1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/KnownBits.h"
68 #include "llvm/Support/MathExtras.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
73 #include <iterator>
74 #include <utility>
75 
76 using namespace llvm;
77 using namespace llvm::PatternMatch;
78 
79 const unsigned MaxDepth = 6;
80 
81 // Controls the number of uses of the value searched for possible
82 // dominating comparisons.
83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                               cl::Hidden, cl::init(20));
85 
86 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
87 /// returns the element type's bitwidth.
88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
89   if (unsigned BitWidth = Ty->getScalarSizeInBits())
90     return BitWidth;
91 
92   return DL.getIndexTypeSizeInBits(Ty);
93 }
94 
95 namespace {
96 
97 // Simplifying using an assume can only be done in a particular control-flow
98 // context (the context instruction provides that context). If an assume and
99 // the context instruction are not in the same block then the DT helps in
100 // figuring out if we can use it.
101 struct Query {
102   const DataLayout &DL;
103   AssumptionCache *AC;
104   const Instruction *CxtI;
105   const DominatorTree *DT;
106 
107   // Unlike the other analyses, this may be a nullptr because not all clients
108   // provide it currently.
109   OptimizationRemarkEmitter *ORE;
110 
111   /// Set of assumptions that should be excluded from further queries.
112   /// This is because of the potential for mutual recursion to cause
113   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114   /// classic case of this is assume(x = y), which will attempt to determine
115   /// bits in x from bits in y, which will attempt to determine bits in y from
116   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
117   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118   /// (all of which can call computeKnownBits), and so on.
119   std::array<const Value *, MaxDepth> Excluded;
120 
121   /// If true, it is safe to use metadata during simplification.
122   InstrInfoQuery IIQ;
123 
124   unsigned NumExcluded = 0;
125 
126   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
127         const DominatorTree *DT, bool UseInstrInfo,
128         OptimizationRemarkEmitter *ORE = nullptr)
129       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
130 
131   Query(const Query &Q, const Value *NewExcl)
132       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
133         NumExcluded(Q.NumExcluded) {
134     Excluded = Q.Excluded;
135     Excluded[NumExcluded++] = NewExcl;
136     assert(NumExcluded <= Excluded.size());
137   }
138 
139   bool isExcluded(const Value *Value) const {
140     if (NumExcluded == 0)
141       return false;
142     auto End = Excluded.begin() + NumExcluded;
143     return std::find(Excluded.begin(), End, Value) != End;
144   }
145 };
146 
147 } // end anonymous namespace
148 
149 // Given the provided Value and, potentially, a context instruction, return
150 // the preferred context instruction (if any).
151 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
152   // If we've been provided with a context instruction, then use that (provided
153   // it has been inserted).
154   if (CxtI && CxtI->getParent())
155     return CxtI;
156 
157   // If the value is really an already-inserted instruction, then use that.
158   CxtI = dyn_cast<Instruction>(V);
159   if (CxtI && CxtI->getParent())
160     return CxtI;
161 
162   return nullptr;
163 }
164 
165 static void computeKnownBits(const Value *V, KnownBits &Known,
166                              unsigned Depth, const Query &Q);
167 
168 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
169                             const DataLayout &DL, unsigned Depth,
170                             AssumptionCache *AC, const Instruction *CxtI,
171                             const DominatorTree *DT,
172                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
173   ::computeKnownBits(V, Known, Depth,
174                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
175 }
176 
177 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
178                                   const Query &Q);
179 
180 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
181                                  unsigned Depth, AssumptionCache *AC,
182                                  const Instruction *CxtI,
183                                  const DominatorTree *DT,
184                                  OptimizationRemarkEmitter *ORE,
185                                  bool UseInstrInfo) {
186   return ::computeKnownBits(
187       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
188 }
189 
190 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
191                                const DataLayout &DL, AssumptionCache *AC,
192                                const Instruction *CxtI, const DominatorTree *DT,
193                                bool UseInstrInfo) {
194   assert(LHS->getType() == RHS->getType() &&
195          "LHS and RHS should have the same type");
196   assert(LHS->getType()->isIntOrIntVectorTy() &&
197          "LHS and RHS should be integers");
198   // Look for an inverted mask: (X & ~M) op (Y & M).
199   Value *M;
200   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
201       match(RHS, m_c_And(m_Specific(M), m_Value())))
202     return true;
203   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
204       match(LHS, m_c_And(m_Specific(M), m_Value())))
205     return true;
206   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
207   KnownBits LHSKnown(IT->getBitWidth());
208   KnownBits RHSKnown(IT->getBitWidth());
209   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
210   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
212 }
213 
214 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
215   for (const User *U : CxtI->users()) {
216     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
217       if (IC->isEquality())
218         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
219           if (C->isNullValue())
220             continue;
221     return false;
222   }
223   return true;
224 }
225 
226 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
227                                    const Query &Q);
228 
229 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
230                                   bool OrZero, unsigned Depth,
231                                   AssumptionCache *AC, const Instruction *CxtI,
232                                   const DominatorTree *DT, bool UseInstrInfo) {
233   return ::isKnownToBeAPowerOfTwo(
234       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
235 }
236 
237 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
238 
239 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
240                           AssumptionCache *AC, const Instruction *CxtI,
241                           const DominatorTree *DT, bool UseInstrInfo) {
242   return ::isKnownNonZero(V, Depth,
243                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
244 }
245 
246 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
247                               unsigned Depth, AssumptionCache *AC,
248                               const Instruction *CxtI, const DominatorTree *DT,
249                               bool UseInstrInfo) {
250   KnownBits Known =
251       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
252   return Known.isNonNegative();
253 }
254 
255 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
256                            AssumptionCache *AC, const Instruction *CxtI,
257                            const DominatorTree *DT, bool UseInstrInfo) {
258   if (auto *CI = dyn_cast<ConstantInt>(V))
259     return CI->getValue().isStrictlyPositive();
260 
261   // TODO: We'd doing two recursive queries here.  We should factor this such
262   // that only a single query is needed.
263   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
264          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
265 }
266 
267 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
268                            AssumptionCache *AC, const Instruction *CxtI,
269                            const DominatorTree *DT, bool UseInstrInfo) {
270   KnownBits Known =
271       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
272   return Known.isNegative();
273 }
274 
275 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
276 
277 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
278                            const DataLayout &DL, AssumptionCache *AC,
279                            const Instruction *CxtI, const DominatorTree *DT,
280                            bool UseInstrInfo) {
281   return ::isKnownNonEqual(V1, V2,
282                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
283                                  UseInstrInfo, /*ORE=*/nullptr));
284 }
285 
286 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
287                               const Query &Q);
288 
289 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
290                              const DataLayout &DL, unsigned Depth,
291                              AssumptionCache *AC, const Instruction *CxtI,
292                              const DominatorTree *DT, bool UseInstrInfo) {
293   return ::MaskedValueIsZero(
294       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
295 }
296 
297 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
298                                    const Query &Q);
299 
300 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
301                                   unsigned Depth, AssumptionCache *AC,
302                                   const Instruction *CxtI,
303                                   const DominatorTree *DT, bool UseInstrInfo) {
304   return ::ComputeNumSignBits(
305       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
306 }
307 
308 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
309                                    bool NSW,
310                                    KnownBits &KnownOut, KnownBits &Known2,
311                                    unsigned Depth, const Query &Q) {
312   unsigned BitWidth = KnownOut.getBitWidth();
313 
314   // If an initial sequence of bits in the result is not needed, the
315   // corresponding bits in the operands are not needed.
316   KnownBits LHSKnown(BitWidth);
317   computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
318   computeKnownBits(Op1, Known2, Depth + 1, Q);
319 
320   KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
321 }
322 
323 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
324                                 KnownBits &Known, KnownBits &Known2,
325                                 unsigned Depth, const Query &Q) {
326   unsigned BitWidth = Known.getBitWidth();
327   computeKnownBits(Op1, Known, Depth + 1, Q);
328   computeKnownBits(Op0, Known2, Depth + 1, Q);
329 
330   bool isKnownNegative = false;
331   bool isKnownNonNegative = false;
332   // If the multiplication is known not to overflow, compute the sign bit.
333   if (NSW) {
334     if (Op0 == Op1) {
335       // The product of a number with itself is non-negative.
336       isKnownNonNegative = true;
337     } else {
338       bool isKnownNonNegativeOp1 = Known.isNonNegative();
339       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
340       bool isKnownNegativeOp1 = Known.isNegative();
341       bool isKnownNegativeOp0 = Known2.isNegative();
342       // The product of two numbers with the same sign is non-negative.
343       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
344         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
345       // The product of a negative number and a non-negative number is either
346       // negative or zero.
347       if (!isKnownNonNegative)
348         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
349                            isKnownNonZero(Op0, Depth, Q)) ||
350                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
351                            isKnownNonZero(Op1, Depth, Q));
352     }
353   }
354 
355   assert(!Known.hasConflict() && !Known2.hasConflict());
356   // Compute a conservative estimate for high known-0 bits.
357   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
358                              Known2.countMinLeadingZeros(),
359                              BitWidth) - BitWidth;
360   LeadZ = std::min(LeadZ, BitWidth);
361 
362   // The result of the bottom bits of an integer multiply can be
363   // inferred by looking at the bottom bits of both operands and
364   // multiplying them together.
365   // We can infer at least the minimum number of known trailing bits
366   // of both operands. Depending on number of trailing zeros, we can
367   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
368   // a and b are divisible by m and n respectively.
369   // We then calculate how many of those bits are inferrable and set
370   // the output. For example, the i8 mul:
371   //  a = XXXX1100 (12)
372   //  b = XXXX1110 (14)
373   // We know the bottom 3 bits are zero since the first can be divided by
374   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
375   // Applying the multiplication to the trimmed arguments gets:
376   //    XX11 (3)
377   //    X111 (7)
378   // -------
379   //    XX11
380   //   XX11
381   //  XX11
382   // XX11
383   // -------
384   // XXXXX01
385   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
386   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
387   // The proof for this can be described as:
388   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
389   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
390   //                    umin(countTrailingZeros(C2), C6) +
391   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
392   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
393   // %aa = shl i8 %a, C5
394   // %bb = shl i8 %b, C6
395   // %aaa = or i8 %aa, C1
396   // %bbb = or i8 %bb, C2
397   // %mul = mul i8 %aaa, %bbb
398   // %mask = and i8 %mul, C7
399   //   =>
400   // %mask = i8 ((C1*C2)&C7)
401   // Where C5, C6 describe the known bits of %a, %b
402   // C1, C2 describe the known bottom bits of %a, %b.
403   // C7 describes the mask of the known bits of the result.
404   APInt Bottom0 = Known.One;
405   APInt Bottom1 = Known2.One;
406 
407   // How many times we'd be able to divide each argument by 2 (shr by 1).
408   // This gives us the number of trailing zeros on the multiplication result.
409   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
410   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
411   unsigned TrailZero0 = Known.countMinTrailingZeros();
412   unsigned TrailZero1 = Known2.countMinTrailingZeros();
413   unsigned TrailZ = TrailZero0 + TrailZero1;
414 
415   // Figure out the fewest known-bits operand.
416   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
417                                       TrailBitsKnown1 - TrailZero1);
418   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
419 
420   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
421                       Bottom1.getLoBits(TrailBitsKnown1);
422 
423   Known.resetAll();
424   Known.Zero.setHighBits(LeadZ);
425   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
426   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
427 
428   // Only make use of no-wrap flags if we failed to compute the sign bit
429   // directly.  This matters if the multiplication always overflows, in
430   // which case we prefer to follow the result of the direct computation,
431   // though as the program is invoking undefined behaviour we can choose
432   // whatever we like here.
433   if (isKnownNonNegative && !Known.isNegative())
434     Known.makeNonNegative();
435   else if (isKnownNegative && !Known.isNonNegative())
436     Known.makeNegative();
437 }
438 
439 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
440                                              KnownBits &Known) {
441   unsigned BitWidth = Known.getBitWidth();
442   unsigned NumRanges = Ranges.getNumOperands() / 2;
443   assert(NumRanges >= 1);
444 
445   Known.Zero.setAllBits();
446   Known.One.setAllBits();
447 
448   for (unsigned i = 0; i < NumRanges; ++i) {
449     ConstantInt *Lower =
450         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
451     ConstantInt *Upper =
452         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
453     ConstantRange Range(Lower->getValue(), Upper->getValue());
454 
455     // The first CommonPrefixBits of all values in Range are equal.
456     unsigned CommonPrefixBits =
457         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
458 
459     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
460     Known.One &= Range.getUnsignedMax() & Mask;
461     Known.Zero &= ~Range.getUnsignedMax() & Mask;
462   }
463 }
464 
465 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
466   SmallVector<const Value *, 16> WorkSet(1, I);
467   SmallPtrSet<const Value *, 32> Visited;
468   SmallPtrSet<const Value *, 16> EphValues;
469 
470   // The instruction defining an assumption's condition itself is always
471   // considered ephemeral to that assumption (even if it has other
472   // non-ephemeral users). See r246696's test case for an example.
473   if (is_contained(I->operands(), E))
474     return true;
475 
476   while (!WorkSet.empty()) {
477     const Value *V = WorkSet.pop_back_val();
478     if (!Visited.insert(V).second)
479       continue;
480 
481     // If all uses of this value are ephemeral, then so is this value.
482     if (llvm::all_of(V->users(), [&](const User *U) {
483                                    return EphValues.count(U);
484                                  })) {
485       if (V == E)
486         return true;
487 
488       if (V == I || isSafeToSpeculativelyExecute(V)) {
489        EphValues.insert(V);
490        if (const User *U = dyn_cast<User>(V))
491          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
492               J != JE; ++J)
493            WorkSet.push_back(*J);
494       }
495     }
496   }
497 
498   return false;
499 }
500 
501 // Is this an intrinsic that cannot be speculated but also cannot trap?
502 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
503   if (const CallInst *CI = dyn_cast<CallInst>(I))
504     if (Function *F = CI->getCalledFunction())
505       switch (F->getIntrinsicID()) {
506       default: break;
507       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
508       case Intrinsic::assume:
509       case Intrinsic::sideeffect:
510       case Intrinsic::dbg_declare:
511       case Intrinsic::dbg_value:
512       case Intrinsic::dbg_label:
513       case Intrinsic::invariant_start:
514       case Intrinsic::invariant_end:
515       case Intrinsic::lifetime_start:
516       case Intrinsic::lifetime_end:
517       case Intrinsic::objectsize:
518       case Intrinsic::ptr_annotation:
519       case Intrinsic::var_annotation:
520         return true;
521       }
522 
523   return false;
524 }
525 
526 bool llvm::isValidAssumeForContext(const Instruction *Inv,
527                                    const Instruction *CxtI,
528                                    const DominatorTree *DT) {
529   // There are two restrictions on the use of an assume:
530   //  1. The assume must dominate the context (or the control flow must
531   //     reach the assume whenever it reaches the context).
532   //  2. The context must not be in the assume's set of ephemeral values
533   //     (otherwise we will use the assume to prove that the condition
534   //     feeding the assume is trivially true, thus causing the removal of
535   //     the assume).
536 
537   if (DT) {
538     if (DT->dominates(Inv, CxtI))
539       return true;
540   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
541     // We don't have a DT, but this trivially dominates.
542     return true;
543   }
544 
545   // With or without a DT, the only remaining case we will check is if the
546   // instructions are in the same BB.  Give up if that is not the case.
547   if (Inv->getParent() != CxtI->getParent())
548     return false;
549 
550   // If we have a dom tree, then we now know that the assume doesn't dominate
551   // the other instruction.  If we don't have a dom tree then we can check if
552   // the assume is first in the BB.
553   if (!DT) {
554     // Search forward from the assume until we reach the context (or the end
555     // of the block); the common case is that the assume will come first.
556     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
557          IE = Inv->getParent()->end(); I != IE; ++I)
558       if (&*I == CxtI)
559         return true;
560   }
561 
562   // The context comes first, but they're both in the same block. Make sure
563   // there is nothing in between that might interrupt the control flow.
564   for (BasicBlock::const_iterator I =
565          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
566        I != IE; ++I)
567     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
568       return false;
569 
570   return !isEphemeralValueOf(Inv, CxtI);
571 }
572 
573 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
574                                        unsigned Depth, const Query &Q) {
575   // Use of assumptions is context-sensitive. If we don't have a context, we
576   // cannot use them!
577   if (!Q.AC || !Q.CxtI)
578     return;
579 
580   unsigned BitWidth = Known.getBitWidth();
581 
582   // Note that the patterns below need to be kept in sync with the code
583   // in AssumptionCache::updateAffectedValues.
584 
585   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
586     if (!AssumeVH)
587       continue;
588     CallInst *I = cast<CallInst>(AssumeVH);
589     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
590            "Got assumption for the wrong function!");
591     if (Q.isExcluded(I))
592       continue;
593 
594     // Warning: This loop can end up being somewhat performance sensitive.
595     // We're running this loop for once for each value queried resulting in a
596     // runtime of ~O(#assumes * #values).
597 
598     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
599            "must be an assume intrinsic");
600 
601     Value *Arg = I->getArgOperand(0);
602 
603     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
604       assert(BitWidth == 1 && "assume operand is not i1?");
605       Known.setAllOnes();
606       return;
607     }
608     if (match(Arg, m_Not(m_Specific(V))) &&
609         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
610       assert(BitWidth == 1 && "assume operand is not i1?");
611       Known.setAllZero();
612       return;
613     }
614 
615     // The remaining tests are all recursive, so bail out if we hit the limit.
616     if (Depth == MaxDepth)
617       continue;
618 
619     Value *A, *B;
620     auto m_V = m_CombineOr(m_Specific(V),
621                            m_CombineOr(m_PtrToInt(m_Specific(V)),
622                            m_BitCast(m_Specific(V))));
623 
624     CmpInst::Predicate Pred;
625     uint64_t C;
626     // assume(v = a)
627     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
628         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
629       KnownBits RHSKnown(BitWidth);
630       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
631       Known.Zero |= RHSKnown.Zero;
632       Known.One  |= RHSKnown.One;
633     // assume(v & b = a)
634     } else if (match(Arg,
635                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
636                Pred == ICmpInst::ICMP_EQ &&
637                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
638       KnownBits RHSKnown(BitWidth);
639       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
640       KnownBits MaskKnown(BitWidth);
641       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
642 
643       // For those bits in the mask that are known to be one, we can propagate
644       // known bits from the RHS to V.
