1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<VectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = Shuf->getType()->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 178 if (DemandedElts.isNullValue()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 Type *Ty = V->getType(); 210 APInt DemandedElts = 211 Ty->isVectorTy() 212 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 213 : APInt(1, 1); 214 computeKnownBits(V, DemandedElts, Known, Depth, Q); 215 } 216 217 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 218 const DataLayout &DL, unsigned Depth, 219 AssumptionCache *AC, const Instruction *CxtI, 220 const DominatorTree *DT, 221 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 222 ::computeKnownBits(V, Known, Depth, 223 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 224 } 225 226 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 227 KnownBits &Known, const DataLayout &DL, 228 unsigned Depth, AssumptionCache *AC, 229 const Instruction *CxtI, const DominatorTree *DT, 230 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 231 ::computeKnownBits(V, DemandedElts, Known, Depth, 232 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 233 } 234 235 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 236 unsigned Depth, const Query &Q); 237 238 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 239 const Query &Q); 240 241 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 242 unsigned Depth, AssumptionCache *AC, 243 const Instruction *CxtI, 244 const DominatorTree *DT, 245 OptimizationRemarkEmitter *ORE, 246 bool UseInstrInfo) { 247 return ::computeKnownBits( 248 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 249 } 250 251 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 252 const DataLayout &DL, unsigned Depth, 253 AssumptionCache *AC, const Instruction *CxtI, 254 const DominatorTree *DT, 255 OptimizationRemarkEmitter *ORE, 256 bool UseInstrInfo) { 257 return ::computeKnownBits( 258 V, DemandedElts, Depth, 259 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 260 } 261 262 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 263 const DataLayout &DL, AssumptionCache *AC, 264 const Instruction *CxtI, const DominatorTree *DT, 265 bool UseInstrInfo) { 266 assert(LHS->getType() == RHS->getType() && 267 "LHS and RHS should have the same type"); 268 assert(LHS->getType()->isIntOrIntVectorTy() && 269 "LHS and RHS should be integers"); 270 // Look for an inverted mask: (X & ~M) op (Y & M). 271 Value *M; 272 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 273 match(RHS, m_c_And(m_Specific(M), m_Value()))) 274 return true; 275 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(LHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 279 KnownBits LHSKnown(IT->getBitWidth()); 280 KnownBits RHSKnown(IT->getBitWidth()); 281 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 282 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 283 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 284 } 285 286 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 287 for (const User *U : CxtI->users()) { 288 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 289 if (IC->isEquality()) 290 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 291 if (C->isNullValue()) 292 continue; 293 return false; 294 } 295 return true; 296 } 297 298 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 299 const Query &Q); 300 301 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 302 bool OrZero, unsigned Depth, 303 AssumptionCache *AC, const Instruction *CxtI, 304 const DominatorTree *DT, bool UseInstrInfo) { 305 return ::isKnownToBeAPowerOfTwo( 306 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 307 } 308 309 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 310 unsigned Depth, const Query &Q); 311 312 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 313 314 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 315 AssumptionCache *AC, const Instruction *CxtI, 316 const DominatorTree *DT, bool UseInstrInfo) { 317 return ::isKnownNonZero(V, Depth, 318 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 319 } 320 321 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 322 unsigned Depth, AssumptionCache *AC, 323 const Instruction *CxtI, const DominatorTree *DT, 324 bool UseInstrInfo) { 325 KnownBits Known = 326 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 327 return Known.isNonNegative(); 328 } 329 330 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 331 AssumptionCache *AC, const Instruction *CxtI, 332 const DominatorTree *DT, bool UseInstrInfo) { 333 if (auto *CI = dyn_cast<ConstantInt>(V)) 334 return CI->getValue().isStrictlyPositive(); 335 336 // TODO: We'd doing two recursive queries here. We should factor this such 337 // that only a single query is needed. 338 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 339 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 340 } 341 342 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 343 AssumptionCache *AC, const Instruction *CxtI, 344 const DominatorTree *DT, bool UseInstrInfo) { 345 KnownBits Known = 346 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 347 return Known.isNegative(); 348 } 349 350 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 351 352 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 353 const DataLayout &DL, AssumptionCache *AC, 354 const Instruction *CxtI, const DominatorTree *DT, 355 bool UseInstrInfo) { 356 return ::isKnownNonEqual(V1, V2, 357 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 358 UseInstrInfo, /*ORE=*/nullptr)); 359 } 360 361 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 362 const Query &Q); 363 364 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 365 const DataLayout &DL, unsigned Depth, 366 AssumptionCache *AC, const Instruction *CxtI, 367 const DominatorTree *DT, bool UseInstrInfo) { 368 return ::MaskedValueIsZero( 369 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 370 } 371 372 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 373 unsigned Depth, const Query &Q); 374 375 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 376 const Query &Q) { 377 Type *Ty = V->getType(); 378 APInt DemandedElts = 379 Ty->isVectorTy() 380 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 381 : APInt(1, 1); 382 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 383 } 384 385 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 386 unsigned Depth, AssumptionCache *AC, 387 const Instruction *CxtI, 388 const DominatorTree *DT, bool UseInstrInfo) { 389 return ::ComputeNumSignBits( 390 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 391 } 392 393 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 394 bool NSW, const APInt &DemandedElts, 395 KnownBits &KnownOut, KnownBits &Known2, 396 unsigned Depth, const Query &Q) { 397 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 398 399 // If one operand is unknown and we have no nowrap information, 400 // the result will be unknown independently of the second operand. 401 if (KnownOut.isUnknown() && !NSW) 402 return; 403 404 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 405 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 406 } 407 408 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 409 const APInt &DemandedElts, KnownBits &Known, 410 KnownBits &Known2, unsigned Depth, 411 const Query &Q) { 412 unsigned BitWidth = Known.getBitWidth(); 413 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 414 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 415 416 bool isKnownNegative = false; 417 bool isKnownNonNegative = false; 418 // If the multiplication is known not to overflow, compute the sign bit. 419 if (NSW) { 420 if (Op0 == Op1) { 421 // The product of a number with itself is non-negative. 422 isKnownNonNegative = true; 423 } else { 424 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 425 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 426 bool isKnownNegativeOp1 = Known.isNegative(); 427 bool isKnownNegativeOp0 = Known2.isNegative(); 428 // The product of two numbers with the same sign is non-negative. 429 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 430 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 431 // The product of a negative number and a non-negative number is either 432 // negative or zero. 433 if (!isKnownNonNegative) 434 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 435 isKnownNonZero(Op0, Depth, Q)) || 436 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 437 isKnownNonZero(Op1, Depth, Q)); 438 } 439 } 440 441 assert(!Known.hasConflict() && !Known2.hasConflict()); 442 // Compute a conservative estimate for high known-0 bits. 443 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 444 Known2.countMinLeadingZeros(), 445 BitWidth) - BitWidth; 446 LeadZ = std::min(LeadZ, BitWidth); 447 448 // The result of the bottom bits of an integer multiply can be 449 // inferred by looking at the bottom bits of both operands and 450 // multiplying them together. 451 // We can infer at least the minimum number of known trailing bits 452 // of both operands. Depending on number of trailing zeros, we can 453 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 454 // a and b are divisible by m and n respectively. 455 // We then calculate how many of those bits are inferrable and set 456 // the output. For example, the i8 mul: 457 // a = XXXX1100 (12) 458 // b = XXXX1110 (14) 459 // We know the bottom 3 bits are zero since the first can be divided by 460 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 461 // Applying the multiplication to the trimmed arguments gets: 462 // XX11 (3) 463 // X111 (7) 464 // ------- 465 // XX11 466 // XX11 467 // XX11 468 // XX11 469 // ------- 470 // XXXXX01 471 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 472 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 473 // The proof for this can be described as: 474 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 475 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 476 // umin(countTrailingZeros(C2), C6) + 477 // umin(C5 - umin(countTrailingZeros(C1), C5), 478 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 479 // %aa = shl i8 %a, C5 480 // %bb = shl i8 %b, C6 481 // %aaa = or i8 %aa, C1 482 // %bbb = or i8 %bb, C2 483 // %mul = mul i8 %aaa, %bbb 484 // %mask = and i8 %mul, C7 485 // => 486 // %mask = i8 ((C1*C2)&C7) 487 // Where C5, C6 describe the known bits of %a, %b 488 // C1, C2 describe the known bottom bits of %a, %b. 489 // C7 describes the mask of the known bits of the result. 490 APInt Bottom0 = Known.One; 491 APInt Bottom1 = Known2.One; 492 493 // How many times we'd be able to divide each argument by 2 (shr by 1). 494 // This gives us the number of trailing zeros on the multiplication result. 495 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 496 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 497 unsigned TrailZero0 = Known.countMinTrailingZeros(); 498 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 499 unsigned TrailZ = TrailZero0 + TrailZero1; 500 501 // Figure out the fewest known-bits operand. 502 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 503 TrailBitsKnown1 - TrailZero1); 504 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 505 506 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 507 Bottom1.getLoBits(TrailBitsKnown1); 508 509 Known.resetAll(); 510 Known.Zero.setHighBits(LeadZ); 511 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 512 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 513 514 // Only make use of no-wrap flags if we failed to compute the sign bit 515 // directly. This matters if the multiplication always overflows, in 516 // which case we prefer to follow the result of the direct computation, 517 // though as the program is invoking undefined behaviour we can choose 518 // whatever we like here. 519 if (isKnownNonNegative && !Known.isNegative()) 520 Known.makeNonNegative(); 521 else if (isKnownNegative && !Known.isNonNegative()) 522 Known.makeNegative(); 523 } 524 525 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 526 KnownBits &Known) { 527 unsigned BitWidth = Known.getBitWidth(); 528 unsigned NumRanges = Ranges.getNumOperands() / 2; 529 assert(NumRanges >= 1); 530 531 Known.Zero.setAllBits(); 532 Known.One.setAllBits(); 533 534 for (unsigned i = 0; i < NumRanges; ++i) { 535 ConstantInt *Lower = 536 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 537 ConstantInt *Upper = 538 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 539 ConstantRange Range(Lower->getValue(), Upper->getValue()); 540 541 // The first CommonPrefixBits of all values in Range are equal. 542 unsigned CommonPrefixBits = 543 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 544 545 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 546 Known.One &= Range.getUnsignedMax() & Mask; 547 Known.Zero &= ~Range.getUnsignedMax() & Mask; 548 } 549 } 550 551 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 552 SmallVector<const Value *, 16> WorkSet(1, I); 553 SmallPtrSet<const Value *, 32> Visited; 554 SmallPtrSet<const Value *, 16> EphValues; 555 556 // The instruction defining an assumption's condition itself is always 557 // considered ephemeral to that assumption (even if it has other 558 // non-ephemeral users). See r246696's test case for an example. 559 if (is_contained(I->operands(), E)) 560 return true; 561 562 while (!WorkSet.empty()) { 563 const Value *V = WorkSet.pop_back_val(); 564 if (!Visited.insert(V).second) 565 continue; 566 567 // If all uses of this value are ephemeral, then so is this value. 568 if (llvm::all_of(V->users(), [&](const User *U) { 569 return EphValues.count(U); 570 })) { 571 if (V == E) 572 return true; 573 574 if (V == I || isSafeToSpeculativelyExecute(V)) { 575 EphValues.insert(V); 576 if (const User *U = dyn_cast<User>(V)) 577 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 578 J != JE; ++J) 579 WorkSet.push_back(*J); 580 } 581 } 582 } 583 584 return false; 585 } 586 587 // Is this an intrinsic that cannot be speculated but also cannot trap? 588 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 589 if (const CallInst *CI = dyn_cast<CallInst>(I)) 590 if (Function *F = CI->getCalledFunction()) 591 switch (F->getIntrinsicID()) { 592 default: break; 593 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 594 case Intrinsic::assume: 595 case Intrinsic::sideeffect: 596 case Intrinsic::dbg_declare: 597 case Intrinsic::dbg_value: 598 case Intrinsic::dbg_label: 599 case Intrinsic::invariant_start: 600 case Intrinsic::invariant_end: 601 case Intrinsic::lifetime_start: 602 case Intrinsic::lifetime_end: 603 case Intrinsic::objectsize: 604 case Intrinsic::ptr_annotation: 605 case Intrinsic::var_annotation: 606 return true; 607 } 608 609 return false; 610 } 611 612 bool llvm::isValidAssumeForContext(const Instruction *Inv, 613 const Instruction *CxtI, 614 const DominatorTree *DT) { 615 // There are two restrictions on the use of an assume: 616 // 1. The assume must dominate the context (or the control flow must 617 // reach the assume whenever it reaches the context). 618 // 2. The context must not be in the assume's set of ephemeral values 619 // (otherwise we will use the assume to prove that the condition 620 // feeding the assume is trivially true, thus causing the removal of 621 // the assume). 622 623 if (Inv->getParent() == CxtI->getParent()) { 624 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 625 // in the BB. 626 if (Inv->comesBefore(CxtI)) 627 return true; 628 629 // Don't let an assume affect itself - this would cause the problems 630 // `isEphemeralValueOf` is trying to prevent, and it would also make 631 // the loop below go out of bounds. 632 if (Inv == CxtI) 633 return false; 634 635 // The context comes first, but they're both in the same block. 636 // Make sure there is nothing in between that might interrupt 637 // the control flow, not even CxtI itself. 638 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 639 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 640 return false; 641 642 return !isEphemeralValueOf(Inv, CxtI); 643 } 644 645 // Inv and CxtI are in different blocks. 646 if (DT) { 647 if (DT->dominates(Inv, CxtI)) 648 return true; 649 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 650 // We don't have a DT, but this trivially dominates. 651 return true; 652 } 653 654 return false; 655 } 656 657 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 658 // Use of assumptions is context-sensitive. If we don't have a context, we 659 // cannot use them! 660 if (!Q.AC || !Q.CxtI) 661 return false; 662 663 // Note that the patterns below need to be kept in sync with the code 664 // in AssumptionCache::updateAffectedValues. 665 666 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 667 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 668 669 Value *RHS; 670 CmpInst::Predicate Pred; 671 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 672 return false; 673 // assume(v u> y) -> assume(v != 0) 674 if (Pred == ICmpInst::ICMP_UGT) 675 return true; 676 677 // assume(v != 0) 678 // We special-case this one to ensure that we handle `assume(v != null)`. 679 if (Pred == ICmpInst::ICMP_NE) 680 return match(RHS, m_Zero()); 681 682 // All other predicates - rely on generic ConstantRange handling. 683 ConstantInt *CI; 684 if (!match(RHS, m_ConstantInt(CI))) 685 return false; 686 ConstantRange RHSRange(CI->getValue()); 687 ConstantRange TrueValues = 688 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 689 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 690 }; 691 692 if (Q.CxtI && V->getType()->isPointerTy()) { 693 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 694 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 695 V->getType()->getPointerAddressSpace())) 696 AttrKinds.push_back(Attribute::Dereferenceable); 697 698 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 699 return true; 700 } 701 702 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 703 if (!AssumeVH) 704 continue; 705 CallInst *I = cast<CallInst>(AssumeVH); 706 assert(I->getFunction() == Q.CxtI->getFunction() && 707 "Got assumption for the wrong function!"); 708 if (Q.isExcluded(I)) 709 continue; 710 711 // Warning: This loop can end up being somewhat performance sensitive. 712 // We're running this loop for once for each value queried resulting in a 713 // runtime of ~O(#assumes * #values). 714 715 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 716 "must be an assume intrinsic"); 717 718 Value *Arg = I->getArgOperand(0); 719 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 720 if (!Cmp) 721 continue; 722 723 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 724 return true; 725 } 726 727 return false; 728 } 729 730 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 731 unsigned Depth, const Query &Q) { 732 // Use of assumptions is context-sensitive. If we don't have a context, we 733 // cannot use them! 734 if (!Q.AC || !Q.CxtI) 735 return; 736 737 unsigned BitWidth = Known.getBitWidth(); 738 739 // Note that the patterns below need to be kept in sync with the code 740 // in AssumptionCache::updateAffectedValues. 741 742 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 743 if (!AssumeVH) 744 continue; 745 CallInst *I = cast<CallInst>(AssumeVH); 746 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 747 "Got assumption for the wrong function!"); 748 if (Q.isExcluded(I)) 749 continue; 750 751 // Warning: This loop can end up being somewhat performance sensitive. 752 // We're running this loop for once for each value queried resulting in a 753 // runtime of ~O(#assumes * #values). 754 755 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 756 "must be an assume intrinsic"); 757 758 Value *Arg = I->getArgOperand(0); 759 760 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 assert(BitWidth == 1 && "assume operand is not i1?"); 762 Known.setAllOnes(); 763 return; 764 } 765 if (match(Arg, m_Not(m_Specific(V))) && 766 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllZero(); 769 return; 770 } 771 772 // The remaining tests are all recursive, so bail out if we hit the limit. 773 if (Depth == MaxDepth) 774 continue; 775 776 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 777 if (!Cmp) 778 continue; 779 780 Value *A, *B; 781 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 782 783 CmpInst::Predicate Pred; 784 uint64_t C; 785 switch (Cmp->getPredicate()) { 786 default: 787 break; 788 case ICmpInst::ICMP_EQ: 789 // assume(v = a) 790 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 791 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 792 KnownBits RHSKnown(BitWidth); 793 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 794 Known.Zero |= RHSKnown.Zero; 795 Known.One |= RHSKnown.One; 796 // assume(v & b = a) 797 } else if (match(Cmp, 798 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown(BitWidth); 801 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 802 KnownBits MaskKnown(BitWidth); 803 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 804 805 // For those bits in the mask that are known to be one, we can propagate 806 // known bits from the RHS to V. 807 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 808 Known.One |= RHSKnown.One & MaskKnown.One; 809 // assume(~(v & b) = a) 810 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 811 m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown(BitWidth); 814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 815 KnownBits MaskKnown(BitWidth); 816 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 817 818 // For those bits in the mask that are known to be one, we can propagate 819 // inverted known bits from the RHS to V. 820 Known.Zero |= RHSKnown.One & MaskKnown.One; 821 Known.One |= RHSKnown.Zero & MaskKnown.One; 822 // assume(v | b = a) 823 } else if (match(Cmp, 824 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 825 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 826 KnownBits RHSKnown(BitWidth); 827 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 828 KnownBits BKnown(BitWidth); 829 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 830 831 // For those bits in B that are known to be zero, we can propagate known 832 // bits from the RHS to V. 833 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 834 Known.One |= RHSKnown.One & BKnown.Zero; 835 // assume(~(v | b) = a) 836 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 837 m_Value(A))) && 838 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 839 KnownBits RHSKnown(BitWidth); 840 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 841 KnownBits BKnown(BitWidth); 842 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 843 844 // For those bits in B that are known to be zero, we can propagate 845 // inverted known bits from the RHS to V. 846 Known.Zero |= RHSKnown.One & BKnown.Zero; 847 Known.One |= RHSKnown.Zero & BKnown.Zero; 848 // assume(v ^ b = a) 849 } else if (match(Cmp, 850 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 852 KnownBits RHSKnown(BitWidth); 853 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 854 KnownBits BKnown(BitWidth); 855 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 856 857 // For those bits in B that are known to be zero, we can propagate known 858 // bits from the RHS to V. For those bits in B that are known to be one, 859 // we can propagate inverted known bits from the RHS to V. 860 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 861 Known.One |= RHSKnown.One & BKnown.Zero; 862 Known.Zero |= RHSKnown.One & BKnown.One; 863 Known.One |= RHSKnown.Zero & BKnown.One; 864 // assume(~(v ^ b) = a) 865 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 866 m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown(BitWidth); 869 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 870 KnownBits BKnown(BitWidth); 871 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 872 873 // For those bits in B that are known to be zero, we can propagate 874 // inverted known bits from the RHS to V. For those bits in B that are 875 // known to be one, we can propagate known bits from the RHS to V. 876 Known.Zero |= RHSKnown.One & BKnown.Zero; 877 Known.One |= RHSKnown.Zero & BKnown.Zero; 878 Known.Zero |= RHSKnown.Zero & BKnown.One; 879 Known.One |= RHSKnown.One & BKnown.One; 880 // assume(v << c = a) 881 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 882 m_Value(A))) && 883 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 884 KnownBits RHSKnown(BitWidth); 885 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 886 // For those bits in RHS that are known, we can propagate them to known 887 // bits in V shifted to the right by C. 888 RHSKnown.Zero.lshrInPlace(C); 889 Known.Zero |= RHSKnown.Zero; 890 RHSKnown.One.lshrInPlace(C); 891 Known.One |= RHSKnown.One; 892 // assume(~(v << c) = a) 893 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 894 m_Value(A))) && 895 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 896 KnownBits RHSKnown(BitWidth); 897 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 898 // For those bits in RHS that are known, we can propagate them inverted 899 // to known bits in V shifted to the right by C. 900 RHSKnown.One.lshrInPlace(C); 901 Known.Zero |= RHSKnown.One; 902 RHSKnown.Zero.lshrInPlace(C); 903 Known.One |= RHSKnown.Zero; 904 // assume(v >> c = a) 905 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 906 m_Value(A))) && 907 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 908 KnownBits RHSKnown(BitWidth); 909 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 910 // For those bits in RHS that are known, we can propagate them to known 911 // bits in V shifted to the right by C. 912 Known.Zero |= RHSKnown.Zero << C; 913 Known.One |= RHSKnown.One << C; 914 // assume(~(v >> c) = a) 915 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 916 m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 918 KnownBits RHSKnown(BitWidth); 919 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 920 // For those bits in RHS that are known, we can propagate them inverted 921 // to known bits in V shifted to the right by C. 922 Known.Zero |= RHSKnown.One << C; 923 Known.One |= RHSKnown.Zero << C; 924 } 925 break; 926 case ICmpInst::ICMP_SGE: 927 // assume(v >=_s c) where c is non-negative 928 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 929 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 930 KnownBits RHSKnown(BitWidth); 931 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 932 933 if (RHSKnown.isNonNegative()) { 934 // We know that the sign bit is zero. 935 Known.makeNonNegative(); 936 } 937 } 938 break; 939 case ICmpInst::ICMP_SGT: 940 // assume(v >_s c) where c is at least -1. 941 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 942 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 943 KnownBits RHSKnown(BitWidth); 944 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 945 946 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 947 // We know that the sign bit is zero. 948 Known.makeNonNegative(); 949 } 950 } 951 break; 952 case ICmpInst::ICMP_SLE: 953 // assume(v <=_s c) where c is negative 954 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 955 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 956 KnownBits RHSKnown(BitWidth); 957 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 958 959 if (RHSKnown.isNegative()) { 960 // We know that the sign bit is one. 961 Known.makeNegative(); 962 } 963 } 964 break; 965 case ICmpInst::ICMP_SLT: 966 // assume(v <_s c) where c is non-positive 967 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 968 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 969 KnownBits RHSKnown(BitWidth); 970 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 971 972 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 973 // We know that the sign bit is one. 974 Known.makeNegative(); 975 } 976 } 977 break; 978 case ICmpInst::ICMP_ULE: 979 // assume(v <=_u c) 980 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 981 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 982 KnownBits RHSKnown(BitWidth); 983 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 984 985 // Whatever high bits in c are zero are known to be zero. 986 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 987 } 988 break; 989 case ICmpInst::ICMP_ULT: 990 // assume(v <_u c) 991 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 992 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 993 KnownBits RHSKnown(BitWidth); 994 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 995 996 // If the RHS is known zero, then this assumption must be wrong (nothing 997 // is unsigned less than zero). Signal a conflict and get out of here. 998 if (RHSKnown.isZero()) { 999 Known.Zero.setAllBits(); 1000 Known.One.setAllBits(); 1001 break; 1002 } 1003 1004 // Whatever high bits in c are zero are known to be zero (if c is a power 1005 // of 2, then one more). 