1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getIndexTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 /// If true, it is safe to use metadata during simplification. 122 InstrInfoQuery IIQ; 123 124 unsigned NumExcluded = 0; 125 126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT, bool UseInstrInfo, 128 OptimizationRemarkEmitter *ORE = nullptr) 129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 130 131 Query(const Query &Q, const Value *NewExcl) 132 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 133 NumExcluded(Q.NumExcluded) { 134 Excluded = Q.Excluded; 135 Excluded[NumExcluded++] = NewExcl; 136 assert(NumExcluded <= Excluded.size()); 137 } 138 139 bool isExcluded(const Value *Value) const { 140 if (NumExcluded == 0) 141 return false; 142 auto End = Excluded.begin() + NumExcluded; 143 return std::find(Excluded.begin(), End, Value) != End; 144 } 145 }; 146 147 } // end anonymous namespace 148 149 // Given the provided Value and, potentially, a context instruction, return 150 // the preferred context instruction (if any). 151 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 152 // If we've been provided with a context instruction, then use that (provided 153 // it has been inserted). 154 if (CxtI && CxtI->getParent()) 155 return CxtI; 156 157 // If the value is really an already-inserted instruction, then use that. 158 CxtI = dyn_cast<Instruction>(V); 159 if (CxtI && CxtI->getParent()) 160 return CxtI; 161 162 return nullptr; 163 } 164 165 static void computeKnownBits(const Value *V, KnownBits &Known, 166 unsigned Depth, const Query &Q); 167 168 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 169 const DataLayout &DL, unsigned Depth, 170 AssumptionCache *AC, const Instruction *CxtI, 171 const DominatorTree *DT, 172 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 173 ::computeKnownBits(V, Known, Depth, 174 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 175 } 176 177 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 178 const Query &Q); 179 180 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 181 unsigned Depth, AssumptionCache *AC, 182 const Instruction *CxtI, 183 const DominatorTree *DT, 184 OptimizationRemarkEmitter *ORE, 185 bool UseInstrInfo) { 186 return ::computeKnownBits( 187 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 188 } 189 190 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 191 const DataLayout &DL, AssumptionCache *AC, 192 const Instruction *CxtI, const DominatorTree *DT, 193 bool UseInstrInfo) { 194 assert(LHS->getType() == RHS->getType() && 195 "LHS and RHS should have the same type"); 196 assert(LHS->getType()->isIntOrIntVectorTy() && 197 "LHS and RHS should be integers"); 198 // Look for an inverted mask: (X & ~M) op (Y & M). 199 Value *M; 200 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 201 match(RHS, m_c_And(m_Specific(M), m_Value()))) 202 return true; 203 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 204 match(LHS, m_c_And(m_Specific(M), m_Value()))) 205 return true; 206 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 207 KnownBits LHSKnown(IT->getBitWidth()); 208 KnownBits RHSKnown(IT->getBitWidth()); 209 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 210 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 211 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 212 } 213 214 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 215 for (const User *U : CxtI->users()) { 216 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 217 if (IC->isEquality()) 218 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 219 if (C->isNullValue()) 220 continue; 221 return false; 222 } 223 return true; 224 } 225 226 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 227 const Query &Q); 228 229 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 230 bool OrZero, unsigned Depth, 231 AssumptionCache *AC, const Instruction *CxtI, 232 const DominatorTree *DT, bool UseInstrInfo) { 233 return ::isKnownToBeAPowerOfTwo( 234 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 235 } 236 237 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 238 239 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, bool UseInstrInfo) { 242 return ::isKnownNonZero(V, Depth, 243 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 244 } 245 246 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, const DominatorTree *DT, 249 bool UseInstrInfo) { 250 KnownBits Known = 251 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 252 return Known.isNonNegative(); 253 } 254 255 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, bool UseInstrInfo) { 258 if (auto *CI = dyn_cast<ConstantInt>(V)) 259 return CI->getValue().isStrictlyPositive(); 260 261 // TODO: We'd doing two recursive queries here. We should factor this such 262 // that only a single query is needed. 263 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 264 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 265 } 266 267 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 268 AssumptionCache *AC, const Instruction *CxtI, 269 const DominatorTree *DT, bool UseInstrInfo) { 270 KnownBits Known = 271 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 272 return Known.isNegative(); 273 } 274 275 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 276 277 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 278 const DataLayout &DL, AssumptionCache *AC, 279 const Instruction *CxtI, const DominatorTree *DT, 280 bool UseInstrInfo) { 281 return ::isKnownNonEqual(V1, V2, 282 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 283 UseInstrInfo, /*ORE=*/nullptr)); 284 } 285 286 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 287 const Query &Q); 288 289 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 290 const DataLayout &DL, unsigned Depth, 291 AssumptionCache *AC, const Instruction *CxtI, 292 const DominatorTree *DT, bool UseInstrInfo) { 293 return ::MaskedValueIsZero( 294 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 295 } 296 297 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 298 const Query &Q); 299 300 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 301 unsigned Depth, AssumptionCache *AC, 302 const Instruction *CxtI, 303 const DominatorTree *DT, bool UseInstrInfo) { 304 return ::ComputeNumSignBits( 305 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 306 } 307 308 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 309 bool NSW, 310 KnownBits &KnownOut, KnownBits &Known2, 311 unsigned Depth, const Query &Q) { 312 unsigned BitWidth = KnownOut.getBitWidth(); 313 314 // If an initial sequence of bits in the result is not needed, the 315 // corresponding bits in the operands are not needed. 316 KnownBits LHSKnown(BitWidth); 317 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 318 computeKnownBits(Op1, Known2, Depth + 1, Q); 319 320 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 321 } 322 323 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 324 KnownBits &Known, KnownBits &Known2, 325 unsigned Depth, const Query &Q) { 326 unsigned BitWidth = Known.getBitWidth(); 327 computeKnownBits(Op1, Known, Depth + 1, Q); 328 computeKnownBits(Op0, Known2, Depth + 1, Q); 329 330 bool isKnownNegative = false; 331 bool isKnownNonNegative = false; 332 // If the multiplication is known not to overflow, compute the sign bit. 333 if (NSW) { 334 if (Op0 == Op1) { 335 // The product of a number with itself is non-negative. 336 isKnownNonNegative = true; 337 } else { 338 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 339 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 340 bool isKnownNegativeOp1 = Known.isNegative(); 341 bool isKnownNegativeOp0 = Known2.isNegative(); 342 // The product of two numbers with the same sign is non-negative. 343 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 344 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 345 // The product of a negative number and a non-negative number is either 346 // negative or zero. 347 if (!isKnownNonNegative) 348 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 349 isKnownNonZero(Op0, Depth, Q)) || 350 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 351 isKnownNonZero(Op1, Depth, Q)); 352 } 353 } 354 355 assert(!Known.hasConflict() && !Known2.hasConflict()); 356 // Compute a conservative estimate for high known-0 bits. 357 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 358 Known2.countMinLeadingZeros(), 359 BitWidth) - BitWidth; 360 LeadZ = std::min(LeadZ, BitWidth); 361 362 // The result of the bottom bits of an integer multiply can be 363 // inferred by looking at the bottom bits of both operands and 364 // multiplying them together. 365 // We can infer at least the minimum number of known trailing bits 366 // of both operands. Depending on number of trailing zeros, we can 367 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 368 // a and b are divisible by m and n respectively. 369 // We then calculate how many of those bits are inferrable and set 370 // the output. For example, the i8 mul: 371 // a = XXXX1100 (12) 372 // b = XXXX1110 (14) 373 // We know the bottom 3 bits are zero since the first can be divided by 374 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 375 // Applying the multiplication to the trimmed arguments gets: 376 // XX11 (3) 377 // X111 (7) 378 // ------- 379 // XX11 380 // XX11 381 // XX11 382 // XX11 383 // ------- 384 // XXXXX01 385 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 386 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 387 // The proof for this can be described as: 388 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 389 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 390 // umin(countTrailingZeros(C2), C6) + 391 // umin(C5 - umin(countTrailingZeros(C1), C5), 392 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 393 // %aa = shl i8 %a, C5 394 // %bb = shl i8 %b, C6 395 // %aaa = or i8 %aa, C1 396 // %bbb = or i8 %bb, C2 397 // %mul = mul i8 %aaa, %bbb 398 // %mask = and i8 %mul, C7 399 // => 400 // %mask = i8 ((C1*C2)&C7) 401 // Where C5, C6 describe the known bits of %a, %b 402 // C1, C2 describe the known bottom bits of %a, %b. 403 // C7 describes the mask of the known bits of the result. 404 APInt Bottom0 = Known.One; 405 APInt Bottom1 = Known2.One; 406 407 // How many times we'd be able to divide each argument by 2 (shr by 1). 408 // This gives us the number of trailing zeros on the multiplication result. 409 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 410 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 411 unsigned TrailZero0 = Known.countMinTrailingZeros(); 412 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 413 unsigned TrailZ = TrailZero0 + TrailZero1; 414 415 // Figure out the fewest known-bits operand. 416 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 417 TrailBitsKnown1 - TrailZero1); 418 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 419 420 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 421 Bottom1.getLoBits(TrailBitsKnown1); 422 423 Known.resetAll(); 424 Known.Zero.setHighBits(LeadZ); 425 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 426 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 427 428 // Only make use of no-wrap flags if we failed to compute the sign bit 429 // directly. This matters if the multiplication always overflows, in 430 // which case we prefer to follow the result of the direct computation, 431 // though as the program is invoking undefined behaviour we can choose 432 // whatever we like here. 433 if (isKnownNonNegative && !Known.isNegative()) 434 Known.makeNonNegative(); 435 else if (isKnownNegative && !Known.isNonNegative()) 436 Known.makeNegative(); 437 } 438 439 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 440 KnownBits &Known) { 441 unsigned BitWidth = Known.getBitWidth(); 442 unsigned NumRanges = Ranges.getNumOperands() / 2; 443 assert(NumRanges >= 1); 444 445 Known.Zero.setAllBits(); 446 Known.One.setAllBits(); 447 448 for (unsigned i = 0; i < NumRanges; ++i) { 449 ConstantInt *Lower = 450 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 451 ConstantInt *Upper = 452 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 453 ConstantRange Range(Lower->getValue(), Upper->getValue()); 454 455 // The first CommonPrefixBits of all values in Range are equal. 456 unsigned CommonPrefixBits = 457 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 458 459 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 460 Known.One &= Range.getUnsignedMax() & Mask; 461 Known.Zero &= ~Range.getUnsignedMax() & Mask; 462 } 463 } 464 465 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 466 SmallVector<const Value *, 16> WorkSet(1, I); 467 SmallPtrSet<const Value *, 32> Visited; 468 SmallPtrSet<const Value *, 16> EphValues; 469 470 // The instruction defining an assumption's condition itself is always 471 // considered ephemeral to that assumption (even if it has other 472 // non-ephemeral users). See r246696's test case for an example. 473 if (is_contained(I->operands(), E)) 474 return true; 475 476 while (!WorkSet.empty()) { 477 const Value *V = WorkSet.pop_back_val(); 478 if (!Visited.insert(V).second) 479 continue; 480 481 // If all uses of this value are ephemeral, then so is this value. 482 if (llvm::all_of(V->users(), [&](const User *U) { 483 return EphValues.count(U); 484 })) { 485 if (V == E) 486 return true; 487 488 if (V == I || isSafeToSpeculativelyExecute(V)) { 489 EphValues.insert(V); 490 if (const User *U = dyn_cast<User>(V)) 491 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 492 J != JE; ++J) 493 WorkSet.push_back(*J); 494 } 495 } 496 } 497 498 return false; 499 } 500 501 // Is this an intrinsic that cannot be speculated but also cannot trap? 502 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 503 if (const CallInst *CI = dyn_cast<CallInst>(I)) 504 if (Function *F = CI->getCalledFunction()) 505 switch (F->getIntrinsicID()) { 506 default: break; 507 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 508 case Intrinsic::assume: 509 case Intrinsic::sideeffect: 510 case Intrinsic::dbg_declare: 511 case Intrinsic::dbg_value: 512 case Intrinsic::dbg_label: 513 case Intrinsic::invariant_start: 514 case Intrinsic::invariant_end: 515 case Intrinsic::lifetime_start: 516 case Intrinsic::lifetime_end: 517 case Intrinsic::objectsize: 518 case Intrinsic::ptr_annotation: 519 case Intrinsic::var_annotation: 520 return true; 521 } 522 523 return false; 524 } 525 526 bool llvm::isValidAssumeForContext(const Instruction *Inv, 527 const Instruction *CxtI, 528 const DominatorTree *DT) { 529 // There are two restrictions on the use of an assume: 530 // 1. The assume must dominate the context (or the control flow must 531 // reach the assume whenever it reaches the context). 532 // 2. The context must not be in the assume's set of ephemeral values 533 // (otherwise we will use the assume to prove that the condition 534 // feeding the assume is trivially true, thus causing the removal of 535 // the assume). 536 537 if (DT) { 538 if (DT->dominates(Inv, CxtI)) 539 return true; 540 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 541 // We don't have a DT, but this trivially dominates. 542 return true; 543 } 544 545 // With or without a DT, the only remaining case we will check is if the 546 // instructions are in the same BB. Give up if that is not the case. 547 if (Inv->getParent() != CxtI->getParent()) 548 return false; 549 550 // If we have a dom tree, then we now know that the assume doesn't dominate 551 // the other instruction. If we don't have a dom tree then we can check if 552 // the assume is first in the BB. 553 if (!DT) { 554 // Search forward from the assume until we reach the context (or the end 555 // of the block); the common case is that the assume will come first. 556 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 557 IE = Inv->getParent()->end(); I != IE; ++I) 558 if (&*I == CxtI) 559 return true; 560 } 561 562 // The context comes first, but they're both in the same block. Make sure 563 // there is nothing in between that might interrupt the control flow. 564 for (BasicBlock::const_iterator I = 565 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 566 I != IE; ++I) 567 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 568 return false; 569 570 return !isEphemeralValueOf(Inv, CxtI); 571 } 572 573 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 574 unsigned Depth, const Query &Q) { 575 // Use of assumptions is context-sensitive. If we don't have a context, we 576 // cannot use them! 577 if (!Q.AC || !Q.CxtI) 578 return; 579 580 unsigned BitWidth = Known.getBitWidth(); 581 582 // Note that the patterns below need to be kept in sync with the code 583 // in AssumptionCache::updateAffectedValues. 584 585 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 586 if (!AssumeVH) 587 continue; 588 CallInst *I = cast<CallInst>(AssumeVH); 589 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 590 "Got assumption for the wrong function!"); 591 if (Q.isExcluded(I)) 592 continue; 593 594 // Warning: This loop can end up being somewhat performance sensitive. 595 // We're running this loop for once for each value queried resulting in a 596 // runtime of ~O(#assumes * #values). 597 598 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 599 "must be an assume intrinsic"); 600 601 Value *Arg = I->getArgOperand(0); 602 603 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 604 assert(BitWidth == 1 && "assume operand is not i1?"); 605 Known.setAllOnes(); 606 return; 607 } 608 if (match(Arg, m_Not(m_Specific(V))) && 609 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 610 assert(BitWidth == 1 && "assume operand is not i1?"); 611 Known.setAllZero(); 612 return; 613 } 614 615 // The remaining tests are all recursive, so bail out if we hit the limit. 616 if (Depth == MaxDepth) 617 continue; 618 619 Value *A, *B; 620 auto m_V = m_CombineOr(m_Specific(V), 621 m_CombineOr(m_PtrToInt(m_Specific(V)), 622 m_BitCast(m_Specific(V)))); 623 624 CmpInst::Predicate Pred; 625 uint64_t C; 626 // assume(v = a) 627 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 628 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 629 KnownBits RHSKnown(BitWidth); 630 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 631 Known.Zero |= RHSKnown.Zero; 632 Known.One |= RHSKnown.One; 633 // assume(v & b = a) 634 } else if (match(Arg, 635 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 636 Pred == ICmpInst::ICMP_EQ && 637 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 638 KnownBits RHSKnown(BitWidth); 639 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 640 KnownBits MaskKnown(BitWidth); 641 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 642 643 // For those bits in the mask that are known to be one, we can propagate 644 // known bits from the RHS to V. 645 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 646 Known.One |= RHSKnown.One & MaskKnown.One; 647 // assume(~(v & b) = a) 648 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 649 m_Value(A))) && 650 Pred == ICmpInst::ICMP_EQ && 651 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 652 KnownBits RHSKnown(BitWidth); 653 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 654 KnownBits MaskKnown(BitWidth); 655 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 656 657 // For those bits in the mask that are known to be one, we can propagate 658 // inverted known bits from the RHS to V. 659 Known.Zero |= RHSKnown.One & MaskKnown.One; 660 Known.One |= RHSKnown.Zero & MaskKnown.One; 661 // assume(v | b = a) 662 } else if (match(Arg, 663 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 664 Pred == ICmpInst::ICMP_EQ && 665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 666 KnownBits RHSKnown(BitWidth); 667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 668 KnownBits BKnown(BitWidth); 669 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 670 671 // For those bits in B that are known to be zero, we can propagate known 672 // bits from the RHS to V. 673 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 674 Known.One |= RHSKnown.One & BKnown.Zero; 675 // assume(~(v | b) = a) 676 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 677 m_Value(A))) && 678 Pred == ICmpInst::ICMP_EQ && 679 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 680 KnownBits RHSKnown(BitWidth); 681 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 682 KnownBits BKnown(BitWidth); 683 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 684 685 // For those bits in B that are known to be zero, we can propagate 686 // inverted known bits from the RHS to V. 687 Known.Zero |= RHSKnown.One & BKnown.Zero; 688 Known.One |= RHSKnown.Zero & BKnown.Zero; 689 // assume(v ^ b = a) 690 } else if (match(Arg, 691 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 KnownBits RHSKnown(BitWidth); 695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 696 KnownBits BKnown(BitWidth); 697 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 698 699 // For those bits in B that are known to be zero, we can propagate known 700 // bits from the RHS to V. For those bits in B that are known to be one, 701 // we can propagate inverted known bits from the RHS to V. 702 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 703 Known.One |= RHSKnown.One & BKnown.Zero; 704 Known.Zero |= RHSKnown.One & BKnown.One; 705 Known.One |= RHSKnown.Zero & BKnown.One; 706 // assume(~(v ^ b) = a) 707 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 708 m_Value(A))) && 709 Pred == ICmpInst::ICMP_EQ && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 KnownBits RHSKnown(BitWidth); 712 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 713 KnownBits BKnown(BitWidth); 714 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 715 716 // For those bits in B that are known to be zero, we can propagate 717 // inverted known bits from the RHS to V. For those bits in B that are 718 // known to be one, we can propagate known bits from the RHS to V. 719 Known.Zero |= RHSKnown.One & BKnown.Zero; 720 Known.One |= RHSKnown.Zero & BKnown.Zero; 721 Known.Zero |= RHSKnown.Zero & BKnown.One; 722 Known.One |= RHSKnown.One & BKnown.One; 723 // assume(v << c = a) 724 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 725 m_Value(A))) && 726 Pred == ICmpInst::ICMP_EQ && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 728 C < BitWidth) { 729 KnownBits RHSKnown(BitWidth); 730 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 731 // For those bits in RHS that are known, we can propagate them to known 732 // bits in V shifted to the right by C. 733 RHSKnown.Zero.lshrInPlace(C); 734 Known.Zero |= RHSKnown.Zero; 735 RHSKnown.One.lshrInPlace(C); 736 Known.One |= RHSKnown.One; 737 // assume(~(v << c) = a) 738 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 739 m_Value(A))) && 740 Pred == ICmpInst::ICMP_EQ && 741 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 742 C < BitWidth) { 743 KnownBits RHSKnown(BitWidth); 744 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 745 // For those bits in RHS that are known, we can propagate them inverted 746 // to known bits in V shifted to the right by C. 747 RHSKnown.One.lshrInPlace(C); 748 Known.Zero |= RHSKnown.One; 749 RHSKnown.Zero.lshrInPlace(C); 750 Known.One |= RHSKnown.Zero; 751 // assume(v >> c = a) 752 } else if (match(Arg, 753 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 754 m_Value(A))) && 755 Pred == ICmpInst::ICMP_EQ && 756 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 757 C < BitWidth) { 758 KnownBits RHSKnown(BitWidth); 759 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 760 // For those bits in RHS that are known, we can propagate them to known 761 // bits in V shifted to the right by C. 762 Known.Zero |= RHSKnown.Zero << C; 763 Known.One |= RHSKnown.One << C; 764 // assume(~(v >> c) = a) 765 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 766 m_Value(A))) && 767 Pred == ICmpInst::ICMP_EQ && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 769 C < BitWidth) { 770 KnownBits RHSKnown(BitWidth); 771 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 772 // For those bits in RHS that are known, we can propagate them inverted 773 // to known bits in V shifted to the right by C. 774 Known.Zero |= RHSKnown.One << C; 775 Known.One |= RHSKnown.Zero << C; 776 // assume(v >=_s c) where c is non-negative 777 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 778 Pred == ICmpInst::ICMP_SGE && 779 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 780 KnownBits RHSKnown(BitWidth); 781 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 782 783 if (RHSKnown.isNonNegative()) { 784 // We know that the sign bit is zero. 785 Known.makeNonNegative(); 786 } 787 // assume(v >_s c) where c is at least -1. 