645       Known.Zero |= RHSKnown.Zero & MaskKnown.One;
646       Known.One  |= RHSKnown.One  & MaskKnown.One;
647     // assume(~(v & b) = a)
648     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
649                                    m_Value(A))) &&
650                Pred == ICmpInst::ICMP_EQ &&
651                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
652       KnownBits RHSKnown(BitWidth);
653       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
654       KnownBits MaskKnown(BitWidth);
655       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
656 
657       // For those bits in the mask that are known to be one, we can propagate
658       // inverted known bits from the RHS to V.
659       Known.Zero |= RHSKnown.One  & MaskKnown.One;
660       Known.One  |= RHSKnown.Zero & MaskKnown.One;
661     // assume(v | b = a)
662     } else if (match(Arg,
663                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
664                Pred == ICmpInst::ICMP_EQ &&
665                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
666       KnownBits RHSKnown(BitWidth);
667       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
668       KnownBits BKnown(BitWidth);
669       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
670 
671       // For those bits in B that are known to be zero, we can propagate known
672       // bits from the RHS to V.
673       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
674       Known.One  |= RHSKnown.One  & BKnown.Zero;
675     // assume(~(v | b) = a)
676     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
677                                    m_Value(A))) &&
678                Pred == ICmpInst::ICMP_EQ &&
679                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
680       KnownBits RHSKnown(BitWidth);
681       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
682       KnownBits BKnown(BitWidth);
683       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
684 
685       // For those bits in B that are known to be zero, we can propagate
686       // inverted known bits from the RHS to V.
687       Known.Zero |= RHSKnown.One  & BKnown.Zero;
688       Known.One  |= RHSKnown.Zero & BKnown.Zero;
689     // assume(v ^ b = a)
690     } else if (match(Arg,
691                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
692                Pred == ICmpInst::ICMP_EQ &&
693                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
694       KnownBits RHSKnown(BitWidth);
695       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
696       KnownBits BKnown(BitWidth);
697       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
698 
699       // For those bits in B that are known to be zero, we can propagate known
700       // bits from the RHS to V. For those bits in B that are known to be one,
701       // we can propagate inverted known bits from the RHS to V.
702       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
703       Known.One  |= RHSKnown.One  & BKnown.Zero;
704       Known.Zero |= RHSKnown.One  & BKnown.One;
705       Known.One  |= RHSKnown.Zero & BKnown.One;
706     // assume(~(v ^ b) = a)
707     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
708                                    m_Value(A))) &&
709                Pred == ICmpInst::ICMP_EQ &&
710                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
711       KnownBits RHSKnown(BitWidth);
712       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
713       KnownBits BKnown(BitWidth);
714       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
715 
716       // For those bits in B that are known to be zero, we can propagate
717       // inverted known bits from the RHS to V. For those bits in B that are
718       // known to be one, we can propagate known bits from the RHS to V.
719       Known.Zero |= RHSKnown.One  & BKnown.Zero;
720       Known.One  |= RHSKnown.Zero & BKnown.Zero;
721       Known.Zero |= RHSKnown.Zero & BKnown.One;
722       Known.One  |= RHSKnown.One  & BKnown.One;
723     // assume(v << c = a)
724     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
725                                    m_Value(A))) &&
726                Pred == ICmpInst::ICMP_EQ &&
727                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
728                C < BitWidth) {
729       KnownBits RHSKnown(BitWidth);
730       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
731       // For those bits in RHS that are known, we can propagate them to known
732       // bits in V shifted to the right by C.
733       RHSKnown.Zero.lshrInPlace(C);
734       Known.Zero |= RHSKnown.Zero;
735       RHSKnown.One.lshrInPlace(C);
736       Known.One  |= RHSKnown.One;
737     // assume(~(v << c) = a)
738     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
739                                    m_Value(A))) &&
740                Pred == ICmpInst::ICMP_EQ &&
741                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
742                C < BitWidth) {
743       KnownBits RHSKnown(BitWidth);
744       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
745       // For those bits in RHS that are known, we can propagate them inverted
746       // to known bits in V shifted to the right by C.
747       RHSKnown.One.lshrInPlace(C);
748       Known.Zero |= RHSKnown.One;
749       RHSKnown.Zero.lshrInPlace(C);
750       Known.One  |= RHSKnown.Zero;
751     // assume(v >> c = a)
752     } else if (match(Arg,
753                      m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
754                               m_Value(A))) &&
755                Pred == ICmpInst::ICMP_EQ &&
756                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
757                C < BitWidth) {
758       KnownBits RHSKnown(BitWidth);
759       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
760       // For those bits in RHS that are known, we can propagate them to known
761       // bits in V shifted to the right by C.
762       Known.Zero |= RHSKnown.Zero << C;
763       Known.One  |= RHSKnown.One  << C;
764     // assume(~(v >> c) = a)
765     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
766                                    m_Value(A))) &&
767                Pred == ICmpInst::ICMP_EQ &&
768                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
769                C < BitWidth) {
770       KnownBits RHSKnown(BitWidth);
771       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
772       // For those bits in RHS that are known, we can propagate them inverted
773       // to known bits in V shifted to the right by C.
774       Known.Zero |= RHSKnown.One  << C;
775       Known.One  |= RHSKnown.Zero << C;
776     // assume(v >=_s c) where c is non-negative
777     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
778                Pred == ICmpInst::ICMP_SGE &&
779                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
780       KnownBits RHSKnown(BitWidth);
781       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
782 
783       if (RHSKnown.isNonNegative()) {
784         // We know that the sign bit is zero.
785         Known.makeNonNegative();
786       }
787     // assume(v >_s c) where c is at least -1.
788     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
789                Pred == ICmpInst::ICMP_SGT &&
790                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
791       KnownBits RHSKnown(BitWidth);
792       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
793 
794       if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
795         // We know that the sign bit is zero.
796         Known.makeNonNegative();
797       }
798     // assume(v <=_s c) where c is negative
799     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
800                Pred == ICmpInst::ICMP_SLE &&
801                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
802       KnownBits RHSKnown(BitWidth);
803       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
804 
805       if (RHSKnown.isNegative()) {
806         // We know that the sign bit is one.
807         Known.makeNegative();
808       }
809     // assume(v <_s c) where c is non-positive
810     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
811                Pred == ICmpInst::ICMP_SLT &&
812                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
813       KnownBits RHSKnown(BitWidth);
814       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
815 
816       if (RHSKnown.isZero() || RHSKnown.isNegative()) {
817         // We know that the sign bit is one.
818         Known.makeNegative();
819       }
820     // assume(v <=_u c)
821     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
822                Pred == ICmpInst::ICMP_ULE &&
823                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
824       KnownBits RHSKnown(BitWidth);
825       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
826 
827       // Whatever high bits in c are zero are known to be zero.
828       Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
829       // assume(v <_u c)
830     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
831                Pred == ICmpInst::ICMP_ULT &&
832                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
833       KnownBits RHSKnown(BitWidth);
834       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
835 
836       // If the RHS is known zero, then this assumption must be wrong (nothing
837       // is unsigned less than zero). Signal a conflict and get out of here.
838       if (RHSKnown.isZero()) {
839         Known.Zero.setAllBits();
840         Known.One.setAllBits();
841         break;
842       }
843 
844       // Whatever high bits in c are zero are known to be zero (if c is a power
845       // of 2, then one more).
846       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
847         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
848       else
849         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
850     }
851   }
852 
853   // If assumptions conflict with each other or previous known bits, then we
854   // have a logical fallacy. It's possible that the assumption is not reachable,
855   // so this isn't a real bug. On the other hand, the program may have undefined
856   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
857   // clear out the known bits, try to warn the user, and hope for the best.
858   if (Known.Zero.intersects(Known.One)) {
859     Known.resetAll();
860 
861     if (Q.ORE)
862       Q.ORE->emit([&]() {
863         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
864         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
865                                           CxtI)
866                << "Detected conflicting code assumptions. Program may "
867                   "have undefined behavior, or compiler may have "
868                   "internal error.";
869       });
870   }
871 }
872 
873 /// Compute known bits from a shift operator, including those with a
874 /// non-constant shift amount. Known is the output of this function. Known2 is a
875 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
876 /// operator-specific functions that, given the known-zero or known-one bits
877 /// respectively, and a shift amount, compute the implied known-zero or
878 /// known-one bits of the shift operator's result respectively for that shift
879 /// amount. The results from calling KZF and KOF are conservatively combined for
880 /// all permitted shift amounts.
881 static void computeKnownBitsFromShiftOperator(
882     const Operator *I, KnownBits &Known, KnownBits &Known2,
883     unsigned Depth, const Query &Q,
884     function_ref<APInt(const APInt &, unsigned)> KZF,
885     function_ref<APInt(const APInt &, unsigned)> KOF) {
886   unsigned BitWidth = Known.getBitWidth();
887 
888   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
889     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
890 
891     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
892     Known.Zero = KZF(Known.Zero, ShiftAmt);
893     Known.One  = KOF(Known.One, ShiftAmt);
894     // If the known bits conflict, this must be an overflowing left shift, so
895     // the shift result is poison. We can return anything we want. Choose 0 for
896     // the best folding opportunity.
897     if (Known.hasConflict())
898       Known.setAllZero();
899 
900     return;
901   }
902 
903   computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
904 
905   // If the shift amount could be greater than or equal to the bit-width of the
906   // LHS, the value could be poison, but bail out because the check below is
907   // expensive. TODO: Should we just carry on?
908   if ((~Known.Zero).uge(BitWidth)) {
909     Known.resetAll();
910     return;
911   }
912 
913   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
914   // BitWidth > 64 and any upper bits are known, we'll end up returning the
915   // limit value (which implies all bits are known).
916   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
917   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
918 
919   // It would be more-clearly correct to use the two temporaries for this
920   // calculation. Reusing the APInts here to prevent unnecessary allocations.
921   Known.resetAll();
922 
923   // If we know the shifter operand is nonzero, we can sometimes infer more
924   // known bits. However this is expensive to compute, so be lazy about it and
925   // only compute it when absolutely necessary.
926   Optional<bool> ShifterOperandIsNonZero;
927 
928   // Early exit if we can't constrain any well-defined shift amount.
929   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
930       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
931     ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
932     if (!*ShifterOperandIsNonZero)
933       return;
934   }
935 
936   computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
937 
938   Known.Zero.setAllBits();
939   Known.One.setAllBits();
940   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
941     // Combine the shifted known input bits only for those shift amounts
942     // compatible with its known constraints.
943     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
944       continue;
945     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
946       continue;
947     // If we know the shifter is nonzero, we may be able to infer more known
948     // bits. This check is sunk down as far as possible to avoid the expensive
949     // call to isKnownNonZero if the cheaper checks above fail.
950     if (ShiftAmt == 0) {
951       if (!ShifterOperandIsNonZero.hasValue())
952         ShifterOperandIsNonZero =
953             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
954       if (*ShifterOperandIsNonZero)
955         continue;
956     }
957 
958     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
959     Known.One  &= KOF(Known2.One, ShiftAmt);
960   }
961 
962   // If the known bits conflict, the result is poison. Return a 0 and hope the
963   // caller can further optimize that.
964   if (Known.hasConflict())
965     Known.setAllZero();
966 }
967 
968 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
969                                          unsigned Depth, const Query &Q) {
970   unsigned BitWidth = Known.getBitWidth();
971 
972   KnownBits Known2(Known);
973   switch (I->getOpcode()) {
974   default: break;
975   case Instruction::Load:
976     if (MDNode *MD =
977             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
978       computeKnownBitsFromRangeMetadata(*MD, Known);
979     break;
980   case Instruction::And: {
981     // If either the LHS or the RHS are Zero, the result is zero.
982     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
983     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
984 
985     // Output known-1 bits are only known if set in both the LHS & RHS.
986     Known.One &= Known2.One;
987     // Output known-0 are known to be clear if zero in either the LHS | RHS.
988     Known.Zero |= Known2.Zero;
989 
990     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
991     // here we handle the more general case of adding any odd number by
992     // matching the form add(x, add(x, y)) where y is odd.
993     // TODO: This could be generalized to clearing any bit set in y where the
994     // following bit is known to be unset in y.
995     Value *X = nullptr, *Y = nullptr;
996     if (!Known.Zero[0] && !Known.One[0] &&
997         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
998       Known2.resetAll();
999       computeKnownBits(Y, Known2, Depth + 1, Q);
1000       if (Known2.countMinTrailingOnes() > 0)
1001         Known.Zero.setBit(0);
1002     }
1003     break;
1004   }
1005   case Instruction::Or:
1006     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1007     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1008 
1009     // Output known-0 bits are only known if clear in both the LHS & RHS.
1010     Known.Zero &= Known2.Zero;
1011     // Output known-1 are known to be set if set in either the LHS | RHS.
1012     Known.One |= Known2.One;
1013     break;
1014   case Instruction::Xor: {
1015     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1016     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1017 
1018     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1019     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1020     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1021     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1022     Known.Zero = std::move(KnownZeroOut);
1023     break;
1024   }
1025   case Instruction::Mul: {
1026     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1027     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1028                         Known2, Depth, Q);
1029     break;
1030   }
1031   case Instruction::UDiv: {
1032     // For the purposes of computing leading zeros we can conservatively
1033     // treat a udiv as a logical right shift by the power of 2 known to
1034     // be less than the denominator.
1035     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1036     unsigned LeadZ = Known2.countMinLeadingZeros();
1037 
1038     Known2.resetAll();
1039     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1040     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1041     if (RHSMaxLeadingZeros != BitWidth)
1042       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1043 
1044     Known.Zero.setHighBits(LeadZ);
1045     break;
1046   }
1047   case Instruction::Select: {
1048     const Value *LHS, *RHS;
1049     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1050     if (SelectPatternResult::isMinOrMax(SPF)) {
1051       computeKnownBits(RHS, Known, Depth + 1, Q);
1052       computeKnownBits(LHS, Known2, Depth + 1, Q);
1053     } else {
1054       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1055       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1056     }
1057 
1058     unsigned MaxHighOnes = 0;
1059     unsigned MaxHighZeros = 0;
1060     if (SPF == SPF_SMAX) {
1061       // If both sides are negative, the result is negative.
1062       if (Known.isNegative() && Known2.isNegative())
1063         // We can derive a lower bound on the result by taking the max of the
1064         // leading one bits.
1065         MaxHighOnes =
1066             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1067       // If either side is non-negative, the result is non-negative.
1068       else if (Known.isNonNegative() || Known2.isNonNegative())
1069         MaxHighZeros = 1;
1070     } else if (SPF == SPF_SMIN) {
1071       // If both sides are non-negative, the result is non-negative.
1072       if (Known.isNonNegative() && Known2.isNonNegative())
1073         // We can derive an upper bound on the result by taking the max of the
1074         // leading zero bits.
1075         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1076                                 Known2.countMinLeadingZeros());
1077       // If either side is negative, the result is negative.
1078       else if (Known.isNegative() || Known2.isNegative())
1079         MaxHighOnes = 1;
1080     } else if (SPF == SPF_UMAX) {
1081       // We can derive a lower bound on the result by taking the max of the
1082       // leading one bits.
1083       MaxHighOnes =
1084           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1085     } else if (SPF == SPF_UMIN) {
1086       // We can derive an upper bound on the result by taking the max of the
1087       // leading zero bits.
1088       MaxHighZeros =
1089           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1090     } else if (SPF == SPF_ABS) {
1091       // RHS from matchSelectPattern returns the negation part of abs pattern.
1092       // If the negate has an NSW flag we can assume the sign bit of the result
1093       // will be 0 because that makes abs(INT_MIN) undefined.
1094       if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1095         MaxHighZeros = 1;
1096     }
1097 
1098     // Only known if known in both the LHS and RHS.
1099     Known.One &= Known2.One;
1100     Known.Zero &= Known2.Zero;
1101     if (MaxHighOnes > 0)
1102       Known.One.setHighBits(MaxHighOnes);
1103     if (MaxHighZeros > 0)
1104       Known.Zero.setHighBits(MaxHighZeros);
1105     break;
1106   }
1107   case Instruction::FPTrunc:
1108   case Instruction::FPExt:
1109   case Instruction::FPToUI:
1110   case Instruction::FPToSI:
1111   case Instruction::SIToFP:
1112   case Instruction::UIToFP:
1113     break; // Can't work with floating point.
1114   case Instruction::PtrToInt:
1115   case Instruction::IntToPtr:
1116     // Fall through and handle them the same as zext/trunc.
1117     LLVM_FALLTHROUGH;
1118   case Instruction::ZExt:
1119   case Instruction::Trunc: {
1120     Type *SrcTy = I->getOperand(0)->getType();
1121 
1122     unsigned SrcBitWidth;
1123     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1124     // which fall through here.
1125     Type *ScalarTy = SrcTy->getScalarType();
1126     SrcBitWidth = ScalarTy->isPointerTy() ?
1127       Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1128       Q.DL.getTypeSizeInBits(ScalarTy);
1129 
1130     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1131     Known = Known.zextOrTrunc(SrcBitWidth);
1132     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1133     Known = Known.zextOrTrunc(BitWidth);
1134     // Any top bits are known to be zero.
1135     if (BitWidth > SrcBitWidth)
1136       Known.Zero.setBitsFrom(SrcBitWidth);
1137     break;
1138   }
1139   case Instruction::BitCast: {
1140     Type *SrcTy = I->getOperand(0)->getType();
1141     if (SrcTy->isIntOrPtrTy() &&
1142         // TODO: For now, not handling conversions like:
1143         // (bitcast i64 %x to <2 x i32>)
1144         !I->getType()->isVectorTy()) {
1145       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1146       break;
1147     }
1148     break;
1149   }
1150   case Instruction::SExt: {
1151     // Compute the bits in the result that are not present in the input.
1152     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1153 
1154     Known = Known.trunc(SrcBitWidth);
1155     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1156     // If the sign bit of the input is known set or clear, then we know the
1157     // top bits of the result.
1158     Known = Known.sext(BitWidth);
1159     break;
1160   }
1161   case Instruction::Shl: {
1162     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1163     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1164     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1165       APInt KZResult = KnownZero << ShiftAmt;
1166       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1167       // If this shift has "nsw" keyword, then the result is either a poison
1168       // value or has the same sign bit as the first operand.
1169       if (NSW && KnownZero.isSignBitSet())
1170         KZResult.setSignBit();
1171       return KZResult;
1172     };
1173 
1174     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1175       APInt KOResult = KnownOne << ShiftAmt;
1176       if (NSW && KnownOne.isSignBitSet())
1177         KOResult.setSignBit();
1178       return KOResult;
1179     };
1180 
1181     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1182     break;
1183   }
1184   case Instruction::LShr: {
1185     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1186     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1187       APInt KZResult = KnownZero.lshr(ShiftAmt);
1188       // High bits known zero.
