1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include <algorithm> 43 #include <array> 44 #include <cstring> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 const unsigned MaxDepth = 6; 49 50 // Controls the number of uses of the value searched for possible 51 // dominating comparisons. 52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 53 cl::Hidden, cl::init(20)); 54 55 // This optimization is known to cause performance regressions is some cases, 56 // keep it under a temporary flag for now. 57 static cl::opt<bool> 58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 59 cl::Hidden, cl::init(true)); 60 61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 62 /// 0). For vector types, returns the element type's bitwidth. 63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 64 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 65 return BitWidth; 66 67 return DL.getPointerTypeSizeInBits(Ty); 68 } 69 70 namespace { 71 // Simplifying using an assume can only be done in a particular control-flow 72 // context (the context instruction provides that context). If an assume and 73 // the context instruction are not in the same block then the DT helps in 74 // figuring out if we can use it. 75 struct Query { 76 const DataLayout &DL; 77 AssumptionCache *AC; 78 const Instruction *CxtI; 79 const DominatorTree *DT; 80 // Unlike the other analyses, this may be a nullptr because not all clients 81 // provide it currently. 82 OptimizationRemarkEmitter *ORE; 83 84 /// Set of assumptions that should be excluded from further queries. 85 /// This is because of the potential for mutual recursion to cause 86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 87 /// classic case of this is assume(x = y), which will attempt to determine 88 /// bits in x from bits in y, which will attempt to determine bits in y from 89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 92 /// on. 93 std::array<const Value *, MaxDepth> Excluded; 94 unsigned NumExcluded; 95 96 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 97 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 99 100 Query(const Query &Q, const Value *NewExcl) 101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 102 NumExcluded(Q.NumExcluded) { 103 Excluded = Q.Excluded; 104 Excluded[NumExcluded++] = NewExcl; 105 assert(NumExcluded <= Excluded.size()); 106 } 107 108 bool isExcluded(const Value *Value) const { 109 if (NumExcluded == 0) 110 return false; 111 auto End = Excluded.begin() + NumExcluded; 112 return std::find(Excluded.begin(), End, Value) != End; 113 } 114 }; 115 } // end anonymous namespace 116 117 // Given the provided Value and, potentially, a context instruction, return 118 // the preferred context instruction (if any). 119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 120 // If we've been provided with a context instruction, then use that (provided 121 // it has been inserted). 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 // If the value is really an already-inserted instruction, then use that. 126 CxtI = dyn_cast<Instruction>(V); 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 return nullptr; 131 } 132 133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 134 unsigned Depth, const Query &Q); 135 136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 137 const DataLayout &DL, unsigned Depth, 138 AssumptionCache *AC, const Instruction *CxtI, 139 const DominatorTree *DT, 140 OptimizationRemarkEmitter *ORE) { 141 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 143 } 144 145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 146 const DataLayout &DL, 147 AssumptionCache *AC, const Instruction *CxtI, 148 const DominatorTree *DT) { 149 assert(LHS->getType() == RHS->getType() && 150 "LHS and RHS should have the same type"); 151 assert(LHS->getType()->isIntOrIntVectorTy() && 152 "LHS and RHS should be integers"); 153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 159 } 160 161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 162 unsigned Depth, const Query &Q); 163 164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT) { 168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 173 const Query &Q); 174 175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 176 bool OrZero, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT) { 180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 181 Query(DL, AC, safeCxtI(V, CxtI), DT)); 182 } 183 184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 185 186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 190 } 191 192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 193 unsigned Depth, 194 AssumptionCache *AC, const Instruction *CxtI, 195 const DominatorTree *DT) { 196 bool NonNegative, Negative; 197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 198 return NonNegative; 199 } 200 201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 if (auto *CI = dyn_cast<ConstantInt>(V)) 205 return CI->getValue().isStrictlyPositive(); 206 207 // TODO: We'd doing two recursive queries here. We should factor this such 208 // that only a single query is needed. 209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 211 } 212 213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT) { 216 bool NonNegative, Negative; 217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 218 return Negative; 219 } 220 221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 222 223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 224 const DataLayout &DL, 225 AssumptionCache *AC, const Instruction *CxtI, 226 const DominatorTree *DT) { 227 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 228 safeCxtI(V1, safeCxtI(V2, CxtI)), 229 DT)); 230 } 231 232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 233 const Query &Q); 234 235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 236 const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, const DominatorTree *DT) { 239 return ::MaskedValueIsZero(V, Mask, Depth, 240 Query(DL, AC, safeCxtI(V, CxtI), DT)); 241 } 242 243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT) { 250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 251 } 252 253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 254 bool NSW, 255 APInt &KnownZero, APInt &KnownOne, 256 APInt &KnownZero2, APInt &KnownOne2, 257 unsigned Depth, const Query &Q) { 258 unsigned BitWidth = KnownZero.getBitWidth(); 259 260 // If an initial sequence of bits in the result is not needed, the 261 // corresponding bits in the operands are not needed. 262 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 263 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 264 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 265 266 // Carry in a 1 for a subtract, rather than a 0. 267 APInt CarryIn(BitWidth, 0); 268 if (!Add) { 269 // Sum = LHS + ~RHS + 1 270 std::swap(KnownZero2, KnownOne2); 271 CarryIn.setBit(0); 272 } 273 274 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 275 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 276 277 // Compute known bits of the carry. 278 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 279 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 280 281 // Compute set of known bits (where all three relevant bits are known). 282 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 283 APInt RHSKnown = KnownZero2 | KnownOne2; 284 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 285 APInt Known = LHSKnown & RHSKnown & CarryKnown; 286 287 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 288 "known bits of sum differ"); 289 290 // Compute known bits of the result. 291 KnownZero = ~PossibleSumOne & Known; 292 KnownOne = PossibleSumOne & Known; 293 294 // Are we still trying to solve for the sign bit? 295 if (!Known.isNegative()) { 296 if (NSW) { 297 // Adding two non-negative numbers, or subtracting a negative number from 298 // a non-negative one, can't wrap into negative. 299 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 300 KnownZero.setSignBit(); 301 // Adding two negative numbers, or subtracting a non-negative number from 302 // a negative one, can't wrap into non-negative. 303 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 304 KnownOne.setSignBit(); 305 } 306 } 307 } 308 309 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 310 APInt &KnownZero, APInt &KnownOne, 311 APInt &KnownZero2, APInt &KnownOne2, 312 unsigned Depth, const Query &Q) { 313 unsigned BitWidth = KnownZero.getBitWidth(); 314 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 315 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 316 317 bool isKnownNegative = false; 318 bool isKnownNonNegative = false; 319 // If the multiplication is known not to overflow, compute the sign bit. 320 if (NSW) { 321 if (Op0 == Op1) { 322 // The product of a number with itself is non-negative. 323 isKnownNonNegative = true; 324 } else { 325 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 327 bool isKnownNegativeOp1 = KnownOne.isNegative(); 328 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 329 // The product of two numbers with the same sign is non-negative. 330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 332 // The product of a negative number and a non-negative number is either 333 // negative or zero. 334 if (!isKnownNonNegative) 335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 336 isKnownNonZero(Op0, Depth, Q)) || 337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 338 isKnownNonZero(Op1, Depth, Q)); 339 } 340 } 341 342 // If low bits are zero in either operand, output low known-0 bits. 343 // Also compute a conservative estimate for high known-0 bits. 344 // More trickiness is possible, but this is sufficient for the 345 // interesting case of alignment computation. 346 KnownOne.clearAllBits(); 347 unsigned TrailZ = KnownZero.countTrailingOnes() + 348 KnownZero2.countTrailingOnes(); 349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 350 KnownZero2.countLeadingOnes(), 351 BitWidth) - BitWidth; 352 353 TrailZ = std::min(TrailZ, BitWidth); 354 LeadZ = std::min(LeadZ, BitWidth); 355 KnownZero.clearAllBits(); 356 KnownZero.setLowBits(TrailZ); 357 KnownZero.setHighBits(LeadZ); 358 359 // Only make use of no-wrap flags if we failed to compute the sign bit 360 // directly. This matters if the multiplication always overflows, in 361 // which case we prefer to follow the result of the direct computation, 362 // though as the program is invoking undefined behaviour we can choose 363 // whatever we like here. 364 if (isKnownNonNegative && !KnownOne.isNegative()) 365 KnownZero.setSignBit(); 366 else if (isKnownNegative && !KnownZero.isNegative()) 367 KnownOne.setSignBit(); 368 } 369 370 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 371 APInt &KnownZero, 372 APInt &KnownOne) { 373 unsigned BitWidth = KnownZero.getBitWidth(); 374 unsigned NumRanges = Ranges.getNumOperands() / 2; 375 assert(NumRanges >= 1); 376 377 KnownZero.setAllBits(); 378 KnownOne.setAllBits(); 379 380 for (unsigned i = 0; i < NumRanges; ++i) { 381 ConstantInt *Lower = 382 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 383 ConstantInt *Upper = 384 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 385 ConstantRange Range(Lower->getValue(), Upper->getValue()); 386 387 // The first CommonPrefixBits of all values in Range are equal. 388 unsigned CommonPrefixBits = 389 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 390 391 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 392 KnownOne &= Range.getUnsignedMax() & Mask; 393 KnownZero &= ~Range.getUnsignedMax() & Mask; 394 } 395 } 396 397 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 398 SmallVector<const Value *, 16> WorkSet(1, I); 399 SmallPtrSet<const Value *, 32> Visited; 400 SmallPtrSet<const Value *, 16> EphValues; 401 402 // The instruction defining an assumption's condition itself is always 403 // considered ephemeral to that assumption (even if it has other 404 // non-ephemeral users). See r246696's test case for an example. 405 if (is_contained(I->operands(), E)) 406 return true; 407 408 while (!WorkSet.empty()) { 409 const Value *V = WorkSet.pop_back_val(); 410 if (!Visited.insert(V).second) 411 continue; 412 413 // If all uses of this value are ephemeral, then so is this value. 414 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 415 if (V == E) 416 return true; 417 418 EphValues.insert(V); 419 if (const User *U = dyn_cast<User>(V)) 420 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 421 J != JE; ++J) { 422 if (isSafeToSpeculativelyExecute(*J)) 423 WorkSet.push_back(*J); 424 } 425 } 426 } 427 428 return false; 429 } 430 431 // Is this an intrinsic that cannot be speculated but also cannot trap? 432 static bool isAssumeLikeIntrinsic(const Instruction *I) { 433 if (const CallInst *CI = dyn_cast<CallInst>(I)) 434 if (Function *F = CI->getCalledFunction()) 435 switch (F->getIntrinsicID()) { 436 default: break; 437 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 438 case Intrinsic::assume: 439 case Intrinsic::dbg_declare: 440 case Intrinsic::dbg_value: 441 case Intrinsic::invariant_start: 442 case Intrinsic::invariant_end: 443 case Intrinsic::lifetime_start: 444 case Intrinsic::lifetime_end: 445 case Intrinsic::objectsize: 446 case Intrinsic::ptr_annotation: 447 case Intrinsic::var_annotation: 448 return true; 449 } 450 451 return false; 452 } 453 454 bool llvm::isValidAssumeForContext(const Instruction *Inv, 455 const Instruction *CxtI, 456 const DominatorTree *DT) { 457 458 // There are two restrictions on the use of an assume: 459 // 1. The assume must dominate the context (or the control flow must 460 // reach the assume whenever it reaches the context). 461 // 2. The context must not be in the assume's set of ephemeral values 462 // (otherwise we will use the assume to prove that the condition 463 // feeding the assume is trivially true, thus causing the removal of 464 // the assume). 465 466 if (DT) { 467 if (DT->dominates(Inv, CxtI)) 468 return true; 469 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 470 // We don't have a DT, but this trivially dominates. 471 return true; 472 } 473 474 // With or without a DT, the only remaining case we will check is if the 475 // instructions are in the same BB. Give up if that is not the case. 476 if (Inv->getParent() != CxtI->getParent()) 477 return false; 478 479 // If we have a dom tree, then we now know that the assume doens't dominate 480 // the other instruction. If we don't have a dom tree then we can check if 481 // the assume is first in the BB. 482 if (!DT) { 483 // Search forward from the assume until we reach the context (or the end 484 // of the block); the common case is that the assume will come first. 485 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 486 IE = Inv->getParent()->end(); I != IE; ++I) 487 if (&*I == CxtI) 488 return true; 489 } 490 491 // The context comes first, but they're both in the same block. Make sure 492 // there is nothing in between that might interrupt the control flow. 493 for (BasicBlock::const_iterator I = 494 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 495 I != IE; ++I) 496 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 497 return false; 498 499 return !isEphemeralValueOf(Inv, CxtI); 500 } 501 502 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 503 APInt &KnownOne, unsigned Depth, 504 const Query &Q) { 505 // Use of assumptions is context-sensitive. If we don't have a context, we 506 // cannot use them! 507 if (!Q.AC || !Q.CxtI) 508 return; 509 510 unsigned BitWidth = KnownZero.getBitWidth(); 511 512 // Note that the patterns below need to be kept in sync with the code 513 // in AssumptionCache::updateAffectedValues. 514 515 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 516 if (!AssumeVH) 517 continue; 518 CallInst *I = cast<CallInst>(AssumeVH); 519 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 520 "Got assumption for the wrong function!"); 521 if (Q.isExcluded(I)) 522 continue; 523 524 // Warning: This loop can end up being somewhat performance sensetive. 525 // We're running this loop for once for each value queried resulting in a 526 // runtime of ~O(#assumes * #values). 527 528 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 529 "must be an assume intrinsic"); 530 531 Value *Arg = I->getArgOperand(0); 532 533 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 534 assert(BitWidth == 1 && "assume operand is not i1?"); 535 KnownZero.clearAllBits(); 536 KnownOne.setAllBits(); 537 return; 538 } 539 if (match(Arg, m_Not(m_Specific(V))) && 540 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 541 assert(BitWidth == 1 && "assume operand is not i1?"); 542 KnownZero.setAllBits(); 543 KnownOne.clearAllBits(); 544 return; 545 } 546 547 // The remaining tests are all recursive, so bail out if we hit the limit. 548 if (Depth == MaxDepth) 549 continue; 550 551 Value *A, *B; 552 auto m_V = m_CombineOr(m_Specific(V), 553 m_CombineOr(m_PtrToInt(m_Specific(V)), 554 m_BitCast(m_Specific(V)))); 555 556 CmpInst::Predicate Pred; 557 ConstantInt *C; 558 // assume(v = a) 559 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 560 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 561 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 562 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 563 KnownZero |= RHSKnownZero; 564 KnownOne |= RHSKnownOne; 565 // assume(v & b = a) 566 } else if (match(Arg, 567 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 568 Pred == ICmpInst::ICMP_EQ && 569 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 570 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 571 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 572 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 573 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 574 575 // For those bits in the mask that are known to be one, we can propagate 576 // known bits from the RHS to V. 577 KnownZero |= RHSKnownZero & MaskKnownOne; 578 KnownOne |= RHSKnownOne & MaskKnownOne; 579 // assume(~(v & b) = a) 580 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 581 m_Value(A))) && 582 Pred == ICmpInst::ICMP_EQ && 583 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 586 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 587 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 588 589 // For those bits in the mask that are known to be one, we can propagate 590 // inverted known bits from the RHS to V. 591 KnownZero |= RHSKnownOne & MaskKnownOne; 592 KnownOne |= RHSKnownZero & MaskKnownOne; 593 // assume(v | b = a) 594 } else if (match(Arg, 595 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 596 Pred == ICmpInst::ICMP_EQ && 597 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 598 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 599 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 600 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 601 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 602 603 // For those bits in B that are known to be zero, we can propagate known 604 // bits from the RHS to V. 605 KnownZero |= RHSKnownZero & BKnownZero; 606 KnownOne |= RHSKnownOne & BKnownZero; 607 // assume(~(v | b) = a) 608 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 609 m_Value(A))) && 610 Pred == ICmpInst::ICMP_EQ && 611 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 612 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 613 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 614 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 615 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 616 617 // For those bits in B that are known to be zero, we can propagate 618 // inverted known bits from the RHS to V. 619 KnownZero |= RHSKnownOne & BKnownZero; 620 KnownOne |= RHSKnownZero & BKnownZero; 621 // assume(v ^ b = a) 622 } else if (match(Arg, 623 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 624 Pred == ICmpInst::ICMP_EQ && 