1006 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1007 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1008 else 1009 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1010 } 1011 break; 1012 } 1013 } 1014 1015 // If assumptions conflict with each other or previous known bits, then we 1016 // have a logical fallacy. It's possible that the assumption is not reachable, 1017 // so this isn't a real bug. On the other hand, the program may have undefined 1018 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1019 // clear out the known bits, try to warn the user, and hope for the best. 1020 if (Known.Zero.intersects(Known.One)) { 1021 Known.resetAll(); 1022 1023 if (Q.ORE) 1024 Q.ORE->emit([&]() { 1025 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1026 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1027 CxtI) 1028 << "Detected conflicting code assumptions. Program may " 1029 "have undefined behavior, or compiler may have " 1030 "internal error."; 1031 }); 1032 } 1033 } 1034 1035 /// Compute known bits from a shift operator, including those with a 1036 /// non-constant shift amount. Known is the output of this function. Known2 is a 1037 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1038 /// operator-specific functions that, given the known-zero or known-one bits 1039 /// respectively, and a shift amount, compute the implied known-zero or 1040 /// known-one bits of the shift operator's result respectively for that shift 1041 /// amount. The results from calling KZF and KOF are conservatively combined for 1042 /// all permitted shift amounts. 1043 static void computeKnownBitsFromShiftOperator( 1044 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1045 KnownBits &Known2, unsigned Depth, const Query &Q, 1046 function_ref<APInt(const APInt &, unsigned)> KZF, 1047 function_ref<APInt(const APInt &, unsigned)> KOF) { 1048 unsigned BitWidth = Known.getBitWidth(); 1049 1050 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1051 if (Known.isConstant()) { 1052 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1053 1054 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1055 Known.Zero = KZF(Known.Zero, ShiftAmt); 1056 Known.One = KOF(Known.One, ShiftAmt); 1057 // If the known bits conflict, this must be an overflowing left shift, so 1058 // the shift result is poison. We can return anything we want. Choose 0 for 1059 // the best folding opportunity. 1060 if (Known.hasConflict()) 1061 Known.setAllZero(); 1062 1063 return; 1064 } 1065 1066 // If the shift amount could be greater than or equal to the bit-width of the 1067 // LHS, the value could be poison, but bail out because the check below is 1068 // expensive. 1069 // TODO: Should we just carry on? 1070 if (Known.getMaxValue().uge(BitWidth)) { 1071 Known.resetAll(); 1072 return; 1073 } 1074 1075 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1076 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1077 // limit value (which implies all bits are known). 1078 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1079 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1080 1081 // It would be more-clearly correct to use the two temporaries for this 1082 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1083 Known.resetAll(); 1084 1085 // If we know the shifter operand is nonzero, we can sometimes infer more 1086 // known bits. However this is expensive to compute, so be lazy about it and 1087 // only compute it when absolutely necessary. 1088 Optional<bool> ShifterOperandIsNonZero; 1089 1090 // Early exit if we can't constrain any well-defined shift amount. 1091 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1092 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1093 ShifterOperandIsNonZero = 1094 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1095 if (!*ShifterOperandIsNonZero) 1096 return; 1097 } 1098 1099 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1100 1101 Known.Zero.setAllBits(); 1102 Known.One.setAllBits(); 1103 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1104 // Combine the shifted known input bits only for those shift amounts 1105 // compatible with its known constraints. 1106 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1107 continue; 1108 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1109 continue; 1110 // If we know the shifter is nonzero, we may be able to infer more known 1111 // bits. This check is sunk down as far as possible to avoid the expensive 1112 // call to isKnownNonZero if the cheaper checks above fail. 1113 if (ShiftAmt == 0) { 1114 if (!ShifterOperandIsNonZero.hasValue()) 1115 ShifterOperandIsNonZero = 1116 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1117 if (*ShifterOperandIsNonZero) 1118 continue; 1119 } 1120 1121 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1122 Known.One &= KOF(Known2.One, ShiftAmt); 1123 } 1124 1125 // If the known bits conflict, the result is poison. Return a 0 and hope the 1126 // caller can further optimize that. 1127 if (Known.hasConflict()) 1128 Known.setAllZero(); 1129 } 1130 1131 static void computeKnownBitsFromOperator(const Operator *I, 1132 const APInt &DemandedElts, 1133 KnownBits &Known, unsigned Depth, 1134 const Query &Q) { 1135 unsigned BitWidth = Known.getBitWidth(); 1136 1137 KnownBits Known2(BitWidth); 1138 switch (I->getOpcode()) { 1139 default: break; 1140 case Instruction::Load: 1141 if (MDNode *MD = 1142 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1143 computeKnownBitsFromRangeMetadata(*MD, Known); 1144 break; 1145 case Instruction::And: { 1146 // If either the LHS or the RHS are Zero, the result is zero. 1147 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1148 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1149 1150 Known &= Known2; 1151 1152 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1153 // here we handle the more general case of adding any odd number by 1154 // matching the form add(x, add(x, y)) where y is odd. 1155 // TODO: This could be generalized to clearing any bit set in y where the 1156 // following bit is known to be unset in y. 1157 Value *X = nullptr, *Y = nullptr; 1158 if (!Known.Zero[0] && !Known.One[0] && 1159 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1160 Known2.resetAll(); 1161 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1162 if (Known2.countMinTrailingOnes() > 0) 1163 Known.Zero.setBit(0); 1164 } 1165 break; 1166 } 1167 case Instruction::Or: 1168 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1169 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1170 1171 Known |= Known2; 1172 break; 1173 case Instruction::Xor: 1174 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1175 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1176 1177 Known ^= Known2; 1178 break; 1179 case Instruction::Mul: { 1180 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1181 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1182 Known, Known2, Depth, Q); 1183 break; 1184 } 1185 case Instruction::UDiv: { 1186 // For the purposes of computing leading zeros we can conservatively 1187 // treat a udiv as a logical right shift by the power of 2 known to 1188 // be less than the denominator. 1189 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1190 unsigned LeadZ = Known2.countMinLeadingZeros(); 1191 1192 Known2.resetAll(); 1193 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1194 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1195 if (RHSMaxLeadingZeros != BitWidth) 1196 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1197 1198 Known.Zero.setHighBits(LeadZ); 1199 break; 1200 } 1201 case Instruction::Select: { 1202 const Value *LHS = nullptr, *RHS = nullptr; 1203 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1204 if (SelectPatternResult::isMinOrMax(SPF)) { 1205 computeKnownBits(RHS, Known, Depth + 1, Q); 1206 computeKnownBits(LHS, Known2, Depth + 1, Q); 1207 } else { 1208 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1209 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1210 } 1211 1212 unsigned MaxHighOnes = 0; 1213 unsigned MaxHighZeros = 0; 1214 if (SPF == SPF_SMAX) { 1215 // If both sides are negative, the result is negative. 1216 if (Known.isNegative() && Known2.isNegative()) 1217 // We can derive a lower bound on the result by taking the max of the 1218 // leading one bits. 1219 MaxHighOnes = 1220 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1221 // If either side is non-negative, the result is non-negative. 1222 else if (Known.isNonNegative() || Known2.isNonNegative()) 1223 MaxHighZeros = 1; 1224 } else if (SPF == SPF_SMIN) { 1225 // If both sides are non-negative, the result is non-negative. 1226 if (Known.isNonNegative() && Known2.isNonNegative()) 1227 // We can derive an upper bound on the result by taking the max of the 1228 // leading zero bits. 1229 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1230 Known2.countMinLeadingZeros()); 1231 // If either side is negative, the result is negative. 1232 else if (Known.isNegative() || Known2.isNegative()) 1233 MaxHighOnes = 1; 1234 } else if (SPF == SPF_UMAX) { 1235 // We can derive a lower bound on the result by taking the max of the 1236 // leading one bits. 1237 MaxHighOnes = 1238 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1239 } else if (SPF == SPF_UMIN) { 1240 // We can derive an upper bound on the result by taking the max of the 1241 // leading zero bits. 1242 MaxHighZeros = 1243 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1244 } else if (SPF == SPF_ABS) { 1245 // RHS from matchSelectPattern returns the negation part of abs pattern. 1246 // If the negate has an NSW flag we can assume the sign bit of the result 1247 // will be 0 because that makes abs(INT_MIN) undefined. 1248 if (match(RHS, m_Neg(m_Specific(LHS))) && 1249 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1250 MaxHighZeros = 1; 1251 } 1252 1253 // Only known if known in both the LHS and RHS. 1254 Known.One &= Known2.One; 1255 Known.Zero &= Known2.Zero; 1256 if (MaxHighOnes > 0) 1257 Known.One.setHighBits(MaxHighOnes); 1258 if (MaxHighZeros > 0) 1259 Known.Zero.setHighBits(MaxHighZeros); 1260 break; 1261 } 1262 case Instruction::FPTrunc: 1263 case Instruction::FPExt: 1264 case Instruction::FPToUI: 1265 case Instruction::FPToSI: 1266 case Instruction::SIToFP: 1267 case Instruction::UIToFP: 1268 break; // Can't work with floating point. 1269 case Instruction::PtrToInt: 1270 case Instruction::IntToPtr: 1271 // Fall through and handle them the same as zext/trunc. 1272 LLVM_FALLTHROUGH; 1273 case Instruction::ZExt: 1274 case Instruction::Trunc: { 1275 Type *SrcTy = I->getOperand(0)->getType(); 1276 1277 unsigned SrcBitWidth; 1278 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1279 // which fall through here. 1280 Type *ScalarTy = SrcTy->getScalarType(); 1281 SrcBitWidth = ScalarTy->isPointerTy() ? 1282 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1283 Q.DL.getTypeSizeInBits(ScalarTy); 1284 1285 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1286 Known = Known.anyextOrTrunc(SrcBitWidth); 1287 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1288 Known = Known.zextOrTrunc(BitWidth); 1289 break; 1290 } 1291 case Instruction::BitCast: { 1292 Type *SrcTy = I->getOperand(0)->getType(); 1293 if (SrcTy->isIntOrPtrTy() && 1294 // TODO: For now, not handling conversions like: 1295 // (bitcast i64 %x to <2 x i32>) 1296 !I->getType()->isVectorTy()) { 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 break; 1299 } 1300 break; 1301 } 1302 case Instruction::SExt: { 1303 // Compute the bits in the result that are not present in the input. 1304 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1305 1306 Known = Known.trunc(SrcBitWidth); 1307 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1308 // If the sign bit of the input is known set or clear, then we know the 1309 // top bits of the result. 1310 Known = Known.sext(BitWidth); 1311 break; 1312 } 1313 case Instruction::Shl: { 1314 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1315 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1316 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1317 APInt KZResult = KnownZero << ShiftAmt; 1318 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1319 // If this shift has "nsw" keyword, then the result is either a poison 1320 // value or has the same sign bit as the first operand. 1321 if (NSW && KnownZero.isSignBitSet()) 1322 KZResult.setSignBit(); 1323 return KZResult; 1324 }; 1325 1326 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1327 APInt KOResult = KnownOne << ShiftAmt; 1328 if (NSW && KnownOne.isSignBitSet()) 1329 KOResult.setSignBit(); 1330 return KOResult; 1331 }; 1332 1333 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1334 KZF, KOF); 1335 break; 1336 } 1337 case Instruction::LShr: { 1338 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1339 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1340 APInt KZResult = KnownZero.lshr(ShiftAmt); 1341 // High bits known zero. 1342 KZResult.setHighBits(ShiftAmt); 1343 return KZResult; 1344 }; 1345 1346 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1347 return KnownOne.lshr(ShiftAmt); 1348 }; 1349 1350 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1351 KZF, KOF); 1352 break; 1353 } 1354 case Instruction::AShr: { 1355 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1356 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1357 return KnownZero.ashr(ShiftAmt); 1358 }; 1359 1360 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1361 return KnownOne.ashr(ShiftAmt); 1362 }; 1363 1364 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1365 KZF, KOF); 1366 break; 1367 } 1368 case Instruction::Sub: { 1369 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1370 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1371 DemandedElts, Known, Known2, Depth, Q); 1372 break; 1373 } 1374 case Instruction::Add: { 1375 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1376 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1377 DemandedElts, Known, Known2, Depth, Q); 1378 break; 1379 } 1380 case Instruction::SRem: 1381 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1382 APInt RA = Rem->getValue().abs(); 1383 if (RA.isPowerOf2()) { 1384 APInt LowBits = RA - 1; 1385 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1386 1387 // The low bits of the first operand are unchanged by the srem. 1388 Known.Zero = Known2.Zero & LowBits; 1389 Known.One = Known2.One & LowBits; 1390 1391 // If the first operand is non-negative or has all low bits zero, then 1392 // the upper bits are all zero. 1393 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1394 Known.Zero |= ~LowBits; 1395 1396 // If the first operand is negative and not all low bits are zero, then 1397 // the upper bits are all one. 1398 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1399 Known.One |= ~LowBits; 1400 1401 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1402 break; 1403 } 1404 } 1405 1406 // The sign bit is the LHS's sign bit, except when the result of the 1407 // remainder is zero. 1408 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1409 // If it's known zero, our sign bit is also zero. 1410 if (Known2.isNonNegative()) 1411 Known.makeNonNegative(); 1412 1413 break; 1414 case Instruction::URem: { 1415 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1416 const APInt &RA = Rem->getValue(); 1417 if (RA.isPowerOf2()) { 1418 APInt LowBits = (RA - 1); 1419 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1420 Known.Zero |= ~LowBits; 1421 Known.One &= LowBits; 1422 break; 1423 } 1424 } 1425 1426 // Since the result is less than or equal to either operand, any leading 1427 // zero bits in either operand must also exist in the result. 1428 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1429 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1430 1431 unsigned Leaders = 1432 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1433 Known.resetAll(); 1434 Known.Zero.setHighBits(Leaders); 1435 break; 1436 } 1437 1438 case Instruction::Alloca: { 1439 const AllocaInst *AI = cast<AllocaInst>(I); 1440 unsigned Align = AI->getAlignment(); 1441 if (Align == 0) 1442 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1443 1444 if (Align > 0) 1445 Known.Zero.setLowBits(countTrailingZeros(Align)); 1446 break; 1447 } 1448 case Instruction::GetElementPtr: { 1449 // Analyze all of the subscripts of this getelementptr instruction 1450 // to determine if we can prove known low zero bits. 1451 KnownBits LocalKnown(BitWidth); 1452 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1453 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1454 1455 gep_type_iterator GTI = gep_type_begin(I); 1456 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1457 Value *Index = I->getOperand(i); 1458 if (StructType *STy = GTI.getStructTypeOrNull()) { 1459 // Handle struct member offset arithmetic. 1460 1461 // Handle case when index is vector zeroinitializer 1462 Constant *CIndex = cast<Constant>(Index); 1463 if (CIndex->isZeroValue()) 1464 continue; 1465 1466 if (CIndex->getType()->isVectorTy()) 1467 Index = CIndex->getSplatValue(); 1468 1469 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1470 const StructLayout *SL = Q.DL.getStructLayout(STy); 1471 uint64_t Offset = SL->getElementOffset(Idx); 1472 TrailZ = std::min<unsigned>(TrailZ, 1473 countTrailingZeros(Offset)); 1474 } else { 1475 // Handle array index arithmetic. 1476 Type *IndexedTy = GTI.getIndexedType(); 1477 if (!IndexedTy->isSized()) { 1478 TrailZ = 0; 1479 break; 1480 } 1481 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1482 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1483 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1484 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1485 TrailZ = std::min(TrailZ, 1486 unsigned(countTrailingZeros(TypeSize) + 1487 LocalKnown.countMinTrailingZeros())); 1488 } 1489 } 1490 1491 Known.Zero.setLowBits(TrailZ); 1492 break; 1493 } 1494 case Instruction::PHI: { 1495 const PHINode *P = cast<PHINode>(I); 1496 // Handle the case of a simple two-predecessor recurrence PHI. 1497 // There's a lot more that could theoretically be done here, but 1498 // this is sufficient to catch some interesting cases. 1499 if (P->getNumIncomingValues() == 2) { 1500 for (unsigned i = 0; i != 2; ++i) { 1501 Value *L = P->getIncomingValue(i); 1502 Value *R = P->getIncomingValue(!i); 1503 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1504 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1505 Operator *LU = dyn_cast<Operator>(L); 1506 if (!LU) 1507 continue; 1508 unsigned Opcode = LU->getOpcode(); 1509 // Check for operations that have the property that if 1510 // both their operands have low zero bits, the result 1511 // will have low zero bits. 1512 if (Opcode == Instruction::Add || 1513 Opcode == Instruction::Sub || 1514 Opcode == Instruction::And || 1515 Opcode == Instruction::Or || 1516 Opcode == Instruction::Mul) { 1517 Value *LL = LU->getOperand(0); 1518 Value *LR = LU->getOperand(1); 1519 // Find a recurrence. 1520 if (LL == I) 1521 L = LR; 1522 else if (LR == I) 1523 L = LL; 1524 else 1525 continue; // Check for recurrence with L and R flipped. 1526 1527 // Change the context instruction to the "edge" that flows into the 1528 // phi. This is important because that is where the value is actually 1529 // "evaluated" even though it is used later somewhere else. (see also 1530 // D69571). 1531 Query RecQ = Q; 1532 1533 // Ok, we have a PHI of the form L op= R. Check for low 1534 // zero bits. 1535 RecQ.CxtI = RInst; 1536 computeKnownBits(R, Known2, Depth + 1, RecQ); 1537 1538 // We need to take the minimum number of known bits 1539 KnownBits Known3(BitWidth); 1540 RecQ.CxtI = LInst; 1541 computeKnownBits(L, Known3, Depth + 1, RecQ); 1542 1543 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1544 Known3.countMinTrailingZeros())); 1545 1546 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1547 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1548 // If initial value of recurrence is nonnegative, and we are adding 1549 // a nonnegative number with nsw, the result can only be nonnegative 1550 // or poison value regardless of the number of times we execute the 1551 // add in phi recurrence. If initial value is negative and we are 1552 // adding a negative number with nsw, the result can only be 1553 // negative or poison value. Similar arguments apply to sub and mul. 1554 // 1555 // (add non-negative, non-negative) --> non-negative 1556 // (add negative, negative) --> negative 1557 if (Opcode == Instruction::Add) { 1558 if (Known2.isNonNegative() && Known3.isNonNegative()) 1559 Known.makeNonNegative(); 1560 else if (Known2.isNegative() && Known3.isNegative()) 1561 Known.makeNegative(); 1562 } 1563 1564 // (sub nsw non-negative, negative) --> non-negative 1565 // (sub nsw negative, non-negative) --> negative 1566 else if (Opcode == Instruction::Sub && LL == I) { 1567 if (Known2.isNonNegative() && Known3.isNegative()) 1568 Known.makeNonNegative(); 1569 else if (Known2.isNegative() && Known3.isNonNegative()) 1570 Known.makeNegative(); 1571 } 1572 1573 // (mul nsw non-negative, non-negative) --> non-negative 1574 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1575 Known3.isNonNegative()) 1576 Known.makeNonNegative(); 1577 } 1578 1579 break; 1580 } 1581 } 1582 } 1583 1584 // Unreachable blocks may have zero-operand PHI nodes. 1585 if (P->getNumIncomingValues() == 0) 1586 break; 1587 1588 // Otherwise take the unions of the known bit sets of the operands, 1589 // taking conservative care to avoid excessive recursion. 1590 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1591 // Skip if every incoming value references to ourself. 1592 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1593 break; 1594 1595 Known.Zero.setAllBits(); 1596 Known.One.setAllBits(); 1597 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1598 Value *IncValue = P->getIncomingValue(u); 1599 // Skip direct self references. 1600 if (IncValue == P) continue; 1601 1602 // Change the context instruction to the "edge" that flows into the 1603 // phi. This is important because that is where the value is actually 1604 // "evaluated" even though it is used later somewhere else. (see also 1605 // D69571). 1606 Query RecQ = Q; 1607 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1608 1609 Known2 = KnownBits(BitWidth); 1610 // Recurse, but cap the recursion to one level, because we don't 1611 // want to waste time spinning around in loops. 1612 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1613 Known.Zero &= Known2.Zero; 1614 Known.One &= Known2.One; 1615 // If all bits have been ruled out, there's no need to check 1616 // more operands. 1617 if (!Known.Zero && !Known.One) 1618 break; 1619 } 1620 } 1621 break; 1622 } 1623 case Instruction::Call: 1624 case Instruction::Invoke: 1625 // If range metadata is attached to this call, set known bits from that, 1626 // and then intersect with known bits based on other properties of the 1627 // function. 1628 if (MDNode *MD = 1629 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1630 computeKnownBitsFromRangeMetadata(*MD, Known); 1631 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1632 computeKnownBits(RV, Known2, Depth + 1, Q); 1633 Known.Zero |= Known2.Zero; 1634 Known.One |= Known2.One; 1635 } 1636 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1637 switch (II->getIntrinsicID()) { 1638 default: break; 1639 case Intrinsic::bitreverse: 1640 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1641 Known.Zero |= Known2.Zero.reverseBits(); 1642 Known.One |= Known2.One.reverseBits(); 1643 break; 1644 case Intrinsic::bswap: 1645 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1646 Known.Zero |= Known2.Zero.byteSwap(); 1647 Known.One |= Known2.One.byteSwap(); 1648 break; 1649 case Intrinsic::ctlz: { 1650 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1651 // If we have a known 1, its position is our upper bound. 1652 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1653 // If this call is undefined for 0, the result will be less than 2^n. 1654 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1655 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1656 unsigned LowBits = Log2_32(PossibleLZ)+1; 1657 Known.Zero.setBitsFrom(LowBits); 1658 break; 1659 } 1660 case Intrinsic::cttz: { 1661 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1662 // If we have a known 1, its position is our upper bound. 1663 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1664 // If this call is undefined for 0, the result will be less than 2^n. 1665 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1666 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1667 unsigned LowBits = Log2_32(PossibleTZ)+1; 1668 Known.Zero.setBitsFrom(LowBits); 1669 break; 1670 } 1671 case Intrinsic::ctpop: { 1672 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1673 // We can bound the space the count needs. Also, bits known to be zero 1674 // can't contribute to the population. 1675 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1676 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1677 Known.Zero.setBitsFrom(LowBits); 1678 // TODO: we could bound KnownOne using the lower bound on the number 1679 // of bits which might be set provided by popcnt KnownOne2. 1680 break; 1681 } 1682 case Intrinsic::fshr: 1683 case Intrinsic::fshl: { 1684 const APInt *SA; 1685 if (!match(I->getOperand(2), m_APInt(SA))) 1686 break; 1687 1688 // Normalize to funnel shift left. 1689 uint64_t ShiftAmt = SA->urem(BitWidth); 1690 if (II->getIntrinsicID() == Intrinsic::fshr) 1691 ShiftAmt = BitWidth - ShiftAmt; 1692 1693 KnownBits Known3(BitWidth); 1694 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1695 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1696 1697 Known.Zero = 1698 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1699 Known.One = 1700 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1701 break; 1702 } 1703 case Intrinsic::uadd_sat: 1704 case Intrinsic::usub_sat: { 1705 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1706 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1707 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1708 1709 // Add: Leading ones of either operand are preserved. 1710 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1711 // as leading zeros in the result. 1712 unsigned LeadingKnown; 1713 if (IsAdd) 1714 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1715 Known2.countMinLeadingOnes()); 1716 else 1717 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1718 Known2.countMinLeadingOnes()); 1719 1720 Known = KnownBits::computeForAddSub( 1721 IsAdd, /* NSW */ false, Known, Known2); 1722 1723 // We select between the operation result and all-ones/zero 1724 // respectively, so we can preserve known ones/zeros. 