1189       KZResult.setHighBits(ShiftAmt);
1190       return KZResult;
1191     };
1192 
1193     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1194       return KnownOne.lshr(ShiftAmt);
1195     };
1196 
1197     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1198     break;
1199   }
1200   case Instruction::AShr: {
1201     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1202     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1203       return KnownZero.ashr(ShiftAmt);
1204     };
1205 
1206     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1207       return KnownOne.ashr(ShiftAmt);
1208     };
1209 
1210     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1211     break;
1212   }
1213   case Instruction::Sub: {
1214     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1215     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1216                            Known, Known2, Depth, Q);
1217     break;
1218   }
1219   case Instruction::Add: {
1220     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1221     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1222                            Known, Known2, Depth, Q);
1223     break;
1224   }
1225   case Instruction::SRem:
1226     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1227       APInt RA = Rem->getValue().abs();
1228       if (RA.isPowerOf2()) {
1229         APInt LowBits = RA - 1;
1230         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1231 
1232         // The low bits of the first operand are unchanged by the srem.
1233         Known.Zero = Known2.Zero & LowBits;
1234         Known.One = Known2.One & LowBits;
1235 
1236         // If the first operand is non-negative or has all low bits zero, then
1237         // the upper bits are all zero.
1238         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1239           Known.Zero |= ~LowBits;
1240 
1241         // If the first operand is negative and not all low bits are zero, then
1242         // the upper bits are all one.
1243         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1244           Known.One |= ~LowBits;
1245 
1246         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1247         break;
1248       }
1249     }
1250 
1251     // The sign bit is the LHS's sign bit, except when the result of the
1252     // remainder is zero.
1253     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1254     // If it's known zero, our sign bit is also zero.
1255     if (Known2.isNonNegative())
1256       Known.makeNonNegative();
1257 
1258     break;
1259   case Instruction::URem: {
1260     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1261       const APInt &RA = Rem->getValue();
1262       if (RA.isPowerOf2()) {
1263         APInt LowBits = (RA - 1);
1264         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1265         Known.Zero |= ~LowBits;
1266         Known.One &= LowBits;
1267         break;
1268       }
1269     }
1270 
1271     // Since the result is less than or equal to either operand, any leading
1272     // zero bits in either operand must also exist in the result.
1273     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1274     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1275 
1276     unsigned Leaders =
1277         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1278     Known.resetAll();
1279     Known.Zero.setHighBits(Leaders);
1280     break;
1281   }
1282 
1283   case Instruction::Alloca: {
1284     const AllocaInst *AI = cast<AllocaInst>(I);
1285     unsigned Align = AI->getAlignment();
1286     if (Align == 0)
1287       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1288 
1289     if (Align > 0)
1290       Known.Zero.setLowBits(countTrailingZeros(Align));
1291     break;
1292   }
1293   case Instruction::GetElementPtr: {
1294     // Analyze all of the subscripts of this getelementptr instruction
1295     // to determine if we can prove known low zero bits.
1296     KnownBits LocalKnown(BitWidth);
1297     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1298     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1299 
1300     gep_type_iterator GTI = gep_type_begin(I);
1301     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1302       Value *Index = I->getOperand(i);
1303       if (StructType *STy = GTI.getStructTypeOrNull()) {
1304         // Handle struct member offset arithmetic.
1305 
1306         // Handle case when index is vector zeroinitializer
1307         Constant *CIndex = cast<Constant>(Index);
1308         if (CIndex->isZeroValue())
1309           continue;
1310 
1311         if (CIndex->getType()->isVectorTy())
1312           Index = CIndex->getSplatValue();
1313 
1314         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1315         const StructLayout *SL = Q.DL.getStructLayout(STy);
1316         uint64_t Offset = SL->getElementOffset(Idx);
1317         TrailZ = std::min<unsigned>(TrailZ,
1318                                     countTrailingZeros(Offset));
1319       } else {
1320         // Handle array index arithmetic.
1321         Type *IndexedTy = GTI.getIndexedType();
1322         if (!IndexedTy->isSized()) {
1323           TrailZ = 0;
1324           break;
1325         }
1326         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1327         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1328         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1329         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1330         TrailZ = std::min(TrailZ,
1331                           unsigned(countTrailingZeros(TypeSize) +
1332                                    LocalKnown.countMinTrailingZeros()));
1333       }
1334     }
1335 
1336     Known.Zero.setLowBits(TrailZ);
1337     break;
1338   }
1339   case Instruction::PHI: {
1340     const PHINode *P = cast<PHINode>(I);
1341     // Handle the case of a simple two-predecessor recurrence PHI.
1342     // There's a lot more that could theoretically be done here, but
1343     // this is sufficient to catch some interesting cases.
1344     if (P->getNumIncomingValues() == 2) {
1345       for (unsigned i = 0; i != 2; ++i) {
1346         Value *L = P->getIncomingValue(i);
1347         Value *R = P->getIncomingValue(!i);
1348         Operator *LU = dyn_cast<Operator>(L);
1349         if (!LU)
1350           continue;
1351         unsigned Opcode = LU->getOpcode();
1352         // Check for operations that have the property that if
1353         // both their operands have low zero bits, the result
1354         // will have low zero bits.
1355         if (Opcode == Instruction::Add ||
1356             Opcode == Instruction::Sub ||
1357             Opcode == Instruction::And ||
1358             Opcode == Instruction::Or ||
1359             Opcode == Instruction::Mul) {
1360           Value *LL = LU->getOperand(0);
1361           Value *LR = LU->getOperand(1);
1362           // Find a recurrence.
1363           if (LL == I)
1364             L = LR;
1365           else if (LR == I)
1366             L = LL;
1367           else
1368             break;
1369           // Ok, we have a PHI of the form L op= R. Check for low
1370           // zero bits.
1371           computeKnownBits(R, Known2, Depth + 1, Q);
1372 
1373           // We need to take the minimum number of known bits
1374           KnownBits Known3(Known);
1375           computeKnownBits(L, Known3, Depth + 1, Q);
1376 
1377           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1378                                          Known3.countMinTrailingZeros()));
1379 
1380           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1381           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1382             // If initial value of recurrence is nonnegative, and we are adding
1383             // a nonnegative number with nsw, the result can only be nonnegative
1384             // or poison value regardless of the number of times we execute the
1385             // add in phi recurrence. If initial value is negative and we are
1386             // adding a negative number with nsw, the result can only be
1387             // negative or poison value. Similar arguments apply to sub and mul.
1388             //
1389             // (add non-negative, non-negative) --> non-negative
1390             // (add negative, negative) --> negative
1391             if (Opcode == Instruction::Add) {
1392               if (Known2.isNonNegative() && Known3.isNonNegative())
1393                 Known.makeNonNegative();
1394               else if (Known2.isNegative() && Known3.isNegative())
1395                 Known.makeNegative();
1396             }
1397 
1398             // (sub nsw non-negative, negative) --> non-negative
1399             // (sub nsw negative, non-negative) --> negative
1400             else if (Opcode == Instruction::Sub && LL == I) {
1401               if (Known2.isNonNegative() && Known3.isNegative())
1402                 Known.makeNonNegative();
1403               else if (Known2.isNegative() && Known3.isNonNegative())
1404                 Known.makeNegative();
1405             }
1406 
1407             // (mul nsw non-negative, non-negative) --> non-negative
1408             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1409                      Known3.isNonNegative())
1410               Known.makeNonNegative();
1411           }
1412 
1413           break;
1414         }
1415       }
1416     }
1417 
1418     // Unreachable blocks may have zero-operand PHI nodes.
1419     if (P->getNumIncomingValues() == 0)
1420       break;
1421 
1422     // Otherwise take the unions of the known bit sets of the operands,
1423     // taking conservative care to avoid excessive recursion.
1424     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1425       // Skip if every incoming value references to ourself.
1426       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1427         break;
1428 
1429       Known.Zero.setAllBits();
1430       Known.One.setAllBits();
1431       for (Value *IncValue : P->incoming_values()) {
1432         // Skip direct self references.
1433         if (IncValue == P) continue;
1434 
1435         Known2 = KnownBits(BitWidth);
1436         // Recurse, but cap the recursion to one level, because we don't
1437         // want to waste time spinning around in loops.
1438         computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1439         Known.Zero &= Known2.Zero;
1440         Known.One &= Known2.One;
1441         // If all bits have been ruled out, there's no need to check
1442         // more operands.
1443         if (!Known.Zero && !Known.One)
1444           break;
1445       }
1446     }
1447     break;
1448   }
1449   case Instruction::Call:
1450   case Instruction::Invoke:
1451     // If range metadata is attached to this call, set known bits from that,
1452     // and then intersect with known bits based on other properties of the
1453     // function.
1454     if (MDNode *MD =
1455             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1456       computeKnownBitsFromRangeMetadata(*MD, Known);
1457     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1458       computeKnownBits(RV, Known2, Depth + 1, Q);
1459       Known.Zero |= Known2.Zero;
1460       Known.One |= Known2.One;
1461     }
1462     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1463       switch (II->getIntrinsicID()) {
1464       default: break;
1465       case Intrinsic::bitreverse:
1466         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1467         Known.Zero |= Known2.Zero.reverseBits();
1468         Known.One |= Known2.One.reverseBits();
1469         break;
1470       case Intrinsic::bswap:
1471         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1472         Known.Zero |= Known2.Zero.byteSwap();
1473         Known.One |= Known2.One.byteSwap();
1474         break;
1475       case Intrinsic::ctlz: {
1476         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1477         // If we have a known 1, its position is our upper bound.
1478         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1479         // If this call is undefined for 0, the result will be less than 2^n.
1480         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1481           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1482         unsigned LowBits = Log2_32(PossibleLZ)+1;
1483         Known.Zero.setBitsFrom(LowBits);
1484         break;
1485       }
1486       case Intrinsic::cttz: {
1487         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1488         // If we have a known 1, its position is our upper bound.
1489         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1490         // If this call is undefined for 0, the result will be less than 2^n.
1491         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1492           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1493         unsigned LowBits = Log2_32(PossibleTZ)+1;
1494         Known.Zero.setBitsFrom(LowBits);
1495         break;
1496       }
1497       case Intrinsic::ctpop: {
1498         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1499         // We can bound the space the count needs.  Also, bits known to be zero
1500         // can't contribute to the population.
1501         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1502         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1503         Known.Zero.setBitsFrom(LowBits);
1504         // TODO: we could bound KnownOne using the lower bound on the number
1505         // of bits which might be set provided by popcnt KnownOne2.
1506         break;
1507       }
1508       case Intrinsic::fshr:
1509       case Intrinsic::fshl: {
1510         const APInt *SA;
1511         if (!match(I->getOperand(2), m_APInt(SA)))
1512           break;
1513 
1514         // Normalize to funnel shift left.
1515         uint64_t ShiftAmt = SA->urem(BitWidth);
1516         if (II->getIntrinsicID() == Intrinsic::fshr)
1517           ShiftAmt = BitWidth - ShiftAmt;
1518 
1519         KnownBits Known3(Known);
1520         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1521         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1522 
1523         Known.Zero =
1524             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1525         Known.One =
1526             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1527         break;
1528       }
1529       case Intrinsic::x86_sse42_crc32_64_64:
1530         Known.Zero.setBitsFrom(32);
1531         break;
1532       }
1533     }
1534     break;
1535   case Instruction::ExtractElement:
1536     // Look through extract element. At the moment we keep this simple and skip
1537     // tracking the specific element. But at least we might find information
1538     // valid for all elements of the vector (for example if vector is sign
1539     // extended, shifted, etc).
1540     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1541     break;
1542   case Instruction::ExtractValue:
1543     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1544       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1545       if (EVI->getNumIndices() != 1) break;
1546       if (EVI->getIndices()[0] == 0) {
1547         switch (II->getIntrinsicID()) {
1548         default: break;
1549         case Intrinsic::uadd_with_overflow:
1550         case Intrinsic::sadd_with_overflow:
1551           computeKnownBitsAddSub(true, II->getArgOperand(0),
1552                                  II->getArgOperand(1), false, Known, Known2,
1553                                  Depth, Q);
1554           break;
1555         case Intrinsic::usub_with_overflow:
1556         case Intrinsic::ssub_with_overflow:
1557           computeKnownBitsAddSub(false, II->getArgOperand(0),
1558                                  II->getArgOperand(1), false, Known, Known2,
1559                                  Depth, Q);
1560           break;
1561         case Intrinsic::umul_with_overflow:
1562         case Intrinsic::smul_with_overflow:
1563           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1564                               Known, Known2, Depth, Q);
1565           break;
1566         }
1567       }
1568     }
1569   }
1570 }
1571 
1572 /// Determine which bits of V are known to be either zero or one and return
1573 /// them.
1574 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1575   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1576   computeKnownBits(V, Known, Depth, Q);
1577   return Known;
1578 }
1579 
1580 /// Determine which bits of V are known to be either zero or one and return
1581 /// them in the Known bit set.
1582 ///
1583 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1584 /// we cannot optimize based on the assumption that it is zero without changing
1585 /// it to be an explicit zero.  If we don't change it to zero, other code could
1586 /// optimized based on the contradictory assumption that it is non-zero.
1587 /// Because instcombine aggressively folds operations with undef args anyway,
1588 /// this won't lose us code quality.
1589 ///
1590 /// This function is defined on values with integer type, values with pointer
1591 /// type, and vectors of integers.  In the case
1592 /// where V is a vector, known zero, and known one values are the
1593 /// same width as the vector element, and the bit is set only if it is true
1594 /// for all of the elements in the vector.
1595 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1596                       const Query &Q) {
1597   assert(V && "No Value?");
1598   assert(Depth <= MaxDepth && "Limit Search Depth");
1599   unsigned BitWidth = Known.getBitWidth();
1600 
1601   assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1602           V->getType()->isPtrOrPtrVectorTy()) &&
1603          "Not integer or pointer type!");
1604 
1605   Type *ScalarTy = V->getType()->getScalarType();
1606   unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1607     Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1608   assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1609   (void)BitWidth;
1610   (void)ExpectedWidth;
1611 
1612   const APInt *C;
1613   if (match(V, m_APInt(C))) {
1614     // We know all of the bits for a scalar constant or a splat vector constant!
1615     Known.One = *C;
1616     Known.Zero = ~Known.One;
1617     return;
1618   }
1619   // Null and aggregate-zero are all-zeros.
1620   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1621     Known.setAllZero();
1622     return;
1623   }
1624   // Handle a constant vector by taking the intersection of the known bits of
1625   // each element.
1626   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1627     // We know that CDS must be a vector of integers. Take the intersection of
1628     // each element.
1629     Known.Zero.setAllBits(); Known.One.setAllBits();
1630     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1631       APInt Elt = CDS->getElementAsAPInt(i);
1632       Known.Zero &= ~Elt;
1633       Known.One &= Elt;
1634     }
1635     return;
1636   }
1637 
1638   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1639     // We know that CV must be a vector of integers. Take the intersection of
1640     // each element.
1641     Known.Zero.setAllBits(); Known.One.setAllBits();
1642     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1643       Constant *Element = CV->getAggregateElement(i);
1644       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1645       if (!ElementCI) {
1646         Known.resetAll();
1647         return;
1648       }
1649       const APInt &Elt = ElementCI->getValue();
1650       Known.Zero &= ~Elt;
1651       Known.One &= Elt;
1652     }
1653     return;
1654   }
1655 
1656   // Start out not knowing anything.
1657   Known.resetAll();
1658 
1659   // We can't imply anything about undefs.
1660   if (isa<UndefValue>(V))
1661     return;
1662 
1663   // There's no point in looking through other users of ConstantData for
1664   // assumptions.  Confirm that we've handled them all.
1665   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1666 
1667   // Limit search depth.
1668   // All recursive calls that increase depth must come after this.
1669   if (Depth == MaxDepth)
1670     return;
1671 
1672   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1673   // the bits of its aliasee.
1674   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1675     if (!GA->isInterposable())
1676       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1677     return;
1678   }
1679 
1680   if (const Operator *I = dyn_cast<Operator>(V))
1681     computeKnownBitsFromOperator(I, Known, Depth, Q);
1682 
1683   // Aligned pointers have trailing zeros - refine Known.Zero set
1684   if (V->getType()->isPointerTy()) {
1685     unsigned Align = V->getPointerAlignment(Q.DL);
1686     if (Align)
1687       Known.Zero.setLowBits(countTrailingZeros(Align));
1688   }
1689 
1690   // computeKnownBitsFromAssume strictly refines Known.
1691   // Therefore, we run them after computeKnownBitsFromOperator.
1692 
1693   // Check whether a nearby assume intrinsic can determine some known bits.
1694   computeKnownBitsFromAssume(V, Known, Depth, Q);
1695 
1696   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1697 }
1698 
1699 /// Return true if the given value is known to have exactly one
1700 /// bit set when defined. For vectors return true if every element is known to
1701 /// be a power of two when defined. Supports values with integer or pointer
1702 /// types and vectors of integers.
1703 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1704                             const Query &Q) {
1705   assert(Depth <= MaxDepth && "Limit Search Depth");
1706 
1707   // Attempt to match against constants.
1708   if (OrZero && match(V, m_Power2OrZero()))
1709       return true;
1710   if (match(V, m_Power2()))
1711       return true;
1712 
1713   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1714   // it is shifted off the end then the result is undefined.
1715   if (match(V, m_Shl(m_One(), m_Value())))
1716     return true;
1717 
1718   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1719   // the bottom.  If it is shifted off the bottom then the result is undefined.
1720   if (match(V, m_LShr(m_SignMask(), m_Value())))
1721     return true;
1722 
1723   // The remaining tests are all recursive, so bail out if we hit the limit.
1724   if (Depth++ == MaxDepth)
1725     return false;
1726 
1727   Value *X = nullptr, *Y = nullptr;
1728   // A shift left or a logical shift right of a power of two is a power of two
1729   // or zero.
1730   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1731                  match(V, m_LShr(m_Value(X), m_Value()))))
1732     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1733 
1734   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1735     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1736 
1737   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1738     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1739            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1740 
1741   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1742     // A power of two and'd with anything is a power of two or zero.
1743     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1744         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1745       return true;
1746     // X & (-X) is always a power of two or zero.