625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 626 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 627 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 628 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 629 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 630 631 // For those bits in B that are known to be zero, we can propagate known 632 // bits from the RHS to V. For those bits in B that are known to be one, 633 // we can propagate inverted known bits from the RHS to V. 634 KnownZero |= RHSKnownZero & BKnownZero; 635 KnownOne |= RHSKnownOne & BKnownZero; 636 KnownZero |= RHSKnownOne & BKnownOne; 637 KnownOne |= RHSKnownZero & BKnownOne; 638 // assume(~(v ^ b) = a) 639 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 640 m_Value(A))) && 641 Pred == ICmpInst::ICMP_EQ && 642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 645 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 646 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 647 648 // For those bits in B that are known to be zero, we can propagate 649 // inverted known bits from the RHS to V. For those bits in B that are 650 // known to be one, we can propagate known bits from the RHS to V. 651 KnownZero |= RHSKnownOne & BKnownZero; 652 KnownOne |= RHSKnownZero & BKnownZero; 653 KnownZero |= RHSKnownZero & BKnownOne; 654 KnownOne |= RHSKnownOne & BKnownOne; 655 // assume(v << c = a) 656 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 657 m_Value(A))) && 658 Pred == ICmpInst::ICMP_EQ && 659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 660 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 661 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 662 // For those bits in RHS that are known, we can propagate them to known 663 // bits in V shifted to the right by C. 664 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 665 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 666 // assume(~(v << c) = a) 667 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 668 m_Value(A))) && 669 Pred == ICmpInst::ICMP_EQ && 670 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 671 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 672 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 673 // For those bits in RHS that are known, we can propagate them inverted 674 // to known bits in V shifted to the right by C. 675 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 676 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 677 // assume(v >> c = a) 678 } else if (match(Arg, 679 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 680 m_AShr(m_V, m_ConstantInt(C))), 681 m_Value(A))) && 682 Pred == ICmpInst::ICMP_EQ && 683 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 684 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 685 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 686 // For those bits in RHS that are known, we can propagate them to known 687 // bits in V shifted to the right by C. 688 KnownZero |= RHSKnownZero << C->getZExtValue(); 689 KnownOne |= RHSKnownOne << C->getZExtValue(); 690 // assume(~(v >> c) = a) 691 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 692 m_LShr(m_V, m_ConstantInt(C)), 693 m_AShr(m_V, m_ConstantInt(C)))), 694 m_Value(A))) && 695 Pred == ICmpInst::ICMP_EQ && 696 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 698 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 699 // For those bits in RHS that are known, we can propagate them inverted 700 // to known bits in V shifted to the right by C. 701 KnownZero |= RHSKnownOne << C->getZExtValue(); 702 KnownOne |= RHSKnownZero << C->getZExtValue(); 703 // assume(v >=_s c) where c is non-negative 704 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 705 Pred == ICmpInst::ICMP_SGE && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 708 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 709 710 if (RHSKnownZero.isNegative()) { 711 // We know that the sign bit is zero. 712 KnownZero.setSignBit(); 713 } 714 // assume(v >_s c) where c is at least -1. 715 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 716 Pred == ICmpInst::ICMP_SGT && 717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 718 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 719 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 720 721 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 722 // We know that the sign bit is zero. 723 KnownZero.setSignBit(); 724 } 725 // assume(v <=_s c) where c is negative 726 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 727 Pred == ICmpInst::ICMP_SLE && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 730 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 731 732 if (RHSKnownOne.isNegative()) { 733 // We know that the sign bit is one. 734 KnownOne.setSignBit(); 735 } 736 // assume(v <_s c) where c is non-positive 737 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 738 Pred == ICmpInst::ICMP_SLT && 739 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 740 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 741 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 742 743 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 744 // We know that the sign bit is one. 745 KnownOne.setSignBit(); 746 } 747 // assume(v <=_u c) 748 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 749 Pred == ICmpInst::ICMP_ULE && 750 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 751 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 752 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 753 754 // Whatever high bits in c are zero are known to be zero. 755 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()); 756 // assume(v <_u c) 757 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 758 Pred == ICmpInst::ICMP_ULT && 759 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 760 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 761 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 762 763 // Whatever high bits in c are zero are known to be zero (if c is a power 764 // of 2, then one more). 765 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 766 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()+1); 767 else 768 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()); 769 } 770 } 771 772 // If assumptions conflict with each other or previous known bits, then we 773 // have a logical fallacy. It's possible that the assumption is not reachable, 774 // so this isn't a real bug. On the other hand, the program may have undefined 775 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 776 // clear out the known bits, try to warn the user, and hope for the best. 777 if ((KnownZero & KnownOne) != 0) { 778 KnownZero.clearAllBits(); 779 KnownOne.clearAllBits(); 780 781 if (Q.ORE) { 782 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 783 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 784 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 785 "have undefined behavior, or compiler may have " 786 "internal error."); 787 } 788 } 789 } 790 791 // Compute known bits from a shift operator, including those with a 792 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 793 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 794 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 795 // functors that, given the known-zero or known-one bits respectively, and a 796 // shift amount, compute the implied known-zero or known-one bits of the shift 797 // operator's result respectively for that shift amount. The results from calling 798 // KZF and KOF are conservatively combined for all permitted shift amounts. 799 static void computeKnownBitsFromShiftOperator( 800 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 801 APInt &KnownOne2, unsigned Depth, const Query &Q, 802 function_ref<APInt(const APInt &, unsigned)> KZF, 803 function_ref<APInt(const APInt &, unsigned)> KOF) { 804 unsigned BitWidth = KnownZero.getBitWidth(); 805 806 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 807 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 808 809 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 810 KnownZero = KZF(KnownZero, ShiftAmt); 811 KnownOne = KOF(KnownOne, ShiftAmt); 812 // If there is conflict between KnownZero and KnownOne, this must be an 813 // overflowing left shift, so the shift result is undefined. Clear KnownZero 814 // and KnownOne bits so that other code could propagate this undef. 815 if ((KnownZero & KnownOne) != 0) { 816 KnownZero.clearAllBits(); 817 KnownOne.clearAllBits(); 818 } 819 820 return; 821 } 822 823 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 824 825 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 826 // value could be undef, so we don't know anything about it. 827 if ((~KnownZero).uge(BitWidth)) { 828 KnownZero.clearAllBits(); 829 KnownOne.clearAllBits(); 830 return; 831 } 832 833 // Note: We cannot use KnownZero.getLimitedValue() here, because if 834 // BitWidth > 64 and any upper bits are known, we'll end up returning the 835 // limit value (which implies all bits are known). 836 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 837 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 838 839 // It would be more-clearly correct to use the two temporaries for this 840 // calculation. Reusing the APInts here to prevent unnecessary allocations. 841 KnownZero.clearAllBits(); 842 KnownOne.clearAllBits(); 843 844 // If we know the shifter operand is nonzero, we can sometimes infer more 845 // known bits. However this is expensive to compute, so be lazy about it and 846 // only compute it when absolutely necessary. 847 Optional<bool> ShifterOperandIsNonZero; 848 849 // Early exit if we can't constrain any well-defined shift amount. 850 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 851 ShifterOperandIsNonZero = 852 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 853 if (!*ShifterOperandIsNonZero) 854 return; 855 } 856 857 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 858 859 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 860 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 861 // Combine the shifted known input bits only for those shift amounts 862 // compatible with its known constraints. 863 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 864 continue; 865 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 866 continue; 867 // If we know the shifter is nonzero, we may be able to infer more known 868 // bits. This check is sunk down as far as possible to avoid the expensive 869 // call to isKnownNonZero if the cheaper checks above fail. 870 if (ShiftAmt == 0) { 871 if (!ShifterOperandIsNonZero.hasValue()) 872 ShifterOperandIsNonZero = 873 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 874 if (*ShifterOperandIsNonZero) 875 continue; 876 } 877 878 KnownZero &= KZF(KnownZero2, ShiftAmt); 879 KnownOne &= KOF(KnownOne2, ShiftAmt); 880 } 881 882 // If there are no compatible shift amounts, then we've proven that the shift 883 // amount must be >= the BitWidth, and the result is undefined. We could 884 // return anything we'd like, but we need to make sure the sets of known bits 885 // stay disjoint (it should be better for some other code to actually 886 // propagate the undef than to pick a value here using known bits). 887 if ((KnownZero & KnownOne) != 0) { 888 KnownZero.clearAllBits(); 889 KnownOne.clearAllBits(); 890 } 891 } 892 893 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 894 APInt &KnownOne, unsigned Depth, 895 const Query &Q) { 896 unsigned BitWidth = KnownZero.getBitWidth(); 897 898 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 899 switch (I->getOpcode()) { 900 default: break; 901 case Instruction::Load: 902 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 903 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 904 break; 905 case Instruction::And: { 906 // If either the LHS or the RHS are Zero, the result is zero. 907 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 908 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 909 910 // Output known-1 bits are only known if set in both the LHS & RHS. 911 KnownOne &= KnownOne2; 912 // Output known-0 are known to be clear if zero in either the LHS | RHS. 913 KnownZero |= KnownZero2; 914 915 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 916 // here we handle the more general case of adding any odd number by 917 // matching the form add(x, add(x, y)) where y is odd. 918 // TODO: This could be generalized to clearing any bit set in y where the 919 // following bit is known to be unset in y. 920 Value *Y = nullptr; 921 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 922 m_Value(Y))) || 923 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 924 m_Value(Y)))) { 925 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 926 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 927 if (KnownOne3.countTrailingOnes() > 0) 928 KnownZero.setBit(0); 929 } 930 break; 931 } 932 case Instruction::Or: { 933 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 934 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 935 936 // Output known-0 bits are only known if clear in both the LHS & RHS. 937 KnownZero &= KnownZero2; 938 // Output known-1 are known to be set if set in either the LHS | RHS. 939 KnownOne |= KnownOne2; 940 break; 941 } 942 case Instruction::Xor: { 943 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 944 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 945 946 // Output known-0 bits are known if clear or set in both the LHS & RHS. 947 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 948 // Output known-1 are known to be set if set in only one of the LHS, RHS. 949 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 950 KnownZero = KnownZeroOut; 951 break; 952 } 953 case Instruction::Mul: { 954 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 955 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 956 KnownOne, KnownZero2, KnownOne2, Depth, Q); 957 break; 958 } 959 case Instruction::UDiv: { 960 // For the purposes of computing leading zeros we can conservatively 961 // treat a udiv as a logical right shift by the power of 2 known to 962 // be less than the denominator. 963 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 964 unsigned LeadZ = KnownZero2.countLeadingOnes(); 965 966 KnownOne2.clearAllBits(); 967 KnownZero2.clearAllBits(); 968 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 969 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 970 if (RHSUnknownLeadingOnes != BitWidth) 971 LeadZ = std::min(BitWidth, 972 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 973 974 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 975 break; 976 } 977 case Instruction::Select: { 978 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 979 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 980 981 const Value *LHS; 982 const Value *RHS; 983 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 984 if (SelectPatternResult::isMinOrMax(SPF)) { 985 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 986 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 987 } else { 988 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 989 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 990 } 991 992 unsigned MaxHighOnes = 0; 993 unsigned MaxHighZeros = 0; 994 if (SPF == SPF_SMAX) { 995 // If both sides are negative, the result is negative. 996 if (KnownOne.isNegative() && KnownOne2.isNegative()) 997 // We can derive a lower bound on the result by taking the max of the 998 // leading one bits. 999 MaxHighOnes = 1000 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1001 // If either side is non-negative, the result is non-negative. 1002 else if (KnownZero.isNegative() || KnownZero2.isNegative()) 1003 MaxHighZeros = 1; 1004 } else if (SPF == SPF_SMIN) { 1005 // If both sides are non-negative, the result is non-negative. 1006 if (KnownZero.isNegative() && KnownZero2.isNegative()) 1007 // We can derive an upper bound on the result by taking the max of the 1008 // leading zero bits. 1009 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1010 KnownZero2.countLeadingOnes()); 1011 // If either side is negative, the result is negative. 1012 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 1013 MaxHighOnes = 1; 1014 } else if (SPF == SPF_UMAX) { 1015 // We can derive a lower bound on the result by taking the max of the 1016 // leading one bits. 1017 MaxHighOnes = 1018 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1019 } else if (SPF == SPF_UMIN) { 1020 // We can derive an upper bound on the result by taking the max of the 1021 // leading zero bits. 1022 MaxHighZeros = 1023 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1024 } 1025 1026 // Only known if known in both the LHS and RHS. 1027 KnownOne &= KnownOne2; 1028 KnownZero &= KnownZero2; 1029 if (MaxHighOnes > 0) 1030 KnownOne.setHighBits(MaxHighOnes); 1031 if (MaxHighZeros > 0) 1032 KnownZero.setHighBits(MaxHighZeros); 1033 break; 1034 } 1035 case Instruction::FPTrunc: 1036 case Instruction::FPExt: 1037 case Instruction::FPToUI: 1038 case Instruction::FPToSI: 1039 case Instruction::SIToFP: 1040 case Instruction::UIToFP: 1041 break; // Can't work with floating point. 1042 case Instruction::PtrToInt: 1043 case Instruction::IntToPtr: 1044 // Fall through and handle them the same as zext/trunc. 1045 LLVM_FALLTHROUGH; 1046 case Instruction::ZExt: 1047 case Instruction::Trunc: { 1048 Type *SrcTy = I->getOperand(0)->getType(); 1049 1050 unsigned SrcBitWidth; 1051 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1052 // which fall through here. 1053 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1054 1055 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1056 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1057 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1058 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1059 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1060 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1061 // Any top bits are known to be zero. 1062 if (BitWidth > SrcBitWidth) 1063 KnownZero.setBitsFrom(SrcBitWidth); 1064 break; 1065 } 1066 case Instruction::BitCast: { 1067 Type *SrcTy = I->getOperand(0)->getType(); 1068 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1069 // TODO: For now, not handling conversions like: 1070 // (bitcast i64 %x to <2 x i32>) 1071 !I->getType()->isVectorTy()) { 1072 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1073 break; 1074 } 1075 break; 1076 } 1077 case Instruction::SExt: { 1078 // Compute the bits in the result that are not present in the input. 1079 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1080 1081 KnownZero = KnownZero.trunc(SrcBitWidth); 1082 KnownOne = KnownOne.trunc(SrcBitWidth); 1083 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1084 KnownZero = KnownZero.zext(BitWidth); 1085 KnownOne = KnownOne.zext(BitWidth); 1086 1087 // If the sign bit of the input is known set or clear, then we know the 1088 // top bits of the result. 1089 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1090 KnownZero.setBitsFrom(SrcBitWidth); 1091 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1092 KnownOne.setBitsFrom(SrcBitWidth); 1093 break; 1094 } 1095 case Instruction::Shl: { 1096 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1097 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1098 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1099 APInt KZResult = KnownZero << ShiftAmt; 1100 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1101 // If this shift has "nsw" keyword, then the result is either a poison 1102 // value or has the same sign bit as the first operand. 