1725 if (IsAdd) { 1726 Known.One.setHighBits(LeadingKnown); 1727 Known.Zero.clearAllBits(); 1728 } else { 1729 Known.Zero.setHighBits(LeadingKnown); 1730 Known.One.clearAllBits(); 1731 } 1732 break; 1733 } 1734 case Intrinsic::x86_sse42_crc32_64_64: 1735 Known.Zero.setBitsFrom(32); 1736 break; 1737 } 1738 } 1739 break; 1740 case Instruction::ShuffleVector: { 1741 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1742 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1743 if (!Shuf) { 1744 Known.resetAll(); 1745 return; 1746 } 1747 // For undef elements, we don't know anything about the common state of 1748 // the shuffle result. 1749 APInt DemandedLHS, DemandedRHS; 1750 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1751 Known.resetAll(); 1752 return; 1753 } 1754 Known.One.setAllBits(); 1755 Known.Zero.setAllBits(); 1756 if (!!DemandedLHS) { 1757 const Value *LHS = Shuf->getOperand(0); 1758 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1759 // If we don't know any bits, early out. 1760 if (Known.isUnknown()) 1761 break; 1762 } 1763 if (!!DemandedRHS) { 1764 const Value *RHS = Shuf->getOperand(1); 1765 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1766 Known.One &= Known2.One; 1767 Known.Zero &= Known2.Zero; 1768 } 1769 break; 1770 } 1771 case Instruction::InsertElement: { 1772 const Value *Vec = I->getOperand(0); 1773 const Value *Elt = I->getOperand(1); 1774 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1775 // Early out if the index is non-constant or out-of-range. 1776 unsigned NumElts = DemandedElts.getBitWidth(); 1777 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1778 Known.resetAll(); 1779 return; 1780 } 1781 Known.One.setAllBits(); 1782 Known.Zero.setAllBits(); 1783 unsigned EltIdx = CIdx->getZExtValue(); 1784 // Do we demand the inserted element? 1785 if (DemandedElts[EltIdx]) { 1786 computeKnownBits(Elt, Known, Depth + 1, Q); 1787 // If we don't know any bits, early out. 1788 if (Known.isUnknown()) 1789 break; 1790 } 1791 // We don't need the base vector element that has been inserted. 1792 APInt DemandedVecElts = DemandedElts; 1793 DemandedVecElts.clearBit(EltIdx); 1794 if (!!DemandedVecElts) { 1795 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1796 Known.One &= Known2.One; 1797 Known.Zero &= Known2.Zero; 1798 } 1799 break; 1800 } 1801 case Instruction::ExtractElement: { 1802 // Look through extract element. If the index is non-constant or 1803 // out-of-range demand all elements, otherwise just the extracted element. 1804 const Value *Vec = I->getOperand(0); 1805 const Value *Idx = I->getOperand(1); 1806 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1807 unsigned NumElts = cast<VectorType>(Vec->getType())->getNumElements(); 1808 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1809 if (CIdx && CIdx->getValue().ult(NumElts)) 1810 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1811 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1812 break; 1813 } 1814 case Instruction::ExtractValue: 1815 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1816 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1817 if (EVI->getNumIndices() != 1) break; 1818 if (EVI->getIndices()[0] == 0) { 1819 switch (II->getIntrinsicID()) { 1820 default: break; 1821 case Intrinsic::uadd_with_overflow: 1822 case Intrinsic::sadd_with_overflow: 1823 computeKnownBitsAddSub(true, II->getArgOperand(0), 1824 II->getArgOperand(1), false, DemandedElts, 1825 Known, Known2, Depth, Q); 1826 break; 1827 case Intrinsic::usub_with_overflow: 1828 case Intrinsic::ssub_with_overflow: 1829 computeKnownBitsAddSub(false, II->getArgOperand(0), 1830 II->getArgOperand(1), false, DemandedElts, 1831 Known, Known2, Depth, Q); 1832 break; 1833 case Intrinsic::umul_with_overflow: 1834 case Intrinsic::smul_with_overflow: 1835 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1836 DemandedElts, Known, Known2, Depth, Q); 1837 break; 1838 } 1839 } 1840 } 1841 break; 1842 } 1843 } 1844 1845 /// Determine which bits of V are known to be either zero or one and return 1846 /// them. 1847 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1848 unsigned Depth, const Query &Q) { 1849 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1850 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1851 return Known; 1852 } 1853 1854 /// Determine which bits of V are known to be either zero or one and return 1855 /// them. 1856 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1857 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1858 computeKnownBits(V, Known, Depth, Q); 1859 return Known; 1860 } 1861 1862 /// Determine which bits of V are known to be either zero or one and return 1863 /// them in the Known bit set. 1864 /// 1865 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1866 /// we cannot optimize based on the assumption that it is zero without changing 1867 /// it to be an explicit zero. If we don't change it to zero, other code could 1868 /// optimized based on the contradictory assumption that it is non-zero. 1869 /// Because instcombine aggressively folds operations with undef args anyway, 1870 /// this won't lose us code quality. 1871 /// 1872 /// This function is defined on values with integer type, values with pointer 1873 /// type, and vectors of integers. In the case 1874 /// where V is a vector, known zero, and known one values are the 1875 /// same width as the vector element, and the bit is set only if it is true 1876 /// for all of the demanded elements in the vector specified by DemandedElts. 1877 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1878 KnownBits &Known, unsigned Depth, const Query &Q) { 1879 assert(V && "No Value?"); 1880 assert(Depth <= MaxDepth && "Limit Search Depth"); 1881 unsigned BitWidth = Known.getBitWidth(); 1882 1883 Type *Ty = V->getType(); 1884 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1885 "Not integer or pointer type!"); 1886 assert(((Ty->isVectorTy() && cast<VectorType>(Ty)->getNumElements() == 1887 DemandedElts.getBitWidth()) || 1888 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1889 "Unexpected vector size"); 1890 1891 Type *ScalarTy = Ty->getScalarType(); 1892 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1893 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1894 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1895 (void)BitWidth; 1896 (void)ExpectedWidth; 1897 1898 if (!DemandedElts) { 1899 // No demanded elts, better to assume we don't know anything. 1900 Known.resetAll(); 1901 return; 1902 } 1903 1904 const APInt *C; 1905 if (match(V, m_APInt(C))) { 1906 // We know all of the bits for a scalar constant or a splat vector constant! 1907 Known.One = *C; 1908 Known.Zero = ~Known.One; 1909 return; 1910 } 1911 // Null and aggregate-zero are all-zeros. 1912 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1913 Known.setAllZero(); 1914 return; 1915 } 1916 // Handle a constant vector by taking the intersection of the known bits of 1917 // each element. 1918 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1919 assert((!Ty->isVectorTy() || 1920 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1921 "Unexpected vector size"); 1922 // We know that CDS must be a vector of integers. Take the intersection of 1923 // each element. 1924 Known.Zero.setAllBits(); Known.One.setAllBits(); 1925 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1926 if (Ty->isVectorTy() && !DemandedElts[i]) 1927 continue; 1928 APInt Elt = CDS->getElementAsAPInt(i); 1929 Known.Zero &= ~Elt; 1930 Known.One &= Elt; 1931 } 1932 return; 1933 } 1934 1935 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1936 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1937 "Unexpected vector size"); 1938 // We know that CV must be a vector of integers. Take the intersection of 1939 // each element. 1940 Known.Zero.setAllBits(); Known.One.setAllBits(); 1941 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1942 if (!DemandedElts[i]) 1943 continue; 1944 Constant *Element = CV->getAggregateElement(i); 1945 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1946 if (!ElementCI) { 1947 Known.resetAll(); 1948 return; 1949 } 1950 const APInt &Elt = ElementCI->getValue(); 1951 Known.Zero &= ~Elt; 1952 Known.One &= Elt; 1953 } 1954 return; 1955 } 1956 1957 // Start out not knowing anything. 1958 Known.resetAll(); 1959 1960 // We can't imply anything about undefs. 1961 if (isa<UndefValue>(V)) 1962 return; 1963 1964 // There's no point in looking through other users of ConstantData for 1965 // assumptions. Confirm that we've handled them all. 1966 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1967 1968 // Limit search depth. 1969 // All recursive calls that increase depth must come after this. 1970 if (Depth == MaxDepth) 1971 return; 1972 1973 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1974 // the bits of its aliasee. 1975 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1976 if (!GA->isInterposable()) 1977 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1978 return; 1979 } 1980 1981 if (const Operator *I = dyn_cast<Operator>(V)) 1982 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1983 1984 // Aligned pointers have trailing zeros - refine Known.Zero set 1985 if (Ty->isPointerTy()) { 1986 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1987 if (Align) 1988 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1989 } 1990 1991 // computeKnownBitsFromAssume strictly refines Known. 1992 // Therefore, we run them after computeKnownBitsFromOperator. 1993 1994 // Check whether a nearby assume intrinsic can determine some known bits. 1995 computeKnownBitsFromAssume(V, Known, Depth, Q); 1996 1997 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1998 } 1999 2000 /// Return true if the given value is known to have exactly one 2001 /// bit set when defined. For vectors return true if every element is known to 2002 /// be a power of two when defined. Supports values with integer or pointer 2003 /// types and vectors of integers. 2004 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2005 const Query &Q) { 2006 assert(Depth <= MaxDepth && "Limit Search Depth"); 2007 2008 // Attempt to match against constants. 2009 if (OrZero && match(V, m_Power2OrZero())) 2010 return true; 2011 if (match(V, m_Power2())) 2012 return true; 2013 2014 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2015 // it is shifted off the end then the result is undefined. 2016 if (match(V, m_Shl(m_One(), m_Value()))) 2017 return true; 2018 2019 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2020 // the bottom. If it is shifted off the bottom then the result is undefined. 2021 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2022 return true; 2023 2024 // The remaining tests are all recursive, so bail out if we hit the limit. 2025 if (Depth++ == MaxDepth) 2026 return false; 2027 2028 Value *X = nullptr, *Y = nullptr; 2029 // A shift left or a logical shift right of a power of two is a power of two 2030 // or zero. 2031 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2032 match(V, m_LShr(m_Value(X), m_Value())))) 2033 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2034 2035 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2036 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2037 2038 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2039 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2040 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2041 2042 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2043 // A power of two and'd with anything is a power of two or zero. 2044 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2045 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2046 return true; 2047 // X & (-X) is always a power of two or zero. 2048 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2049 return true; 2050 return false; 2051 } 2052 2053 // Adding a power-of-two or zero to the same power-of-two or zero yields 2054 // either the original power-of-two, a larger power-of-two or zero. 2055 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2056 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2057 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2058 Q.IIQ.hasNoSignedWrap(VOBO)) { 2059 if (match(X, m_And(m_Specific(Y), m_Value())) || 2060 match(X, m_And(m_Value(), m_Specific(Y)))) 2061 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2062 return true; 2063 if (match(Y, m_And(m_Specific(X), m_Value())) || 2064 match(Y, m_And(m_Value(), m_Specific(X)))) 2065 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2066 return true; 2067 2068 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2069 KnownBits LHSBits(BitWidth); 2070 computeKnownBits(X, LHSBits, Depth, Q); 2071 2072 KnownBits RHSBits(BitWidth); 2073 computeKnownBits(Y, RHSBits, Depth, Q); 2074 // If i8 V is a power of two or zero: 2075 // ZeroBits: 1 1 1 0 1 1 1 1 2076 // ~ZeroBits: 0 0 0 1 0 0 0 0 2077 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2078 // If OrZero isn't set, we cannot give back a zero result. 2079 // Make sure either the LHS or RHS has a bit set. 2080 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2081 return true; 2082 } 2083 } 2084 2085 // An exact divide or right shift can only shift off zero bits, so the result 2086 // is a power of two only if the first operand is a power of two and not 2087 // copying a sign bit (sdiv int_min, 2). 2088 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2089 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2090 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2091 Depth, Q); 2092 } 2093 2094 return false; 2095 } 2096 2097 /// Test whether a GEP's result is known to be non-null. 2098 /// 2099 /// Uses properties inherent in a GEP to try to determine whether it is known 2100 /// to be non-null. 2101 /// 2102 /// Currently this routine does not support vector GEPs. 2103 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2104 const Query &Q) { 2105 const Function *F = nullptr; 2106 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2107 F = I->getFunction(); 2108 2109 if (!GEP->isInBounds() || 2110 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2111 return false; 2112 2113 // FIXME: Support vector-GEPs. 2114 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2115 2116 // If the base pointer is non-null, we cannot walk to a null address with an 2117 // inbounds GEP in address space zero. 2118 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2119 return true; 2120 2121 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2122 // If so, then the GEP cannot produce a null pointer, as doing so would 2123 // inherently violate the inbounds contract within address space zero. 2124 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2125 GTI != GTE; ++GTI) { 2126 // Struct types are easy -- they must always be indexed by a constant. 2127 if (StructType *STy = GTI.getStructTypeOrNull()) { 2128 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2129 unsigned ElementIdx = OpC->getZExtValue(); 2130 const StructLayout *SL = Q.DL.getStructLayout(STy); 2131 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2132 if (ElementOffset > 0) 2133 return true; 2134 continue; 2135 } 2136 2137 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2138 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2139 continue; 2140 2141 // Fast path the constant operand case both for efficiency and so we don't 2142 // increment Depth when just zipping down an all-constant GEP. 2143 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2144 if (!OpC->isZero()) 2145 return true; 2146 continue; 2147 } 2148 2149 // We post-increment Depth here because while isKnownNonZero increments it 2150 // as well, when we pop back up that increment won't persist. We don't want 2151 // to recurse 10k times just because we have 10k GEP operands. We don't 2152 // bail completely out because we want to handle constant GEPs regardless 2153 // of depth. 2154 if (Depth++ >= MaxDepth) 2155 continue; 2156 2157 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2158 return true; 2159 } 2160 2161 return false; 2162 } 2163 2164 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2165 const Instruction *CtxI, 2166 const DominatorTree *DT) { 2167 if (isa<Constant>(V)) 2168 return false; 2169 2170 if (!CtxI || !DT) 2171 return false; 2172 2173 unsigned NumUsesExplored = 0; 2174 for (auto *U : V->users()) { 2175 // Avoid massive lists 2176 if (NumUsesExplored >= DomConditionsMaxUses) 2177 break; 2178 NumUsesExplored++; 2179 2180 // If the value is used as an argument to a call or invoke, then argument 2181 // attributes may provide an answer about null-ness. 2182 if (const auto *CB = dyn_cast<CallBase>(U)) 2183 if (auto *CalledFunc = CB->getCalledFunction()) 2184 for (const Argument &Arg : CalledFunc->args()) 2185 if (CB->getArgOperand(Arg.getArgNo()) == V && 2186 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2187 return true; 2188 2189 // If the value is used as a load/store, then the pointer must be non null. 2190 if (V == getLoadStorePointerOperand(U)) { 2191 const Instruction *I = cast<Instruction>(U); 2192 if (!NullPointerIsDefined(I->getFunction(), 2193 V->getType()->getPointerAddressSpace()) && 2194 DT->dominates(I, CtxI)) 2195 return true; 2196 } 2197 2198 // Consider only compare instructions uniquely controlling a branch 2199 CmpInst::Predicate Pred; 2200 if (!match(const_cast<User *>(U), 2201 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2202 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2203 continue; 2204 2205 SmallVector<const User *, 4> WorkList; 2206 SmallPtrSet<const User *, 4> Visited; 2207 for (auto *CmpU : U->users()) { 2208 assert(WorkList.empty() && "Should be!"); 2209 if (Visited.insert(CmpU).second) 2210 WorkList.push_back(CmpU); 2211 2212 while (!WorkList.empty()) { 2213 auto *Curr = WorkList.pop_back_val(); 2214 2215 // If a user is an AND, add all its users to the work list. We only 2216 // propagate "pred != null" condition through AND because it is only 2217 // correct to assume that all conditions of AND are met in true branch. 2218 // TODO: Support similar logic of OR and EQ predicate? 2219 if (Pred == ICmpInst::ICMP_NE) 2220 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2221 if (BO->getOpcode() == Instruction::And) { 2222 for (auto *BOU : BO->users()) 2223 if (Visited.insert(BOU).second) 2224 WorkList.push_back(BOU); 2225 continue; 2226 } 2227 2228 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2229 assert(BI->isConditional() && "uses a comparison!"); 2230 2231 BasicBlock *NonNullSuccessor = 2232 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2233 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2234 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2235 return true; 2236 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2237 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2238 return true; 2239 } 2240 } 2241 } 2242 } 2243 2244 return false; 2245 } 2246 2247 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2248 /// ensure that the value it's attached to is never Value? 'RangeType' is 2249 /// is the type of the value described by the range. 2250 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2251 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2252 assert(NumRanges >= 1); 2253 for (unsigned i = 0; i < NumRanges; ++i) { 2254 ConstantInt *Lower = 2255 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2256 ConstantInt *Upper = 2257 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2258 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2259 if (Range.contains(Value)) 2260 return false; 2261 } 2262 return true; 2263 } 2264 2265 /// Return true if the given value is known to be non-zero when defined. For 2266 /// vectors, return true if every demanded element is known to be non-zero when 2267 /// defined. For pointers, if the context instruction and dominator tree are 2268 /// specified, perform context-sensitive analysis and return true if the 2269 /// pointer couldn't possibly be null at the specified instruction. 2270 /// Supports values with integer or pointer type and vectors of integers. 2271 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2272 const Query &Q) { 2273 if (auto *C = dyn_cast<Constant>(V)) { 2274 if (C->isNullValue()) 2275 return false; 2276 if (isa<ConstantInt>(C)) 2277 // Must be non-zero due to null test above. 2278 return true; 2279 2280 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2281 // See the comment for IntToPtr/PtrToInt instructions below. 2282 if (CE->getOpcode() == Instruction::IntToPtr || 2283 CE->getOpcode() == Instruction::PtrToInt) 2284 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2285 Q.DL.getTypeSizeInBits(CE->getType())) 2286 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2287 } 2288 2289 // For constant vectors, check that all elements are undefined or known 2290 // non-zero to determine that the whole vector is known non-zero. 2291 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2292 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2293 if (!DemandedElts[i]) 2294 continue; 2295 Constant *Elt = C->getAggregateElement(i); 2296 if (!Elt || Elt->isNullValue()) 2297 return false; 2298 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2299 return false; 2300 } 2301 return true; 2302 } 2303 2304 // A global variable in address space 0 is non null unless extern weak 2305 // or an absolute symbol reference. Other address spaces may have null as a 2306 // valid address for a global, so we can't assume anything. 2307 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2308 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2309 GV->getType()->getAddressSpace() == 0) 2310 return true; 2311 } else 2312 return false; 2313 } 2314 2315 if (auto *I = dyn_cast<Instruction>(V)) { 2316 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2317 // If the possible ranges don't contain zero, then the value is 2318 // definitely non-zero. 2319 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2320 const APInt ZeroValue(Ty->getBitWidth(), 0); 2321 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2322 return true; 2323 } 2324 } 2325 } 2326 2327 if (isKnownNonZeroFromAssume(V, Q)) 2328 return true; 2329 2330 // Some of the tests below are recursive, so bail out if we hit the limit. 2331 if (Depth++ >= MaxDepth) 2332 return false; 2333 2334 // Check for pointer simplifications. 2335 if (V->getType()->isPointerTy()) { 2336 // Alloca never returns null, malloc might. 2337 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2338 return true; 2339 2340 // A byval, inalloca, or nonnull argument is never null. 2341 if (const Argument *A = dyn_cast<Argument>(V)) 2342 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2343 return true; 2344 2345 // A Load tagged with nonnull metadata is never null. 2346 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2347 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2348 return true; 2349 2350 if (const auto *Call = dyn_cast<CallBase>(V)) { 2351 if (Call->isReturnNonNull()) 2352 return true; 2353 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2354 return isKnownNonZero(RP, Depth, Q); 2355 } 2356 } 2357 2358 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2359 return true; 2360 2361 // Check for recursive pointer simplifications. 2362 if (V->getType()->isPointerTy()) { 2363 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2364 // do not alter the value, or at least not the nullness property of the 2365 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2366 // 2367 // Note that we have to take special care to avoid looking through 2368 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2369 // as casts that can alter the value, e.g., AddrSpaceCasts. 2370 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2371 if (isGEPKnownNonNull(GEP, Depth, Q)) 2372 return true; 2373 2374 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2375 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2376 2377 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2378 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2379 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2380 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2381 } 2382 2383 // Similar to int2ptr above, we can look through ptr2int here if the cast 2384 // is a no-op or an extend and not a truncate. 2385 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2386 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2387 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2388 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2389 2390 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2391 2392 // X | Y != 0 if X != 0 or Y != 0. 2393 Value *X = nullptr, *Y = nullptr; 2394 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2395 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2396 isKnownNonZero(Y, DemandedElts, Depth, Q); 2397 2398 // ext X != 0 if X != 0. 2399 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2400 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2401 2402 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2403 // if the lowest bit is shifted off the end. 2404 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2405 // shl nuw can't remove any non-zero bits. 2406 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2407 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2408 return isKnownNonZero(X, Depth, Q); 2409 2410 KnownBits Known(BitWidth); 2411 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2412 if (Known.One[0]) 2413 return true; 2414 } 2415 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2416 // defined if the sign bit is shifted off the end. 2417 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2418 // shr exact can only shift out zero bits. 2419 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2420 if (BO->isExact()) 2421 return isKnownNonZero(X, Depth, Q); 2422 2423 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2424 if (Known.isNegative()) 2425 return true; 2426 2427 // If the shifter operand is a constant, and all of the bits shifted 2428 // out are known to be zero, and X is known non-zero then at least one 2429 // non-zero bit must remain. 2430 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2431 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2432 // Is there a known one in the portion not shifted out? 2433 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2434 return true; 2435 // Are all the bits to be shifted out known zero? 2436 if (Known.countMinTrailingZeros() >= ShiftVal) 2437 return isKnownNonZero(X, DemandedElts, Depth, Q); 2438 } 2439 } 2440 // div exact can only produce a zero if the dividend is zero. 2441 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2442 return isKnownNonZero(X, DemandedElts, Depth, Q); 2443 } 2444 // X + Y. 2445 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2446 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2447 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2448 2449 // If X and Y are both non-negative (as signed values) then their sum is not 2450 // zero unless both X and Y are zero. 2451 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2452 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2453 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2454 return true; 2455 2456 // If X and Y are both negative (as signed values) then their sum is not 2457 // zero unless both X and Y equal INT_MIN. 2458 if (XKnown.isNegative() && YKnown.isNegative()) { 2459 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2460 // The sign bit of X is set. If some other bit is set then X is not equal 2461 // to INT_MIN. 2462 if (XKnown.One.intersects(Mask)) 2463 return true; 2464 // The sign bit of Y is set. If some other bit is set then Y is not equal 2465 // to INT_MIN. 2466 if (YKnown.One.intersects(Mask)) 2467 return true; 2468 } 2469 2470 // The sum of a non-negative number and a power of two is not zero. 2471 if (XKnown.isNonNegative() && 2472 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2473 return true; 2474 if (YKnown.isNonNegative() && 2475 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2476 return true; 2477 } 2478 // X * Y. 2479 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2480 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2481 // If X and Y are non-zero then so is X * Y as long as the multiplication 2482 // does not overflow. 