1747     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1748       return true;
1749     return false;
1750   }
1751 
1752   // Adding a power-of-two or zero to the same power-of-two or zero yields
1753   // either the original power-of-two, a larger power-of-two or zero.
1754   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1755     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1756     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1757         Q.IIQ.hasNoSignedWrap(VOBO)) {
1758       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1759           match(X, m_And(m_Value(), m_Specific(Y))))
1760         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1761           return true;
1762       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1763           match(Y, m_And(m_Value(), m_Specific(X))))
1764         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1765           return true;
1766 
1767       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1768       KnownBits LHSBits(BitWidth);
1769       computeKnownBits(X, LHSBits, Depth, Q);
1770 
1771       KnownBits RHSBits(BitWidth);
1772       computeKnownBits(Y, RHSBits, Depth, Q);
1773       // If i8 V is a power of two or zero:
1774       //  ZeroBits: 1 1 1 0 1 1 1 1
1775       // ~ZeroBits: 0 0 0 1 0 0 0 0
1776       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1777         // If OrZero isn't set, we cannot give back a zero result.
1778         // Make sure either the LHS or RHS has a bit set.
1779         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1780           return true;
1781     }
1782   }
1783 
1784   // An exact divide or right shift can only shift off zero bits, so the result
1785   // is a power of two only if the first operand is a power of two and not
1786   // copying a sign bit (sdiv int_min, 2).
1787   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1788       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1789     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1790                                   Depth, Q);
1791   }
1792 
1793   return false;
1794 }
1795 
1796 /// Test whether a GEP's result is known to be non-null.
1797 ///
1798 /// Uses properties inherent in a GEP to try to determine whether it is known
1799 /// to be non-null.
1800 ///
1801 /// Currently this routine does not support vector GEPs.
1802 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1803                               const Query &Q) {
1804   const Function *F = nullptr;
1805   if (const Instruction *I = dyn_cast<Instruction>(GEP))
1806     F = I->getFunction();
1807 
1808   if (!GEP->isInBounds() ||
1809       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1810     return false;
1811 
1812   // FIXME: Support vector-GEPs.
1813   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1814 
1815   // If the base pointer is non-null, we cannot walk to a null address with an
1816   // inbounds GEP in address space zero.
1817   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1818     return true;
1819 
1820   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1821   // If so, then the GEP cannot produce a null pointer, as doing so would
1822   // inherently violate the inbounds contract within address space zero.
1823   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1824        GTI != GTE; ++GTI) {
1825     // Struct types are easy -- they must always be indexed by a constant.
1826     if (StructType *STy = GTI.getStructTypeOrNull()) {
1827       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1828       unsigned ElementIdx = OpC->getZExtValue();
1829       const StructLayout *SL = Q.DL.getStructLayout(STy);
1830       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1831       if (ElementOffset > 0)
1832         return true;
1833       continue;
1834     }
1835 
1836     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1837     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1838       continue;
1839 
1840     // Fast path the constant operand case both for efficiency and so we don't
1841     // increment Depth when just zipping down an all-constant GEP.
1842     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1843       if (!OpC->isZero())
1844         return true;
1845       continue;
1846     }
1847 
1848     // We post-increment Depth here because while isKnownNonZero increments it
1849     // as well, when we pop back up that increment won't persist. We don't want
1850     // to recurse 10k times just because we have 10k GEP operands. We don't
1851     // bail completely out because we want to handle constant GEPs regardless
1852     // of depth.
1853     if (Depth++ >= MaxDepth)
1854       continue;
1855 
1856     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1857       return true;
1858   }
1859 
1860   return false;
1861 }
1862 
1863 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1864                                                   const Instruction *CtxI,
1865                                                   const DominatorTree *DT) {
1866   assert(V->getType()->isPointerTy() && "V must be pointer type");
1867   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1868 
1869   if (!CtxI || !DT)
1870     return false;
1871 
1872   unsigned NumUsesExplored = 0;
1873   for (auto *U : V->users()) {
1874     // Avoid massive lists
1875     if (NumUsesExplored >= DomConditionsMaxUses)
1876       break;
1877     NumUsesExplored++;
1878 
1879     // If the value is used as an argument to a call or invoke, then argument
1880     // attributes may provide an answer about null-ness.
1881     if (auto CS = ImmutableCallSite(U))
1882       if (auto *CalledFunc = CS.getCalledFunction())
1883         for (const Argument &Arg : CalledFunc->args())
1884           if (CS.getArgOperand(Arg.getArgNo()) == V &&
1885               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1886             return true;
1887 
1888     // Consider only compare instructions uniquely controlling a branch
1889     CmpInst::Predicate Pred;
1890     if (!match(const_cast<User *>(U),
1891                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1892         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1893       continue;
1894 
1895     SmallVector<const User *, 4> WorkList;
1896     SmallPtrSet<const User *, 4> Visited;
1897     for (auto *CmpU : U->users()) {
1898       assert(WorkList.empty() && "Should be!");
1899       if (Visited.insert(CmpU).second)
1900         WorkList.push_back(CmpU);
1901 
1902       while (!WorkList.empty()) {
1903         auto *Curr = WorkList.pop_back_val();
1904 
1905         // If a user is an AND, add all its users to the work list. We only
1906         // propagate "pred != null" condition through AND because it is only
1907         // correct to assume that all conditions of AND are met in true branch.
1908         // TODO: Support similar logic of OR and EQ predicate?
1909         if (Pred == ICmpInst::ICMP_NE)
1910           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1911             if (BO->getOpcode() == Instruction::And) {
1912               for (auto *BOU : BO->users())
1913                 if (Visited.insert(BOU).second)
1914                   WorkList.push_back(BOU);
1915               continue;
1916             }
1917 
1918         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1919           assert(BI->isConditional() && "uses a comparison!");
1920 
1921           BasicBlock *NonNullSuccessor =
1922               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1923           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1924           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1925             return true;
1926         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1927                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
1928           return true;
1929         }
1930       }
1931     }
1932   }
1933 
1934   return false;
1935 }
1936 
1937 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1938 /// ensure that the value it's attached to is never Value?  'RangeType' is
1939 /// is the type of the value described by the range.
1940 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1941   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1942   assert(NumRanges >= 1);
1943   for (unsigned i = 0; i < NumRanges; ++i) {
1944     ConstantInt *Lower =
1945         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1946     ConstantInt *Upper =
1947         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1948     ConstantRange Range(Lower->getValue(), Upper->getValue());
1949     if (Range.contains(Value))
1950       return false;
1951   }
1952   return true;
1953 }
1954 
1955 /// Return true if the given value is known to be non-zero when defined. For
1956 /// vectors, return true if every element is known to be non-zero when
1957 /// defined. For pointers, if the context instruction and dominator tree are
1958 /// specified, perform context-sensitive analysis and return true if the
1959 /// pointer couldn't possibly be null at the specified instruction.
1960 /// Supports values with integer or pointer type and vectors of integers.
1961 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1962   if (auto *C = dyn_cast<Constant>(V)) {
1963     if (C->isNullValue())
1964       return false;
1965     if (isa<ConstantInt>(C))
1966       // Must be non-zero due to null test above.
1967       return true;
1968 
1969     // For constant vectors, check that all elements are undefined or known
1970     // non-zero to determine that the whole vector is known non-zero.
1971     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1972       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1973         Constant *Elt = C->getAggregateElement(i);
1974         if (!Elt || Elt->isNullValue())
1975           return false;
1976         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1977           return false;
1978       }
1979       return true;
1980     }
1981 
1982     // A global variable in address space 0 is non null unless extern weak
1983     // or an absolute symbol reference. Other address spaces may have null as a
1984     // valid address for a global, so we can't assume anything.
1985     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1986       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1987           GV->getType()->getAddressSpace() == 0)
1988         return true;
1989     } else
1990       return false;
1991   }
1992 
1993   if (auto *I = dyn_cast<Instruction>(V)) {
1994     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
1995       // If the possible ranges don't contain zero, then the value is
1996       // definitely non-zero.
1997       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1998         const APInt ZeroValue(Ty->getBitWidth(), 0);
1999         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2000           return true;
2001       }
2002     }
2003   }
2004 
2005   // Some of the tests below are recursive, so bail out if we hit the limit.
2006   if (Depth++ >= MaxDepth)
2007     return false;
2008 
2009   // Check for pointer simplifications.
2010   if (V->getType()->isPointerTy()) {
2011     // Alloca never returns null, malloc might.
2012     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2013       return true;
2014 
2015     // A byval, inalloca, or nonnull argument is never null.
2016     if (const Argument *A = dyn_cast<Argument>(V))
2017       if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2018         return true;
2019 
2020     // A Load tagged with nonnull metadata is never null.
2021     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2022       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2023         return true;
2024 
2025     if (const auto *Call = dyn_cast<CallBase>(V)) {
2026       if (Call->isReturnNonNull())
2027         return true;
2028       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call))
2029         return isKnownNonZero(RP, Depth, Q);
2030     }
2031   }
2032 
2033 
2034   // Check for recursive pointer simplifications.
2035   if (V->getType()->isPointerTy()) {
2036     if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2037       return true;
2038 
2039     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2040     // do not alter the value, or at least not the nullness property of the
2041     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2042     //
2043     // Note that we have to take special care to avoid looking through
2044     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2045     // as casts that can alter the value, e.g., AddrSpaceCasts.
2046     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2047       if (isGEPKnownNonNull(GEP, Depth, Q))
2048         return true;
2049 
2050     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2051       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2052 
2053     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2054       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2055           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2056         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2057   }
2058 
2059   // Similar to int2ptr above, we can look through ptr2int here if the cast
2060   // is a no-op or an extend and not a truncate.
2061   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2062     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2063         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2064       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2065 
2066   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2067 
2068   // X | Y != 0 if X != 0 or Y != 0.
2069   Value *X = nullptr, *Y = nullptr;
2070   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2071     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2072 
2073   // ext X != 0 if X != 0.
2074   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2075     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2076 
2077   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2078   // if the lowest bit is shifted off the end.
2079   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2080     // shl nuw can't remove any non-zero bits.
2081     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2082     if (Q.IIQ.hasNoUnsignedWrap(BO))
2083       return isKnownNonZero(X, Depth, Q);
2084 
2085     KnownBits Known(BitWidth);
2086     computeKnownBits(X, Known, Depth, Q);
2087     if (Known.One[0])
2088       return true;
2089   }
2090   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2091   // defined if the sign bit is shifted off the end.
2092   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2093     // shr exact can only shift out zero bits.
2094     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2095     if (BO->isExact())
2096       return isKnownNonZero(X, Depth, Q);
2097 
2098     KnownBits Known = computeKnownBits(X, Depth, Q);
2099     if (Known.isNegative())
2100       return true;
2101 
2102     // If the shifter operand is a constant, and all of the bits shifted
2103     // out are known to be zero, and X is known non-zero then at least one
2104     // non-zero bit must remain.
2105     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2106       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2107       // Is there a known one in the portion not shifted out?
2108       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2109         return true;
2110       // Are all the bits to be shifted out known zero?
2111       if (Known.countMinTrailingZeros() >= ShiftVal)
2112         return isKnownNonZero(X, Depth, Q);
2113     }
2114   }
2115   // div exact can only produce a zero if the dividend is zero.
2116   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2117     return isKnownNonZero(X, Depth, Q);
2118   }
2119   // X + Y.
2120   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2121     KnownBits XKnown = computeKnownBits(X, Depth, Q);
2122     KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2123 
2124     // If X and Y are both non-negative (as signed values) then their sum is not
2125     // zero unless both X and Y are zero.
2126     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2127       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2128         return true;
2129 
2130     // If X and Y are both negative (as signed values) then their sum is not
2131     // zero unless both X and Y equal INT_MIN.
2132     if (XKnown.isNegative() && YKnown.isNegative()) {
2133       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2134       // The sign bit of X is set.  If some other bit is set then X is not equal
2135       // to INT_MIN.
2136       if (XKnown.One.intersects(Mask))
2137         return true;
2138       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2139       // to INT_MIN.
2140       if (YKnown.One.intersects(Mask))
2141         return true;
2142     }
2143 
2144     // The sum of a non-negative number and a power of two is not zero.
2145     if (XKnown.isNonNegative() &&
2146         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2147       return true;
2148     if (YKnown.isNonNegative() &&
2149         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2150       return true;
2151   }
2152   // X * Y.
2153   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2154     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2155     // If X and Y are non-zero then so is X * Y as long as the multiplication
2156     // does not overflow.
2157     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2158         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2159       return true;
2160   }
2161   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2162   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2163     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2164         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2165       return true;
2166   }
2167   // PHI
2168   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2169     // Try and detect a recurrence that monotonically increases from a
2170     // starting value, as these are common as induction variables.
2171     if (PN->getNumIncomingValues() == 2) {
2172       Value *Start = PN->getIncomingValue(0);
2173       Value *Induction = PN->getIncomingValue(1);
2174       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2175         std::swap(Start, Induction);
2176       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2177         if (!C->isZero() && !C->isNegative()) {
2178           ConstantInt *X;
2179           if (Q.IIQ.UseInstrInfo &&
2180               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2181                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2182               !X->isNegative())
2183             return true;
2184         }
2185       }
2186     }
2187     // Check if all incoming values are non-zero constant.
2188     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2189       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2190     });
2191     if (AllNonZeroConstants)
2192       return true;
2193   }
2194 
2195   KnownBits Known(BitWidth);
2196   computeKnownBits(V, Known, Depth, Q);
2197   return Known.One != 0;
2198 }
2199 
2200 /// Return true if V2 == V1 + X, where X is known non-zero.
2201 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2202   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2203   if (!BO || BO->getOpcode() != Instruction::Add)
2204     return false;
2205   Value *Op = nullptr;
2206   if (V2 == BO->getOperand(0))
2207     Op = BO->getOperand(1);
2208   else if (V2 == BO->getOperand(1))
2209     Op = BO->getOperand(0);
2210   else
2211     return false;
2212   return isKnownNonZero(Op, 0, Q);
2213 }
2214 
2215 /// Return true if it is known that V1 != V2.
2216 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2217   if (V1 == V2)
2218     return false;
2219   if (V1->getType() != V2->getType())
2220     // We can't look through casts yet.
2221     return false;
2222   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2223     return true;
2224 
2225   if (V1->getType()->isIntOrIntVectorTy()) {
2226     // Are any known bits in V1 contradictory to known bits in V2? If V1
2227     // has a known zero where V2 has a known one, they must not be equal.
2228     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2229     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2230 
2231     if (Known1.Zero.intersects(Known2.One) ||
2232         Known2.Zero.intersects(Known1.One))
2233       return true;
2234   }
2235   return false;
2236 }
2237 
2238 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2239 /// simplify operations downstream. Mask is known to be zero for bits that V
2240 /// cannot have.
2241 ///
2242 /// This function is defined on values with integer type, values with pointer
2243 /// type, and vectors of integers.  In the case
2244 /// where V is a vector, the mask, known zero, and known one values are the
2245 /// same width as the vector element, and the bit is set only if it is true
2246 /// for all of the elements in the vector.
2247 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2248                        const Query &Q) {
2249   KnownBits Known(Mask.getBitWidth());
2250   computeKnownBits(V, Known, Depth, Q);
2251   return Mask.isSubsetOf(Known.Zero);
2252 }
2253 
2254 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2255 // Returns the input and lower/upper bounds.
2256 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2257                                 const APInt *&CLow, const APInt *&CHigh) {
2258   assert(isa<Operator>(Select) &&
2259          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2260          "Input should be a Select!");
2261 
2262   const Value *LHS, *RHS, *LHS2, *RHS2;
2263   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2264   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2265     return false;
2266 
2267   if (!match(RHS, m_APInt(CLow)))
2268     return false;
2269 
2270   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2271   if (getInverseMinMaxFlavor(SPF) != SPF2)
2272     return false;
2273 
2274   if (!match(RHS2, m_APInt(CHigh)))
2275     return false;
2276 
2277   if (SPF == SPF_SMIN)
2278     std::swap(CLow, CHigh);
2279 
2280   In = LHS2;
2281   return CLow->sle(*CHigh);
2282 }
2283 
2284 /// For vector constants, loop over the elements and find the constant with the
2285 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2286 /// or if any element was not analyzed; otherwise, return the count for the
2287 /// element with the minimum number of sign bits.
2288 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2289                                                  unsigned TyBits) {
2290   const auto *CV = dyn_cast<Constant>(V);
2291   if (!CV || !CV->getType()->isVectorTy())
2292     return 0;
2293 
2294   unsigned MinSignBits = TyBits;
2295   unsigned NumElts = CV->getType()->getVectorNumElements();
2296   for (unsigned i = 0; i != NumElts; ++i) {
2297     // If we find a non-ConstantInt, bail out.
2298     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2299     if (!Elt)
2300       return 0;
2301 
2302     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2303   }
2304 
2305   return MinSignBits;
2306 }
2307 
2308 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2309                                        const Query &Q);
2310 
2311 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2312                                    const Query &Q) {
2313   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2314   assert(Result > 0 && "At least one sign bit needs to be present!");
2315   return Result;
2316 }
2317 
2318 /// Return the number of times the sign bit of the register is replicated into
2319 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2320 /// (itself), but other cases can give us information. For example, immediately
2321 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2322 /// other, so we return 3. For vectors, return the number of sign bits for the
2323 /// vector element with the minimum number of known sign bits.
2324 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2325                                        const Query &Q) {
2326   assert(Depth <= MaxDepth && "Limit Search Depth");
2327 
2328   // We return the minimum number of sign bits that are guaranteed to be present
2329   // in V, so for undef we have to conservatively return 1.  We don't have the
2330   // same behavior for poison though -- that's a FIXME today.
2331 
2332   Type *ScalarTy = V->getType()->getScalarType();
2333   unsigned TyBits = ScalarTy->isPointerTy() ?
2334     Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2335     Q.DL.getTypeSizeInBits(ScalarTy);
2336 
2337   unsigned Tmp, Tmp2;
2338   unsigned FirstAnswer = 1;
2339 
2340   // Note that ConstantInt is handled by the general computeKnownBits case
2341   // below.
2342 
2343   if (Depth == MaxDepth)
2344     return 1;  // Limit search depth.
2345 
2346   const Operator *U = dyn_cast<Operator>(V);
2347   switch (Operator::getOpcode(V)) {
2348   default: break;
2349   case Instruction::SExt:
2350     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2351     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2352 
2353   case Instruction::SDiv: {
2354     const APInt *Denominator;
2355     // sdiv X, C -> adds log(C) sign bits.