1103 if (NSW && KnownZero.isNegative()) 1104 KZResult.setSignBit(); 1105 return KZResult; 1106 }; 1107 1108 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1109 APInt KOResult = KnownOne << ShiftAmt; 1110 if (NSW && KnownOne.isNegative()) 1111 KOResult.setSignBit(); 1112 return KOResult; 1113 }; 1114 1115 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1116 KnownZero2, KnownOne2, Depth, Q, KZF, 1117 KOF); 1118 break; 1119 } 1120 case Instruction::LShr: { 1121 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1122 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1123 return APIntOps::lshr(KnownZero, ShiftAmt) | 1124 // High bits known zero. 1125 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1126 }; 1127 1128 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1129 return APIntOps::lshr(KnownOne, ShiftAmt); 1130 }; 1131 1132 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1133 KnownZero2, KnownOne2, Depth, Q, KZF, 1134 KOF); 1135 break; 1136 } 1137 case Instruction::AShr: { 1138 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1139 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1140 return APIntOps::ashr(KnownZero, ShiftAmt); 1141 }; 1142 1143 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1144 return APIntOps::ashr(KnownOne, ShiftAmt); 1145 }; 1146 1147 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1148 KnownZero2, KnownOne2, Depth, Q, KZF, 1149 KOF); 1150 break; 1151 } 1152 case Instruction::Sub: { 1153 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1154 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1155 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1156 Q); 1157 break; 1158 } 1159 case Instruction::Add: { 1160 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1161 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1162 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1163 Q); 1164 break; 1165 } 1166 case Instruction::SRem: 1167 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1168 APInt RA = Rem->getValue().abs(); 1169 if (RA.isPowerOf2()) { 1170 APInt LowBits = RA - 1; 1171 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1172 Q); 1173 1174 // The low bits of the first operand are unchanged by the srem. 1175 KnownZero = KnownZero2 & LowBits; 1176 KnownOne = KnownOne2 & LowBits; 1177 1178 // If the first operand is non-negative or has all low bits zero, then 1179 // the upper bits are all zero. 1180 if (KnownZero2.isNegative() || ((KnownZero2 & LowBits) == LowBits)) 1181 KnownZero |= ~LowBits; 1182 1183 // If the first operand is negative and not all low bits are zero, then 1184 // the upper bits are all one. 1185 if (KnownOne2.isNegative() && ((KnownOne2 & LowBits) != 0)) 1186 KnownOne |= ~LowBits; 1187 1188 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1189 } 1190 } 1191 1192 // The sign bit is the LHS's sign bit, except when the result of the 1193 // remainder is zero. 1194 if (KnownZero.isNonNegative()) { 1195 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1196 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1197 Q); 1198 // If it's known zero, our sign bit is also zero. 1199 if (LHSKnownZero.isNegative()) 1200 KnownZero.setSignBit(); 1201 } 1202 1203 break; 1204 case Instruction::URem: { 1205 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1206 const APInt &RA = Rem->getValue(); 1207 if (RA.isPowerOf2()) { 1208 APInt LowBits = (RA - 1); 1209 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1210 KnownZero |= ~LowBits; 1211 KnownOne &= LowBits; 1212 break; 1213 } 1214 } 1215 1216 // Since the result is less than or equal to either operand, any leading 1217 // zero bits in either operand must also exist in the result. 1218 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1219 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1220 1221 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1222 KnownZero2.countLeadingOnes()); 1223 KnownOne.clearAllBits(); 1224 KnownZero.clearAllBits(); 1225 KnownZero.setHighBits(Leaders); 1226 break; 1227 } 1228 1229 case Instruction::Alloca: { 1230 const AllocaInst *AI = cast<AllocaInst>(I); 1231 unsigned Align = AI->getAlignment(); 1232 if (Align == 0) 1233 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1234 1235 if (Align > 0) 1236 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1237 break; 1238 } 1239 case Instruction::GetElementPtr: { 1240 // Analyze all of the subscripts of this getelementptr instruction 1241 // to determine if we can prove known low zero bits. 1242 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1243 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1244 Q); 1245 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1246 1247 gep_type_iterator GTI = gep_type_begin(I); 1248 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1249 Value *Index = I->getOperand(i); 1250 if (StructType *STy = GTI.getStructTypeOrNull()) { 1251 // Handle struct member offset arithmetic. 1252 1253 // Handle case when index is vector zeroinitializer 1254 Constant *CIndex = cast<Constant>(Index); 1255 if (CIndex->isZeroValue()) 1256 continue; 1257 1258 if (CIndex->getType()->isVectorTy()) 1259 Index = CIndex->getSplatValue(); 1260 1261 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1262 const StructLayout *SL = Q.DL.getStructLayout(STy); 1263 uint64_t Offset = SL->getElementOffset(Idx); 1264 TrailZ = std::min<unsigned>(TrailZ, 1265 countTrailingZeros(Offset)); 1266 } else { 1267 // Handle array index arithmetic. 1268 Type *IndexedTy = GTI.getIndexedType(); 1269 if (!IndexedTy->isSized()) { 1270 TrailZ = 0; 1271 break; 1272 } 1273 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1274 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1275 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1276 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1277 TrailZ = std::min(TrailZ, 1278 unsigned(countTrailingZeros(TypeSize) + 1279 LocalKnownZero.countTrailingOnes())); 1280 } 1281 } 1282 1283 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1284 break; 1285 } 1286 case Instruction::PHI: { 1287 const PHINode *P = cast<PHINode>(I); 1288 // Handle the case of a simple two-predecessor recurrence PHI. 1289 // There's a lot more that could theoretically be done here, but 1290 // this is sufficient to catch some interesting cases. 1291 if (P->getNumIncomingValues() == 2) { 1292 for (unsigned i = 0; i != 2; ++i) { 1293 Value *L = P->getIncomingValue(i); 1294 Value *R = P->getIncomingValue(!i); 1295 Operator *LU = dyn_cast<Operator>(L); 1296 if (!LU) 1297 continue; 1298 unsigned Opcode = LU->getOpcode(); 1299 // Check for operations that have the property that if 1300 // both their operands have low zero bits, the result 1301 // will have low zero bits. 1302 if (Opcode == Instruction::Add || 1303 Opcode == Instruction::Sub || 1304 Opcode == Instruction::And || 1305 Opcode == Instruction::Or || 1306 Opcode == Instruction::Mul) { 1307 Value *LL = LU->getOperand(0); 1308 Value *LR = LU->getOperand(1); 1309 // Find a recurrence. 1310 if (LL == I) 1311 L = LR; 1312 else if (LR == I) 1313 L = LL; 1314 else 1315 break; 1316 // Ok, we have a PHI of the form L op= R. Check for low 1317 // zero bits. 1318 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1319 1320 // We need to take the minimum number of known bits 1321 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1322 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1323 1324 KnownZero = APInt::getLowBitsSet( 1325 BitWidth, std::min(KnownZero2.countTrailingOnes(), 1326 KnownZero3.countTrailingOnes())); 1327 1328 if (DontImproveNonNegativePhiBits) 1329 break; 1330 1331 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1332 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1333 // If initial value of recurrence is nonnegative, and we are adding 1334 // a nonnegative number with nsw, the result can only be nonnegative 1335 // or poison value regardless of the number of times we execute the 1336 // add in phi recurrence. If initial value is negative and we are 1337 // adding a negative number with nsw, the result can only be 1338 // negative or poison value. Similar arguments apply to sub and mul. 1339 // 1340 // (add non-negative, non-negative) --> non-negative 1341 // (add negative, negative) --> negative 1342 if (Opcode == Instruction::Add) { 1343 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1344 KnownZero.setSignBit(); 1345 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1346 KnownOne.setBit(BitWidth - 1); 1347 } 1348 1349 // (sub nsw non-negative, negative) --> non-negative 1350 // (sub nsw negative, non-negative) --> negative 1351 else if (Opcode == Instruction::Sub && LL == I) { 1352 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1353 KnownZero.setSignBit(); 1354 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1355 KnownOne.setSignBit(); 1356 } 1357 1358 // (mul nsw non-negative, non-negative) --> non-negative 1359 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1360 KnownZero3.isNegative()) 1361 KnownZero.setSignBit(); 1362 } 1363 1364 break; 1365 } 1366 } 1367 } 1368 1369 // Unreachable blocks may have zero-operand PHI nodes. 1370 if (P->getNumIncomingValues() == 0) 1371 break; 1372 1373 // Otherwise take the unions of the known bit sets of the operands, 1374 // taking conservative care to avoid excessive recursion. 1375 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1376 // Skip if every incoming value references to ourself. 1377 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1378 break; 1379 1380 KnownZero.setAllBits(); 1381 KnownOne.setAllBits(); 1382 for (Value *IncValue : P->incoming_values()) { 1383 // Skip direct self references. 1384 if (IncValue == P) continue; 1385 1386 KnownZero2 = APInt(BitWidth, 0); 1387 KnownOne2 = APInt(BitWidth, 0); 1388 // Recurse, but cap the recursion to one level, because we don't 1389 // want to waste time spinning around in loops. 1390 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1391 KnownZero &= KnownZero2; 1392 KnownOne &= KnownOne2; 1393 // If all bits have been ruled out, there's no need to check 1394 // more operands. 1395 if (!KnownZero && !KnownOne) 1396 break; 1397 } 1398 } 1399 break; 1400 } 1401 case Instruction::Call: 1402 case Instruction::Invoke: 1403 // If range metadata is attached to this call, set known bits from that, 1404 // and then intersect with known bits based on other properties of the 1405 // function. 1406 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1407 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1408 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1409 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1410 KnownZero |= KnownZero2; 1411 KnownOne |= KnownOne2; 1412 } 1413 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1414 switch (II->getIntrinsicID()) { 1415 default: break; 1416 case Intrinsic::bitreverse: 1417 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1418 KnownZero |= KnownZero2.reverseBits(); 1419 KnownOne |= KnownOne2.reverseBits(); 1420 break; 1421 case Intrinsic::bswap: 1422 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1423 KnownZero |= KnownZero2.byteSwap(); 1424 KnownOne |= KnownOne2.byteSwap(); 1425 break; 1426 case Intrinsic::ctlz: 1427 case Intrinsic::cttz: { 1428 unsigned LowBits = Log2_32(BitWidth)+1; 1429 // If this call is undefined for 0, the result will be less than 2^n. 1430 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1431 LowBits -= 1; 1432 KnownZero.setBitsFrom(LowBits); 1433 break; 1434 } 1435 case Intrinsic::ctpop: { 1436 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1437 // We can bound the space the count needs. Also, bits known to be zero 1438 // can't contribute to the population. 1439 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1440 unsigned LeadingZeros = 1441 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1442 assert(LeadingZeros <= BitWidth); 1443 KnownZero.setHighBits(LeadingZeros); 1444 KnownOne &= ~KnownZero; 1445 // TODO: we could bound KnownOne using the lower bound on the number 1446 // of bits which might be set provided by popcnt KnownOne2. 1447 break; 1448 } 1449 case Intrinsic::x86_sse42_crc32_64_64: 1450 KnownZero.setBitsFrom(32); 1451 break; 1452 } 1453 } 1454 break; 1455 case Instruction::ExtractElement: 1456 // Look through extract element. At the moment we keep this simple and skip 1457 // tracking the specific element. But at least we might find information 1458 // valid for all elements of the vector (for example if vector is sign 1459 // extended, shifted, etc). 1460 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1461 break; 1462 case Instruction::ExtractValue: 1463 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1464 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1465 if (EVI->getNumIndices() != 1) break; 1466 if (EVI->getIndices()[0] == 0) { 1467 switch (II->getIntrinsicID()) { 1468 default: break; 1469 case Intrinsic::uadd_with_overflow: 1470 case Intrinsic::sadd_with_overflow: 1471 computeKnownBitsAddSub(true, II->getArgOperand(0), 1472 II->getArgOperand(1), false, KnownZero, 1473 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1474 break; 1475 case Intrinsic::usub_with_overflow: 1476 case Intrinsic::ssub_with_overflow: 1477 computeKnownBitsAddSub(false, II->getArgOperand(0), 1478 II->getArgOperand(1), false, KnownZero, 1479 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1480 break; 1481 case Intrinsic::umul_with_overflow: 1482 case Intrinsic::smul_with_overflow: 1483 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1484 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1485 Q); 1486 break; 1487 } 1488 } 1489 } 1490 } 1491 } 1492 1493 /// Determine which bits of V are known to be either zero or one and return 1494 /// them in the KnownZero/KnownOne bit sets. 1495 /// 1496 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1497 /// we cannot optimize based on the assumption that it is zero without changing 1498 /// it to be an explicit zero. If we don't change it to zero, other code could 1499 /// optimized based on the contradictory assumption that it is non-zero. 1500 /// Because instcombine aggressively folds operations with undef args anyway, 1501 /// this won't lose us code quality. 1502 /// 1503 /// This function is defined on values with integer type, values with pointer 1504 /// type, and vectors of integers. In the case 1505 /// where V is a vector, known zero, and known one values are the 1506 /// same width as the vector element, and the bit is set only if it is true 1507 /// for all of the elements in the vector. 1508 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1509 unsigned Depth, const Query &Q) { 1510 assert(V && "No Value?"); 1511 assert(Depth <= MaxDepth && "Limit Search Depth"); 1512 unsigned BitWidth = KnownZero.getBitWidth(); 1513 1514 assert((V->getType()->isIntOrIntVectorTy() || 1515 V->getType()->getScalarType()->isPointerTy()) && 1516 "Not integer or pointer type!"); 1517 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1518 (!V->getType()->isIntOrIntVectorTy() || 1519 V->getType()->getScalarSizeInBits() == BitWidth) && 1520 KnownZero.getBitWidth() == BitWidth && 1521 KnownOne.getBitWidth() == BitWidth && 1522 "V, KnownOne and KnownZero should have same BitWidth"); 1523 (void)BitWidth; 1524 1525 const APInt *C; 1526 if (match(V, m_APInt(C))) { 1527 // We know all of the bits for a scalar constant or a splat vector constant! 1528 KnownOne = *C; 1529 KnownZero = ~KnownOne; 1530 return; 1531 } 1532 // Null and aggregate-zero are all-zeros. 1533 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1534 KnownOne.clearAllBits(); 1535 KnownZero.setAllBits(); 1536 return; 1537 } 1538 // Handle a constant vector by taking the intersection of the known bits of 1539 // each element. 1540 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1541 // We know that CDS must be a vector of integers. Take the intersection of 1542 // each element. 1543 KnownZero.setAllBits(); KnownOne.setAllBits(); 1544 APInt Elt(KnownZero.getBitWidth(), 0); 1545 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1546 Elt = CDS->getElementAsInteger(i); 1547 KnownZero &= ~Elt; 1548 KnownOne &= Elt; 1549 } 1550 return; 1551 } 1552 1553 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1554 // We know that CV must be a vector of integers. Take the intersection of 1555 // each element. 1556 KnownZero.setAllBits(); KnownOne.setAllBits(); 1557 APInt Elt(KnownZero.getBitWidth(), 0); 1558 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1559 Constant *Element = CV->getAggregateElement(i); 1560 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1561 if (!ElementCI) { 1562 KnownZero.clearAllBits(); 1563 KnownOne.clearAllBits(); 1564 return; 1565 } 1566 Elt = ElementCI->getValue(); 1567 KnownZero &= ~Elt; 1568 KnownOne &= Elt; 1569 } 1570 return; 1571 } 1572 1573 // Start out not knowing anything. 1574 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1575 1576 // We can't imply anything about undefs. 1577 if (isa<UndefValue>(V)) 1578 return; 1579 1580 // There's no point in looking through other users of ConstantData for 1581 // assumptions. Confirm that we've handled them all. 1582 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1583 1584 // Limit search depth. 1585 // All recursive calls that increase depth must come after this. 1586 if (Depth == MaxDepth) 1587 return; 1588 1589 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1590 // the bits of its aliasee. 1591 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1592 if (!GA->isInterposable()) 1593 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1594 return; 1595 } 1596 1597 if (const Operator *I = dyn_cast<Operator>(V)) 1598 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1599 1600 // Aligned pointers have trailing zeros - refine KnownZero set 1601 if (V->getType()->isPointerTy()) { 1602 unsigned Align = V->getPointerAlignment(Q.DL); 1603 if (Align) 1604 KnownZero.setLowBits(countTrailingZeros(Align)); 1605 } 1606 1607 // computeKnownBitsFromAssume strictly refines KnownZero and 1608 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1609 1610 // Check whether a nearby assume intrinsic can determine some known bits. 1611 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1612 1613 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1614 } 1615 1616 /// Determine whether the sign bit is known to be zero or one. 1617 /// Convenience wrapper around computeKnownBits. 1618 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1619 unsigned Depth, const Query &Q) { 1620 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1621 if (!BitWidth) { 1622 KnownZero = false; 1623 KnownOne = false; 1624 return; 1625 } 1626 APInt ZeroBits(BitWidth, 0); 1627 APInt OneBits(BitWidth, 0); 1628 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1629 KnownOne = OneBits.isNegative(); 1630 KnownZero = ZeroBits.isNegative(); 1631 } 1632 1633 /// Return true if the given value is known to have exactly one 1634 /// bit set when defined. For vectors return true if every element is known to 1635 /// be a power of two when defined. Supports values with integer or pointer 1636 /// types and vectors of integers. 1637 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1638 const Query &Q) { 1639 if (const Constant *C = dyn_cast<Constant>(V)) { 1640 if (C->isNullValue()) 1641 return OrZero; 1642 1643 const APInt *ConstIntOrConstSplatInt; 1644 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1645 return ConstIntOrConstSplatInt->isPowerOf2(); 1646 } 1647 1648 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1649 // it is shifted off the end then the result is undefined. 1650 if (match(V, m_Shl(m_One(), m_Value()))) 1651 return true; 1652 1653 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1654 // bottom. If it is shifted off the bottom then the result is undefined. 1655 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1656 return true; 1657 1658 // The remaining tests are all recursive, so bail out if we hit the limit. 