 return false; 3164 3165 if (Base == 1) { 3166 Multiple = V; 3167 return true; 3168 } 3169 3170 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3171 Constant *BaseVal = ConstantInt::get(T, Base); 3172 if (CO && CO == BaseVal) { 3173 // Multiple is 1. 3174 Multiple = ConstantInt::get(T, 1); 3175 return true; 3176 } 3177 3178 if (CI && CI->getZExtValue() % Base == 0) { 3179 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3180 return true; 3181 } 3182 3183 if (Depth == MaxAnalysisRecursionDepth) return false; 3184 3185 Operator *I = dyn_cast<Operator>(V); 3186 if (!I) return false; 3187 3188 switch (I->getOpcode()) { 3189 default: break; 3190 case Instruction::SExt: 3191 if (!LookThroughSExt) return false; 3192 // otherwise fall through to ZExt 3193 LLVM_FALLTHROUGH; 3194 case Instruction::ZExt: 3195 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3196 LookThroughSExt, Depth+1); 3197 case Instruction::Shl: 3198 case Instruction::Mul: { 3199 Value *Op0 = I->getOperand(0); 3200 Value *Op1 = I->getOperand(1); 3201 3202 if (I->getOpcode() == Instruction::Shl) { 3203 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3204 if (!Op1CI) return false; 3205 // Turn Op0 << Op1 into Op0 * 2^Op1 3206 APInt Op1Int = Op1CI->getValue(); 3207 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3208 APInt API(Op1Int.getBitWidth(), 0); 3209 API.setBit(BitToSet); 3210 Op1 = ConstantInt::get(V->getContext(), API); 3211 } 3212 3213 Value *Mul0 = nullptr; 3214 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3215 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3216 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3217 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3218 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3219 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3220 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3221 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3222 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3223 3224 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3225 Multiple = ConstantExpr::getMul(MulC, Op1C); 3226 return true; 3227 } 3228 3229 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3230 if (Mul0CI->getValue() == 1) { 3231 // V == Base * Op1, so return Op1 3232 Multiple = Op1; 3233 return true; 3234 } 3235 } 3236 3237 Value *Mul1 = nullptr; 3238 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3239 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3240 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3241 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3242 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3243 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3244 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3245 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3246 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3247 3248 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3249 Multiple = ConstantExpr::getMul(MulC, Op0C); 3250 return true; 3251 } 3252 3253 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3254 if (Mul1CI->getValue() == 1) { 3255 // V == Base * Op0, so return Op0 3256 Multiple = Op0; 3257 return true; 3258 } 3259 } 3260 } 3261 } 3262 3263 // We could not determine if V is a multiple of Base. 3264 return false; 3265 } 3266 3267 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3268 const TargetLibraryInfo *TLI) { 3269 const Function *F = CB.getCalledFunction(); 3270 if (!F) 3271 return Intrinsic::not_intrinsic; 3272 3273 if (F->isIntrinsic()) 3274 return F->getIntrinsicID(); 3275 3276 // We are going to infer semantics of a library function based on mapping it 3277 // to an LLVM intrinsic. Check that the library function is available from 3278 // this callbase and in this environment. 3279 LibFunc Func; 3280 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3281 !CB.onlyReadsMemory()) 3282 return Intrinsic::not_intrinsic; 3283 3284 switch (Func) { 3285 default: 3286 break; 3287 case LibFunc_sin: 3288 case LibFunc_sinf: 3289 case LibFunc_sinl: 3290 return Intrinsic::sin; 3291 case LibFunc_cos: 3292 case LibFunc_cosf: 3293 case LibFunc_cosl: 3294 return Intrinsic::cos; 3295 case LibFunc_exp: 3296 case LibFunc_expf: 3297 case LibFunc_expl: 3298 return Intrinsic::exp; 3299 case LibFunc_exp2: 3300 case LibFunc_exp2f: 3301 case LibFunc_exp2l: 3302 return Intrinsic::exp2; 3303 case LibFunc_log: 3304 case LibFunc_logf: 3305 case LibFunc_logl: 3306 return Intrinsic::log; 3307 case LibFunc_log10: 3308 case LibFunc_log10f: 3309 case LibFunc_log10l: 3310 return Intrinsic::log10; 3311 case LibFunc_log2: 3312 case LibFunc_log2f: 3313 case LibFunc_log2l: 3314 return Intrinsic::log2; 3315 case LibFunc_fabs: 3316 case LibFunc_fabsf: 3317 case LibFunc_fabsl: 3318 return Intrinsic::fabs; 3319 case LibFunc_fmin: 3320 case LibFunc_fminf: 3321 case LibFunc_fminl: 3322 return Intrinsic::minnum; 3323 case LibFunc_fmax: 3324 case LibFunc_fmaxf: 3325 case LibFunc_fmaxl: 3326 return Intrinsic::maxnum; 3327 case LibFunc_copysign: 3328 case LibFunc_copysignf: 3329 case LibFunc_copysignl: 3330 return Intrinsic::copysign; 3331 case LibFunc_floor: 3332 case LibFunc_floorf: 3333 case LibFunc_floorl: 3334 return Intrinsic::floor; 3335 case LibFunc_ceil: 3336 case LibFunc_ceilf: 3337 case LibFunc_ceill: 3338 return Intrinsic::ceil; 3339 case LibFunc_trunc: 3340 case LibFunc_truncf: 3341 case LibFunc_truncl: 3342 return Intrinsic::trunc; 3343 case LibFunc_rint: 3344 case LibFunc_rintf: 3345 case LibFunc_rintl: 3346 return Intrinsic::rint; 3347 case LibFunc_nearbyint: 3348 case LibFunc_nearbyintf: 3349 case LibFunc_nearbyintl: 3350 return Intrinsic::nearbyint; 3351 case LibFunc_round: 3352 case LibFunc_roundf: 3353 case LibFunc_roundl: 3354 return Intrinsic::round; 3355 case LibFunc_roundeven: 3356 case LibFunc_roundevenf: 3357 case LibFunc_roundevenl: 3358 return Intrinsic::roundeven; 3359 case LibFunc_pow: 3360 case LibFunc_powf: 3361 case LibFunc_powl: 3362 return Intrinsic::pow; 3363 case LibFunc_sqrt: 3364 case LibFunc_sqrtf: 3365 case LibFunc_sqrtl: 3366 return Intrinsic::sqrt; 3367 } 3368 3369 return Intrinsic::not_intrinsic; 3370 } 3371 3372 /// Return true if we can prove that the specified FP value is never equal to 3373 /// -0.0. 3374 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3375 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3376 /// the same as +0.0 in floating-point ops. 3377 /// 3378 /// NOTE: this function will need to be revisited when we support non-default 3379 /// rounding modes! 3380 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3381 unsigned Depth) { 3382 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3383 return !CFP->getValueAPF().isNegZero(); 3384 3385 if (Depth == MaxAnalysisRecursionDepth) 3386 return false; 3387 3388 auto *Op = dyn_cast<Operator>(V); 3389 if (!Op) 3390 return false; 3391 3392 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3393 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3394 return true; 3395 3396 // sitofp and uitofp turn into +0.0 for zero. 3397 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3398 return true; 3399 3400 if (auto *Call = dyn_cast<CallInst>(Op)) { 3401 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3402 switch (IID) { 3403 default: 3404 break; 3405 // sqrt(-0.0) = -0.0, no other negative results are possible. 3406 case Intrinsic::sqrt: 3407 case Intrinsic::canonicalize: 3408 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3409 // fabs(x) != -0.0 3410 case Intrinsic::fabs: 3411 return true; 3412 } 3413 } 3414 3415 return false; 3416 } 3417 3418 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3419 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3420 /// bit despite comparing equal. 3421 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3422 const TargetLibraryInfo *TLI, 3423 bool SignBitOnly, 3424 unsigned Depth) { 3425 // TODO: This function does not do the right thing when SignBitOnly is true 3426 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3427 // which flips the sign bits of NaNs. See 3428 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3429 3430 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3431 return !CFP->getValueAPF().isNegative() || 3432 (!SignBitOnly && CFP->getValueAPF().isZero()); 3433 } 3434 3435 // Handle vector of constants. 3436 if (auto *CV = dyn_cast<Constant>(V)) { 3437 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3438 unsigned NumElts = CVFVTy->getNumElements(); 3439 for (unsigned i = 0; i != NumElts; ++i) { 3440 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3441 if (!CFP) 3442 return false; 3443 if (CFP->getValueAPF().isNegative() && 3444 (SignBitOnly || !CFP->getValueAPF().isZero())) 3445 return false; 3446 } 3447 3448 // All non-negative ConstantFPs. 3449 return true; 3450 } 3451 } 3452 3453 if (Depth == MaxAnalysisRecursionDepth) 3454 return false; 3455 3456 const Operator *I = dyn_cast<Operator>(V); 3457 if (!I) 3458 return false; 3459 3460 switch (I->getOpcode()) { 3461 default: 3462 break; 3463 // Unsigned integers are always nonnegative. 3464 case Instruction::UIToFP: 3465 return true; 3466 case Instruction::FMul: 3467 case Instruction::FDiv: 3468 // X * X is always non-negative or a NaN. 3469 // X / X is always exactly 1.0 or a NaN. 3470 if (I->getOperand(0) == I->getOperand(1) && 3471 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3472 return true; 3473 3474 LLVM_FALLTHROUGH; 3475 case Instruction::FAdd: 3476 case Instruction::FRem: 3477 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3478 Depth + 1) && 3479 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3480 Depth + 1); 3481 case Instruction::Select: 3482 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3483 Depth + 1) && 3484 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3485 Depth + 1); 3486 case Instruction::FPExt: 3487 case Instruction::FPTrunc: 3488 // Widening/narrowing never change sign. 3489 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3490 Depth + 1); 3491 case Instruction::ExtractElement: 3492 // Look through extract element. At the moment we keep this simple and skip 3493 // tracking the specific element. But at least we might find information 3494 // valid for all elements of the vector. 3495 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3496 Depth + 1); 3497 case Instruction::Call: 3498 const auto *CI = cast<CallInst>(I); 3499 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3500 switch (IID) { 3501 default: 3502 break; 3503 case Intrinsic::maxnum: { 3504 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3505 auto isPositiveNum = [&](Value *V) { 3506 if (SignBitOnly) { 3507 // With SignBitOnly, this is tricky because the result of 3508 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3509 // a constant strictly greater than 0.0. 3510 const APFloat *C; 3511 return match(V, m_APFloat(C)) && 3512 *C > APFloat::getZero(C->getSemantics()); 3513 } 3514 3515 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3516 // maxnum can't be ordered-less-than-zero. 3517 return isKnownNeverNaN(V, TLI) && 3518 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3519 }; 3520 3521 // TODO: This could be improved. We could also check that neither operand 3522 // has its sign bit set (and at least 1 is not-NAN?). 3523 return isPositiveNum(V0) || isPositiveNum(V1); 3524 } 3525 3526 case Intrinsic::maximum: 3527 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3528 Depth + 1) || 3529 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3530 Depth + 1); 3531 case Intrinsic::minnum: 3532 case Intrinsic::minimum: 3533 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3534 Depth + 1) && 3535 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3536 Depth + 1); 3537 case Intrinsic::exp: 3538 case Intrinsic::exp2: 3539 case Intrinsic::fabs: 3540 return true; 3541 3542 case Intrinsic::sqrt: 3543 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3544 if (!SignBitOnly) 3545 return true; 3546 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3547 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3548 3549 case Intrinsic::powi: 3550 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3551 // powi(x,n) is non-negative if n is even. 3552 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3553 return true; 3554 } 3555 // TODO: This is not correct. Given that exp is an integer, here are the 3556 // ways that pow can return a negative value: 3557 // 3558 // pow(x, exp) --> negative if exp is odd and x is negative. 3559 // pow(-0, exp) --> -inf if exp is negative odd. 3560 // pow(-0, exp) --> -0 if exp is positive odd. 3561 // pow(-inf, exp) --> -0 if exp is negative odd. 3562 // pow(-inf, exp) --> -inf if exp is positive odd. 3563 // 3564 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3565 // but we must return false if x == -0. Unfortunately we do not currently 3566 // have a way of expressing this constraint. See details in 3567 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3568 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3569 Depth + 1); 3570 3571 case Intrinsic::fma: 3572 case Intrinsic::fmuladd: 3573 // x*x+y is non-negative if y is non-negative. 3574 return I->getOperand(0) == I->getOperand(1) && 3575 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3576 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3577 Depth + 1); 3578 } 3579 break; 3580 } 3581 return false; 3582 } 3583 3584 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3585 const TargetLibraryInfo *TLI) { 3586 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3587 } 3588 3589 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3590 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3591 } 3592 3593 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3594 unsigned Depth) { 3595 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3596 3597 // If we're told that infinities won't happen, assume they won't. 3598 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3599 if (FPMathOp->hasNoInfs()) 3600 return true; 3601 3602 // Handle scalar constants. 3603 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3604 return !CFP->isInfinity(); 3605 3606 if (Depth == MaxAnalysisRecursionDepth) 3607 return false; 3608 3609 if (auto *Inst = dyn_cast<Instruction>(V)) { 3610 switch (Inst->getOpcode()) { 3611 case Instruction::Select: { 3612 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3613 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3614 } 3615 case Instruction::SIToFP: 3616 case Instruction::UIToFP: { 3617 // Get width of largest magnitude integer (remove a bit if signed). 3618 // This still works for a signed minimum value because the largest FP 3619 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3620 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3621 if (Inst->getOpcode() == Instruction::SIToFP) 3622 --IntSize; 3623 3624 // If the exponent of the largest finite FP value can hold the largest 3625 // integer, the result of the cast must be finite. 3626 Type *FPTy = Inst->getType()->getScalarType(); 3627 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3628 } 3629 default: 3630 break; 3631 } 3632 } 3633 3634 // try to handle fixed width vector constants 3635 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3636 if (VFVTy && isa<Constant>(V)) { 3637 // For vectors, verify that each element is not infinity. 3638 unsigned NumElts = VFVTy->getNumElements(); 3639 for (unsigned i = 0; i != NumElts; ++i) { 3640 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3641 if (!Elt) 3642 return false; 3643 if (isa<UndefValue>(Elt)) 3644 continue; 3645 auto *CElt = dyn_cast<ConstantFP>(Elt); 3646 if (!CElt || CElt->isInfinity()) 3647 return false; 3648 } 3649 // All elements were confirmed non-infinity or undefined. 3650 return true; 3651 } 3652 3653 // was not able to prove that V never contains infinity 3654 return false; 3655 } 3656 3657 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3658 unsigned Depth) { 3659 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3660 3661 // If we're told that NaNs won't happen, assume they won't. 3662 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3663 if (FPMathOp->hasNoNaNs()) 3664 return true; 3665 3666 // Handle scalar constants. 