2356     if (match(U->getOperand(1), m_APInt(Denominator))) {
2357 
2358       // Ignore non-positive denominator.
2359       if (!Denominator->isStrictlyPositive())
2360         break;
2361 
2362       // Calculate the incoming numerator bits.
2363       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2364 
2365       // Add floor(log(C)) bits to the numerator bits.
2366       return std::min(TyBits, NumBits + Denominator->logBase2());
2367     }
2368     break;
2369   }
2370 
2371   case Instruction::SRem: {
2372     const APInt *Denominator;
2373     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2374     // positive constant.  This let us put a lower bound on the number of sign
2375     // bits.
2376     if (match(U->getOperand(1), m_APInt(Denominator))) {
2377 
2378       // Ignore non-positive denominator.
2379       if (!Denominator->isStrictlyPositive())
2380         break;
2381 
2382       // Calculate the incoming numerator bits. SRem by a positive constant
2383       // can't lower the number of sign bits.
2384       unsigned NumrBits =
2385           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2386 
2387       // Calculate the leading sign bit constraints by examining the
2388       // denominator.  Given that the denominator is positive, there are two
2389       // cases:
2390       //
2391       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2392       //     (1 << ceilLogBase2(C)).
2393       //
2394       //  2. the numerator is negative.  Then the result range is (-C,0] and
2395       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2396       //
2397       // Thus a lower bound on the number of sign bits is `TyBits -
2398       // ceilLogBase2(C)`.
2399 
2400       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2401       return std::max(NumrBits, ResBits);
2402     }
2403     break;
2404   }
2405 
2406   case Instruction::AShr: {
2407     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2408     // ashr X, C   -> adds C sign bits.  Vectors too.
2409     const APInt *ShAmt;
2410     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2411       if (ShAmt->uge(TyBits))
2412         break;  // Bad shift.
2413       unsigned ShAmtLimited = ShAmt->getZExtValue();
2414       Tmp += ShAmtLimited;
2415       if (Tmp > TyBits) Tmp = TyBits;
2416     }
2417     return Tmp;
2418   }
2419   case Instruction::Shl: {
2420     const APInt *ShAmt;
2421     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2422       // shl destroys sign bits.
2423       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2424       if (ShAmt->uge(TyBits) ||      // Bad shift.
2425           ShAmt->uge(Tmp)) break;    // Shifted all sign bits out.
2426       Tmp2 = ShAmt->getZExtValue();
2427       return Tmp - Tmp2;
2428     }
2429     break;
2430   }
2431   case Instruction::And:
2432   case Instruction::Or:
2433   case Instruction::Xor:    // NOT is handled here.
2434     // Logical binary ops preserve the number of sign bits at the worst.
2435     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2436     if (Tmp != 1) {
2437       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2438       FirstAnswer = std::min(Tmp, Tmp2);
2439       // We computed what we know about the sign bits as our first
2440       // answer. Now proceed to the generic code that uses
2441       // computeKnownBits, and pick whichever answer is better.
2442     }
2443     break;
2444 
2445   case Instruction::Select: {
2446     // If we have a clamp pattern, we know that the number of sign bits will be
2447     // the minimum of the clamp min/max range.
2448     const Value *X;
2449     const APInt *CLow, *CHigh;
2450     if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2451       return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2452 
2453     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2454     if (Tmp == 1) break;
2455     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2456     return std::min(Tmp, Tmp2);
2457   }
2458 
2459   case Instruction::Add:
2460     // Add can have at most one carry bit.  Thus we know that the output
2461     // is, at worst, one more bit than the inputs.
2462     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2463     if (Tmp == 1) break;
2464 
2465     // Special case decrementing a value (ADD X, -1):
2466     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2467       if (CRHS->isAllOnesValue()) {
2468         KnownBits Known(TyBits);
2469         computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2470 
2471         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2472         // sign bits set.
2473         if ((Known.Zero | 1).isAllOnesValue())
2474           return TyBits;
2475 
2476         // If we are subtracting one from a positive number, there is no carry
2477         // out of the result.
2478         if (Known.isNonNegative())
2479           return Tmp;
2480       }
2481 
2482     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2483     if (Tmp2 == 1) break;
2484     return std::min(Tmp, Tmp2)-1;
2485 
2486   case Instruction::Sub:
2487     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2488     if (Tmp2 == 1) break;
2489 
2490     // Handle NEG.
2491     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2492       if (CLHS->isNullValue()) {
2493         KnownBits Known(TyBits);
2494         computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2495         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2496         // sign bits set.
2497         if ((Known.Zero | 1).isAllOnesValue())
2498           return TyBits;
2499 
2500         // If the input is known to be positive (the sign bit is known clear),
2501         // the output of the NEG has the same number of sign bits as the input.
2502         if (Known.isNonNegative())
2503           return Tmp2;
2504 
2505         // Otherwise, we treat this like a SUB.
2506       }
2507 
2508     // Sub can have at most one carry bit.  Thus we know that the output
2509     // is, at worst, one more bit than the inputs.
2510     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2511     if (Tmp == 1) break;
2512     return std::min(Tmp, Tmp2)-1;
2513 
2514   case Instruction::Mul: {
2515     // The output of the Mul can be at most twice the valid bits in the inputs.
2516     unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2517     if (SignBitsOp0 == 1) break;
2518     unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2519     if (SignBitsOp1 == 1) break;
2520     unsigned OutValidBits =
2521         (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2522     return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2523   }
2524 
2525   case Instruction::PHI: {
2526     const PHINode *PN = cast<PHINode>(U);
2527     unsigned NumIncomingValues = PN->getNumIncomingValues();
2528     // Don't analyze large in-degree PHIs.
2529     if (NumIncomingValues > 4) break;
2530     // Unreachable blocks may have zero-operand PHI nodes.
2531     if (NumIncomingValues == 0) break;
2532 
2533     // Take the minimum of all incoming values.  This can't infinitely loop
2534     // because of our depth threshold.
2535     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2536     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2537       if (Tmp == 1) return Tmp;
2538       Tmp = std::min(
2539           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2540     }
2541     return Tmp;
2542   }
2543 
2544   case Instruction::Trunc:
2545     // FIXME: it's tricky to do anything useful for this, but it is an important
2546     // case for targets like X86.
2547     break;
2548 
2549   case Instruction::ExtractElement:
2550     // Look through extract element. At the moment we keep this simple and skip
2551     // tracking the specific element. But at least we might find information
2552     // valid for all elements of the vector (for example if vector is sign
2553     // extended, shifted, etc).
2554     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2555 
2556   case Instruction::ShuffleVector: {
2557     // TODO: This is copied almost directly from the SelectionDAG version of
2558     //       ComputeNumSignBits. It would be better if we could share common
2559     //       code. If not, make sure that changes are translated to the DAG.
2560 
2561     // Collect the minimum number of sign bits that are shared by every vector
2562     // element referenced by the shuffle.
2563     auto *Shuf = cast<ShuffleVectorInst>(U);
2564     int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2565     int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2566     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2567     for (int i = 0; i != NumMaskElts; ++i) {
2568       int M = Shuf->getMaskValue(i);
2569       assert(M < NumElts * 2 && "Invalid shuffle mask constant");
2570       // For undef elements, we don't know anything about the common state of
2571       // the shuffle result.
2572       if (M == -1)
2573         return 1;
2574       if (M < NumElts)
2575         DemandedLHS.setBit(M % NumElts);
2576       else
2577         DemandedRHS.setBit(M % NumElts);
2578     }
2579     Tmp = std::numeric_limits<unsigned>::max();
2580     if (!!DemandedLHS)
2581       Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2582     if (!!DemandedRHS) {
2583       Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2584       Tmp = std::min(Tmp, Tmp2);
2585     }
2586     // If we don't know anything, early out and try computeKnownBits fall-back.
2587     if (Tmp == 1)
2588       break;
2589     assert(Tmp <= V->getType()->getScalarSizeInBits() &&
2590            "Failed to determine minimum sign bits");
2591     return Tmp;
2592   }
2593   }
2594 
2595   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2596   // use this information.
2597 
2598   // If we can examine all elements of a vector constant successfully, we're
2599   // done (we can't do any better than that). If not, keep trying.
2600   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2601     return VecSignBits;
2602 
2603   KnownBits Known(TyBits);
2604   computeKnownBits(V, Known, Depth, Q);
2605 
2606   // If we know that the sign bit is either zero or one, determine the number of
2607   // identical bits in the top of the input value.
2608   return std::max(FirstAnswer, Known.countMinSignBits());
2609 }
2610 
2611 /// This function computes the integer multiple of Base that equals V.
2612 /// If successful, it returns true and returns the multiple in
2613 /// Multiple. If unsuccessful, it returns false. It looks
2614 /// through SExt instructions only if LookThroughSExt is true.
2615 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2616                            bool LookThroughSExt, unsigned Depth) {
2617   const unsigned MaxDepth = 6;
2618 
2619   assert(V && "No Value?");
2620   assert(Depth <= MaxDepth && "Limit Search Depth");
2621   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2622 
2623   Type *T = V->getType();
2624 
2625   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2626 
2627   if (Base == 0)
2628     return false;
2629 
2630   if (Base == 1) {
2631     Multiple = V;
2632     return true;
2633   }
2634 
2635   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2636   Constant *BaseVal = ConstantInt::get(T, Base);
2637   if (CO && CO == BaseVal) {
2638     // Multiple is 1.
2639     Multiple = ConstantInt::get(T, 1);
2640     return true;
2641   }
2642 
2643   if (CI && CI->getZExtValue() % Base == 0) {
2644     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2645     return true;
2646   }
2647 
2648   if (Depth == MaxDepth) return false;  // Limit search depth.
2649 
2650   Operator *I = dyn_cast<Operator>(V);
2651   if (!I) return false;
2652 
2653   switch (I->getOpcode()) {
2654   default: break;
2655   case Instruction::SExt:
2656     if (!LookThroughSExt) return false;
2657     // otherwise fall through to ZExt
2658     LLVM_FALLTHROUGH;
2659   case Instruction::ZExt:
2660     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2661                            LookThroughSExt, Depth+1);
2662   case Instruction::Shl:
2663   case Instruction::Mul: {
2664     Value *Op0 = I->getOperand(0);
2665     Value *Op1 = I->getOperand(1);
2666 
2667     if (I->getOpcode() == Instruction::Shl) {
2668       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2669       if (!Op1CI) return false;
2670       // Turn Op0 << Op1 into Op0 * 2^Op1
2671       APInt Op1Int = Op1CI->getValue();
2672       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2673       APInt API(Op1Int.getBitWidth(), 0);
2674       API.setBit(BitToSet);
2675       Op1 = ConstantInt::get(V->getContext(), API);
2676     }
2677 
2678     Value *Mul0 = nullptr;
2679     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2680       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2681         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2682           if (Op1C->getType()->getPrimitiveSizeInBits() <
2683               MulC->getType()->getPrimitiveSizeInBits())
2684             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2685           if (Op1C->getType()->getPrimitiveSizeInBits() >
2686               MulC->getType()->getPrimitiveSizeInBits())
2687             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2688 
2689           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2690           Multiple = ConstantExpr::getMul(MulC, Op1C);
2691           return true;
2692         }
2693 
2694       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2695         if (Mul0CI->getValue() == 1) {
2696           // V == Base * Op1, so return Op1
2697           Multiple = Op1;
2698           return true;
2699         }
2700     }
2701 
2702     Value *Mul1 = nullptr;
2703     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2704       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2705         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2706           if (Op0C->getType()->getPrimitiveSizeInBits() <
2707               MulC->getType()->getPrimitiveSizeInBits())
2708             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2709           if (Op0C->getType()->getPrimitiveSizeInBits() >
2710               MulC->getType()->getPrimitiveSizeInBits())
2711             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2712 
2713           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2714           Multiple = ConstantExpr::getMul(MulC, Op0C);
2715           return true;
2716         }
2717 
2718       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2719         if (Mul1CI->getValue() == 1) {
2720           // V == Base * Op0, so return Op0
2721           Multiple = Op0;
2722           return true;
2723         }
2724     }
2725   }
2726   }
2727 
2728   // We could not determine if V is a multiple of Base.
2729   return false;
2730 }
2731 
2732 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2733                                             const TargetLibraryInfo *TLI) {
2734   const Function *F = ICS.getCalledFunction();
2735   if (!F)
2736     return Intrinsic::not_intrinsic;
2737 
2738   if (F->isIntrinsic())
2739     return F->getIntrinsicID();
2740 
2741   if (!TLI)
2742     return Intrinsic::not_intrinsic;
2743 
2744   LibFunc Func;
2745   // We're going to make assumptions on the semantics of the functions, check
2746   // that the target knows that it's available in this environment and it does
2747   // not have local linkage.
2748   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2749     return Intrinsic::not_intrinsic;
2750 
2751   if (!ICS.onlyReadsMemory())
2752     return Intrinsic::not_intrinsic;
2753 
2754   // Otherwise check if we have a call to a function that can be turned into a
2755   // vector intrinsic.
2756   switch (Func) {
2757   default:
2758     break;
2759   case LibFunc_sin:
2760   case LibFunc_sinf:
2761   case LibFunc_sinl:
2762     return Intrinsic::sin;
2763   case LibFunc_cos:
2764   case LibFunc_cosf:
2765   case LibFunc_cosl:
2766     return Intrinsic::cos;
2767   case LibFunc_exp:
2768   case LibFunc_expf:
2769   case LibFunc_expl:
2770     return Intrinsic::exp;
2771   case LibFunc_exp2:
2772   case LibFunc_exp2f:
2773   case LibFunc_exp2l:
2774     return Intrinsic::exp2;
2775   case LibFunc_log:
2776   case LibFunc_logf:
2777   case LibFunc_logl:
2778     return Intrinsic::log;
2779   case LibFunc_log10:
2780   case LibFunc_log10f:
2781   case LibFunc_log10l:
2782     return Intrinsic::log10;
2783   case LibFunc_log2:
2784   case LibFunc_log2f:
2785   case LibFunc_log2l:
2786     return Intrinsic::log2;
2787   case LibFunc_fabs:
2788   case LibFunc_fabsf:
2789   case LibFunc_fabsl:
2790     return Intrinsic::fabs;
2791   case LibFunc_fmin:
2792   case LibFunc_fminf:
2793   case LibFunc_fminl:
2794     return Intrinsic::minnum;
2795   case LibFunc_fmax:
2796   case LibFunc_fmaxf:
2797   case LibFunc_fmaxl:
2798     return Intrinsic::maxnum;
2799   case LibFunc_copysign:
2800   case LibFunc_copysignf:
2801   case LibFunc_copysignl:
2802     return Intrinsic::copysign;
2803   case LibFunc_floor:
2804   case LibFunc_floorf:
2805   case LibFunc_floorl:
2806     return Intrinsic::floor;
2807   case LibFunc_ceil:
2808   case LibFunc_ceilf:
2809   case LibFunc_ceill:
2810     return Intrinsic::ceil;
2811   case LibFunc_trunc:
2812   case LibFunc_truncf:
2813   case LibFunc_truncl:
2814     return Intrinsic::trunc;
2815   case LibFunc_rint:
2816   case LibFunc_rintf:
2817   case LibFunc_rintl:
2818     return Intrinsic::rint;
2819   case LibFunc_nearbyint:
2820   case LibFunc_nearbyintf:
2821   case LibFunc_nearbyintl:
2822     return Intrinsic::nearbyint;
2823   case LibFunc_round:
2824   case LibFunc_roundf:
2825   case LibFunc_roundl:
2826     return Intrinsic::round;
2827   case LibFunc_pow:
2828   case LibFunc_powf:
2829   case LibFunc_powl:
2830     return Intrinsic::pow;
2831   case LibFunc_sqrt:
2832   case LibFunc_sqrtf:
2833   case LibFunc_sqrtl:
2834     return Intrinsic::sqrt;
2835   }
2836 
2837   return Intrinsic::not_intrinsic;
2838 }
2839 
2840 /// Return true if we can prove that the specified FP value is never equal to
2841 /// -0.0.
2842 ///
2843 /// NOTE: this function will need to be revisited when we support non-default
2844 /// rounding modes!
2845 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2846                                 unsigned Depth) {
2847   if (auto *CFP = dyn_cast<ConstantFP>(V))
2848     return !CFP->getValueAPF().isNegZero();
2849 
2850   // Limit search depth.
2851   if (Depth == MaxDepth)
2852     return false;
2853 
2854   auto *Op = dyn_cast<Operator>(V);
2855   if (!Op)
2856     return false;
2857 
2858   // Check if the nsz fast-math flag is set.
2859   if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2860     if (FPO->hasNoSignedZeros())
2861       return true;
2862 
2863   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2864   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2865     return true;
2866 
2867   // sitofp and uitofp turn into +0.0 for zero.
2868   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2869     return true;
2870 
2871   if (auto *Call = dyn_cast<CallInst>(Op)) {
2872     Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2873     switch (IID) {
2874     default:
2875       break;
2876     // sqrt(-0.0) = -0.0, no other negative results are possible.
2877     case Intrinsic::sqrt:
2878     case Intrinsic::canonicalize:
2879       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2880     // fabs(x) != -0.0
2881     case Intrinsic::fabs:
2882       return true;
2883     }
2884   }
2885 
2886   return false;
2887 }
2888 
2889 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2890 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2891 /// bit despite comparing equal.
2892 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2893                                             const TargetLibraryInfo *TLI,
2894                                             bool SignBitOnly,
2895                                             unsigned Depth) {
2896   // TODO: This function does not do the right thing when SignBitOnly is true
2897   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2898   // which flips the sign bits of NaNs.  See
2899   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2900 
2901   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2902     return !CFP->getValueAPF().isNegative() ||
2903            (!SignBitOnly && CFP->getValueAPF().isZero());
2904   }
2905 
2906   // Handle vector of constants.
2907   if (auto *CV = dyn_cast<Constant>(V)) {
2908     if (CV->getType()->isVectorTy()) {
2909       unsigned NumElts = CV->getType()->getVectorNumElements();
2910       for (unsigned i = 0; i != NumElts; ++i) {
2911         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2912         if (!CFP)
2913           return false;
2914         if (CFP->getValueAPF().isNegative() &&
2915             (SignBitOnly || !CFP->getValueAPF().isZero()))
2916           return false;
2917       }
2918 
2919       // All non-negative ConstantFPs.
2920       return true;
2921     }
2922   }
2923 
2924   if (Depth == MaxDepth)
2925     return false; // Limit search depth.