788 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 789 Pred == ICmpInst::ICMP_SGT && 790 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 791 KnownBits RHSKnown(BitWidth); 792 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 793 794 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 795 // We know that the sign bit is zero. 796 Known.makeNonNegative(); 797 } 798 // assume(v <=_s c) where c is negative 799 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 800 Pred == ICmpInst::ICMP_SLE && 801 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 802 KnownBits RHSKnown(BitWidth); 803 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 804 805 if (RHSKnown.isNegative()) { 806 // We know that the sign bit is one. 807 Known.makeNegative(); 808 } 809 // assume(v <_s c) where c is non-positive 810 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 811 Pred == ICmpInst::ICMP_SLT && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown(BitWidth); 814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 815 816 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 817 // We know that the sign bit is one. 818 Known.makeNegative(); 819 } 820 // assume(v <=_u c) 821 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 822 Pred == ICmpInst::ICMP_ULE && 823 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 824 KnownBits RHSKnown(BitWidth); 825 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 826 827 // Whatever high bits in c are zero are known to be zero. 828 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 829 // assume(v <_u c) 830 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 831 Pred == ICmpInst::ICMP_ULT && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown(BitWidth); 834 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 835 836 // If the RHS is known zero, then this assumption must be wrong (nothing 837 // is unsigned less than zero). Signal a conflict and get out of here. 838 if (RHSKnown.isZero()) { 839 Known.Zero.setAllBits(); 840 Known.One.setAllBits(); 841 break; 842 } 843 844 // Whatever high bits in c are zero are known to be zero (if c is a power 845 // of 2, then one more). 846 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 847 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 848 else 849 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 850 } 851 } 852 853 // If assumptions conflict with each other or previous known bits, then we 854 // have a logical fallacy. It's possible that the assumption is not reachable, 855 // so this isn't a real bug. On the other hand, the program may have undefined 856 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 857 // clear out the known bits, try to warn the user, and hope for the best. 858 if (Known.Zero.intersects(Known.One)) { 859 Known.resetAll(); 860 861 if (Q.ORE) 862 Q.ORE->emit([&]() { 863 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 864 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 865 CxtI) 866 << "Detected conflicting code assumptions. Program may " 867 "have undefined behavior, or compiler may have " 868 "internal error."; 869 }); 870 } 871 } 872 873 /// Compute known bits from a shift operator, including those with a 874 /// non-constant shift amount. Known is the output of this function. Known2 is a 875 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 876 /// operator-specific functions that, given the known-zero or known-one bits 877 /// respectively, and a shift amount, compute the implied known-zero or 878 /// known-one bits of the shift operator's result respectively for that shift 879 /// amount. The results from calling KZF and KOF are conservatively combined for 880 /// all permitted shift amounts. 881 static void computeKnownBitsFromShiftOperator( 882 const Operator *I, KnownBits &Known, KnownBits &Known2, 883 unsigned Depth, const Query &Q, 884 function_ref<APInt(const APInt &, unsigned)> KZF, 885 function_ref<APInt(const APInt &, unsigned)> KOF) { 886 unsigned BitWidth = Known.getBitWidth(); 887 888 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 889 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 890 891 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 892 Known.Zero = KZF(Known.Zero, ShiftAmt); 893 Known.One = KOF(Known.One, ShiftAmt); 894 // If the known bits conflict, this must be an overflowing left shift, so 895 // the shift result is poison. We can return anything we want. Choose 0 for 896 // the best folding opportunity. 897 if (Known.hasConflict()) 898 Known.setAllZero(); 899 900 return; 901 } 902 903 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 904 905 // If the shift amount could be greater than or equal to the bit-width of the 906 // LHS, the value could be poison, but bail out because the check below is 907 // expensive. TODO: Should we just carry on? 908 if ((~Known.Zero).uge(BitWidth)) { 909 Known.resetAll(); 910 return; 911 } 912 913 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 914 // BitWidth > 64 and any upper bits are known, we'll end up returning the 915 // limit value (which implies all bits are known). 916 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 917 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 918 919 // It would be more-clearly correct to use the two temporaries for this 920 // calculation. Reusing the APInts here to prevent unnecessary allocations. 921 Known.resetAll(); 922 923 // If we know the shifter operand is nonzero, we can sometimes infer more 924 // known bits. However this is expensive to compute, so be lazy about it and 925 // only compute it when absolutely necessary. 926 Optional<bool> ShifterOperandIsNonZero; 927 928 // Early exit if we can't constrain any well-defined shift amount. 929 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 930 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 931 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 932 if (!*ShifterOperandIsNonZero) 933 return; 934 } 935 936 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 937 938 Known.Zero.setAllBits(); 939 Known.One.setAllBits(); 940 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 941 // Combine the shifted known input bits only for those shift amounts 942 // compatible with its known constraints. 943 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 944 continue; 945 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 946 continue; 947 // If we know the shifter is nonzero, we may be able to infer more known 948 // bits. This check is sunk down as far as possible to avoid the expensive 949 // call to isKnownNonZero if the cheaper checks above fail. 950 if (ShiftAmt == 0) { 951 if (!ShifterOperandIsNonZero.hasValue()) 952 ShifterOperandIsNonZero = 953 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 954 if (*ShifterOperandIsNonZero) 955 continue; 956 } 957 958 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 959 Known.One &= KOF(Known2.One, ShiftAmt); 960 } 961 962 // If the known bits conflict, the result is poison. Return a 0 and hope the 963 // caller can further optimize that. 964 if (Known.hasConflict()) 965 Known.setAllZero(); 966 } 967 968 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 969 unsigned Depth, const Query &Q) { 970 unsigned BitWidth = Known.getBitWidth(); 971 972 KnownBits Known2(Known); 973 switch (I->getOpcode()) { 974 default: break; 975 case Instruction::Load: 976 if (MDNode *MD = 977 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 978 computeKnownBitsFromRangeMetadata(*MD, Known); 979 break; 980 case Instruction::And: { 981 // If either the LHS or the RHS are Zero, the result is zero. 982 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 983 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 984 985 // Output known-1 bits are only known if set in both the LHS & RHS. 986 Known.One &= Known2.One; 987 // Output known-0 are known to be clear if zero in either the LHS | RHS. 988 Known.Zero |= Known2.Zero; 989 990 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 991 // here we handle the more general case of adding any odd number by 992 // matching the form add(x, add(x, y)) where y is odd. 993 // TODO: This could be generalized to clearing any bit set in y where the 994 // following bit is known to be unset in y. 995 Value *X = nullptr, *Y = nullptr; 996 if (!Known.Zero[0] && !Known.One[0] && 997 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 998 Known2.resetAll(); 999 computeKnownBits(Y, Known2, Depth + 1, Q); 1000 if (Known2.countMinTrailingOnes() > 0) 1001 Known.Zero.setBit(0); 1002 } 1003 break; 1004 } 1005 case Instruction::Or: 1006 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1007 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1008 1009 // Output known-0 bits are only known if clear in both the LHS & RHS. 1010 Known.Zero &= Known2.Zero; 1011 // Output known-1 are known to be set if set in either the LHS | RHS. 1012 Known.One |= Known2.One; 1013 break; 1014 case Instruction::Xor: { 1015 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1016 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1017 1018 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1019 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1020 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1021 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1022 Known.Zero = std::move(KnownZeroOut); 1023 break; 1024 } 1025 case Instruction::Mul: { 1026 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1027 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1028 Known2, Depth, Q); 1029 break; 1030 } 1031 case Instruction::UDiv: { 1032 // For the purposes of computing leading zeros we can conservatively 1033 // treat a udiv as a logical right shift by the power of 2 known to 1034 // be less than the denominator. 1035 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1036 unsigned LeadZ = Known2.countMinLeadingZeros(); 1037 1038 Known2.resetAll(); 1039 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1040 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1041 if (RHSMaxLeadingZeros != BitWidth) 1042 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1043 1044 Known.Zero.setHighBits(LeadZ); 1045 break; 1046 } 1047 case Instruction::Select: { 1048 const Value *LHS, *RHS; 1049 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1050 if (SelectPatternResult::isMinOrMax(SPF)) { 1051 computeKnownBits(RHS, Known, Depth + 1, Q); 1052 computeKnownBits(LHS, Known2, Depth + 1, Q); 1053 } else { 1054 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1055 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1056 } 1057 1058 unsigned MaxHighOnes = 0; 1059 unsigned MaxHighZeros = 0; 1060 if (SPF == SPF_SMAX) { 1061 // If both sides are negative, the result is negative. 1062 if (Known.isNegative() && Known2.isNegative()) 1063 // We can derive a lower bound on the result by taking the max of the 1064 // leading one bits. 1065 MaxHighOnes = 1066 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1067 // If either side is non-negative, the result is non-negative. 1068 else if (Known.isNonNegative() || Known2.isNonNegative()) 1069 MaxHighZeros = 1; 1070 } else if (SPF == SPF_SMIN) { 1071 // If both sides are non-negative, the result is non-negative. 1072 if (Known.isNonNegative() && Known2.isNonNegative()) 1073 // We can derive an upper bound on the result by taking the max of the 1074 // leading zero bits. 1075 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1076 Known2.countMinLeadingZeros()); 1077 // If either side is negative, the result is negative. 1078 else if (Known.isNegative() || Known2.isNegative()) 1079 MaxHighOnes = 1; 1080 } else if (SPF == SPF_UMAX) { 1081 // We can derive a lower bound on the result by taking the max of the 1082 // leading one bits. 1083 MaxHighOnes = 1084 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1085 } else if (SPF == SPF_UMIN) { 1086 // We can derive an upper bound on the result by taking the max of the 1087 // leading zero bits. 1088 MaxHighZeros = 1089 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1090 } else if (SPF == SPF_ABS) { 1091 // RHS from matchSelectPattern returns the negation part of abs pattern. 1092 // If the negate has an NSW flag we can assume the sign bit of the result 1093 // will be 0 because that makes abs(INT_MIN) undefined. 1094 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1095 MaxHighZeros = 1; 1096 } 1097 1098 // Only known if known in both the LHS and RHS. 1099 Known.One &= Known2.One; 1100 Known.Zero &= Known2.Zero; 1101 if (MaxHighOnes > 0) 1102 Known.One.setHighBits(MaxHighOnes); 1103 if (MaxHighZeros > 0) 1104 Known.Zero.setHighBits(MaxHighZeros); 1105 break; 1106 } 1107 case Instruction::FPTrunc: 1108 case Instruction::FPExt: 1109 case Instruction::FPToUI: 1110 case Instruction::FPToSI: 1111 case Instruction::SIToFP: 1112 case Instruction::UIToFP: 1113 break; // Can't work with floating point. 1114 case Instruction::PtrToInt: 1115 case Instruction::IntToPtr: 1116 // Fall through and handle them the same as zext/trunc. 1117 LLVM_FALLTHROUGH; 1118 case Instruction::ZExt: 1119 case Instruction::Trunc: { 1120 Type *SrcTy = I->getOperand(0)->getType(); 1121 1122 unsigned SrcBitWidth; 1123 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1124 // which fall through here. 1125 Type *ScalarTy = SrcTy->getScalarType(); 1126 SrcBitWidth = ScalarTy->isPointerTy() ? 1127 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1128 Q.DL.getTypeSizeInBits(ScalarTy); 1129 1130 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1131 Known = Known.zextOrTrunc(SrcBitWidth); 1132 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1133 Known = Known.zextOrTrunc(BitWidth); 1134 // Any top bits are known to be zero. 1135 if (BitWidth > SrcBitWidth) 1136 Known.Zero.setBitsFrom(SrcBitWidth); 1137 break; 1138 } 1139 case Instruction::BitCast: { 1140 Type *SrcTy = I->getOperand(0)->getType(); 1141 if (SrcTy->isIntOrPtrTy() && 1142 // TODO: For now, not handling conversions like: 1143 // (bitcast i64 %x to <2 x i32>) 1144 !I->getType()->isVectorTy()) { 1145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1146 break; 1147 } 1148 break; 1149 } 1150 case Instruction::SExt: { 1151 // Compute the bits in the result that are not present in the input. 1152 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1153 1154 Known = Known.trunc(SrcBitWidth); 1155 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1156 // If the sign bit of the input is known set or clear, then we know the 1157 // top bits of the result. 1158 Known = Known.sext(BitWidth); 1159 break; 1160 } 1161 case Instruction::Shl: { 1162 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1163 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1164 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1165 APInt KZResult = KnownZero << ShiftAmt; 1166 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1167 // If this shift has "nsw" keyword, then the result is either a poison 1168 // value or has the same sign bit as the first operand. 1169 if (NSW && KnownZero.isSignBitSet()) 1170 KZResult.setSignBit(); 1171 return KZResult; 1172 }; 1173 1174 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1175 APInt KOResult = KnownOne << ShiftAmt; 1176 if (NSW && KnownOne.isSignBitSet()) 1177 KOResult.setSignBit(); 1178 return KOResult; 1179 }; 1180 1181 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1182 break; 1183 } 1184 case Instruction::LShr: { 1185 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1186 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1187 APInt KZResult = KnownZero.lshr(ShiftAmt); 1188 // High bits known zero. 1189 KZResult.setHighBits(ShiftAmt); 1190 return KZResult; 1191 }; 1192 1193 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1194 return KnownOne.lshr(ShiftAmt); 1195 }; 1196 1197 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1198 break; 1199 } 1200 case Instruction::AShr: { 1201 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1202 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1203 return KnownZero.ashr(ShiftAmt); 1204 }; 1205 1206 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1207 return KnownOne.ashr(ShiftAmt); 1208 }; 1209 1210 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1211 break; 1212 } 1213 case Instruction::Sub: { 1214 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1215 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1216 Known, Known2, Depth, Q); 1217 break; 1218 } 1219 case Instruction::Add: { 1220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1221 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1222 Known, Known2, Depth, Q); 1223 break; 1224 } 1225 case Instruction::SRem: 1226 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1227 APInt RA = Rem->getValue().abs(); 1228 if (RA.isPowerOf2()) { 1229 APInt LowBits = RA - 1; 1230 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1231 1232 // The low bits of the first operand are unchanged by the srem. 1233 Known.Zero = Known2.Zero & LowBits; 1234 Known.One = Known2.One & LowBits; 1235 1236 // If the first operand is non-negative or has all low bits zero, then 1237 // the upper bits are all zero. 1238 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1239 Known.Zero |= ~LowBits; 1240 1241 // If the first operand is negative and not all low bits are zero, then 1242 // the upper bits are all one. 1243 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1244 Known.One |= ~LowBits; 1245 1246 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1247 break; 1248 } 1249 } 1250 1251 // The sign bit is the LHS's sign bit, except when the result of the 1252 // remainder is zero. 1253 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1254 // If it's known zero, our sign bit is also zero. 1255 if (Known2.isNonNegative()) 1256 Known.makeNonNegative(); 1257 1258 break; 1259 case Instruction::URem: { 1260 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1261 const APInt &RA = Rem->getValue(); 1262 if (RA.isPowerOf2()) { 1263 APInt LowBits = (RA - 1); 1264 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1265 Known.Zero |= ~LowBits; 1266 Known.One &= LowBits; 1267 break; 1268 } 1269 } 1270 1271 // Since the result is less than or equal to either operand, any leading 1272 // zero bits in either operand must also exist in the result. 1273 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1274 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1275 1276 unsigned Leaders = 1277 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1278 Known.resetAll(); 1279 Known.Zero.setHighBits(Leaders); 1280 break; 1281 } 1282 1283 case Instruction::Alloca: { 1284 const AllocaInst *AI = cast<AllocaInst>(I); 1285 unsigned Align = AI->getAlignment(); 1286 if (Align == 0) 1287 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1288 1289 if (Align > 0) 1290 Known.Zero.setLowBits(countTrailingZeros(Align)); 1291 break; 1292 } 1293 case Instruction::GetElementPtr: { 1294 // Analyze all of the subscripts of this getelementptr instruction 1295 // to determine if we can prove known low zero bits. 1296 KnownBits LocalKnown(BitWidth); 1297 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1298 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1299 1300 gep_type_iterator GTI = gep_type_begin(I); 1301 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1302 Value *Index = I->getOperand(i); 1303 if (StructType *STy = GTI.getStructTypeOrNull()) { 1304 // Handle struct member offset arithmetic. 1305 1306 // Handle case when index is vector zeroinitializer 1307 Constant *CIndex = cast<Constant>(Index); 1308 if (CIndex->isZeroValue()) 1309 continue; 1310 1311 if (CIndex->getType()->isVectorTy()) 1312 Index = CIndex->getSplatValue(); 1313 1314 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1315 const StructLayout *SL = Q.DL.getStructLayout(STy); 1316 uint64_t Offset = SL->getElementOffset(Idx); 1317 TrailZ = std::min<unsigned>(TrailZ, 1318 countTrailingZeros(Offset)); 1319 } else { 1320 // Handle array index arithmetic. 1321 Type *IndexedTy = GTI.getIndexedType(); 1322 if (!IndexedTy->isSized()) { 1323 TrailZ = 0; 1324 break; 1325 } 1326 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1327 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1328 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1329 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1330 TrailZ = std::min(TrailZ, 1331 unsigned(countTrailingZeros(TypeSize) + 1332 LocalKnown.countMinTrailingZeros())); 1333 } 1334 } 1335 1336 Known.Zero.setLowBits(TrailZ); 1337 break; 1338 } 1339 case Instruction::PHI: { 1340 const PHINode *P = cast<PHINode>(I); 1341 // Handle the case of a simple two-predecessor recurrence PHI. 1342 // There's a lot more that could theoretically be done here, but 1343 // this is sufficient to catch some interesting cases. 1344 if (P->getNumIncomingValues() == 2) { 1345 for (unsigned i = 0; i != 2; ++i) { 1346 Value *L = P->getIncomingValue(i); 1347 Value *R = P->getIncomingValue(!i); 1348 Operator *LU = dyn_cast<Operator>(L); 1349 if (!LU) 1350 continue; 1351 unsigned Opcode = LU->getOpcode(); 1352 // Check for operations that have the property that if 1353 // both their operands have low zero bits, the result 1354 // will have low zero bits. 1355 if (Opcode == Instruction::Add || 1356 Opcode == Instruction::Sub || 1357 Opcode == Instruction::And || 1358 Opcode == Instruction::Or || 1359 Opcode == Instruction::Mul) { 1360 Value *LL = LU->getOperand(0); 1361 Value *LR = LU->getOperand(1); 1362 // Find a recurrence. 