1659 if (Depth++ == MaxDepth) 1660 return false; 1661 1662 Value *X = nullptr, *Y = nullptr; 1663 // A shift left or a logical shift right of a power of two is a power of two 1664 // or zero. 1665 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1666 match(V, m_LShr(m_Value(X), m_Value())))) 1667 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1668 1669 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1670 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1671 1672 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1673 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1674 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1675 1676 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1677 // A power of two and'd with anything is a power of two or zero. 1678 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1679 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1680 return true; 1681 // X & (-X) is always a power of two or zero. 1682 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1683 return true; 1684 return false; 1685 } 1686 1687 // Adding a power-of-two or zero to the same power-of-two or zero yields 1688 // either the original power-of-two, a larger power-of-two or zero. 1689 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1690 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1691 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1692 if (match(X, m_And(m_Specific(Y), m_Value())) || 1693 match(X, m_And(m_Value(), m_Specific(Y)))) 1694 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1695 return true; 1696 if (match(Y, m_And(m_Specific(X), m_Value())) || 1697 match(Y, m_And(m_Value(), m_Specific(X)))) 1698 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1699 return true; 1700 1701 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1702 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1703 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1704 1705 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1706 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1707 // If i8 V is a power of two or zero: 1708 // ZeroBits: 1 1 1 0 1 1 1 1 1709 // ~ZeroBits: 0 0 0 1 0 0 0 0 1710 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1711 // If OrZero isn't set, we cannot give back a zero result. 1712 // Make sure either the LHS or RHS has a bit set. 1713 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1714 return true; 1715 } 1716 } 1717 1718 // An exact divide or right shift can only shift off zero bits, so the result 1719 // is a power of two only if the first operand is a power of two and not 1720 // copying a sign bit (sdiv int_min, 2). 1721 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1722 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1723 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1724 Depth, Q); 1725 } 1726 1727 return false; 1728 } 1729 1730 /// \brief Test whether a GEP's result is known to be non-null. 1731 /// 1732 /// Uses properties inherent in a GEP to try to determine whether it is known 1733 /// to be non-null. 1734 /// 1735 /// Currently this routine does not support vector GEPs. 1736 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1737 const Query &Q) { 1738 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1739 return false; 1740 1741 // FIXME: Support vector-GEPs. 1742 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1743 1744 // If the base pointer is non-null, we cannot walk to a null address with an 1745 // inbounds GEP in address space zero. 1746 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1747 return true; 1748 1749 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1750 // If so, then the GEP cannot produce a null pointer, as doing so would 1751 // inherently violate the inbounds contract within address space zero. 1752 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1753 GTI != GTE; ++GTI) { 1754 // Struct types are easy -- they must always be indexed by a constant. 1755 if (StructType *STy = GTI.getStructTypeOrNull()) { 1756 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1757 unsigned ElementIdx = OpC->getZExtValue(); 1758 const StructLayout *SL = Q.DL.getStructLayout(STy); 1759 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1760 if (ElementOffset > 0) 1761 return true; 1762 continue; 1763 } 1764 1765 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1766 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1767 continue; 1768 1769 // Fast path the constant operand case both for efficiency and so we don't 1770 // increment Depth when just zipping down an all-constant GEP. 1771 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1772 if (!OpC->isZero()) 1773 return true; 1774 continue; 1775 } 1776 1777 // We post-increment Depth here because while isKnownNonZero increments it 1778 // as well, when we pop back up that increment won't persist. We don't want 1779 // to recurse 10k times just because we have 10k GEP operands. We don't 1780 // bail completely out because we want to handle constant GEPs regardless 1781 // of depth. 1782 if (Depth++ >= MaxDepth) 1783 continue; 1784 1785 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1786 return true; 1787 } 1788 1789 return false; 1790 } 1791 1792 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1793 /// ensure that the value it's attached to is never Value? 'RangeType' is 1794 /// is the type of the value described by the range. 1795 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1796 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1797 assert(NumRanges >= 1); 1798 for (unsigned i = 0; i < NumRanges; ++i) { 1799 ConstantInt *Lower = 1800 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1801 ConstantInt *Upper = 1802 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1803 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1804 if (Range.contains(Value)) 1805 return false; 1806 } 1807 return true; 1808 } 1809 1810 /// Return true if the given value is known to be non-zero when defined. For 1811 /// vectors, return true if every element is known to be non-zero when 1812 /// defined. For pointers, if the context instruction and dominator tree are 1813 /// specified, perform context-sensitive analysis and return true if the 1814 /// pointer couldn't possibly be null at the specified instruction. 1815 /// Supports values with integer or pointer type and vectors of integers. 1816 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1817 if (auto *C = dyn_cast<Constant>(V)) { 1818 if (C->isNullValue()) 1819 return false; 1820 if (isa<ConstantInt>(C)) 1821 // Must be non-zero due to null test above. 1822 return true; 1823 1824 // For constant vectors, check that all elements are undefined or known 1825 // non-zero to determine that the whole vector is known non-zero. 1826 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1827 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1828 Constant *Elt = C->getAggregateElement(i); 1829 if (!Elt || Elt->isNullValue()) 1830 return false; 1831 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1832 return false; 1833 } 1834 return true; 1835 } 1836 1837 return false; 1838 } 1839 1840 if (auto *I = dyn_cast<Instruction>(V)) { 1841 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1842 // If the possible ranges don't contain zero, then the value is 1843 // definitely non-zero. 1844 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1845 const APInt ZeroValue(Ty->getBitWidth(), 0); 1846 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1847 return true; 1848 } 1849 } 1850 } 1851 1852 // The remaining tests are all recursive, so bail out if we hit the limit. 1853 if (Depth++ >= MaxDepth) 1854 return false; 1855 1856 // Check for pointer simplifications. 1857 if (V->getType()->isPointerTy()) { 1858 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1859 return true; 1860 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1861 if (isGEPKnownNonNull(GEP, Depth, Q)) 1862 return true; 1863 } 1864 1865 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1866 1867 // X | Y != 0 if X != 0 or Y != 0. 1868 Value *X = nullptr, *Y = nullptr; 1869 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1870 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1871 1872 // ext X != 0 if X != 0. 1873 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1874 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1875 1876 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1877 // if the lowest bit is shifted off the end. 1878 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1879 // shl nuw can't remove any non-zero bits. 1880 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1881 if (BO->hasNoUnsignedWrap()) 1882 return isKnownNonZero(X, Depth, Q); 1883 1884 APInt KnownZero(BitWidth, 0); 1885 APInt KnownOne(BitWidth, 0); 1886 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1887 if (KnownOne[0]) 1888 return true; 1889 } 1890 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1891 // defined if the sign bit is shifted off the end. 1892 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1893 // shr exact can only shift out zero bits. 1894 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1895 if (BO->isExact()) 1896 return isKnownNonZero(X, Depth, Q); 1897 1898 bool XKnownNonNegative, XKnownNegative; 1899 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1900 if (XKnownNegative) 1901 return true; 1902 1903 // If the shifter operand is a constant, and all of the bits shifted 1904 // out are known to be zero, and X is known non-zero then at least one 1905 // non-zero bit must remain. 1906 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1907 APInt KnownZero(BitWidth, 0); 1908 APInt KnownOne(BitWidth, 0); 1909 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1910 1911 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1912 // Is there a known one in the portion not shifted out? 1913 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1914 return true; 1915 // Are all the bits to be shifted out known zero? 1916 if (KnownZero.countTrailingOnes() >= ShiftVal) 1917 return isKnownNonZero(X, Depth, Q); 1918 } 1919 } 1920 // div exact can only produce a zero if the dividend is zero. 1921 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1922 return isKnownNonZero(X, Depth, Q); 1923 } 1924 // X + Y. 1925 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1926 bool XKnownNonNegative, XKnownNegative; 1927 bool YKnownNonNegative, YKnownNegative; 1928 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1929 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1930 1931 // If X and Y are both non-negative (as signed values) then their sum is not 1932 // zero unless both X and Y are zero. 1933 if (XKnownNonNegative && YKnownNonNegative) 1934 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1935 return true; 1936 1937 // If X and Y are both negative (as signed values) then their sum is not 1938 // zero unless both X and Y equal INT_MIN. 1939 if (BitWidth && XKnownNegative && YKnownNegative) { 1940 APInt KnownZero(BitWidth, 0); 1941 APInt KnownOne(BitWidth, 0); 1942 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1943 // The sign bit of X is set. If some other bit is set then X is not equal 1944 // to INT_MIN. 1945 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1946 if ((KnownOne & Mask) != 0) 1947 return true; 1948 // The sign bit of Y is set. If some other bit is set then Y is not equal 1949 // to INT_MIN. 1950 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1951 if ((KnownOne & Mask) != 0) 1952 return true; 1953 } 1954 1955 // The sum of a non-negative number and a power of two is not zero. 1956 if (XKnownNonNegative && 1957 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1958 return true; 1959 if (YKnownNonNegative && 1960 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1961 return true; 1962 } 1963 // X * Y. 1964 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1965 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1966 // If X and Y are non-zero then so is X * Y as long as the multiplication 1967 // does not overflow. 1968 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1969 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1970 return true; 1971 } 1972 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1973 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1974 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1975 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1976 return true; 1977 } 1978 // PHI 1979 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1980 // Try and detect a recurrence that monotonically increases from a 1981 // starting value, as these are common as induction variables. 1982 if (PN->getNumIncomingValues() == 2) { 1983 Value *Start = PN->getIncomingValue(0); 1984 Value *Induction = PN->getIncomingValue(1); 1985 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1986 std::swap(Start, Induction); 1987 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1988 if (!C->isZero() && !C->isNegative()) { 1989 ConstantInt *X; 1990 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1991 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1992 !X->isNegative()) 1993 return true; 1994 } 1995 } 1996 } 1997 // Check if all incoming values are non-zero constant. 1998 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1999 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 2000 }); 2001 if (AllNonZeroConstants) 2002 return true; 2003 } 2004 2005 if (!BitWidth) return false; 2006 APInt KnownZero(BitWidth, 0); 2007 APInt KnownOne(BitWidth, 0); 2008 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2009 return KnownOne != 0; 2010 } 2011 2012 /// Return true if V2 == V1 + X, where X is known non-zero. 2013 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2014 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2015 if (!BO || BO->getOpcode() != Instruction::Add) 2016 return false; 2017 Value *Op = nullptr; 2018 if (V2 == BO->getOperand(0)) 2019 Op = BO->getOperand(1); 2020 else if (V2 == BO->getOperand(1)) 2021 Op = BO->getOperand(0); 2022 else 2023 return false; 2024 return isKnownNonZero(Op, 0, Q); 2025 } 2026 2027 /// Return true if it is known that V1 != V2. 2028 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2029 if (V1->getType()->isVectorTy() || V1 == V2) 2030 return false; 2031 if (V1->getType() != V2->getType()) 2032 // We can't look through casts yet. 2033 return false; 2034 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2035 return true; 2036 2037 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2038 // Are any known bits in V1 contradictory to known bits in V2? If V1 2039 // has a known zero where V2 has a known one, they must not be equal. 2040 auto BitWidth = Ty->getBitWidth(); 2041 APInt KnownZero1(BitWidth, 0); 2042 APInt KnownOne1(BitWidth, 0); 2043 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2044 APInt KnownZero2(BitWidth, 0); 2045 APInt KnownOne2(BitWidth, 0); 2046 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2047 2048 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2049 if (OppositeBits.getBoolValue()) 2050 return true; 2051 } 2052 return false; 2053 } 2054 2055 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2056 /// simplify operations downstream. Mask is known to be zero for bits that V 2057 /// cannot have. 2058 /// 2059 /// This function is defined on values with integer type, values with pointer 2060 /// type, and vectors of integers. In the case 2061 /// where V is a vector, the mask, known zero, and known one values are the 2062 /// same width as the vector element, and the bit is set only if it is true 2063 /// for all of the elements in the vector. 2064 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2065 const Query &Q) { 2066 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2067 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2068 return (KnownZero & Mask) == Mask; 2069 } 2070 2071 /// For vector constants, loop over the elements and find the constant with the 2072 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2073 /// or if any element was not analyzed; otherwise, return the count for the 2074 /// element with the minimum number of sign bits. 2075 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2076 unsigned TyBits) { 2077 const auto *CV = dyn_cast<Constant>(V); 2078 if (!CV || !CV->getType()->isVectorTy()) 2079 return 0; 2080 2081 unsigned MinSignBits = TyBits; 2082 unsigned NumElts = CV->getType()->getVectorNumElements(); 2083 for (unsigned i = 0; i != NumElts; ++i) { 2084 // If we find a non-ConstantInt, bail out. 2085 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2086 if (!Elt) 2087 return 0; 2088 2089 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2090 APInt EltVal = Elt->getValue(); 2091 if (EltVal.isNegative()) 2092 EltVal = ~EltVal; 2093 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2094 } 2095 2096 return MinSignBits; 2097 } 2098 2099 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2100 const Query &Q); 2101 2102 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2103 const Query &Q) { 2104 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2105 assert(Result > 0 && "At least one sign bit needs to be present!"); 2106 return Result; 2107 } 2108 2109 /// Return the number of times the sign bit of the register is replicated into 2110 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2111 /// (itself), but other cases can give us information. For example, immediately 2112 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2113 /// other, so we return 3. For vectors, return the number of sign bits for the 2114 /// vector element with the mininum number of known sign bits. 2115 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2116 const Query &Q) { 2117 2118 // We return the minimum number of sign bits that are guaranteed to be present 2119 // in V, so for undef we have to conservatively return 1. We don't have the 2120 // same behavior for poison though -- that's a FIXME today. 2121 2122 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2123 unsigned Tmp, Tmp2; 2124 unsigned FirstAnswer = 1; 2125 2126 // Note that ConstantInt is handled by the general computeKnownBits case 2127 // below. 2128 2129 if (Depth == MaxDepth) 2130 return 1; // Limit search depth. 2131 2132 const Operator *U = dyn_cast<Operator>(V); 2133 switch (Operator::getOpcode(V)) { 2134 default: break; 2135 case Instruction::SExt: 2136 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2137 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2138 2139 case Instruction::SDiv: { 2140 const APInt *Denominator; 2141 // sdiv X, C -> adds log(C) sign bits. 2142 if (match(U->getOperand(1), m_APInt(Denominator))) { 2143 2144 // Ignore non-positive denominator. 2145 if (!Denominator->isStrictlyPositive()) 2146 break; 2147 2148 // Calculate the incoming numerator bits. 2149 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2150 2151 // Add floor(log(C)) bits to the numerator bits. 2152 return std::min(TyBits, NumBits + Denominator->logBase2()); 2153 } 2154 break; 2155 } 2156 2157 case Instruction::SRem: { 2158 const APInt *Denominator; 2159 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2160 // positive constant. This let us put a lower bound on the number of sign 2161 // bits. 2162 if (match(U->getOperand(1), m_APInt(Denominator))) { 2163 2164 // Ignore non-positive denominator. 2165 if (!Denominator->isStrictlyPositive()) 2166 break; 2167 2168 // Calculate the incoming numerator bits. SRem by a positive constant 2169 // can't lower the number of sign bits. 2170 unsigned NumrBits = 2171 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2172 2173 // Calculate the leading sign bit constraints by examining the 2174 // denominator. Given that the denominator is positive, there are two 2175 // cases: 2176 // 2177 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2178 // (1 << ceilLogBase2(C)). 