2926 
2927   const Operator *I = dyn_cast<Operator>(V);
2928   if (!I)
2929     return false;
2930 
2931   switch (I->getOpcode()) {
2932   default:
2933     break;
2934   // Unsigned integers are always nonnegative.
2935   case Instruction::UIToFP:
2936     return true;
2937   case Instruction::FMul:
2938     // x*x is always non-negative or a NaN.
2939     if (I->getOperand(0) == I->getOperand(1) &&
2940         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2941       return true;
2942 
2943     LLVM_FALLTHROUGH;
2944   case Instruction::FAdd:
2945   case Instruction::FDiv:
2946   case Instruction::FRem:
2947     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2948                                            Depth + 1) &&
2949            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2950                                            Depth + 1);
2951   case Instruction::Select:
2952     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2953                                            Depth + 1) &&
2954            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2955                                            Depth + 1);
2956   case Instruction::FPExt:
2957   case Instruction::FPTrunc:
2958     // Widening/narrowing never change sign.
2959     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2960                                            Depth + 1);
2961   case Instruction::ExtractElement:
2962     // Look through extract element. At the moment we keep this simple and skip
2963     // tracking the specific element. But at least we might find information
2964     // valid for all elements of the vector.
2965     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2966                                            Depth + 1);
2967   case Instruction::Call:
2968     const auto *CI = cast<CallInst>(I);
2969     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2970     switch (IID) {
2971     default:
2972       break;
2973     case Intrinsic::maxnum:
2974       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
2975               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2976                                               SignBitOnly, Depth + 1)) ||
2977             (isKnownNeverNaN(I->getOperand(1), TLI) &&
2978               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2979                                               SignBitOnly, Depth + 1));
2980 
2981     case Intrinsic::maximum:
2982       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2983                                              Depth + 1) ||
2984              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2985                                              Depth + 1);
2986     case Intrinsic::minnum:
2987     case Intrinsic::minimum:
2988       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2989                                              Depth + 1) &&
2990              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2991                                              Depth + 1);
2992     case Intrinsic::exp:
2993     case Intrinsic::exp2:
2994     case Intrinsic::fabs:
2995       return true;
2996 
2997     case Intrinsic::sqrt:
2998       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
2999       if (!SignBitOnly)
3000         return true;
3001       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3002                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3003 
3004     case Intrinsic::powi:
3005       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3006         // powi(x,n) is non-negative if n is even.
3007         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3008           return true;
3009       }
3010       // TODO: This is not correct.  Given that exp is an integer, here are the
3011       // ways that pow can return a negative value:
3012       //
3013       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3014       //   pow(-0, exp)   --> -inf if exp is negative odd.
3015       //   pow(-0, exp)   --> -0 if exp is positive odd.
3016       //   pow(-inf, exp) --> -0 if exp is negative odd.
3017       //   pow(-inf, exp) --> -inf if exp is positive odd.
3018       //
3019       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3020       // but we must return false if x == -0.  Unfortunately we do not currently
3021       // have a way of expressing this constraint.  See details in
3022       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3023       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3024                                              Depth + 1);
3025 
3026     case Intrinsic::fma:
3027     case Intrinsic::fmuladd:
3028       // x*x+y is non-negative if y is non-negative.
3029       return I->getOperand(0) == I->getOperand(1) &&
3030              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3031              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3032                                              Depth + 1);
3033     }
3034     break;
3035   }
3036   return false;
3037 }
3038 
3039 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3040                                        const TargetLibraryInfo *TLI) {
3041   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3042 }
3043 
3044 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3045   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3046 }
3047 
3048 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3049                            unsigned Depth) {
3050   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3051 
3052   // If we're told that NaNs won't happen, assume they won't.
3053   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3054     if (FPMathOp->hasNoNaNs())
3055       return true;
3056 
3057   // Handle scalar constants.
3058   if (auto *CFP = dyn_cast<ConstantFP>(V))
3059     return !CFP->isNaN();
3060 
3061   if (Depth == MaxDepth)
3062     return false;
3063 
3064   if (auto *Inst = dyn_cast<Instruction>(V)) {
3065     switch (Inst->getOpcode()) {
3066     case Instruction::FAdd:
3067     case Instruction::FMul:
3068     case Instruction::FSub:
3069     case Instruction::FDiv:
3070     case Instruction::FRem: {
3071       // TODO: Need isKnownNeverInfinity
3072       return false;
3073     }
3074     case Instruction::Select: {
3075       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3076              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3077     }
3078     case Instruction::SIToFP:
3079     case Instruction::UIToFP:
3080       return true;
3081     case Instruction::FPTrunc:
3082     case Instruction::FPExt:
3083       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3084     default:
3085       break;
3086     }
3087   }
3088 
3089   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3090     switch (II->getIntrinsicID()) {
3091     case Intrinsic::canonicalize:
3092     case Intrinsic::fabs:
3093     case Intrinsic::copysign:
3094     case Intrinsic::exp:
3095     case Intrinsic::exp2:
3096     case Intrinsic::floor:
3097     case Intrinsic::ceil:
3098     case Intrinsic::trunc:
3099     case Intrinsic::rint:
3100     case Intrinsic::nearbyint:
3101     case Intrinsic::round:
3102       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3103     case Intrinsic::sqrt:
3104       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3105              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3106     default:
3107       return false;
3108     }
3109   }
3110 
3111   // Bail out for constant expressions, but try to handle vector constants.
3112   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3113     return false;
3114 
3115   // For vectors, verify that each element is not NaN.
3116   unsigned NumElts = V->getType()->getVectorNumElements();
3117   for (unsigned i = 0; i != NumElts; ++i) {
3118     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3119     if (!Elt)
3120       return false;
3121     if (isa<UndefValue>(Elt))
3122       continue;
3123     auto *CElt = dyn_cast<ConstantFP>(Elt);
3124     if (!CElt || CElt->isNaN())
3125       return false;
3126   }
3127   // All elements were confirmed not-NaN or undefined.
3128   return true;
3129 }
3130 
3131 Value *llvm::isBytewiseValue(Value *V) {
3132 
3133   // All byte-wide stores are splatable, even of arbitrary variables.
3134   if (V->getType()->isIntegerTy(8))
3135     return V;
3136 
3137   LLVMContext &Ctx = V->getContext();
3138 
3139   // Undef don't care.
3140   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3141   if (isa<UndefValue>(V))
3142     return UndefInt8;
3143 
3144   Constant *C = dyn_cast<Constant>(V);
3145   if (!C) {
3146     // Conceptually, we could handle things like:
3147     //   %a = zext i8 %X to i16
3148     //   %b = shl i16 %a, 8
3149     //   %c = or i16 %a, %b
3150     // but until there is an example that actually needs this, it doesn't seem
3151     // worth worrying about.
3152     return nullptr;
3153   }
3154 
3155   // Handle 'null' ConstantArrayZero etc.
3156   if (C->isNullValue())
3157     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3158 
3159   // Constant floating-point values can be handled as integer values if the
3160   // corresponding integer value is "byteable".  An important case is 0.0.
3161   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3162     Type *Ty = nullptr;
3163     if (CFP->getType()->isHalfTy())
3164       Ty = Type::getInt16Ty(Ctx);
3165     else if (CFP->getType()->isFloatTy())
3166       Ty = Type::getInt32Ty(Ctx);
3167     else if (CFP->getType()->isDoubleTy())
3168       Ty = Type::getInt64Ty(Ctx);
3169     // Don't handle long double formats, which have strange constraints.
3170     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
3171   }
3172 
3173   // We can handle constant integers that are multiple of 8 bits.
3174   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3175     if (CI->getBitWidth() % 8 == 0) {
3176       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3177       if (!CI->getValue().isSplat(8))
3178         return nullptr;
3179       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3180     }
3181   }
3182 
3183   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3184     if (LHS == RHS)
3185       return LHS;
3186     if (!LHS || !RHS)
3187       return nullptr;
3188     if (LHS == UndefInt8)
3189       return RHS;
3190     if (RHS == UndefInt8)
3191       return LHS;
3192     return nullptr;
3193   };
3194 
3195   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3196     Value *Val = UndefInt8;
3197     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3198       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
3199         return nullptr;
3200     return Val;
3201   }
3202 
3203   if (isa<ConstantVector>(C)) {
3204     Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3205     return Splat ? isBytewiseValue(Splat) : nullptr;
3206   }
3207 
3208   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3209     Value *Val = UndefInt8;
3210     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3211       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3212         return nullptr;
3213     return Val;
3214   }
3215 
3216   // Don't try to handle the handful of other constants.
3217   return nullptr;
3218 }
3219 
3220 // This is the recursive version of BuildSubAggregate. It takes a few different
3221 // arguments. Idxs is the index within the nested struct From that we are
3222 // looking at now (which is of type IndexedType). IdxSkip is the number of
3223 // indices from Idxs that should be left out when inserting into the resulting
3224 // struct. To is the result struct built so far, new insertvalue instructions
3225 // build on that.
3226 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3227                                 SmallVectorImpl<unsigned> &Idxs,
3228                                 unsigned IdxSkip,
3229                                 Instruction *InsertBefore) {
3230   StructType *STy = dyn_cast<StructType>(IndexedType);
3231   if (STy) {
3232     // Save the original To argument so we can modify it
3233     Value *OrigTo = To;
3234     // General case, the type indexed by Idxs is a struct
3235     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3236       // Process each struct element recursively
3237       Idxs.push_back(i);
3238       Value *PrevTo = To;
3239       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3240                              InsertBefore);
3241       Idxs.pop_back();
3242       if (!To) {
3243         // Couldn't find any inserted value for this index? Cleanup
3244         while (PrevTo != OrigTo) {
3245           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3246           PrevTo = Del->getAggregateOperand();
3247           Del->eraseFromParent();
3248         }
3249         // Stop processing elements
3250         break;
3251       }
3252     }
3253     // If we successfully found a value for each of our subaggregates
3254     if (To)
3255       return To;
3256   }
3257   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3258   // the struct's elements had a value that was inserted directly. In the latter
3259   // case, perhaps we can't determine each of the subelements individually, but
3260   // we might be able to find the complete struct somewhere.
3261 
3262   // Find the value that is at that particular spot
3263   Value *V = FindInsertedValue(From, Idxs);
3264 
3265   if (!V)
3266     return nullptr;
3267 
3268   // Insert the value in the new (sub) aggregate
3269   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3270                                  "tmp", InsertBefore);
3271 }
3272 
3273 // This helper takes a nested struct and extracts a part of it (which is again a
3274 // struct) into a new value. For example, given the struct:
3275 // { a, { b, { c, d }, e } }
3276 // and the indices "1, 1" this returns
3277 // { c, d }.
3278 //
3279 // It does this by inserting an insertvalue for each element in the resulting
3280 // struct, as opposed to just inserting a single struct. This will only work if
3281 // each of the elements of the substruct are known (ie, inserted into From by an
3282 // insertvalue instruction somewhere).
3283 //
3284 // All inserted insertvalue instructions are inserted before InsertBefore
3285 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3286                                 Instruction *InsertBefore) {
3287   assert(InsertBefore && "Must have someplace to insert!");
3288   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3289                                                              idx_range);
3290   Value *To = UndefValue::get(IndexedType);
3291   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3292   unsigned IdxSkip = Idxs.size();
3293 
3294   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3295 }
3296 
3297 /// Given an aggregate and a sequence of indices, see if the scalar value
3298 /// indexed is already around as a register, for example if it was inserted
3299 /// directly into the aggregate.
3300 ///
3301 /// If InsertBefore is not null, this function will duplicate (modified)
3302 /// insertvalues when a part of a nested struct is extracted.
3303 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3304                                Instruction *InsertBefore) {
3305   // Nothing to index? Just return V then (this is useful at the end of our
3306   // recursion).
3307   if (idx_range.empty())
3308     return V;
3309   // We have indices, so V should have an indexable type.
3310   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3311          "Not looking at a struct or array?");
3312   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3313          "Invalid indices for type?");
3314 
3315   if (Constant *C = dyn_cast<Constant>(V)) {
3316     C = C->getAggregateElement(idx_range[0]);
3317     if (!C) return nullptr;
3318     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3319   }
3320 
3321   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3322     // Loop the indices for the insertvalue instruction in parallel with the
3323     // requested indices
3324     const unsigned *req_idx = idx_range.begin();
3325     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3326          i != e; ++i, ++req_idx) {
3327       if (req_idx == idx_range.end()) {
3328         // We can't handle this without inserting insertvalues
3329         if (!InsertBefore)
3330           return nullptr;
3331 
3332         // The requested index identifies a part of a nested aggregate. Handle
3333         // this specially. For example,
3334         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3335         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3336         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3337         // This can be changed into
3338         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3339         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3340         // which allows the unused 0,0 element from the nested struct to be
3341         // removed.
3342         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3343                                  InsertBefore);
3344       }
3345 
3346       // This insert value inserts something else than what we are looking for.
3347       // See if the (aggregate) value inserted into has the value we are
3348       // looking for, then.
3349       if (*req_idx != *i)
3350         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3351                                  InsertBefore);
3352     }
3353     // If we end up here, the indices of the insertvalue match with those
3354     // requested (though possibly only partially). Now we recursively look at
3355     // the inserted value, passing any remaining indices.
3356     return FindInsertedValue(I->getInsertedValueOperand(),
3357                              makeArrayRef(req_idx, idx_range.end()),
3358                              InsertBefore);
3359   }
3360 
3361   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3362     // If we're extracting a value from an aggregate that was extracted from
3363     // something else, we can extract from that something else directly instead.
3364     // However, we will need to chain I's indices with the requested indices.
3365 
3366     // Calculate the number of indices required
3367     unsigned size = I->getNumIndices() + idx_range.size();
3368     // Allocate some space to put the new indices in
3369     SmallVector<unsigned, 5> Idxs;
3370     Idxs.reserve(size);
3371     // Add indices from the extract value instruction
3372     Idxs.append(I->idx_begin(), I->idx_end());
3373 
3374     // Add requested indices
3375     Idxs.append(idx_range.begin(), idx_range.end());
3376 
3377     assert(Idxs.size() == size
3378            && "Number of indices added not correct?");
3379 
3380     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3381   }
3382   // Otherwise, we don't know (such as, extracting from a function return value
3383   // or load instruction)
3384   return nullptr;
3385 }
3386 
3387 /// Analyze the specified pointer to see if it can be expressed as a base
3388 /// pointer plus a constant offset. Return the base and offset to the caller.
3389 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3390                                               const DataLayout &DL) {
3391   unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
3392   APInt ByteOffset(BitWidth, 0);
3393 
3394   // We walk up the defs but use a visited set to handle unreachable code. In
3395   // that case, we stop after accumulating the cycle once (not that it
3396   // matters).
3397   SmallPtrSet<Value *, 16> Visited;
3398   while (Visited.insert(Ptr).second) {
3399     if (Ptr->getType()->isVectorTy())
3400       break;
3401 
3402     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3403       // If one of the values we have visited is an addrspacecast, then
3404       // the pointer type of this GEP may be different from the type
3405       // of the Ptr parameter which was passed to this function.  This
3406       // means when we construct GEPOffset, we need to use the size
3407       // of GEP's pointer type rather than the size of the original
3408       // pointer type.
3409       APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
3410       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3411         break;
3412 
3413       APInt OrigByteOffset(ByteOffset);
3414       ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
3415       if (ByteOffset.getMinSignedBits() > 64) {
3416         // Stop traversal if the pointer offset wouldn't fit into int64_t
3417         // (this should be removed if Offset is updated to an APInt)
3418         ByteOffset = OrigByteOffset;
3419         break;
3420       }
3421 
3422       Ptr = GEP->getPointerOperand();
3423     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3424                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3425       Ptr = cast<Operator>(Ptr)->getOperand(0);
3426     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3427       if (GA->isInterposable())
3428         break;
3429       Ptr = GA->getAliasee();
3430     } else {
3431       break;
3432     }
3433   }
3434   Offset = ByteOffset.getSExtValue();
3435   return Ptr;
3436 }
3437 
3438 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3439                                        unsigned CharSize) {
3440   // Make sure the GEP has exactly three arguments.
3441   if (GEP->getNumOperands() != 3)
3442     return false;
3443 
3444   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3445   // CharSize.
3446   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3447   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3448     return false;
3449 
3450   // Check to make sure that the first operand of the GEP is an integer and
3451   // has value 0 so that we are sure we're indexing into the initializer.
3452   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3453   if (!FirstIdx || !FirstIdx->isZero())
3454     return false;
3455 
3456   return true;
3457 }
3458 
3459 bool llvm::getConstantDataArrayInfo(const Value *V,
3460                                     ConstantDataArraySlice &Slice,
3461                                     unsigned ElementSize, uint64_t Offset) {
3462   assert(V);
3463 
3464   // Look through bitcast instructions and geps.
3465   V = V->stripPointerCasts();
3466 
3467   // If the value is a GEP instruction or constant expression, treat it as an
3468   // offset.
3469   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3470     // The GEP operator should be based on a pointer to string constant, and is
3471     // indexing into the string constant.
3472     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3473       return false;
3474 
3475     // If the second index isn't a ConstantInt, then this is a variable index
3476     // into the array.  If this occurs, we can't say anything meaningful about
3477     // the string.
3478     uint64_t StartIdx = 0;
3479     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3480       StartIdx = CI->getZExtValue();
3481     else
3482       return false;
3483     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3484                                     StartIdx + Offset);
3485   }
3486 
3487   // The GEP instruction, constant or instruction, must reference a global
3488   // variable that is a constant and is initialized. The referenced constant
3489   // initializer is the array that we'll use for optimization.
3490   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3491   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3492     return false;
3493 
3494   const ConstantDataArray *Array;
3495   ArrayType *ArrayTy;
3496   if (GV->getInitializer()->isNullValue()) {
3497     Type *GVTy = GV->getValueType();
3498     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3499       // A zeroinitializer for the array; there is no ConstantDataArray.
3500       Array = nullptr;
3501     } else {
3502       const DataLayout &DL = GV->getParent()->getDataLayout();
3503       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3504       uint64_t Length = SizeInBytes / (ElementSize / 8);
3505       if (Length <= Offset)
3506         return false;
3507 
3508       Slice.Array = nullptr;
3509       Slice.Offset = 0;
3510       Slice.Length = Length - Offset;
3511       return true;
3512     }
3513   } else {
3514     // This must be a ConstantDataArray.