2483 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2484 isKnownNonZero(X, DemandedElts, Depth, Q) && 2485 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2486 return true; 2487 } 2488 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2489 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2490 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2491 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2492 return true; 2493 } 2494 // PHI 2495 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2496 // Try and detect a recurrence that monotonically increases from a 2497 // starting value, as these are common as induction variables. 2498 if (PN->getNumIncomingValues() == 2) { 2499 Value *Start = PN->getIncomingValue(0); 2500 Value *Induction = PN->getIncomingValue(1); 2501 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2502 std::swap(Start, Induction); 2503 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2504 if (!C->isZero() && !C->isNegative()) { 2505 ConstantInt *X; 2506 if (Q.IIQ.UseInstrInfo && 2507 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2508 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2509 !X->isNegative()) 2510 return true; 2511 } 2512 } 2513 } 2514 // Check if all incoming values are non-zero constant. 2515 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2516 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2517 }); 2518 if (AllNonZeroConstants) 2519 return true; 2520 } 2521 // ExtractElement 2522 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2523 const Value *Vec = EEI->getVectorOperand(); 2524 const Value *Idx = EEI->getIndexOperand(); 2525 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2526 unsigned NumElts = cast<VectorType>(Vec->getType())->getNumElements(); 2527 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2528 if (CIdx && CIdx->getValue().ult(NumElts)) 2529 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2530 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2531 } 2532 2533 KnownBits Known(BitWidth); 2534 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2535 return Known.One != 0; 2536 } 2537 2538 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2539 Type *Ty = V->getType(); 2540 APInt DemandedElts = 2541 Ty->isVectorTy() 2542 ? APInt::getAllOnesValue(cast<VectorType>(Ty)->getNumElements()) 2543 : APInt(1, 1); 2544 return isKnownNonZero(V, DemandedElts, Depth, Q); 2545 } 2546 2547 /// Return true if V2 == V1 + X, where X is known non-zero. 2548 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2549 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2550 if (!BO || BO->getOpcode() != Instruction::Add) 2551 return false; 2552 Value *Op = nullptr; 2553 if (V2 == BO->getOperand(0)) 2554 Op = BO->getOperand(1); 2555 else if (V2 == BO->getOperand(1)) 2556 Op = BO->getOperand(0); 2557 else 2558 return false; 2559 return isKnownNonZero(Op, 0, Q); 2560 } 2561 2562 /// Return true if it is known that V1 != V2. 2563 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2564 if (V1 == V2) 2565 return false; 2566 if (V1->getType() != V2->getType()) 2567 // We can't look through casts yet. 2568 return false; 2569 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2570 return true; 2571 2572 if (V1->getType()->isIntOrIntVectorTy()) { 2573 // Are any known bits in V1 contradictory to known bits in V2? If V1 2574 // has a known zero where V2 has a known one, they must not be equal. 2575 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2576 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2577 2578 if (Known1.Zero.intersects(Known2.One) || 2579 Known2.Zero.intersects(Known1.One)) 2580 return true; 2581 } 2582 return false; 2583 } 2584 2585 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2586 /// simplify operations downstream. Mask is known to be zero for bits that V 2587 /// cannot have. 2588 /// 2589 /// This function is defined on values with integer type, values with pointer 2590 /// type, and vectors of integers. In the case 2591 /// where V is a vector, the mask, known zero, and known one values are the 2592 /// same width as the vector element, and the bit is set only if it is true 2593 /// for all of the elements in the vector. 2594 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2595 const Query &Q) { 2596 KnownBits Known(Mask.getBitWidth()); 2597 computeKnownBits(V, Known, Depth, Q); 2598 return Mask.isSubsetOf(Known.Zero); 2599 } 2600 2601 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2602 // Returns the input and lower/upper bounds. 2603 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2604 const APInt *&CLow, const APInt *&CHigh) { 2605 assert(isa<Operator>(Select) && 2606 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2607 "Input should be a Select!"); 2608 2609 const Value *LHS = nullptr, *RHS = nullptr; 2610 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2611 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2612 return false; 2613 2614 if (!match(RHS, m_APInt(CLow))) 2615 return false; 2616 2617 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2618 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2619 if (getInverseMinMaxFlavor(SPF) != SPF2) 2620 return false; 2621 2622 if (!match(RHS2, m_APInt(CHigh))) 2623 return false; 2624 2625 if (SPF == SPF_SMIN) 2626 std::swap(CLow, CHigh); 2627 2628 In = LHS2; 2629 return CLow->sle(*CHigh); 2630 } 2631 2632 /// For vector constants, loop over the elements and find the constant with the 2633 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2634 /// or if any element was not analyzed; otherwise, return the count for the 2635 /// element with the minimum number of sign bits. 2636 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2637 const APInt &DemandedElts, 2638 unsigned TyBits) { 2639 const auto *CV = dyn_cast<Constant>(V); 2640 if (!CV || !CV->getType()->isVectorTy()) 2641 return 0; 2642 2643 unsigned MinSignBits = TyBits; 2644 unsigned NumElts = cast<VectorType>(CV->getType())->getNumElements(); 2645 for (unsigned i = 0; i != NumElts; ++i) { 2646 if (!DemandedElts[i]) 2647 continue; 2648 // If we find a non-ConstantInt, bail out. 2649 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2650 if (!Elt) 2651 return 0; 2652 2653 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2654 } 2655 2656 return MinSignBits; 2657 } 2658 2659 static unsigned ComputeNumSignBitsImpl(const Value *V, 2660 const APInt &DemandedElts, 2661 unsigned Depth, const Query &Q); 2662 2663 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2664 unsigned Depth, const Query &Q) { 2665 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2666 assert(Result > 0 && "At least one sign bit needs to be present!"); 2667 return Result; 2668 } 2669 2670 /// Return the number of times the sign bit of the register is replicated into 2671 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2672 /// (itself), but other cases can give us information. For example, immediately 2673 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2674 /// other, so we return 3. For vectors, return the number of sign bits for the 2675 /// vector element with the minimum number of known sign bits of the demanded 2676 /// elements in the vector specified by DemandedElts. 2677 static unsigned ComputeNumSignBitsImpl(const Value *V, 2678 const APInt &DemandedElts, 2679 unsigned Depth, const Query &Q) { 2680 assert(Depth <= MaxDepth && "Limit Search Depth"); 2681 2682 // We return the minimum number of sign bits that are guaranteed to be present 2683 // in V, so for undef we have to conservatively return 1. We don't have the 2684 // same behavior for poison though -- that's a FIXME today. 2685 2686 Type *Ty = V->getType(); 2687 assert(((Ty->isVectorTy() && cast<VectorType>(Ty)->getNumElements() == 2688 DemandedElts.getBitWidth()) || 2689 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2690 "Unexpected vector size"); 2691 2692 Type *ScalarTy = Ty->getScalarType(); 2693 unsigned TyBits = ScalarTy->isPointerTy() ? 2694 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2695 Q.DL.getTypeSizeInBits(ScalarTy); 2696 2697 unsigned Tmp, Tmp2; 2698 unsigned FirstAnswer = 1; 2699 2700 // Note that ConstantInt is handled by the general computeKnownBits case 2701 // below. 2702 2703 if (Depth == MaxDepth) 2704 return 1; // Limit search depth. 2705 2706 if (auto *U = dyn_cast<Operator>(V)) { 2707 switch (Operator::getOpcode(V)) { 2708 default: break; 2709 case Instruction::SExt: 2710 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2711 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2712 2713 case Instruction::SDiv: { 2714 const APInt *Denominator; 2715 // sdiv X, C -> adds log(C) sign bits. 2716 if (match(U->getOperand(1), m_APInt(Denominator))) { 2717 2718 // Ignore non-positive denominator. 2719 if (!Denominator->isStrictlyPositive()) 2720 break; 2721 2722 // Calculate the incoming numerator bits. 2723 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2724 2725 // Add floor(log(C)) bits to the numerator bits. 2726 return std::min(TyBits, NumBits + Denominator->logBase2()); 2727 } 2728 break; 2729 } 2730 2731 case Instruction::SRem: { 2732 const APInt *Denominator; 2733 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2734 // positive constant. This let us put a lower bound on the number of sign 2735 // bits. 2736 if (match(U->getOperand(1), m_APInt(Denominator))) { 2737 2738 // Ignore non-positive denominator. 2739 if (!Denominator->isStrictlyPositive()) 2740 break; 2741 2742 // Calculate the incoming numerator bits. SRem by a positive constant 2743 // can't lower the number of sign bits. 2744 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2745 2746 // Calculate the leading sign bit constraints by examining the 2747 // denominator. Given that the denominator is positive, there are two 2748 // cases: 2749 // 2750 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2751 // (1 << ceilLogBase2(C)). 2752 // 2753 // 2. the numerator is negative. Then the result range is (-C,0] and 2754 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2755 // 2756 // Thus a lower bound on the number of sign bits is `TyBits - 2757 // ceilLogBase2(C)`. 2758 2759 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2760 return std::max(NumrBits, ResBits); 2761 } 2762 break; 2763 } 2764 2765 case Instruction::AShr: { 2766 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2767 // ashr X, C -> adds C sign bits. Vectors too. 2768 const APInt *ShAmt; 2769 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2770 if (ShAmt->uge(TyBits)) 2771 break; // Bad shift. 2772 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2773 Tmp += ShAmtLimited; 2774 if (Tmp > TyBits) Tmp = TyBits; 2775 } 2776 return Tmp; 2777 } 2778 case Instruction::Shl: { 2779 const APInt *ShAmt; 2780 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2781 // shl destroys sign bits. 2782 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2783 if (ShAmt->uge(TyBits) || // Bad shift. 2784 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2785 Tmp2 = ShAmt->getZExtValue(); 2786 return Tmp - Tmp2; 2787 } 2788 break; 2789 } 2790 case Instruction::And: 2791 case Instruction::Or: 2792 case Instruction::Xor: // NOT is handled here. 2793 // Logical binary ops preserve the number of sign bits at the worst. 2794 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2795 if (Tmp != 1) { 2796 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2797 FirstAnswer = std::min(Tmp, Tmp2); 2798 // We computed what we know about the sign bits as our first 2799 // answer. Now proceed to the generic code that uses 2800 // computeKnownBits, and pick whichever answer is better. 2801 } 2802 break; 2803 2804 case Instruction::Select: { 2805 // If we have a clamp pattern, we know that the number of sign bits will 2806 // be the minimum of the clamp min/max range. 2807 const Value *X; 2808 const APInt *CLow, *CHigh; 2809 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2810 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2811 2812 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2813 if (Tmp == 1) break; 2814 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2815 return std::min(Tmp, Tmp2); 2816 } 2817 2818 case Instruction::Add: 2819 // Add can have at most one carry bit. Thus we know that the output 2820 // is, at worst, one more bit than the inputs. 2821 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2822 if (Tmp == 1) break; 2823 2824 // Special case decrementing a value (ADD X, -1): 2825 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2826 if (CRHS->isAllOnesValue()) { 2827 KnownBits Known(TyBits); 2828 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2829 2830 // If the input is known to be 0 or 1, the output is 0/-1, which is 2831 // all sign bits set. 2832 if ((Known.Zero | 1).isAllOnesValue()) 2833 return TyBits; 2834 2835 // If we are subtracting one from a positive number, there is no carry 2836 // out of the result. 2837 if (Known.isNonNegative()) 2838 return Tmp; 2839 } 2840 2841 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2842 if (Tmp2 == 1) break; 2843 return std::min(Tmp, Tmp2) - 1; 2844 2845 case Instruction::Sub: 2846 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2847 if (Tmp2 == 1) break; 2848 2849 // Handle NEG. 2850 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2851 if (CLHS->isNullValue()) { 2852 KnownBits Known(TyBits); 2853 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2854 // If the input is known to be 0 or 1, the output is 0/-1, which is 2855 // all sign bits set. 2856 if ((Known.Zero | 1).isAllOnesValue()) 2857 return TyBits; 2858 2859 // If the input is known to be positive (the sign bit is known clear), 2860 // the output of the NEG has the same number of sign bits as the 2861 // input. 2862 if (Known.isNonNegative()) 2863 return Tmp2; 2864 2865 // Otherwise, we treat this like a SUB. 2866 } 2867 2868 // Sub can have at most one carry bit. Thus we know that the output 2869 // is, at worst, one more bit than the inputs. 2870 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2871 if (Tmp == 1) break; 2872 return std::min(Tmp, Tmp2) - 1; 2873 2874 case Instruction::Mul: { 2875 // The output of the Mul can be at most twice the valid bits in the 2876 // inputs. 2877 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2878 if (SignBitsOp0 == 1) break; 2879 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2880 if (SignBitsOp1 == 1) break; 2881 unsigned OutValidBits = 2882 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2883 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2884 } 2885 2886 case Instruction::PHI: { 2887 const PHINode *PN = cast<PHINode>(U); 2888 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2889 // Don't analyze large in-degree PHIs. 2890 if (NumIncomingValues > 4) break; 2891 // Unreachable blocks may have zero-operand PHI nodes. 2892 if (NumIncomingValues == 0) break; 2893 2894 // Take the minimum of all incoming values. This can't infinitely loop 2895 // because of our depth threshold. 2896 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2897 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2898 if (Tmp == 1) return Tmp; 2899 Tmp = std::min( 2900 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2901 } 2902 return Tmp; 2903 } 2904 2905 case Instruction::Trunc: 2906 // FIXME: it's tricky to do anything useful for this, but it is an 2907 // important case for targets like X86. 2908 break; 2909 2910 case Instruction::ExtractElement: 2911 // Look through extract element. At the moment we keep this simple and 2912 // skip tracking the specific element. But at least we might find 2913 // information valid for all elements of the vector (for example if vector 2914 // is sign extended, shifted, etc). 2915 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2916 2917 case Instruction::ShuffleVector: { 2918 // Collect the minimum number of sign bits that are shared by every vector 2919 // element referenced by the shuffle. 2920 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2921 if (!Shuf) { 2922 // FIXME: Add support for shufflevector constant expressions. 2923 return 1; 2924 } 2925 APInt DemandedLHS, DemandedRHS; 2926 // For undef elements, we don't know anything about the common state of 2927 // the shuffle result. 2928 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2929 return 1; 2930 Tmp = std::numeric_limits<unsigned>::max(); 2931 if (!!DemandedLHS) { 2932 const Value *LHS = Shuf->getOperand(0); 2933 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2934 } 2935 // If we don't know anything, early out and try computeKnownBits 2936 // fall-back. 2937 if (Tmp == 1) 2938 break; 2939 if (!!DemandedRHS) { 2940 const Value *RHS = Shuf->getOperand(1); 2941 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2942 Tmp = std::min(Tmp, Tmp2); 2943 } 2944 // If we don't know anything, early out and try computeKnownBits 2945 // fall-back. 2946 if (Tmp == 1) 2947 break; 2948 assert(Tmp <= Ty->getScalarSizeInBits() && 2949 "Failed to determine minimum sign bits"); 2950 return Tmp; 2951 } 2952 } 2953 } 2954 2955 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2956 // use this information. 2957 2958 // If we can examine all elements of a vector constant successfully, we're 2959 // done (we can't do any better than that). If not, keep trying. 2960 if (unsigned VecSignBits = 2961 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2962 return VecSignBits; 2963 2964 KnownBits Known(TyBits); 2965 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2966 2967 // If we know that the sign bit is either zero or one, determine the number of 2968 // identical bits in the top of the input value. 2969 return std::max(FirstAnswer, Known.countMinSignBits()); 2970 } 2971 2972 /// This function computes the integer multiple of Base that equals V. 2973 /// If successful, it returns true and returns the multiple in 2974 /// Multiple. If unsuccessful, it returns false. It looks 2975 /// through SExt instructions only if LookThroughSExt is true. 2976 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2977 bool LookThroughSExt, unsigned Depth) { 2978 assert(V && "No Value?"); 2979 assert(Depth <= MaxDepth && "Limit Search Depth"); 2980 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2981 2982 Type *T = V->getType(); 2983 2984 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2985 2986 if (Base == 0) 2987 return false; 2988 2989 if (Base == 1) { 2990 Multiple = V; 2991 return true; 2992 } 2993 2994 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2995 Constant *BaseVal = ConstantInt::get(T, Base); 2996 if (CO && CO == BaseVal) { 2997 // Multiple is 1. 2998 Multiple = ConstantInt::get(T, 1); 2999 return true; 3000 } 3001 3002 if (CI && CI->getZExtValue() % Base == 0) { 3003 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3004 return true; 3005 } 3006 3007 if (Depth == MaxDepth) return false; // Limit search depth. 3008 3009 Operator *I = dyn_cast<Operator>(V); 3010 if (!I) return false; 3011 3012 switch (I->getOpcode()) { 3013 default: break; 3014 case Instruction::SExt: 3015 if (!LookThroughSExt) return false; 3016 // otherwise fall through to ZExt 3017 LLVM_FALLTHROUGH; 3018 case Instruction::ZExt: 3019 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3020 LookThroughSExt, Depth+1); 3021 case Instruction::Shl: 3022 case Instruction::Mul: { 3023 Value *Op0 = I->getOperand(0); 3024 Value *Op1 = I->getOperand(1); 3025 3026 if (I->getOpcode() == Instruction::Shl) { 3027 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3028 if (!Op1CI) return false; 3029 // Turn Op0 << Op1 into Op0 * 2^Op1 3030 APInt Op1Int = Op1CI->getValue(); 3031 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3032 APInt API(Op1Int.getBitWidth(), 0); 3033 API.setBit(BitToSet); 3034 Op1 = ConstantInt::get(V->getContext(), API); 3035 } 3036 3037 Value *Mul0 = nullptr; 3038 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3039 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3040 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3041 if (Op1C->getType()->getPrimitiveSizeInBits() < 3042 MulC->getType()->getPrimitiveSizeInBits()) 3043 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3044 if (Op1C->getType()->getPrimitiveSizeInBits() > 3045 MulC->getType()->getPrimitiveSizeInBits()) 3046 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3047 3048 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3049 Multiple = ConstantExpr::getMul(MulC, Op1C); 3050 return true; 3051 } 3052 3053 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3054 if (Mul0CI->getValue() == 1) { 3055 // V == Base * Op1, so return Op1 3056 Multiple = Op1; 3057 return true; 3058 } 3059 } 3060 3061 Value *Mul1 = nullptr; 3062 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3063 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3064 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3065 if (Op0C->getType()->getPrimitiveSizeInBits() < 3066 MulC->getType()->getPrimitiveSizeInBits()) 3067 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3068 if (Op0C->getType()->getPrimitiveSizeInBits() > 3069 MulC->getType()->getPrimitiveSizeInBits()) 3070 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3071 3072 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3073 Multiple = ConstantExpr::getMul(MulC, Op0C); 3074 return true; 3075 } 3076 3077 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3078 if (Mul1CI->getValue() == 1) { 3079 // V == Base * Op0, so return Op0 3080 Multiple = Op0; 3081 return true; 3082 } 3083 } 3084 } 3085 } 3086 3087 // We could not determine if V is a multiple of Base. 3088 return false; 3089 } 3090 3091 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3092 const TargetLibraryInfo *TLI) { 3093 const Function *F = CB.getCalledFunction(); 3094 if (!F) 3095 return Intrinsic::not_intrinsic; 3096 3097 if (F->isIntrinsic()) 3098 return F->getIntrinsicID(); 3099 3100 if (!TLI) 3101 return Intrinsic::not_intrinsic; 3102 3103 LibFunc Func; 3104 // We're going to make assumptions on the semantics of the functions, check 3105 // that the target knows that it's available in this environment and it does 3106 // not have local linkage. 3107 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3108 return Intrinsic::not_intrinsic; 3109 3110 if (!CB.onlyReadsMemory()) 3111 return Intrinsic::not_intrinsic; 3112 3113 // Otherwise check if we have a call to a function that can be turned into a 3114 // vector intrinsic. 3115 switch (Func) { 3116 default: 3117 break; 3118 case LibFunc_sin: 3119 case LibFunc_sinf: 3120 case LibFunc_sinl: 3121 return Intrinsic::sin; 3122 case LibFunc_cos: 3123 case LibFunc_cosf: 3124 case LibFunc_cosl: 3125 return Intrinsic::cos; 3126 case LibFunc_exp: 3127 case LibFunc_expf: 3128 case LibFunc_expl: 3129 return Intrinsic::exp; 3130 case LibFunc_exp2: 3131 case LibFunc_exp2f: 3132 case LibFunc_exp2l: 3133 return Intrinsic::exp2; 3134 case LibFunc_log: 3135 case LibFunc_logf: 3136 case LibFunc_logl: 3137 return Intrinsic::log; 3138 case LibFunc_log10: 3139 case LibFunc_log10f: 3140 case LibFunc_log10l: 3141 return Intrinsic::log10; 3142 case LibFunc_log2: 3143 case LibFunc_log2f: 3144 case LibFunc_log2l: 3145 return Intrinsic::log2; 3146 case LibFunc_fabs: 3147 case LibFunc_fabsf: 3148 case LibFunc_fabsl: 3149 return Intrinsic::fabs; 3150 case LibFunc_fmin: 3151 case LibFunc_fminf: 3152 case LibFunc_fminl: 3153 return Intrinsic::minnum; 3154 case LibFunc_fmax: 3155 case LibFunc_fmaxf: 3156 case LibFunc_fmaxl: 3157 return Intrinsic::maxnum; 3158 case LibFunc_copysign: 3159 case LibFunc_copysignf: 3160 case LibFunc_copysignl: 3161 return Intrinsic::copysign; 3162 case LibFunc_floor: 3163 case LibFunc_floorf: 3164 case LibFunc_floorl: 3165 return Intrinsic::floor; 3166 case LibFunc_ceil: 3167 case LibFunc_ceilf: 3168 case LibFunc_ceill: 3169 return Intrinsic::ceil; 3170 case LibFunc_trunc: 3171 case LibFunc_truncf: 3172 case LibFunc_truncl: 3173 return Intrinsic::trunc; 3174 case LibFunc_rint: 3175 case LibFunc_rintf: 3176 case LibFunc_rintl: 3177 return Intrinsic::rint; 3178 case LibFunc_nearbyint: 3179 case LibFunc_nearbyintf: 3180 case LibFunc_nearbyintl: 3181 return Intrinsic::nearbyint; 3182 case LibFunc_round: 3183 case LibFunc_roundf: 3184 case LibFunc_roundl: 3185 return Intrinsic::round; 3186 case LibFunc_pow: 3187 case LibFunc_powf: 3188 case LibFunc_powl: 3189 return Intrinsic::pow; 3190 case LibFunc_sqrt: 3191 case LibFunc_sqrtf: 3192 case LibFunc_sqrtl: 3193 return Intrinsic::sqrt; 3194 } 3195 3196 return Intrinsic::not_intrinsic; 3197 } 3198 3199 /// Return true if we can prove that the specified FP value is never equal to 3200 /// -0.0. 3201 /// 3202 /// NOTE: this function will need to be revisited when we support non-default 3203 /// rounding modes! 3204 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3205 unsigned Depth) { 3206 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3207 return !CFP->getValueAPF().isNegZero(); 3208 3209 // Limit search depth. 3210 if (Depth == MaxDepth) 3211 return false; 3212 3213 auto *Op = dyn_cast<Operator>(V); 3214 if (!Op) 3215 return false; 3216 3217 // Check if the nsz fast-math flag is set. 3218 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3219 if (FPO->hasNoSignedZeros()) 3220 return true; 3221 3222 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3223 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3224 return true; 3225 3226 // sitofp and uitofp turn into +0.0 for zero. 3227 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3228 return true; 3229 3230 if (auto *Call = dyn_cast<CallInst>(Op)) { 3231 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3232 switch (IID) { 3233 default: 3234 break; 3235 // sqrt(-0.0) = -0.0, no other negative results are possible. 3236 case Intrinsic::sqrt: 3237 case Intrinsic::canonicalize: 3238 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3239 // fabs(x) != -0.0 3240 case Intrinsic::fabs: 3241 return true; 3242 } 3243 } 3244 3245 return false; 3246 } 3247 3248 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3249 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3250 /// bit despite comparing equal. 3251 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3252 const TargetLibraryInfo *TLI, 3253 bool SignBitOnly, 3254 unsigned Depth) { 3255 // TODO: This function does not do the right thing when SignBitOnly is true 3256 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3257 // which flips the sign bits of NaNs. See 3258 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3259 3260 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3261 return !CFP->getValueAPF().isNegative() || 3262 (!SignBitOnly && CFP->getValueAPF().isZero()); 3263 } 3264 3265 // Handle vector of constants. 3266 if (auto *CV = dyn_cast<Constant>(V)) { 3267 if (auto *CVVTy = dyn_cast<VectorType>(CV->getType())) { 3268 unsigned NumElts = CVVTy->getNumElements(); 3269 for (unsigned i = 0; i != NumElts; ++i) { 3270 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3271 if (!CFP) 3272 return false; 3273 if (CFP->getValueAPF().isNegative() && 3274 (SignBitOnly || !CFP->getValueAPF().isZero())) 3275 return false; 3276 } 3277 3278 // All non-negative ConstantFPs. 3279 return true; 3280 } 3281 } 3282 3283 if (Depth == MaxDepth) 3284 return false; // Limit search depth. 3285 3286 const Operator *I = dyn_cast<Operator>(V); 3287 if (!I) 3288 return false; 3289 3290 switch (I->getOpcode()) { 3291 default: 3292 break; 3293 // Unsigned integers are always nonnegative. 