2179 // 2180 // 2. the numerator is negative. Then the result range is (-C,0] and 2181 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2182 // 2183 // Thus a lower bound on the number of sign bits is `TyBits - 2184 // ceilLogBase2(C)`. 2185 2186 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2187 return std::max(NumrBits, ResBits); 2188 } 2189 break; 2190 } 2191 2192 case Instruction::AShr: { 2193 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2194 // ashr X, C -> adds C sign bits. Vectors too. 2195 const APInt *ShAmt; 2196 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2197 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2198 if (ShAmtLimited >= TyBits) 2199 break; // Bad shift. 2200 Tmp += ShAmtLimited; 2201 if (Tmp > TyBits) Tmp = TyBits; 2202 } 2203 return Tmp; 2204 } 2205 case Instruction::Shl: { 2206 const APInt *ShAmt; 2207 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2208 // shl destroys sign bits. 2209 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2210 Tmp2 = ShAmt->getZExtValue(); 2211 if (Tmp2 >= TyBits || // Bad shift. 2212 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2213 return Tmp - Tmp2; 2214 } 2215 break; 2216 } 2217 case Instruction::And: 2218 case Instruction::Or: 2219 case Instruction::Xor: // NOT is handled here. 2220 // Logical binary ops preserve the number of sign bits at the worst. 2221 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2222 if (Tmp != 1) { 2223 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2224 FirstAnswer = std::min(Tmp, Tmp2); 2225 // We computed what we know about the sign bits as our first 2226 // answer. Now proceed to the generic code that uses 2227 // computeKnownBits, and pick whichever answer is better. 2228 } 2229 break; 2230 2231 case Instruction::Select: 2232 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2233 if (Tmp == 1) return 1; // Early out. 2234 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2235 return std::min(Tmp, Tmp2); 2236 2237 case Instruction::Add: 2238 // Add can have at most one carry bit. Thus we know that the output 2239 // is, at worst, one more bit than the inputs. 2240 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2241 if (Tmp == 1) return 1; // Early out. 2242 2243 // Special case decrementing a value (ADD X, -1): 2244 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2245 if (CRHS->isAllOnesValue()) { 2246 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2247 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2248 2249 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2250 // sign bits set. 2251 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2252 return TyBits; 2253 2254 // If we are subtracting one from a positive number, there is no carry 2255 // out of the result. 2256 if (KnownZero.isNegative()) 2257 return Tmp; 2258 } 2259 2260 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2261 if (Tmp2 == 1) return 1; 2262 return std::min(Tmp, Tmp2)-1; 2263 2264 case Instruction::Sub: 2265 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2266 if (Tmp2 == 1) return 1; 2267 2268 // Handle NEG. 2269 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2270 if (CLHS->isNullValue()) { 2271 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2272 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2273 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2274 // sign bits set. 2275 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2276 return TyBits; 2277 2278 // If the input is known to be positive (the sign bit is known clear), 2279 // the output of the NEG has the same number of sign bits as the input. 2280 if (KnownZero.isNegative()) 2281 return Tmp2; 2282 2283 // Otherwise, we treat this like a SUB. 2284 } 2285 2286 // Sub can have at most one carry bit. Thus we know that the output 2287 // is, at worst, one more bit than the inputs. 2288 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2289 if (Tmp == 1) return 1; // Early out. 2290 return std::min(Tmp, Tmp2)-1; 2291 2292 case Instruction::PHI: { 2293 const PHINode *PN = cast<PHINode>(U); 2294 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2295 // Don't analyze large in-degree PHIs. 2296 if (NumIncomingValues > 4) break; 2297 // Unreachable blocks may have zero-operand PHI nodes. 2298 if (NumIncomingValues == 0) break; 2299 2300 // Take the minimum of all incoming values. This can't infinitely loop 2301 // because of our depth threshold. 2302 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2303 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2304 if (Tmp == 1) return Tmp; 2305 Tmp = std::min( 2306 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2307 } 2308 return Tmp; 2309 } 2310 2311 case Instruction::Trunc: 2312 // FIXME: it's tricky to do anything useful for this, but it is an important 2313 // case for targets like X86. 2314 break; 2315 2316 case Instruction::ExtractElement: 2317 // Look through extract element. At the moment we keep this simple and skip 2318 // tracking the specific element. But at least we might find information 2319 // valid for all elements of the vector (for example if vector is sign 2320 // extended, shifted, etc). 2321 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2322 } 2323 2324 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2325 // use this information. 2326 2327 // If we can examine all elements of a vector constant successfully, we're 2328 // done (we can't do any better than that). If not, keep trying. 2329 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2330 return VecSignBits; 2331 2332 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2333 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2334 2335 // If we know that the sign bit is either zero or one, determine the number of 2336 // identical bits in the top of the input value. 2337 if (KnownZero.isNegative()) 2338 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2339 2340 if (KnownOne.isNegative()) 2341 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2342 2343 // computeKnownBits gave us no extra information about the top bits. 2344 return FirstAnswer; 2345 } 2346 2347 /// This function computes the integer multiple of Base that equals V. 2348 /// If successful, it returns true and returns the multiple in 2349 /// Multiple. If unsuccessful, it returns false. It looks 2350 /// through SExt instructions only if LookThroughSExt is true. 2351 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2352 bool LookThroughSExt, unsigned Depth) { 2353 const unsigned MaxDepth = 6; 2354 2355 assert(V && "No Value?"); 2356 assert(Depth <= MaxDepth && "Limit Search Depth"); 2357 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2358 2359 Type *T = V->getType(); 2360 2361 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2362 2363 if (Base == 0) 2364 return false; 2365 2366 if (Base == 1) { 2367 Multiple = V; 2368 return true; 2369 } 2370 2371 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2372 Constant *BaseVal = ConstantInt::get(T, Base); 2373 if (CO && CO == BaseVal) { 2374 // Multiple is 1. 2375 Multiple = ConstantInt::get(T, 1); 2376 return true; 2377 } 2378 2379 if (CI && CI->getZExtValue() % Base == 0) { 2380 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2381 return true; 2382 } 2383 2384 if (Depth == MaxDepth) return false; // Limit search depth. 2385 2386 Operator *I = dyn_cast<Operator>(V); 2387 if (!I) return false; 2388 2389 switch (I->getOpcode()) { 2390 default: break; 2391 case Instruction::SExt: 2392 if (!LookThroughSExt) return false; 2393 // otherwise fall through to ZExt 2394 case Instruction::ZExt: 2395 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2396 LookThroughSExt, Depth+1); 2397 case Instruction::Shl: 2398 case Instruction::Mul: { 2399 Value *Op0 = I->getOperand(0); 2400 Value *Op1 = I->getOperand(1); 2401 2402 if (I->getOpcode() == Instruction::Shl) { 2403 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2404 if (!Op1CI) return false; 2405 // Turn Op0 << Op1 into Op0 * 2^Op1 2406 APInt Op1Int = Op1CI->getValue(); 2407 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2408 APInt API(Op1Int.getBitWidth(), 0); 2409 API.setBit(BitToSet); 2410 Op1 = ConstantInt::get(V->getContext(), API); 2411 } 2412 2413 Value *Mul0 = nullptr; 2414 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2415 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2416 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2417 if (Op1C->getType()->getPrimitiveSizeInBits() < 2418 MulC->getType()->getPrimitiveSizeInBits()) 2419 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2420 if (Op1C->getType()->getPrimitiveSizeInBits() > 2421 MulC->getType()->getPrimitiveSizeInBits()) 2422 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2423 2424 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2425 Multiple = ConstantExpr::getMul(MulC, Op1C); 2426 return true; 2427 } 2428 2429 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2430 if (Mul0CI->getValue() == 1) { 2431 // V == Base * Op1, so return Op1 2432 Multiple = Op1; 2433 return true; 2434 } 2435 } 2436 2437 Value *Mul1 = nullptr; 2438 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2439 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2440 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2441 if (Op0C->getType()->getPrimitiveSizeInBits() < 2442 MulC->getType()->getPrimitiveSizeInBits()) 2443 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2444 if (Op0C->getType()->getPrimitiveSizeInBits() > 2445 MulC->getType()->getPrimitiveSizeInBits()) 2446 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2447 2448 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2449 Multiple = ConstantExpr::getMul(MulC, Op0C); 2450 return true; 2451 } 2452 2453 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2454 if (Mul1CI->getValue() == 1) { 2455 // V == Base * Op0, so return Op0 2456 Multiple = Op0; 2457 return true; 2458 } 2459 } 2460 } 2461 } 2462 2463 // We could not determine if V is a multiple of Base. 2464 return false; 2465 } 2466 2467 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2468 const TargetLibraryInfo *TLI) { 2469 const Function *F = ICS.getCalledFunction(); 2470 if (!F) 2471 return Intrinsic::not_intrinsic; 2472 2473 if (F->isIntrinsic()) 2474 return F->getIntrinsicID(); 2475 2476 if (!TLI) 2477 return Intrinsic::not_intrinsic; 2478 2479 LibFunc Func; 2480 // We're going to make assumptions on the semantics of the functions, check 2481 // that the target knows that it's available in this environment and it does 2482 // not have local linkage. 2483 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2484 return Intrinsic::not_intrinsic; 2485 2486 if (!ICS.onlyReadsMemory()) 2487 return Intrinsic::not_intrinsic; 2488 2489 // Otherwise check if we have a call to a function that can be turned into a 2490 // vector intrinsic. 2491 switch (Func) { 2492 default: 2493 break; 2494 case LibFunc_sin: 2495 case LibFunc_sinf: 2496 case LibFunc_sinl: 2497 return Intrinsic::sin; 2498 case LibFunc_cos: 2499 case LibFunc_cosf: 2500 case LibFunc_cosl: 2501 return Intrinsic::cos; 2502 case LibFunc_exp: 2503 case LibFunc_expf: 2504 case LibFunc_expl: 2505 return Intrinsic::exp; 2506 case LibFunc_exp2: 2507 case LibFunc_exp2f: 2508 case LibFunc_exp2l: 2509 return Intrinsic::exp2; 2510 case LibFunc_log: 2511 case LibFunc_logf: 2512 case LibFunc_logl: 2513 return Intrinsic::log; 2514 case LibFunc_log10: 2515 case LibFunc_log10f: 2516 case LibFunc_log10l: 2517 return Intrinsic::log10; 2518 case LibFunc_log2: 2519 case LibFunc_log2f: 2520 case LibFunc_log2l: 2521 return Intrinsic::log2; 2522 case LibFunc_fabs: 2523 case LibFunc_fabsf: 2524 case LibFunc_fabsl: 2525 return Intrinsic::fabs; 2526 case LibFunc_fmin: 2527 case LibFunc_fminf: 2528 case LibFunc_fminl: 2529 return Intrinsic::minnum; 2530 case LibFunc_fmax: 2531 case LibFunc_fmaxf: 2532 case LibFunc_fmaxl: 2533 return Intrinsic::maxnum; 2534 case LibFunc_copysign: 2535 case LibFunc_copysignf: 2536 case LibFunc_copysignl: 2537 return Intrinsic::copysign; 2538 case LibFunc_floor: 2539 case LibFunc_floorf: 2540 case LibFunc_floorl: 2541 return Intrinsic::floor; 2542 case LibFunc_ceil: 2543 case LibFunc_ceilf: 2544 case LibFunc_ceill: 2545 return Intrinsic::ceil; 2546 case LibFunc_trunc: 2547 case LibFunc_truncf: 2548 case LibFunc_truncl: 2549 return Intrinsic::trunc; 2550 case LibFunc_rint: 2551 case LibFunc_rintf: 2552 case LibFunc_rintl: 2553 return Intrinsic::rint; 2554 case LibFunc_nearbyint: 2555 case LibFunc_nearbyintf: 2556 case LibFunc_nearbyintl: 2557 return Intrinsic::nearbyint; 2558 case LibFunc_round: 2559 case LibFunc_roundf: 2560 case LibFunc_roundl: 2561 return Intrinsic::round; 2562 case LibFunc_pow: 2563 case LibFunc_powf: 2564 case LibFunc_powl: 2565 return Intrinsic::pow; 2566 case LibFunc_sqrt: 2567 case LibFunc_sqrtf: 2568 case LibFunc_sqrtl: 2569 if (ICS->hasNoNaNs()) 2570 return Intrinsic::sqrt; 2571 return Intrinsic::not_intrinsic; 2572 } 2573 2574 return Intrinsic::not_intrinsic; 2575 } 2576 2577 /// Return true if we can prove that the specified FP value is never equal to 2578 /// -0.0. 2579 /// 2580 /// NOTE: this function will need to be revisited when we support non-default 2581 /// rounding modes! 2582 /// 2583 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2584 unsigned Depth) { 2585 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2586 return !CFP->getValueAPF().isNegZero(); 2587 2588 if (Depth == MaxDepth) 2589 return false; // Limit search depth. 2590 2591 const Operator *I = dyn_cast<Operator>(V); 2592 if (!I) return false; 2593 2594 // Check if the nsz fast-math flag is set 2595 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2596 if (FPO->hasNoSignedZeros()) 2597 return true; 2598 2599 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2600 if (I->getOpcode() == Instruction::FAdd) 2601 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2602 if (CFP->isNullValue()) 2603 return true; 2604 2605 // sitofp and uitofp turn into +0.0 for zero. 2606 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2607 return true; 2608 2609 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2610 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2611 switch (IID) { 2612 default: 2613 break; 2614 // sqrt(-0.0) = -0.0, no other negative results are possible. 2615 case Intrinsic::sqrt: 2616 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2617 // fabs(x) != -0.0 2618 case Intrinsic::fabs: 2619 return true; 2620 } 2621 } 2622 2623 return false; 2624 } 2625 2626 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2627 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2628 /// bit despite comparing equal. 2629 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2630 const TargetLibraryInfo *TLI, 2631 bool SignBitOnly, 2632 unsigned Depth) { 2633 // TODO: This function does not do the right thing when SignBitOnly is true 2634 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2635 // which flips the sign bits of NaNs. See 2636 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2637 2638 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2639 return !CFP->getValueAPF().isNegative() || 2640 (!SignBitOnly && CFP->getValueAPF().isZero()); 2641 } 2642 2643 if (Depth == MaxDepth) 2644 return false; // Limit search depth. 2645 2646 const Operator *I = dyn_cast<Operator>(V); 2647 if (!I) 2648 return false; 2649 2650 switch (I->getOpcode()) { 2651 default: 2652 break; 2653 // Unsigned integers are always nonnegative. 2654 case Instruction::UIToFP: 2655 return true; 2656 case Instruction::FMul: 2657 // x*x is always non-negative or a NaN. 2658 if (I->getOperand(0) == I->getOperand(1) && 2659 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2660 return true; 2661 2662 LLVM_FALLTHROUGH; 2663 case Instruction::FAdd: 2664 case Instruction::FDiv: 2665 case Instruction::FRem: 2666 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2667 Depth + 1) && 2668 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2669 Depth + 1); 2670 case Instruction::Select: 2671 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2672 Depth + 1) && 2673 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2674 Depth + 1); 2675 case Instruction::FPExt: 2676 case Instruction::FPTrunc: 2677 // Widening/narrowing never change sign. 2678 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2679 Depth + 1); 2680 case Instruction::Call: 2681 const auto *CI = cast<CallInst>(I); 2682 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2683 switch (IID) { 2684 default: 2685 break; 2686 case Intrinsic::maxnum: 2687 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2688 Depth + 1) || 2689 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2690 Depth + 1); 2691 case Intrinsic::minnum: 2692 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2693 Depth + 1) && 2694 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2695 Depth + 1); 2696 case Intrinsic::exp: 2697 case Intrinsic::exp2: 2698 case Intrinsic::fabs: 2699 return true; 2700 2701 case Intrinsic::sqrt: 2702 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2703 if (!SignBitOnly) 2704 return true; 2705 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2706 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2707 2708 case Intrinsic::powi: 2709 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2710 // powi(x,n) is non-negative if n is even. 2711 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2712 return true; 2713 } 2714 // TODO: This is not correct. Given that exp is an integer, here are the 2715 // ways that pow can return a negative value: 2716 // 2717 // pow(x, exp) --> negative if exp is odd and x is negative. 2718 // pow(-0, exp) --> -inf if exp is negative odd. 2719 // pow(-0, exp) --> -0 if exp is positive odd. 2720 // pow(-inf, exp) --> -0 if exp is negative odd. 2721 // pow(-inf, exp) --> -inf if exp is positive odd. 2722 // 2723 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2724 // but we must return false if x == -0. Unfortunately we do not currently 2725 // have a way of expressing this constraint. See details in 2726 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2727 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2728 Depth + 1); 2729 2730 case Intrinsic::fma: 2731 case Intrinsic::fmuladd: 2732 // x*x+y is non-negative if y is non-negative. 2733 return I->getOperand(0) == I->getOperand(1) && 2734 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2735 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2736 Depth + 1); 2737 } 2738 break; 2739 } 2740 return false; 2741 } 2742 2743 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2744 const TargetLibraryInfo *TLI) { 2745 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2746 } 2747 2748 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2749 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2750 } 2751 2752 /// If the specified value can be set by repeating the same byte in memory, 2753 /// return the i8 value that it is represented with. This is 2754 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2755 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2756 /// byte store (e.g. i16 0x1234), return null. 2757 Value *llvm::isBytewiseValue(Value *V) { 2758 // All byte-wide stores are splatable, even of arbitrary variables. 2759 if (V->getType()->isIntegerTy(8)) return V; 2760 2761 // Handle 'null' ConstantArrayZero etc. 2762 if (Constant *C = dyn_cast<Constant>(V)) 2763 if (C->isNullValue()) 2764 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2765 2766 // Constant float and double values can be handled as integer values if the 2767 // corresponding integer value is "byteable". An important case is 0.0. 2768 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2769 if (CFP->getType()->isFloatTy()) 2770 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2771 if (CFP->getType()->isDoubleTy()) 2772 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2773 // Don't handle long double formats, which have strange constraints. 