3667 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3668 return !CFP->isNaN(); 3669 3670 if (Depth == MaxAnalysisRecursionDepth) 3671 return false; 3672 3673 if (auto *Inst = dyn_cast<Instruction>(V)) { 3674 switch (Inst->getOpcode()) { 3675 case Instruction::FAdd: 3676 case Instruction::FSub: 3677 // Adding positive and negative infinity produces NaN. 3678 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3679 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3680 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3681 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3682 3683 case Instruction::FMul: 3684 // Zero multiplied with infinity produces NaN. 3685 // FIXME: If neither side can be zero fmul never produces NaN. 3686 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3687 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3688 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3689 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3690 3691 case Instruction::FDiv: 3692 case Instruction::FRem: 3693 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3694 return false; 3695 3696 case Instruction::Select: { 3697 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3698 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3699 } 3700 case Instruction::SIToFP: 3701 case Instruction::UIToFP: 3702 return true; 3703 case Instruction::FPTrunc: 3704 case Instruction::FPExt: 3705 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3706 default: 3707 break; 3708 } 3709 } 3710 3711 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3712 switch (II->getIntrinsicID()) { 3713 case Intrinsic::canonicalize: 3714 case Intrinsic::fabs: 3715 case Intrinsic::copysign: 3716 case Intrinsic::exp: 3717 case Intrinsic::exp2: 3718 case Intrinsic::floor: 3719 case Intrinsic::ceil: 3720 case Intrinsic::trunc: 3721 case Intrinsic::rint: 3722 case Intrinsic::nearbyint: 3723 case Intrinsic::round: 3724 case Intrinsic::roundeven: 3725 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3726 case Intrinsic::sqrt: 3727 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3728 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3729 case Intrinsic::minnum: 3730 case Intrinsic::maxnum: 3731 // If either operand is not NaN, the result is not NaN. 3732 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3733 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3734 default: 3735 return false; 3736 } 3737 } 3738 3739 // Try to handle fixed width vector constants 3740 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3741 if (VFVTy && isa<Constant>(V)) { 3742 // For vectors, verify that each element is not NaN. 3743 unsigned NumElts = VFVTy->getNumElements(); 3744 for (unsigned i = 0; i != NumElts; ++i) { 3745 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3746 if (!Elt) 3747 return false; 3748 if (isa<UndefValue>(Elt)) 3749 continue; 3750 auto *CElt = dyn_cast<ConstantFP>(Elt); 3751 if (!CElt || CElt->isNaN()) 3752 return false; 3753 } 3754 // All elements were confirmed not-NaN or undefined. 3755 return true; 3756 } 3757 3758 // Was not able to prove that V never contains NaN 3759 return false; 3760 } 3761 3762 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3763 3764 // All byte-wide stores are splatable, even of arbitrary variables. 3765 if (V->getType()->isIntegerTy(8)) 3766 return V; 3767 3768 LLVMContext &Ctx = V->getContext(); 3769 3770 // Undef don't care. 3771 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3772 if (isa<UndefValue>(V)) 3773 return UndefInt8; 3774 3775 // Return Undef for zero-sized type. 3776 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3777 return UndefInt8; 3778 3779 Constant *C = dyn_cast<Constant>(V); 3780 if (!C) { 3781 // Conceptually, we could handle things like: 3782 // %a = zext i8 %X to i16 3783 // %b = shl i16 %a, 8 3784 // %c = or i16 %a, %b 3785 // but until there is an example that actually needs this, it doesn't seem 3786 // worth worrying about. 3787 return nullptr; 3788 } 3789 3790 // Handle 'null' ConstantArrayZero etc. 3791 if (C->isNullValue()) 3792 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3793 3794 // Constant floating-point values can be handled as integer values if the 3795 // corresponding integer value is "byteable". An important case is 0.0. 3796 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3797 Type *Ty = nullptr; 3798 if (CFP->getType()->isHalfTy()) 3799 Ty = Type::getInt16Ty(Ctx); 3800 else if (CFP->getType()->isFloatTy()) 3801 Ty = Type::getInt32Ty(Ctx); 3802 else if (CFP->getType()->isDoubleTy()) 3803 Ty = Type::getInt64Ty(Ctx); 3804 // Don't handle long double formats, which have strange constraints. 3805 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3806 : nullptr; 3807 } 3808 3809 // We can handle constant integers that are multiple of 8 bits. 3810 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3811 if (CI->getBitWidth() % 8 == 0) { 3812 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3813 if (!CI->getValue().isSplat(8)) 3814 return nullptr; 3815 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3816 } 3817 } 3818 3819 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3820 if (CE->getOpcode() == Instruction::IntToPtr) { 3821 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3822 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3823 return isBytewiseValue( 3824 ConstantExpr::getIntegerCast(CE->getOperand(0), 3825 Type::getIntNTy(Ctx, BitWidth), false), 3826 DL); 3827 } 3828 } 3829 } 3830 3831 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3832 if (LHS == RHS) 3833 return LHS; 3834 if (!LHS || !RHS) 3835 return nullptr; 3836 if (LHS == UndefInt8) 3837 return RHS; 3838 if (RHS == UndefInt8) 3839 return LHS; 3840 return nullptr; 3841 }; 3842 3843 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3844 Value *Val = UndefInt8; 3845 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3846 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3847 return nullptr; 3848 return Val; 3849 } 3850 3851 if (isa<ConstantAggregate>(C)) { 3852 Value *Val = UndefInt8; 3853 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3854 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3855 return nullptr; 3856 return Val; 3857 } 3858 3859 // Don't try to handle the handful of other constants. 3860 return nullptr; 3861 } 3862 3863 // This is the recursive version of BuildSubAggregate. It takes a few different 3864 // arguments. Idxs is the index within the nested struct From that we are 3865 // looking at now (which is of type IndexedType). IdxSkip is the number of 3866 // indices from Idxs that should be left out when inserting into the resulting 3867 // struct. To is the result struct built so far, new insertvalue instructions 3868 // build on that. 3869 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3870 SmallVectorImpl<unsigned> &Idxs, 3871 unsigned IdxSkip, 3872 Instruction *InsertBefore) { 3873 StructType *STy = dyn_cast<StructType>(IndexedType); 3874 if (STy) { 3875 // Save the original To argument so we can modify it 3876 Value *OrigTo = To; 3877 // General case, the type indexed by Idxs is a struct 3878 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3879 // Process each struct element recursively 3880 Idxs.push_back(i); 3881 Value *PrevTo = To; 3882 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3883 InsertBefore); 3884 Idxs.pop_back(); 3885 if (!To) { 3886 // Couldn't find any inserted value for this index? Cleanup 3887 while (PrevTo != OrigTo) { 3888 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3889 PrevTo = Del->getAggregateOperand(); 3890 Del->eraseFromParent(); 3891 } 3892 // Stop processing elements 3893 break; 3894 } 3895 } 3896 // If we successfully found a value for each of our subaggregates 3897 if (To) 3898 return To; 3899 } 3900 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3901 // the struct's elements had a value that was inserted directly. In the latter 3902 // case, perhaps we can't determine each of the subelements individually, but 3903 // we might be able to find the complete struct somewhere. 3904 3905 // Find the value that is at that particular spot 3906 Value *V = FindInsertedValue(From, Idxs); 3907 3908 if (!V) 3909 return nullptr; 3910 3911 // Insert the value in the new (sub) aggregate 3912 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3913 "tmp", InsertBefore); 3914 } 3915 3916 // This helper takes a nested struct and extracts a part of it (which is again a 3917 // struct) into a new value. For example, given the struct: 3918 // { a, { b, { c, d }, e } } 3919 // and the indices "1, 1" this returns 3920 // { c, d }. 3921 // 3922 // It does this by inserting an insertvalue for each element in the resulting 3923 // struct, as opposed to just inserting a single struct. This will only work if 3924 // each of the elements of the substruct are known (ie, inserted into From by an 3925 // insertvalue instruction somewhere). 3926 // 3927 // All inserted insertvalue instructions are inserted before InsertBefore 3928 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3929 Instruction *InsertBefore) { 3930 assert(InsertBefore && "Must have someplace to insert!"); 3931 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3932 idx_range); 3933 Value *To = UndefValue::get(IndexedType); 3934 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3935 unsigned IdxSkip = Idxs.size(); 3936 3937 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3938 } 3939 3940 /// Given an aggregate and a sequence of indices, see if the scalar value 3941 /// indexed is already around as a register, for example if it was inserted 3942 /// directly into the aggregate. 3943 /// 3944 /// If InsertBefore is not null, this function will duplicate (modified) 3945 /// insertvalues when a part of a nested struct is extracted. 3946 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3947 Instruction *InsertBefore) { 3948 // Nothing to index? Just return V then (this is useful at the end of our 3949 // recursion). 3950 if (idx_range.empty()) 3951 return V; 3952 // We have indices, so V should have an indexable type. 3953 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3954 "Not looking at a struct or array?"); 3955 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3956 "Invalid indices for type?"); 3957 3958 if (Constant *C = dyn_cast<Constant>(V)) { 3959 C = C->getAggregateElement(idx_range[0]); 3960 if (!C) return nullptr; 3961 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3962 } 3963 3964 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3965 // Loop the indices for the insertvalue instruction in parallel with the 3966 // requested indices 3967 const unsigned *req_idx = idx_range.begin(); 3968 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3969 i != e; ++i, ++req_idx) { 3970 if (req_idx == idx_range.end()) { 3971 // We can't handle this without inserting insertvalues 3972 if (!InsertBefore) 3973 return nullptr; 3974 3975 // The requested index identifies a part of a nested aggregate. Handle 3976 // this specially. For example, 3977 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3978 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3979 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3980 // This can be changed into 3981 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3982 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3983 // which allows the unused 0,0 element from the nested struct to be 3984 // removed. 3985 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3986 InsertBefore); 3987 } 3988 3989 // This insert value inserts something else than what we are looking for. 3990 // See if the (aggregate) value inserted into has the value we are 3991 // looking for, then. 3992 if (*req_idx != *i) 3993 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3994 InsertBefore); 3995 } 3996 // If we end up here, the indices of the insertvalue match with those 3997 // requested (though possibly only partially). Now we recursively look at 3998 // the inserted value, passing any remaining indices. 3999 return FindInsertedValue(I->getInsertedValueOperand(), 4000 makeArrayRef(req_idx, idx_range.end()), 4001 InsertBefore); 4002 } 4003 4004 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4005 // If we're extracting a value from an aggregate that was extracted from 4006 // something else, we can extract from that something else directly instead. 4007 // However, we will need to chain I's indices with the requested indices. 4008 4009 // Calculate the number of indices required 4010 unsigned size = I->getNumIndices() + idx_range.size(); 4011 // Allocate some space to put the new indices in 4012 SmallVector<unsigned, 5> Idxs; 4013 Idxs.reserve(size); 4014 // Add indices from the extract value instruction 4015 Idxs.append(I->idx_begin(), I->idx_end()); 4016 4017 // Add requested indices 4018 Idxs.append(idx_range.begin(), idx_range.end()); 4019 4020 assert(Idxs.size() == size 4021 && "Number of indices added not correct?"); 4022 4023 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4024 } 4025 // Otherwise, we don't know (such as, extracting from a function return value 4026 // or load instruction) 4027 return nullptr; 4028 } 4029 4030 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4031 unsigned CharSize) { 4032 // Make sure the GEP has exactly three arguments. 4033 if (GEP->getNumOperands() != 3) 4034 return false; 4035 4036 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4037 // CharSize. 4038 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4039 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4040 return false; 4041 4042 // Check to make sure that the first operand of the GEP is an integer and 4043 // has value 0 so that we are sure we're indexing into the initializer. 4044 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4045 if (!FirstIdx || !FirstIdx->isZero()) 4046 return false; 4047 4048 return true; 4049 } 4050 4051 bool llvm::getConstantDataArrayInfo(const Value *V, 4052 ConstantDataArraySlice &Slice, 4053 unsigned ElementSize, uint64_t Offset) { 4054 assert(V); 4055 4056 // Look through bitcast instructions and geps. 4057 V = V->stripPointerCasts(); 4058 4059 // If the value is a GEP instruction or constant expression, treat it as an 4060 // offset. 4061 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4062 // The GEP operator should be based on a pointer to string constant, and is 4063 // indexing into the string constant. 4064 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4065 return false; 4066 4067 // If the second index isn't a ConstantInt, then this is a variable index 4068 // into the array. If this occurs, we can't say anything meaningful about 4069 // the string. 4070 uint64_t StartIdx = 0; 4071 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4072 StartIdx = CI->getZExtValue(); 4073 else 4074 return false; 4075 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4076 StartIdx + Offset); 4077 } 4078 4079 // The GEP instruction, constant or instruction, must reference a global 4080 // variable that is a constant and is initialized. The referenced constant 4081 // initializer is the array that we'll use for optimization. 4082 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4083 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4084 return false; 4085 4086 const ConstantDataArray *Array; 4087 ArrayType *ArrayTy; 4088 if (GV->getInitializer()->isNullValue()) { 4089 Type *GVTy = GV->getValueType(); 4090 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4091 // A zeroinitializer for the array; there is no ConstantDataArray. 4092 Array = nullptr; 4093 } else { 4094 const DataLayout &DL = GV->getParent()->getDataLayout(); 4095 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4096 uint64_t Length = SizeInBytes / (ElementSize / 8); 4097 if (Length <= Offset) 4098 return false; 4099 4100 Slice.Array = nullptr; 4101 Slice.Offset = 0; 4102 Slice.Length = Length - Offset; 4103 return true; 4104 } 4105 } else { 4106 // This must be a ConstantDataArray. 4107 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4108 if (!Array) 4109 return false; 4110 ArrayTy = Array->getType(); 4111 } 4112 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4113 return false; 4114 4115 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4116 if (Offset > NumElts) 4117 return false; 4118 4119 Slice.Array = Array; 4120 Slice.Offset = Offset; 4121 Slice.Length = NumElts - Offset; 4122 return true; 4123 } 4124 4125 /// This function computes the length of a null-terminated C string pointed to 4126 /// by V. If successful, it returns true and returns the string in Str. 4127 /// If unsuccessful, it returns false. 4128 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4129 uint64_t Offset, bool TrimAtNul) { 4130 ConstantDataArraySlice Slice; 4131 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4132 return false; 4133 4134 if (Slice.Array == nullptr) { 4135 if (TrimAtNul) { 4136 Str = StringRef(); 4137 return true; 4138 } 4139 if (Slice.Length == 1) { 4140 Str = StringRef("", 1); 4141 return true; 4142 } 4143 // We cannot instantiate a StringRef as we do not have an appropriate string 4144 // of 0s at hand. 4145 return false; 4146 } 4147 4148 // Start out with the entire array in the StringRef. 4149 Str = Slice.Array->getAsString(); 4150 // Skip over 'offset' bytes. 