3515     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3516     if (!Array)
3517       return false;
3518     ArrayTy = Array->getType();
3519   }
3520   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3521     return false;
3522 
3523   uint64_t NumElts = ArrayTy->getArrayNumElements();
3524   if (Offset > NumElts)
3525     return false;
3526 
3527   Slice.Array = Array;
3528   Slice.Offset = Offset;
3529   Slice.Length = NumElts - Offset;
3530   return true;
3531 }
3532 
3533 /// This function computes the length of a null-terminated C string pointed to
3534 /// by V. If successful, it returns true and returns the string in Str.
3535 /// If unsuccessful, it returns false.
3536 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3537                                  uint64_t Offset, bool TrimAtNul) {
3538   ConstantDataArraySlice Slice;
3539   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3540     return false;
3541 
3542   if (Slice.Array == nullptr) {
3543     if (TrimAtNul) {
3544       Str = StringRef();
3545       return true;
3546     }
3547     if (Slice.Length == 1) {
3548       Str = StringRef("", 1);
3549       return true;
3550     }
3551     // We cannot instantiate a StringRef as we do not have an appropriate string
3552     // of 0s at hand.
3553     return false;
3554   }
3555 
3556   // Start out with the entire array in the StringRef.
3557   Str = Slice.Array->getAsString();
3558   // Skip over 'offset' bytes.
3559   Str = Str.substr(Slice.Offset);
3560 
3561   if (TrimAtNul) {
3562     // Trim off the \0 and anything after it.  If the array is not nul
3563     // terminated, we just return the whole end of string.  The client may know
3564     // some other way that the string is length-bound.
3565     Str = Str.substr(0, Str.find('\0'));
3566   }
3567   return true;
3568 }
3569 
3570 // These next two are very similar to the above, but also look through PHI
3571 // nodes.
3572 // TODO: See if we can integrate these two together.
3573 
3574 /// If we can compute the length of the string pointed to by
3575 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3576 static uint64_t GetStringLengthH(const Value *V,
3577                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3578                                  unsigned CharSize) {
3579   // Look through noop bitcast instructions.
3580   V = V->stripPointerCasts();
3581 
3582   // If this is a PHI node, there are two cases: either we have already seen it
3583   // or we haven't.
3584   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3585     if (!PHIs.insert(PN).second)
3586       return ~0ULL;  // already in the set.
3587 
3588     // If it was new, see if all the input strings are the same length.
3589     uint64_t LenSoFar = ~0ULL;
3590     for (Value *IncValue : PN->incoming_values()) {
3591       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3592       if (Len == 0) return 0; // Unknown length -> unknown.
3593 
3594       if (Len == ~0ULL) continue;
3595 
3596       if (Len != LenSoFar && LenSoFar != ~0ULL)
3597         return 0;    // Disagree -> unknown.
3598       LenSoFar = Len;
3599     }
3600 
3601     // Success, all agree.
3602     return LenSoFar;
3603   }
3604 
3605   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3606   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3607     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3608     if (Len1 == 0) return 0;
3609     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3610     if (Len2 == 0) return 0;
3611     if (Len1 == ~0ULL) return Len2;
3612     if (Len2 == ~0ULL) return Len1;
3613     if (Len1 != Len2) return 0;
3614     return Len1;
3615   }
3616 
3617   // Otherwise, see if we can read the string.
3618   ConstantDataArraySlice Slice;
3619   if (!getConstantDataArrayInfo(V, Slice, CharSize))
3620     return 0;
3621 
3622   if (Slice.Array == nullptr)
3623     return 1;
3624 
3625   // Search for nul characters
3626   unsigned NullIndex = 0;
3627   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3628     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3629       break;
3630   }
3631 
3632   return NullIndex + 1;
3633 }
3634 
3635 /// If we can compute the length of the string pointed to by
3636 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3637 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3638   if (!V->getType()->isPointerTy())
3639     return 0;
3640 
3641   SmallPtrSet<const PHINode*, 32> PHIs;
3642   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3643   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3644   // an empty string as a length.
3645   return Len == ~0ULL ? 1 : Len;
3646 }
3647 
3648 const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) {
3649   assert(Call &&
3650          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
3651   if (const Value *RV = Call->getReturnedArgOperand())
3652     return RV;
3653   // This can be used only as a aliasing property.
3654   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call))
3655     return Call->getArgOperand(0);
3656   return nullptr;
3657 }
3658 
3659 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3660     const CallBase *Call) {
3661   return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
3662          Call->getIntrinsicID() == Intrinsic::strip_invariant_group;
3663 }
3664 
3665 /// \p PN defines a loop-variant pointer to an object.  Check if the
3666 /// previous iteration of the loop was referring to the same object as \p PN.
3667 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3668                                          const LoopInfo *LI) {
3669   // Find the loop-defined value.
3670   Loop *L = LI->getLoopFor(PN->getParent());
3671   if (PN->getNumIncomingValues() != 2)
3672     return true;
3673 
3674   // Find the value from previous iteration.
3675   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3676   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3677     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3678   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3679     return true;
3680 
3681   // If a new pointer is loaded in the loop, the pointer references a different
3682   // object in every iteration.  E.g.:
3683   //    for (i)
3684   //       int *p = a[i];
3685   //       ...
3686   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3687     if (!L->isLoopInvariant(Load->getPointerOperand()))
3688       return false;
3689   return true;
3690 }
3691 
3692 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3693                                  unsigned MaxLookup) {
3694   if (!V->getType()->isPointerTy())
3695     return V;
3696   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3697     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3698       V = GEP->getPointerOperand();
3699     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3700                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3701       V = cast<Operator>(V)->getOperand(0);
3702     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3703       if (GA->isInterposable())
3704         return V;
3705       V = GA->getAliasee();
3706     } else if (isa<AllocaInst>(V)) {
3707       // An alloca can't be further simplified.
3708       return V;
3709     } else {
3710       if (auto *Call = dyn_cast<CallBase>(V)) {
3711         // CaptureTracking can know about special capturing properties of some
3712         // intrinsics like launder.invariant.group, that can't be expressed with
3713         // the attributes, but have properties like returning aliasing pointer.
3714         // Because some analysis may assume that nocaptured pointer is not
3715         // returned from some special intrinsic (because function would have to
3716         // be marked with returns attribute), it is crucial to use this function
3717         // because it should be in sync with CaptureTracking. Not using it may
3718         // cause weird miscompilations where 2 aliasing pointers are assumed to
3719         // noalias.
3720         if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
3721           V = RP;
3722           continue;
3723         }
3724       }
3725 
3726       // See if InstructionSimplify knows any relevant tricks.
3727       if (Instruction *I = dyn_cast<Instruction>(V))
3728         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3729         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3730           V = Simplified;
3731           continue;
3732         }
3733 
3734       return V;
3735     }
3736     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3737   }
3738   return V;
3739 }
3740 
3741 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3742                                 const DataLayout &DL, LoopInfo *LI,
3743                                 unsigned MaxLookup) {
3744   SmallPtrSet<Value *, 4> Visited;
3745   SmallVector<Value *, 4> Worklist;
3746   Worklist.push_back(V);
3747   do {
3748     Value *P = Worklist.pop_back_val();
3749     P = GetUnderlyingObject(P, DL, MaxLookup);
3750 
3751     if (!Visited.insert(P).second)
3752       continue;
3753 
3754     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3755       Worklist.push_back(SI->getTrueValue());
3756       Worklist.push_back(SI->getFalseValue());
3757       continue;
3758     }
3759 
3760     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3761       // If this PHI changes the underlying object in every iteration of the
3762       // loop, don't look through it.  Consider:
3763       //   int **A;
3764       //   for (i) {
3765       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3766       //     Curr = A[i];
3767       //     *Prev, *Curr;
3768       //
3769       // Prev is tracking Curr one iteration behind so they refer to different
3770       // underlying objects.
3771       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3772           isSameUnderlyingObjectInLoop(PN, LI))
3773         for (Value *IncValue : PN->incoming_values())
3774           Worklist.push_back(IncValue);
3775       continue;
3776     }
3777 
3778     Objects.push_back(P);
3779   } while (!Worklist.empty());
3780 }
3781 
3782 /// This is the function that does the work of looking through basic
3783 /// ptrtoint+arithmetic+inttoptr sequences.
3784 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3785   do {
3786     if (const Operator *U = dyn_cast<Operator>(V)) {
3787       // If we find a ptrtoint, we can transfer control back to the
3788       // regular getUnderlyingObjectFromInt.
3789       if (U->getOpcode() == Instruction::PtrToInt)
3790         return U->getOperand(0);
3791       // If we find an add of a constant, a multiplied value, or a phi, it's
3792       // likely that the other operand will lead us to the base
3793       // object. We don't have to worry about the case where the
3794       // object address is somehow being computed by the multiply,
3795       // because our callers only care when the result is an
3796       // identifiable object.
3797       if (U->getOpcode() != Instruction::Add ||
3798           (!isa<ConstantInt>(U->getOperand(1)) &&
3799            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3800            !isa<PHINode>(U->getOperand(1))))
3801         return V;
3802       V = U->getOperand(0);
3803     } else {
3804       return V;
3805     }
3806     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3807   } while (true);
3808 }
3809 
3810 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3811 /// ptrtoint+arithmetic+inttoptr sequences.
3812 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3813 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3814                           SmallVectorImpl<Value *> &Objects,
3815                           const DataLayout &DL) {
3816   SmallPtrSet<const Value *, 16> Visited;
3817   SmallVector<const Value *, 4> Working(1, V);
3818   do {
3819     V = Working.pop_back_val();
3820 
3821     SmallVector<Value *, 4> Objs;
3822     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3823 
3824     for (Value *V : Objs) {
3825       if (!Visited.insert(V).second)
3826         continue;
3827       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3828         const Value *O =
3829           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3830         if (O->getType()->isPointerTy()) {
3831           Working.push_back(O);
3832           continue;
3833         }
3834       }
3835       // If GetUnderlyingObjects fails to find an identifiable object,
3836       // getUnderlyingObjectsForCodeGen also fails for safety.
3837       if (!isIdentifiedObject(V)) {
3838         Objects.clear();
3839         return false;
3840       }
3841       Objects.push_back(const_cast<Value *>(V));
3842     }
3843   } while (!Working.empty());
3844   return true;
3845 }
3846 
3847 /// Return true if the only users of this pointer are lifetime markers.
3848 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3849   for (const User *U : V->users()) {
3850     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3851     if (!II) return false;
3852 
3853     if (!II->isLifetimeStartOrEnd())
3854       return false;
3855   }
3856   return true;
3857 }
3858 
3859 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3860                                         const Instruction *CtxI,
3861                                         const DominatorTree *DT) {
3862   const Operator *Inst = dyn_cast<Operator>(V);
3863   if (!Inst)
3864     return false;
3865 
3866   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3867     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3868       if (C->canTrap())
3869         return false;
3870 
3871   switch (Inst->getOpcode()) {
3872   default:
3873     return true;
3874   case Instruction::UDiv:
3875   case Instruction::URem: {
3876     // x / y is undefined if y == 0.
3877     const APInt *V;
3878     if (match(Inst->getOperand(1), m_APInt(V)))
3879       return *V != 0;
3880     return false;
3881   }
3882   case Instruction::SDiv:
3883   case Instruction::SRem: {
3884     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3885     const APInt *Numerator, *Denominator;
3886     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3887       return false;
3888     // We cannot hoist this division if the denominator is 0.
3889     if (*Denominator == 0)
3890       return false;
3891     // It's safe to hoist if the denominator is not 0 or -1.
3892     if (*Denominator != -1)
3893       return true;
3894     // At this point we know that the denominator is -1.  It is safe to hoist as
3895     // long we know that the numerator is not INT_MIN.
3896     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3897       return !Numerator->isMinSignedValue();
3898     // The numerator *might* be MinSignedValue.
3899     return false;
3900   }
3901   case Instruction::Load: {
3902     const LoadInst *LI = cast<LoadInst>(Inst);
3903     if (!LI->isUnordered() ||
3904         // Speculative load may create a race that did not exist in the source.
3905         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3906         // Speculative load may load data from dirty regions.
3907         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3908         LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3909       return false;
3910     const DataLayout &DL = LI->getModule()->getDataLayout();
3911     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3912                                               LI->getAlignment(), DL, CtxI, DT);
3913   }
3914   case Instruction::Call: {
3915     auto *CI = cast<const CallInst>(Inst);
3916     const Function *Callee = CI->getCalledFunction();
3917 
3918     // The called function could have undefined behavior or side-effects, even
3919     // if marked readnone nounwind.
3920     return Callee && Callee->isSpeculatable();
3921   }
3922   case Instruction::VAArg:
3923   case Instruction::Alloca:
3924   case Instruction::Invoke:
3925   case Instruction::PHI:
3926   case Instruction::Store:
3927   case Instruction::Ret:
3928   case Instruction::Br:
3929   case Instruction::IndirectBr:
3930   case Instruction::Switch:
3931   case Instruction::Unreachable:
3932   case Instruction::Fence:
3933   case Instruction::AtomicRMW:
3934   case Instruction::AtomicCmpXchg:
3935   case Instruction::LandingPad:
3936   case Instruction::Resume:
3937   case Instruction::CatchSwitch:
3938   case Instruction::CatchPad:
3939   case Instruction::CatchRet:
3940   case Instruction::CleanupPad:
3941   case Instruction::CleanupRet:
3942     return false; // Misc instructions which have effects
3943   }
3944 }
3945 
3946 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3947   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3948 }
3949 
3950 OverflowResult llvm::computeOverflowForUnsignedMul(
3951     const Value *LHS, const Value *RHS, const DataLayout &DL,
3952     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3953     bool UseInstrInfo) {
3954   // Multiplying n * m significant bits yields a result of n + m significant
3955   // bits. If the total number of significant bits does not exceed the
3956   // result bit width (minus 1), there is no overflow.
3957   // This means if we have enough leading zero bits in the operands
3958   // we can guarantee that the result does not overflow.
3959   // Ref: "Hacker's Delight" by Henry Warren
3960   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3961   KnownBits LHSKnown(BitWidth);
3962   KnownBits RHSKnown(BitWidth);
3963   computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3964                    UseInstrInfo);
3965   computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3966                    UseInstrInfo);
3967   // Note that underestimating the number of zero bits gives a more
3968   // conservative answer.
3969   unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3970                       RHSKnown.countMinLeadingZeros();
3971   // First handle the easy case: if we have enough zero bits there's
3972   // definitely no overflow.
3973   if (ZeroBits >= BitWidth)
3974     return OverflowResult::NeverOverflows;
3975 
3976   // Get the largest possible values for each operand.
3977   APInt LHSMax = ~LHSKnown.Zero;
3978   APInt RHSMax = ~RHSKnown.Zero;
3979 
3980   // We know the multiply operation doesn't overflow if the maximum values for
3981   // each operand will not overflow after we multiply them together.
3982   bool MaxOverflow;
3983   (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
3984   if (!MaxOverflow)
3985     return OverflowResult::NeverOverflows;
3986 
3987   // We know it always overflows if multiplying the smallest possible values for
3988   // the operands also results in overflow.
3989   bool MinOverflow;
3990   (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
3991   if (MinOverflow)
3992     return OverflowResult::AlwaysOverflows;
3993 
3994   return OverflowResult::MayOverflow;
3995 }
3996 
3997 OverflowResult
3998 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
3999                                   const DataLayout &DL, AssumptionCache *AC,
4000                                   const Instruction *CxtI,
4001                                   const DominatorTree *DT, bool UseInstrInfo) {
4002   // Multiplying n * m significant bits yields a result of n + m significant
4003   // bits. If the total number of significant bits does not exceed the
4004   // result bit width (minus 1), there is no overflow.
4005   // This means if we have enough leading sign bits in the operands
4006   // we can guarantee that the result does not overflow.
4007   // Ref: "Hacker's Delight" by Henry Warren
4008   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4009 
4010   // Note that underestimating the number of sign bits gives a more
4011   // conservative answer.
4012   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4013                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4014 
4015   // First handle the easy case: if we have enough sign bits there's
4016   // definitely no overflow.
4017   if (SignBits > BitWidth + 1)
4018     return OverflowResult::NeverOverflows;
4019 
4020   // There are two ambiguous cases where there can be no overflow:
4021   //   SignBits == BitWidth + 1    and
4022   //   SignBits == BitWidth
4023   // The second case is difficult to check, therefore we only handle the
4024   // first case.
4025   if (SignBits == BitWidth + 1) {
4026     // It overflows only when both arguments are negative and the true
4027     // product is exactly the minimum negative number.
4028     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4029     // For simplicity we just check if at least one side is not negative.
4030     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4031                                           nullptr, UseInstrInfo);
4032     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4033                                           nullptr, UseInstrInfo);
4034     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4035       return OverflowResult::NeverOverflows;
4036   }
4037   return OverflowResult::MayOverflow;
4038 }
4039 
4040 OverflowResult llvm::computeOverflowForUnsignedAdd(
4041     const Value *LHS, const Value *RHS, const DataLayout &DL,
4042     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4043     bool UseInstrInfo) {
4044   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4045                                         nullptr, UseInstrInfo);
4046   if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
4047     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4048                                           nullptr, UseInstrInfo);
4049 
4050     if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
4051       // The sign bit is set in both cases: this MUST overflow.
4052       return OverflowResult::AlwaysOverflows;
4053     }
4054 
4055     if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
4056       // The sign bit is clear in both cases: this CANNOT overflow.
4057       return OverflowResult::NeverOverflows;
4058     }
4059   }
4060 
4061   return OverflowResult::MayOverflow;
4062 }
4063 
4064 /// Return true if we can prove that adding the two values of the
4065 /// knownbits will not overflow.
4066 /// Otherwise return false.
4067 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
4068                                     const KnownBits &RHSKnown) {
4069   // Addition of two 2's complement numbers having opposite signs will never
4070   // overflow.
4071   if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
4072       (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
4073     return true;
4074 
4075   // If either of the values is known to be non-negative, adding them can only
4076   // overflow if the second is also non-negative, so we can assume that.
4077   // Two non-negative numbers will only overflow if there is a carry to the
4078   // sign bit, so we can check if even when the values are as big as possible
4079   // there is no overflow to the sign bit.
4080   if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
4081     APInt MaxLHS = ~LHSKnown.Zero;
4082     MaxLHS.clearSignBit();
4083     APInt MaxRHS = ~RHSKnown.Zero;
4084     MaxRHS.clearSignBit();
4085     APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
4086     return Result.isSignBitClear();
4087   }
4088 
4089   // If either of the values is known to be negative, adding them can only
4090   // overflow if the second is also negative, so we can assume that.