2774 } 2775 2776 // We can handle constant integers that are multiple of 8 bits. 2777 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2778 if (CI->getBitWidth() % 8 == 0) { 2779 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2780 2781 if (!CI->getValue().isSplat(8)) 2782 return nullptr; 2783 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2784 } 2785 } 2786 2787 // A ConstantDataArray/Vector is splatable if all its members are equal and 2788 // also splatable. 2789 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2790 Value *Elt = CA->getElementAsConstant(0); 2791 Value *Val = isBytewiseValue(Elt); 2792 if (!Val) 2793 return nullptr; 2794 2795 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2796 if (CA->getElementAsConstant(I) != Elt) 2797 return nullptr; 2798 2799 return Val; 2800 } 2801 2802 // Conceptually, we could handle things like: 2803 // %a = zext i8 %X to i16 2804 // %b = shl i16 %a, 8 2805 // %c = or i16 %a, %b 2806 // but until there is an example that actually needs this, it doesn't seem 2807 // worth worrying about. 2808 return nullptr; 2809 } 2810 2811 2812 // This is the recursive version of BuildSubAggregate. It takes a few different 2813 // arguments. Idxs is the index within the nested struct From that we are 2814 // looking at now (which is of type IndexedType). IdxSkip is the number of 2815 // indices from Idxs that should be left out when inserting into the resulting 2816 // struct. To is the result struct built so far, new insertvalue instructions 2817 // build on that. 2818 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2819 SmallVectorImpl<unsigned> &Idxs, 2820 unsigned IdxSkip, 2821 Instruction *InsertBefore) { 2822 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2823 if (STy) { 2824 // Save the original To argument so we can modify it 2825 Value *OrigTo = To; 2826 // General case, the type indexed by Idxs is a struct 2827 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2828 // Process each struct element recursively 2829 Idxs.push_back(i); 2830 Value *PrevTo = To; 2831 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2832 InsertBefore); 2833 Idxs.pop_back(); 2834 if (!To) { 2835 // Couldn't find any inserted value for this index? Cleanup 2836 while (PrevTo != OrigTo) { 2837 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2838 PrevTo = Del->getAggregateOperand(); 2839 Del->eraseFromParent(); 2840 } 2841 // Stop processing elements 2842 break; 2843 } 2844 } 2845 // If we successfully found a value for each of our subaggregates 2846 if (To) 2847 return To; 2848 } 2849 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2850 // the struct's elements had a value that was inserted directly. In the latter 2851 // case, perhaps we can't determine each of the subelements individually, but 2852 // we might be able to find the complete struct somewhere. 2853 2854 // Find the value that is at that particular spot 2855 Value *V = FindInsertedValue(From, Idxs); 2856 2857 if (!V) 2858 return nullptr; 2859 2860 // Insert the value in the new (sub) aggregrate 2861 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2862 "tmp", InsertBefore); 2863 } 2864 2865 // This helper takes a nested struct and extracts a part of it (which is again a 2866 // struct) into a new value. For example, given the struct: 2867 // { a, { b, { c, d }, e } } 2868 // and the indices "1, 1" this returns 2869 // { c, d }. 2870 // 2871 // It does this by inserting an insertvalue for each element in the resulting 2872 // struct, as opposed to just inserting a single struct. This will only work if 2873 // each of the elements of the substruct are known (ie, inserted into From by an 2874 // insertvalue instruction somewhere). 2875 // 2876 // All inserted insertvalue instructions are inserted before InsertBefore 2877 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2878 Instruction *InsertBefore) { 2879 assert(InsertBefore && "Must have someplace to insert!"); 2880 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2881 idx_range); 2882 Value *To = UndefValue::get(IndexedType); 2883 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2884 unsigned IdxSkip = Idxs.size(); 2885 2886 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2887 } 2888 2889 /// Given an aggregrate and an sequence of indices, see if 2890 /// the scalar value indexed is already around as a register, for example if it 2891 /// were inserted directly into the aggregrate. 2892 /// 2893 /// If InsertBefore is not null, this function will duplicate (modified) 2894 /// insertvalues when a part of a nested struct is extracted. 2895 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2896 Instruction *InsertBefore) { 2897 // Nothing to index? Just return V then (this is useful at the end of our 2898 // recursion). 2899 if (idx_range.empty()) 2900 return V; 2901 // We have indices, so V should have an indexable type. 2902 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2903 "Not looking at a struct or array?"); 2904 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2905 "Invalid indices for type?"); 2906 2907 if (Constant *C = dyn_cast<Constant>(V)) { 2908 C = C->getAggregateElement(idx_range[0]); 2909 if (!C) return nullptr; 2910 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2911 } 2912 2913 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2914 // Loop the indices for the insertvalue instruction in parallel with the 2915 // requested indices 2916 const unsigned *req_idx = idx_range.begin(); 2917 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2918 i != e; ++i, ++req_idx) { 2919 if (req_idx == idx_range.end()) { 2920 // We can't handle this without inserting insertvalues 2921 if (!InsertBefore) 2922 return nullptr; 2923 2924 // The requested index identifies a part of a nested aggregate. Handle 2925 // this specially. For example, 2926 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2927 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2928 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2929 // This can be changed into 2930 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2931 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2932 // which allows the unused 0,0 element from the nested struct to be 2933 // removed. 2934 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2935 InsertBefore); 2936 } 2937 2938 // This insert value inserts something else than what we are looking for. 2939 // See if the (aggregate) value inserted into has the value we are 2940 // looking for, then. 2941 if (*req_idx != *i) 2942 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2943 InsertBefore); 2944 } 2945 // If we end up here, the indices of the insertvalue match with those 2946 // requested (though possibly only partially). Now we recursively look at 2947 // the inserted value, passing any remaining indices. 2948 return FindInsertedValue(I->getInsertedValueOperand(), 2949 makeArrayRef(req_idx, idx_range.end()), 2950 InsertBefore); 2951 } 2952 2953 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2954 // If we're extracting a value from an aggregate that was extracted from 2955 // something else, we can extract from that something else directly instead. 2956 // However, we will need to chain I's indices with the requested indices. 2957 2958 // Calculate the number of indices required 2959 unsigned size = I->getNumIndices() + idx_range.size(); 2960 // Allocate some space to put the new indices in 2961 SmallVector<unsigned, 5> Idxs; 2962 Idxs.reserve(size); 2963 // Add indices from the extract value instruction 2964 Idxs.append(I->idx_begin(), I->idx_end()); 2965 2966 // Add requested indices 2967 Idxs.append(idx_range.begin(), idx_range.end()); 2968 2969 assert(Idxs.size() == size 2970 && "Number of indices added not correct?"); 2971 2972 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2973 } 2974 // Otherwise, we don't know (such as, extracting from a function return value 2975 // or load instruction) 2976 return nullptr; 2977 } 2978 2979 /// Analyze the specified pointer to see if it can be expressed as a base 2980 /// pointer plus a constant offset. Return the base and offset to the caller. 2981 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2982 const DataLayout &DL) { 2983 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2984 APInt ByteOffset(BitWidth, 0); 2985 2986 // We walk up the defs but use a visited set to handle unreachable code. In 2987 // that case, we stop after accumulating the cycle once (not that it 2988 // matters). 2989 SmallPtrSet<Value *, 16> Visited; 2990 while (Visited.insert(Ptr).second) { 2991 if (Ptr->getType()->isVectorTy()) 2992 break; 2993 2994 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2995 // If one of the values we have visited is an addrspacecast, then 2996 // the pointer type of this GEP may be different from the type 2997 // of the Ptr parameter which was passed to this function. This 2998 // means when we construct GEPOffset, we need to use the size 2999 // of GEP's pointer type rather than the size of the original 3000 // pointer type. 3001 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 3002 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3003 break; 3004 3005 ByteOffset += GEPOffset.getSExtValue(); 3006 3007 Ptr = GEP->getPointerOperand(); 3008 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3009 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3010 Ptr = cast<Operator>(Ptr)->getOperand(0); 3011 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3012 if (GA->isInterposable()) 3013 break; 3014 Ptr = GA->getAliasee(); 3015 } else { 3016 break; 3017 } 3018 } 3019 Offset = ByteOffset.getSExtValue(); 3020 return Ptr; 3021 } 3022 3023 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 3024 // Make sure the GEP has exactly three arguments. 3025 if (GEP->getNumOperands() != 3) 3026 return false; 3027 3028 // Make sure the index-ee is a pointer to array of i8. 3029 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3030 if (!AT || !AT->getElementType()->isIntegerTy(8)) 3031 return false; 3032 3033 // Check to make sure that the first operand of the GEP is an integer and 3034 // has value 0 so that we are sure we're indexing into the initializer. 3035 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3036 if (!FirstIdx || !FirstIdx->isZero()) 3037 return false; 3038 3039 return true; 3040 } 3041 3042 /// This function computes the length of a null-terminated C string pointed to 3043 /// by V. If successful, it returns true and returns the string in Str. 3044 /// If unsuccessful, it returns false. 3045 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3046 uint64_t Offset, bool TrimAtNul) { 3047 assert(V); 3048 3049 // Look through bitcast instructions and geps. 3050 V = V->stripPointerCasts(); 3051 3052 // If the value is a GEP instruction or constant expression, treat it as an 3053 // offset. 3054 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3055 // The GEP operator should be based on a pointer to string constant, and is 3056 // indexing into the string constant. 3057 if (!isGEPBasedOnPointerToString(GEP)) 3058 return false; 3059 3060 // If the second index isn't a ConstantInt, then this is a variable index 3061 // into the array. If this occurs, we can't say anything meaningful about 3062 // the string. 3063 uint64_t StartIdx = 0; 3064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3065 StartIdx = CI->getZExtValue(); 3066 else 3067 return false; 3068 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3069 TrimAtNul); 3070 } 3071 3072 // The GEP instruction, constant or instruction, must reference a global 3073 // variable that is a constant and is initialized. The referenced constant 3074 // initializer is the array that we'll use for optimization. 3075 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3076 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3077 return false; 3078 3079 // Handle the all-zeros case. 3080 if (GV->getInitializer()->isNullValue()) { 3081 // This is a degenerate case. The initializer is constant zero so the 3082 // length of the string must be zero. 3083 Str = ""; 3084 return true; 3085 } 3086 3087 // This must be a ConstantDataArray. 3088 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3089 if (!Array || !Array->isString()) 3090 return false; 3091 3092 // Get the number of elements in the array. 3093 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3094 3095 // Start out with the entire array in the StringRef. 3096 Str = Array->getAsString(); 3097 3098 if (Offset > NumElts) 3099 return false; 3100 3101 // Skip over 'offset' bytes. 3102 Str = Str.substr(Offset); 3103 3104 if (TrimAtNul) { 3105 // Trim off the \0 and anything after it. If the array is not nul 3106 // terminated, we just return the whole end of string. The client may know 3107 // some other way that the string is length-bound. 3108 Str = Str.substr(0, Str.find('\0')); 3109 } 3110 return true; 3111 } 3112 3113 // These next two are very similar to the above, but also look through PHI 3114 // nodes. 3115 // TODO: See if we can integrate these two together. 3116 3117 /// If we can compute the length of the string pointed to by 3118 /// the specified pointer, return 'len+1'. If we can't, return 0. 3119 static uint64_t GetStringLengthH(const Value *V, 3120 SmallPtrSetImpl<const PHINode*> &PHIs) { 3121 // Look through noop bitcast instructions. 3122 V = V->stripPointerCasts(); 3123 3124 // If this is a PHI node, there are two cases: either we have already seen it 3125 // or we haven't. 3126 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3127 if (!PHIs.insert(PN).second) 3128 return ~0ULL; // already in the set. 3129 3130 // If it was new, see if all the input strings are the same length. 3131 uint64_t LenSoFar = ~0ULL; 3132 for (Value *IncValue : PN->incoming_values()) { 3133 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3134 if (Len == 0) return 0; // Unknown length -> unknown. 3135 3136 if (Len == ~0ULL) continue; 3137 3138 if (Len != LenSoFar && LenSoFar != ~0ULL) 3139 return 0; // Disagree -> unknown. 3140 LenSoFar = Len; 3141 } 3142 3143 // Success, all agree. 3144 return LenSoFar; 3145 } 3146 3147 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3148 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3149 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3150 if (Len1 == 0) return 0; 3151 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3152 if (Len2 == 0) return 0; 3153 if (Len1 == ~0ULL) return Len2; 3154 if (Len2 == ~0ULL) return Len1; 3155 if (Len1 != Len2) return 0; 3156 return Len1; 3157 } 3158 3159 // Otherwise, see if we can read the string. 3160 StringRef StrData; 3161 if (!getConstantStringInfo(V, StrData)) 3162 return 0; 3163 3164 return StrData.size()+1; 3165 } 3166 3167 /// If we can compute the length of the string pointed to by 3168 /// the specified pointer, return 'len+1'. If we can't, return 0. 3169 uint64_t llvm::GetStringLength(const Value *V) { 3170 if (!V->getType()->isPointerTy()) return 0; 3171 3172 SmallPtrSet<const PHINode*, 32> PHIs; 3173 uint64_t Len = GetStringLengthH(V, PHIs); 3174 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3175 // an empty string as a length. 3176 return Len == ~0ULL ? 1 : Len; 3177 } 3178 3179 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3180 /// previous iteration of the loop was referring to the same object as \p PN. 3181 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3182 const LoopInfo *LI) { 3183 // Find the loop-defined value. 3184 Loop *L = LI->getLoopFor(PN->getParent()); 3185 if (PN->getNumIncomingValues() != 2) 3186 return true; 3187 3188 // Find the value from previous iteration. 3189 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3190 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3191 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3192 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3193 return true; 3194 3195 // If a new pointer is loaded in the loop, the pointer references a different 3196 // object in every iteration. E.g.: 3197 // for (i) 3198 // int *p = a[i]; 3199 // ... 3200 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3201 if (!L->isLoopInvariant(Load->getPointerOperand())) 3202 return false; 3203 return true; 3204 } 3205 3206 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3207 unsigned MaxLookup) { 3208 if (!V->getType()->isPointerTy()) 3209 return V; 3210 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3211 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3212 V = GEP->getPointerOperand(); 3213 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3214 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3215 V = cast<Operator>(V)->getOperand(0); 3216 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3217 if (GA->isInterposable()) 3218 return V; 3219 V = GA->getAliasee(); 3220 } else { 3221 if (auto CS = CallSite(V)) 3222 if (Value *RV = CS.getReturnedArgOperand()) { 3223 V = RV; 3224 continue; 3225 } 3226 3227 // See if InstructionSimplify knows any relevant tricks. 3228 if (Instruction *I = dyn_cast<Instruction>(V)) 3229 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3230 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3231 V = Simplified; 3232 continue; 3233 } 3234 3235 return V; 3236 } 3237 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3238 } 3239 return V; 3240 } 3241 3242 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3243 const DataLayout &DL, LoopInfo *LI, 3244 unsigned MaxLookup) { 3245 SmallPtrSet<Value *, 4> Visited; 3246 SmallVector<Value *, 4> Worklist; 3247 Worklist.push_back(V); 3248 do { 3249 Value *P = Worklist.pop_back_val(); 3250 P = GetUnderlyingObject(P, DL, MaxLookup); 3251 3252 if (!Visited.insert(P).second) 3253 continue; 3254 3255 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3256 Worklist.push_back(SI->getTrueValue()); 3257 Worklist.push_back(SI->getFalseValue()); 3258 continue; 3259 } 3260 3261 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3262 // If this PHI changes the underlying object in every iteration of the 3263 // loop, don't look through it. Consider: 3264 // int **A; 3265 // for (i) { 3266 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3267 // Curr = A[i]; 3268 // *Prev, *Curr; 3269 // 3270 // Prev is tracking Curr one iteration behind so they refer to different 3271 // underlying objects. 3272 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3273 isSameUnderlyingObjectInLoop(PN, LI)) 3274 for (Value *IncValue : PN->incoming_values()) 3275 Worklist.push_back(IncValue); 3276 continue; 3277 } 3278 3279 Objects.push_back(P); 3280 } while (!Worklist.empty()); 3281 } 3282 3283 /// Return true if the only users of this pointer are lifetime markers. 3284 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3285 for (const User *U : V->users()) { 3286 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3287 if (!II) return false; 3288 3289 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3290 II->getIntrinsicID() != Intrinsic::lifetime_end) 3291 return false; 3292 } 3293 return true; 3294 } 3295 3296 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3297 const Instruction *CtxI, 3298 const DominatorTree *DT) { 3299 const Operator *Inst = dyn_cast<Operator>(V); 3300 if (!Inst) 3301 return false; 3302 3303 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3304 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3305 if (C->canTrap()) 3306 return false; 3307 3308 switch (Inst->getOpcode()) { 3309 default: 3310 return true; 3311 case Instruction::UDiv: 3312 case Instruction::URem: { 3313 // x / y is undefined if y == 0. 3314 const APInt *V; 3315 if (match(Inst->getOperand(1), m_APInt(V))) 3316 return *V != 0; 3317 return false; 3318 } 3319 case Instruction::SDiv: 3320 case Instruction::SRem: { 3321 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3322 const APInt *Numerator, *Denominator; 3323 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3324 return false; 3325 // We cannot hoist this division if the denominator is 0. 