3294 case Instruction::UIToFP: 3295 return true; 3296 case Instruction::FMul: 3297 // x*x is always non-negative or a NaN. 3298 if (I->getOperand(0) == I->getOperand(1) && 3299 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3300 return true; 3301 3302 LLVM_FALLTHROUGH; 3303 case Instruction::FAdd: 3304 case Instruction::FDiv: 3305 case Instruction::FRem: 3306 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3307 Depth + 1) && 3308 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3309 Depth + 1); 3310 case Instruction::Select: 3311 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3312 Depth + 1) && 3313 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3314 Depth + 1); 3315 case Instruction::FPExt: 3316 case Instruction::FPTrunc: 3317 // Widening/narrowing never change sign. 3318 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3319 Depth + 1); 3320 case Instruction::ExtractElement: 3321 // Look through extract element. At the moment we keep this simple and skip 3322 // tracking the specific element. But at least we might find information 3323 // valid for all elements of the vector. 3324 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3325 Depth + 1); 3326 case Instruction::Call: 3327 const auto *CI = cast<CallInst>(I); 3328 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3329 switch (IID) { 3330 default: 3331 break; 3332 case Intrinsic::maxnum: 3333 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3334 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3335 SignBitOnly, Depth + 1)) || 3336 (isKnownNeverNaN(I->getOperand(1), TLI) && 3337 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3338 SignBitOnly, Depth + 1)); 3339 3340 case Intrinsic::maximum: 3341 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3342 Depth + 1) || 3343 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3344 Depth + 1); 3345 case Intrinsic::minnum: 3346 case Intrinsic::minimum: 3347 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3348 Depth + 1) && 3349 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3350 Depth + 1); 3351 case Intrinsic::exp: 3352 case Intrinsic::exp2: 3353 case Intrinsic::fabs: 3354 return true; 3355 3356 case Intrinsic::sqrt: 3357 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3358 if (!SignBitOnly) 3359 return true; 3360 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3361 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3362 3363 case Intrinsic::powi: 3364 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3365 // powi(x,n) is non-negative if n is even. 3366 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3367 return true; 3368 } 3369 // TODO: This is not correct. Given that exp is an integer, here are the 3370 // ways that pow can return a negative value: 3371 // 3372 // pow(x, exp) --> negative if exp is odd and x is negative. 3373 // pow(-0, exp) --> -inf if exp is negative odd. 3374 // pow(-0, exp) --> -0 if exp is positive odd. 3375 // pow(-inf, exp) --> -0 if exp is negative odd. 3376 // pow(-inf, exp) --> -inf if exp is positive odd. 3377 // 3378 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3379 // but we must return false if x == -0. Unfortunately we do not currently 3380 // have a way of expressing this constraint. See details in 3381 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3382 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3383 Depth + 1); 3384 3385 case Intrinsic::fma: 3386 case Intrinsic::fmuladd: 3387 // x*x+y is non-negative if y is non-negative. 3388 return I->getOperand(0) == I->getOperand(1) && 3389 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3390 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3391 Depth + 1); 3392 } 3393 break; 3394 } 3395 return false; 3396 } 3397 3398 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3399 const TargetLibraryInfo *TLI) { 3400 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3401 } 3402 3403 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3404 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3405 } 3406 3407 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3408 unsigned Depth) { 3409 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3410 3411 // If we're told that infinities won't happen, assume they won't. 3412 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3413 if (FPMathOp->hasNoInfs()) 3414 return true; 3415 3416 // Handle scalar constants. 3417 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3418 return !CFP->isInfinity(); 3419 3420 if (Depth == MaxDepth) 3421 return false; 3422 3423 if (auto *Inst = dyn_cast<Instruction>(V)) { 3424 switch (Inst->getOpcode()) { 3425 case Instruction::Select: { 3426 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3427 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3428 } 3429 case Instruction::UIToFP: 3430 // If the input type fits into the floating type the result is finite. 3431 return ilogb(APFloat::getLargest( 3432 Inst->getType()->getScalarType()->getFltSemantics())) >= 3433 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3434 default: 3435 break; 3436 } 3437 } 3438 3439 // Bail out for constant expressions, but try to handle vector constants. 3440 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3441 return false; 3442 3443 // For vectors, verify that each element is not infinity. 3444 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3445 for (unsigned i = 0; i != NumElts; ++i) { 3446 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3447 if (!Elt) 3448 return false; 3449 if (isa<UndefValue>(Elt)) 3450 continue; 3451 auto *CElt = dyn_cast<ConstantFP>(Elt); 3452 if (!CElt || CElt->isInfinity()) 3453 return false; 3454 } 3455 // All elements were confirmed non-infinity or undefined. 3456 return true; 3457 } 3458 3459 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3460 unsigned Depth) { 3461 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3462 3463 // If we're told that NaNs won't happen, assume they won't. 3464 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3465 if (FPMathOp->hasNoNaNs()) 3466 return true; 3467 3468 // Handle scalar constants. 3469 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3470 return !CFP->isNaN(); 3471 3472 if (Depth == MaxDepth) 3473 return false; 3474 3475 if (auto *Inst = dyn_cast<Instruction>(V)) { 3476 switch (Inst->getOpcode()) { 3477 case Instruction::FAdd: 3478 case Instruction::FSub: 3479 // Adding positive and negative infinity produces NaN. 3480 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3481 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3482 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3483 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3484 3485 case Instruction::FMul: 3486 // Zero multiplied with infinity produces NaN. 3487 // FIXME: If neither side can be zero fmul never produces NaN. 3488 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3489 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3490 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3491 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3492 3493 case Instruction::FDiv: 3494 case Instruction::FRem: 3495 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3496 return false; 3497 3498 case Instruction::Select: { 3499 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3500 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3501 } 3502 case Instruction::SIToFP: 3503 case Instruction::UIToFP: 3504 return true; 3505 case Instruction::FPTrunc: 3506 case Instruction::FPExt: 3507 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3508 default: 3509 break; 3510 } 3511 } 3512 3513 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3514 switch (II->getIntrinsicID()) { 3515 case Intrinsic::canonicalize: 3516 case Intrinsic::fabs: 3517 case Intrinsic::copysign: 3518 case Intrinsic::exp: 3519 case Intrinsic::exp2: 3520 case Intrinsic::floor: 3521 case Intrinsic::ceil: 3522 case Intrinsic::trunc: 3523 case Intrinsic::rint: 3524 case Intrinsic::nearbyint: 3525 case Intrinsic::round: 3526 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3527 case Intrinsic::sqrt: 3528 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3529 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3530 case Intrinsic::minnum: 3531 case Intrinsic::maxnum: 3532 // If either operand is not NaN, the result is not NaN. 3533 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3534 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3535 default: 3536 return false; 3537 } 3538 } 3539 3540 // Bail out for constant expressions, but try to handle vector constants. 3541 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3542 return false; 3543 3544 // For vectors, verify that each element is not NaN. 3545 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements(); 3546 for (unsigned i = 0; i != NumElts; ++i) { 3547 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3548 if (!Elt) 3549 return false; 3550 if (isa<UndefValue>(Elt)) 3551 continue; 3552 auto *CElt = dyn_cast<ConstantFP>(Elt); 3553 if (!CElt || CElt->isNaN()) 3554 return false; 3555 } 3556 // All elements were confirmed not-NaN or undefined. 3557 return true; 3558 } 3559 3560 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3561 3562 // All byte-wide stores are splatable, even of arbitrary variables. 3563 if (V->getType()->isIntegerTy(8)) 3564 return V; 3565 3566 LLVMContext &Ctx = V->getContext(); 3567 3568 // Undef don't care. 3569 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3570 if (isa<UndefValue>(V)) 3571 return UndefInt8; 3572 3573 // Return Undef for zero-sized type. 3574 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3575 return UndefInt8; 3576 3577 Constant *C = dyn_cast<Constant>(V); 3578 if (!C) { 3579 // Conceptually, we could handle things like: 3580 // %a = zext i8 %X to i16 3581 // %b = shl i16 %a, 8 3582 // %c = or i16 %a, %b 3583 // but until there is an example that actually needs this, it doesn't seem 3584 // worth worrying about. 3585 return nullptr; 3586 } 3587 3588 // Handle 'null' ConstantArrayZero etc. 3589 if (C->isNullValue()) 3590 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3591 3592 // Constant floating-point values can be handled as integer values if the 3593 // corresponding integer value is "byteable". An important case is 0.0. 3594 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3595 Type *Ty = nullptr; 3596 if (CFP->getType()->isHalfTy()) 3597 Ty = Type::getInt16Ty(Ctx); 3598 else if (CFP->getType()->isFloatTy()) 3599 Ty = Type::getInt32Ty(Ctx); 3600 else if (CFP->getType()->isDoubleTy()) 3601 Ty = Type::getInt64Ty(Ctx); 3602 // Don't handle long double formats, which have strange constraints. 3603 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3604 : nullptr; 3605 } 3606 3607 // We can handle constant integers that are multiple of 8 bits. 3608 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3609 if (CI->getBitWidth() % 8 == 0) { 3610 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3611 if (!CI->getValue().isSplat(8)) 3612 return nullptr; 3613 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3614 } 3615 } 3616 3617 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3618 if (CE->getOpcode() == Instruction::IntToPtr) { 3619 auto PS = DL.getPointerSizeInBits( 3620 cast<PointerType>(CE->getType())->getAddressSpace()); 3621 return isBytewiseValue( 3622 ConstantExpr::getIntegerCast(CE->getOperand(0), 3623 Type::getIntNTy(Ctx, PS), false), 3624 DL); 3625 } 3626 } 3627 3628 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3629 if (LHS == RHS) 3630 return LHS; 3631 if (!LHS || !RHS) 3632 return nullptr; 3633 if (LHS == UndefInt8) 3634 return RHS; 3635 if (RHS == UndefInt8) 3636 return LHS; 3637 return nullptr; 3638 }; 3639 3640 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3641 Value *Val = UndefInt8; 3642 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3643 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3644 return nullptr; 3645 return Val; 3646 } 3647 3648 if (isa<ConstantAggregate>(C)) { 3649 Value *Val = UndefInt8; 3650 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3651 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3652 return nullptr; 3653 return Val; 3654 } 3655 3656 // Don't try to handle the handful of other constants. 3657 return nullptr; 3658 } 3659 3660 // This is the recursive version of BuildSubAggregate. It takes a few different 3661 // arguments. Idxs is the index within the nested struct From that we are 3662 // looking at now (which is of type IndexedType). IdxSkip is the number of 3663 // indices from Idxs that should be left out when inserting into the resulting 3664 // struct. To is the result struct built so far, new insertvalue instructions 3665 // build on that. 3666 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3667 SmallVectorImpl<unsigned> &Idxs, 3668 unsigned IdxSkip, 3669 Instruction *InsertBefore) { 3670 StructType *STy = dyn_cast<StructType>(IndexedType); 3671 if (STy) { 3672 // Save the original To argument so we can modify it 3673 Value *OrigTo = To; 3674 // General case, the type indexed by Idxs is a struct 3675 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3676 // Process each struct element recursively 3677 Idxs.push_back(i); 3678 Value *PrevTo = To; 3679 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3680 InsertBefore); 3681 Idxs.pop_back(); 3682 if (!To) { 3683 // Couldn't find any inserted value for this index? Cleanup 3684 while (PrevTo != OrigTo) { 3685 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3686 PrevTo = Del->getAggregateOperand(); 3687 Del->eraseFromParent(); 3688 } 3689 // Stop processing elements 3690 break; 3691 } 3692 } 3693 // If we successfully found a value for each of our subaggregates 3694 if (To) 3695 return To; 3696 } 3697 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3698 // the struct's elements had a value that was inserted directly. In the latter 3699 // case, perhaps we can't determine each of the subelements individually, but 3700 // we might be able to find the complete struct somewhere. 3701 3702 // Find the value that is at that particular spot 3703 Value *V = FindInsertedValue(From, Idxs); 3704 3705 if (!V) 3706 return nullptr; 3707 3708 // Insert the value in the new (sub) aggregate 3709 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3710 "tmp", InsertBefore); 3711 } 3712 3713 // This helper takes a nested struct and extracts a part of it (which is again a 3714 // struct) into a new value. For example, given the struct: 3715 // { a, { b, { c, d }, e } } 3716 // and the indices "1, 1" this returns 3717 // { c, d }. 3718 // 3719 // It does this by inserting an insertvalue for each element in the resulting 3720 // struct, as opposed to just inserting a single struct. This will only work if 3721 // each of the elements of the substruct are known (ie, inserted into From by an 3722 // insertvalue instruction somewhere). 3723 // 3724 // All inserted insertvalue instructions are inserted before InsertBefore 3725 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3726 Instruction *InsertBefore) { 3727 assert(InsertBefore && "Must have someplace to insert!"); 3728 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3729 idx_range); 3730 Value *To = UndefValue::get(IndexedType); 3731 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3732 unsigned IdxSkip = Idxs.size(); 3733 3734 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3735 } 3736 3737 /// Given an aggregate and a sequence of indices, see if the scalar value 3738 /// indexed is already around as a register, for example if it was inserted 3739 /// directly into the aggregate. 3740 /// 3741 /// If InsertBefore is not null, this function will duplicate (modified) 3742 /// insertvalues when a part of a nested struct is extracted. 3743 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3744 Instruction *InsertBefore) { 3745 // Nothing to index? Just return V then (this is useful at the end of our 3746 // recursion). 3747 if (idx_range.empty()) 3748 return V; 3749 // We have indices, so V should have an indexable type. 3750 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3751 "Not looking at a struct or array?"); 3752 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3753 "Invalid indices for type?"); 3754 3755 if (Constant *C = dyn_cast<Constant>(V)) { 3756 C = C->getAggregateElement(idx_range[0]); 3757 if (!C) return nullptr; 3758 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3759 } 3760 3761 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3762 // Loop the indices for the insertvalue instruction in parallel with the 3763 // requested indices 3764 const unsigned *req_idx = idx_range.begin(); 3765 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3766 i != e; ++i, ++req_idx) { 3767 if (req_idx == idx_range.end()) { 3768 // We can't handle this without inserting insertvalues 3769 if (!InsertBefore) 3770 return nullptr; 3771 3772 // The requested index identifies a part of a nested aggregate. Handle 3773 // this specially. For example, 3774 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3775 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3776 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3777 // This can be changed into 3778 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3779 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3780 // which allows the unused 0,0 element from the nested struct to be 3781 // removed. 3782 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3783 InsertBefore); 3784 } 3785 3786 // This insert value inserts something else than what we are looking for. 3787 // See if the (aggregate) value inserted into has the value we are 3788 // looking for, then. 3789 if (*req_idx != *i) 3790 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3791 InsertBefore); 3792 } 3793 // If we end up here, the indices of the insertvalue match with those 3794 // requested (though possibly only partially). Now we recursively look at 3795 // the inserted value, passing any remaining indices. 3796 return FindInsertedValue(I->getInsertedValueOperand(), 3797 makeArrayRef(req_idx, idx_range.end()), 3798 InsertBefore); 3799 } 3800 3801 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3802 // If we're extracting a value from an aggregate that was extracted from 3803 // something else, we can extract from that something else directly instead. 3804 // However, we will need to chain I's indices with the requested indices. 3805 3806 // Calculate the number of indices required 3807 unsigned size = I->getNumIndices() + idx_range.size(); 3808 // Allocate some space to put the new indices in 3809 SmallVector<unsigned, 5> Idxs; 3810 Idxs.reserve(size); 3811 // Add indices from the extract value instruction 3812 Idxs.append(I->idx_begin(), I->idx_end()); 3813 3814 // Add requested indices 3815 Idxs.append(idx_range.begin(), idx_range.end()); 3816 3817 assert(Idxs.size() == size 3818 && "Number of indices added not correct?"); 3819 3820 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3821 } 3822 // Otherwise, we don't know (such as, extracting from a function return value 3823 // or load instruction) 3824 return nullptr; 3825 } 3826 3827 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3828 unsigned CharSize) { 3829 // Make sure the GEP has exactly three arguments. 3830 if (GEP->getNumOperands() != 3) 3831 return false; 3832 3833 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3834 // CharSize. 3835 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3836 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3837 return false; 3838 3839 // Check to make sure that the first operand of the GEP is an integer and 3840 // has value 0 so that we are sure we're indexing into the initializer. 3841 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3842 if (!FirstIdx || !FirstIdx->isZero()) 3843 return false; 3844 3845 return true; 3846 } 3847 3848 bool llvm::getConstantDataArrayInfo(const Value *V, 3849 ConstantDataArraySlice &Slice, 3850 unsigned ElementSize, uint64_t Offset) { 3851 assert(V); 3852 3853 // Look through bitcast instructions and geps. 3854 V = V->stripPointerCasts(); 3855 3856 // If the value is a GEP instruction or constant expression, treat it as an 3857 // offset. 3858 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3859 // The GEP operator should be based on a pointer to string constant, and is 3860 // indexing into the string constant. 3861 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3862 return false; 3863 3864 // If the second index isn't a ConstantInt, then this is a variable index 3865 // into the array. If this occurs, we can't say anything meaningful about 3866 // the string. 3867 uint64_t StartIdx = 0; 3868 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3869 StartIdx = CI->getZExtValue(); 3870 else 3871 return false; 3872 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3873 StartIdx + Offset); 3874 } 3875 3876 // The GEP instruction, constant or instruction, must reference a global 3877 // variable that is a constant and is initialized. The referenced constant 3878 // initializer is the array that we'll use for optimization. 3879 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3880 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3881 return false; 3882 3883 const ConstantDataArray *Array; 3884 ArrayType *ArrayTy; 3885 if (GV->getInitializer()->isNullValue()) { 3886 Type *GVTy = GV->getValueType(); 3887 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3888 // A zeroinitializer for the array; there is no ConstantDataArray. 3889 Array = nullptr; 3890 } else { 3891 const DataLayout &DL = GV->getParent()->getDataLayout(); 3892 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3893 uint64_t Length = SizeInBytes / (ElementSize / 8); 3894 if (Length <= Offset) 3895 return false; 3896 3897 Slice.Array = nullptr; 3898 Slice.Offset = 0; 3899 Slice.Length = Length - Offset; 3900 return true; 3901 } 3902 } else { 3903 // This must be a ConstantDataArray. 3904 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3905 if (!Array) 3906 return false; 3907 ArrayTy = Array->getType(); 3908 } 3909 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3910 return false; 3911 3912 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3913 if (Offset > NumElts) 3914 return false; 3915 3916 Slice.Array = Array; 3917 Slice.Offset = Offset; 3918 Slice.Length = NumElts - Offset; 3919 return true; 3920 } 3921 3922 /// This function computes the length of a null-terminated C string pointed to 3923 /// by V. If successful, it returns true and returns the string in Str. 3924 /// If unsuccessful, it returns false. 3925 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3926 uint64_t Offset, bool TrimAtNul) { 3927 ConstantDataArraySlice Slice; 3928 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3929 return false; 3930 3931 if (Slice.Array == nullptr) { 3932 if (TrimAtNul) { 3933 Str = StringRef(); 3934 return true; 3935 } 3936 if (Slice.Length == 1) { 3937 Str = StringRef("", 1); 3938 return true; 3939 } 3940 // We cannot instantiate a StringRef as we do not have an appropriate string 3941 // of 0s at hand. 3942 return false; 3943 } 3944 3945 // Start out with the entire array in the StringRef. 3946 Str = Slice.Array->getAsString(); 3947 // Skip over 'offset' bytes. 3948 Str = Str.substr(Slice.Offset); 3949 3950 if (TrimAtNul) { 3951 // Trim off the \0 and anything after it. If the array is not nul 3952 // terminated, we just return the whole end of string. The client may know 3953 // some other way that the string is length-bound. 3954 Str = Str.substr(0, Str.find('\0')); 3955 } 3956 return true; 3957 } 3958 3959 // These next two are very similar to the above, but also look through PHI 3960 // nodes. 3961 // TODO: See if we can integrate these two together. 3962 3963 /// If we can compute the length of the string pointed to by 3964 /// the specified pointer, return 'len+1'. If we can't, return 0. 3965 static uint64_t GetStringLengthH(const Value *V, 3966 SmallPtrSetImpl<const PHINode*> &PHIs, 3967 unsigned CharSize) { 3968 // Look through noop bitcast instructions. 3969 V = V->stripPointerCasts(); 3970 3971 // If this is a PHI node, there are two cases: either we have already seen it 3972 // or we haven't. 3973 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3974 if (!PHIs.insert(PN).second) 3975 return ~0ULL; // already in the set. 3976 3977 // If it was new, see if all the input strings are the same length. 3978 uint64_t LenSoFar = ~0ULL; 3979 for (Value *IncValue : PN->incoming_values()) { 3980 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3981 if (Len == 0) return 0; // Unknown length -> unknown. 3982 3983 if (Len == ~0ULL) continue; 3984 3985 if (Len != LenSoFar && LenSoFar != ~0ULL) 3986 return 0; // Disagree -> unknown. 3987 LenSoFar = Len; 3988 } 3989 3990 // Success, all agree. 3991 return LenSoFar; 3992 } 3993 3994 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3995 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3996 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3997 if (Len1 == 0) return 0; 3998 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3999 if (Len2 == 0) return 0; 4000 if (Len1 == ~0ULL) return Len2; 4001 if (Len2 == ~0ULL) return Len1; 4002 if (Len1 != Len2) return 0; 4003 return Len1; 4004 } 4005 4006 // Otherwise, see if we can read the string. 4007 ConstantDataArraySlice Slice; 4008 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4009 return 0; 4010 4011 if (Slice.Array == nullptr) 4012 return 1; 4013 4014 // Search for nul characters 4015 unsigned NullIndex = 0; 4016 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4017 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4018 break; 4019 } 4020 4021 return NullIndex + 1; 4022 } 4023 4024 /// If we can compute the length of the string pointed to by 4025 /// the specified pointer, return 'len+1'. If we can't, return 0. 4026 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4027 if (!V->getType()->isPointerTy()) 4028 return 0; 4029 4030 SmallPtrSet<const PHINode*, 32> PHIs; 4031 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4032 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4033 // an empty string as a length. 4034 return Len == ~0ULL ? 1 : Len; 4035 } 4036 4037 const Value * 4038 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4039 bool MustPreserveNullness) { 4040 assert(Call && 4041 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4042 if (const Value *RV = Call->getReturnedArgOperand()) 4043 return RV; 4044 // This can be used only as a aliasing property. 4045 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4046 Call, MustPreserveNullness)) 4047 return Call->getArgOperand(0); 4048 return nullptr; 4049 } 4050 4051 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4052 const CallBase *Call, bool MustPreserveNullness) { 4053 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4054 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4055 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4056 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4057 (!MustPreserveNullness && 4058 Call->getIntrinsicID() == Intrinsic::ptrmask); 4059 } 4060 4061 /// \p PN defines a loop-variant pointer to an object. Check if the 4062 /// previous iteration of the loop was referring to the same object as \p PN. 4063 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4064 const LoopInfo *LI) { 4065 // Find the loop-defined value. 4066 Loop *L = LI->getLoopFor(PN->getParent()); 4067 if (PN->getNumIncomingValues() != 2) 4068 return true; 4069 4070 // Find the value from previous iteration. 4071 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4072 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4073 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4074 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4075 return true; 4076 4077 // If a new pointer is loaded in the loop, the pointer references a different 4078 // object in every iteration. E.g.: 4079 // for (i) 4080 // int *p = a[i]; 4081 // ... 