4151 Str = Str.substr(Slice.Offset); 4152 4153 if (TrimAtNul) { 4154 // Trim off the \0 and anything after it. If the array is not nul 4155 // terminated, we just return the whole end of string. The client may know 4156 // some other way that the string is length-bound. 4157 Str = Str.substr(0, Str.find('\0')); 4158 } 4159 return true; 4160 } 4161 4162 // These next two are very similar to the above, but also look through PHI 4163 // nodes. 4164 // TODO: See if we can integrate these two together. 4165 4166 /// If we can compute the length of the string pointed to by 4167 /// the specified pointer, return 'len+1'. If we can't, return 0. 4168 static uint64_t GetStringLengthH(const Value *V, 4169 SmallPtrSetImpl<const PHINode*> &PHIs, 4170 unsigned CharSize) { 4171 // Look through noop bitcast instructions. 4172 V = V->stripPointerCasts(); 4173 4174 // If this is a PHI node, there are two cases: either we have already seen it 4175 // or we haven't. 4176 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4177 if (!PHIs.insert(PN).second) 4178 return ~0ULL; // already in the set. 4179 4180 // If it was new, see if all the input strings are the same length. 4181 uint64_t LenSoFar = ~0ULL; 4182 for (Value *IncValue : PN->incoming_values()) { 4183 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4184 if (Len == 0) return 0; // Unknown length -> unknown. 4185 4186 if (Len == ~0ULL) continue; 4187 4188 if (Len != LenSoFar && LenSoFar != ~0ULL) 4189 return 0; // Disagree -> unknown. 4190 LenSoFar = Len; 4191 } 4192 4193 // Success, all agree. 4194 return LenSoFar; 4195 } 4196 4197 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4198 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4199 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4200 if (Len1 == 0) return 0; 4201 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4202 if (Len2 == 0) return 0; 4203 if (Len1 == ~0ULL) return Len2; 4204 if (Len2 == ~0ULL) return Len1; 4205 if (Len1 != Len2) return 0; 4206 return Len1; 4207 } 4208 4209 // Otherwise, see if we can read the string. 4210 ConstantDataArraySlice Slice; 4211 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4212 return 0; 4213 4214 if (Slice.Array == nullptr) 4215 return 1; 4216 4217 // Search for nul characters 4218 unsigned NullIndex = 0; 4219 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4220 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4221 break; 4222 } 4223 4224 return NullIndex + 1; 4225 } 4226 4227 /// If we can compute the length of the string pointed to by 4228 /// the specified pointer, return 'len+1'. If we can't, return 0. 4229 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4230 if (!V->getType()->isPointerTy()) 4231 return 0; 4232 4233 SmallPtrSet<const PHINode*, 32> PHIs; 4234 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4235 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4236 // an empty string as a length. 4237 return Len == ~0ULL ? 1 : Len; 4238 } 4239 4240 const Value * 4241 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4242 bool MustPreserveNullness) { 4243 assert(Call && 4244 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4245 if (const Value *RV = Call->getReturnedArgOperand()) 4246 return RV; 4247 // This can be used only as a aliasing property. 4248 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4249 Call, MustPreserveNullness)) 4250 return Call->getArgOperand(0); 4251 return nullptr; 4252 } 4253 4254 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4255 const CallBase *Call, bool MustPreserveNullness) { 4256 switch (Call->getIntrinsicID()) { 4257 case Intrinsic::launder_invariant_group: 4258 case Intrinsic::strip_invariant_group: 4259 case Intrinsic::aarch64_irg: 4260 case Intrinsic::aarch64_tagp: 4261 return true; 4262 case Intrinsic::ptrmask: 4263 return !MustPreserveNullness; 4264 default: 4265 return false; 4266 } 4267 } 4268 4269 /// \p PN defines a loop-variant pointer to an object. Check if the 4270 /// previous iteration of the loop was referring to the same object as \p PN. 4271 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4272 const LoopInfo *LI) { 4273 // Find the loop-defined value. 4274 Loop *L = LI->getLoopFor(PN->getParent()); 4275 if (PN->getNumIncomingValues() != 2) 4276 return true; 4277 4278 // Find the value from previous iteration. 4279 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4280 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4281 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4282 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4283 return true; 4284 4285 // If a new pointer is loaded in the loop, the pointer references a different 4286 // object in every iteration. E.g.: 4287 // for (i) 4288 // int *p = a[i]; 4289 // ... 4290 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4291 if (!L->isLoopInvariant(Load->getPointerOperand())) 4292 return false; 4293 return true; 4294 } 4295 4296 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4297 if (!V->getType()->isPointerTy()) 4298 return V; 4299 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4300 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4301 V = GEP->getPointerOperand(); 4302 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4303 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4304 V = cast<Operator>(V)->getOperand(0); 4305 if (!V->getType()->isPointerTy()) 4306 return V; 4307 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4308 if (GA->isInterposable()) 4309 return V; 4310 V = GA->getAliasee(); 4311 } else { 4312 if (auto *PHI = dyn_cast<PHINode>(V)) { 4313 // Look through single-arg phi nodes created by LCSSA. 4314 if (PHI->getNumIncomingValues() == 1) { 4315 V = PHI->getIncomingValue(0); 4316 continue; 4317 } 4318 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4319 // CaptureTracking can know about special capturing properties of some 4320 // intrinsics like launder.invariant.group, that can't be expressed with 4321 // the attributes, but have properties like returning aliasing pointer. 4322 // Because some analysis may assume that nocaptured pointer is not 4323 // returned from some special intrinsic (because function would have to 4324 // be marked with returns attribute), it is crucial to use this function 4325 // because it should be in sync with CaptureTracking. Not using it may 4326 // cause weird miscompilations where 2 aliasing pointers are assumed to 4327 // noalias. 4328 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4329 V = RP; 4330 continue; 4331 } 4332 } 4333 4334 return V; 4335 } 4336 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4337 } 4338 return V; 4339 } 4340 4341 void llvm::getUnderlyingObjects(const Value *V, 4342 SmallVectorImpl<const Value *> &Objects, 4343 LoopInfo *LI, unsigned MaxLookup) { 4344 SmallPtrSet<const Value *, 4> Visited; 4345 SmallVector<const Value *, 4> Worklist; 4346 Worklist.push_back(V); 4347 do { 4348 const Value *P = Worklist.pop_back_val(); 4349 P = getUnderlyingObject(P, MaxLookup); 4350 4351 if (!Visited.insert(P).second) 4352 continue; 4353 4354 if (auto *SI = dyn_cast<SelectInst>(P)) { 4355 Worklist.push_back(SI->getTrueValue()); 4356 Worklist.push_back(SI->getFalseValue()); 4357 continue; 4358 } 4359 4360 if (auto *PN = dyn_cast<PHINode>(P)) { 4361 // If this PHI changes the underlying object in every iteration of the 4362 // loop, don't look through it. Consider: 4363 // int **A; 4364 // for (i) { 4365 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4366 // Curr = A[i]; 4367 // *Prev, *Curr; 4368 // 4369 // Prev is tracking Curr one iteration behind so they refer to different 4370 // underlying objects. 4371 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4372 isSameUnderlyingObjectInLoop(PN, LI)) 4373 append_range(Worklist, PN->incoming_values()); 4374 continue; 4375 } 4376 4377 Objects.push_back(P); 4378 } while (!Worklist.empty()); 4379 } 4380 4381 /// This is the function that does the work of looking through basic 4382 /// ptrtoint+arithmetic+inttoptr sequences. 4383 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4384 do { 4385 if (const Operator *U = dyn_cast<Operator>(V)) { 4386 // If we find a ptrtoint, we can transfer control back to the 4387 // regular getUnderlyingObjectFromInt. 4388 if (U->getOpcode() == Instruction::PtrToInt) 4389 return U->getOperand(0); 4390 // If we find an add of a constant, a multiplied value, or a phi, it's 4391 // likely that the other operand will lead us to the base 4392 // object. We don't have to worry about the case where the 4393 // object address is somehow being computed by the multiply, 4394 // because our callers only care when the result is an 4395 // identifiable object. 4396 if (U->getOpcode() != Instruction::Add || 4397 (!isa<ConstantInt>(U->getOperand(1)) && 4398 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4399 !isa<PHINode>(U->getOperand(1)))) 4400 return V; 4401 V = U->getOperand(0); 4402 } else { 4403 return V; 4404 } 4405 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4406 } while (true); 4407 } 4408 4409 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4410 /// ptrtoint+arithmetic+inttoptr sequences. 4411 /// It returns false if unidentified object is found in getUnderlyingObjects. 4412 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4413 SmallVectorImpl<Value *> &Objects) { 4414 SmallPtrSet<const Value *, 16> Visited; 4415 SmallVector<const Value *, 4> Working(1, V); 4416 do { 4417 V = Working.pop_back_val(); 4418 4419 SmallVector<const Value *, 4> Objs; 4420 getUnderlyingObjects(V, Objs); 4421 4422 for (const Value *V : Objs) { 4423 if (!Visited.insert(V).second) 4424 continue; 4425 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4426 const Value *O = 4427 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4428 if (O->getType()->isPointerTy()) { 4429 Working.push_back(O); 4430 continue; 4431 } 4432 } 4433 // If getUnderlyingObjects fails to find an identifiable object, 4434 // getUnderlyingObjectsForCodeGen also fails for safety. 4435 if (!isIdentifiedObject(V)) { 4436 Objects.clear(); 4437 return false; 4438 } 4439 Objects.push_back(const_cast<Value *>(V)); 4440 } 4441 } while (!Working.empty()); 4442 return true; 4443 } 4444 4445 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4446 AllocaInst *Result = nullptr; 4447 SmallPtrSet<Value *, 4> Visited; 4448 SmallVector<Value *, 4> Worklist; 4449 4450 auto AddWork = [&](Value *V) { 4451 if (Visited.insert(V).second) 4452 Worklist.push_back(V); 4453 }; 4454 4455 AddWork(V); 4456 do { 4457 V = Worklist.pop_back_val(); 4458 assert(Visited.count(V)); 4459 4460 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4461 if (Result && Result != AI) 4462 return nullptr; 4463 Result = AI; 4464 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4465 AddWork(CI->getOperand(0)); 4466 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4467 for (Value *IncValue : PN->incoming_values()) 4468 AddWork(IncValue); 4469 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4470 AddWork(SI->getTrueValue()); 4471 AddWork(SI->getFalseValue()); 4472 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4473 if (OffsetZero && !GEP->hasAllZeroIndices()) 4474 return nullptr; 4475 AddWork(GEP->getPointerOperand()); 4476 } else { 4477 return nullptr; 4478 } 4479 } while (!Worklist.empty()); 4480 4481 return Result; 4482 } 4483 4484 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4485 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4486 for (const User *U : V->users()) { 4487 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4488 if (!II) 4489 return false; 4490 4491 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4492 continue; 4493 4494 if (AllowDroppable && II->isDroppable()) 4495 continue; 4496 4497 return false; 4498 } 4499 return true; 4500 } 4501 4502 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4503 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4504 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4505 } 4506 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4507 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4508 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4509 } 4510 4511 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4512 if (!LI.isUnordered()) 4513 return true; 4514 const Function &F = *LI.getFunction(); 4515 // Speculative load may create a race that did not exist in the source. 4516 return F.hasFnAttribute(Attribute::SanitizeThread) || 4517 // Speculative load may load data from dirty regions. 4518 F.hasFnAttribute(Attribute::SanitizeAddress) || 4519 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4520 } 4521 4522 4523 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4524 const Instruction *CtxI, 4525 const DominatorTree *DT, 4526 const TargetLibraryInfo *TLI) { 4527 const Operator *Inst = dyn_cast<Operator>(V); 4528 if (!Inst) 4529 return false; 4530 4531 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4532 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4533 if (C->canTrap()) 4534 return false; 4535 4536 switch (Inst->getOpcode()) { 4537 default: 4538 return true; 4539 case Instruction::UDiv: 4540 case Instruction::URem: { 4541 // x / y is undefined if y == 0. 4542 const APInt *V; 4543 if (match(Inst->getOperand(1), m_APInt(V))) 4544 return *V != 0; 4545 return false; 4546 } 4547 case Instruction::SDiv: 4548 case Instruction::SRem: { 4549 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4550 const APInt *Numerator, *Denominator; 4551 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4552 return false; 4553 // We cannot hoist this division if the denominator is 0. 4554 if (*Denominator == 0) 4555 return false; 4556 // It's safe to hoist if the denominator is not 0 or -1. 4557 if (!Denominator->isAllOnesValue()) 4558 return true; 4559 // At this point we know that the denominator is -1. It is safe to hoist as 4560 // long we know that the numerator is not INT_MIN. 4561 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4562 return !Numerator->isMinSignedValue(); 4563 // The numerator *might* be MinSignedValue. 4564 return false; 4565 } 4566 case Instruction::Load: { 4567 const LoadInst *LI = cast<LoadInst>(Inst); 4568 if (mustSuppressSpeculation(*LI)) 4569 return false; 4570 const DataLayout &DL = LI->getModule()->getDataLayout(); 4571 return isDereferenceableAndAlignedPointer( 4572 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4573 DL, CtxI, DT, TLI); 4574 } 4575 case Instruction::Call: { 4576 auto *CI = cast<const CallInst>(Inst); 4577 const Function *Callee = CI->getCalledFunction(); 4578 4579 // The called function could have undefined behavior or side-effects, even 4580 // if marked readnone nounwind. 4581 return Callee && Callee->isSpeculatable(); 4582 } 4583 case Instruction::VAArg: 4584 case Instruction::Alloca: 4585 case Instruction::Invoke: 4586 case Instruction::CallBr: 4587 case Instruction::PHI: 4588 case Instruction::Store: 4589 case Instruction::Ret: 4590 case Instruction::Br: 4591 case Instruction::IndirectBr: 4592 case Instruction::Switch: 4593 case Instruction::Unreachable: 4594 case Instruction::Fence: 4595 case Instruction::AtomicRMW: 4596 case Instruction::AtomicCmpXchg: 4597 case Instruction::LandingPad: 4598 case Instruction::Resume: 4599 case Instruction::CatchSwitch: 4600 case Instruction::CatchPad: 4601 case Instruction::CatchRet: 4602 case Instruction::CleanupPad: 4603 case Instruction::CleanupRet: 4604 return false; // Misc instructions which have effects 4605 } 4606 } 4607 4608 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4609 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4610 } 4611 4612 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4613 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4614 switch (OR) { 4615 case ConstantRange::OverflowResult::MayOverflow: 4616 return OverflowResult::MayOverflow; 4617 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4618 return OverflowResult::AlwaysOverflowsLow; 4619 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4620 return OverflowResult::AlwaysOverflowsHigh; 4621 case ConstantRange::OverflowResult::NeverOverflows: 4622 return OverflowResult::NeverOverflows; 4623 } 4624 llvm_unreachable("Unknown OverflowResult"); 4625 } 4626 4627 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4628 static ConstantRange computeConstantRangeIncludingKnownBits( 4629 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4630 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4631 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4632 KnownBits Known = computeKnownBits( 4633 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4634 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4635 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4636 ConstantRange::PreferredRangeType RangeType = 4637 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4638 return CR1.intersectWith(CR2, RangeType); 4639 } 4640 4641 OverflowResult llvm::computeOverflowForUnsignedMul( 4642 const Value *LHS, const Value *RHS, const DataLayout &DL, 4643 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4644 bool UseInstrInfo) { 4645 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4646 nullptr, UseInstrInfo); 4647 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4648 nullptr, UseInstrInfo); 4649 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4650 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4651 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4652 } 4653 4654 OverflowResult 4655 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4656 const DataLayout &DL, AssumptionCache *AC, 4657 const Instruction *CxtI, 4658 const DominatorTree *DT, bool UseInstrInfo) { 4659 // Multiplying n * m significant bits yields a result of n + m significant 4660 // bits. If the total number of significant bits does not exceed the 4661 // result bit width (minus 1), there is no overflow. 