3326 if (*Denominator == 0) 3327 return false; 3328 // It's safe to hoist if the denominator is not 0 or -1. 3329 if (*Denominator != -1) 3330 return true; 3331 // At this point we know that the denominator is -1. It is safe to hoist as 3332 // long we know that the numerator is not INT_MIN. 3333 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3334 return !Numerator->isMinSignedValue(); 3335 // The numerator *might* be MinSignedValue. 3336 return false; 3337 } 3338 case Instruction::Load: { 3339 const LoadInst *LI = cast<LoadInst>(Inst); 3340 if (!LI->isUnordered() || 3341 // Speculative load may create a race that did not exist in the source. 3342 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3343 // Speculative load may load data from dirty regions. 3344 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3345 return false; 3346 const DataLayout &DL = LI->getModule()->getDataLayout(); 3347 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3348 LI->getAlignment(), DL, CtxI, DT); 3349 } 3350 case Instruction::Call: { 3351 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3352 switch (II->getIntrinsicID()) { 3353 // These synthetic intrinsics have no side-effects and just mark 3354 // information about their operands. 3355 // FIXME: There are other no-op synthetic instructions that potentially 3356 // should be considered at least *safe* to speculate... 3357 case Intrinsic::dbg_declare: 3358 case Intrinsic::dbg_value: 3359 return true; 3360 3361 case Intrinsic::bitreverse: 3362 case Intrinsic::bswap: 3363 case Intrinsic::ctlz: 3364 case Intrinsic::ctpop: 3365 case Intrinsic::cttz: 3366 case Intrinsic::objectsize: 3367 case Intrinsic::sadd_with_overflow: 3368 case Intrinsic::smul_with_overflow: 3369 case Intrinsic::ssub_with_overflow: 3370 case Intrinsic::uadd_with_overflow: 3371 case Intrinsic::umul_with_overflow: 3372 case Intrinsic::usub_with_overflow: 3373 return true; 3374 // These intrinsics are defined to have the same behavior as libm 3375 // functions except for setting errno. 3376 case Intrinsic::sqrt: 3377 case Intrinsic::fma: 3378 case Intrinsic::fmuladd: 3379 return true; 3380 // These intrinsics are defined to have the same behavior as libm 3381 // functions, and the corresponding libm functions never set errno. 3382 case Intrinsic::trunc: 3383 case Intrinsic::copysign: 3384 case Intrinsic::fabs: 3385 case Intrinsic::minnum: 3386 case Intrinsic::maxnum: 3387 return true; 3388 // These intrinsics are defined to have the same behavior as libm 3389 // functions, which never overflow when operating on the IEEE754 types 3390 // that we support, and never set errno otherwise. 3391 case Intrinsic::ceil: 3392 case Intrinsic::floor: 3393 case Intrinsic::nearbyint: 3394 case Intrinsic::rint: 3395 case Intrinsic::round: 3396 return true; 3397 // These intrinsics do not correspond to any libm function, and 3398 // do not set errno. 3399 case Intrinsic::powi: 3400 return true; 3401 // TODO: are convert_{from,to}_fp16 safe? 3402 // TODO: can we list target-specific intrinsics here? 3403 default: break; 3404 } 3405 } 3406 return false; // The called function could have undefined behavior or 3407 // side-effects, even if marked readnone nounwind. 3408 } 3409 case Instruction::VAArg: 3410 case Instruction::Alloca: 3411 case Instruction::Invoke: 3412 case Instruction::PHI: 3413 case Instruction::Store: 3414 case Instruction::Ret: 3415 case Instruction::Br: 3416 case Instruction::IndirectBr: 3417 case Instruction::Switch: 3418 case Instruction::Unreachable: 3419 case Instruction::Fence: 3420 case Instruction::AtomicRMW: 3421 case Instruction::AtomicCmpXchg: 3422 case Instruction::LandingPad: 3423 case Instruction::Resume: 3424 case Instruction::CatchSwitch: 3425 case Instruction::CatchPad: 3426 case Instruction::CatchRet: 3427 case Instruction::CleanupPad: 3428 case Instruction::CleanupRet: 3429 return false; // Misc instructions which have effects 3430 } 3431 } 3432 3433 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3434 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3435 } 3436 3437 /// Return true if we know that the specified value is never null. 3438 bool llvm::isKnownNonNull(const Value *V) { 3439 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3440 3441 // Alloca never returns null, malloc might. 3442 if (isa<AllocaInst>(V)) return true; 3443 3444 // A byval, inalloca, or nonnull argument is never null. 3445 if (const Argument *A = dyn_cast<Argument>(V)) 3446 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3447 3448 // A global variable in address space 0 is non null unless extern weak 3449 // or an absolute symbol reference. Other address spaces may have null as a 3450 // valid address for a global, so we can't assume anything. 3451 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3452 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3453 GV->getType()->getAddressSpace() == 0; 3454 3455 // A Load tagged with nonnull metadata is never null. 3456 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3457 return LI->getMetadata(LLVMContext::MD_nonnull); 3458 3459 if (auto CS = ImmutableCallSite(V)) 3460 if (CS.isReturnNonNull()) 3461 return true; 3462 3463 return false; 3464 } 3465 3466 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3467 const Instruction *CtxI, 3468 const DominatorTree *DT) { 3469 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3470 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3471 assert(CtxI && "Context instruction required for analysis"); 3472 assert(DT && "Dominator tree required for analysis"); 3473 3474 unsigned NumUsesExplored = 0; 3475 for (auto *U : V->users()) { 3476 // Avoid massive lists 3477 if (NumUsesExplored >= DomConditionsMaxUses) 3478 break; 3479 NumUsesExplored++; 3480 3481 // If the value is used as an argument to a call or invoke, then argument 3482 // attributes may provide an answer about null-ness. 3483 if (auto CS = ImmutableCallSite(U)) 3484 if (auto *CalledFunc = CS.getCalledFunction()) 3485 for (const Argument &Arg : CalledFunc->args()) 3486 if (CS.getArgOperand(Arg.getArgNo()) == V && 3487 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3488 return true; 3489 3490 // Consider only compare instructions uniquely controlling a branch 3491 CmpInst::Predicate Pred; 3492 if (!match(const_cast<User *>(U), 3493 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3494 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3495 continue; 3496 3497 for (auto *CmpU : U->users()) { 3498 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3499 assert(BI->isConditional() && "uses a comparison!"); 3500 3501 BasicBlock *NonNullSuccessor = 3502 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3503 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3504 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3505 return true; 3506 } else if (Pred == ICmpInst::ICMP_NE && 3507 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3508 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3509 return true; 3510 } 3511 } 3512 } 3513 3514 return false; 3515 } 3516 3517 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3518 const DominatorTree *DT) { 3519 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3520 return false; 3521 3522 if (isKnownNonNull(V)) 3523 return true; 3524 3525 if (!CtxI || !DT) 3526 return false; 3527 3528 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3529 } 3530 3531 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3532 const Value *RHS, 3533 const DataLayout &DL, 3534 AssumptionCache *AC, 3535 const Instruction *CxtI, 3536 const DominatorTree *DT) { 3537 // Multiplying n * m significant bits yields a result of n + m significant 3538 // bits. If the total number of significant bits does not exceed the 3539 // result bit width (minus 1), there is no overflow. 3540 // This means if we have enough leading zero bits in the operands 3541 // we can guarantee that the result does not overflow. 3542 // Ref: "Hacker's Delight" by Henry Warren 3543 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3544 APInt LHSKnownZero(BitWidth, 0); 3545 APInt LHSKnownOne(BitWidth, 0); 3546 APInt RHSKnownZero(BitWidth, 0); 3547 APInt RHSKnownOne(BitWidth, 0); 3548 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3549 DT); 3550 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3551 DT); 3552 // Note that underestimating the number of zero bits gives a more 3553 // conservative answer. 3554 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3555 RHSKnownZero.countLeadingOnes(); 3556 // First handle the easy case: if we have enough zero bits there's 3557 // definitely no overflow. 3558 if (ZeroBits >= BitWidth) 3559 return OverflowResult::NeverOverflows; 3560 3561 // Get the largest possible values for each operand. 3562 APInt LHSMax = ~LHSKnownZero; 3563 APInt RHSMax = ~RHSKnownZero; 3564 3565 // We know the multiply operation doesn't overflow if the maximum values for 3566 // each operand will not overflow after we multiply them together. 3567 bool MaxOverflow; 3568 LHSMax.umul_ov(RHSMax, MaxOverflow); 3569 if (!MaxOverflow) 3570 return OverflowResult::NeverOverflows; 3571 3572 // We know it always overflows if multiplying the smallest possible values for 3573 // the operands also results in overflow. 3574 bool MinOverflow; 3575 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3576 if (MinOverflow) 3577 return OverflowResult::AlwaysOverflows; 3578 3579 return OverflowResult::MayOverflow; 3580 } 3581 3582 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3583 const Value *RHS, 3584 const DataLayout &DL, 3585 AssumptionCache *AC, 3586 const Instruction *CxtI, 3587 const DominatorTree *DT) { 3588 bool LHSKnownNonNegative, LHSKnownNegative; 3589 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3590 AC, CxtI, DT); 3591 if (LHSKnownNonNegative || LHSKnownNegative) { 3592 bool RHSKnownNonNegative, RHSKnownNegative; 3593 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3594 AC, CxtI, DT); 3595 3596 if (LHSKnownNegative && RHSKnownNegative) { 3597 // The sign bit is set in both cases: this MUST overflow. 3598 // Create a simple add instruction, and insert it into the struct. 3599 return OverflowResult::AlwaysOverflows; 3600 } 3601 3602 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3603 // The sign bit is clear in both cases: this CANNOT overflow. 3604 // Create a simple add instruction, and insert it into the struct. 3605 return OverflowResult::NeverOverflows; 3606 } 3607 } 3608 3609 return OverflowResult::MayOverflow; 3610 } 3611 3612 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3613 const Value *RHS, 3614 const AddOperator *Add, 3615 const DataLayout &DL, 3616 AssumptionCache *AC, 3617 const Instruction *CxtI, 3618 const DominatorTree *DT) { 3619 if (Add && Add->hasNoSignedWrap()) { 3620 return OverflowResult::NeverOverflows; 3621 } 3622 3623 bool LHSKnownNonNegative, LHSKnownNegative; 3624 bool RHSKnownNonNegative, RHSKnownNegative; 3625 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3626 AC, CxtI, DT); 3627 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3628 AC, CxtI, DT); 3629 3630 if ((LHSKnownNonNegative && RHSKnownNegative) || 3631 (LHSKnownNegative && RHSKnownNonNegative)) { 3632 // The sign bits are opposite: this CANNOT overflow. 3633 return OverflowResult::NeverOverflows; 3634 } 3635 3636 // The remaining code needs Add to be available. Early returns if not so. 3637 if (!Add) 3638 return OverflowResult::MayOverflow; 3639 3640 // If the sign of Add is the same as at least one of the operands, this add 3641 // CANNOT overflow. This is particularly useful when the sum is 3642 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3643 // operands. 3644 bool LHSOrRHSKnownNonNegative = 3645 (LHSKnownNonNegative || RHSKnownNonNegative); 3646 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3647 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3648 bool AddKnownNonNegative, AddKnownNegative; 3649 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3650 /*Depth=*/0, AC, CxtI, DT); 3651 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3652 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3653 return OverflowResult::NeverOverflows; 3654 } 3655 } 3656 3657 return OverflowResult::MayOverflow; 3658 } 3659 3660 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3661 const DominatorTree &DT) { 3662 #ifndef NDEBUG 3663 auto IID = II->getIntrinsicID(); 3664 assert((IID == Intrinsic::sadd_with_overflow || 3665 IID == Intrinsic::uadd_with_overflow || 3666 IID == Intrinsic::ssub_with_overflow || 3667 IID == Intrinsic::usub_with_overflow || 3668 IID == Intrinsic::smul_with_overflow || 3669 IID == Intrinsic::umul_with_overflow) && 3670 "Not an overflow intrinsic!"); 3671 #endif 3672 3673 SmallVector<const BranchInst *, 2> GuardingBranches; 3674 SmallVector<const ExtractValueInst *, 2> Results; 3675 3676 for (const User *U : II->users()) { 3677 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3678 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3679 3680 if (EVI->getIndices()[0] == 0) 3681 Results.push_back(EVI); 3682 else { 3683 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3684 3685 for (const auto *U : EVI->users()) 3686 if (const auto *B = dyn_cast<BranchInst>(U)) { 3687 assert(B->isConditional() && "How else is it using an i1?"); 3688 GuardingBranches.push_back(B); 3689 } 3690 } 3691 } else { 3692 // We are using the aggregate directly in a way we don't want to analyze 3693 // here (storing it to a global, say). 3694 return false; 3695 } 3696 } 3697 3698 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3699 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3700 if (!NoWrapEdge.isSingleEdge()) 3701 return false; 3702 3703 // Check if all users of the add are provably no-wrap. 3704 for (const auto *Result : Results) { 3705 // If the extractvalue itself is not executed on overflow, the we don't 3706 // need to check each use separately, since domination is transitive. 3707 if (DT.dominates(NoWrapEdge, Result->getParent())) 3708 continue; 3709 3710 for (auto &RU : Result->uses()) 3711 if (!DT.dominates(NoWrapEdge, RU)) 3712 return false; 3713 } 3714 3715 return true; 3716 }; 3717 3718 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3719 } 3720 3721 3722 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3723 const DataLayout &DL, 3724 AssumptionCache *AC, 3725 const Instruction *CxtI, 3726 const DominatorTree *DT) { 3727 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3728 Add, DL, AC, CxtI, DT); 3729 } 3730 3731 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3732 const Value *RHS, 3733 const DataLayout &DL, 3734 AssumptionCache *AC, 3735 const Instruction *CxtI, 3736 const DominatorTree *DT) { 3737 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3738 } 3739 3740 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3741 // A memory operation returns normally if it isn't volatile. A volatile 3742 // operation is allowed to trap. 3743 // 3744 // An atomic operation isn't guaranteed to return in a reasonable amount of 3745 // time because it's possible for another thread to interfere with it for an 3746 // arbitrary length of time, but programs aren't allowed to rely on that. 3747 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3748 return !LI->isVolatile(); 3749 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3750 return !SI->isVolatile(); 3751 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3752 return !CXI->isVolatile(); 3753 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3754 return !RMWI->isVolatile(); 3755 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3756 return !MII->isVolatile(); 3757 3758 // If there is no successor, then execution can't transfer to it. 3759 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3760 return !CRI->unwindsToCaller(); 3761 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3762 return !CatchSwitch->unwindsToCaller(); 3763 if (isa<ResumeInst>(I)) 3764 return false; 3765 if (isa<ReturnInst>(I)) 3766 return false; 3767 if (isa<UnreachableInst>(I)) 3768 return false; 3769 3770 // Calls can throw, or contain an infinite loop, or kill the process. 3771 if (auto CS = ImmutableCallSite(I)) { 3772 // Call sites that throw have implicit non-local control flow. 3773 if (!CS.doesNotThrow()) 3774 return false; 3775 3776 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3777 // etc. and thus not return. However, LLVM already assumes that 3778 // 3779 // - Thread exiting actions are modeled as writes to memory invisible to 3780 // the program. 3781 // 3782 // - Loops that don't have side effects (side effects are volatile/atomic 3783 // stores and IO) always terminate (see http://llvm.org/PR965). 3784 // Furthermore IO itself is also modeled as writes to memory invisible to 3785 // the program. 3786 // 3787 // We rely on those assumptions here, and use the memory effects of the call 3788 // target as a proxy for checking that it always returns. 3789 3790 // FIXME: This isn't aggressive enough; a call which only writes to a global 3791 // is guaranteed to return. 3792 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3793 match(I, m_Intrinsic<Intrinsic::assume>()); 3794 } 3795 3796 // Other instructions return normally. 3797 return true; 3798 } 3799 3800 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3801 const Loop *L) { 3802 // The loop header is guaranteed to be executed for every iteration. 3803 // 3804 // FIXME: Relax this constraint to cover all basic blocks that are 3805 // guaranteed to be executed at every iteration. 3806 if (I->getParent() != L->getHeader()) return false; 3807 3808 for (const Instruction &LI : *L->getHeader()) { 3809 if (&LI == I) return true; 3810 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3811 } 3812 llvm_unreachable("Instruction not contained in its own parent basic block."); 3813 } 3814 3815 bool llvm::propagatesFullPoison(const Instruction *I) { 3816 switch (I->getOpcode()) { 3817 case Instruction::Add: 3818 case Instruction::Sub: 3819 case Instruction::Xor: 3820 case Instruction::Trunc: 3821 case Instruction::BitCast: 3822 case Instruction::AddrSpaceCast: 3823 case Instruction::Mul: 3824 case Instruction::Shl: 3825 case Instruction::GetElementPtr: 3826 // These operations all propagate poison unconditionally. Note that poison 3827 // is not any particular value, so xor or subtraction of poison with 3828 // itself still yields poison, not zero. 3829 return true; 3830 3831 case Instruction::AShr: 3832 case Instruction::SExt: 3833 // For these operations, one bit of the input is replicated across 3834 // multiple output bits. A replicated poison bit is still poison. 3835 return true; 3836 3837 case Instruction::ICmp: 3838 // Comparing poison with any value yields poison. This is why, for 3839 // instance, x s< (x +nsw 1) can be folded to true. 3840 return true; 3841 3842 default: 3843 return false; 3844 } 3845 } 3846 3847 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3848 switch (I->getOpcode()) { 3849 case Instruction::Store: 3850 return cast<StoreInst>(I)->getPointerOperand(); 3851 3852 case Instruction::Load: 3853 return cast<LoadInst>(I)->getPointerOperand(); 3854 3855 case Instruction::AtomicCmpXchg: 3856 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3857 3858 case Instruction::AtomicRMW: 3859 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3860 3861 case Instruction::UDiv: 3862 case Instruction::SDiv: 3863 case Instruction::URem: 3864 case Instruction::SRem: 3865 return I->getOperand(1); 3866 3867 default: 3868 return nullptr; 3869 } 3870 } 3871 3872 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3873 // We currently only look for uses of poison values within the same basic 3874 // block, as that makes it easier to guarantee that the uses will be 3875 // executed given that PoisonI is executed. 