4082 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4083 if (!L->isLoopInvariant(Load->getPointerOperand())) 4084 return false; 4085 return true; 4086 } 4087 4088 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4089 unsigned MaxLookup) { 4090 if (!V->getType()->isPointerTy()) 4091 return V; 4092 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4093 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4094 V = GEP->getPointerOperand(); 4095 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4096 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4097 V = cast<Operator>(V)->getOperand(0); 4098 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4099 if (GA->isInterposable()) 4100 return V; 4101 V = GA->getAliasee(); 4102 } else if (isa<AllocaInst>(V)) { 4103 // An alloca can't be further simplified. 4104 return V; 4105 } else { 4106 if (auto *Call = dyn_cast<CallBase>(V)) { 4107 // CaptureTracking can know about special capturing properties of some 4108 // intrinsics like launder.invariant.group, that can't be expressed with 4109 // the attributes, but have properties like returning aliasing pointer. 4110 // Because some analysis may assume that nocaptured pointer is not 4111 // returned from some special intrinsic (because function would have to 4112 // be marked with returns attribute), it is crucial to use this function 4113 // because it should be in sync with CaptureTracking. Not using it may 4114 // cause weird miscompilations where 2 aliasing pointers are assumed to 4115 // noalias. 4116 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4117 V = RP; 4118 continue; 4119 } 4120 } 4121 4122 // See if InstructionSimplify knows any relevant tricks. 4123 if (Instruction *I = dyn_cast<Instruction>(V)) 4124 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4125 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4126 V = Simplified; 4127 continue; 4128 } 4129 4130 return V; 4131 } 4132 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4133 } 4134 return V; 4135 } 4136 4137 void llvm::GetUnderlyingObjects(const Value *V, 4138 SmallVectorImpl<const Value *> &Objects, 4139 const DataLayout &DL, LoopInfo *LI, 4140 unsigned MaxLookup) { 4141 SmallPtrSet<const Value *, 4> Visited; 4142 SmallVector<const Value *, 4> Worklist; 4143 Worklist.push_back(V); 4144 do { 4145 const Value *P = Worklist.pop_back_val(); 4146 P = GetUnderlyingObject(P, DL, MaxLookup); 4147 4148 if (!Visited.insert(P).second) 4149 continue; 4150 4151 if (auto *SI = dyn_cast<SelectInst>(P)) { 4152 Worklist.push_back(SI->getTrueValue()); 4153 Worklist.push_back(SI->getFalseValue()); 4154 continue; 4155 } 4156 4157 if (auto *PN = dyn_cast<PHINode>(P)) { 4158 // If this PHI changes the underlying object in every iteration of the 4159 // loop, don't look through it. Consider: 4160 // int **A; 4161 // for (i) { 4162 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4163 // Curr = A[i]; 4164 // *Prev, *Curr; 4165 // 4166 // Prev is tracking Curr one iteration behind so they refer to different 4167 // underlying objects. 4168 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4169 isSameUnderlyingObjectInLoop(PN, LI)) 4170 for (Value *IncValue : PN->incoming_values()) 4171 Worklist.push_back(IncValue); 4172 continue; 4173 } 4174 4175 Objects.push_back(P); 4176 } while (!Worklist.empty()); 4177 } 4178 4179 /// This is the function that does the work of looking through basic 4180 /// ptrtoint+arithmetic+inttoptr sequences. 4181 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4182 do { 4183 if (const Operator *U = dyn_cast<Operator>(V)) { 4184 // If we find a ptrtoint, we can transfer control back to the 4185 // regular getUnderlyingObjectFromInt. 4186 if (U->getOpcode() == Instruction::PtrToInt) 4187 return U->getOperand(0); 4188 // If we find an add of a constant, a multiplied value, or a phi, it's 4189 // likely that the other operand will lead us to the base 4190 // object. We don't have to worry about the case where the 4191 // object address is somehow being computed by the multiply, 4192 // because our callers only care when the result is an 4193 // identifiable object. 4194 if (U->getOpcode() != Instruction::Add || 4195 (!isa<ConstantInt>(U->getOperand(1)) && 4196 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4197 !isa<PHINode>(U->getOperand(1)))) 4198 return V; 4199 V = U->getOperand(0); 4200 } else { 4201 return V; 4202 } 4203 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4204 } while (true); 4205 } 4206 4207 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4208 /// ptrtoint+arithmetic+inttoptr sequences. 4209 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4210 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4211 SmallVectorImpl<Value *> &Objects, 4212 const DataLayout &DL) { 4213 SmallPtrSet<const Value *, 16> Visited; 4214 SmallVector<const Value *, 4> Working(1, V); 4215 do { 4216 V = Working.pop_back_val(); 4217 4218 SmallVector<const Value *, 4> Objs; 4219 GetUnderlyingObjects(V, Objs, DL); 4220 4221 for (const Value *V : Objs) { 4222 if (!Visited.insert(V).second) 4223 continue; 4224 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4225 const Value *O = 4226 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4227 if (O->getType()->isPointerTy()) { 4228 Working.push_back(O); 4229 continue; 4230 } 4231 } 4232 // If GetUnderlyingObjects fails to find an identifiable object, 4233 // getUnderlyingObjectsForCodeGen also fails for safety. 4234 if (!isIdentifiedObject(V)) { 4235 Objects.clear(); 4236 return false; 4237 } 4238 Objects.push_back(const_cast<Value *>(V)); 4239 } 4240 } while (!Working.empty()); 4241 return true; 4242 } 4243 4244 /// Return true if the only users of this pointer are lifetime markers. 4245 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4246 for (const User *U : V->users()) { 4247 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4248 if (!II) return false; 4249 4250 if (!II->isLifetimeStartOrEnd()) 4251 return false; 4252 } 4253 return true; 4254 } 4255 4256 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4257 if (!LI.isUnordered()) 4258 return true; 4259 const Function &F = *LI.getFunction(); 4260 // Speculative load may create a race that did not exist in the source. 4261 return F.hasFnAttribute(Attribute::SanitizeThread) || 4262 // Speculative load may load data from dirty regions. 4263 F.hasFnAttribute(Attribute::SanitizeAddress) || 4264 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4265 } 4266 4267 4268 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4269 const Instruction *CtxI, 4270 const DominatorTree *DT) { 4271 const Operator *Inst = dyn_cast<Operator>(V); 4272 if (!Inst) 4273 return false; 4274 4275 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4276 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4277 if (C->canTrap()) 4278 return false; 4279 4280 switch (Inst->getOpcode()) { 4281 default: 4282 return true; 4283 case Instruction::UDiv: 4284 case Instruction::URem: { 4285 // x / y is undefined if y == 0. 4286 const APInt *V; 4287 if (match(Inst->getOperand(1), m_APInt(V))) 4288 return *V != 0; 4289 return false; 4290 } 4291 case Instruction::SDiv: 4292 case Instruction::SRem: { 4293 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4294 const APInt *Numerator, *Denominator; 4295 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4296 return false; 4297 // We cannot hoist this division if the denominator is 0. 4298 if (*Denominator == 0) 4299 return false; 4300 // It's safe to hoist if the denominator is not 0 or -1. 4301 if (*Denominator != -1) 4302 return true; 4303 // At this point we know that the denominator is -1. It is safe to hoist as 4304 // long we know that the numerator is not INT_MIN. 4305 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4306 return !Numerator->isMinSignedValue(); 4307 // The numerator *might* be MinSignedValue. 4308 return false; 4309 } 4310 case Instruction::Load: { 4311 const LoadInst *LI = cast<LoadInst>(Inst); 4312 if (mustSuppressSpeculation(*LI)) 4313 return false; 4314 const DataLayout &DL = LI->getModule()->getDataLayout(); 4315 return isDereferenceableAndAlignedPointer( 4316 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4317 DL, CtxI, DT); 4318 } 4319 case Instruction::Call: { 4320 auto *CI = cast<const CallInst>(Inst); 4321 const Function *Callee = CI->getCalledFunction(); 4322 4323 // The called function could have undefined behavior or side-effects, even 4324 // if marked readnone nounwind. 4325 return Callee && Callee->isSpeculatable(); 4326 } 4327 case Instruction::VAArg: 4328 case Instruction::Alloca: 4329 case Instruction::Invoke: 4330 case Instruction::CallBr: 4331 case Instruction::PHI: 4332 case Instruction::Store: 4333 case Instruction::Ret: 4334 case Instruction::Br: 4335 case Instruction::IndirectBr: 4336 case Instruction::Switch: 4337 case Instruction::Unreachable: 4338 case Instruction::Fence: 4339 case Instruction::AtomicRMW: 4340 case Instruction::AtomicCmpXchg: 4341 case Instruction::LandingPad: 4342 case Instruction::Resume: 4343 case Instruction::CatchSwitch: 4344 case Instruction::CatchPad: 4345 case Instruction::CatchRet: 4346 case Instruction::CleanupPad: 4347 case Instruction::CleanupRet: 4348 return false; // Misc instructions which have effects 4349 } 4350 } 4351 4352 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4353 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4354 } 4355 4356 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4357 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4358 switch (OR) { 4359 case ConstantRange::OverflowResult::MayOverflow: 4360 return OverflowResult::MayOverflow; 4361 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4362 return OverflowResult::AlwaysOverflowsLow; 4363 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4364 return OverflowResult::AlwaysOverflowsHigh; 4365 case ConstantRange::OverflowResult::NeverOverflows: 4366 return OverflowResult::NeverOverflows; 4367 } 4368 llvm_unreachable("Unknown OverflowResult"); 4369 } 4370 4371 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4372 static ConstantRange computeConstantRangeIncludingKnownBits( 4373 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4374 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4375 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4376 KnownBits Known = computeKnownBits( 4377 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4378 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4379 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4380 ConstantRange::PreferredRangeType RangeType = 4381 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4382 return CR1.intersectWith(CR2, RangeType); 4383 } 4384 4385 OverflowResult llvm::computeOverflowForUnsignedMul( 4386 const Value *LHS, const Value *RHS, const DataLayout &DL, 4387 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4388 bool UseInstrInfo) { 4389 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4390 nullptr, UseInstrInfo); 4391 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4392 nullptr, UseInstrInfo); 4393 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4394 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4395 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4396 } 4397 4398 OverflowResult 4399 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4400 const DataLayout &DL, AssumptionCache *AC, 4401 const Instruction *CxtI, 4402 const DominatorTree *DT, bool UseInstrInfo) { 4403 // Multiplying n * m significant bits yields a result of n + m significant 4404 // bits. If the total number of significant bits does not exceed the 4405 // result bit width (minus 1), there is no overflow. 4406 // This means if we have enough leading sign bits in the operands 4407 // we can guarantee that the result does not overflow. 4408 // Ref: "Hacker's Delight" by Henry Warren 4409 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4410 4411 // Note that underestimating the number of sign bits gives a more 4412 // conservative answer. 4413 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4414 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4415 4416 // First handle the easy case: if we have enough sign bits there's 4417 // definitely no overflow. 4418 if (SignBits > BitWidth + 1) 4419 return OverflowResult::NeverOverflows; 4420 4421 // There are two ambiguous cases where there can be no overflow: 4422 // SignBits == BitWidth + 1 and 4423 // SignBits == BitWidth 4424 // The second case is difficult to check, therefore we only handle the 4425 // first case. 4426 if (SignBits == BitWidth + 1) { 4427 // It overflows only when both arguments are negative and the true 4428 // product is exactly the minimum negative number. 4429 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4430 // For simplicity we just check if at least one side is not negative. 4431 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4432 nullptr, UseInstrInfo); 4433 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4434 nullptr, UseInstrInfo); 4435 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4436 return OverflowResult::NeverOverflows; 4437 } 4438 return OverflowResult::MayOverflow; 4439 } 4440 4441 OverflowResult llvm::computeOverflowForUnsignedAdd( 4442 const Value *LHS, const Value *RHS, const DataLayout &DL, 4443 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4444 bool UseInstrInfo) { 4445 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4446 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4447 nullptr, UseInstrInfo); 4448 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4449 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4450 nullptr, UseInstrInfo); 4451 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4452 } 4453 4454 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4455 const Value *RHS, 4456 const AddOperator *Add, 4457 const DataLayout &DL, 4458 AssumptionCache *AC, 4459 const Instruction *CxtI, 4460 const DominatorTree *DT) { 4461 if (Add && Add->hasNoSignedWrap()) { 4462 return OverflowResult::NeverOverflows; 4463 } 4464 4465 // If LHS and RHS each have at least two sign bits, the addition will look 4466 // like 4467 // 4468 // XX..... + 4469 // YY..... 4470 // 4471 // If the carry into the most significant position is 0, X and Y can't both 4472 // be 1 and therefore the carry out of the addition is also 0. 4473 // 4474 // If the carry into the most significant position is 1, X and Y can't both 4475 // be 0 and therefore the carry out of the addition is also 1. 4476 // 4477 // Since the carry into the most significant position is always equal to 4478 // the carry out of the addition, there is no signed overflow. 4479 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4480 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4481 return OverflowResult::NeverOverflows; 4482 4483 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4484 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4485 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4486 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4487 OverflowResult OR = 4488 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4489 if (OR != OverflowResult::MayOverflow) 4490 return OR; 4491 4492 // The remaining code needs Add to be available. Early returns if not so. 4493 if (!Add) 4494 return OverflowResult::MayOverflow; 4495 4496 // If the sign of Add is the same as at least one of the operands, this add 4497 // CANNOT overflow. If this can be determined from the known bits of the 4498 // operands the above signedAddMayOverflow() check will have already done so. 4499 // The only other way to improve on the known bits is from an assumption, so 4500 // call computeKnownBitsFromAssume() directly. 4501 bool LHSOrRHSKnownNonNegative = 4502 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4503 bool LHSOrRHSKnownNegative = 4504 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4505 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4506 KnownBits AddKnown(LHSRange.getBitWidth()); 4507 computeKnownBitsFromAssume( 4508 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4509 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4510 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4511 return OverflowResult::NeverOverflows; 4512 } 4513 4514 return OverflowResult::MayOverflow; 4515 } 4516 4517 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4518 const Value *RHS, 4519 const DataLayout &DL, 4520 AssumptionCache *AC, 4521 const Instruction *CxtI, 4522 const DominatorTree *DT) { 4523 // Checking for conditions implied by dominating conditions may be expensive. 4524 // Limit it to usub_with_overflow calls for now. 4525 if (match(CxtI, 4526 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4527 if (auto C = 4528 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4529 if (*C) 4530 return OverflowResult::NeverOverflows; 4531 return OverflowResult::AlwaysOverflowsLow; 4532 } 4533 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4534 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4535 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4536 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4537 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4538 } 4539 4540 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4541 const Value *RHS, 4542 const DataLayout &DL, 4543 AssumptionCache *AC, 4544 const Instruction *CxtI, 4545 const DominatorTree *DT) { 4546 // If LHS and RHS each have at least two sign bits, the subtraction 4547 // cannot overflow. 4548 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4549 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4550 return OverflowResult::NeverOverflows; 4551 4552 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4553 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4554 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4555 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4556 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4557 } 4558 4559 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4560 const DominatorTree &DT) { 4561 SmallVector<const BranchInst *, 2> GuardingBranches; 4562 SmallVector<const ExtractValueInst *, 2> Results; 4563 4564 for (const User *U : WO->users()) { 4565 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4566 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4567 4568 if (EVI->getIndices()[0] == 0) 4569 Results.push_back(EVI); 4570 else { 4571 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4572 4573 for (const auto *U : EVI->users()) 4574 if (const auto *B = dyn_cast<BranchInst>(U)) { 4575 assert(B->isConditional() && "How else is it using an i1?"); 4576 GuardingBranches.push_back(B); 4577 } 4578 } 4579 } else { 4580 // We are using the aggregate directly in a way we don't want to analyze 4581 // here (storing it to a global, say). 4582 return false; 4583 } 4584 } 4585 4586 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4587 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4588 if (!NoWrapEdge.isSingleEdge()) 4589 return false; 4590 4591 // Check if all users of the add are provably no-wrap. 4592 for (const auto *Result : Results) { 4593 // If the extractvalue itself is not executed on overflow, the we don't 4594 // need to check each use separately, since domination is transitive. 4595 if (DT.dominates(NoWrapEdge, Result->getParent())) 4596 continue; 4597 4598 for (auto &RU : Result->uses()) 4599 if (!DT.dominates(NoWrapEdge, RU)) 4600 return false; 4601 } 4602 4603 return true; 4604 }; 4605 4606 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4607 } 4608 4609 bool llvm::canCreatePoison(const Instruction *I) { 4610 // See whether I has flags that may create poison 4611 if (isa<OverflowingBinaryOperator>(I) && 4612 (I->hasNoSignedWrap() || I->hasNoUnsignedWrap())) 4613 return true; 4614 if (isa<PossiblyExactOperator>(I) && I->isExact()) 4615 return true; 4616 if (auto *FP = dyn_cast<FPMathOperator>(I)) { 4617 auto FMF = FP->getFastMathFlags(); 4618 if (FMF.noNaNs() || FMF.noInfs()) 4619 return true; 4620 } 4621 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) 4622 if (GEP->isInBounds()) 4623 return true; 4624 4625 unsigned Opcode = I->getOpcode(); 4626 4627 // Check whether opcode is a poison-generating operation 4628 switch (Opcode) { 4629 case Instruction::Shl: 4630 case Instruction::AShr: 4631 case Instruction::LShr: { 4632 // Shifts return poison if shiftwidth is larger than the bitwidth. 4633 if (auto *C = dyn_cast<Constant>(I->getOperand(1))) { 4634 SmallVector<Constant *, 4> ShiftAmounts; 4635 if (C->getType()->isVectorTy()) { 4636 unsigned NumElts = cast<VectorType>(C->getType())->getNumElements(); 4637 for (unsigned i = 0; i < NumElts; ++i) 4638 ShiftAmounts.push_back(C->getAggregateElement(i)); 4639 } else 4640 ShiftAmounts.push_back(C); 4641 4642 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4643 auto *CI = dyn_cast<ConstantInt>(C); 4644 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4645 }); 4646 return !Safe; 4647 } 4648 return true; 4649 } 4650 case Instruction::FPToSI: 4651 case Instruction::FPToUI: 4652 // fptosi/ui yields poison if the resulting value does not fit in the 4653 // destination type. 4654 return true; 4655 case Instruction::Call: 4656 case Instruction::CallBr: 4657 case Instruction::Invoke: 4658 // Function calls can return a poison value even if args are non-poison 4659 // values. 4660 return true; 4661 case Instruction::InsertElement: 4662 case Instruction::ExtractElement: { 4663 // If index exceeds the length of the vector, it returns poison 4664 auto *VTy = cast<VectorType>(I->getOperand(0)->getType()); 4665 unsigned IdxOp = I->getOpcode() == Instruction::InsertElement ? 2 : 1; 4666 auto *Idx = dyn_cast<ConstantInt>(I->getOperand(IdxOp)); 4667 if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min) 4668 return true; 4669 return false; 4670 } 4671 case Instruction::FNeg: 4672 case Instruction::PHI: 4673 case Instruction::Select: 4674 case Instruction::URem: 4675 case Instruction::SRem: 4676 case Instruction::ShuffleVector: 4677 case Instruction::ExtractValue: 4678 case Instruction::InsertValue: 4679 case Instruction::Freeze: 4680 case Instruction::ICmp: 4681 case Instruction::FCmp: 4682 case Instruction::GetElementPtr: 4683 return false; 4684 default: 4685 if (isa<CastInst>(I)) 4686 return false; 4687 else if (isa<BinaryOperator>(I)) 4688 return false; 4689 // Be conservative and return true. 4690 return true; 4691 } 4692 } 4693 4694 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4695 const Instruction *CtxI, 4696 const DominatorTree *DT, 4697 unsigned Depth) { 4698 if (Depth >= MaxDepth) 4699 return false; 4700 4701 // If the value is a freeze instruction, then it can never 4702 // be undef or poison. 4703 if (isa<FreezeInst>(V)) 4704 return true; 4705 // TODO: Some instructions are guaranteed to return neither undef 4706 // nor poison if their arguments are not poison/undef. 4707 4708 if (auto *C = dyn_cast<Constant>(V)) { 4709 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4710 // possibility of poison. 4711 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4712 return false; 4713 4714 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4715 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4716 return true; 4717 4718 if (C->getType()->isVectorTy()) 4719 return !C->containsUndefElement() && !C->containsConstantExpression(); 4720 4721 // TODO: Recursively analyze aggregates or other constants. 4722 return false; 4723 } 4724 4725 // Strip cast operations from a pointer value. 4726 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4727 // inbounds with zero offset. To guarantee that the result isn't poison, the 4728 // stripped pointer is checked as it has to be pointing into an allocated 4729 // object or be null `null` to ensure `inbounds` getelement pointers with a 4730 // zero offset could not produce poison. 4731 // It can strip off addrspacecast that do not change bit representation as 4732 // well. We believe that such addrspacecast is equivalent to no-op. 4733 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4734 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4735 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4736 return true; 4737 4738 auto OpCheck = [&](const Value *V) { 4739 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4740 }; 4741 4742 if (auto *I = dyn_cast<Instruction>(V)) { 4743 switch (I->getOpcode()) { 4744 case Instruction::GetElementPtr: { 4745 auto *GEPI = dyn_cast<GetElementPtrInst>(I); 4746 if (!GEPI->isInBounds() && llvm::all_of(GEPI->operands(), OpCheck)) 4747 return true; 4748 break; 4749 } 4750 case Instruction::FCmp: { 4751 auto *FI = dyn_cast<FCmpInst>(I); 4752 if (FI->getFastMathFlags().none() && 4753 llvm::all_of(FI->operands(), OpCheck)) 4754 return true; 4755 break; 4756 } 4757 case Instruction::BitCast: 4758 case Instruction::PHI: 4759 case Instruction::ICmp: 4760 if (llvm::all_of(I->operands(), OpCheck)) 4761 return true; 4762 break; 4763 default: 4764 break; 4765 } 4766 4767 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4768 // Note: once we have an agreement that poison is a value-wise concept, 4769 // we can remove the isIntegerTy(1) constraint. 4770 return true; 4771 } 4772 4773 // CxtI may be null or a cloned instruction. 4774 if (!CtxI || !CtxI->getParent() || !DT) 4775 return false; 4776 4777 // If V is used as a branch condition before reaching CtxI, V cannot be 4778 // undef or poison. 4779 // br V, BB1, BB2 4780 // BB1: 4781 // CtxI ; V cannot be undef or poison here 4782 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4783 while (Dominator) { 4784 auto *TI = Dominator->getBlock()->getTerminator(); 4785 4786 if (auto BI = dyn_cast<BranchInst>(TI)) { 4787 if (BI->isConditional() && BI->getCondition() == V) 4788 return true; 4789 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4790 if (SI->getCondition() == V) 4791 return true; 4792 } 4793 4794 Dominator = Dominator->getIDom(); 4795 } 4796 4797 return false; 4798 } 4799 4800 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4801 const DataLayout &DL, 4802 AssumptionCache *AC, 4803 const Instruction *CxtI, 4804 const DominatorTree *DT) { 4805 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4806 Add, DL, AC, CxtI, DT); 4807 } 4808 4809 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4810 const Value *RHS, 4811 const DataLayout &DL, 4812 AssumptionCache *AC, 4813 const Instruction *CxtI, 4814 const DominatorTree *DT) { 4815 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4816 } 4817 4818 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4819 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4820 // of time because it's possible for another thread to interfere with it for an 4821 // arbitrary length of time, but programs aren't allowed to rely on that. 4822 4823 // If there is no successor, then execution can't transfer to it. 4824 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4825 return !CRI->unwindsToCaller(); 4826 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4827 return !CatchSwitch->unwindsToCaller(); 4828 if (isa<ResumeInst>(I)) 4829 return false; 4830 if (isa<ReturnInst>(I)) 4831 return false; 4832 if (isa<UnreachableInst>(I)) 4833 return false; 4834 4835 // Calls can throw, or contain an infinite loop, or kill the process. 4836 if (const auto *CB = dyn_cast<CallBase>(I)) { 4837 // Call sites that throw have implicit non-local control flow. 4838 if (!CB->doesNotThrow()) 4839 return false; 4840 4841 // A function which doens't throw and has "willreturn" attribute will 4842 // always return. 4843 if (CB->hasFnAttr(Attribute::WillReturn)) 4844 return true; 4845 4846 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4847 // etc. and thus not return. However, LLVM already assumes that 4848 // 4849 // - Thread exiting actions are modeled as writes to memory invisible to 4850 // the program. 