1363 if (LL == I) 1364 L = LR; 1365 else if (LR == I) 1366 L = LL; 1367 else 1368 break; 1369 // Ok, we have a PHI of the form L op= R. Check for low 1370 // zero bits. 1371 computeKnownBits(R, Known2, Depth + 1, Q); 1372 1373 // We need to take the minimum number of known bits 1374 KnownBits Known3(Known); 1375 computeKnownBits(L, Known3, Depth + 1, Q); 1376 1377 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1378 Known3.countMinTrailingZeros())); 1379 1380 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1381 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1382 // If initial value of recurrence is nonnegative, and we are adding 1383 // a nonnegative number with nsw, the result can only be nonnegative 1384 // or poison value regardless of the number of times we execute the 1385 // add in phi recurrence. If initial value is negative and we are 1386 // adding a negative number with nsw, the result can only be 1387 // negative or poison value. Similar arguments apply to sub and mul. 1388 // 1389 // (add non-negative, non-negative) --> non-negative 1390 // (add negative, negative) --> negative 1391 if (Opcode == Instruction::Add) { 1392 if (Known2.isNonNegative() && Known3.isNonNegative()) 1393 Known.makeNonNegative(); 1394 else if (Known2.isNegative() && Known3.isNegative()) 1395 Known.makeNegative(); 1396 } 1397 1398 // (sub nsw non-negative, negative) --> non-negative 1399 // (sub nsw negative, non-negative) --> negative 1400 else if (Opcode == Instruction::Sub && LL == I) { 1401 if (Known2.isNonNegative() && Known3.isNegative()) 1402 Known.makeNonNegative(); 1403 else if (Known2.isNegative() && Known3.isNonNegative()) 1404 Known.makeNegative(); 1405 } 1406 1407 // (mul nsw non-negative, non-negative) --> non-negative 1408 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1409 Known3.isNonNegative()) 1410 Known.makeNonNegative(); 1411 } 1412 1413 break; 1414 } 1415 } 1416 } 1417 1418 // Unreachable blocks may have zero-operand PHI nodes. 1419 if (P->getNumIncomingValues() == 0) 1420 break; 1421 1422 // Otherwise take the unions of the known bit sets of the operands, 1423 // taking conservative care to avoid excessive recursion. 1424 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1425 // Skip if every incoming value references to ourself. 1426 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1427 break; 1428 1429 Known.Zero.setAllBits(); 1430 Known.One.setAllBits(); 1431 for (Value *IncValue : P->incoming_values()) { 1432 // Skip direct self references. 1433 if (IncValue == P) continue; 1434 1435 Known2 = KnownBits(BitWidth); 1436 // Recurse, but cap the recursion to one level, because we don't 1437 // want to waste time spinning around in loops. 1438 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1439 Known.Zero &= Known2.Zero; 1440 Known.One &= Known2.One; 1441 // If all bits have been ruled out, there's no need to check 1442 // more operands. 1443 if (!Known.Zero && !Known.One) 1444 break; 1445 } 1446 } 1447 break; 1448 } 1449 case Instruction::Call: 1450 case Instruction::Invoke: 1451 // If range metadata is attached to this call, set known bits from that, 1452 // and then intersect with known bits based on other properties of the 1453 // function. 1454 if (MDNode *MD = 1455 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1456 computeKnownBitsFromRangeMetadata(*MD, Known); 1457 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1458 computeKnownBits(RV, Known2, Depth + 1, Q); 1459 Known.Zero |= Known2.Zero; 1460 Known.One |= Known2.One; 1461 } 1462 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1463 switch (II->getIntrinsicID()) { 1464 default: break; 1465 case Intrinsic::bitreverse: 1466 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1467 Known.Zero |= Known2.Zero.reverseBits(); 1468 Known.One |= Known2.One.reverseBits(); 1469 break; 1470 case Intrinsic::bswap: 1471 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1472 Known.Zero |= Known2.Zero.byteSwap(); 1473 Known.One |= Known2.One.byteSwap(); 1474 break; 1475 case Intrinsic::ctlz: { 1476 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1477 // If we have a known 1, its position is our upper bound. 1478 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1479 // If this call is undefined for 0, the result will be less than 2^n. 1480 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1481 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1482 unsigned LowBits = Log2_32(PossibleLZ)+1; 1483 Known.Zero.setBitsFrom(LowBits); 1484 break; 1485 } 1486 case Intrinsic::cttz: { 1487 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1488 // If we have a known 1, its position is our upper bound. 1489 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1490 // If this call is undefined for 0, the result will be less than 2^n. 1491 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1492 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1493 unsigned LowBits = Log2_32(PossibleTZ)+1; 1494 Known.Zero.setBitsFrom(LowBits); 1495 break; 1496 } 1497 case Intrinsic::ctpop: { 1498 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1499 // We can bound the space the count needs. Also, bits known to be zero 1500 // can't contribute to the population. 1501 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1502 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1503 Known.Zero.setBitsFrom(LowBits); 1504 // TODO: we could bound KnownOne using the lower bound on the number 1505 // of bits which might be set provided by popcnt KnownOne2. 1506 break; 1507 } 1508 case Intrinsic::x86_sse42_crc32_64_64: 1509 Known.Zero.setBitsFrom(32); 1510 break; 1511 } 1512 } 1513 break; 1514 case Instruction::ExtractElement: 1515 // Look through extract element. At the moment we keep this simple and skip 1516 // tracking the specific element. But at least we might find information 1517 // valid for all elements of the vector (for example if vector is sign 1518 // extended, shifted, etc). 1519 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1520 break; 1521 case Instruction::ExtractValue: 1522 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1523 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1524 if (EVI->getNumIndices() != 1) break; 1525 if (EVI->getIndices()[0] == 0) { 1526 switch (II->getIntrinsicID()) { 1527 default: break; 1528 case Intrinsic::uadd_with_overflow: 1529 case Intrinsic::sadd_with_overflow: 1530 computeKnownBitsAddSub(true, II->getArgOperand(0), 1531 II->getArgOperand(1), false, Known, Known2, 1532 Depth, Q); 1533 break; 1534 case Intrinsic::usub_with_overflow: 1535 case Intrinsic::ssub_with_overflow: 1536 computeKnownBitsAddSub(false, II->getArgOperand(0), 1537 II->getArgOperand(1), false, Known, Known2, 1538 Depth, Q); 1539 break; 1540 case Intrinsic::umul_with_overflow: 1541 case Intrinsic::smul_with_overflow: 1542 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1543 Known, Known2, Depth, Q); 1544 break; 1545 } 1546 } 1547 } 1548 } 1549 } 1550 1551 /// Determine which bits of V are known to be either zero or one and return 1552 /// them. 1553 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1554 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1555 computeKnownBits(V, Known, Depth, Q); 1556 return Known; 1557 } 1558 1559 /// Determine which bits of V are known to be either zero or one and return 1560 /// them in the Known bit set. 1561 /// 1562 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1563 /// we cannot optimize based on the assumption that it is zero without changing 1564 /// it to be an explicit zero. If we don't change it to zero, other code could 1565 /// optimized based on the contradictory assumption that it is non-zero. 1566 /// Because instcombine aggressively folds operations with undef args anyway, 1567 /// this won't lose us code quality. 1568 /// 1569 /// This function is defined on values with integer type, values with pointer 1570 /// type, and vectors of integers. In the case 1571 /// where V is a vector, known zero, and known one values are the 1572 /// same width as the vector element, and the bit is set only if it is true 1573 /// for all of the elements in the vector. 1574 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1575 const Query &Q) { 1576 assert(V && "No Value?"); 1577 assert(Depth <= MaxDepth && "Limit Search Depth"); 1578 unsigned BitWidth = Known.getBitWidth(); 1579 1580 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1581 V->getType()->isPtrOrPtrVectorTy()) && 1582 "Not integer or pointer type!"); 1583 1584 Type *ScalarTy = V->getType()->getScalarType(); 1585 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1586 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1587 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1588 (void)BitWidth; 1589 (void)ExpectedWidth; 1590 1591 const APInt *C; 1592 if (match(V, m_APInt(C))) { 1593 // We know all of the bits for a scalar constant or a splat vector constant! 1594 Known.One = *C; 1595 Known.Zero = ~Known.One; 1596 return; 1597 } 1598 // Null and aggregate-zero are all-zeros. 1599 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1600 Known.setAllZero(); 1601 return; 1602 } 1603 // Handle a constant vector by taking the intersection of the known bits of 1604 // each element. 1605 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1606 // We know that CDS must be a vector of integers. Take the intersection of 1607 // each element. 1608 Known.Zero.setAllBits(); Known.One.setAllBits(); 1609 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1610 APInt Elt = CDS->getElementAsAPInt(i); 1611 Known.Zero &= ~Elt; 1612 Known.One &= Elt; 1613 } 1614 return; 1615 } 1616 1617 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1618 // We know that CV must be a vector of integers. Take the intersection of 1619 // each element. 1620 Known.Zero.setAllBits(); Known.One.setAllBits(); 1621 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1622 Constant *Element = CV->getAggregateElement(i); 1623 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1624 if (!ElementCI) { 1625 Known.resetAll(); 1626 return; 1627 } 1628 const APInt &Elt = ElementCI->getValue(); 1629 Known.Zero &= ~Elt; 1630 Known.One &= Elt; 1631 } 1632 return; 1633 } 1634 1635 // Start out not knowing anything. 1636 Known.resetAll(); 1637 1638 // We can't imply anything about undefs. 1639 if (isa<UndefValue>(V)) 1640 return; 1641 1642 // There's no point in looking through other users of ConstantData for 1643 // assumptions. Confirm that we've handled them all. 1644 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1645 1646 // Limit search depth. 1647 // All recursive calls that increase depth must come after this. 1648 if (Depth == MaxDepth) 1649 return; 1650 1651 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1652 // the bits of its aliasee. 1653 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1654 if (!GA->isInterposable()) 1655 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1656 return; 1657 } 1658 1659 if (const Operator *I = dyn_cast<Operator>(V)) 1660 computeKnownBitsFromOperator(I, Known, Depth, Q); 1661 1662 // Aligned pointers have trailing zeros - refine Known.Zero set 1663 if (V->getType()->isPointerTy()) { 1664 unsigned Align = V->getPointerAlignment(Q.DL); 1665 if (Align) 1666 Known.Zero.setLowBits(countTrailingZeros(Align)); 1667 } 1668 1669 // computeKnownBitsFromAssume strictly refines Known. 1670 // Therefore, we run them after computeKnownBitsFromOperator. 1671 1672 // Check whether a nearby assume intrinsic can determine some known bits. 1673 computeKnownBitsFromAssume(V, Known, Depth, Q); 1674 1675 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1676 } 1677 1678 /// Return true if the given value is known to have exactly one 1679 /// bit set when defined. For vectors return true if every element is known to 1680 /// be a power of two when defined. Supports values with integer or pointer 1681 /// types and vectors of integers. 1682 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1683 const Query &Q) { 1684 assert(Depth <= MaxDepth && "Limit Search Depth"); 1685 1686 // Attempt to match against constants. 1687 if (OrZero && match(V, m_Power2OrZero())) 1688 return true; 1689 if (match(V, m_Power2())) 1690 return true; 1691 1692 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1693 // it is shifted off the end then the result is undefined. 1694 if (match(V, m_Shl(m_One(), m_Value()))) 1695 return true; 1696 1697 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1698 // the bottom. If it is shifted off the bottom then the result is undefined. 1699 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1700 return true; 1701 1702 // The remaining tests are all recursive, so bail out if we hit the limit. 1703 if (Depth++ == MaxDepth) 1704 return false; 1705 1706 Value *X = nullptr, *Y = nullptr; 1707 // A shift left or a logical shift right of a power of two is a power of two 1708 // or zero. 1709 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1710 match(V, m_LShr(m_Value(X), m_Value())))) 1711 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1712 1713 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1714 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1715 1716 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1717 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1718 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1719 1720 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1721 // A power of two and'd with anything is a power of two or zero. 1722 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1723 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1724 return true; 1725 // X & (-X) is always a power of two or zero. 1726 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1727 return true; 1728 return false; 1729 } 1730 1731 // Adding a power-of-two or zero to the same power-of-two or zero yields 1732 // either the original power-of-two, a larger power-of-two or zero. 1733 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1734 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1735 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1736 Q.IIQ.hasNoSignedWrap(VOBO)) { 1737 if (match(X, m_And(m_Specific(Y), m_Value())) || 1738 match(X, m_And(m_Value(), m_Specific(Y)))) 1739 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1740 return true; 1741 if (match(Y, m_And(m_Specific(X), m_Value())) || 1742 match(Y, m_And(m_Value(), m_Specific(X)))) 1743 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1744 return true; 1745 1746 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1747 KnownBits LHSBits(BitWidth); 1748 computeKnownBits(X, LHSBits, Depth, Q); 1749 1750 KnownBits RHSBits(BitWidth); 1751 computeKnownBits(Y, RHSBits, Depth, Q); 1752 // If i8 V is a power of two or zero: 1753 // ZeroBits: 1 1 1 0 1 1 1 1 1754 // ~ZeroBits: 0 0 0 1 0 0 0 0 1755 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1756 // If OrZero isn't set, we cannot give back a zero result. 1757 // Make sure either the LHS or RHS has a bit set. 1758 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1759 return true; 1760 } 1761 } 1762 1763 // An exact divide or right shift can only shift off zero bits, so the result 1764 // is a power of two only if the first operand is a power of two and not 1765 // copying a sign bit (sdiv int_min, 2). 1766 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1767 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1768 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1769 Depth, Q); 1770 } 1771 1772 return false; 1773 } 1774 1775 /// Test whether a GEP's result is known to be non-null. 1776 /// 1777 /// Uses properties inherent in a GEP to try to determine whether it is known 1778 /// to be non-null. 1779 /// 1780 /// Currently this routine does not support vector GEPs. 1781 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1782 const Query &Q) { 1783 const Function *F = nullptr; 1784 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1785 F = I->getFunction(); 1786 1787 if (!GEP->isInBounds() || 1788 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1789 return false; 1790 1791 // FIXME: Support vector-GEPs. 1792 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1793 1794 // If the base pointer is non-null, we cannot walk to a null address with an 1795 // inbounds GEP in address space zero. 1796 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1797 return true; 1798 1799 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1800 // If so, then the GEP cannot produce a null pointer, as doing so would 1801 // inherently violate the inbounds contract within address space zero. 1802 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1803 GTI != GTE; ++GTI) { 1804 // Struct types are easy -- they must always be indexed by a constant. 1805 if (StructType *STy = GTI.getStructTypeOrNull()) { 1806 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1807 unsigned ElementIdx = OpC->getZExtValue(); 1808 const StructLayout *SL = Q.DL.getStructLayout(STy); 1809 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1810 if (ElementOffset > 0) 1811 return true; 1812 continue; 1813 } 1814 1815 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1816 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1817 continue; 1818 1819 // Fast path the constant operand case both for efficiency and so we don't 1820 // increment Depth when just zipping down an all-constant GEP. 1821 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1822 if (!OpC->isZero()) 1823 return true; 1824 continue; 1825 } 1826 1827 // We post-increment Depth here because while isKnownNonZero increments it 1828 // as well, when we pop back up that increment won't persist. We don't want 1829 // to recurse 10k times just because we have 10k GEP operands. We don't 1830 // bail completely out because we want to handle constant GEPs regardless 1831 // of depth. 1832 if (Depth++ >= MaxDepth) 1833 continue; 1834 1835 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1836 return true; 1837 } 1838 1839 return false; 1840 } 1841 1842 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1843 const Instruction *CtxI, 1844 const DominatorTree *DT) { 1845 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1846 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1847 1848 if (!CtxI || !DT) 1849 return false; 1850 1851 unsigned NumUsesExplored = 0; 1852 for (auto *U : V->users()) { 1853 // Avoid massive lists 1854 if (NumUsesExplored >= DomConditionsMaxUses) 1855 break; 1856 NumUsesExplored++; 1857 1858 // If the value is used as an argument to a call or invoke, then argument 1859 // attributes may provide an answer about null-ness. 1860 if (auto CS = ImmutableCallSite(U)) 1861 if (auto *CalledFunc = CS.getCalledFunction()) 1862 for (const Argument &Arg : CalledFunc->args()) 1863 if (CS.getArgOperand(Arg.getArgNo()) == V && 1864 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1865 return true; 1866 1867 // Consider only compare instructions uniquely controlling a branch 1868 CmpInst::Predicate Pred; 1869 if (!match(const_cast<User *>(U), 1870 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1871 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1872 continue; 1873 1874 SmallVector<const User *, 4> WorkList; 1875 SmallPtrSet<const User *, 4> Visited; 1876 for (auto *CmpU : U->users()) { 1877 assert(WorkList.empty() && "Should be!"); 1878 if (Visited.insert(CmpU).second) 1879 WorkList.push_back(CmpU); 1880 1881 while (!WorkList.empty()) { 1882 auto *Curr = WorkList.pop_back_val(); 1883 1884 // If a user is an AND, add all its users to the work list. We only 1885 // propagate "pred != null" condition through AND because it is only 1886 // correct to assume that all conditions of AND are met in true branch. 1887 // TODO: Support similar logic of OR and EQ predicate? 1888 if (Pred == ICmpInst::ICMP_NE) 1889 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1890 if (BO->getOpcode() == Instruction::And) { 1891 for (auto *BOU : BO->users()) 1892 if (Visited.insert(BOU).second) 1893 WorkList.push_back(BOU); 1894 continue; 1895 } 1896 1897 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1898 assert(BI->isConditional() && "uses a comparison!"); 1899 1900 BasicBlock *NonNullSuccessor = 1901 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1902 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1903 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1904 return true; 1905 } else if (Pred == ICmpInst::ICMP_NE && 1906 match(Curr, m_Intrinsic<Intrinsic::experimental_guard>()) && 1907 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1908 return true; 1909 } 1910 } 1911 } 1912 } 1913 1914 return false; 1915 } 1916 1917 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1918 /// ensure that the value it's attached to is never Value? 'RangeType' is 1919 /// is the type of the value described by the range. 1920 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1921 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1922 assert(NumRanges >= 1); 1923 for (unsigned i = 0; i < NumRanges; ++i) { 1924 ConstantInt *Lower = 1925 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1926 ConstantInt *Upper = 1927 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1928 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1929 if (Range.contains(Value)) 1930 return false; 1931 } 1932 return true; 1933 } 1934 1935 /// Return true if the given value is known to be non-zero when defined. For 1936 /// vectors, return true if every element is known to be non-zero when 1937 /// defined. For pointers, if the context instruction and dominator tree are 1938 /// specified, perform context-sensitive analysis and return true if the 1939 /// pointer couldn't possibly be null at the specified instruction. 1940 /// Supports values with integer or pointer type and vectors of integers. 1941 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1942 if (auto *C = dyn_cast<Constant>(V)) { 1943 if (C->isNullValue()) 1944 return false; 1945 if (isa<ConstantInt>(C)) 1946 // Must be non-zero due to null test above. 1947 return true; 1948 1949 // For constant vectors, check that all elements are undefined or known 1950 // non-zero to determine that the whole vector is known non-zero. 1951 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1952 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1953 Constant *Elt = C->getAggregateElement(i); 1954 if (!Elt || Elt->isNullValue()) 1955 return false; 1956 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1957 return false; 1958 } 1959 return true; 1960 } 1961 1962 // A global variable in address space 0 is non null unless extern weak 1963 // or an absolute symbol reference. Other address spaces may have null as a 1964 // valid address for a global, so we can't assume anything. 1965 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1966 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1967 GV->getType()->getAddressSpace() == 0) 1968 return true; 1969 } else 1970 return false; 1971 } 1972 1973 if (auto *I = dyn_cast<Instruction>(V)) { 1974 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 1975 // If the possible ranges don't contain zero, then the value is 1976 // definitely non-zero. 1977 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1978 const APInt ZeroValue(Ty->getBitWidth(), 0); 1979 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1980 return true; 1981 } 1982 } 1983 } 1984 1985 // Some of the tests below are recursive, so bail out if we hit the limit. 