4662 // This means if we have enough leading sign bits in the operands 4663 // we can guarantee that the result does not overflow. 4664 // Ref: "Hacker's Delight" by Henry Warren 4665 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4666 4667 // Note that underestimating the number of sign bits gives a more 4668 // conservative answer. 4669 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4670 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4671 4672 // First handle the easy case: if we have enough sign bits there's 4673 // definitely no overflow. 4674 if (SignBits > BitWidth + 1) 4675 return OverflowResult::NeverOverflows; 4676 4677 // There are two ambiguous cases where there can be no overflow: 4678 // SignBits == BitWidth + 1 and 4679 // SignBits == BitWidth 4680 // The second case is difficult to check, therefore we only handle the 4681 // first case. 4682 if (SignBits == BitWidth + 1) { 4683 // It overflows only when both arguments are negative and the true 4684 // product is exactly the minimum negative number. 4685 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4686 // For simplicity we just check if at least one side is not negative. 4687 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4688 nullptr, UseInstrInfo); 4689 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4690 nullptr, UseInstrInfo); 4691 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4692 return OverflowResult::NeverOverflows; 4693 } 4694 return OverflowResult::MayOverflow; 4695 } 4696 4697 OverflowResult llvm::computeOverflowForUnsignedAdd( 4698 const Value *LHS, const Value *RHS, const DataLayout &DL, 4699 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4700 bool UseInstrInfo) { 4701 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4702 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4703 nullptr, UseInstrInfo); 4704 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4705 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4706 nullptr, UseInstrInfo); 4707 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4708 } 4709 4710 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4711 const Value *RHS, 4712 const AddOperator *Add, 4713 const DataLayout &DL, 4714 AssumptionCache *AC, 4715 const Instruction *CxtI, 4716 const DominatorTree *DT) { 4717 if (Add && Add->hasNoSignedWrap()) { 4718 return OverflowResult::NeverOverflows; 4719 } 4720 4721 // If LHS and RHS each have at least two sign bits, the addition will look 4722 // like 4723 // 4724 // XX..... + 4725 // YY..... 4726 // 4727 // If the carry into the most significant position is 0, X and Y can't both 4728 // be 1 and therefore the carry out of the addition is also 0. 4729 // 4730 // If the carry into the most significant position is 1, X and Y can't both 4731 // be 0 and therefore the carry out of the addition is also 1. 4732 // 4733 // Since the carry into the most significant position is always equal to 4734 // the carry out of the addition, there is no signed overflow. 4735 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4736 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4737 return OverflowResult::NeverOverflows; 4738 4739 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4740 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4741 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4742 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4743 OverflowResult OR = 4744 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4745 if (OR != OverflowResult::MayOverflow) 4746 return OR; 4747 4748 // The remaining code needs Add to be available. Early returns if not so. 4749 if (!Add) 4750 return OverflowResult::MayOverflow; 4751 4752 // If the sign of Add is the same as at least one of the operands, this add 4753 // CANNOT overflow. If this can be determined from the known bits of the 4754 // operands the above signedAddMayOverflow() check will have already done so. 4755 // The only other way to improve on the known bits is from an assumption, so 4756 // call computeKnownBitsFromAssume() directly. 4757 bool LHSOrRHSKnownNonNegative = 4758 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4759 bool LHSOrRHSKnownNegative = 4760 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4761 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4762 KnownBits AddKnown(LHSRange.getBitWidth()); 4763 computeKnownBitsFromAssume( 4764 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4765 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4766 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4767 return OverflowResult::NeverOverflows; 4768 } 4769 4770 return OverflowResult::MayOverflow; 4771 } 4772 4773 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4774 const Value *RHS, 4775 const DataLayout &DL, 4776 AssumptionCache *AC, 4777 const Instruction *CxtI, 4778 const DominatorTree *DT) { 4779 // Checking for conditions implied by dominating conditions may be expensive. 4780 // Limit it to usub_with_overflow calls for now. 4781 if (match(CxtI, 4782 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4783 if (auto C = 4784 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4785 if (*C) 4786 return OverflowResult::NeverOverflows; 4787 return OverflowResult::AlwaysOverflowsLow; 4788 } 4789 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4790 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4791 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4792 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4793 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4794 } 4795 4796 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4797 const Value *RHS, 4798 const DataLayout &DL, 4799 AssumptionCache *AC, 4800 const Instruction *CxtI, 4801 const DominatorTree *DT) { 4802 // If LHS and RHS each have at least two sign bits, the subtraction 4803 // cannot overflow. 4804 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4805 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4806 return OverflowResult::NeverOverflows; 4807 4808 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4809 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4810 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4811 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4812 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4813 } 4814 4815 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4816 const DominatorTree &DT) { 4817 SmallVector<const BranchInst *, 2> GuardingBranches; 4818 SmallVector<const ExtractValueInst *, 2> Results; 4819 4820 for (const User *U : WO->users()) { 4821 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4822 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4823 4824 if (EVI->getIndices()[0] == 0) 4825 Results.push_back(EVI); 4826 else { 4827 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4828 4829 for (const auto *U : EVI->users()) 4830 if (const auto *B = dyn_cast<BranchInst>(U)) { 4831 assert(B->isConditional() && "How else is it using an i1?"); 4832 GuardingBranches.push_back(B); 4833 } 4834 } 4835 } else { 4836 // We are using the aggregate directly in a way we don't want to analyze 4837 // here (storing it to a global, say). 4838 return false; 4839 } 4840 } 4841 4842 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4843 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4844 if (!NoWrapEdge.isSingleEdge()) 4845 return false; 4846 4847 // Check if all users of the add are provably no-wrap. 4848 for (const auto *Result : Results) { 4849 // If the extractvalue itself is not executed on overflow, the we don't 4850 // need to check each use separately, since domination is transitive. 4851 if (DT.dominates(NoWrapEdge, Result->getParent())) 4852 continue; 4853 4854 for (auto &RU : Result->uses()) 4855 if (!DT.dominates(NoWrapEdge, RU)) 4856 return false; 4857 } 4858 4859 return true; 4860 }; 4861 4862 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4863 } 4864 4865 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4866 // See whether I has flags that may create poison 4867 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4868 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4869 return true; 4870 } 4871 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4872 if (ExactOp->isExact()) 4873 return true; 4874 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4875 auto FMF = FP->getFastMathFlags(); 4876 if (FMF.noNaNs() || FMF.noInfs()) 4877 return true; 4878 } 4879 4880 unsigned Opcode = Op->getOpcode(); 4881 4882 // Check whether opcode is a poison/undef-generating operation 4883 switch (Opcode) { 4884 case Instruction::Shl: 4885 case Instruction::AShr: 4886 case Instruction::LShr: { 4887 // Shifts return poison if shiftwidth is larger than the bitwidth. 4888 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4889 SmallVector<Constant *, 4> ShiftAmounts; 4890 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4891 unsigned NumElts = FVTy->getNumElements(); 4892 for (unsigned i = 0; i < NumElts; ++i) 4893 ShiftAmounts.push_back(C->getAggregateElement(i)); 4894 } else if (isa<ScalableVectorType>(C->getType())) 4895 return true; // Can't tell, just return true to be safe 4896 else 4897 ShiftAmounts.push_back(C); 4898 4899 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4900 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4901 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4902 }); 4903 return !Safe; 4904 } 4905 return true; 4906 } 4907 case Instruction::FPToSI: 4908 case Instruction::FPToUI: 4909 // fptosi/ui yields poison if the resulting value does not fit in the 4910 // destination type. 4911 return true; 4912 case Instruction::Call: 4913 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4914 switch (II->getIntrinsicID()) { 4915 // TODO: Add more intrinsics. 4916 case Intrinsic::ctpop: 4917 case Intrinsic::sadd_with_overflow: 4918 case Intrinsic::ssub_with_overflow: 4919 case Intrinsic::smul_with_overflow: 4920 case Intrinsic::uadd_with_overflow: 4921 case Intrinsic::usub_with_overflow: 4922 case Intrinsic::umul_with_overflow: 4923 return false; 4924 } 4925 } 4926 LLVM_FALLTHROUGH; 4927 case Instruction::CallBr: 4928 case Instruction::Invoke: { 4929 const auto *CB = cast<CallBase>(Op); 4930 return !CB->hasRetAttr(Attribute::NoUndef); 4931 } 4932 case Instruction::InsertElement: 4933 case Instruction::ExtractElement: { 4934 // If index exceeds the length of the vector, it returns poison 4935 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4936 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4937 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4938 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4939 return true; 4940 return false; 4941 } 4942 case Instruction::ShuffleVector: { 4943 // shufflevector may return undef. 4944 if (PoisonOnly) 4945 return false; 4946 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4947 ? cast<ConstantExpr>(Op)->getShuffleMask() 4948 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4949 return is_contained(Mask, UndefMaskElem); 4950 } 4951 case Instruction::FNeg: 4952 case Instruction::PHI: 4953 case Instruction::Select: 4954 case Instruction::URem: 4955 case Instruction::SRem: 4956 case Instruction::ExtractValue: 4957 case Instruction::InsertValue: 4958 case Instruction::Freeze: 4959 case Instruction::ICmp: 4960 case Instruction::FCmp: 4961 return false; 4962 case Instruction::GetElementPtr: { 4963 const auto *GEP = cast<GEPOperator>(Op); 4964 return GEP->isInBounds(); 4965 } 4966 default: { 4967 const auto *CE = dyn_cast<ConstantExpr>(Op); 4968 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4969 return false; 4970 else if (Instruction::isBinaryOp(Opcode)) 4971 return false; 4972 // Be conservative and return true. 4973 return true; 4974 } 4975 } 4976 } 4977 4978 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4979 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4980 } 4981 4982 bool llvm::canCreatePoison(const Operator *Op) { 4983 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4984 } 4985 4986 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4987 const Value *V, unsigned Depth) { 4988 if (ValAssumedPoison == V) 4989 return true; 4990 4991 const unsigned MaxDepth = 2; 4992 if (Depth >= MaxDepth) 4993 return false; 4994 4995 if (const auto *I = dyn_cast<Instruction>(V)) { 4996 if (propagatesPoison(cast<Operator>(I))) 4997 return any_of(I->operands(), [=](const Value *Op) { 4998 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4999 }); 5000 5001 // 'select ValAssumedPoison, _, _' is poison. 5002 if (const auto *SI = dyn_cast<SelectInst>(I)) 5003 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5004 Depth + 1); 5005 // V = extractvalue V0, idx 5006 // V2 = extractvalue V0, idx2 5007 // V0's elements are all poison or not. (e.g., add_with_overflow) 5008 const WithOverflowInst *II; 5009 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5010 match(ValAssumedPoison, m_ExtractValue(m_Specific(II)))) 5011 return true; 5012 } 5013 return false; 5014 } 5015 5016 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5017 unsigned Depth) { 5018 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5019 return true; 5020 5021 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5022 return true; 5023 5024 const unsigned MaxDepth = 2; 5025 if (Depth >= MaxDepth) 5026 return false; 5027 5028 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5029 if (I && !canCreatePoison(cast<Operator>(I))) { 5030 return all_of(I->operands(), [=](const Value *Op) { 5031 return impliesPoison(Op, V, Depth + 1); 5032 }); 5033 } 5034 return false; 5035 } 5036 5037 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5038 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5039 } 5040 5041 static bool programUndefinedIfUndefOrPoison(const Value *V, 5042 bool PoisonOnly); 5043 5044 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5045 AssumptionCache *AC, 5046 const Instruction *CtxI, 5047 const DominatorTree *DT, 5048 unsigned Depth, bool PoisonOnly) { 5049 if (Depth >= MaxAnalysisRecursionDepth) 5050 return false; 5051 5052 if (isa<MetadataAsValue>(V)) 5053 return false; 5054 5055 if (const auto *A = dyn_cast<Argument>(V)) { 5056 if (A->hasAttribute(Attribute::NoUndef)) 5057 return true; 5058 } 5059 5060 if (auto *C = dyn_cast<Constant>(V)) { 5061 if (isa<UndefValue>(C)) 5062 return PoisonOnly && !isa<PoisonValue>(C); 5063 5064 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5065 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5066 return true; 5067 5068 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5069 return (PoisonOnly ? !C->containsPoisonElement() 5070 : !C->containsUndefOrPoisonElement()) && 5071 !C->containsConstantExpression(); 5072 } 5073 5074 // Strip cast operations from a pointer value. 5075 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5076 // inbounds with zero offset. To guarantee that the result isn't poison, the 5077 // stripped pointer is checked as it has to be pointing into an allocated 5078 // object or be null `null` to ensure `inbounds` getelement pointers with a 5079 // zero offset could not produce poison. 5080 // It can strip off addrspacecast that do not change bit representation as 5081 // well. We believe that such addrspacecast is equivalent to no-op. 5082 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5083 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5084 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5085 return true; 5086 5087 auto OpCheck = [&](const Value *V) { 5088 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5089 PoisonOnly); 5090 }; 5091 5092 if (auto *Opr = dyn_cast<Operator>(V)) { 5093 // If the value is a freeze instruction, then it can never 5094 // be undef or poison. 