4851 // 4852 // - Loops that don't have side effects (side effects are volatile/atomic 4853 // stores and IO) always terminate (see http://llvm.org/PR965). 4854 // Furthermore IO itself is also modeled as writes to memory invisible to 4855 // the program. 4856 // 4857 // We rely on those assumptions here, and use the memory effects of the call 4858 // target as a proxy for checking that it always returns. 4859 4860 // FIXME: This isn't aggressive enough; a call which only writes to a global 4861 // is guaranteed to return. 4862 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4863 } 4864 4865 // Other instructions return normally. 4866 return true; 4867 } 4868 4869 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4870 // TODO: This is slightly conservative for invoke instruction since exiting 4871 // via an exception *is* normal control for them. 4872 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4873 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4874 return false; 4875 return true; 4876 } 4877 4878 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4879 const Loop *L) { 4880 // The loop header is guaranteed to be executed for every iteration. 4881 // 4882 // FIXME: Relax this constraint to cover all basic blocks that are 4883 // guaranteed to be executed at every iteration. 4884 if (I->getParent() != L->getHeader()) return false; 4885 4886 for (const Instruction &LI : *L->getHeader()) { 4887 if (&LI == I) return true; 4888 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4889 } 4890 llvm_unreachable("Instruction not contained in its own parent basic block."); 4891 } 4892 4893 bool llvm::propagatesPoison(const Instruction *I) { 4894 // TODO: This should include all instructions apart from phis, selects and 4895 // call-like instructions. 4896 switch (I->getOpcode()) { 4897 case Instruction::Add: 4898 case Instruction::Sub: 4899 case Instruction::Xor: 4900 case Instruction::Trunc: 4901 case Instruction::BitCast: 4902 case Instruction::AddrSpaceCast: 4903 case Instruction::Mul: 4904 case Instruction::Shl: 4905 case Instruction::GetElementPtr: 4906 // These operations all propagate poison unconditionally. Note that poison 4907 // is not any particular value, so xor or subtraction of poison with 4908 // itself still yields poison, not zero. 4909 return true; 4910 4911 case Instruction::AShr: 4912 case Instruction::SExt: 4913 // For these operations, one bit of the input is replicated across 4914 // multiple output bits. A replicated poison bit is still poison. 4915 return true; 4916 4917 case Instruction::ICmp: 4918 // Comparing poison with any value yields poison. This is why, for 4919 // instance, x s< (x +nsw 1) can be folded to true. 4920 return true; 4921 4922 default: 4923 return false; 4924 } 4925 } 4926 4927 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) { 4928 switch (I->getOpcode()) { 4929 case Instruction::Store: 4930 return cast<StoreInst>(I)->getPointerOperand(); 4931 4932 case Instruction::Load: 4933 return cast<LoadInst>(I)->getPointerOperand(); 4934 4935 case Instruction::AtomicCmpXchg: 4936 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4937 4938 case Instruction::AtomicRMW: 4939 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4940 4941 case Instruction::UDiv: 4942 case Instruction::SDiv: 4943 case Instruction::URem: 4944 case Instruction::SRem: 4945 return I->getOperand(1); 4946 4947 case Instruction::Call: 4948 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4949 switch (II->getIntrinsicID()) { 4950 case Intrinsic::assume: 4951 return II->getArgOperand(0); 4952 default: 4953 return nullptr; 4954 } 4955 } 4956 return nullptr; 4957 4958 default: 4959 return nullptr; 4960 } 4961 } 4962 4963 bool llvm::mustTriggerUB(const Instruction *I, 4964 const SmallSet<const Value *, 16>& KnownPoison) { 4965 auto *NotPoison = getGuaranteedNonPoisonOp(I); 4966 return (NotPoison && KnownPoison.count(NotPoison)); 4967 } 4968 4969 4970 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 4971 // We currently only look for uses of poison values within the same basic 4972 // block, as that makes it easier to guarantee that the uses will be 4973 // executed given that PoisonI is executed. 4974 // 4975 // FIXME: Expand this to consider uses beyond the same basic block. To do 4976 // this, look out for the distinction between post-dominance and strong 4977 // post-dominance. 4978 const BasicBlock *BB = PoisonI->getParent(); 4979 4980 // Set of instructions that we have proved will yield poison if PoisonI 4981 // does. 4982 SmallSet<const Value *, 16> YieldsPoison; 4983 SmallSet<const BasicBlock *, 4> Visited; 4984 YieldsPoison.insert(PoisonI); 4985 Visited.insert(PoisonI->getParent()); 4986 4987 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4988 4989 unsigned Iter = 0; 4990 while (Iter++ < MaxDepth) { 4991 for (auto &I : make_range(Begin, End)) { 4992 if (&I != PoisonI) { 4993 if (mustTriggerUB(&I, YieldsPoison)) 4994 return true; 4995 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4996 return false; 4997 } 4998 4999 // Mark poison that propagates from I through uses of I. 5000 if (YieldsPoison.count(&I)) { 5001 for (const User *User : I.users()) { 5002 const Instruction *UserI = cast<Instruction>(User); 5003 if (propagatesPoison(UserI)) 5004 YieldsPoison.insert(User); 5005 } 5006 } 5007 } 5008 5009 if (auto *NextBB = BB->getSingleSuccessor()) { 5010 if (Visited.insert(NextBB).second) { 5011 BB = NextBB; 5012 Begin = BB->getFirstNonPHI()->getIterator(); 5013 End = BB->end(); 5014 continue; 5015 } 5016 } 5017 5018 break; 5019 } 5020 return false; 5021 } 5022 5023 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5024 if (FMF.noNaNs()) 5025 return true; 5026 5027 if (auto *C = dyn_cast<ConstantFP>(V)) 5028 return !C->isNaN(); 5029 5030 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5031 if (!C->getElementType()->isFloatingPointTy()) 5032 return false; 5033 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5034 if (C->getElementAsAPFloat(I).isNaN()) 5035 return false; 5036 } 5037 return true; 5038 } 5039 5040 if (isa<ConstantAggregateZero>(V)) 5041 return true; 5042 5043 return false; 5044 } 5045 5046 static bool isKnownNonZero(const Value *V) { 5047 if (auto *C = dyn_cast<ConstantFP>(V)) 5048 return !C->isZero(); 5049 5050 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5051 if (!C->getElementType()->isFloatingPointTy()) 5052 return false; 5053 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5054 if (C->getElementAsAPFloat(I).isZero()) 5055 return false; 5056 } 5057 return true; 5058 } 5059 5060 return false; 5061 } 5062 5063 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5064 /// Given non-min/max outer cmp/select from the clamp pattern this 5065 /// function recognizes if it can be substitued by a "canonical" min/max 5066 /// pattern. 5067 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5068 Value *CmpLHS, Value *CmpRHS, 5069 Value *TrueVal, Value *FalseVal, 5070 Value *&LHS, Value *&RHS) { 5071 // Try to match 5072 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5073 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5074 // and return description of the outer Max/Min. 5075 5076 // First, check if select has inverse order: 5077 if (CmpRHS == FalseVal) { 5078 std::swap(TrueVal, FalseVal); 5079 Pred = CmpInst::getInversePredicate(Pred); 5080 } 5081 5082 // Assume success now. If there's no match, callers should not use these anyway. 5083 LHS = TrueVal; 5084 RHS = FalseVal; 5085 5086 const APFloat *FC1; 5087 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5088 return {SPF_UNKNOWN, SPNB_NA, false}; 5089 5090 const APFloat *FC2; 5091 switch (Pred) { 5092 case CmpInst::FCMP_OLT: 5093 case CmpInst::FCMP_OLE: 5094 case CmpInst::FCMP_ULT: 5095 case CmpInst::FCMP_ULE: 5096 if (match(FalseVal, 5097 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5098 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5099 *FC1 < *FC2) 5100 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5101 break; 5102 case CmpInst::FCMP_OGT: 5103 case CmpInst::FCMP_OGE: 5104 case CmpInst::FCMP_UGT: 5105 case CmpInst::FCMP_UGE: 5106 if (match(FalseVal, 5107 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5108 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5109 *FC1 > *FC2) 5110 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5111 break; 5112 default: 5113 break; 5114 } 5115 5116 return {SPF_UNKNOWN, SPNB_NA, false}; 5117 } 5118 5119 /// Recognize variations of: 5120 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5121 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5122 Value *CmpLHS, Value *CmpRHS, 5123 Value *TrueVal, Value *FalseVal) { 5124 // Swap the select operands and predicate to match the patterns below. 5125 if (CmpRHS != TrueVal) { 5126 Pred = ICmpInst::getSwappedPredicate(Pred); 5127 std::swap(TrueVal, FalseVal); 5128 } 5129 const APInt *C1; 5130 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5131 const APInt *C2; 5132 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5133 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5134 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5135 return {SPF_SMAX, SPNB_NA, false}; 5136 5137 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5138 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5139 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5140 return {SPF_SMIN, SPNB_NA, false}; 5141 5142 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5143 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5144 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5145 return {SPF_UMAX, SPNB_NA, false}; 5146 5147 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5148 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5149 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5150 return {SPF_UMIN, SPNB_NA, false}; 5151 } 5152 return {SPF_UNKNOWN, SPNB_NA, false}; 5153 } 5154 5155 /// Recognize variations of: 5156 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5157 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5158 Value *CmpLHS, Value *CmpRHS, 5159 Value *TVal, Value *FVal, 5160 unsigned Depth) { 5161 // TODO: Allow FP min/max with nnan/nsz. 5162 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5163 5164 Value *A = nullptr, *B = nullptr; 5165 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5166 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5167 return {SPF_UNKNOWN, SPNB_NA, false}; 5168 5169 Value *C = nullptr, *D = nullptr; 5170 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5171 if (L.Flavor != R.Flavor) 5172 return {SPF_UNKNOWN, SPNB_NA, false}; 5173 5174 // We have something like: x Pred y ? min(a, b) : min(c, d). 5175 // Try to match the compare to the min/max operations of the select operands. 5176 // First, make sure we have the right compare predicate. 5177 switch (L.Flavor) { 5178 case SPF_SMIN: 5179 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5180 Pred = ICmpInst::getSwappedPredicate(Pred); 5181 std::swap(CmpLHS, CmpRHS); 5182 } 5183 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5184 break; 5185 return {SPF_UNKNOWN, SPNB_NA, false}; 5186 case SPF_SMAX: 5187 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5188 Pred = ICmpInst::getSwappedPredicate(Pred); 5189 std::swap(CmpLHS, CmpRHS); 5190 } 5191 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5192 break; 5193 return {SPF_UNKNOWN, SPNB_NA, false}; 5194 case SPF_UMIN: 5195 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5196 Pred = ICmpInst::getSwappedPredicate(Pred); 5197 std::swap(CmpLHS, CmpRHS); 5198 } 5199 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5200 break; 5201 return {SPF_UNKNOWN, SPNB_NA, false}; 5202 case SPF_UMAX: 5203 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5204 Pred = ICmpInst::getSwappedPredicate(Pred); 5205 std::swap(CmpLHS, CmpRHS); 5206 } 5207 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5208 break; 5209 return {SPF_UNKNOWN, SPNB_NA, false}; 5210 default: 5211 return {SPF_UNKNOWN, SPNB_NA, false}; 5212 } 5213 5214 // If there is a common operand in the already matched min/max and the other 5215 // min/max operands match the compare operands (either directly or inverted), 5216 // then this is min/max of the same flavor. 5217 5218 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5219 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5220 if (D == B) { 5221 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5222 match(A, m_Not(m_Specific(CmpRHS))))) 5223 return {L.Flavor, SPNB_NA, false}; 5224 } 5225 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5226 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5227 if (C == B) { 5228 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5229 match(A, m_Not(m_Specific(CmpRHS))))) 5230 return {L.Flavor, SPNB_NA, false}; 5231 } 5232 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5233 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5234 if (D == A) { 5235 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5236 match(B, m_Not(m_Specific(CmpRHS))))) 5237 return {L.Flavor, SPNB_NA, false}; 5238 } 5239 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5240 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5241 if (C == A) { 5242 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5243 match(B, m_Not(m_Specific(CmpRHS))))) 5244 return {L.Flavor, SPNB_NA, false}; 5245 } 5246 5247 return {SPF_UNKNOWN, SPNB_NA, false}; 5248 } 5249 5250 /// If the input value is the result of a 'not' op, constant integer, or vector 5251 /// splat of a constant integer, return the bitwise-not source value. 5252 /// TODO: This could be extended to handle non-splat vector integer constants. 5253 static Value *getNotValue(Value *V) { 5254 Value *NotV; 5255 if (match(V, m_Not(m_Value(NotV)))) 5256 return NotV; 5257 5258 const APInt *C; 5259 if (match(V, m_APInt(C))) 5260 return ConstantInt::get(V->getType(), ~(*C)); 5261 5262 return nullptr; 5263 } 5264 5265 /// Match non-obvious integer minimum and maximum sequences. 5266 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5267 Value *CmpLHS, Value *CmpRHS, 5268 Value *TrueVal, Value *FalseVal, 5269 Value *&LHS, Value *&RHS, 5270 unsigned Depth) { 5271 // Assume success. If there's no match, callers should not use these anyway. 5272 LHS = TrueVal; 5273 RHS = FalseVal; 5274 5275 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5276 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5277 return SPR; 5278 5279 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5280 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5281 return SPR; 5282 5283 // Look through 'not' ops to find disguised min/max. 5284 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5285 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5286 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5287 switch (Pred) { 5288 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5289 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5290 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5291 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5292 default: break; 5293 } 5294 } 5295 5296 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5297 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5298 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5299 switch (Pred) { 5300 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5301 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5302 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5303 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5304 default: break; 5305 } 5306 } 5307 5308 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5309 return {SPF_UNKNOWN, SPNB_NA, false}; 5310 5311 // Z = X -nsw Y 5312 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5313 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5314 if (match(TrueVal, m_Zero()) && 5315 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5316 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5317 5318 // Z = X -nsw Y 5319 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5320 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5321 if (match(FalseVal, m_Zero()) && 5322 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5323 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5324 5325 const APInt *C1; 5326 if (!match(CmpRHS, m_APInt(C1))) 5327 return {SPF_UNKNOWN, SPNB_NA, false}; 5328 5329 // An unsigned min/max can be written with a signed compare. 5330 const APInt *C2; 5331 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5332 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5333 // Is the sign bit set? 5334 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5335 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5336 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5337 C2->isMaxSignedValue()) 5338 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5339 5340 // Is the sign bit clear? 5341 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5342 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5343 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5344 C2->isMinSignedValue()) 5345 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5346 } 5347 5348 return {SPF_UNKNOWN, SPNB_NA, false}; 5349 } 5350 5351 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5352 assert(X && Y && "Invalid operand"); 5353 5354 // X = sub (0, Y) || X = sub nsw (0, Y) 5355 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5356 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5357 return true; 5358 5359 // Y = sub (0, X) || Y = sub nsw (0, X) 5360 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5361 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5362 return true; 5363 5364 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5365 Value *A, *B; 5366 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5367 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5368 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5369 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5370 } 5371 5372 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5373 FastMathFlags FMF, 5374 Value *CmpLHS, Value *CmpRHS, 5375 Value *TrueVal, Value *FalseVal, 5376 Value *&LHS, Value *&RHS, 5377 unsigned Depth) { 5378 if (CmpInst::isFPPredicate(Pred)) { 5379 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5380 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5381 // purpose of identifying min/max. Disregard vector constants with undefined 5382 // elements because those can not be back-propagated for analysis. 5383 Value *OutputZeroVal = nullptr; 5384 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5385 !cast<Constant>(TrueVal)->containsUndefElement()) 5386 OutputZeroVal = TrueVal; 5387 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5388 !cast<Constant>(FalseVal)->containsUndefElement()) 5389 OutputZeroVal = FalseVal; 5390 5391 if (OutputZeroVal) { 5392 if (match(CmpLHS, m_AnyZeroFP())) 5393 CmpLHS = OutputZeroVal; 5394 if (match(CmpRHS, m_AnyZeroFP())) 5395 CmpRHS = OutputZeroVal; 5396 } 5397 } 5398 5399 LHS = CmpLHS; 5400 RHS = CmpRHS; 5401 5402 // Signed zero may return inconsistent results between implementations. 5403 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5404 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5405 // Therefore, we behave conservatively and only proceed if at least one of the 5406 // operands is known to not be zero or if we don't care about signed zero. 5407 switch (Pred) { 5408 default: break; 5409 // FIXME: Include OGT/OLT/UGT/ULT. 5410 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5411 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5412 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5413 !isKnownNonZero(CmpRHS)) 5414 return {SPF_UNKNOWN, SPNB_NA, false}; 5415 } 5416 5417 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5418 bool Ordered = false; 5419 5420 // When given one NaN and one non-NaN input: 5421 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5422 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5423 // ordered comparison fails), which could be NaN or non-NaN. 5424 // so here we discover exactly what NaN behavior is required/accepted. 5425 if (CmpInst::isFPPredicate(Pred)) { 5426 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5427 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5428 5429 if (LHSSafe && RHSSafe) { 5430 // Both operands are known non-NaN. 5431 NaNBehavior = SPNB_RETURNS_ANY; 5432 } else if (CmpInst::isOrdered(Pred)) { 5433 // An ordered comparison will return false when given a NaN, so it 5434 // returns the RHS. 5435 Ordered = true; 5436 if (LHSSafe) 5437 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5438 NaNBehavior = SPNB_RETURNS_NAN; 5439 else if (RHSSafe) 5440 NaNBehavior = SPNB_RETURNS_OTHER; 5441 else 5442 // Completely unsafe. 5443 return {SPF_UNKNOWN, SPNB_NA, false}; 5444 } else { 5445 Ordered = false; 5446 // An unordered comparison will return true when given a NaN, so it 5447 // returns the LHS. 5448 if (LHSSafe) 5449 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5450 NaNBehavior = SPNB_RETURNS_OTHER; 5451 else if (RHSSafe) 5452 NaNBehavior = SPNB_RETURNS_NAN; 5453 else 5454 // Completely unsafe. 5455 return {SPF_UNKNOWN, SPNB_NA, false}; 5456 } 5457 } 5458 5459 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5460 std::swap(CmpLHS, CmpRHS); 5461 Pred = CmpInst::getSwappedPredicate(Pred); 5462 if (NaNBehavior == SPNB_RETURNS_NAN) 5463 NaNBehavior = SPNB_RETURNS_OTHER; 5464 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5465 NaNBehavior = SPNB_RETURNS_NAN; 5466 Ordered = !Ordered; 5467 } 5468 5469 // ([if]cmp X, Y) ? X : Y 5470 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5471 switch (Pred) { 5472 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5473 case ICmpInst::ICMP_UGT: 5474 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5475 case ICmpInst::ICMP_SGT: 5476 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5477 case ICmpInst::ICMP_ULT: 5478 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5479 case ICmpInst::ICMP_SLT: 5480 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5481 case FCmpInst::FCMP_UGT: 5482 case FCmpInst::FCMP_UGE: 5483 case FCmpInst::FCMP_OGT: 5484 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5485 case FCmpInst::FCMP_ULT: 5486 case FCmpInst::FCMP_ULE: 5487 case FCmpInst::FCMP_OLT: 5488 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5489 } 5490 } 5491 5492 if (isKnownNegation(TrueVal, FalseVal)) { 5493 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5494 // match against either LHS or sext(LHS). 5495 auto MaybeSExtCmpLHS = 5496 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5497 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5498 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5499 if (match(TrueVal, MaybeSExtCmpLHS)) { 5500 // Set the return values. If the compare uses the negated value (-X >s 0), 5501 // swap the return values because the negated value is always 'RHS'. 5502 LHS = TrueVal; 5503 RHS = FalseVal; 5504 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5505 std::swap(LHS, RHS); 5506 5507 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5508 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5509 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5510 return {SPF_ABS, SPNB_NA, false}; 5511 5512 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5513 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5514 return {SPF_ABS, SPNB_NA, false}; 5515 5516 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5517 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5518 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5519 return {SPF_NABS, SPNB_NA, false}; 5520 } 5521 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5522 // Set the return values. If the compare uses the negated value (-X >s 0), 5523 // swap the return values because the negated value is always 'RHS'. 5524 LHS = FalseVal; 5525 RHS = TrueVal; 5526 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5527 std::swap(LHS, RHS); 5528 5529 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5530 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5531 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5532 return {SPF_NABS, SPNB_NA, false}; 5533 5534 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5535 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5536 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5537 return {SPF_ABS, SPNB_NA, false}; 5538 } 5539 } 5540 5541 if (CmpInst::isIntPredicate(Pred)) 5542 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5543 5544 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5545 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5546 // semantics than minNum. Be conservative in such case. 5547 if (NaNBehavior != SPNB_RETURNS_ANY || 5548 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5549 !isKnownNonZero(CmpRHS))) 5550 return {SPF_UNKNOWN, SPNB_NA, false}; 5551 5552 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5553 } 5554 5555 /// Helps to match a select pattern in case of a type mismatch. 5556 /// 5557 /// The function processes the case when type of true and false values of a 5558 /// select instruction differs from type of the cmp instruction operands because 5559 /// of a cast instruction. The function checks if it is legal to move the cast 5560 /// operation after "select". If yes, it returns the new second value of 5561 /// "select" (with the assumption that cast is moved): 5562 /// 1. As operand of cast instruction when both values of "select" are same cast 5563 /// instructions. 5564 /// 2. As restored constant (by applying reverse cast operation) when the first 5565 /// value of the "select" is a cast operation and the second value is a 5566 /// constant. 5567 /// NOTE: We return only the new second value because the first value could be 5568 /// accessed as operand of cast instruction. 5569 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5570 Instruction::CastOps *CastOp) { 5571 auto *Cast1 = dyn_cast<CastInst>(V1); 5572 if (!Cast1) 5573 return nullptr; 5574 5575 *CastOp = Cast1->getOpcode(); 5576 Type *SrcTy = Cast1->getSrcTy(); 5577 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5578 // If V1 and V2 are both the same cast from the same type, look through V1. 5579 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5580 return Cast2->getOperand(0); 5581 return nullptr; 5582 } 5583 5584 auto *C = dyn_cast<Constant>(V2); 5585 if (!C) 5586 return nullptr; 5587 5588 Constant *CastedTo = nullptr; 5589 switch (*CastOp) { 5590 case Instruction::ZExt: 5591 if (CmpI->isUnsigned()) 5592 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5593 break; 5594 case Instruction::SExt: 5595 if (CmpI->isSigned()) 5596 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5597 break; 5598 case Instruction::Trunc: 5599 Constant *CmpConst; 5600 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5601 CmpConst->getType() == SrcTy) { 5602 // Here we have the following case: 5603 // 5604 // %cond = cmp iN %x, CmpConst 5605 // %tr = trunc iN %x to iK 5606 // %narrowsel = select i1 %cond, iK %t, iK C 5607 // 5608 // We can always move trunc after select operation: 5609 // 5610 // %cond = cmp iN %x, CmpConst 5611 // %widesel = select i1 %cond, iN %x, iN CmpConst 5612 // %tr = trunc iN %widesel to iK 5613 // 5614 // Note that C could be extended in any way because we don't care about 5615 // upper bits after truncation. It can't be abs pattern, because it would 5616 // look like: 5617 // 5618 // select i1 %cond, x, -x. 5619 // 5620 // So only min/max pattern could be matched. Such match requires widened C 5621 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5622 // CmpConst == C is checked below. 