1986 if (Depth++ >= MaxDepth) 1987 return false; 1988 1989 // Check for pointer simplifications. 1990 if (V->getType()->isPointerTy()) { 1991 // Alloca never returns null, malloc might. 1992 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1993 return true; 1994 1995 // A byval, inalloca, or nonnull argument is never null. 1996 if (const Argument *A = dyn_cast<Argument>(V)) 1997 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1998 return true; 1999 2000 // A Load tagged with nonnull metadata is never null. 2001 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2002 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2003 return true; 2004 2005 if (auto CS = ImmutableCallSite(V)) { 2006 if (CS.isReturnNonNull()) 2007 return true; 2008 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS)) 2009 return isKnownNonZero(RP, Depth, Q); 2010 } 2011 } 2012 2013 2014 // Check for recursive pointer simplifications. 2015 if (V->getType()->isPointerTy()) { 2016 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2017 return true; 2018 2019 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2020 if (isGEPKnownNonNull(GEP, Depth, Q)) 2021 return true; 2022 } 2023 2024 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2025 2026 // X | Y != 0 if X != 0 or Y != 0. 2027 Value *X = nullptr, *Y = nullptr; 2028 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2029 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2030 2031 // ext X != 0 if X != 0. 2032 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2033 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2034 2035 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2036 // if the lowest bit is shifted off the end. 2037 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2038 // shl nuw can't remove any non-zero bits. 2039 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2040 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2041 return isKnownNonZero(X, Depth, Q); 2042 2043 KnownBits Known(BitWidth); 2044 computeKnownBits(X, Known, Depth, Q); 2045 if (Known.One[0]) 2046 return true; 2047 } 2048 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2049 // defined if the sign bit is shifted off the end. 2050 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2051 // shr exact can only shift out zero bits. 2052 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2053 if (BO->isExact()) 2054 return isKnownNonZero(X, Depth, Q); 2055 2056 KnownBits Known = computeKnownBits(X, Depth, Q); 2057 if (Known.isNegative()) 2058 return true; 2059 2060 // If the shifter operand is a constant, and all of the bits shifted 2061 // out are known to be zero, and X is known non-zero then at least one 2062 // non-zero bit must remain. 2063 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2064 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2065 // Is there a known one in the portion not shifted out? 2066 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2067 return true; 2068 // Are all the bits to be shifted out known zero? 2069 if (Known.countMinTrailingZeros() >= ShiftVal) 2070 return isKnownNonZero(X, Depth, Q); 2071 } 2072 } 2073 // div exact can only produce a zero if the dividend is zero. 2074 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2075 return isKnownNonZero(X, Depth, Q); 2076 } 2077 // X + Y. 2078 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2079 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2080 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2081 2082 // If X and Y are both non-negative (as signed values) then their sum is not 2083 // zero unless both X and Y are zero. 2084 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2085 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2086 return true; 2087 2088 // If X and Y are both negative (as signed values) then their sum is not 2089 // zero unless both X and Y equal INT_MIN. 2090 if (XKnown.isNegative() && YKnown.isNegative()) { 2091 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2092 // The sign bit of X is set. If some other bit is set then X is not equal 2093 // to INT_MIN. 2094 if (XKnown.One.intersects(Mask)) 2095 return true; 2096 // The sign bit of Y is set. If some other bit is set then Y is not equal 2097 // to INT_MIN. 2098 if (YKnown.One.intersects(Mask)) 2099 return true; 2100 } 2101 2102 // The sum of a non-negative number and a power of two is not zero. 2103 if (XKnown.isNonNegative() && 2104 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2105 return true; 2106 if (YKnown.isNonNegative() && 2107 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2108 return true; 2109 } 2110 // X * Y. 2111 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2112 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2113 // If X and Y are non-zero then so is X * Y as long as the multiplication 2114 // does not overflow. 2115 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2116 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2117 return true; 2118 } 2119 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2120 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2121 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2122 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2123 return true; 2124 } 2125 // PHI 2126 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2127 // Try and detect a recurrence that monotonically increases from a 2128 // starting value, as these are common as induction variables. 2129 if (PN->getNumIncomingValues() == 2) { 2130 Value *Start = PN->getIncomingValue(0); 2131 Value *Induction = PN->getIncomingValue(1); 2132 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2133 std::swap(Start, Induction); 2134 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2135 if (!C->isZero() && !C->isNegative()) { 2136 ConstantInt *X; 2137 if (Q.IIQ.UseInstrInfo && 2138 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2139 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2140 !X->isNegative()) 2141 return true; 2142 } 2143 } 2144 } 2145 // Check if all incoming values are non-zero constant. 2146 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2147 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2148 }); 2149 if (AllNonZeroConstants) 2150 return true; 2151 } 2152 2153 KnownBits Known(BitWidth); 2154 computeKnownBits(V, Known, Depth, Q); 2155 return Known.One != 0; 2156 } 2157 2158 /// Return true if V2 == V1 + X, where X is known non-zero. 2159 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2160 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2161 if (!BO || BO->getOpcode() != Instruction::Add) 2162 return false; 2163 Value *Op = nullptr; 2164 if (V2 == BO->getOperand(0)) 2165 Op = BO->getOperand(1); 2166 else if (V2 == BO->getOperand(1)) 2167 Op = BO->getOperand(0); 2168 else 2169 return false; 2170 return isKnownNonZero(Op, 0, Q); 2171 } 2172 2173 /// Return true if it is known that V1 != V2. 2174 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2175 if (V1 == V2) 2176 return false; 2177 if (V1->getType() != V2->getType()) 2178 // We can't look through casts yet. 2179 return false; 2180 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2181 return true; 2182 2183 if (V1->getType()->isIntOrIntVectorTy()) { 2184 // Are any known bits in V1 contradictory to known bits in V2? If V1 2185 // has a known zero where V2 has a known one, they must not be equal. 2186 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2187 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2188 2189 if (Known1.Zero.intersects(Known2.One) || 2190 Known2.Zero.intersects(Known1.One)) 2191 return true; 2192 } 2193 return false; 2194 } 2195 2196 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2197 /// simplify operations downstream. Mask is known to be zero for bits that V 2198 /// cannot have. 2199 /// 2200 /// This function is defined on values with integer type, values with pointer 2201 /// type, and vectors of integers. In the case 2202 /// where V is a vector, the mask, known zero, and known one values are the 2203 /// same width as the vector element, and the bit is set only if it is true 2204 /// for all of the elements in the vector. 2205 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2206 const Query &Q) { 2207 KnownBits Known(Mask.getBitWidth()); 2208 computeKnownBits(V, Known, Depth, Q); 2209 return Mask.isSubsetOf(Known.Zero); 2210 } 2211 2212 /// For vector constants, loop over the elements and find the constant with the 2213 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2214 /// or if any element was not analyzed; otherwise, return the count for the 2215 /// element with the minimum number of sign bits. 2216 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2217 unsigned TyBits) { 2218 const auto *CV = dyn_cast<Constant>(V); 2219 if (!CV || !CV->getType()->isVectorTy()) 2220 return 0; 2221 2222 unsigned MinSignBits = TyBits; 2223 unsigned NumElts = CV->getType()->getVectorNumElements(); 2224 for (unsigned i = 0; i != NumElts; ++i) { 2225 // If we find a non-ConstantInt, bail out. 2226 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2227 if (!Elt) 2228 return 0; 2229 2230 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2231 } 2232 2233 return MinSignBits; 2234 } 2235 2236 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2237 const Query &Q); 2238 2239 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2240 const Query &Q) { 2241 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2242 assert(Result > 0 && "At least one sign bit needs to be present!"); 2243 return Result; 2244 } 2245 2246 /// Return the number of times the sign bit of the register is replicated into 2247 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2248 /// (itself), but other cases can give us information. For example, immediately 2249 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2250 /// other, so we return 3. For vectors, return the number of sign bits for the 2251 /// vector element with the minimum number of known sign bits. 2252 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2253 const Query &Q) { 2254 assert(Depth <= MaxDepth && "Limit Search Depth"); 2255 2256 // We return the minimum number of sign bits that are guaranteed to be present 2257 // in V, so for undef we have to conservatively return 1. We don't have the 2258 // same behavior for poison though -- that's a FIXME today. 2259 2260 Type *ScalarTy = V->getType()->getScalarType(); 2261 unsigned TyBits = ScalarTy->isPointerTy() ? 2262 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2263 Q.DL.getTypeSizeInBits(ScalarTy); 2264 2265 unsigned Tmp, Tmp2; 2266 unsigned FirstAnswer = 1; 2267 2268 // Note that ConstantInt is handled by the general computeKnownBits case 2269 // below. 2270 2271 if (Depth == MaxDepth) 2272 return 1; // Limit search depth. 2273 2274 const Operator *U = dyn_cast<Operator>(V); 2275 switch (Operator::getOpcode(V)) { 2276 default: break; 2277 case Instruction::SExt: 2278 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2279 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2280 2281 case Instruction::SDiv: { 2282 const APInt *Denominator; 2283 // sdiv X, C -> adds log(C) sign bits. 2284 if (match(U->getOperand(1), m_APInt(Denominator))) { 2285 2286 // Ignore non-positive denominator. 2287 if (!Denominator->isStrictlyPositive()) 2288 break; 2289 2290 // Calculate the incoming numerator bits. 2291 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2292 2293 // Add floor(log(C)) bits to the numerator bits. 2294 return std::min(TyBits, NumBits + Denominator->logBase2()); 2295 } 2296 break; 2297 } 2298 2299 case Instruction::SRem: { 2300 const APInt *Denominator; 2301 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2302 // positive constant. This let us put a lower bound on the number of sign 2303 // bits. 2304 if (match(U->getOperand(1), m_APInt(Denominator))) { 2305 2306 // Ignore non-positive denominator. 2307 if (!Denominator->isStrictlyPositive()) 2308 break; 2309 2310 // Calculate the incoming numerator bits. SRem by a positive constant 2311 // can't lower the number of sign bits. 2312 unsigned NumrBits = 2313 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2314 2315 // Calculate the leading sign bit constraints by examining the 2316 // denominator. Given that the denominator is positive, there are two 2317 // cases: 2318 // 2319 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2320 // (1 << ceilLogBase2(C)). 2321 // 2322 // 2. the numerator is negative. Then the result range is (-C,0] and 2323 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2324 // 2325 // Thus a lower bound on the number of sign bits is `TyBits - 2326 // ceilLogBase2(C)`. 2327 2328 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2329 return std::max(NumrBits, ResBits); 2330 } 2331 break; 2332 } 2333 2334 case Instruction::AShr: { 2335 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2336 // ashr X, C -> adds C sign bits. Vectors too. 2337 const APInt *ShAmt; 2338 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2339 if (ShAmt->uge(TyBits)) 2340 break; // Bad shift. 2341 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2342 Tmp += ShAmtLimited; 2343 if (Tmp > TyBits) Tmp = TyBits; 2344 } 2345 return Tmp; 2346 } 2347 case Instruction::Shl: { 2348 const APInt *ShAmt; 2349 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2350 // shl destroys sign bits. 2351 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2352 if (ShAmt->uge(TyBits) || // Bad shift. 2353 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2354 Tmp2 = ShAmt->getZExtValue(); 2355 return Tmp - Tmp2; 2356 } 2357 break; 2358 } 2359 case Instruction::And: 2360 case Instruction::Or: 2361 case Instruction::Xor: // NOT is handled here. 2362 // Logical binary ops preserve the number of sign bits at the worst. 2363 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2364 if (Tmp != 1) { 2365 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2366 FirstAnswer = std::min(Tmp, Tmp2); 2367 // We computed what we know about the sign bits as our first 2368 // answer. Now proceed to the generic code that uses 2369 // computeKnownBits, and pick whichever answer is better. 2370 } 2371 break; 2372 2373 case Instruction::Select: 2374 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2375 if (Tmp == 1) break; 2376 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2377 return std::min(Tmp, Tmp2); 2378 2379 case Instruction::Add: 2380 // Add can have at most one carry bit. Thus we know that the output 2381 // is, at worst, one more bit than the inputs. 2382 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2383 if (Tmp == 1) break; 2384 2385 // Special case decrementing a value (ADD X, -1): 2386 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2387 if (CRHS->isAllOnesValue()) { 2388 KnownBits Known(TyBits); 2389 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2390 2391 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2392 // sign bits set. 2393 if ((Known.Zero | 1).isAllOnesValue()) 2394 return TyBits; 2395 2396 // If we are subtracting one from a positive number, there is no carry 2397 // out of the result. 2398 if (Known.isNonNegative()) 2399 return Tmp; 2400 } 2401 2402 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2403 if (Tmp2 == 1) break; 2404 return std::min(Tmp, Tmp2)-1; 2405 2406 case Instruction::Sub: 2407 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2408 if (Tmp2 == 1) break; 2409 2410 // Handle NEG. 2411 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2412 if (CLHS->isNullValue()) { 2413 KnownBits Known(TyBits); 2414 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2415 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2416 // sign bits set. 2417 if ((Known.Zero | 1).isAllOnesValue()) 2418 return TyBits; 2419 2420 // If the input is known to be positive (the sign bit is known clear), 2421 // the output of the NEG has the same number of sign bits as the input. 2422 if (Known.isNonNegative()) 2423 return Tmp2; 2424 2425 // Otherwise, we treat this like a SUB. 2426 } 2427 2428 // Sub can have at most one carry bit. Thus we know that the output 2429 // is, at worst, one more bit than the inputs. 2430 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2431 if (Tmp == 1) break; 2432 return std::min(Tmp, Tmp2)-1; 2433 2434 case Instruction::Mul: { 2435 // The output of the Mul can be at most twice the valid bits in the inputs. 2436 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2437 if (SignBitsOp0 == 1) break; 2438 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2439 if (SignBitsOp1 == 1) break; 2440 unsigned OutValidBits = 2441 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2442 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2443 } 2444 2445 case Instruction::PHI: { 2446 const PHINode *PN = cast<PHINode>(U); 2447 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2448 // Don't analyze large in-degree PHIs. 2449 if (NumIncomingValues > 4) break; 2450 // Unreachable blocks may have zero-operand PHI nodes. 2451 if (NumIncomingValues == 0) break; 2452 2453 // Take the minimum of all incoming values. This can't infinitely loop 2454 // because of our depth threshold. 2455 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2456 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2457 if (Tmp == 1) return Tmp; 2458 Tmp = std::min( 2459 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2460 } 2461 return Tmp; 2462 } 2463 2464 case Instruction::Trunc: 2465 // FIXME: it's tricky to do anything useful for this, but it is an important 2466 // case for targets like X86. 2467 break; 2468 2469 case Instruction::ExtractElement: 2470 // Look through extract element. At the moment we keep this simple and skip 2471 // tracking the specific element. But at least we might find information 2472 // valid for all elements of the vector (for example if vector is sign 2473 // extended, shifted, etc). 2474 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2475 } 2476 2477 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2478 // use this information. 2479 2480 // If we can examine all elements of a vector constant successfully, we're 2481 // done (we can't do any better than that). If not, keep trying. 2482 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2483 return VecSignBits; 2484 2485 KnownBits Known(TyBits); 2486 computeKnownBits(V, Known, Depth, Q); 2487 2488 // If we know that the sign bit is either zero or one, determine the number of 2489 // identical bits in the top of the input value. 2490 return std::max(FirstAnswer, Known.countMinSignBits()); 2491 } 2492 2493 /// This function computes the integer multiple of Base that equals V. 2494 /// If successful, it returns true and returns the multiple in 2495 /// Multiple. If unsuccessful, it returns false. It looks 2496 /// through SExt instructions only if LookThroughSExt is true. 2497 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2498 bool LookThroughSExt, unsigned Depth) { 2499 const unsigned MaxDepth = 6; 2500 2501 assert(V && "No Value?"); 2502 assert(Depth <= MaxDepth && "Limit Search Depth"); 2503 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2504 2505 Type *T = V->getType(); 2506 2507 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2508 2509 if (Base == 0) 2510 return false; 2511 2512 if (Base == 1) { 2513 Multiple = V; 2514 return true; 2515 } 2516 2517 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2518 Constant *BaseVal = ConstantInt::get(T, Base); 2519 if (CO && CO == BaseVal) { 2520 // Multiple is 1. 2521 Multiple = ConstantInt::get(T, 1); 2522 return true; 2523 } 2524 2525 if (CI && CI->getZExtValue() % Base == 0) { 2526 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2527 return true; 2528 } 2529 2530 if (Depth == MaxDepth) return false; // Limit search depth. 2531 2532 Operator *I = dyn_cast<Operator>(V); 2533 if (!I) return false; 2534 2535 switch (I->getOpcode()) { 2536 default: break; 2537 case Instruction::SExt: 2538 if (!LookThroughSExt) return false; 2539 // otherwise fall through to ZExt 2540 LLVM_FALLTHROUGH; 2541 case Instruction::ZExt: 2542 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2543 LookThroughSExt, Depth+1); 2544 case Instruction::Shl: 2545 case Instruction::Mul: { 2546 Value *Op0 = I->getOperand(0); 2547 Value *Op1 = I->getOperand(1); 2548 2549 if (I->getOpcode() == Instruction::Shl) { 2550 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2551 if (!Op1CI) return false; 2552 // Turn Op0 << Op1 into Op0 * 2^Op1 2553 APInt Op1Int = Op1CI->getValue(); 2554 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2555 APInt API(Op1Int.getBitWidth(), 0); 2556 API.setBit(BitToSet); 2557 Op1 = ConstantInt::get(V->getContext(), API); 2558 } 2559 2560 Value *Mul0 = nullptr; 2561 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2562 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2563 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2564 if (Op1C->getType()->getPrimitiveSizeInBits() < 2565 MulC->getType()->getPrimitiveSizeInBits()) 2566 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2567 if (Op1C->getType()->getPrimitiveSizeInBits() > 2568 MulC->getType()->getPrimitiveSizeInBits()) 2569 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2570 2571 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2572 Multiple = ConstantExpr::getMul(MulC, Op1C); 2573 return true; 2574 } 2575 2576 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2577 if (Mul0CI->getValue() == 1) { 2578 // V == Base * Op1, so return Op1 2579 Multiple = Op1; 2580 return true; 2581 } 2582 } 2583 2584 Value *Mul1 = nullptr; 2585 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2586 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2587 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2588 if (Op0C->getType()->getPrimitiveSizeInBits() < 2589 MulC->getType()->getPrimitiveSizeInBits()) 2590 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2591 if (Op0C->getType()->getPrimitiveSizeInBits() > 2592 MulC->getType()->getPrimitiveSizeInBits()) 2593 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2594 2595 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2596 Multiple = ConstantExpr::getMul(MulC, Op0C); 2597 return true; 2598 } 2599 2600 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2601 if (Mul1CI->getValue() == 1) { 2602 // V == Base * Op0, so return Op0 2603 Multiple = Op0; 2604 return true; 2605 } 2606 } 2607 } 2608 } 2609 2610 // We could not determine if V is a multiple of Base. 2611 return false; 2612 } 2613 2614 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2615 const TargetLibraryInfo *TLI) { 2616 const Function *F = ICS.getCalledFunction(); 2617 if (!F) 2618 return Intrinsic::not_intrinsic; 2619 2620 if (F->isIntrinsic()) 2621 return F->getIntrinsicID(); 2622 2623 if (!TLI) 2624 return Intrinsic::not_intrinsic; 2625 2626 LibFunc Func; 2627 // We're going to make assumptions on the semantics of the functions, check 2628 // that the target knows that it's available in this environment and it does 2629 // not have local linkage. 