5095 if (isa<FreezeInst>(V)) 5096 return true; 5097 5098 if (const auto *CB = dyn_cast<CallBase>(V)) { 5099 if (CB->hasRetAttr(Attribute::NoUndef)) 5100 return true; 5101 } 5102 5103 if (const auto *PN = dyn_cast<PHINode>(V)) { 5104 unsigned Num = PN->getNumIncomingValues(); 5105 bool IsWellDefined = true; 5106 for (unsigned i = 0; i < Num; ++i) { 5107 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5108 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5109 DT, Depth + 1, PoisonOnly)) { 5110 IsWellDefined = false; 5111 break; 5112 } 5113 } 5114 if (IsWellDefined) 5115 return true; 5116 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5117 return true; 5118 } 5119 5120 if (auto *I = dyn_cast<LoadInst>(V)) 5121 if (I->getMetadata(LLVMContext::MD_noundef)) 5122 return true; 5123 5124 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5125 return true; 5126 5127 // CxtI may be null or a cloned instruction. 5128 if (!CtxI || !CtxI->getParent() || !DT) 5129 return false; 5130 5131 auto *DNode = DT->getNode(CtxI->getParent()); 5132 if (!DNode) 5133 // Unreachable block 5134 return false; 5135 5136 // If V is used as a branch condition before reaching CtxI, V cannot be 5137 // undef or poison. 5138 // br V, BB1, BB2 5139 // BB1: 5140 // CtxI ; V cannot be undef or poison here 5141 auto *Dominator = DNode->getIDom(); 5142 while (Dominator) { 5143 auto *TI = Dominator->getBlock()->getTerminator(); 5144 5145 Value *Cond = nullptr; 5146 if (auto BI = dyn_cast<BranchInst>(TI)) { 5147 if (BI->isConditional()) 5148 Cond = BI->getCondition(); 5149 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5150 Cond = SI->getCondition(); 5151 } 5152 5153 if (Cond) { 5154 if (Cond == V) 5155 return true; 5156 else if (PoisonOnly && isa<Operator>(Cond)) { 5157 // For poison, we can analyze further 5158 auto *Opr = cast<Operator>(Cond); 5159 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5160 return true; 5161 } 5162 } 5163 5164 Dominator = Dominator->getIDom(); 5165 } 5166 5167 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5168 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5169 return true; 5170 5171 return false; 5172 } 5173 5174 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5175 const Instruction *CtxI, 5176 const DominatorTree *DT, 5177 unsigned Depth) { 5178 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5179 } 5180 5181 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5182 const Instruction *CtxI, 5183 const DominatorTree *DT, unsigned Depth) { 5184 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5185 } 5186 5187 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5188 const DataLayout &DL, 5189 AssumptionCache *AC, 5190 const Instruction *CxtI, 5191 const DominatorTree *DT) { 5192 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5193 Add, DL, AC, CxtI, DT); 5194 } 5195 5196 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5197 const Value *RHS, 5198 const DataLayout &DL, 5199 AssumptionCache *AC, 5200 const Instruction *CxtI, 5201 const DominatorTree *DT) { 5202 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5203 } 5204 5205 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5206 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5207 // of time because it's possible for another thread to interfere with it for an 5208 // arbitrary length of time, but programs aren't allowed to rely on that. 5209 5210 // If there is no successor, then execution can't transfer to it. 5211 if (isa<ReturnInst>(I)) 5212 return false; 5213 if (isa<UnreachableInst>(I)) 5214 return false; 5215 5216 // An instruction that returns without throwing must transfer control flow 5217 // to a successor. 5218 return !I->mayThrow() && I->willReturn(); 5219 } 5220 5221 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5222 // TODO: This is slightly conservative for invoke instruction since exiting 5223 // via an exception *is* normal control for them. 5224 for (const Instruction &I : *BB) 5225 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5226 return false; 5227 return true; 5228 } 5229 5230 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5231 const Loop *L) { 5232 // The loop header is guaranteed to be executed for every iteration. 5233 // 5234 // FIXME: Relax this constraint to cover all basic blocks that are 5235 // guaranteed to be executed at every iteration. 5236 if (I->getParent() != L->getHeader()) return false; 5237 5238 for (const Instruction &LI : *L->getHeader()) { 5239 if (&LI == I) return true; 5240 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5241 } 5242 llvm_unreachable("Instruction not contained in its own parent basic block."); 5243 } 5244 5245 bool llvm::propagatesPoison(const Operator *I) { 5246 switch (I->getOpcode()) { 5247 case Instruction::Freeze: 5248 case Instruction::Select: 5249 case Instruction::PHI: 5250 case Instruction::Invoke: 5251 return false; 5252 case Instruction::Call: 5253 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5254 switch (II->getIntrinsicID()) { 5255 // TODO: Add more intrinsics. 5256 case Intrinsic::sadd_with_overflow: 5257 case Intrinsic::ssub_with_overflow: 5258 case Intrinsic::smul_with_overflow: 5259 case Intrinsic::uadd_with_overflow: 5260 case Intrinsic::usub_with_overflow: 5261 case Intrinsic::umul_with_overflow: 5262 // If an input is a vector containing a poison element, the 5263 // two output vectors (calculated results, overflow bits)' 5264 // corresponding lanes are poison. 5265 return true; 5266 } 5267 } 5268 return false; 5269 case Instruction::ICmp: 5270 case Instruction::FCmp: 5271 case Instruction::GetElementPtr: 5272 return true; 5273 default: 5274 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5275 return true; 5276 5277 // Be conservative and return false. 5278 return false; 5279 } 5280 } 5281 5282 void llvm::getGuaranteedWellDefinedOps( 5283 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5284 switch (I->getOpcode()) { 5285 case Instruction::Store: 5286 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5287 break; 5288 5289 case Instruction::Load: 5290 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5291 break; 5292 5293 // Since dereferenceable attribute imply noundef, atomic operations 5294 // also implicitly have noundef pointers too 5295 case Instruction::AtomicCmpXchg: 5296 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5297 break; 5298 5299 case Instruction::AtomicRMW: 5300 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5301 break; 5302 5303 case Instruction::Call: 5304 case Instruction::Invoke: { 5305 const CallBase *CB = cast<CallBase>(I); 5306 if (CB->isIndirectCall()) 5307 Operands.insert(CB->getCalledOperand()); 5308 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5309 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5310 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5311 Operands.insert(CB->getArgOperand(i)); 5312 } 5313 break; 5314 } 5315 5316 default: 5317 break; 5318 } 5319 } 5320 5321 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5322 SmallPtrSetImpl<const Value *> &Operands) { 5323 getGuaranteedWellDefinedOps(I, Operands); 5324 switch (I->getOpcode()) { 5325 // Divisors of these operations are allowed to be partially undef. 5326 case Instruction::UDiv: 5327 case Instruction::SDiv: 5328 case Instruction::URem: 5329 case Instruction::SRem: 5330 Operands.insert(I->getOperand(1)); 5331 break; 5332 5333 default: 5334 break; 5335 } 5336 } 5337 5338 bool llvm::mustTriggerUB(const Instruction *I, 5339 const SmallSet<const Value *, 16>& KnownPoison) { 5340 SmallPtrSet<const Value *, 4> NonPoisonOps; 5341 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5342 5343 for (const auto *V : NonPoisonOps) 5344 if (KnownPoison.count(V)) 5345 return true; 5346 5347 return false; 5348 } 5349 5350 static bool programUndefinedIfUndefOrPoison(const Value *V, 5351 bool PoisonOnly) { 5352 // We currently only look for uses of values within the same basic 5353 // block, as that makes it easier to guarantee that the uses will be 5354 // executed given that Inst is executed. 5355 // 5356 // FIXME: Expand this to consider uses beyond the same basic block. To do 5357 // this, look out for the distinction between post-dominance and strong 5358 // post-dominance. 5359 const BasicBlock *BB = nullptr; 5360 BasicBlock::const_iterator Begin; 5361 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5362 BB = Inst->getParent(); 5363 Begin = Inst->getIterator(); 5364 Begin++; 5365 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5366 BB = &Arg->getParent()->getEntryBlock(); 5367 Begin = BB->begin(); 5368 } else { 5369 return false; 5370 } 5371 5372 BasicBlock::const_iterator End = BB->end(); 5373 5374 if (!PoisonOnly) { 5375 // Since undef does not propagate eagerly, be conservative & just check 5376 // whether a value is directly passed to an instruction that must take 5377 // well-defined operands. 5378 5379 for (auto &I : make_range(Begin, End)) { 5380 SmallPtrSet<const Value *, 4> WellDefinedOps; 5381 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5382 for (auto *Op : WellDefinedOps) { 5383 if (Op == V) 5384 return true; 5385 } 5386 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5387 break; 5388 } 5389 return false; 5390 } 5391 5392 // Set of instructions that we have proved will yield poison if Inst 5393 // does. 5394 SmallSet<const Value *, 16> YieldsPoison; 5395 SmallSet<const BasicBlock *, 4> Visited; 5396 5397 YieldsPoison.insert(V); 5398 auto Propagate = [&](const User *User) { 5399 if (propagatesPoison(cast<Operator>(User))) 5400 YieldsPoison.insert(User); 5401 }; 5402 for_each(V->users(), Propagate); 5403 Visited.insert(BB); 5404 5405 unsigned Iter = 0; 5406 while (Iter++ < MaxAnalysisRecursionDepth) { 5407 for (auto &I : make_range(Begin, End)) { 5408 if (mustTriggerUB(&I, YieldsPoison)) 5409 return true; 5410 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5411 return false; 5412 5413 // Mark poison that propagates from I through uses of I. 5414 if (YieldsPoison.count(&I)) 5415 for_each(I.users(), Propagate); 5416 } 5417 5418 if (auto *NextBB = BB->getSingleSuccessor()) { 5419 if (Visited.insert(NextBB).second) { 5420 BB = NextBB; 5421 Begin = BB->getFirstNonPHI()->getIterator(); 5422 End = BB->end(); 5423 continue; 5424 } 5425 } 5426 5427 break; 5428 } 5429 return false; 5430 } 5431 5432 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5433 return ::programUndefinedIfUndefOrPoison(Inst, false); 5434 } 5435 5436 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5437 return ::programUndefinedIfUndefOrPoison(Inst, true); 5438 } 5439 5440 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5441 if (FMF.noNaNs()) 5442 return true; 5443 5444 if (auto *C = dyn_cast<ConstantFP>(V)) 5445 return !C->isNaN(); 5446 5447 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5448 if (!C->getElementType()->isFloatingPointTy()) 5449 return false; 5450 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5451 if (C->getElementAsAPFloat(I).isNaN()) 5452 return false; 5453 } 5454 return true; 5455 } 5456 5457 if (isa<ConstantAggregateZero>(V)) 5458 return true; 5459 5460 return false; 5461 } 5462 5463 static bool isKnownNonZero(const Value *V) { 5464 if (auto *C = dyn_cast<ConstantFP>(V)) 5465 return !C->isZero(); 5466 5467 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5468 if (!C->getElementType()->isFloatingPointTy()) 5469 return false; 5470 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5471 if (C->getElementAsAPFloat(I).isZero()) 5472 return false; 5473 } 5474 return true; 5475 } 5476 5477 return false; 5478 } 5479 5480 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5481 /// Given non-min/max outer cmp/select from the clamp pattern this 5482 /// function recognizes if it can be substitued by a "canonical" min/max 5483 /// pattern. 5484 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5485 Value *CmpLHS, Value *CmpRHS, 5486 Value *TrueVal, Value *FalseVal, 5487 Value *&LHS, Value *&RHS) { 5488 // Try to match 5489 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5490 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5491 // and return description of the outer Max/Min. 5492 5493 // First, check if select has inverse order: 5494 if (CmpRHS == FalseVal) { 5495 std::swap(TrueVal, FalseVal); 5496 Pred = CmpInst::getInversePredicate(Pred); 5497 } 5498 5499 // Assume success now. If there's no match, callers should not use these anyway. 5500 LHS = TrueVal; 5501 RHS = FalseVal; 5502 5503 const APFloat *FC1; 5504 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5505 return {SPF_UNKNOWN, SPNB_NA, false}; 5506 5507 const APFloat *FC2; 5508 switch (Pred) { 5509 case CmpInst::FCMP_OLT: 5510 case CmpInst::FCMP_OLE: 5511 case CmpInst::FCMP_ULT: 5512 case CmpInst::FCMP_ULE: 5513 if (match(FalseVal, 5514 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5515 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5516 *FC1 < *FC2) 5517 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5518 break; 5519 case CmpInst::FCMP_OGT: 5520 case CmpInst::FCMP_OGE: 5521 case CmpInst::FCMP_UGT: 5522 case CmpInst::FCMP_UGE: 5523 if (match(FalseVal, 5524 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5525 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5526 *FC1 > *FC2) 5527 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5528 break; 5529 default: 5530 break; 5531 } 5532 5533 return {SPF_UNKNOWN, SPNB_NA, false}; 5534 } 5535 5536 /// Recognize variations of: 5537 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5538 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5539 Value *CmpLHS, Value *CmpRHS, 5540 Value *TrueVal, Value *FalseVal) { 5541 // Swap the select operands and predicate to match the patterns below. 5542 if (CmpRHS != TrueVal) { 5543 Pred = ICmpInst::getSwappedPredicate(Pred); 5544 std::swap(TrueVal, FalseVal); 5545 } 5546 const APInt *C1; 5547 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5548 const APInt *C2; 5549 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5550 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5551 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5552 return {SPF_SMAX, SPNB_NA, false}; 5553 5554 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5555 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5556 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5557 return {SPF_SMIN, SPNB_NA, false}; 5558 5559 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5560 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5561 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5562 return {SPF_UMAX, SPNB_NA, false}; 5563 5564 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5565 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5566 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5567 return {SPF_UMIN, SPNB_NA, false}; 5568 } 5569 return {SPF_UNKNOWN, SPNB_NA, false}; 5570 } 5571 5572 /// Recognize variations of: 5573 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5574 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5575 Value *CmpLHS, Value *CmpRHS, 5576 Value *TVal, Value *FVal, 5577 unsigned Depth) { 5578 // TODO: Allow FP min/max with nnan/nsz. 5579 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5580 5581 Value *A = nullptr, *B = nullptr; 5582 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5583 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5584 return {SPF_UNKNOWN, SPNB_NA, false}; 5585 5586 Value *C = nullptr, *D = nullptr; 5587 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5588 if (L.Flavor != R.Flavor) 5589 return {SPF_UNKNOWN, SPNB_NA, false}; 5590 5591 // We have something like: x Pred y ? min(a, b) : min(c, d). 5592 // Try to match the compare to the min/max operations of the select operands. 5593 // First, make sure we have the right compare predicate. 5594 switch (L.Flavor) { 5595 case SPF_SMIN: 5596 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5597 Pred = ICmpInst::getSwappedPredicate(Pred); 5598 std::swap(CmpLHS, CmpRHS); 5599 } 5600 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5601 break; 5602 return {SPF_UNKNOWN, SPNB_NA, false}; 5603 case SPF_SMAX: 5604 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5605 Pred = ICmpInst::getSwappedPredicate(Pred); 5606 std::swap(CmpLHS, CmpRHS); 5607 } 5608 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5609 break; 5610 return {SPF_UNKNOWN, SPNB_NA, false}; 5611 case SPF_UMIN: 5612 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5613 Pred = ICmpInst::getSwappedPredicate(Pred); 5614 std::swap(CmpLHS, CmpRHS); 5615 } 5616 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5617 break; 5618 return {SPF_UNKNOWN, SPNB_NA, false}; 5619 case SPF_UMAX: 5620 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5621 Pred = ICmpInst::getSwappedPredicate(Pred); 5622 std::swap(CmpLHS, CmpRHS); 5623 } 5624 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5625 break; 5626 return {SPF_UNKNOWN, SPNB_NA, false}; 5627 default: 5628 return {SPF_UNKNOWN, SPNB_NA, false}; 5629 } 5630 5631 // If there is a common operand in the already matched min/max and the other 5632 // min/max operands match the compare operands (either directly or inverted), 5633 // then this is min/max of the same flavor. 