3876 // 3877 // FIXME: Expand this to consider uses beyond the same basic block. To do 3878 // this, look out for the distinction between post-dominance and strong 3879 // post-dominance. 3880 const BasicBlock *BB = PoisonI->getParent(); 3881 3882 // Set of instructions that we have proved will yield poison if PoisonI 3883 // does. 3884 SmallSet<const Value *, 16> YieldsPoison; 3885 SmallSet<const BasicBlock *, 4> Visited; 3886 YieldsPoison.insert(PoisonI); 3887 Visited.insert(PoisonI->getParent()); 3888 3889 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3890 3891 unsigned Iter = 0; 3892 while (Iter++ < MaxDepth) { 3893 for (auto &I : make_range(Begin, End)) { 3894 if (&I != PoisonI) { 3895 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3896 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3897 return true; 3898 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3899 return false; 3900 } 3901 3902 // Mark poison that propagates from I through uses of I. 3903 if (YieldsPoison.count(&I)) { 3904 for (const User *User : I.users()) { 3905 const Instruction *UserI = cast<Instruction>(User); 3906 if (propagatesFullPoison(UserI)) 3907 YieldsPoison.insert(User); 3908 } 3909 } 3910 } 3911 3912 if (auto *NextBB = BB->getSingleSuccessor()) { 3913 if (Visited.insert(NextBB).second) { 3914 BB = NextBB; 3915 Begin = BB->getFirstNonPHI()->getIterator(); 3916 End = BB->end(); 3917 continue; 3918 } 3919 } 3920 3921 break; 3922 }; 3923 return false; 3924 } 3925 3926 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3927 if (FMF.noNaNs()) 3928 return true; 3929 3930 if (auto *C = dyn_cast<ConstantFP>(V)) 3931 return !C->isNaN(); 3932 return false; 3933 } 3934 3935 static bool isKnownNonZero(const Value *V) { 3936 if (auto *C = dyn_cast<ConstantFP>(V)) 3937 return !C->isZero(); 3938 return false; 3939 } 3940 3941 /// Match non-obvious integer minimum and maximum sequences. 3942 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3943 Value *CmpLHS, Value *CmpRHS, 3944 Value *TrueVal, Value *FalseVal, 3945 Value *&LHS, Value *&RHS) { 3946 // Assume success. If there's no match, callers should not use these anyway. 3947 LHS = TrueVal; 3948 RHS = FalseVal; 3949 3950 // Recognize variations of: 3951 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3952 const APInt *C1; 3953 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3954 const APInt *C2; 3955 3956 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3957 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3958 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3959 return {SPF_SMAX, SPNB_NA, false}; 3960 3961 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3962 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3963 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3964 return {SPF_SMIN, SPNB_NA, false}; 3965 3966 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3967 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3968 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3969 return {SPF_UMAX, SPNB_NA, false}; 3970 3971 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3972 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3973 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3974 return {SPF_UMIN, SPNB_NA, false}; 3975 } 3976 3977 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3978 return {SPF_UNKNOWN, SPNB_NA, false}; 3979 3980 // Z = X -nsw Y 3981 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3982 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3983 if (match(TrueVal, m_Zero()) && 3984 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3985 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3986 3987 // Z = X -nsw Y 3988 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3989 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3990 if (match(FalseVal, m_Zero()) && 3991 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3992 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3993 3994 if (!match(CmpRHS, m_APInt(C1))) 3995 return {SPF_UNKNOWN, SPNB_NA, false}; 3996 3997 // An unsigned min/max can be written with a signed compare. 3998 const APInt *C2; 3999 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4000 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4001 // Is the sign bit set? 4002 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4003 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4004 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4005 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4006 4007 // Is the sign bit clear? 4008 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4009 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4010 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4011 C2->isMinSignedValue()) 4012 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4013 } 4014 4015 // Look through 'not' ops to find disguised signed min/max. 4016 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4017 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4018 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4019 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4020 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4021 4022 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4023 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4024 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4025 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4026 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4027 4028 return {SPF_UNKNOWN, SPNB_NA, false}; 4029 } 4030 4031 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4032 FastMathFlags FMF, 4033 Value *CmpLHS, Value *CmpRHS, 4034 Value *TrueVal, Value *FalseVal, 4035 Value *&LHS, Value *&RHS) { 4036 LHS = CmpLHS; 4037 RHS = CmpRHS; 4038 4039 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4040 // return inconsistent results between implementations. 4041 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4042 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4043 // Therefore we behave conservatively and only proceed if at least one of the 4044 // operands is known to not be zero, or if we don't care about signed zeroes. 4045 switch (Pred) { 4046 default: break; 4047 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4048 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4049 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4050 !isKnownNonZero(CmpRHS)) 4051 return {SPF_UNKNOWN, SPNB_NA, false}; 4052 } 4053 4054 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4055 bool Ordered = false; 4056 4057 // When given one NaN and one non-NaN input: 4058 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4059 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4060 // ordered comparison fails), which could be NaN or non-NaN. 4061 // so here we discover exactly what NaN behavior is required/accepted. 4062 if (CmpInst::isFPPredicate(Pred)) { 4063 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4064 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4065 4066 if (LHSSafe && RHSSafe) { 4067 // Both operands are known non-NaN. 4068 NaNBehavior = SPNB_RETURNS_ANY; 4069 } else if (CmpInst::isOrdered(Pred)) { 4070 // An ordered comparison will return false when given a NaN, so it 4071 // returns the RHS. 4072 Ordered = true; 4073 if (LHSSafe) 4074 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4075 NaNBehavior = SPNB_RETURNS_NAN; 4076 else if (RHSSafe) 4077 NaNBehavior = SPNB_RETURNS_OTHER; 4078 else 4079 // Completely unsafe. 4080 return {SPF_UNKNOWN, SPNB_NA, false}; 4081 } else { 4082 Ordered = false; 4083 // An unordered comparison will return true when given a NaN, so it 4084 // returns the LHS. 4085 if (LHSSafe) 4086 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4087 NaNBehavior = SPNB_RETURNS_OTHER; 4088 else if (RHSSafe) 4089 NaNBehavior = SPNB_RETURNS_NAN; 4090 else 4091 // Completely unsafe. 4092 return {SPF_UNKNOWN, SPNB_NA, false}; 4093 } 4094 } 4095 4096 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4097 std::swap(CmpLHS, CmpRHS); 4098 Pred = CmpInst::getSwappedPredicate(Pred); 4099 if (NaNBehavior == SPNB_RETURNS_NAN) 4100 NaNBehavior = SPNB_RETURNS_OTHER; 4101 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4102 NaNBehavior = SPNB_RETURNS_NAN; 4103 Ordered = !Ordered; 4104 } 4105 4106 // ([if]cmp X, Y) ? X : Y 4107 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4108 switch (Pred) { 4109 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4110 case ICmpInst::ICMP_UGT: 4111 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4112 case ICmpInst::ICMP_SGT: 4113 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4114 case ICmpInst::ICMP_ULT: 4115 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4116 case ICmpInst::ICMP_SLT: 4117 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4118 case FCmpInst::FCMP_UGT: 4119 case FCmpInst::FCMP_UGE: 4120 case FCmpInst::FCMP_OGT: 4121 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4122 case FCmpInst::FCMP_ULT: 4123 case FCmpInst::FCMP_ULE: 4124 case FCmpInst::FCMP_OLT: 4125 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4126 } 4127 } 4128 4129 const APInt *C1; 4130 if (match(CmpRHS, m_APInt(C1))) { 4131 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4132 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4133 4134 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4135 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4136 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4137 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4138 } 4139 4140 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4141 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4142 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4143 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4144 } 4145 } 4146 } 4147 4148 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4149 } 4150 4151 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4152 Instruction::CastOps *CastOp) { 4153 auto *Cast1 = dyn_cast<CastInst>(V1); 4154 if (!Cast1) 4155 return nullptr; 4156 4157 *CastOp = Cast1->getOpcode(); 4158 Type *SrcTy = Cast1->getSrcTy(); 4159 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4160 // If V1 and V2 are both the same cast from the same type, look through V1. 4161 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4162 return Cast2->getOperand(0); 4163 return nullptr; 4164 } 4165 4166 auto *C = dyn_cast<Constant>(V2); 4167 if (!C) 4168 return nullptr; 4169 4170 Constant *CastedTo = nullptr; 4171 switch (*CastOp) { 4172 case Instruction::ZExt: 4173 if (CmpI->isUnsigned()) 4174 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4175 break; 4176 case Instruction::SExt: 4177 if (CmpI->isSigned()) 4178 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4179 break; 4180 case Instruction::Trunc: 4181 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4182 break; 4183 case Instruction::FPTrunc: 4184 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4185 break; 4186 case Instruction::FPExt: 4187 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4188 break; 4189 case Instruction::FPToUI: 4190 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4191 break; 4192 case Instruction::FPToSI: 4193 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4194 break; 4195 case Instruction::UIToFP: 4196 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4197 break; 4198 case Instruction::SIToFP: 4199 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4200 break; 4201 default: 4202 break; 4203 } 4204 4205 if (!CastedTo) 4206 return nullptr; 4207 4208 // Make sure the cast doesn't lose any information. 4209 Constant *CastedBack = 4210 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4211 if (CastedBack != C) 4212 return nullptr; 4213 4214 return CastedTo; 4215 } 4216 4217 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4218 Instruction::CastOps *CastOp) { 4219 SelectInst *SI = dyn_cast<SelectInst>(V); 4220 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4221 4222 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4223 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4224 4225 CmpInst::Predicate Pred = CmpI->getPredicate(); 4226 Value *CmpLHS = CmpI->getOperand(0); 4227 Value *CmpRHS = CmpI->getOperand(1); 4228 Value *TrueVal = SI->getTrueValue(); 4229 Value *FalseVal = SI->getFalseValue(); 4230 FastMathFlags FMF; 4231 if (isa<FPMathOperator>(CmpI)) 4232 FMF = CmpI->getFastMathFlags(); 4233 4234 // Bail out early. 4235 if (CmpI->isEquality()) 4236 return {SPF_UNKNOWN, SPNB_NA, false}; 4237 4238 // Deal with type mismatches. 4239 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4240 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4241 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4242 cast<CastInst>(TrueVal)->getOperand(0), C, 4243 LHS, RHS); 4244 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4245 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4246 C, cast<CastInst>(FalseVal)->getOperand(0), 4247 LHS, RHS); 4248 } 4249 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4250 LHS, RHS); 4251 } 4252 4253 /// Return true if "icmp Pred LHS RHS" is always true. 4254 static bool isTruePredicate(CmpInst::Predicate Pred, 4255 const Value *LHS, const Value *RHS, 4256 const DataLayout &DL, unsigned Depth, 4257 AssumptionCache *AC, const Instruction *CxtI, 4258 const DominatorTree *DT) { 4259 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4260 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4261 return true; 4262 4263 switch (Pred) { 4264 default: 4265 return false; 4266 4267 case CmpInst::ICMP_SLE: { 4268 const APInt *C; 4269 4270 // LHS s<= LHS +_{nsw} C if C >= 0 4271 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4272 return !C->isNegative(); 4273 return false; 4274 } 4275 4276 case CmpInst::ICMP_ULE: { 4277 const APInt *C; 4278 4279 // LHS u<= LHS +_{nuw} C for any C 4280 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4281 return true; 4282 4283 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4284 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4285 const Value *&X, 4286 const APInt *&CA, const APInt *&CB) { 4287 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4288 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4289 return true; 4290 4291 // If X & C == 0 then (X | C) == X +_{nuw} C 4292 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4293 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4294 unsigned BitWidth = CA->getBitWidth(); 4295 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4296 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4297 4298 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4299 return true; 4300 } 4301 4302 return false; 4303 }; 4304 4305 const Value *X; 4306 const APInt *CLHS, *CRHS; 4307 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4308 return CLHS->ule(*CRHS); 4309 4310 return false; 4311 } 4312 } 4313 } 4314 4315 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4316 /// ALHS ARHS" is true. Otherwise, return None. 4317 static Optional<bool> 4318 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4319 const Value *ARHS, const Value *BLHS, 4320 const Value *BRHS, const DataLayout &DL, 4321 unsigned Depth, AssumptionCache *AC, 4322 const Instruction *CxtI, const DominatorTree *DT) { 4323 switch (Pred) { 4324 default: 4325 return None; 4326 4327 case CmpInst::ICMP_SLT: 4328 case CmpInst::ICMP_SLE: 4329 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4330 DT) && 4331 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4332 return true; 4333 return None; 4334 4335 case CmpInst::ICMP_ULT: 4336 case CmpInst::ICMP_ULE: 4337 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4338 DT) && 4339 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4340 return true; 4341 return None; 4342 } 4343 } 4344 4345 /// Return true if the operands of the two compares match. IsSwappedOps is true 4346 /// when the operands match, but are swapped. 4347 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4348 const Value *BLHS, const Value *BRHS, 4349 bool &IsSwappedOps) { 4350 4351 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4352 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4353 return IsMatchingOps || IsSwappedOps; 4354 } 4355 4356 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4357 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4358 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4359 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4360 const Value *ALHS, 4361 const Value *ARHS, 4362 CmpInst::Predicate BPred, 4363 const Value *BLHS, 4364 const Value *BRHS, 4365 bool IsSwappedOps) { 4366 // Canonicalize the operands so they're matching. 4367 if (IsSwappedOps) { 4368 std::swap(BLHS, BRHS); 4369 BPred = ICmpInst::getSwappedPredicate(BPred); 4370 } 4371 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4372 return true; 4373 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4374 return false; 4375 4376 return None; 4377 } 4378 4379 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4380 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4381 /// C2" is false. Otherwise, return None if we can't infer anything. 4382 static Optional<bool> 4383 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4384 const ConstantInt *C1, 4385 CmpInst::Predicate BPred, 4386 const Value *BLHS, const ConstantInt *C2) { 4387 assert(ALHS == BLHS && "LHS operands must match."); 4388 ConstantRange DomCR = 4389 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4390 ConstantRange CR = 4391 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4392 ConstantRange Intersection = DomCR.intersectWith(CR); 4393 ConstantRange Difference = DomCR.difference(CR); 4394 if (Intersection.isEmptySet()) 4395 return false; 4396 if (Difference.isEmptySet()) 4397 return true; 4398 return None; 4399 } 4400 4401 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4402 const DataLayout &DL, bool InvertAPred, 4403 unsigned Depth, AssumptionCache *AC, 4404 const Instruction *CxtI, 4405 const DominatorTree *DT) { 4406 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4407 if (LHS->getType() != RHS->getType()) 4408 return None; 4409 4410 Type *OpTy = LHS->getType(); 4411 assert(OpTy->getScalarType()->isIntegerTy(1)); 4412 4413 // LHS ==> RHS by definition 4414 if (!InvertAPred && LHS == RHS) 4415 return true; 4416 4417 if (OpTy->isVectorTy()) 4418 // TODO: extending the code below to handle vectors 4419 return None; 4420 assert(OpTy->isIntegerTy(1) && "implied by above"); 4421 4422 ICmpInst::Predicate APred, BPred; 4423 Value *ALHS, *ARHS; 4424 Value *BLHS, *BRHS; 4425 4426 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4427 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4428 return None; 4429 4430 if (InvertAPred) 4431 APred = CmpInst::getInversePredicate(APred); 4432 4433 // Can we infer anything when the two compares have matching operands? 4434 bool IsSwappedOps; 4435 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4436 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4437 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4438 return Implication; 4439 // No amount of additional analysis will infer the second condition, so 4440 // early exit. 4441 return None; 4442 } 4443 4444 // Can we infer anything when the LHS operands match and the RHS operands are 4445 // constants (not necessarily matching)? 4446 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4447 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4448 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4449 cast<ConstantInt>(BRHS))) 4450 return Implication; 4451 // No amount of additional analysis will infer the second condition, so 4452 // early exit. 4453 return None; 4454 } 4455 4456 if (APred == BPred) 4457 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4458 CxtI, DT); 4459 4460 return None; 4461 } 4462