2630 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2631 return Intrinsic::not_intrinsic; 2632 2633 if (!ICS.onlyReadsMemory()) 2634 return Intrinsic::not_intrinsic; 2635 2636 // Otherwise check if we have a call to a function that can be turned into a 2637 // vector intrinsic. 2638 switch (Func) { 2639 default: 2640 break; 2641 case LibFunc_sin: 2642 case LibFunc_sinf: 2643 case LibFunc_sinl: 2644 return Intrinsic::sin; 2645 case LibFunc_cos: 2646 case LibFunc_cosf: 2647 case LibFunc_cosl: 2648 return Intrinsic::cos; 2649 case LibFunc_exp: 2650 case LibFunc_expf: 2651 case LibFunc_expl: 2652 return Intrinsic::exp; 2653 case LibFunc_exp2: 2654 case LibFunc_exp2f: 2655 case LibFunc_exp2l: 2656 return Intrinsic::exp2; 2657 case LibFunc_log: 2658 case LibFunc_logf: 2659 case LibFunc_logl: 2660 return Intrinsic::log; 2661 case LibFunc_log10: 2662 case LibFunc_log10f: 2663 case LibFunc_log10l: 2664 return Intrinsic::log10; 2665 case LibFunc_log2: 2666 case LibFunc_log2f: 2667 case LibFunc_log2l: 2668 return Intrinsic::log2; 2669 case LibFunc_fabs: 2670 case LibFunc_fabsf: 2671 case LibFunc_fabsl: 2672 return Intrinsic::fabs; 2673 case LibFunc_fmin: 2674 case LibFunc_fminf: 2675 case LibFunc_fminl: 2676 return Intrinsic::minnum; 2677 case LibFunc_fmax: 2678 case LibFunc_fmaxf: 2679 case LibFunc_fmaxl: 2680 return Intrinsic::maxnum; 2681 case LibFunc_copysign: 2682 case LibFunc_copysignf: 2683 case LibFunc_copysignl: 2684 return Intrinsic::copysign; 2685 case LibFunc_floor: 2686 case LibFunc_floorf: 2687 case LibFunc_floorl: 2688 return Intrinsic::floor; 2689 case LibFunc_ceil: 2690 case LibFunc_ceilf: 2691 case LibFunc_ceill: 2692 return Intrinsic::ceil; 2693 case LibFunc_trunc: 2694 case LibFunc_truncf: 2695 case LibFunc_truncl: 2696 return Intrinsic::trunc; 2697 case LibFunc_rint: 2698 case LibFunc_rintf: 2699 case LibFunc_rintl: 2700 return Intrinsic::rint; 2701 case LibFunc_nearbyint: 2702 case LibFunc_nearbyintf: 2703 case LibFunc_nearbyintl: 2704 return Intrinsic::nearbyint; 2705 case LibFunc_round: 2706 case LibFunc_roundf: 2707 case LibFunc_roundl: 2708 return Intrinsic::round; 2709 case LibFunc_pow: 2710 case LibFunc_powf: 2711 case LibFunc_powl: 2712 return Intrinsic::pow; 2713 case LibFunc_sqrt: 2714 case LibFunc_sqrtf: 2715 case LibFunc_sqrtl: 2716 return Intrinsic::sqrt; 2717 } 2718 2719 return Intrinsic::not_intrinsic; 2720 } 2721 2722 /// Return true if we can prove that the specified FP value is never equal to 2723 /// -0.0. 2724 /// 2725 /// NOTE: this function will need to be revisited when we support non-default 2726 /// rounding modes! 2727 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2728 unsigned Depth) { 2729 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2730 return !CFP->getValueAPF().isNegZero(); 2731 2732 // Limit search depth. 2733 if (Depth == MaxDepth) 2734 return false; 2735 2736 auto *Op = dyn_cast<Operator>(V); 2737 if (!Op) 2738 return false; 2739 2740 // Check if the nsz fast-math flag is set. 2741 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2742 if (FPO->hasNoSignedZeros()) 2743 return true; 2744 2745 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2746 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2747 return true; 2748 2749 // sitofp and uitofp turn into +0.0 for zero. 2750 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2751 return true; 2752 2753 if (auto *Call = dyn_cast<CallInst>(Op)) { 2754 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2755 switch (IID) { 2756 default: 2757 break; 2758 // sqrt(-0.0) = -0.0, no other negative results are possible. 2759 case Intrinsic::sqrt: 2760 case Intrinsic::canonicalize: 2761 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2762 // fabs(x) != -0.0 2763 case Intrinsic::fabs: 2764 return true; 2765 } 2766 } 2767 2768 return false; 2769 } 2770 2771 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2772 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2773 /// bit despite comparing equal. 2774 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2775 const TargetLibraryInfo *TLI, 2776 bool SignBitOnly, 2777 unsigned Depth) { 2778 // TODO: This function does not do the right thing when SignBitOnly is true 2779 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2780 // which flips the sign bits of NaNs. See 2781 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2782 2783 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2784 return !CFP->getValueAPF().isNegative() || 2785 (!SignBitOnly && CFP->getValueAPF().isZero()); 2786 } 2787 2788 // Handle vector of constants. 2789 if (auto *CV = dyn_cast<Constant>(V)) { 2790 if (CV->getType()->isVectorTy()) { 2791 unsigned NumElts = CV->getType()->getVectorNumElements(); 2792 for (unsigned i = 0; i != NumElts; ++i) { 2793 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2794 if (!CFP) 2795 return false; 2796 if (CFP->getValueAPF().isNegative() && 2797 (SignBitOnly || !CFP->getValueAPF().isZero())) 2798 return false; 2799 } 2800 2801 // All non-negative ConstantFPs. 2802 return true; 2803 } 2804 } 2805 2806 if (Depth == MaxDepth) 2807 return false; // Limit search depth. 2808 2809 const Operator *I = dyn_cast<Operator>(V); 2810 if (!I) 2811 return false; 2812 2813 switch (I->getOpcode()) { 2814 default: 2815 break; 2816 // Unsigned integers are always nonnegative. 2817 case Instruction::UIToFP: 2818 return true; 2819 case Instruction::FMul: 2820 // x*x is always non-negative or a NaN. 2821 if (I->getOperand(0) == I->getOperand(1) && 2822 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2823 return true; 2824 2825 LLVM_FALLTHROUGH; 2826 case Instruction::FAdd: 2827 case Instruction::FDiv: 2828 case Instruction::FRem: 2829 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2830 Depth + 1) && 2831 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2832 Depth + 1); 2833 case Instruction::Select: 2834 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2835 Depth + 1) && 2836 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2837 Depth + 1); 2838 case Instruction::FPExt: 2839 case Instruction::FPTrunc: 2840 // Widening/narrowing never change sign. 2841 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2842 Depth + 1); 2843 case Instruction::ExtractElement: 2844 // Look through extract element. At the moment we keep this simple and skip 2845 // tracking the specific element. But at least we might find information 2846 // valid for all elements of the vector. 2847 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2848 Depth + 1); 2849 case Instruction::Call: 2850 const auto *CI = cast<CallInst>(I); 2851 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2852 switch (IID) { 2853 default: 2854 break; 2855 case Intrinsic::maxnum: 2856 return (isKnownNeverNaN(I->getOperand(0), TLI) && 2857 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 2858 SignBitOnly, Depth + 1)) || 2859 (isKnownNeverNaN(I->getOperand(1), TLI) && 2860 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 2861 SignBitOnly, Depth + 1)); 2862 2863 case Intrinsic::minnum: 2864 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2865 Depth + 1) && 2866 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2867 Depth + 1); 2868 case Intrinsic::exp: 2869 case Intrinsic::exp2: 2870 case Intrinsic::fabs: 2871 return true; 2872 2873 case Intrinsic::sqrt: 2874 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2875 if (!SignBitOnly) 2876 return true; 2877 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2878 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2879 2880 case Intrinsic::powi: 2881 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2882 // powi(x,n) is non-negative if n is even. 2883 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2884 return true; 2885 } 2886 // TODO: This is not correct. Given that exp is an integer, here are the 2887 // ways that pow can return a negative value: 2888 // 2889 // pow(x, exp) --> negative if exp is odd and x is negative. 2890 // pow(-0, exp) --> -inf if exp is negative odd. 2891 // pow(-0, exp) --> -0 if exp is positive odd. 2892 // pow(-inf, exp) --> -0 if exp is negative odd. 2893 // pow(-inf, exp) --> -inf if exp is positive odd. 2894 // 2895 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2896 // but we must return false if x == -0. Unfortunately we do not currently 2897 // have a way of expressing this constraint. See details in 2898 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2899 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2900 Depth + 1); 2901 2902 case Intrinsic::fma: 2903 case Intrinsic::fmuladd: 2904 // x*x+y is non-negative if y is non-negative. 2905 return I->getOperand(0) == I->getOperand(1) && 2906 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2907 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2908 Depth + 1); 2909 } 2910 break; 2911 } 2912 return false; 2913 } 2914 2915 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2916 const TargetLibraryInfo *TLI) { 2917 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2918 } 2919 2920 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2921 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2922 } 2923 2924 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 2925 unsigned Depth) { 2926 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2927 2928 // If we're told that NaNs won't happen, assume they won't. 2929 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2930 if (FPMathOp->hasNoNaNs()) 2931 return true; 2932 2933 // Handle scalar constants. 2934 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2935 return !CFP->isNaN(); 2936 2937 if (Depth == MaxDepth) 2938 return false; 2939 2940 if (auto *Inst = dyn_cast<Instruction>(V)) { 2941 switch (Inst->getOpcode()) { 2942 case Instruction::FAdd: 2943 case Instruction::FMul: 2944 case Instruction::FSub: 2945 case Instruction::FDiv: 2946 case Instruction::FRem: { 2947 // TODO: Need isKnownNeverInfinity 2948 return false; 2949 } 2950 case Instruction::Select: { 2951 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 2952 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 2953 } 2954 case Instruction::SIToFP: 2955 case Instruction::UIToFP: 2956 return true; 2957 case Instruction::FPTrunc: 2958 case Instruction::FPExt: 2959 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 2960 default: 2961 break; 2962 } 2963 } 2964 2965 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 2966 switch (II->getIntrinsicID()) { 2967 case Intrinsic::canonicalize: 2968 case Intrinsic::fabs: 2969 case Intrinsic::copysign: 2970 case Intrinsic::exp: 2971 case Intrinsic::exp2: 2972 case Intrinsic::floor: 2973 case Intrinsic::ceil: 2974 case Intrinsic::trunc: 2975 case Intrinsic::rint: 2976 case Intrinsic::nearbyint: 2977 case Intrinsic::round: 2978 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 2979 case Intrinsic::sqrt: 2980 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 2981 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 2982 default: 2983 return false; 2984 } 2985 } 2986 2987 // Bail out for constant expressions, but try to handle vector constants. 2988 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2989 return false; 2990 2991 // For vectors, verify that each element is not NaN. 2992 unsigned NumElts = V->getType()->getVectorNumElements(); 2993 for (unsigned i = 0; i != NumElts; ++i) { 2994 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2995 if (!Elt) 2996 return false; 2997 if (isa<UndefValue>(Elt)) 2998 continue; 2999 auto *CElt = dyn_cast<ConstantFP>(Elt); 3000 if (!CElt || CElt->isNaN()) 3001 return false; 3002 } 3003 // All elements were confirmed not-NaN or undefined. 3004 return true; 3005 } 3006 3007 /// If the specified value can be set by repeating the same byte in memory, 3008 /// return the i8 value that it is represented with. This is 3009 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 3010 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 3011 /// byte store (e.g. i16 0x1234), return null. 3012 Value *llvm::isBytewiseValue(Value *V) { 3013 // All byte-wide stores are splatable, even of arbitrary variables. 3014 if (V->getType()->isIntegerTy(8)) return V; 3015 3016 // Handle 'null' ConstantArrayZero etc. 3017 if (Constant *C = dyn_cast<Constant>(V)) 3018 if (C->isNullValue()) 3019 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 3020 3021 // Constant float and double values can be handled as integer values if the 3022 // corresponding integer value is "byteable". An important case is 0.0. 3023 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3024 if (CFP->getType()->isFloatTy()) 3025 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 3026 if (CFP->getType()->isDoubleTy()) 3027 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 3028 // Don't handle long double formats, which have strange constraints. 3029 } 3030 3031 // We can handle constant integers that are multiple of 8 bits. 3032 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3033 if (CI->getBitWidth() % 8 == 0) { 3034 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3035 3036 if (!CI->getValue().isSplat(8)) 3037 return nullptr; 3038 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 3039 } 3040 } 3041 3042 // A ConstantDataArray/Vector is splatable if all its members are equal and 3043 // also splatable. 3044 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 3045 Value *Elt = CA->getElementAsConstant(0); 3046 Value *Val = isBytewiseValue(Elt); 3047 if (!Val) 3048 return nullptr; 3049 3050 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 3051 if (CA->getElementAsConstant(I) != Elt) 3052 return nullptr; 3053 3054 return Val; 3055 } 3056 3057 // Conceptually, we could handle things like: 3058 // %a = zext i8 %X to i16 3059 // %b = shl i16 %a, 8 3060 // %c = or i16 %a, %b 3061 // but until there is an example that actually needs this, it doesn't seem 3062 // worth worrying about. 3063 return nullptr; 3064 } 3065 3066 // This is the recursive version of BuildSubAggregate. It takes a few different 3067 // arguments. Idxs is the index within the nested struct From that we are 3068 // looking at now (which is of type IndexedType). IdxSkip is the number of 3069 // indices from Idxs that should be left out when inserting into the resulting 3070 // struct. To is the result struct built so far, new insertvalue instructions 3071 // build on that. 3072 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3073 SmallVectorImpl<unsigned> &Idxs, 3074 unsigned IdxSkip, 3075 Instruction *InsertBefore) { 3076 StructType *STy = dyn_cast<StructType>(IndexedType); 3077 if (STy) { 3078 // Save the original To argument so we can modify it 3079 Value *OrigTo = To; 3080 // General case, the type indexed by Idxs is a struct 3081 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3082 // Process each struct element recursively 3083 Idxs.push_back(i); 3084 Value *PrevTo = To; 3085 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3086 InsertBefore); 3087 Idxs.pop_back(); 3088 if (!To) { 3089 // Couldn't find any inserted value for this index? Cleanup 3090 while (PrevTo != OrigTo) { 3091 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3092 PrevTo = Del->getAggregateOperand(); 3093 Del->eraseFromParent(); 3094 } 3095 // Stop processing elements 3096 break; 3097 } 3098 } 3099 // If we successfully found a value for each of our subaggregates 3100 if (To) 3101 return To; 3102 } 3103 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3104 // the struct's elements had a value that was inserted directly. In the latter 3105 // case, perhaps we can't determine each of the subelements individually, but 3106 // we might be able to find the complete struct somewhere. 3107 3108 // Find the value that is at that particular spot 3109 Value *V = FindInsertedValue(From, Idxs); 3110 3111 if (!V) 3112 return nullptr; 3113 3114 // Insert the value in the new (sub) aggregate 3115 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3116 "tmp", InsertBefore); 3117 } 3118 3119 // This helper takes a nested struct and extracts a part of it (which is again a 3120 // struct) into a new value. For example, given the struct: 3121 // { a, { b, { c, d }, e } } 3122 // and the indices "1, 1" this returns 3123 // { c, d }. 3124 // 3125 // It does this by inserting an insertvalue for each element in the resulting 3126 // struct, as opposed to just inserting a single struct. This will only work if 3127 // each of the elements of the substruct are known (ie, inserted into From by an 3128 // insertvalue instruction somewhere). 3129 // 3130 // All inserted insertvalue instructions are inserted before InsertBefore 3131 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3132 Instruction *InsertBefore) { 3133 assert(InsertBefore && "Must have someplace to insert!"); 3134 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3135 idx_range); 3136 Value *To = UndefValue::get(IndexedType); 3137 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3138 unsigned IdxSkip = Idxs.size(); 3139 3140 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3141 } 3142 3143 /// Given an aggregate and a sequence of indices, see if the scalar value 3144 /// indexed is already around as a register, for example if it was inserted 3145 /// directly into the aggregate. 3146 /// 3147 /// If InsertBefore is not null, this function will duplicate (modified) 3148 /// insertvalues when a part of a nested struct is extracted. 3149 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3150 Instruction *InsertBefore) { 3151 // Nothing to index? Just return V then (this is useful at the end of our 3152 // recursion). 3153 if (idx_range.empty()) 3154 return V; 3155 // We have indices, so V should have an indexable type. 3156 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3157 "Not looking at a struct or array?"); 3158 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3159 "Invalid indices for type?"); 3160 3161 if (Constant *C = dyn_cast<Constant>(V)) { 3162 C = C->getAggregateElement(idx_range[0]); 3163 if (!C) return nullptr; 3164 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3165 } 3166 3167 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3168 // Loop the indices for the insertvalue instruction in parallel with the 3169 // requested indices 3170 const unsigned *req_idx = idx_range.begin(); 3171 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3172 i != e; ++i, ++req_idx) { 3173 if (req_idx == idx_range.end()) { 3174 // We can't handle this without inserting insertvalues 3175 if (!InsertBefore) 3176 return nullptr; 3177 3178 // The requested index identifies a part of a nested aggregate. Handle 3179 // this specially. For example, 3180 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3181 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3182 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3183 // This can be changed into 3184 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3185 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3186 // which allows the unused 0,0 element from the nested struct to be 3187 // removed. 3188 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3189 InsertBefore); 3190 } 3191 3192 // This insert value inserts something else than what we are looking for. 3193 // See if the (aggregate) value inserted into has the value we are 3194 // looking for, then. 3195 if (*req_idx != *i) 3196 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3197 InsertBefore); 3198 } 3199 // If we end up here, the indices of the insertvalue match with those 3200 // requested (though possibly only partially). Now we recursively look at 3201 // the inserted value, passing any remaining indices. 3202 return FindInsertedValue(I->getInsertedValueOperand(), 3203 makeArrayRef(req_idx, idx_range.end()), 3204 InsertBefore); 3205 } 3206 3207 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3208 // If we're extracting a value from an aggregate that was extracted from 3209 // something else, we can extract from that something else directly instead. 3210 // However, we will need to chain I's indices with the requested indices. 3211 3212 // Calculate the number of indices required 3213 unsigned size = I->getNumIndices() + idx_range.size(); 3214 // Allocate some space to put the new indices in 3215 SmallVector<unsigned, 5> Idxs; 3216 Idxs.reserve(size); 3217 // Add indices from the extract value instruction 3218 Idxs.append(I->idx_begin(), I->idx_end()); 3219 3220 // Add requested indices 3221 Idxs.append(idx_range.begin(), idx_range.end()); 3222 3223 assert(Idxs.size() == size 3224 && "Number of indices added not correct?"); 3225 3226 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3227 } 3228 // Otherwise, we don't know (such as, extracting from a function return value 3229 // or load instruction) 3230 return nullptr; 3231 } 3232 3233 /// Analyze the specified pointer to see if it can be expressed as a base 3234 /// pointer plus a constant offset. Return the base and offset to the caller. 3235 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3236 const DataLayout &DL) { 3237 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3238 APInt ByteOffset(BitWidth, 0); 3239 3240 // We walk up the defs but use a visited set to handle unreachable code. In 3241 // that case, we stop after accumulating the cycle once (not that it 3242 // matters). 3243 SmallPtrSet<Value *, 16> Visited; 3244 while (Visited.insert(Ptr).second) { 3245 if (Ptr->getType()->isVectorTy()) 3246 break; 3247 3248 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3249 // If one of the values we have visited is an addrspacecast, then 3250 // the pointer type of this GEP may be different from the type 3251 // of the Ptr parameter which was passed to this function. This 3252 // means when we construct GEPOffset, we need to use the size 3253 // of GEP's pointer type rather than the size of the original 3254 // pointer type. 3255 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3256 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3257 break; 3258 3259 ByteOffset += GEPOffset.getSExtValue(); 3260 3261 Ptr = GEP->getPointerOperand(); 3262 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3263 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3264 Ptr = cast<Operator>(Ptr)->getOperand(0); 3265 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3266 if (GA->isInterposable()) 3267 break; 3268 Ptr = GA->getAliasee(); 3269 } else { 3270 break; 3271 } 3272 } 3273 Offset = ByteOffset.getSExtValue(); 3274 return Ptr; 3275 } 3276 3277 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3278 unsigned CharSize) { 3279 // Make sure the GEP has exactly three arguments. 3280 if (GEP->getNumOperands() != 3) 3281 return false; 3282 3283 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3284 // CharSize. 3285 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3286 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3287 return false; 3288 3289 // Check to make sure that the first operand of the GEP is an integer and 3290 // has value 0 so that we are sure we're indexing into the initializer. 