5634 5635 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5636 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5637 if (D == B) { 5638 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5639 match(A, m_Not(m_Specific(CmpRHS))))) 5640 return {L.Flavor, SPNB_NA, false}; 5641 } 5642 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5643 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5644 if (C == B) { 5645 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5646 match(A, m_Not(m_Specific(CmpRHS))))) 5647 return {L.Flavor, SPNB_NA, false}; 5648 } 5649 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5650 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5651 if (D == A) { 5652 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5653 match(B, m_Not(m_Specific(CmpRHS))))) 5654 return {L.Flavor, SPNB_NA, false}; 5655 } 5656 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5657 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5658 if (C == A) { 5659 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5660 match(B, m_Not(m_Specific(CmpRHS))))) 5661 return {L.Flavor, SPNB_NA, false}; 5662 } 5663 5664 return {SPF_UNKNOWN, SPNB_NA, false}; 5665 } 5666 5667 /// If the input value is the result of a 'not' op, constant integer, or vector 5668 /// splat of a constant integer, return the bitwise-not source value. 5669 /// TODO: This could be extended to handle non-splat vector integer constants. 5670 static Value *getNotValue(Value *V) { 5671 Value *NotV; 5672 if (match(V, m_Not(m_Value(NotV)))) 5673 return NotV; 5674 5675 const APInt *C; 5676 if (match(V, m_APInt(C))) 5677 return ConstantInt::get(V->getType(), ~(*C)); 5678 5679 return nullptr; 5680 } 5681 5682 /// Match non-obvious integer minimum and maximum sequences. 5683 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5684 Value *CmpLHS, Value *CmpRHS, 5685 Value *TrueVal, Value *FalseVal, 5686 Value *&LHS, Value *&RHS, 5687 unsigned Depth) { 5688 // Assume success. If there's no match, callers should not use these anyway. 5689 LHS = TrueVal; 5690 RHS = FalseVal; 5691 5692 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5693 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5694 return SPR; 5695 5696 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5697 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5698 return SPR; 5699 5700 // Look through 'not' ops to find disguised min/max. 5701 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5702 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5703 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5704 switch (Pred) { 5705 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5706 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5707 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5708 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5709 default: break; 5710 } 5711 } 5712 5713 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5714 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5715 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5716 switch (Pred) { 5717 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5718 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5719 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5720 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5721 default: break; 5722 } 5723 } 5724 5725 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5726 return {SPF_UNKNOWN, SPNB_NA, false}; 5727 5728 // Z = X -nsw Y 5729 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5730 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5731 if (match(TrueVal, m_Zero()) && 5732 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5733 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5734 5735 // Z = X -nsw Y 5736 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5737 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5738 if (match(FalseVal, m_Zero()) && 5739 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5740 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5741 5742 const APInt *C1; 5743 if (!match(CmpRHS, m_APInt(C1))) 5744 return {SPF_UNKNOWN, SPNB_NA, false}; 5745 5746 // An unsigned min/max can be written with a signed compare. 5747 const APInt *C2; 5748 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5749 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5750 // Is the sign bit set? 5751 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5752 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5753 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5754 C2->isMaxSignedValue()) 5755 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5756 5757 // Is the sign bit clear? 5758 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5759 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5760 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5761 C2->isMinSignedValue()) 5762 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5763 } 5764 5765 return {SPF_UNKNOWN, SPNB_NA, false}; 5766 } 5767 5768 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5769 assert(X && Y && "Invalid operand"); 5770 5771 // X = sub (0, Y) || X = sub nsw (0, Y) 5772 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5773 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5774 return true; 5775 5776 // Y = sub (0, X) || Y = sub nsw (0, X) 5777 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5778 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5779 return true; 5780 5781 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5782 Value *A, *B; 5783 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5784 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5785 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5786 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5787 } 5788 5789 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5790 FastMathFlags FMF, 5791 Value *CmpLHS, Value *CmpRHS, 5792 Value *TrueVal, Value *FalseVal, 5793 Value *&LHS, Value *&RHS, 5794 unsigned Depth) { 5795 if (CmpInst::isFPPredicate(Pred)) { 5796 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5797 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5798 // purpose of identifying min/max. Disregard vector constants with undefined 5799 // elements because those can not be back-propagated for analysis. 5800 Value *OutputZeroVal = nullptr; 5801 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5802 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5803 OutputZeroVal = TrueVal; 5804 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5805 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5806 OutputZeroVal = FalseVal; 5807 5808 if (OutputZeroVal) { 5809 if (match(CmpLHS, m_AnyZeroFP())) 5810 CmpLHS = OutputZeroVal; 5811 if (match(CmpRHS, m_AnyZeroFP())) 5812 CmpRHS = OutputZeroVal; 5813 } 5814 } 5815 5816 LHS = CmpLHS; 5817 RHS = CmpRHS; 5818 5819 // Signed zero may return inconsistent results between implementations. 5820 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5821 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5822 // Therefore, we behave conservatively and only proceed if at least one of the 5823 // operands is known to not be zero or if we don't care about signed zero. 5824 switch (Pred) { 5825 default: break; 5826 // FIXME: Include OGT/OLT/UGT/ULT. 5827 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5828 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5829 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5830 !isKnownNonZero(CmpRHS)) 5831 return {SPF_UNKNOWN, SPNB_NA, false}; 5832 } 5833 5834 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5835 bool Ordered = false; 5836 5837 // When given one NaN and one non-NaN input: 5838 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5839 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5840 // ordered comparison fails), which could be NaN or non-NaN. 5841 // so here we discover exactly what NaN behavior is required/accepted. 5842 if (CmpInst::isFPPredicate(Pred)) { 5843 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5844 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5845 5846 if (LHSSafe && RHSSafe) { 5847 // Both operands are known non-NaN. 5848 NaNBehavior = SPNB_RETURNS_ANY; 5849 } else if (CmpInst::isOrdered(Pred)) { 5850 // An ordered comparison will return false when given a NaN, so it 5851 // returns the RHS. 5852 Ordered = true; 5853 if (LHSSafe) 5854 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5855 NaNBehavior = SPNB_RETURNS_NAN; 5856 else if (RHSSafe) 5857 NaNBehavior = SPNB_RETURNS_OTHER; 5858 else 5859 // Completely unsafe. 5860 return {SPF_UNKNOWN, SPNB_NA, false}; 5861 } else { 5862 Ordered = false; 5863 // An unordered comparison will return true when given a NaN, so it 5864 // returns the LHS. 5865 if (LHSSafe) 5866 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5867 NaNBehavior = SPNB_RETURNS_OTHER; 5868 else if (RHSSafe) 5869 NaNBehavior = SPNB_RETURNS_NAN; 5870 else 5871 // Completely unsafe. 5872 return {SPF_UNKNOWN, SPNB_NA, false}; 5873 } 5874 } 5875 5876 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5877 std::swap(CmpLHS, CmpRHS); 5878 Pred = CmpInst::getSwappedPredicate(Pred); 5879 if (NaNBehavior == SPNB_RETURNS_NAN) 5880 NaNBehavior = SPNB_RETURNS_OTHER; 5881 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5882 NaNBehavior = SPNB_RETURNS_NAN; 5883 Ordered = !Ordered; 5884 } 5885 5886 // ([if]cmp X, Y) ? X : Y 5887 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5888 switch (Pred) { 5889 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5890 case ICmpInst::ICMP_UGT: 5891 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5892 case ICmpInst::ICMP_SGT: 5893 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5894 case ICmpInst::ICMP_ULT: 5895 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5896 case ICmpInst::ICMP_SLT: 5897 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5898 case FCmpInst::FCMP_UGT: 5899 case FCmpInst::FCMP_UGE: 5900 case FCmpInst::FCMP_OGT: 5901 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5902 case FCmpInst::FCMP_ULT: 5903 case FCmpInst::FCMP_ULE: 5904 case FCmpInst::FCMP_OLT: 5905 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5906 } 5907 } 5908 5909 if (isKnownNegation(TrueVal, FalseVal)) { 5910 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5911 // match against either LHS or sext(LHS). 5912 auto MaybeSExtCmpLHS = 5913 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5914 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5915 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5916 if (match(TrueVal, MaybeSExtCmpLHS)) { 5917 // Set the return values. If the compare uses the negated value (-X >s 0), 5918 // swap the return values because the negated value is always 'RHS'. 5919 LHS = TrueVal; 5920 RHS = FalseVal; 5921 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5922 std::swap(LHS, RHS); 5923 5924 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5925 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5926 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5927 return {SPF_ABS, SPNB_NA, false}; 5928 5929 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5930 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5931 return {SPF_ABS, SPNB_NA, false}; 5932 5933 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5934 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5935 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5936 return {SPF_NABS, SPNB_NA, false}; 5937 } 5938 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5939 // Set the return values. If the compare uses the negated value (-X >s 0), 5940 // swap the return values because the negated value is always 'RHS'. 5941 LHS = FalseVal; 5942 RHS = TrueVal; 5943 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5944 std::swap(LHS, RHS); 5945 5946 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5947 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5948 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5949 return {SPF_NABS, SPNB_NA, false}; 5950 5951 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5952 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5953 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5954 return {SPF_ABS, SPNB_NA, false}; 5955 } 5956 } 5957 5958 if (CmpInst::isIntPredicate(Pred)) 5959 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5960 5961 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5962 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5963 // semantics than minNum. Be conservative in such case. 5964 if (NaNBehavior != SPNB_RETURNS_ANY || 5965 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5966 !isKnownNonZero(CmpRHS))) 5967 return {SPF_UNKNOWN, SPNB_NA, false}; 5968 5969 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5970 } 5971 5972 /// Helps to match a select pattern in case of a type mismatch. 5973 /// 5974 /// The function processes the case when type of true and false values of a 5975 /// select instruction differs from type of the cmp instruction operands because 5976 /// of a cast instruction. The function checks if it is legal to move the cast 5977 /// operation after "select". If yes, it returns the new second value of 5978 /// "select" (with the assumption that cast is moved): 5979 /// 1. As operand of cast instruction when both values of "select" are same cast 5980 /// instructions. 5981 /// 2. As restored constant (by applying reverse cast operation) when the first 5982 /// value of the "select" is a cast operation and the second value is a 5983 /// constant. 5984 /// NOTE: We return only the new second value because the first value could be 5985 /// accessed as operand of cast instruction. 5986 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5987 Instruction::CastOps *CastOp) { 5988 auto *Cast1 = dyn_cast<CastInst>(V1); 5989 if (!Cast1) 5990 return nullptr; 5991 5992 *CastOp = Cast1->getOpcode(); 5993 Type *SrcTy = Cast1->getSrcTy(); 5994 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5995 // If V1 and V2 are both the same cast from the same type, look through V1. 5996 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5997 return Cast2->getOperand(0); 5998 return nullptr; 5999 } 6000 6001 auto *C = dyn_cast<Constant>(V2); 6002 if (!C) 6003 return nullptr; 6004 6005 Constant *CastedTo = nullptr; 6006 switch (*CastOp) { 6007 case Instruction::ZExt: 6008 if (CmpI->isUnsigned()) 6009 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6010 break; 6011 case Instruction::SExt: 6012 if (CmpI->isSigned()) 6013 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6014 break; 6015 case Instruction::Trunc: 6016 Constant *CmpConst; 6017 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6018 CmpConst->getType() == SrcTy) { 6019 // Here we have the following case: 6020 // 6021 // %cond = cmp iN %x, CmpConst 6022 // %tr = trunc iN %x to iK 6023 // %narrowsel = select i1 %cond, iK %t, iK C 6024 // 6025 // We can always move trunc after select operation: 6026 // 6027 // %cond = cmp iN %x, CmpConst 6028 // %widesel = select i1 %cond, iN %x, iN CmpConst 6029 // %tr = trunc iN %widesel to iK 6030 // 6031 // Note that C could be extended in any way because we don't care about 6032 // upper bits after truncation. It can't be abs pattern, because it would 6033 // look like: 6034 // 6035 // select i1 %cond, x, -x. 6036 // 6037 // So only min/max pattern could be matched. Such match requires widened C 6038 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6039 // CmpConst == C is checked below. 6040 CastedTo = CmpConst; 6041 } else { 6042 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6043 } 6044 break; 6045 case Instruction::FPTrunc: 6046 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6047 break; 6048 case Instruction::FPExt: 6049 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6050 break; 6051 case Instruction::FPToUI: 6052 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6053 break; 6054 case Instruction::FPToSI: 6055 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6056 break; 6057 case Instruction::UIToFP: 6058 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6059 break; 6060 case Instruction::SIToFP: 6061 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6062 break; 6063 default: 6064 break; 6065 } 6066 6067 if (!CastedTo) 6068 return nullptr; 6069 6070 // Make sure the cast doesn't lose any information. 