5623 CastedTo = CmpConst; 5624 } else { 5625 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5626 } 5627 break; 5628 case Instruction::FPTrunc: 5629 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5630 break; 5631 case Instruction::FPExt: 5632 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5633 break; 5634 case Instruction::FPToUI: 5635 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5636 break; 5637 case Instruction::FPToSI: 5638 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5639 break; 5640 case Instruction::UIToFP: 5641 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5642 break; 5643 case Instruction::SIToFP: 5644 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5645 break; 5646 default: 5647 break; 5648 } 5649 5650 if (!CastedTo) 5651 return nullptr; 5652 5653 // Make sure the cast doesn't lose any information. 5654 Constant *CastedBack = 5655 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5656 if (CastedBack != C) 5657 return nullptr; 5658 5659 return CastedTo; 5660 } 5661 5662 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5663 Instruction::CastOps *CastOp, 5664 unsigned Depth) { 5665 if (Depth >= MaxDepth) 5666 return {SPF_UNKNOWN, SPNB_NA, false}; 5667 5668 SelectInst *SI = dyn_cast<SelectInst>(V); 5669 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5670 5671 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5672 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5673 5674 Value *TrueVal = SI->getTrueValue(); 5675 Value *FalseVal = SI->getFalseValue(); 5676 5677 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5678 CastOp, Depth); 5679 } 5680 5681 SelectPatternResult llvm::matchDecomposedSelectPattern( 5682 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5683 Instruction::CastOps *CastOp, unsigned Depth) { 5684 CmpInst::Predicate Pred = CmpI->getPredicate(); 5685 Value *CmpLHS = CmpI->getOperand(0); 5686 Value *CmpRHS = CmpI->getOperand(1); 5687 FastMathFlags FMF; 5688 if (isa<FPMathOperator>(CmpI)) 5689 FMF = CmpI->getFastMathFlags(); 5690 5691 // Bail out early. 5692 if (CmpI->isEquality()) 5693 return {SPF_UNKNOWN, SPNB_NA, false}; 5694 5695 // Deal with type mismatches. 5696 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5697 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5698 // If this is a potential fmin/fmax with a cast to integer, then ignore 5699 // -0.0 because there is no corresponding integer value. 5700 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5701 FMF.setNoSignedZeros(); 5702 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5703 cast<CastInst>(TrueVal)->getOperand(0), C, 5704 LHS, RHS, Depth); 5705 } 5706 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5707 // If this is a potential fmin/fmax with a cast to integer, then ignore 5708 // -0.0 because there is no corresponding integer value. 5709 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5710 FMF.setNoSignedZeros(); 5711 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5712 C, cast<CastInst>(FalseVal)->getOperand(0), 5713 LHS, RHS, Depth); 5714 } 5715 } 5716 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5717 LHS, RHS, Depth); 5718 } 5719 5720 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5721 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5722 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5723 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5724 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5725 if (SPF == SPF_FMINNUM) 5726 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5727 if (SPF == SPF_FMAXNUM) 5728 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5729 llvm_unreachable("unhandled!"); 5730 } 5731 5732 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5733 if (SPF == SPF_SMIN) return SPF_SMAX; 5734 if (SPF == SPF_UMIN) return SPF_UMAX; 5735 if (SPF == SPF_SMAX) return SPF_SMIN; 5736 if (SPF == SPF_UMAX) return SPF_UMIN; 5737 llvm_unreachable("unhandled!"); 5738 } 5739 5740 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5741 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5742 } 5743 5744 /// Return true if "icmp Pred LHS RHS" is always true. 5745 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5746 const Value *RHS, const DataLayout &DL, 5747 unsigned Depth) { 5748 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5749 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5750 return true; 5751 5752 switch (Pred) { 5753 default: 5754 return false; 5755 5756 case CmpInst::ICMP_SLE: { 5757 const APInt *C; 5758 5759 // LHS s<= LHS +_{nsw} C if C >= 0 5760 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5761 return !C->isNegative(); 5762 return false; 5763 } 5764 5765 case CmpInst::ICMP_ULE: { 5766 const APInt *C; 5767 5768 // LHS u<= LHS +_{nuw} C for any C 5769 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5770 return true; 5771 5772 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5773 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5774 const Value *&X, 5775 const APInt *&CA, const APInt *&CB) { 5776 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5777 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5778 return true; 5779 5780 // If X & C == 0 then (X | C) == X +_{nuw} C 5781 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5782 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5783 KnownBits Known(CA->getBitWidth()); 5784 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5785 /*CxtI*/ nullptr, /*DT*/ nullptr); 5786 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5787 return true; 5788 } 5789 5790 return false; 5791 }; 5792 5793 const Value *X; 5794 const APInt *CLHS, *CRHS; 5795 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5796 return CLHS->ule(*CRHS); 5797 5798 return false; 5799 } 5800 } 5801 } 5802 5803 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5804 /// ALHS ARHS" is true. Otherwise, return None. 5805 static Optional<bool> 5806 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5807 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5808 const DataLayout &DL, unsigned Depth) { 5809 switch (Pred) { 5810 default: 5811 return None; 5812 5813 case CmpInst::ICMP_SLT: 5814 case CmpInst::ICMP_SLE: 5815 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5816 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5817 return true; 5818 return None; 5819 5820 case CmpInst::ICMP_ULT: 5821 case CmpInst::ICMP_ULE: 5822 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5823 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5824 return true; 5825 return None; 5826 } 5827 } 5828 5829 /// Return true if the operands of the two compares match. IsSwappedOps is true 5830 /// when the operands match, but are swapped. 5831 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5832 const Value *BLHS, const Value *BRHS, 5833 bool &IsSwappedOps) { 5834 5835 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5836 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5837 return IsMatchingOps || IsSwappedOps; 5838 } 5839 5840 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5841 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5842 /// Otherwise, return None if we can't infer anything. 5843 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5844 CmpInst::Predicate BPred, 5845 bool AreSwappedOps) { 5846 // Canonicalize the predicate as if the operands were not commuted. 5847 if (AreSwappedOps) 5848 BPred = ICmpInst::getSwappedPredicate(BPred); 5849 5850 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5851 return true; 5852 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5853 return false; 5854 5855 return None; 5856 } 5857 5858 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5859 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5860 /// Otherwise, return None if we can't infer anything. 5861 static Optional<bool> 5862 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5863 const ConstantInt *C1, 5864 CmpInst::Predicate BPred, 5865 const ConstantInt *C2) { 5866 ConstantRange DomCR = 5867 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5868 ConstantRange CR = 5869 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5870 ConstantRange Intersection = DomCR.intersectWith(CR); 5871 ConstantRange Difference = DomCR.difference(CR); 5872 if (Intersection.isEmptySet()) 5873 return false; 5874 if (Difference.isEmptySet()) 5875 return true; 5876 return None; 5877 } 5878 5879 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5880 /// false. Otherwise, return None if we can't infer anything. 5881 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5882 CmpInst::Predicate BPred, 5883 const Value *BLHS, const Value *BRHS, 5884 const DataLayout &DL, bool LHSIsTrue, 5885 unsigned Depth) { 5886 Value *ALHS = LHS->getOperand(0); 5887 Value *ARHS = LHS->getOperand(1); 5888 5889 // The rest of the logic assumes the LHS condition is true. If that's not the 5890 // case, invert the predicate to make it so. 5891 CmpInst::Predicate APred = 5892 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5893 5894 // Can we infer anything when the two compares have matching operands? 5895 bool AreSwappedOps; 5896 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5897 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5898 APred, BPred, AreSwappedOps)) 5899 return Implication; 5900 // No amount of additional analysis will infer the second condition, so 5901 // early exit. 5902 return None; 5903 } 5904 5905 // Can we infer anything when the LHS operands match and the RHS operands are 5906 // constants (not necessarily matching)? 5907 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5908 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5909 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5910 return Implication; 5911 // No amount of additional analysis will infer the second condition, so 5912 // early exit. 5913 return None; 5914 } 5915 5916 if (APred == BPred) 5917 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5918 return None; 5919 } 5920 5921 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5922 /// false. Otherwise, return None if we can't infer anything. We expect the 5923 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5924 static Optional<bool> 5925 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5926 const Value *RHSOp0, const Value *RHSOp1, 5927 5928 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5929 // The LHS must be an 'or' or an 'and' instruction. 5930 assert((LHS->getOpcode() == Instruction::And || 5931 LHS->getOpcode() == Instruction::Or) && 5932 "Expected LHS to be 'and' or 'or'."); 5933 5934 assert(Depth <= MaxDepth && "Hit recursion limit"); 5935 5936 // If the result of an 'or' is false, then we know both legs of the 'or' are 5937 // false. Similarly, if the result of an 'and' is true, then we know both 5938 // legs of the 'and' are true. 5939 Value *ALHS, *ARHS; 5940 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5941 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5942 // FIXME: Make this non-recursion. 5943 if (Optional<bool> Implication = isImpliedCondition( 5944 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5945 return Implication; 5946 if (Optional<bool> Implication = isImpliedCondition( 5947 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5948 return Implication; 5949 return None; 5950 } 5951 return None; 5952 } 5953 5954 Optional<bool> 5955 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5956 const Value *RHSOp0, const Value *RHSOp1, 5957 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5958 // Bail out when we hit the limit. 5959 if (Depth == MaxDepth) 5960 return None; 5961 5962 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5963 // example. 5964 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5965 return None; 5966 5967 Type *OpTy = LHS->getType(); 5968 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5969 5970 // FIXME: Extending the code below to handle vectors. 5971 if (OpTy->isVectorTy()) 5972 return None; 5973 5974 assert(OpTy->isIntegerTy(1) && "implied by above"); 5975 5976 // Both LHS and RHS are icmps. 5977 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5978 if (LHSCmp) 5979 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5980 Depth); 5981 5982 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5983 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5984 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5985 if (LHSBO) { 5986 if ((LHSBO->getOpcode() == Instruction::And || 5987 LHSBO->getOpcode() == Instruction::Or)) 5988 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5989 Depth); 5990 } 5991 return None; 5992 } 5993 5994 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5995 const DataLayout &DL, bool LHSIsTrue, 5996 unsigned Depth) { 5997 // LHS ==> RHS by definition 5998 if (LHS == RHS) 5999 return LHSIsTrue; 6000 6001 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6002 if (RHSCmp) 6003 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6004 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6005 LHSIsTrue, Depth); 6006 return None; 6007 } 6008 6009 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6010 // condition dominating ContextI or nullptr, if no condition is found. 6011 static std::pair<Value *, bool> 6012 getDomPredecessorCondition(const Instruction *ContextI) { 6013 if (!ContextI || !ContextI->getParent()) 6014 return {nullptr, false}; 6015 6016 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6017 // dominator tree (eg, from a SimplifyQuery) instead? 6018 const BasicBlock *ContextBB = ContextI->getParent(); 6019 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6020 if (!PredBB) 6021 return {nullptr, false}; 6022 6023 // We need a conditional branch in the predecessor. 6024 Value *PredCond; 6025 BasicBlock *TrueBB, *FalseBB; 6026 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6027 return {nullptr, false}; 6028 6029 // The branch should get simplified. Don't bother simplifying this condition. 6030 if (TrueBB == FalseBB) 6031 return {nullptr, false}; 6032 6033 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6034 "Predecessor block does not point to successor?"); 6035 6036 // Is this condition implied by the predecessor condition? 6037 return {PredCond, TrueBB == ContextBB}; 6038 } 6039 6040 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6041 const Instruction *ContextI, 6042 const DataLayout &DL) { 6043 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6044 auto PredCond = getDomPredecessorCondition(ContextI); 6045 if (PredCond.first) 6046 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6047 return None; 6048 } 6049 6050 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6051 const Value *LHS, const Value *RHS, 6052 const Instruction *ContextI, 6053 const DataLayout &DL) { 6054 auto PredCond = getDomPredecessorCondition(ContextI); 6055 if (PredCond.first) 6056 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6057 PredCond.second); 6058 return None; 6059 } 6060 6061 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6062 APInt &Upper, const InstrInfoQuery &IIQ) { 6063 unsigned Width = Lower.getBitWidth(); 6064 const APInt *C; 6065 switch (BO.getOpcode()) { 6066 case Instruction::Add: 6067 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6068 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6069 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6070 // 'add nuw x, C' produces [C, UINT_MAX]. 6071 Lower = *C; 6072 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6073 if (C->isNegative()) { 6074 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6075 Lower = APInt::getSignedMinValue(Width); 6076 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6077 } else { 6078 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6079 Lower = APInt::getSignedMinValue(Width) + *C; 6080 Upper = APInt::getSignedMaxValue(Width) + 1; 6081 } 6082 } 6083 } 6084 break; 6085 6086 case Instruction::And: 6087 if (match(BO.getOperand(1), m_APInt(C))) 6088 // 'and x, C' produces [0, C]. 6089 Upper = *C + 1; 6090 break; 6091 6092 case Instruction::Or: 6093 if (match(BO.getOperand(1), m_APInt(C))) 6094 // 'or x, C' produces [C, UINT_MAX]. 6095 Lower = *C; 6096 break; 6097 6098 case Instruction::AShr: 6099 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6100 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6101 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6102 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6103 } else if (match(BO.getOperand(0), m_APInt(C))) { 6104 unsigned ShiftAmount = Width - 1; 6105 if (!C->isNullValue() && IIQ.isExact(&BO)) 6106 ShiftAmount = C->countTrailingZeros(); 6107 if (C->isNegative()) { 6108 // 'ashr C, x' produces [C, C >> (Width-1)] 6109 Lower = *C; 6110 Upper = C->ashr(ShiftAmount) + 1; 6111 } else { 6112 // 'ashr C, x' produces [C >> (Width-1), C] 6113 Lower = C->ashr(ShiftAmount); 6114 Upper = *C + 1; 6115 } 6116 } 6117 break; 6118 6119 case Instruction::LShr: 6120 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6121 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6122 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6123 } else if (match(BO.getOperand(0), m_APInt(C))) { 6124 // 'lshr C, x' produces [C >> (Width-1), C]. 6125 unsigned ShiftAmount = Width - 1; 6126 if (!C->isNullValue() && IIQ.isExact(&BO)) 6127 ShiftAmount = C->countTrailingZeros(); 6128 Lower = C->lshr(ShiftAmount); 6129 Upper = *C + 1; 6130 } 6131 break; 6132 6133 case Instruction::Shl: 6134 if (match(BO.getOperand(0), m_APInt(C))) { 6135 if (IIQ.hasNoUnsignedWrap(&BO)) { 6136 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6137 Lower = *C; 6138 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6139 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6140 if (C->isNegative()) { 6141 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6142 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6143 Lower = C->shl(ShiftAmount); 6144 Upper = *C + 1; 6145 } else { 6146 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6147 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6148 Lower = *C; 6149 Upper = C->shl(ShiftAmount) + 1; 6150 } 6151 } 6152 } 6153 break; 6154 6155 case Instruction::SDiv: 6156 if (match(BO.getOperand(1), m_APInt(C))) { 6157 APInt IntMin = APInt::getSignedMinValue(Width); 6158 APInt IntMax = APInt::getSignedMaxValue(Width); 6159 if (C->isAllOnesValue()) { 6160 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6161 // where C != -1 and C != 0 and C != 1 6162 Lower = IntMin + 1; 6163 Upper = IntMax + 1; 6164 } else if (C->countLeadingZeros() < Width - 1) { 6165 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6166 // where C != -1 and C != 0 and C != 1 6167 Lower = IntMin.sdiv(*C); 6168 Upper = IntMax.sdiv(*C); 6169 if (Lower.sgt(Upper)) 6170 std::swap(Lower, Upper); 6171 Upper = Upper + 1; 6172 assert(Upper != Lower && "Upper part of range has wrapped!"); 6173 } 6174 } else if (match(BO.getOperand(0), m_APInt(C))) { 6175 if (C->isMinSignedValue()) { 6176 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6177 Lower = *C; 6178 Upper = Lower.lshr(1) + 1; 6179 } else { 6180 // 'sdiv C, x' produces [-|C|, |C|]. 6181 Upper = C->abs() + 1; 6182 Lower = (-Upper) + 1; 6183 } 6184 } 6185 break; 6186 6187 case Instruction::UDiv: 6188 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6189 // 'udiv x, C' produces [0, UINT_MAX / C]. 6190 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6191 } else if (match(BO.getOperand(0), m_APInt(C))) { 6192 // 'udiv C, x' produces [0, C]. 6193 Upper = *C + 1; 6194 } 6195 break; 6196 6197 case Instruction::SRem: 6198 if (match(BO.getOperand(1), m_APInt(C))) { 6199 // 'srem x, C' produces (-|C|, |C|). 6200 Upper = C->abs(); 6201 Lower = (-Upper) + 1; 6202 } 6203 break; 6204 6205 case Instruction::URem: 6206 if (match(BO.getOperand(1), m_APInt(C))) 6207 // 'urem x, C' produces [0, C). 6208 Upper = *C; 6209 break; 6210 6211 default: 6212 break; 6213 } 6214 } 6215 6216 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6217 APInt &Upper) { 6218 unsigned Width = Lower.getBitWidth(); 6219 const APInt *C; 6220 switch (II.getIntrinsicID()) { 6221 case Intrinsic::uadd_sat: 6222 // uadd.sat(x, C) produces [C, UINT_MAX]. 6223 if (match(II.getOperand(0), m_APInt(C)) || 6224 match(II.getOperand(1), m_APInt(C))) 6225 Lower = *C; 6226 break; 6227 case Intrinsic::sadd_sat: 6228 if (match(II.getOperand(0), m_APInt(C)) || 6229 match(II.getOperand(1), m_APInt(C))) { 6230 if (C->isNegative()) { 6231 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6232 Lower = APInt::getSignedMinValue(Width); 6233 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6234 } else { 6235 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6236 Lower = APInt::getSignedMinValue(Width) + *C; 6237 Upper = APInt::getSignedMaxValue(Width) + 1; 6238 } 6239 } 6240 break; 6241 case Intrinsic::usub_sat: 6242 // usub.sat(C, x) produces [0, C]. 6243 if (match(II.getOperand(0), m_APInt(C))) 6244 Upper = *C + 1; 6245 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6246 else if (match(II.getOperand(1), m_APInt(C))) 6247 Upper = APInt::getMaxValue(Width) - *C + 1; 6248 break; 6249 case Intrinsic::ssub_sat: 6250 if (match(II.getOperand(0), m_APInt(C))) { 6251 if (C->isNegative()) { 6252 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6253 Lower = APInt::getSignedMinValue(Width); 6254 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6255 } else { 6256 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6257 Lower = *C - APInt::getSignedMaxValue(Width); 6258 Upper = APInt::getSignedMaxValue(Width) + 1; 6259 } 6260 } else if (match(II.getOperand(1), m_APInt(C))) { 6261 if (C->isNegative()) { 6262 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6263 Lower = APInt::getSignedMinValue(Width) - *C; 6264 Upper = APInt::getSignedMaxValue(Width) + 1; 6265 } else { 6266 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6267 Lower = APInt::getSignedMinValue(Width); 6268 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6269 } 6270 } 6271 break; 6272 default: 6273 break; 6274 } 6275 } 6276 6277 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6278 APInt &Upper, const InstrInfoQuery &IIQ) { 6279 const Value *LHS = nullptr, *RHS = nullptr; 6280 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6281 if (R.Flavor == SPF_UNKNOWN) 6282 return; 6283 6284 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6285 6286 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6287 // If the negation part of the abs (in RHS) has the NSW flag, 6288 // then the result of abs(X) is [0..SIGNED_MAX], 6289 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6290 Lower = APInt::getNullValue(BitWidth); 6291 if (match(RHS, m_Neg(m_Specific(LHS))) && 6292 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6293 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6294 else 6295 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6296 return; 6297 } 6298 6299 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6300 // The result of -abs(X) is <= 0. 6301 Lower = APInt::getSignedMinValue(BitWidth); 6302 Upper = APInt(BitWidth, 1); 6303 return; 6304 } 6305 6306 const APInt *C; 6307 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6308 return; 6309 6310 switch (R.Flavor) { 6311 case SPF_UMIN: 6312 Upper = *C + 1; 6313 break; 6314 case SPF_UMAX: 6315 Lower = *C; 6316 break; 6317 case SPF_SMIN: 6318 Lower = APInt::getSignedMinValue(BitWidth); 6319 Upper = *C + 1; 6320 break; 6321 case SPF_SMAX: 6322 Lower = *C; 6323 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6324 break; 6325 default: 6326 break; 6327 } 6328 } 6329 6330 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6331 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6332 6333 const APInt *C; 6334 if (match(V, m_APInt(C))) 6335 return ConstantRange(*C); 6336 6337 InstrInfoQuery IIQ(UseInstrInfo); 6338 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6339 APInt Lower = APInt(BitWidth, 0); 6340 APInt Upper = APInt(BitWidth, 0); 6341 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6342 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6343 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6344 setLimitsForIntrinsic(*II, Lower, Upper); 6345 else if (auto *SI = dyn_cast<SelectInst>(V)) 6346 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6347 6348 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6349 6350 if (auto *I = dyn_cast<Instruction>(V)) 6351 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6352 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6353 6354 return CR; 6355 } 6356 6357 static Optional<int64_t> 6358 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6359 // Skip over the first indices. 6360 gep_type_iterator GTI = gep_type_begin(GEP); 6361 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6362 /*skip along*/; 6363 6364 // Compute the offset implied by the rest of the indices. 6365 int64_t Offset = 0; 6366 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6367 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6368 if (!OpC) 6369 return None; 6370 if (OpC->isZero()) 6371 continue; // No offset. 6372 6373 // Handle struct indices, which add their field offset to the pointer. 6374 if (StructType *STy = GTI.getStructTypeOrNull()) { 6375 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6376 continue; 6377 } 6378 6379 // Otherwise, we have a sequential type like an array or fixed-length 6380 // vector. Multiply the index by the ElementSize. 6381 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6382 if (Size.isScalable()) 6383 return None; 6384 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6385 } 6386 6387 return Offset; 6388 } 6389 6390 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6391 const DataLayout &DL) { 6392 Ptr1 = Ptr1->stripPointerCasts(); 6393 Ptr2 = Ptr2->stripPointerCasts(); 6394 6395 // Handle the trivial case first. 6396 if (Ptr1 == Ptr2) { 6397 return 0; 6398 } 6399 6400 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6401 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6402 6403 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6404 // as in "P" and "gep P, 1". 6405 // Also do this iteratively to handle the the following case: 6406 // Ptr_t1 = GEP Ptr1, c1 6407 // Ptr_t2 = GEP Ptr_t1, c2 6408 // Ptr2 = GEP Ptr_t2, c3 6409 // where we will return c1+c2+c3. 6410 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6411 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6412 // are the same, and return the difference between offsets. 6413 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6414 const Value *Ptr) -> Optional<int64_t> { 6415 const GEPOperator *GEP_T = GEP; 6416 int64_t OffsetVal = 0; 6417 bool HasSameBase = false; 6418 while (GEP_T) { 6419 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6420 if (!Offset) 6421 return None; 6422 OffsetVal += *Offset; 6423 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6424 if (Op0 == Ptr) { 6425 HasSameBase = true; 6426 break; 6427 } 6428 GEP_T = dyn_cast<GEPOperator>(Op0); 6429 } 6430 if (!HasSameBase) 6431 return None; 6432 return OffsetVal; 6433 }; 6434 6435 if (GEP1) { 6436 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6437 if (Offset) 6438 return -*Offset; 6439 } 6440 if (GEP2) { 6441 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6442 if (Offset) 6443 return Offset; 6444 } 6445 6446 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6447 // base. After that base, they may have some number of common (and 6448 // potentially variable) indices. After that they handle some constant 6449 // offset, which determines their offset from each other. At this point, we 6450 // handle no other case. 6451 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6452 return None; 6453 6454 // Skip any common indices and track the GEP types. 6455 unsigned Idx = 1; 6456 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6457 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6458 break; 6459 6460 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6461 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6462 if (!Offset1 || !Offset2) 6463 return None; 6464 return *Offset2 - *Offset1; 6465 } 6466