3291 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3292 if (!FirstIdx || !FirstIdx->isZero()) 3293 return false; 3294 3295 return true; 3296 } 3297 3298 bool llvm::getConstantDataArrayInfo(const Value *V, 3299 ConstantDataArraySlice &Slice, 3300 unsigned ElementSize, uint64_t Offset) { 3301 assert(V); 3302 3303 // Look through bitcast instructions and geps. 3304 V = V->stripPointerCasts(); 3305 3306 // If the value is a GEP instruction or constant expression, treat it as an 3307 // offset. 3308 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3309 // The GEP operator should be based on a pointer to string constant, and is 3310 // indexing into the string constant. 3311 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3312 return false; 3313 3314 // If the second index isn't a ConstantInt, then this is a variable index 3315 // into the array. If this occurs, we can't say anything meaningful about 3316 // the string. 3317 uint64_t StartIdx = 0; 3318 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3319 StartIdx = CI->getZExtValue(); 3320 else 3321 return false; 3322 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3323 StartIdx + Offset); 3324 } 3325 3326 // The GEP instruction, constant or instruction, must reference a global 3327 // variable that is a constant and is initialized. The referenced constant 3328 // initializer is the array that we'll use for optimization. 3329 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3330 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3331 return false; 3332 3333 const ConstantDataArray *Array; 3334 ArrayType *ArrayTy; 3335 if (GV->getInitializer()->isNullValue()) { 3336 Type *GVTy = GV->getValueType(); 3337 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3338 // A zeroinitializer for the array; there is no ConstantDataArray. 3339 Array = nullptr; 3340 } else { 3341 const DataLayout &DL = GV->getParent()->getDataLayout(); 3342 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3343 uint64_t Length = SizeInBytes / (ElementSize / 8); 3344 if (Length <= Offset) 3345 return false; 3346 3347 Slice.Array = nullptr; 3348 Slice.Offset = 0; 3349 Slice.Length = Length - Offset; 3350 return true; 3351 } 3352 } else { 3353 // This must be a ConstantDataArray. 3354 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3355 if (!Array) 3356 return false; 3357 ArrayTy = Array->getType(); 3358 } 3359 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3360 return false; 3361 3362 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3363 if (Offset > NumElts) 3364 return false; 3365 3366 Slice.Array = Array; 3367 Slice.Offset = Offset; 3368 Slice.Length = NumElts - Offset; 3369 return true; 3370 } 3371 3372 /// This function computes the length of a null-terminated C string pointed to 3373 /// by V. If successful, it returns true and returns the string in Str. 3374 /// If unsuccessful, it returns false. 3375 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3376 uint64_t Offset, bool TrimAtNul) { 3377 ConstantDataArraySlice Slice; 3378 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3379 return false; 3380 3381 if (Slice.Array == nullptr) { 3382 if (TrimAtNul) { 3383 Str = StringRef(); 3384 return true; 3385 } 3386 if (Slice.Length == 1) { 3387 Str = StringRef("", 1); 3388 return true; 3389 } 3390 // We cannot instantiate a StringRef as we do not have an appropriate string 3391 // of 0s at hand. 3392 return false; 3393 } 3394 3395 // Start out with the entire array in the StringRef. 3396 Str = Slice.Array->getAsString(); 3397 // Skip over 'offset' bytes. 3398 Str = Str.substr(Slice.Offset); 3399 3400 if (TrimAtNul) { 3401 // Trim off the \0 and anything after it. If the array is not nul 3402 // terminated, we just return the whole end of string. The client may know 3403 // some other way that the string is length-bound. 3404 Str = Str.substr(0, Str.find('\0')); 3405 } 3406 return true; 3407 } 3408 3409 // These next two are very similar to the above, but also look through PHI 3410 // nodes. 3411 // TODO: See if we can integrate these two together. 3412 3413 /// If we can compute the length of the string pointed to by 3414 /// the specified pointer, return 'len+1'. If we can't, return 0. 3415 static uint64_t GetStringLengthH(const Value *V, 3416 SmallPtrSetImpl<const PHINode*> &PHIs, 3417 unsigned CharSize) { 3418 // Look through noop bitcast instructions. 3419 V = V->stripPointerCasts(); 3420 3421 // If this is a PHI node, there are two cases: either we have already seen it 3422 // or we haven't. 3423 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3424 if (!PHIs.insert(PN).second) 3425 return ~0ULL; // already in the set. 3426 3427 // If it was new, see if all the input strings are the same length. 3428 uint64_t LenSoFar = ~0ULL; 3429 for (Value *IncValue : PN->incoming_values()) { 3430 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3431 if (Len == 0) return 0; // Unknown length -> unknown. 3432 3433 if (Len == ~0ULL) continue; 3434 3435 if (Len != LenSoFar && LenSoFar != ~0ULL) 3436 return 0; // Disagree -> unknown. 3437 LenSoFar = Len; 3438 } 3439 3440 // Success, all agree. 3441 return LenSoFar; 3442 } 3443 3444 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3445 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3446 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3447 if (Len1 == 0) return 0; 3448 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3449 if (Len2 == 0) return 0; 3450 if (Len1 == ~0ULL) return Len2; 3451 if (Len2 == ~0ULL) return Len1; 3452 if (Len1 != Len2) return 0; 3453 return Len1; 3454 } 3455 3456 // Otherwise, see if we can read the string. 3457 ConstantDataArraySlice Slice; 3458 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3459 return 0; 3460 3461 if (Slice.Array == nullptr) 3462 return 1; 3463 3464 // Search for nul characters 3465 unsigned NullIndex = 0; 3466 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3467 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3468 break; 3469 } 3470 3471 return NullIndex + 1; 3472 } 3473 3474 /// If we can compute the length of the string pointed to by 3475 /// the specified pointer, return 'len+1'. If we can't, return 0. 3476 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3477 if (!V->getType()->isPointerTy()) 3478 return 0; 3479 3480 SmallPtrSet<const PHINode*, 32> PHIs; 3481 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3482 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3483 // an empty string as a length. 3484 return Len == ~0ULL ? 1 : Len; 3485 } 3486 3487 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) { 3488 assert(CS && 3489 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite"); 3490 if (const Value *RV = CS.getReturnedArgOperand()) 3491 return RV; 3492 // This can be used only as a aliasing property. 3493 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS)) 3494 return CS.getArgOperand(0); 3495 return nullptr; 3496 } 3497 3498 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3499 ImmutableCallSite CS) { 3500 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group || 3501 CS.getIntrinsicID() == Intrinsic::strip_invariant_group; 3502 } 3503 3504 /// \p PN defines a loop-variant pointer to an object. Check if the 3505 /// previous iteration of the loop was referring to the same object as \p PN. 3506 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3507 const LoopInfo *LI) { 3508 // Find the loop-defined value. 3509 Loop *L = LI->getLoopFor(PN->getParent()); 3510 if (PN->getNumIncomingValues() != 2) 3511 return true; 3512 3513 // Find the value from previous iteration. 3514 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3515 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3516 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3517 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3518 return true; 3519 3520 // If a new pointer is loaded in the loop, the pointer references a different 3521 // object in every iteration. E.g.: 3522 // for (i) 3523 // int *p = a[i]; 3524 // ... 3525 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3526 if (!L->isLoopInvariant(Load->getPointerOperand())) 3527 return false; 3528 return true; 3529 } 3530 3531 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3532 unsigned MaxLookup) { 3533 if (!V->getType()->isPointerTy()) 3534 return V; 3535 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3536 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3537 V = GEP->getPointerOperand(); 3538 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3539 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3540 V = cast<Operator>(V)->getOperand(0); 3541 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3542 if (GA->isInterposable()) 3543 return V; 3544 V = GA->getAliasee(); 3545 } else if (isa<AllocaInst>(V)) { 3546 // An alloca can't be further simplified. 3547 return V; 3548 } else { 3549 if (auto CS = CallSite(V)) { 3550 // CaptureTracking can know about special capturing properties of some 3551 // intrinsics like launder.invariant.group, that can't be expressed with 3552 // the attributes, but have properties like returning aliasing pointer. 3553 // Because some analysis may assume that nocaptured pointer is not 3554 // returned from some special intrinsic (because function would have to 3555 // be marked with returns attribute), it is crucial to use this function 3556 // because it should be in sync with CaptureTracking. Not using it may 3557 // cause weird miscompilations where 2 aliasing pointers are assumed to 3558 // noalias. 3559 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { 3560 V = RP; 3561 continue; 3562 } 3563 } 3564 3565 // See if InstructionSimplify knows any relevant tricks. 3566 if (Instruction *I = dyn_cast<Instruction>(V)) 3567 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3568 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3569 V = Simplified; 3570 continue; 3571 } 3572 3573 return V; 3574 } 3575 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3576 } 3577 return V; 3578 } 3579 3580 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3581 const DataLayout &DL, LoopInfo *LI, 3582 unsigned MaxLookup) { 3583 SmallPtrSet<Value *, 4> Visited; 3584 SmallVector<Value *, 4> Worklist; 3585 Worklist.push_back(V); 3586 do { 3587 Value *P = Worklist.pop_back_val(); 3588 P = GetUnderlyingObject(P, DL, MaxLookup); 3589 3590 if (!Visited.insert(P).second) 3591 continue; 3592 3593 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3594 Worklist.push_back(SI->getTrueValue()); 3595 Worklist.push_back(SI->getFalseValue()); 3596 continue; 3597 } 3598 3599 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3600 // If this PHI changes the underlying object in every iteration of the 3601 // loop, don't look through it. Consider: 3602 // int **A; 3603 // for (i) { 3604 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3605 // Curr = A[i]; 3606 // *Prev, *Curr; 3607 // 3608 // Prev is tracking Curr one iteration behind so they refer to different 3609 // underlying objects. 3610 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3611 isSameUnderlyingObjectInLoop(PN, LI)) 3612 for (Value *IncValue : PN->incoming_values()) 3613 Worklist.push_back(IncValue); 3614 continue; 3615 } 3616 3617 Objects.push_back(P); 3618 } while (!Worklist.empty()); 3619 } 3620 3621 /// This is the function that does the work of looking through basic 3622 /// ptrtoint+arithmetic+inttoptr sequences. 3623 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3624 do { 3625 if (const Operator *U = dyn_cast<Operator>(V)) { 3626 // If we find a ptrtoint, we can transfer control back to the 3627 // regular getUnderlyingObjectFromInt. 3628 if (U->getOpcode() == Instruction::PtrToInt) 3629 return U->getOperand(0); 3630 // If we find an add of a constant, a multiplied value, or a phi, it's 3631 // likely that the other operand will lead us to the base 3632 // object. We don't have to worry about the case where the 3633 // object address is somehow being computed by the multiply, 3634 // because our callers only care when the result is an 3635 // identifiable object. 3636 if (U->getOpcode() != Instruction::Add || 3637 (!isa<ConstantInt>(U->getOperand(1)) && 3638 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3639 !isa<PHINode>(U->getOperand(1)))) 3640 return V; 3641 V = U->getOperand(0); 3642 } else { 3643 return V; 3644 } 3645 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3646 } while (true); 3647 } 3648 3649 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3650 /// ptrtoint+arithmetic+inttoptr sequences. 3651 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3652 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3653 SmallVectorImpl<Value *> &Objects, 3654 const DataLayout &DL) { 3655 SmallPtrSet<const Value *, 16> Visited; 3656 SmallVector<const Value *, 4> Working(1, V); 3657 do { 3658 V = Working.pop_back_val(); 3659 3660 SmallVector<Value *, 4> Objs; 3661 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3662 3663 for (Value *V : Objs) { 3664 if (!Visited.insert(V).second) 3665 continue; 3666 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3667 const Value *O = 3668 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3669 if (O->getType()->isPointerTy()) { 3670 Working.push_back(O); 3671 continue; 3672 } 3673 } 3674 // If GetUnderlyingObjects fails to find an identifiable object, 3675 // getUnderlyingObjectsForCodeGen also fails for safety. 3676 if (!isIdentifiedObject(V)) { 3677 Objects.clear(); 3678 return false; 3679 } 3680 Objects.push_back(const_cast<Value *>(V)); 3681 } 3682 } while (!Working.empty()); 3683 return true; 3684 } 3685 3686 /// Return true if the only users of this pointer are lifetime markers. 3687 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3688 for (const User *U : V->users()) { 3689 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3690 if (!II) return false; 3691 3692 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3693 II->getIntrinsicID() != Intrinsic::lifetime_end) 3694 return false; 3695 } 3696 return true; 3697 } 3698 3699 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3700 const Instruction *CtxI, 3701 const DominatorTree *DT) { 3702 const Operator *Inst = dyn_cast<Operator>(V); 3703 if (!Inst) 3704 return false; 3705 3706 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3707 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3708 if (C->canTrap()) 3709 return false; 3710 3711 switch (Inst->getOpcode()) { 3712 default: 3713 return true; 3714 case Instruction::UDiv: 3715 case Instruction::URem: { 3716 // x / y is undefined if y == 0. 3717 const APInt *V; 3718 if (match(Inst->getOperand(1), m_APInt(V))) 3719 return *V != 0; 3720 return false; 3721 } 3722 case Instruction::SDiv: 3723 case Instruction::SRem: { 3724 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3725 const APInt *Numerator, *Denominator; 3726 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3727 return false; 3728 // We cannot hoist this division if the denominator is 0. 3729 if (*Denominator == 0) 3730 return false; 3731 // It's safe to hoist if the denominator is not 0 or -1. 3732 if (*Denominator != -1) 3733 return true; 3734 // At this point we know that the denominator is -1. It is safe to hoist as 3735 // long we know that the numerator is not INT_MIN. 3736 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3737 return !Numerator->isMinSignedValue(); 3738 // The numerator *might* be MinSignedValue. 3739 return false; 3740 } 3741 case Instruction::Load: { 3742 const LoadInst *LI = cast<LoadInst>(Inst); 3743 if (!LI->isUnordered() || 3744 // Speculative load may create a race that did not exist in the source. 3745 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3746 // Speculative load may load data from dirty regions. 3747 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3748 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3749 return false; 3750 const DataLayout &DL = LI->getModule()->getDataLayout(); 3751 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3752 LI->getAlignment(), DL, CtxI, DT); 3753 } 3754 case Instruction::Call: { 3755 auto *CI = cast<const CallInst>(Inst); 3756 const Function *Callee = CI->getCalledFunction(); 3757 3758 // The called function could have undefined behavior or side-effects, even 3759 // if marked readnone nounwind. 3760 return Callee && Callee->isSpeculatable(); 3761 } 3762 case Instruction::VAArg: 3763 case Instruction::Alloca: 3764 case Instruction::Invoke: 3765 case Instruction::PHI: 3766 case Instruction::Store: 3767 case Instruction::Ret: 3768 case Instruction::Br: 3769 case Instruction::IndirectBr: 3770 case Instruction::Switch: 3771 case Instruction::Unreachable: 3772 case Instruction::Fence: 3773 case Instruction::AtomicRMW: 3774 case Instruction::AtomicCmpXchg: 3775 case Instruction::LandingPad: 3776 case Instruction::Resume: 3777 case Instruction::CatchSwitch: 3778 case Instruction::CatchPad: 3779 case Instruction::CatchRet: 3780 case Instruction::CleanupPad: 3781 case Instruction::CleanupRet: 3782 return false; // Misc instructions which have effects 3783 } 3784 } 3785 3786 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3787 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3788 } 3789 3790 OverflowResult llvm::computeOverflowForUnsignedMul( 3791 const Value *LHS, const Value *RHS, const DataLayout &DL, 3792 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 3793 bool UseInstrInfo) { 3794 // Multiplying n * m significant bits yields a result of n + m significant 3795 // bits. If the total number of significant bits does not exceed the 3796 // result bit width (minus 1), there is no overflow. 3797 // This means if we have enough leading zero bits in the operands 3798 // we can guarantee that the result does not overflow. 3799 // Ref: "Hacker's Delight" by Henry Warren 3800 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3801 KnownBits LHSKnown(BitWidth); 3802 KnownBits RHSKnown(BitWidth); 3803 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, 3804 UseInstrInfo); 3805 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, 3806 UseInstrInfo); 3807 // Note that underestimating the number of zero bits gives a more 3808 // conservative answer. 3809 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3810 RHSKnown.countMinLeadingZeros(); 3811 // First handle the easy case: if we have enough zero bits there's 3812 // definitely no overflow. 3813 if (ZeroBits >= BitWidth) 3814 return OverflowResult::NeverOverflows; 3815 3816 // Get the largest possible values for each operand. 3817 APInt LHSMax = ~LHSKnown.Zero; 3818 APInt RHSMax = ~RHSKnown.Zero; 3819 3820 // We know the multiply operation doesn't overflow if the maximum values for 3821 // each operand will not overflow after we multiply them together. 3822 bool MaxOverflow; 3823 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3824 if (!MaxOverflow) 3825 return OverflowResult::NeverOverflows; 3826 3827 // We know it always overflows if multiplying the smallest possible values for 3828 // the operands also results in overflow. 3829 bool MinOverflow; 3830 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3831 if (MinOverflow) 3832 return OverflowResult::AlwaysOverflows; 3833 3834 return OverflowResult::MayOverflow; 3835 } 3836 3837 OverflowResult 3838 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 3839 const DataLayout &DL, AssumptionCache *AC, 3840 const Instruction *CxtI, 3841 const DominatorTree *DT, bool UseInstrInfo) { 3842 // Multiplying n * m significant bits yields a result of n + m significant 3843 // bits. If the total number of significant bits does not exceed the 3844 // result bit width (minus 1), there is no overflow. 3845 // This means if we have enough leading sign bits in the operands 3846 // we can guarantee that the result does not overflow. 3847 // Ref: "Hacker's Delight" by Henry Warren 3848 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3849 3850 // Note that underestimating the number of sign bits gives a more 3851 // conservative answer. 3852 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 3853 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 3854 3855 // First handle the easy case: if we have enough sign bits there's 3856 // definitely no overflow. 3857 if (SignBits > BitWidth + 1) 3858 return OverflowResult::NeverOverflows; 3859 3860 // There are two ambiguous cases where there can be no overflow: 3861 // SignBits == BitWidth + 1 and 3862 // SignBits == BitWidth 3863 // The second case is difficult to check, therefore we only handle the 3864 // first case. 3865 if (SignBits == BitWidth + 1) { 3866 // It overflows only when both arguments are negative and the true 3867 // product is exactly the minimum negative number. 3868 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 3869 // For simplicity we just check if at least one side is not negative. 3870 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 3871 nullptr, UseInstrInfo); 3872 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 3873 nullptr, UseInstrInfo); 3874 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 3875 return OverflowResult::NeverOverflows; 3876 } 3877 return OverflowResult::MayOverflow; 3878 } 3879 3880 OverflowResult llvm::computeOverflowForUnsignedAdd( 3881 const Value *LHS, const Value *RHS, const DataLayout &DL, 3882 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 3883 bool UseInstrInfo) { 3884 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 3885 nullptr, UseInstrInfo); 3886 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3887 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 3888 nullptr, UseInstrInfo); 3889 3890 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3891 // The sign bit is set in both cases: this MUST overflow. 3892 // Create a simple add instruction, and insert it into the struct. 3893 return OverflowResult::AlwaysOverflows; 3894 } 3895 3896 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3897 // The sign bit is clear in both cases: this CANNOT overflow. 3898 // Create a simple add instruction, and insert it into the struct. 3899 return OverflowResult::NeverOverflows; 3900 } 3901 } 3902 3903 return OverflowResult::MayOverflow; 3904 } 3905 3906 /// Return true if we can prove that adding the two values of the 3907 /// knownbits will not overflow. 3908 /// Otherwise return false. 3909 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3910 const KnownBits &RHSKnown) { 3911 // Addition of two 2's complement numbers having opposite signs will never 3912 // overflow. 3913 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3914 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3915 return true; 3916 3917 // If either of the values is known to be non-negative, adding them can only 3918 // overflow if the second is also non-negative, so we can assume that. 3919 // Two non-negative numbers will only overflow if there is a carry to the 3920 // sign bit, so we can check if even when the values are as big as possible 3921 // there is no overflow to the sign bit. 3922 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3923 APInt MaxLHS = ~LHSKnown.Zero; 3924 MaxLHS.clearSignBit(); 3925 APInt MaxRHS = ~RHSKnown.Zero; 3926 MaxRHS.clearSignBit(); 3927 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3928 return Result.isSignBitClear(); 3929 } 3930 3931 // If either of the values is known to be negative, adding them can only 3932 // overflow if the second is also negative, so we can assume that. 3933 // Two negative number will only overflow if there is no carry to the sign 3934 // bit, so we can check if even when the values are as small as possible 3935 // there is overflow to the sign bit. 3936 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3937 APInt MinLHS = LHSKnown.One; 3938 MinLHS.clearSignBit(); 3939 APInt MinRHS = RHSKnown.One; 3940 MinRHS.clearSignBit(); 3941 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3942 return Result.isSignBitSet(); 3943 } 3944 3945 // If we reached here it means that we know nothing about the sign bits. 3946 // In this case we can't know if there will be an overflow, since by 3947 // changing the sign bits any two values can be made to overflow. 