6071 Constant *CastedBack = 6072 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6073 if (CastedBack != C) 6074 return nullptr; 6075 6076 return CastedTo; 6077 } 6078 6079 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6080 Instruction::CastOps *CastOp, 6081 unsigned Depth) { 6082 if (Depth >= MaxAnalysisRecursionDepth) 6083 return {SPF_UNKNOWN, SPNB_NA, false}; 6084 6085 SelectInst *SI = dyn_cast<SelectInst>(V); 6086 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6087 6088 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6089 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6090 6091 Value *TrueVal = SI->getTrueValue(); 6092 Value *FalseVal = SI->getFalseValue(); 6093 6094 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6095 CastOp, Depth); 6096 } 6097 6098 SelectPatternResult llvm::matchDecomposedSelectPattern( 6099 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6100 Instruction::CastOps *CastOp, unsigned Depth) { 6101 CmpInst::Predicate Pred = CmpI->getPredicate(); 6102 Value *CmpLHS = CmpI->getOperand(0); 6103 Value *CmpRHS = CmpI->getOperand(1); 6104 FastMathFlags FMF; 6105 if (isa<FPMathOperator>(CmpI)) 6106 FMF = CmpI->getFastMathFlags(); 6107 6108 // Bail out early. 6109 if (CmpI->isEquality()) 6110 return {SPF_UNKNOWN, SPNB_NA, false}; 6111 6112 // Deal with type mismatches. 6113 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6114 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6115 // If this is a potential fmin/fmax with a cast to integer, then ignore 6116 // -0.0 because there is no corresponding integer value. 6117 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6118 FMF.setNoSignedZeros(); 6119 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6120 cast<CastInst>(TrueVal)->getOperand(0), C, 6121 LHS, RHS, Depth); 6122 } 6123 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6124 // If this is a potential fmin/fmax with a cast to integer, then ignore 6125 // -0.0 because there is no corresponding integer value. 6126 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6127 FMF.setNoSignedZeros(); 6128 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6129 C, cast<CastInst>(FalseVal)->getOperand(0), 6130 LHS, RHS, Depth); 6131 } 6132 } 6133 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6134 LHS, RHS, Depth); 6135 } 6136 6137 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6138 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6139 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6140 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6141 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6142 if (SPF == SPF_FMINNUM) 6143 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6144 if (SPF == SPF_FMAXNUM) 6145 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6146 llvm_unreachable("unhandled!"); 6147 } 6148 6149 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6150 if (SPF == SPF_SMIN) return SPF_SMAX; 6151 if (SPF == SPF_UMIN) return SPF_UMAX; 6152 if (SPF == SPF_SMAX) return SPF_SMIN; 6153 if (SPF == SPF_UMAX) return SPF_UMIN; 6154 llvm_unreachable("unhandled!"); 6155 } 6156 6157 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6158 switch (MinMaxID) { 6159 case Intrinsic::smax: return Intrinsic::smin; 6160 case Intrinsic::smin: return Intrinsic::smax; 6161 case Intrinsic::umax: return Intrinsic::umin; 6162 case Intrinsic::umin: return Intrinsic::umax; 6163 default: llvm_unreachable("Unexpected intrinsic"); 6164 } 6165 } 6166 6167 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6168 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6169 } 6170 6171 std::pair<Intrinsic::ID, bool> 6172 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6173 // Check if VL contains select instructions that can be folded into a min/max 6174 // vector intrinsic and return the intrinsic if it is possible. 6175 // TODO: Support floating point min/max. 6176 bool AllCmpSingleUse = true; 6177 SelectPatternResult SelectPattern; 6178 SelectPattern.Flavor = SPF_UNKNOWN; 6179 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6180 Value *LHS, *RHS; 6181 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6182 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6183 CurrentPattern.Flavor == SPF_FMINNUM || 6184 CurrentPattern.Flavor == SPF_FMAXNUM || 6185 !I->getType()->isIntOrIntVectorTy()) 6186 return false; 6187 if (SelectPattern.Flavor != SPF_UNKNOWN && 6188 SelectPattern.Flavor != CurrentPattern.Flavor) 6189 return false; 6190 SelectPattern = CurrentPattern; 6191 AllCmpSingleUse &= 6192 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6193 return true; 6194 })) { 6195 switch (SelectPattern.Flavor) { 6196 case SPF_SMIN: 6197 return {Intrinsic::smin, AllCmpSingleUse}; 6198 case SPF_UMIN: 6199 return {Intrinsic::umin, AllCmpSingleUse}; 6200 case SPF_SMAX: 6201 return {Intrinsic::smax, AllCmpSingleUse}; 6202 case SPF_UMAX: 6203 return {Intrinsic::umax, AllCmpSingleUse}; 6204 default: 6205 llvm_unreachable("unexpected select pattern flavor"); 6206 } 6207 } 6208 return {Intrinsic::not_intrinsic, false}; 6209 } 6210 6211 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6212 Value *&Start, Value *&Step) { 6213 // Handle the case of a simple two-predecessor recurrence PHI. 6214 // There's a lot more that could theoretically be done here, but 6215 // this is sufficient to catch some interesting cases. 6216 if (P->getNumIncomingValues() != 2) 6217 return false; 6218 6219 for (unsigned i = 0; i != 2; ++i) { 6220 Value *L = P->getIncomingValue(i); 6221 Value *R = P->getIncomingValue(!i); 6222 Operator *LU = dyn_cast<Operator>(L); 6223 if (!LU) 6224 continue; 6225 unsigned Opcode = LU->getOpcode(); 6226 6227 switch (Opcode) { 6228 default: 6229 continue; 6230 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6231 case Instruction::LShr: 6232 case Instruction::AShr: 6233 case Instruction::Shl: 6234 case Instruction::Add: 6235 case Instruction::Sub: 6236 case Instruction::And: 6237 case Instruction::Or: 6238 case Instruction::Mul: { 6239 Value *LL = LU->getOperand(0); 6240 Value *LR = LU->getOperand(1); 6241 // Find a recurrence. 6242 if (LL == P) 6243 L = LR; 6244 else if (LR == P) 6245 L = LL; 6246 else 6247 continue; // Check for recurrence with L and R flipped. 6248 6249 break; // Match! 6250 } 6251 }; 6252 6253 // We have matched a recurrence of the form: 6254 // %iv = [R, %entry], [%iv.next, %backedge] 6255 // %iv.next = binop %iv, L 6256 // OR 6257 // %iv = [R, %entry], [%iv.next, %backedge] 6258 // %iv.next = binop L, %iv 6259 BO = cast<BinaryOperator>(LU); 6260 Start = R; 6261 Step = L; 6262 return true; 6263 } 6264 return false; 6265 } 6266 6267 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6268 Value *&Start, Value *&Step) { 6269 BinaryOperator *BO = nullptr; 6270 P = dyn_cast<PHINode>(I->getOperand(0)); 6271 if (!P) 6272 P = dyn_cast<PHINode>(I->getOperand(1)); 6273 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6274 } 6275 6276 /// Return true if "icmp Pred LHS RHS" is always true. 6277 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6278 const Value *RHS, const DataLayout &DL, 6279 unsigned Depth) { 6280 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6281 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6282 return true; 6283 6284 switch (Pred) { 6285 default: 6286 return false; 6287 6288 case CmpInst::ICMP_SLE: { 6289 const APInt *C; 6290 6291 // LHS s<= LHS +_{nsw} C if C >= 0 6292 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6293 return !C->isNegative(); 6294 return false; 6295 } 6296 6297 case CmpInst::ICMP_ULE: { 6298 const APInt *C; 6299 6300 // LHS u<= LHS +_{nuw} C for any C 6301 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6302 return true; 6303 6304 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6305 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6306 const Value *&X, 6307 const APInt *&CA, const APInt *&CB) { 6308 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6309 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6310 return true; 6311 6312 // If X & C == 0 then (X | C) == X +_{nuw} C 6313 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6314 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6315 KnownBits Known(CA->getBitWidth()); 6316 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6317 /*CxtI*/ nullptr, /*DT*/ nullptr); 6318 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6319 return true; 6320 } 6321 6322 return false; 6323 }; 6324 6325 const Value *X; 6326 const APInt *CLHS, *CRHS; 6327 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6328 return CLHS->ule(*CRHS); 6329 6330 return false; 6331 } 6332 } 6333 } 6334 6335 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6336 /// ALHS ARHS" is true. Otherwise, return None. 6337 static Optional<bool> 6338 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6339 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6340 const DataLayout &DL, unsigned Depth) { 6341 switch (Pred) { 6342 default: 6343 return None; 6344 6345 case CmpInst::ICMP_SLT: 6346 case CmpInst::ICMP_SLE: 6347 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6348 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6349 return true; 6350 return None; 6351 6352 case CmpInst::ICMP_ULT: 6353 case CmpInst::ICMP_ULE: 6354 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6355 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6356 return true; 6357 return None; 6358 } 6359 } 6360 6361 /// Return true if the operands of the two compares match. IsSwappedOps is true 6362 /// when the operands match, but are swapped. 6363 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6364 const Value *BLHS, const Value *BRHS, 6365 bool &IsSwappedOps) { 6366 6367 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6368 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6369 return IsMatchingOps || IsSwappedOps; 6370 } 6371 6372 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6373 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6374 /// Otherwise, return None if we can't infer anything. 6375 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6376 CmpInst::Predicate BPred, 6377 bool AreSwappedOps) { 6378 // Canonicalize the predicate as if the operands were not commuted. 6379 if (AreSwappedOps) 6380 BPred = ICmpInst::getSwappedPredicate(BPred); 6381 6382 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6383 return true; 6384 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6385 return false; 6386 6387 return None; 6388 } 6389 6390 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6391 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6392 /// Otherwise, return None if we can't infer anything. 6393 static Optional<bool> 6394 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6395 const ConstantInt *C1, 6396 CmpInst::Predicate BPred, 6397 const ConstantInt *C2) { 6398 ConstantRange DomCR = 6399 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6400 ConstantRange CR = 6401 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6402 ConstantRange Intersection = DomCR.intersectWith(CR); 6403 ConstantRange Difference = DomCR.difference(CR); 6404 if (Intersection.isEmptySet()) 6405 return false; 6406 if (Difference.isEmptySet()) 6407 return true; 6408 return None; 6409 } 6410 6411 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6412 /// false. Otherwise, return None if we can't infer anything. 6413 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6414 CmpInst::Predicate BPred, 6415 const Value *BLHS, const Value *BRHS, 6416 const DataLayout &DL, bool LHSIsTrue, 6417 unsigned Depth) { 6418 Value *ALHS = LHS->getOperand(0); 6419 Value *ARHS = LHS->getOperand(1); 6420 6421 // The rest of the logic assumes the LHS condition is true. If that's not the 6422 // case, invert the predicate to make it so. 6423 CmpInst::Predicate APred = 6424 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6425 6426 // Can we infer anything when the two compares have matching operands? 6427 bool AreSwappedOps; 6428 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6429 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6430 APred, BPred, AreSwappedOps)) 6431 return Implication; 6432 // No amount of additional analysis will infer the second condition, so 6433 // early exit. 6434 return None; 6435 } 6436 6437 // Can we infer anything when the LHS operands match and the RHS operands are 6438 // constants (not necessarily matching)? 6439 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6440 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6441 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6442 return Implication; 6443 // No amount of additional analysis will infer the second condition, so 6444 // early exit. 6445 return None; 6446 } 6447 6448 if (APred == BPred) 6449 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6450 return None; 6451 } 6452 6453 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6454 /// false. Otherwise, return None if we can't infer anything. We expect the 6455 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6456 static Optional<bool> 6457 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6458 const Value *RHSOp0, const Value *RHSOp1, 6459 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6460 // The LHS must be an 'or', 'and', or a 'select' instruction. 6461 assert((LHS->getOpcode() == Instruction::And || 6462 LHS->getOpcode() == Instruction::Or || 6463 LHS->getOpcode() == Instruction::Select) && 6464 "Expected LHS to be 'and', 'or', or 'select'."); 6465 6466 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6467 6468 // If the result of an 'or' is false, then we know both legs of the 'or' are 6469 // false. Similarly, if the result of an 'and' is true, then we know both 6470 // legs of the 'and' are true. 6471 const Value *ALHS, *ARHS; 6472 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6473 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6474 // FIXME: Make this non-recursion. 6475 if (Optional<bool> Implication = isImpliedCondition( 6476 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6477 return Implication; 6478 if (Optional<bool> Implication = isImpliedCondition( 6479 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6480 return Implication; 6481 return None; 6482 } 6483 return None; 6484 } 6485 6486 Optional<bool> 6487 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6488 const Value *RHSOp0, const Value *RHSOp1, 6489 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6490 // Bail out when we hit the limit. 6491 if (Depth == MaxAnalysisRecursionDepth) 6492 return None; 6493 6494 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6495 // example. 6496 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6497 return None; 6498 6499 Type *OpTy = LHS->getType(); 6500 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6501 6502 // FIXME: Extending the code below to handle vectors. 6503 if (OpTy->isVectorTy()) 6504 return None; 6505 6506 assert(OpTy->isIntegerTy(1) && "implied by above"); 6507 6508 // Both LHS and RHS are icmps. 6509 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6510 if (LHSCmp) 6511 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6512 Depth); 6513 6514 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6515 /// the RHS to be an icmp. 6516 /// FIXME: Add support for and/or/select on the RHS. 6517 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6518 if ((LHSI->getOpcode() == Instruction::And || 6519 LHSI->getOpcode() == Instruction::Or || 6520 LHSI->getOpcode() == Instruction::Select)) 6521 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6522 Depth); 6523 } 6524 return None; 6525 } 6526 6527 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6528 const DataLayout &DL, bool LHSIsTrue, 6529 unsigned Depth) { 6530 // LHS ==> RHS by definition 6531 if (LHS == RHS) 6532 return LHSIsTrue; 6533 6534 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6535 if (RHSCmp) 6536 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6537 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6538 LHSIsTrue, Depth); 6539 return None; 6540 } 6541 6542 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6543 // condition dominating ContextI or nullptr, if no condition is found. 6544 static std::pair<Value *, bool> 6545 getDomPredecessorCondition(const Instruction *ContextI) { 6546 if (!ContextI || !ContextI->getParent()) 6547 return {nullptr, false}; 6548 6549 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6550 // dominator tree (eg, from a SimplifyQuery) instead? 6551 const BasicBlock *ContextBB = ContextI->getParent(); 6552 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6553 if (!PredBB) 6554 return {nullptr, false}; 6555 6556 // We need a conditional branch in the predecessor. 