3948 return false; 3949 } 3950 3951 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3952 const Value *RHS, 3953 const AddOperator *Add, 3954 const DataLayout &DL, 3955 AssumptionCache *AC, 3956 const Instruction *CxtI, 3957 const DominatorTree *DT) { 3958 if (Add && Add->hasNoSignedWrap()) { 3959 return OverflowResult::NeverOverflows; 3960 } 3961 3962 // If LHS and RHS each have at least two sign bits, the addition will look 3963 // like 3964 // 3965 // XX..... + 3966 // YY..... 3967 // 3968 // If the carry into the most significant position is 0, X and Y can't both 3969 // be 1 and therefore the carry out of the addition is also 0. 3970 // 3971 // If the carry into the most significant position is 1, X and Y can't both 3972 // be 0 and therefore the carry out of the addition is also 1. 3973 // 3974 // Since the carry into the most significant position is always equal to 3975 // the carry out of the addition, there is no signed overflow. 3976 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3977 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3978 return OverflowResult::NeverOverflows; 3979 3980 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3981 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3982 3983 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3984 return OverflowResult::NeverOverflows; 3985 3986 // The remaining code needs Add to be available. Early returns if not so. 3987 if (!Add) 3988 return OverflowResult::MayOverflow; 3989 3990 // If the sign of Add is the same as at least one of the operands, this add 3991 // CANNOT overflow. This is particularly useful when the sum is 3992 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3993 // operands. 3994 bool LHSOrRHSKnownNonNegative = 3995 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3996 bool LHSOrRHSKnownNegative = 3997 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3998 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3999 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 4000 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4001 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 4002 return OverflowResult::NeverOverflows; 4003 } 4004 } 4005 4006 return OverflowResult::MayOverflow; 4007 } 4008 4009 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4010 const Value *RHS, 4011 const DataLayout &DL, 4012 AssumptionCache *AC, 4013 const Instruction *CxtI, 4014 const DominatorTree *DT) { 4015 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 4016 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 4017 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 4018 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 4019 return OverflowResult::NeverOverflows; 4020 4021 return OverflowResult::MayOverflow; 4022 } 4023 4024 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4025 const Value *RHS, 4026 const DataLayout &DL, 4027 AssumptionCache *AC, 4028 const Instruction *CxtI, 4029 const DominatorTree *DT) { 4030 // If LHS and RHS each have at least two sign bits, the subtraction 4031 // cannot overflow. 4032 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4033 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4034 return OverflowResult::NeverOverflows; 4035 4036 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); 4037 4038 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); 4039 4040 // Subtraction of two 2's complement numbers having identical signs will 4041 // never overflow. 4042 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 4043 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 4044 return OverflowResult::NeverOverflows; 4045 4046 // TODO: implement logic similar to checkRippleForAdd 4047 return OverflowResult::MayOverflow; 4048 } 4049 4050 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 4051 const DominatorTree &DT) { 4052 #ifndef NDEBUG 4053 auto IID = II->getIntrinsicID(); 4054 assert((IID == Intrinsic::sadd_with_overflow || 4055 IID == Intrinsic::uadd_with_overflow || 4056 IID == Intrinsic::ssub_with_overflow || 4057 IID == Intrinsic::usub_with_overflow || 4058 IID == Intrinsic::smul_with_overflow || 4059 IID == Intrinsic::umul_with_overflow) && 4060 "Not an overflow intrinsic!"); 4061 #endif 4062 4063 SmallVector<const BranchInst *, 2> GuardingBranches; 4064 SmallVector<const ExtractValueInst *, 2> Results; 4065 4066 for (const User *U : II->users()) { 4067 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4068 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4069 4070 if (EVI->getIndices()[0] == 0) 4071 Results.push_back(EVI); 4072 else { 4073 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4074 4075 for (const auto *U : EVI->users()) 4076 if (const auto *B = dyn_cast<BranchInst>(U)) { 4077 assert(B->isConditional() && "How else is it using an i1?"); 4078 GuardingBranches.push_back(B); 4079 } 4080 } 4081 } else { 4082 // We are using the aggregate directly in a way we don't want to analyze 4083 // here (storing it to a global, say). 4084 return false; 4085 } 4086 } 4087 4088 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4089 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4090 if (!NoWrapEdge.isSingleEdge()) 4091 return false; 4092 4093 // Check if all users of the add are provably no-wrap. 4094 for (const auto *Result : Results) { 4095 // If the extractvalue itself is not executed on overflow, the we don't 4096 // need to check each use separately, since domination is transitive. 4097 if (DT.dominates(NoWrapEdge, Result->getParent())) 4098 continue; 4099 4100 for (auto &RU : Result->uses()) 4101 if (!DT.dominates(NoWrapEdge, RU)) 4102 return false; 4103 } 4104 4105 return true; 4106 }; 4107 4108 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4109 } 4110 4111 4112 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4113 const DataLayout &DL, 4114 AssumptionCache *AC, 4115 const Instruction *CxtI, 4116 const DominatorTree *DT) { 4117 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4118 Add, DL, AC, CxtI, DT); 4119 } 4120 4121 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4122 const Value *RHS, 4123 const DataLayout &DL, 4124 AssumptionCache *AC, 4125 const Instruction *CxtI, 4126 const DominatorTree *DT) { 4127 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4128 } 4129 4130 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4131 // A memory operation returns normally if it isn't volatile. A volatile 4132 // operation is allowed to trap. 4133 // 4134 // An atomic operation isn't guaranteed to return in a reasonable amount of 4135 // time because it's possible for another thread to interfere with it for an 4136 // arbitrary length of time, but programs aren't allowed to rely on that. 4137 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4138 return !LI->isVolatile(); 4139 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4140 return !SI->isVolatile(); 4141 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4142 return !CXI->isVolatile(); 4143 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4144 return !RMWI->isVolatile(); 4145 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4146 return !MII->isVolatile(); 4147 4148 // If there is no successor, then execution can't transfer to it. 4149 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4150 return !CRI->unwindsToCaller(); 4151 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4152 return !CatchSwitch->unwindsToCaller(); 4153 if (isa<ResumeInst>(I)) 4154 return false; 4155 if (isa<ReturnInst>(I)) 4156 return false; 4157 if (isa<UnreachableInst>(I)) 4158 return false; 4159 4160 // Calls can throw, or contain an infinite loop, or kill the process. 4161 if (auto CS = ImmutableCallSite(I)) { 4162 // Call sites that throw have implicit non-local control flow. 4163 if (!CS.doesNotThrow()) 4164 return false; 4165 4166 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4167 // etc. and thus not return. However, LLVM already assumes that 4168 // 4169 // - Thread exiting actions are modeled as writes to memory invisible to 4170 // the program. 4171 // 4172 // - Loops that don't have side effects (side effects are volatile/atomic 4173 // stores and IO) always terminate (see http://llvm.org/PR965). 4174 // Furthermore IO itself is also modeled as writes to memory invisible to 4175 // the program. 4176 // 4177 // We rely on those assumptions here, and use the memory effects of the call 4178 // target as a proxy for checking that it always returns. 4179 4180 // FIXME: This isn't aggressive enough; a call which only writes to a global 4181 // is guaranteed to return. 4182 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4183 match(I, m_Intrinsic<Intrinsic::assume>()) || 4184 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 4185 } 4186 4187 // Other instructions return normally. 4188 return true; 4189 } 4190 4191 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4192 // TODO: This is slightly consdervative for invoke instruction since exiting 4193 // via an exception *is* normal control for them. 4194 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4195 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4196 return false; 4197 return true; 4198 } 4199 4200 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4201 const Loop *L) { 4202 // The loop header is guaranteed to be executed for every iteration. 4203 // 4204 // FIXME: Relax this constraint to cover all basic blocks that are 4205 // guaranteed to be executed at every iteration. 4206 if (I->getParent() != L->getHeader()) return false; 4207 4208 for (const Instruction &LI : *L->getHeader()) { 4209 if (&LI == I) return true; 4210 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4211 } 4212 llvm_unreachable("Instruction not contained in its own parent basic block."); 4213 } 4214 4215 bool llvm::propagatesFullPoison(const Instruction *I) { 4216 switch (I->getOpcode()) { 4217 case Instruction::Add: 4218 case Instruction::Sub: 4219 case Instruction::Xor: 4220 case Instruction::Trunc: 4221 case Instruction::BitCast: 4222 case Instruction::AddrSpaceCast: 4223 case Instruction::Mul: 4224 case Instruction::Shl: 4225 case Instruction::GetElementPtr: 4226 // These operations all propagate poison unconditionally. Note that poison 4227 // is not any particular value, so xor or subtraction of poison with 4228 // itself still yields poison, not zero. 4229 return true; 4230 4231 case Instruction::AShr: 4232 case Instruction::SExt: 4233 // For these operations, one bit of the input is replicated across 4234 // multiple output bits. A replicated poison bit is still poison. 4235 return true; 4236 4237 case Instruction::ICmp: 4238 // Comparing poison with any value yields poison. This is why, for 4239 // instance, x s< (x +nsw 1) can be folded to true. 4240 return true; 4241 4242 default: 4243 return false; 4244 } 4245 } 4246 4247 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4248 switch (I->getOpcode()) { 4249 case Instruction::Store: 4250 return cast<StoreInst>(I)->getPointerOperand(); 4251 4252 case Instruction::Load: 4253 return cast<LoadInst>(I)->getPointerOperand(); 4254 4255 case Instruction::AtomicCmpXchg: 4256 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4257 4258 case Instruction::AtomicRMW: 4259 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4260 4261 case Instruction::UDiv: 4262 case Instruction::SDiv: 4263 case Instruction::URem: 4264 case Instruction::SRem: 4265 return I->getOperand(1); 4266 4267 default: 4268 return nullptr; 4269 } 4270 } 4271 4272 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4273 // We currently only look for uses of poison values within the same basic 4274 // block, as that makes it easier to guarantee that the uses will be 4275 // executed given that PoisonI is executed. 4276 // 4277 // FIXME: Expand this to consider uses beyond the same basic block. To do 4278 // this, look out for the distinction between post-dominance and strong 4279 // post-dominance. 4280 const BasicBlock *BB = PoisonI->getParent(); 4281 4282 // Set of instructions that we have proved will yield poison if PoisonI 4283 // does. 4284 SmallSet<const Value *, 16> YieldsPoison; 4285 SmallSet<const BasicBlock *, 4> Visited; 4286 YieldsPoison.insert(PoisonI); 4287 Visited.insert(PoisonI->getParent()); 4288 4289 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4290 4291 unsigned Iter = 0; 4292 while (Iter++ < MaxDepth) { 4293 for (auto &I : make_range(Begin, End)) { 4294 if (&I != PoisonI) { 4295 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4296 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4297 return true; 4298 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4299 return false; 4300 } 4301 4302 // Mark poison that propagates from I through uses of I. 4303 if (YieldsPoison.count(&I)) { 4304 for (const User *User : I.users()) { 4305 const Instruction *UserI = cast<Instruction>(User); 4306 if (propagatesFullPoison(UserI)) 4307 YieldsPoison.insert(User); 4308 } 4309 } 4310 } 4311 4312 if (auto *NextBB = BB->getSingleSuccessor()) { 4313 if (Visited.insert(NextBB).second) { 4314 BB = NextBB; 4315 Begin = BB->getFirstNonPHI()->getIterator(); 4316 End = BB->end(); 4317 continue; 4318 } 4319 } 4320 4321 break; 4322 } 4323 return false; 4324 } 4325 4326 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4327 if (FMF.noNaNs()) 4328 return true; 4329 4330 if (auto *C = dyn_cast<ConstantFP>(V)) 4331 return !C->isNaN(); 4332 return false; 4333 } 4334 4335 static bool isKnownNonZero(const Value *V) { 4336 if (auto *C = dyn_cast<ConstantFP>(V)) 4337 return !C->isZero(); 4338 return false; 4339 } 4340 4341 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4342 /// Given non-min/max outer cmp/select from the clamp pattern this 4343 /// function recognizes if it can be substitued by a "canonical" min/max 4344 /// pattern. 4345 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4346 Value *CmpLHS, Value *CmpRHS, 4347 Value *TrueVal, Value *FalseVal, 4348 Value *&LHS, Value *&RHS) { 4349 // Try to match 4350 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4351 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4352 // and return description of the outer Max/Min. 4353 4354 // First, check if select has inverse order: 4355 if (CmpRHS == FalseVal) { 4356 std::swap(TrueVal, FalseVal); 4357 Pred = CmpInst::getInversePredicate(Pred); 4358 } 4359 4360 // Assume success now. If there's no match, callers should not use these anyway. 4361 LHS = TrueVal; 4362 RHS = FalseVal; 4363 4364 const APFloat *FC1; 4365 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4366 return {SPF_UNKNOWN, SPNB_NA, false}; 4367 4368 const APFloat *FC2; 4369 switch (Pred) { 4370 case CmpInst::FCMP_OLT: 4371 case CmpInst::FCMP_OLE: 4372 case CmpInst::FCMP_ULT: 4373 case CmpInst::FCMP_ULE: 4374 if (match(FalseVal, 4375 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4376 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4377 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4378 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4379 break; 4380 case CmpInst::FCMP_OGT: 4381 case CmpInst::FCMP_OGE: 4382 case CmpInst::FCMP_UGT: 4383 case CmpInst::FCMP_UGE: 4384 if (match(FalseVal, 4385 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4386 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4387 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4388 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4389 break; 4390 default: 4391 break; 4392 } 4393 4394 return {SPF_UNKNOWN, SPNB_NA, false}; 4395 } 4396 4397 /// Recognize variations of: 4398 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4399 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4400 Value *CmpLHS, Value *CmpRHS, 4401 Value *TrueVal, Value *FalseVal) { 4402 // Swap the select operands and predicate to match the patterns below. 4403 if (CmpRHS != TrueVal) { 4404 Pred = ICmpInst::getSwappedPredicate(Pred); 4405 std::swap(TrueVal, FalseVal); 4406 } 4407 const APInt *C1; 4408 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4409 const APInt *C2; 4410 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4411 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4412 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4413 return {SPF_SMAX, SPNB_NA, false}; 4414 4415 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4416 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4417 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4418 return {SPF_SMIN, SPNB_NA, false}; 4419 4420 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4421 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4422 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4423 return {SPF_UMAX, SPNB_NA, false}; 4424 4425 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4426 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4427 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4428 return {SPF_UMIN, SPNB_NA, false}; 4429 } 4430 return {SPF_UNKNOWN, SPNB_NA, false}; 4431 } 4432 4433 /// Recognize variations of: 4434 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4435 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4436 Value *CmpLHS, Value *CmpRHS, 4437 Value *TVal, Value *FVal, 4438 unsigned Depth) { 4439 // TODO: Allow FP min/max with nnan/nsz. 4440 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4441 4442 Value *A, *B; 4443 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4444 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4445 return {SPF_UNKNOWN, SPNB_NA, false}; 4446 4447 Value *C, *D; 4448 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4449 if (L.Flavor != R.Flavor) 4450 return {SPF_UNKNOWN, SPNB_NA, false}; 4451 4452 // We have something like: x Pred y ? min(a, b) : min(c, d). 4453 // Try to match the compare to the min/max operations of the select operands. 4454 // First, make sure we have the right compare predicate. 4455 switch (L.Flavor) { 4456 case SPF_SMIN: 4457 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4458 Pred = ICmpInst::getSwappedPredicate(Pred); 4459 std::swap(CmpLHS, CmpRHS); 4460 } 4461 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4462 break; 4463 return {SPF_UNKNOWN, SPNB_NA, false}; 4464 case SPF_SMAX: 4465 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4466 Pred = ICmpInst::getSwappedPredicate(Pred); 4467 std::swap(CmpLHS, CmpRHS); 4468 } 4469 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4470 break; 4471 return {SPF_UNKNOWN, SPNB_NA, false}; 4472 case SPF_UMIN: 4473 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4474 Pred = ICmpInst::getSwappedPredicate(Pred); 4475 std::swap(CmpLHS, CmpRHS); 4476 } 4477 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4478 break; 4479 return {SPF_UNKNOWN, SPNB_NA, false}; 4480 case SPF_UMAX: 4481 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4482 Pred = ICmpInst::getSwappedPredicate(Pred); 4483 std::swap(CmpLHS, CmpRHS); 4484 } 4485 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4486 break; 4487 return {SPF_UNKNOWN, SPNB_NA, false}; 4488 default: 4489 return {SPF_UNKNOWN, SPNB_NA, false}; 4490 } 4491 4492 // If there is a common operand in the already matched min/max and the other 4493 // min/max operands match the compare operands (either directly or inverted), 4494 // then this is min/max of the same flavor. 4495 4496 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4497 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4498 if (D == B) { 4499 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4500 match(A, m_Not(m_Specific(CmpRHS))))) 4501 return {L.Flavor, SPNB_NA, false}; 4502 } 4503 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4504 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4505 if (C == B) { 4506 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4507 match(A, m_Not(m_Specific(CmpRHS))))) 4508 return {L.Flavor, SPNB_NA, false}; 4509 } 4510 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4511 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4512 if (D == A) { 4513 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4514 match(B, m_Not(m_Specific(CmpRHS))))) 4515 return {L.Flavor, SPNB_NA, false}; 4516 } 4517 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4518 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4519 if (C == A) { 4520 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4521 match(B, m_Not(m_Specific(CmpRHS))))) 4522 return {L.Flavor, SPNB_NA, false}; 4523 } 4524 4525 return {SPF_UNKNOWN, SPNB_NA, false}; 4526 } 4527 4528 /// Match non-obvious integer minimum and maximum sequences. 4529 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4530 Value *CmpLHS, Value *CmpRHS, 4531 Value *TrueVal, Value *FalseVal, 4532 Value *&LHS, Value *&RHS, 4533 unsigned Depth) { 4534 // Assume success. If there's no match, callers should not use these anyway. 4535 LHS = TrueVal; 4536 RHS = FalseVal; 4537 4538 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4539 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4540 return SPR; 4541 4542 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4543 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4544 return SPR; 4545 4546 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4547 return {SPF_UNKNOWN, SPNB_NA, false}; 4548 4549 // Z = X -nsw Y 4550 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4551 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4552 if (match(TrueVal, m_Zero()) && 4553 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4554 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4555 4556 // Z = X -nsw Y 4557 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4558 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4559 if (match(FalseVal, m_Zero()) && 4560 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4561 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4562 4563 const APInt *C1; 4564 if (!match(CmpRHS, m_APInt(C1))) 4565 return {SPF_UNKNOWN, SPNB_NA, false}; 4566 4567 // An unsigned min/max can be written with a signed compare. 4568 const APInt *C2; 4569 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4570 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4571 // Is the sign bit set? 4572 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4573 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4574 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4575 C2->isMaxSignedValue()) 4576 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4577 4578 // Is the sign bit clear? 4579 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4580 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4581 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4582 C2->isMinSignedValue()) 4583 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4584 } 4585 4586 // Look through 'not' ops to find disguised signed min/max. 4587 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4588 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4589 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4590 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4591 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4592 4593 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4594 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4595 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4596 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4597 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4598 4599 return {SPF_UNKNOWN, SPNB_NA, false}; 4600 } 4601 4602 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4603 assert(X && Y && "Invalid operand"); 4604 4605 // X = sub (0, Y) || X = sub nsw (0, Y) 4606 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4607 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4608 return true; 4609 4610 // Y = sub (0, X) || Y = sub nsw (0, X) 4611 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4612 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4613 return true; 4614 4615 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4616 Value *A, *B; 4617 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4618 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4619 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4620 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4621 } 4622 4623 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4624 FastMathFlags FMF, 4625 Value *CmpLHS, Value *CmpRHS, 4626 Value *TrueVal, Value *FalseVal, 4627 Value *&LHS, Value *&RHS, 4628 unsigned Depth) { 4629 LHS = CmpLHS; 4630 RHS = CmpRHS; 4631 4632 // Signed zero may return inconsistent results between implementations. 4633 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4634 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4635 // Therefore, we behave conservatively and only proceed if at least one of the 4636 // operands is known to not be zero or if we don't care about signed zero. 4637 switch (Pred) { 4638 default: break; 4639 // FIXME: Include OGT/OLT/UGT/ULT. 4640 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4641 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4642 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4643 !isKnownNonZero(CmpRHS)) 4644 return {SPF_UNKNOWN, SPNB_NA, false}; 4645 } 4646 4647 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4648 bool Ordered = false; 4649 4650 // When given one NaN and one non-NaN input: 4651 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4652 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4653 // ordered comparison fails), which could be NaN or non-NaN. 4654 // so here we discover exactly what NaN behavior is required/accepted. 4655 if (CmpInst::isFPPredicate(Pred)) { 4656 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4657 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4658 4659 if (LHSSafe && RHSSafe) { 4660 // Both operands are known non-NaN. 4661 NaNBehavior = SPNB_RETURNS_ANY; 4662 } else if (CmpInst::isOrdered(Pred)) { 4663 // An ordered comparison will return false when given a NaN, so it 4664 // returns the RHS. 4665 Ordered = true; 4666 if (LHSSafe) 4667 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4668 NaNBehavior = SPNB_RETURNS_NAN; 4669 else if (RHSSafe) 4670 NaNBehavior = SPNB_RETURNS_OTHER; 4671 else 4672 // Completely unsafe. 4673 return {SPF_UNKNOWN, SPNB_NA, false}; 4674 } else { 4675 Ordered = false; 4676 // An unordered comparison will return true when given a NaN, so it 4677 // returns the LHS. 4678 if (LHSSafe) 4679 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4680 NaNBehavior = SPNB_RETURNS_OTHER; 4681 else if (RHSSafe) 4682 NaNBehavior = SPNB_RETURNS_NAN; 4683 else 4684 // Completely unsafe. 4685 return {SPF_UNKNOWN, SPNB_NA, false}; 4686 } 4687 } 4688 4689 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4690 std::swap(CmpLHS, CmpRHS); 4691 Pred = CmpInst::getSwappedPredicate(Pred); 4692 if (NaNBehavior == SPNB_RETURNS_NAN) 4693 NaNBehavior = SPNB_RETURNS_OTHER; 4694 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4695 NaNBehavior = SPNB_RETURNS_NAN; 4696 Ordered = !Ordered; 4697 } 4698 4699 // ([if]cmp X, Y) ? X : Y 4700 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4701 switch (Pred) { 4702 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4703 case ICmpInst::ICMP_UGT: 4704 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4705 case ICmpInst::ICMP_SGT: 4706 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4707 case ICmpInst::ICMP_ULT: 4708 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4709 case ICmpInst::ICMP_SLT: 4710 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4711 case FCmpInst::FCMP_UGT: 4712 case FCmpInst::FCMP_UGE: 4713 case FCmpInst::FCMP_OGT: 4714 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4715 case FCmpInst::FCMP_ULT: 4716 case FCmpInst::FCMP_ULE: 4717 case FCmpInst::FCMP_OLT: 4718 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4719 } 4720 } 4721 4722 if (isKnownNegation(TrueVal, FalseVal)) { 4723 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4724 // match against either LHS or sext(LHS). 4725 auto MaybeSExtCmpLHS = 4726 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4727 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4728 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4729 if (match(TrueVal, MaybeSExtCmpLHS)) { 4730 // Set the return values. If the compare uses the negated value (-X >s 0), 4731 // swap the return values because the negated value is always 'RHS'. 4732 LHS = TrueVal; 4733 RHS = FalseVal; 4734 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4735 std::swap(LHS, RHS); 4736 4737 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4738 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4739 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4740 return {SPF_ABS, SPNB_NA, false}; 4741 4742 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 4743 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 4744 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4745 return {SPF_NABS, SPNB_NA, false}; 4746 } 4747 else if (match(FalseVal, MaybeSExtCmpLHS)) { 4748 // Set the return values. If the compare uses the negated value (-X >s 0), 4749 // swap the return values because the negated value is always 'RHS'. 4750 LHS = FalseVal; 4751 RHS = TrueVal; 4752 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 4753 std::swap(LHS, RHS); 4754 4755 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 4756 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 4757 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4758 return {SPF_NABS, SPNB_NA, false}; 4759 4760 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 4761 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 4762 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4763 return {SPF_ABS, SPNB_NA, false}; 4764 } 4765 } 4766 4767 if (CmpInst::isIntPredicate(Pred)) 4768 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4769 4770 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4771 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4772 // semantics than minNum. Be conservative in such case. 4773 if (NaNBehavior != SPNB_RETURNS_ANY || 4774 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4775 !isKnownNonZero(CmpRHS))) 4776 return {SPF_UNKNOWN, SPNB_NA, false}; 4777 4778 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4779 } 4780 4781 /// Helps to match a select pattern in case of a type mismatch. 4782 /// 4783 /// The function processes the case when type of true and false values of a 4784 /// select instruction differs from type of the cmp instruction operands because 4785 /// of a cast instruction. The function checks if it is legal to move the cast 4786 /// operation after "select". If yes, it returns the new second value of 4787 /// "select" (with the assumption that cast is moved): 4788 /// 1. As operand of cast instruction when both values of "select" are same cast 4789 /// instructions. 4790 /// 2. As restored constant (by applying reverse cast operation) when the first 4791 /// value of the "select" is a cast operation and the second value is a 4792 /// constant. 4793 /// NOTE: We return only the new second value because the first value could be 4794 /// accessed as operand of cast instruction. 4795 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4796 Instruction::CastOps *CastOp) { 4797 auto *Cast1 = dyn_cast<CastInst>(V1); 4798 if (!Cast1) 4799 return nullptr; 4800 4801 *CastOp = Cast1->getOpcode(); 4802 Type *SrcTy = Cast1->getSrcTy(); 4803 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4804 // If V1 and V2 are both the same cast from the same type, look through V1. 4805 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4806 return Cast2->getOperand(0); 4807 return nullptr; 4808 } 4809 4810 auto *C = dyn_cast<Constant>(V2); 4811 if (!C) 4812 return nullptr; 4813 4814 Constant *CastedTo = nullptr; 4815 switch (*CastOp) { 4816 case Instruction::ZExt: 4817 if (CmpI->isUnsigned()) 4818 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4819 break; 4820 case Instruction::SExt: 4821 if (CmpI->isSigned()) 4822 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4823 break; 4824 case Instruction::Trunc: 4825 Constant *CmpConst; 4826 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4827 CmpConst->getType() == SrcTy) { 4828 // Here we have the following case: 4829 // 4830 // %cond = cmp iN %x, CmpConst 4831 // %tr = trunc iN %x to iK 4832 // %narrowsel = select i1 %cond, iK %t, iK C 4833 // 4834 // We can always move trunc after select operation: 4835 // 4836 // %cond = cmp iN %x, CmpConst 4837 // %widesel = select i1 %cond, iN %x, iN CmpConst 4838 // %tr = trunc iN %widesel to iK 4839 // 4840 // Note that C could be extended in any way because we don't care about 4841 // upper bits after truncation. It can't be abs pattern, because it would 4842 // look like: 4843 // 4844 // select i1 %cond, x, -x. 4845 // 4846 // So only min/max pattern could be matched. Such match requires widened C 4847 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4848 // CmpConst == C is checked below. 4849 CastedTo = CmpConst; 4850 } else { 4851 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4852 } 4853 break; 4854 case Instruction::FPTrunc: 4855 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4856 break; 4857 case Instruction::FPExt: 4858 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4859 break; 4860 case Instruction::FPToUI: 4861 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4862 break; 4863 case Instruction::FPToSI: 4864 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4865 break; 4866 case Instruction::UIToFP: 4867 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4868 break; 4869 case Instruction::SIToFP: 4870 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4871 break; 4872 default: 4873 break; 4874 } 4875 4876 if (!CastedTo) 4877 return nullptr; 4878 4879 // Make sure the cast doesn't lose any information. 4880 Constant *CastedBack = 4881 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4882 if (CastedBack != C) 4883 return nullptr; 4884 4885 return CastedTo; 4886 } 4887 4888 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4889 Instruction::CastOps *CastOp, 4890 unsigned Depth) { 4891 if (Depth >= MaxDepth) 4892 return {SPF_UNKNOWN, SPNB_NA, false}; 4893 4894 SelectInst *SI = dyn_cast<SelectInst>(V); 4895 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4896 4897 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4898 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4899 4900 CmpInst::Predicate Pred = CmpI->getPredicate(); 4901 Value *CmpLHS = CmpI->getOperand(0); 4902 Value *CmpRHS = CmpI->getOperand(1); 4903 Value *TrueVal = SI->getTrueValue(); 4904 Value *FalseVal = SI->getFalseValue(); 4905 FastMathFlags FMF; 4906 if (isa<FPMathOperator>(CmpI)) 4907 FMF = CmpI->getFastMathFlags(); 4908 4909 // Bail out early. 4910 if (CmpI->isEquality()) 4911 return {SPF_UNKNOWN, SPNB_NA, false}; 4912 4913 // Deal with type mismatches. 4914 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4915 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4916 // If this is a potential fmin/fmax with a cast to integer, then ignore 4917 // -0.0 because there is no corresponding integer value. 4918 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4919 FMF.setNoSignedZeros(); 4920 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4921 cast<CastInst>(TrueVal)->getOperand(0), C, 4922 LHS, RHS, Depth); 4923 } 4924 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4925 // If this is a potential fmin/fmax with a cast to integer, then ignore 4926 // -0.0 because there is no corresponding integer value. 4927 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4928 FMF.setNoSignedZeros(); 4929 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4930 C, cast<CastInst>(FalseVal)->getOperand(0), 4931 LHS, RHS, Depth); 4932 } 4933 } 4934 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4935 LHS, RHS, Depth); 4936 } 4937 4938 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 4939 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 4940 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 4941 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 4942 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 4943 if (SPF == SPF_FMINNUM) 4944 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 4945 if (SPF == SPF_FMAXNUM) 4946 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 4947 llvm_unreachable("unhandled!"); 4948 } 4949 4950 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 4951 if (SPF == SPF_SMIN) return SPF_SMAX; 4952 if (SPF == SPF_UMIN) return SPF_UMAX; 4953 if (SPF == SPF_SMAX) return SPF_SMIN; 4954 if (SPF == SPF_UMAX) return SPF_UMIN; 4955 llvm_unreachable("unhandled!"); 4956 } 4957 4958 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 4959 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 4960 } 4961 4962 /// Return true if "icmp Pred LHS RHS" is always true. 4963 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4964 const Value *RHS, const DataLayout &DL, 4965 unsigned Depth) { 4966 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4967 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4968 return true; 4969 4970 switch (Pred) { 4971 default: 4972 return false; 4973 4974 case CmpInst::ICMP_SLE: { 4975 const APInt *C; 4976 4977 // LHS s<= LHS +_{nsw} C if C >= 0 4978 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4979 return !C->isNegative(); 4980 return false; 4981 } 4982 4983 case CmpInst::ICMP_ULE: { 4984 const APInt *C; 4985 4986 // LHS u<= LHS +_{nuw} C for any C 4987 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4988 return true; 4989 4990 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4991 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4992 const Value *&X, 4993 const APInt *&CA, const APInt *&CB) { 4994 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4995 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4996 return true; 4997 4998 // If X & C == 0 then (X | C) == X +_{nuw} C 4999 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5000 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5001 KnownBits Known(CA->getBitWidth()); 5002 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5003 /*CxtI*/ nullptr, /*DT*/ nullptr); 5004 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5005 return true; 5006 } 5007 5008 return false; 5009 }; 5010 5011 const Value *X; 5012 const APInt *CLHS, *CRHS; 5013 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5014 return CLHS->ule(*CRHS); 5015 5016 return false; 5017 } 5018 } 5019 } 5020 5021 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5022 /// ALHS ARHS" is true. Otherwise, return None. 5023 static Optional<bool> 5024 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5025 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5026 const DataLayout &DL, unsigned Depth) { 5027 switch (Pred) { 5028 default: 5029 return None; 5030 5031 case CmpInst::ICMP_SLT: 5032 case CmpInst::ICMP_SLE: 5033 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5034 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5035 return true; 5036 return None; 5037 5038 case CmpInst::ICMP_ULT: 5039 case CmpInst::ICMP_ULE: 5040 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5041 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5042 return true; 5043 return None; 5044 } 5045 } 5046 5047 /// Return true if the operands of the two compares match. IsSwappedOps is true 5048 /// when the operands match, but are swapped. 5049 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5050 const Value *BLHS, const Value *BRHS, 5051 bool &IsSwappedOps) { 5052 5053 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5054 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5055 return IsMatchingOps || IsSwappedOps; 5056 } 5057 5058 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 5059 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 5060 /// BRHS" is false. Otherwise, return None if we can't infer anything. 5061 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5062 const Value *ALHS, 5063 const Value *ARHS, 5064 CmpInst::Predicate BPred, 5065 const Value *BLHS, 5066 const Value *BRHS, 5067 bool IsSwappedOps) { 5068 // Canonicalize the operands so they're matching. 5069 if (IsSwappedOps) { 5070 std::swap(BLHS, BRHS); 5071 BPred = ICmpInst::getSwappedPredicate(BPred); 5072 } 5073 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5074 return true; 5075 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5076 return false; 5077 5078 return None; 5079 } 5080 5081 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 5082 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 5083 /// C2" is false. Otherwise, return None if we can't infer anything. 5084 static Optional<bool> 5085 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 5086 const ConstantInt *C1, 5087 CmpInst::Predicate BPred, 5088 const Value *BLHS, const ConstantInt *C2) { 5089 assert(ALHS == BLHS && "LHS operands must match."); 5090 ConstantRange DomCR = 5091 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5092 ConstantRange CR = 5093 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5094 ConstantRange Intersection = DomCR.intersectWith(CR); 5095 ConstantRange Difference = DomCR.difference(CR); 5096 if (Intersection.isEmptySet()) 5097 return false; 5098 if (Difference.isEmptySet()) 5099 return true; 5100 return None; 5101 } 5102 5103 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5104 /// false. Otherwise, return None if we can't infer anything. 5105 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5106 const ICmpInst *RHS, 5107 const DataLayout &DL, bool LHSIsTrue, 5108 unsigned Depth) { 5109 Value *ALHS = LHS->getOperand(0); 5110 Value *ARHS = LHS->getOperand(1); 5111 // The rest of the logic assumes the LHS condition is true. If that's not the 5112 // case, invert the predicate to make it so. 5113 ICmpInst::Predicate APred = 5114 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5115 5116 Value *BLHS = RHS->getOperand(0); 5117 Value *BRHS = RHS->getOperand(1); 5118 ICmpInst::Predicate BPred = RHS->getPredicate(); 5119 5120 // Can we infer anything when the two compares have matching operands? 5121 bool IsSwappedOps; 5122 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 5123 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5124 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 5125 return Implication; 5126 // No amount of additional analysis will infer the second condition, so 5127 // early exit. 5128 return None; 5129 } 5130 5131 // Can we infer anything when the LHS operands match and the RHS operands are 5132 // constants (not necessarily matching)? 5133 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5134 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5135 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 5136 cast<ConstantInt>(BRHS))) 5137 return Implication; 5138 // No amount of additional analysis will infer the second condition, so 5139 // early exit. 5140 return None; 5141 } 5142 5143 if (APred == BPred) 5144 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5145 return None; 5146 } 5147 5148 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5149 /// false. Otherwise, return None if we can't infer anything. We expect the 5150 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5151 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5152 const ICmpInst *RHS, 5153 const DataLayout &DL, bool LHSIsTrue, 5154 unsigned Depth) { 5155 // The LHS must be an 'or' or an 'and' instruction. 5156 assert((LHS->getOpcode() == Instruction::And || 5157 LHS->getOpcode() == Instruction::Or) && 5158 "Expected LHS to be 'and' or 'or'."); 5159 5160 assert(Depth <= MaxDepth && "Hit recursion limit"); 5161 5162 // If the result of an 'or' is false, then we know both legs of the 'or' are 5163 // false. Similarly, if the result of an 'and' is true, then we know both 5164 // legs of the 'and' are true. 5165 Value *ALHS, *ARHS; 5166 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5167 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5168 // FIXME: Make this non-recursion. 5169 if (Optional<bool> Implication = 5170 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5171 return Implication; 5172 if (Optional<bool> Implication = 5173 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5174 return Implication; 5175 return None; 5176 } 5177 return None; 5178 } 5179 5180 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5181 const DataLayout &DL, bool LHSIsTrue, 5182 unsigned Depth) { 5183 // Bail out when we hit the limit. 5184 if (Depth == MaxDepth) 5185 return None; 5186 5187 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5188 // example. 5189 if (LHS->getType() != RHS->getType()) 5190 return None; 5191 5192 Type *OpTy = LHS->getType(); 5193 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5194 5195 // LHS ==> RHS by definition 5196 if (LHS == RHS) 5197 return LHSIsTrue; 5198 5199 // FIXME: Extending the code below to handle vectors. 5200 if (OpTy->isVectorTy()) 5201 return None; 5202 5203 assert(OpTy->isIntegerTy(1) && "implied by above"); 5204 5205 // Both LHS and RHS are icmps. 5206 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5207 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5208 if (LHSCmp && RHSCmp) 5209 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5210 5211 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5212 // an icmp. FIXME: Add support for and/or on the RHS. 5213 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5214 if (LHSBO && RHSCmp) { 5215 if ((LHSBO->getOpcode() == Instruction::And || 5216 LHSBO->getOpcode() == Instruction::Or)) 5217 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5218 } 5219 return None; 5220 } 5221