6557 Value *PredCond; 6558 BasicBlock *TrueBB, *FalseBB; 6559 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6560 return {nullptr, false}; 6561 6562 // The branch should get simplified. Don't bother simplifying this condition. 6563 if (TrueBB == FalseBB) 6564 return {nullptr, false}; 6565 6566 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6567 "Predecessor block does not point to successor?"); 6568 6569 // Is this condition implied by the predecessor condition? 6570 return {PredCond, TrueBB == ContextBB}; 6571 } 6572 6573 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6574 const Instruction *ContextI, 6575 const DataLayout &DL) { 6576 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6577 auto PredCond = getDomPredecessorCondition(ContextI); 6578 if (PredCond.first) 6579 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6580 return None; 6581 } 6582 6583 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6584 const Value *LHS, const Value *RHS, 6585 const Instruction *ContextI, 6586 const DataLayout &DL) { 6587 auto PredCond = getDomPredecessorCondition(ContextI); 6588 if (PredCond.first) 6589 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6590 PredCond.second); 6591 return None; 6592 } 6593 6594 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6595 APInt &Upper, const InstrInfoQuery &IIQ) { 6596 unsigned Width = Lower.getBitWidth(); 6597 const APInt *C; 6598 switch (BO.getOpcode()) { 6599 case Instruction::Add: 6600 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6601 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6602 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6603 // 'add nuw x, C' produces [C, UINT_MAX]. 6604 Lower = *C; 6605 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6606 if (C->isNegative()) { 6607 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6608 Lower = APInt::getSignedMinValue(Width); 6609 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6610 } else { 6611 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6612 Lower = APInt::getSignedMinValue(Width) + *C; 6613 Upper = APInt::getSignedMaxValue(Width) + 1; 6614 } 6615 } 6616 } 6617 break; 6618 6619 case Instruction::And: 6620 if (match(BO.getOperand(1), m_APInt(C))) 6621 // 'and x, C' produces [0, C]. 6622 Upper = *C + 1; 6623 break; 6624 6625 case Instruction::Or: 6626 if (match(BO.getOperand(1), m_APInt(C))) 6627 // 'or x, C' produces [C, UINT_MAX]. 6628 Lower = *C; 6629 break; 6630 6631 case Instruction::AShr: 6632 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6633 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6634 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6635 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6636 } else if (match(BO.getOperand(0), m_APInt(C))) { 6637 unsigned ShiftAmount = Width - 1; 6638 if (!C->isNullValue() && IIQ.isExact(&BO)) 6639 ShiftAmount = C->countTrailingZeros(); 6640 if (C->isNegative()) { 6641 // 'ashr C, x' produces [C, C >> (Width-1)] 6642 Lower = *C; 6643 Upper = C->ashr(ShiftAmount) + 1; 6644 } else { 6645 // 'ashr C, x' produces [C >> (Width-1), C] 6646 Lower = C->ashr(ShiftAmount); 6647 Upper = *C + 1; 6648 } 6649 } 6650 break; 6651 6652 case Instruction::LShr: 6653 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6654 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6655 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6656 } else if (match(BO.getOperand(0), m_APInt(C))) { 6657 // 'lshr C, x' produces [C >> (Width-1), C]. 6658 unsigned ShiftAmount = Width - 1; 6659 if (!C->isNullValue() && IIQ.isExact(&BO)) 6660 ShiftAmount = C->countTrailingZeros(); 6661 Lower = C->lshr(ShiftAmount); 6662 Upper = *C + 1; 6663 } 6664 break; 6665 6666 case Instruction::Shl: 6667 if (match(BO.getOperand(0), m_APInt(C))) { 6668 if (IIQ.hasNoUnsignedWrap(&BO)) { 6669 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6670 Lower = *C; 6671 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6672 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6673 if (C->isNegative()) { 6674 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6675 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6676 Lower = C->shl(ShiftAmount); 6677 Upper = *C + 1; 6678 } else { 6679 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6680 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6681 Lower = *C; 6682 Upper = C->shl(ShiftAmount) + 1; 6683 } 6684 } 6685 } 6686 break; 6687 6688 case Instruction::SDiv: 6689 if (match(BO.getOperand(1), m_APInt(C))) { 6690 APInt IntMin = APInt::getSignedMinValue(Width); 6691 APInt IntMax = APInt::getSignedMaxValue(Width); 6692 if (C->isAllOnesValue()) { 6693 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6694 // where C != -1 and C != 0 and C != 1 6695 Lower = IntMin + 1; 6696 Upper = IntMax + 1; 6697 } else if (C->countLeadingZeros() < Width - 1) { 6698 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6699 // where C != -1 and C != 0 and C != 1 6700 Lower = IntMin.sdiv(*C); 6701 Upper = IntMax.sdiv(*C); 6702 if (Lower.sgt(Upper)) 6703 std::swap(Lower, Upper); 6704 Upper = Upper + 1; 6705 assert(Upper != Lower && "Upper part of range has wrapped!"); 6706 } 6707 } else if (match(BO.getOperand(0), m_APInt(C))) { 6708 if (C->isMinSignedValue()) { 6709 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6710 Lower = *C; 6711 Upper = Lower.lshr(1) + 1; 6712 } else { 6713 // 'sdiv C, x' produces [-|C|, |C|]. 6714 Upper = C->abs() + 1; 6715 Lower = (-Upper) + 1; 6716 } 6717 } 6718 break; 6719 6720 case Instruction::UDiv: 6721 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6722 // 'udiv x, C' produces [0, UINT_MAX / C]. 6723 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6724 } else if (match(BO.getOperand(0), m_APInt(C))) { 6725 // 'udiv C, x' produces [0, C]. 6726 Upper = *C + 1; 6727 } 6728 break; 6729 6730 case Instruction::SRem: 6731 if (match(BO.getOperand(1), m_APInt(C))) { 6732 // 'srem x, C' produces (-|C|, |C|). 6733 Upper = C->abs(); 6734 Lower = (-Upper) + 1; 6735 } 6736 break; 6737 6738 case Instruction::URem: 6739 if (match(BO.getOperand(1), m_APInt(C))) 6740 // 'urem x, C' produces [0, C). 6741 Upper = *C; 6742 break; 6743 6744 default: 6745 break; 6746 } 6747 } 6748 6749 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6750 APInt &Upper) { 6751 unsigned Width = Lower.getBitWidth(); 6752 const APInt *C; 6753 switch (II.getIntrinsicID()) { 6754 case Intrinsic::ctpop: 6755 case Intrinsic::ctlz: 6756 case Intrinsic::cttz: 6757 // Maximum of set/clear bits is the bit width. 6758 assert(Lower == 0 && "Expected lower bound to be zero"); 6759 Upper = Width + 1; 6760 break; 6761 case Intrinsic::uadd_sat: 6762 // uadd.sat(x, C) produces [C, UINT_MAX]. 6763 if (match(II.getOperand(0), m_APInt(C)) || 6764 match(II.getOperand(1), m_APInt(C))) 6765 Lower = *C; 6766 break; 6767 case Intrinsic::sadd_sat: 6768 if (match(II.getOperand(0), m_APInt(C)) || 6769 match(II.getOperand(1), m_APInt(C))) { 6770 if (C->isNegative()) { 6771 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6772 Lower = APInt::getSignedMinValue(Width); 6773 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6774 } else { 6775 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6776 Lower = APInt::getSignedMinValue(Width) + *C; 6777 Upper = APInt::getSignedMaxValue(Width) + 1; 6778 } 6779 } 6780 break; 6781 case Intrinsic::usub_sat: 6782 // usub.sat(C, x) produces [0, C]. 6783 if (match(II.getOperand(0), m_APInt(C))) 6784 Upper = *C + 1; 6785 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6786 else if (match(II.getOperand(1), m_APInt(C))) 6787 Upper = APInt::getMaxValue(Width) - *C + 1; 6788 break; 6789 case Intrinsic::ssub_sat: 6790 if (match(II.getOperand(0), m_APInt(C))) { 6791 if (C->isNegative()) { 6792 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6793 Lower = APInt::getSignedMinValue(Width); 6794 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6795 } else { 6796 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6797 Lower = *C - APInt::getSignedMaxValue(Width); 6798 Upper = APInt::getSignedMaxValue(Width) + 1; 6799 } 6800 } else if (match(II.getOperand(1), m_APInt(C))) { 6801 if (C->isNegative()) { 6802 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6803 Lower = APInt::getSignedMinValue(Width) - *C; 6804 Upper = APInt::getSignedMaxValue(Width) + 1; 6805 } else { 6806 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6807 Lower = APInt::getSignedMinValue(Width); 6808 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6809 } 6810 } 6811 break; 6812 case Intrinsic::umin: 6813 case Intrinsic::umax: 6814 case Intrinsic::smin: 6815 case Intrinsic::smax: 6816 if (!match(II.getOperand(0), m_APInt(C)) && 6817 !match(II.getOperand(1), m_APInt(C))) 6818 break; 6819 6820 switch (II.getIntrinsicID()) { 6821 case Intrinsic::umin: 6822 Upper = *C + 1; 6823 break; 6824 case Intrinsic::umax: 6825 Lower = *C; 6826 break; 6827 case Intrinsic::smin: 6828 Lower = APInt::getSignedMinValue(Width); 6829 Upper = *C + 1; 6830 break; 6831 case Intrinsic::smax: 6832 Lower = *C; 6833 Upper = APInt::getSignedMaxValue(Width) + 1; 6834 break; 6835 default: 6836 llvm_unreachable("Must be min/max intrinsic"); 6837 } 6838 break; 6839 case Intrinsic::abs: 6840 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6841 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6842 if (match(II.getOperand(1), m_One())) 6843 Upper = APInt::getSignedMaxValue(Width) + 1; 6844 else 6845 Upper = APInt::getSignedMinValue(Width) + 1; 6846 break; 6847 default: 6848 break; 6849 } 6850 } 6851 6852 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6853 APInt &Upper, const InstrInfoQuery &IIQ) { 6854 const Value *LHS = nullptr, *RHS = nullptr; 6855 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6856 if (R.Flavor == SPF_UNKNOWN) 6857 return; 6858 6859 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6860 6861 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6862 // If the negation part of the abs (in RHS) has the NSW flag, 6863 // then the result of abs(X) is [0..SIGNED_MAX], 6864 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6865 Lower = APInt::getNullValue(BitWidth); 6866 if (match(RHS, m_Neg(m_Specific(LHS))) && 6867 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6868 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6869 else 6870 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6871 return; 6872 } 6873 6874 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6875 // The result of -abs(X) is <= 0. 6876 Lower = APInt::getSignedMinValue(BitWidth); 6877 Upper = APInt(BitWidth, 1); 6878 return; 6879 } 6880 6881 const APInt *C; 6882 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6883 return; 6884 6885 switch (R.Flavor) { 6886 case SPF_UMIN: 6887 Upper = *C + 1; 6888 break; 6889 case SPF_UMAX: 6890 Lower = *C; 6891 break; 6892 case SPF_SMIN: 6893 Lower = APInt::getSignedMinValue(BitWidth); 6894 Upper = *C + 1; 6895 break; 6896 case SPF_SMAX: 6897 Lower = *C; 6898 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6899 break; 6900 default: 6901 break; 6902 } 6903 } 6904 6905 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6906 AssumptionCache *AC, 6907 const Instruction *CtxI, 6908 unsigned Depth) { 6909 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6910 6911 if (Depth == MaxAnalysisRecursionDepth) 6912 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6913 6914 const APInt *C; 6915 if (match(V, m_APInt(C))) 6916 return ConstantRange(*C); 6917 6918 InstrInfoQuery IIQ(UseInstrInfo); 6919 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6920 APInt Lower = APInt(BitWidth, 0); 6921 APInt Upper = APInt(BitWidth, 0); 6922 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6923 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6924 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6925 setLimitsForIntrinsic(*II, Lower, Upper); 6926 else if (auto *SI = dyn_cast<SelectInst>(V)) 6927 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6928 6929 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6930 6931 if (auto *I = dyn_cast<Instruction>(V)) 6932 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6933 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6934 6935 if (CtxI && AC) { 6936 // Try to restrict the range based on information from assumptions. 6937 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6938 if (!AssumeVH) 6939 continue; 6940 CallInst *I = cast<CallInst>(AssumeVH); 6941 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6942 "Got assumption for the wrong function!"); 6943 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6944 "must be an assume intrinsic"); 6945 6946 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6947 continue; 6948 Value *Arg = I->getArgOperand(0); 6949 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6950 // Currently we just use information from comparisons. 6951 if (!Cmp || Cmp->getOperand(0) != V) 6952 continue; 6953 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6954 AC, I, Depth + 1); 6955 CR = CR.intersectWith( 6956 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6957 } 6958 } 6959 6960 return CR; 6961 } 6962 6963 static Optional<int64_t> 6964 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6965 // Skip over the first indices. 6966 gep_type_iterator GTI = gep_type_begin(GEP); 6967 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6968 /*skip along*/; 6969 6970 // Compute the offset implied by the rest of the indices. 6971 int64_t Offset = 0; 6972 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6973 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6974 if (!OpC) 6975 return None; 6976 if (OpC->isZero()) 6977 continue; // No offset. 6978 6979 // Handle struct indices, which add their field offset to the pointer. 6980 if (StructType *STy = GTI.getStructTypeOrNull()) { 6981 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6982 continue; 6983 } 6984 6985 // Otherwise, we have a sequential type like an array or fixed-length 6986 // vector. Multiply the index by the ElementSize. 6987 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6988 if (Size.isScalable()) 6989 return None; 6990 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6991 } 6992 6993 return Offset; 6994 } 6995 6996 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6997 const DataLayout &DL) { 6998 Ptr1 = Ptr1->stripPointerCasts(); 6999 Ptr2 = Ptr2->stripPointerCasts(); 7000 7001 // Handle the trivial case first. 7002 if (Ptr1 == Ptr2) { 7003 return 0; 7004 } 7005 7006 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7007 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7008 7009 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7010 // as in "P" and "gep P, 1". 7011 // Also do this iteratively to handle the the following case: 7012 // Ptr_t1 = GEP Ptr1, c1 7013 // Ptr_t2 = GEP Ptr_t1, c2 7014 // Ptr2 = GEP Ptr_t2, c3 7015 // where we will return c1+c2+c3. 7016 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7017 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7018 // are the same, and return the difference between offsets. 7019 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7020 const Value *Ptr) -> Optional<int64_t> { 7021 const GEPOperator *GEP_T = GEP; 7022 int64_t OffsetVal = 0; 7023 bool HasSameBase = false; 7024 while (GEP_T) { 7025 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7026 if (!Offset) 7027 return None; 7028 OffsetVal += *Offset; 7029 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7030 if (Op0 == Ptr) { 7031 HasSameBase = true; 7032 break; 7033 } 7034 GEP_T = dyn_cast<GEPOperator>(Op0); 7035 } 7036 if (!HasSameBase) 7037 return None; 7038 return OffsetVal; 7039 }; 7040 7041 if (GEP1) { 7042 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7043 if (Offset) 7044 return -*Offset; 7045 } 7046 if (GEP2) { 7047 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7048 if (Offset) 7049 return Offset; 7050 } 7051 7052 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7053 // base. After that base, they may have some number of common (and 7054 // potentially variable) indices. After that they handle some constant 7055 // offset, which determines their offset from each other. At this point, we 7056 // handle no other case. 7057 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7058 return None; 7059 7060 // Skip any common indices and track the GEP types. 7061 unsigned Idx = 1; 7062 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7063 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7064 break; 7065 7066 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7067 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7068 if (!Offset1 || !Offset2) 7069 return None; 7070 return *Offset2 - *Offset1; 7071 } 7072