4091   // Two negative number will only overflow if there is no carry to the sign
4092   // bit, so we can check if even when the values are as small as possible
4093   // there is overflow to the sign bit.
4094   if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
4095     APInt MinLHS = LHSKnown.One;
4096     MinLHS.clearSignBit();
4097     APInt MinRHS = RHSKnown.One;
4098     MinRHS.clearSignBit();
4099     APInt Result = std::move(MinLHS) + std::move(MinRHS);
4100     return Result.isSignBitSet();
4101   }
4102 
4103   // If we reached here it means that we know nothing about the sign bits.
4104   // In this case we can't know if there will be an overflow, since by
4105   // changing the sign bits any two values can be made to overflow.
4106   return false;
4107 }
4108 
4109 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4110                                                   const Value *RHS,
4111                                                   const AddOperator *Add,
4112                                                   const DataLayout &DL,
4113                                                   AssumptionCache *AC,
4114                                                   const Instruction *CxtI,
4115                                                   const DominatorTree *DT) {
4116   if (Add && Add->hasNoSignedWrap()) {
4117     return OverflowResult::NeverOverflows;
4118   }
4119 
4120   // If LHS and RHS each have at least two sign bits, the addition will look
4121   // like
4122   //
4123   // XX..... +
4124   // YY.....
4125   //
4126   // If the carry into the most significant position is 0, X and Y can't both
4127   // be 1 and therefore the carry out of the addition is also 0.
4128   //
4129   // If the carry into the most significant position is 1, X and Y can't both
4130   // be 0 and therefore the carry out of the addition is also 1.
4131   //
4132   // Since the carry into the most significant position is always equal to
4133   // the carry out of the addition, there is no signed overflow.
4134   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4135       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4136     return OverflowResult::NeverOverflows;
4137 
4138   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4139   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4140 
4141   if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
4142     return OverflowResult::NeverOverflows;
4143 
4144   // The remaining code needs Add to be available. Early returns if not so.
4145   if (!Add)
4146     return OverflowResult::MayOverflow;
4147 
4148   // If the sign of Add is the same as at least one of the operands, this add
4149   // CANNOT overflow. This is particularly useful when the sum is
4150   // @llvm.assume'ed non-negative rather than proved so from analyzing its
4151   // operands.
4152   bool LHSOrRHSKnownNonNegative =
4153       (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
4154   bool LHSOrRHSKnownNegative =
4155       (LHSKnown.isNegative() || RHSKnown.isNegative());
4156   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4157     KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
4158     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4159         (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
4160       return OverflowResult::NeverOverflows;
4161     }
4162   }
4163 
4164   return OverflowResult::MayOverflow;
4165 }
4166 
4167 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4168                                                    const Value *RHS,
4169                                                    const DataLayout &DL,
4170                                                    AssumptionCache *AC,
4171                                                    const Instruction *CxtI,
4172                                                    const DominatorTree *DT) {
4173   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4174   if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
4175     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4176 
4177     // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
4178     if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
4179       return OverflowResult::NeverOverflows;
4180 
4181     // If the LHS is non-negative and the RHS negative, we always wrap.
4182     if (LHSKnown.isNonNegative() && RHSKnown.isNegative())
4183       return OverflowResult::AlwaysOverflows;
4184   }
4185 
4186   return OverflowResult::MayOverflow;
4187 }
4188 
4189 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4190                                                  const Value *RHS,
4191                                                  const DataLayout &DL,
4192                                                  AssumptionCache *AC,
4193                                                  const Instruction *CxtI,
4194                                                  const DominatorTree *DT) {
4195   // If LHS and RHS each have at least two sign bits, the subtraction
4196   // cannot overflow.
4197   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4198       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4199     return OverflowResult::NeverOverflows;
4200 
4201   KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4202 
4203   KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4204 
4205   // Subtraction of two 2's complement numbers having identical signs will
4206   // never overflow.
4207   if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
4208       (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
4209     return OverflowResult::NeverOverflows;
4210 
4211   // TODO: implement logic similar to checkRippleForAdd
4212   return OverflowResult::MayOverflow;
4213 }
4214 
4215 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4216                                      const DominatorTree &DT) {
4217 #ifndef NDEBUG
4218   auto IID = II->getIntrinsicID();
4219   assert((IID == Intrinsic::sadd_with_overflow ||
4220           IID == Intrinsic::uadd_with_overflow ||
4221           IID == Intrinsic::ssub_with_overflow ||
4222           IID == Intrinsic::usub_with_overflow ||
4223           IID == Intrinsic::smul_with_overflow ||
4224           IID == Intrinsic::umul_with_overflow) &&
4225          "Not an overflow intrinsic!");
4226 #endif
4227 
4228   SmallVector<const BranchInst *, 2> GuardingBranches;
4229   SmallVector<const ExtractValueInst *, 2> Results;
4230 
4231   for (const User *U : II->users()) {
4232     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4233       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4234 
4235       if (EVI->getIndices()[0] == 0)
4236         Results.push_back(EVI);
4237       else {
4238         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4239 
4240         for (const auto *U : EVI->users())
4241           if (const auto *B = dyn_cast<BranchInst>(U)) {
4242             assert(B->isConditional() && "How else is it using an i1?");
4243             GuardingBranches.push_back(B);
4244           }
4245       }
4246     } else {
4247       // We are using the aggregate directly in a way we don't want to analyze
4248       // here (storing it to a global, say).
4249       return false;
4250     }
4251   }
4252 
4253   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4254     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4255     if (!NoWrapEdge.isSingleEdge())
4256       return false;
4257 
4258     // Check if all users of the add are provably no-wrap.
4259     for (const auto *Result : Results) {
4260       // If the extractvalue itself is not executed on overflow, the we don't
4261       // need to check each use separately, since domination is transitive.
4262       if (DT.dominates(NoWrapEdge, Result->getParent()))
4263         continue;
4264 
4265       for (auto &RU : Result->uses())
4266         if (!DT.dominates(NoWrapEdge, RU))
4267           return false;
4268     }
4269 
4270     return true;
4271   };
4272 
4273   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4274 }
4275 
4276 
4277 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4278                                                  const DataLayout &DL,
4279                                                  AssumptionCache *AC,
4280                                                  const Instruction *CxtI,
4281                                                  const DominatorTree *DT) {
4282   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4283                                        Add, DL, AC, CxtI, DT);
4284 }
4285 
4286 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4287                                                  const Value *RHS,
4288                                                  const DataLayout &DL,
4289                                                  AssumptionCache *AC,
4290                                                  const Instruction *CxtI,
4291                                                  const DominatorTree *DT) {
4292   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4293 }
4294 
4295 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4296   // A memory operation returns normally if it isn't volatile. A volatile
4297   // operation is allowed to trap.
4298   //
4299   // An atomic operation isn't guaranteed to return in a reasonable amount of
4300   // time because it's possible for another thread to interfere with it for an
4301   // arbitrary length of time, but programs aren't allowed to rely on that.
4302   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4303     return !LI->isVolatile();
4304   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4305     return !SI->isVolatile();
4306   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4307     return !CXI->isVolatile();
4308   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4309     return !RMWI->isVolatile();
4310   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4311     return !MII->isVolatile();
4312 
4313   // If there is no successor, then execution can't transfer to it.
4314   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4315     return !CRI->unwindsToCaller();
4316   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4317     return !CatchSwitch->unwindsToCaller();
4318   if (isa<ResumeInst>(I))
4319     return false;
4320   if (isa<ReturnInst>(I))
4321     return false;
4322   if (isa<UnreachableInst>(I))
4323     return false;
4324 
4325   // Calls can throw, or contain an infinite loop, or kill the process.
4326   if (auto CS = ImmutableCallSite(I)) {
4327     // Call sites that throw have implicit non-local control flow.
4328     if (!CS.doesNotThrow())
4329       return false;
4330 
4331     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4332     // etc. and thus not return.  However, LLVM already assumes that
4333     //
4334     //  - Thread exiting actions are modeled as writes to memory invisible to
4335     //    the program.
4336     //
4337     //  - Loops that don't have side effects (side effects are volatile/atomic
4338     //    stores and IO) always terminate (see http://llvm.org/PR965).
4339     //    Furthermore IO itself is also modeled as writes to memory invisible to
4340     //    the program.
4341     //
4342     // We rely on those assumptions here, and use the memory effects of the call
4343     // target as a proxy for checking that it always returns.
4344 
4345     // FIXME: This isn't aggressive enough; a call which only writes to a global
4346     // is guaranteed to return.
4347     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
4348            match(I, m_Intrinsic<Intrinsic::assume>()) ||
4349            match(I, m_Intrinsic<Intrinsic::sideeffect>());
4350   }
4351 
4352   // Other instructions return normally.
4353   return true;
4354 }
4355 
4356 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4357   // TODO: This is slightly conservative for invoke instruction since exiting
4358   // via an exception *is* normal control for them.
4359   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4360     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4361       return false;
4362   return true;
4363 }
4364 
4365 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4366                                                   const Loop *L) {
4367   // The loop header is guaranteed to be executed for every iteration.
4368   //
4369   // FIXME: Relax this constraint to cover all basic blocks that are
4370   // guaranteed to be executed at every iteration.
4371   if (I->getParent() != L->getHeader()) return false;
4372 
4373   for (const Instruction &LI : *L->getHeader()) {
4374     if (&LI == I) return true;
4375     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4376   }
4377   llvm_unreachable("Instruction not contained in its own parent basic block.");
4378 }
4379 
4380 bool llvm::propagatesFullPoison(const Instruction *I) {
4381   switch (I->getOpcode()) {
4382   case Instruction::Add:
4383   case Instruction::Sub:
4384   case Instruction::Xor:
4385   case Instruction::Trunc:
4386   case Instruction::BitCast:
4387   case Instruction::AddrSpaceCast:
4388   case Instruction::Mul:
4389   case Instruction::Shl:
4390   case Instruction::GetElementPtr:
4391     // These operations all propagate poison unconditionally. Note that poison
4392     // is not any particular value, so xor or subtraction of poison with
4393     // itself still yields poison, not zero.
4394     return true;
4395 
4396   case Instruction::AShr:
4397   case Instruction::SExt:
4398     // For these operations, one bit of the input is replicated across
4399     // multiple output bits. A replicated poison bit is still poison.
4400     return true;
4401 
4402   case Instruction::ICmp:
4403     // Comparing poison with any value yields poison.  This is why, for
4404     // instance, x s< (x +nsw 1) can be folded to true.
4405     return true;
4406 
4407   default:
4408     return false;
4409   }
4410 }
4411 
4412 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4413   switch (I->getOpcode()) {
4414     case Instruction::Store:
4415       return cast<StoreInst>(I)->getPointerOperand();
4416 
4417     case Instruction::Load:
4418       return cast<LoadInst>(I)->getPointerOperand();
4419 
4420     case Instruction::AtomicCmpXchg:
4421       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4422 
4423     case Instruction::AtomicRMW:
4424       return cast<AtomicRMWInst>(I)->getPointerOperand();
4425 
4426     case Instruction::UDiv:
4427     case Instruction::SDiv:
4428     case Instruction::URem:
4429     case Instruction::SRem:
4430       return I->getOperand(1);
4431 
4432     default:
4433       return nullptr;
4434   }
4435 }
4436 
4437 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4438   // We currently only look for uses of poison values within the same basic
4439   // block, as that makes it easier to guarantee that the uses will be
4440   // executed given that PoisonI is executed.
4441   //
4442   // FIXME: Expand this to consider uses beyond the same basic block. To do
4443   // this, look out for the distinction between post-dominance and strong
4444   // post-dominance.
4445   const BasicBlock *BB = PoisonI->getParent();
4446 
4447   // Set of instructions that we have proved will yield poison if PoisonI
4448   // does.
4449   SmallSet<const Value *, 16> YieldsPoison;
4450   SmallSet<const BasicBlock *, 4> Visited;
4451   YieldsPoison.insert(PoisonI);
4452   Visited.insert(PoisonI->getParent());
4453 
4454   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4455 
4456   unsigned Iter = 0;
4457   while (Iter++ < MaxDepth) {
4458     for (auto &I : make_range(Begin, End)) {
4459       if (&I != PoisonI) {
4460         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4461         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4462           return true;
4463         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4464           return false;
4465       }
4466 
4467       // Mark poison that propagates from I through uses of I.
4468       if (YieldsPoison.count(&I)) {
4469         for (const User *User : I.users()) {
4470           const Instruction *UserI = cast<Instruction>(User);
4471           if (propagatesFullPoison(UserI))
4472             YieldsPoison.insert(User);
4473         }
4474       }
4475     }
4476 
4477     if (auto *NextBB = BB->getSingleSuccessor()) {
4478       if (Visited.insert(NextBB).second) {
4479         BB = NextBB;
4480         Begin = BB->getFirstNonPHI()->getIterator();
4481         End = BB->end();
4482         continue;
4483       }
4484     }
4485 
4486     break;
4487   }
4488   return false;
4489 }
4490 
4491 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4492   if (FMF.noNaNs())
4493     return true;
4494 
4495   if (auto *C = dyn_cast<ConstantFP>(V))
4496     return !C->isNaN();
4497 
4498   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4499     if (!C->getElementType()->isFloatingPointTy())
4500       return false;
4501     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4502       if (C->getElementAsAPFloat(I).isNaN())
4503         return false;
4504     }
4505     return true;
4506   }
4507 
4508   return false;
4509 }
4510 
4511 static bool isKnownNonZero(const Value *V) {
4512   if (auto *C = dyn_cast<ConstantFP>(V))
4513     return !C->isZero();
4514 
4515   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4516     if (!C->getElementType()->isFloatingPointTy())
4517       return false;
4518     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4519       if (C->getElementAsAPFloat(I).isZero())
4520         return false;
4521     }
4522     return true;
4523   }
4524 
4525   return false;
4526 }
4527 
4528 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4529 /// Given non-min/max outer cmp/select from the clamp pattern this
4530 /// function recognizes if it can be substitued by a "canonical" min/max
4531 /// pattern.
4532 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4533                                                Value *CmpLHS, Value *CmpRHS,
4534                                                Value *TrueVal, Value *FalseVal,
4535                                                Value *&LHS, Value *&RHS) {
4536   // Try to match
4537   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4538   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4539   // and return description of the outer Max/Min.
4540 
4541   // First, check if select has inverse order:
4542   if (CmpRHS == FalseVal) {
4543     std::swap(TrueVal, FalseVal);
4544     Pred = CmpInst::getInversePredicate(Pred);
4545   }
4546 
4547   // Assume success now. If there's no match, callers should not use these anyway.
4548   LHS = TrueVal;
4549   RHS = FalseVal;
4550 
4551   const APFloat *FC1;
4552   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4553     return {SPF_UNKNOWN, SPNB_NA, false};
4554 
4555   const APFloat *FC2;
4556   switch (Pred) {
4557   case CmpInst::FCMP_OLT:
4558   case CmpInst::FCMP_OLE:
4559   case CmpInst::FCMP_ULT:
4560   case CmpInst::FCMP_ULE:
4561     if (match(FalseVal,
4562               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4563                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4564         FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4565       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4566     break;
4567   case CmpInst::FCMP_OGT:
4568   case CmpInst::FCMP_OGE:
4569   case CmpInst::FCMP_UGT:
4570   case CmpInst::FCMP_UGE:
4571     if (match(FalseVal,
4572               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4573                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4574         FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4575       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4576     break;
4577   default:
4578     break;
4579   }
4580 
4581   return {SPF_UNKNOWN, SPNB_NA, false};
4582 }
4583 
4584 /// Recognize variations of:
4585 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4586 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4587                                       Value *CmpLHS, Value *CmpRHS,
4588                                       Value *TrueVal, Value *FalseVal) {
4589   // Swap the select operands and predicate to match the patterns below.
4590   if (CmpRHS != TrueVal) {
4591     Pred = ICmpInst::getSwappedPredicate(Pred);
4592     std::swap(TrueVal, FalseVal);
4593   }
4594   const APInt *C1;
4595   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4596     const APInt *C2;
4597     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4598     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4599         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4600       return {SPF_SMAX, SPNB_NA, false};
4601 
4602     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4603     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4604         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4605       return {SPF_SMIN, SPNB_NA, false};
4606 
4607     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4608     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4609         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4610       return {SPF_UMAX, SPNB_NA, false};
4611 
4612     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4613     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4614         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4615       return {SPF_UMIN, SPNB_NA, false};
4616   }
4617   return {SPF_UNKNOWN, SPNB_NA, false};
4618 }
4619 
4620 /// Recognize variations of:
4621 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4622 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4623                                                Value *CmpLHS, Value *CmpRHS,
4624                                                Value *TVal, Value *FVal,
4625                                                unsigned Depth) {
4626   // TODO: Allow FP min/max with nnan/nsz.
4627   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4628 
4629   Value *A, *B;
4630   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4631   if (!SelectPatternResult::isMinOrMax(L.Flavor))
4632     return {SPF_UNKNOWN, SPNB_NA, false};
4633 
4634   Value *C, *D;
4635   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4636   if (L.Flavor != R.Flavor)
4637     return {SPF_UNKNOWN, SPNB_NA, false};
4638 
4639   // We have something like: x Pred y ? min(a, b) : min(c, d).
4640   // Try to match the compare to the min/max operations of the select operands.
4641   // First, make sure we have the right compare predicate.
4642   switch (L.Flavor) {
4643   case SPF_SMIN:
4644     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4645       Pred = ICmpInst::getSwappedPredicate(Pred);
4646       std::swap(CmpLHS, CmpRHS);
4647     }
4648     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4649       break;
4650     return {SPF_UNKNOWN, SPNB_NA, false};
4651   case SPF_SMAX:
4652     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4653       Pred = ICmpInst::getSwappedPredicate(Pred);
4654       std::swap(CmpLHS, CmpRHS);
4655     }
4656     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4657       break;
4658     return {SPF_UNKNOWN, SPNB_NA, false};
4659   case SPF_UMIN:
4660     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4661       Pred = ICmpInst::getSwappedPredicate(Pred);
4662       std::swap(CmpLHS, CmpRHS);
4663     }
4664     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4665       break;
4666     return {SPF_UNKNOWN, SPNB_NA, false};
4667   case SPF_UMAX:
4668     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4669       Pred = ICmpInst::getSwappedPredicate(Pred);
4670       std::swap(CmpLHS, CmpRHS);
4671     }
4672     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4673       break;
4674     return {SPF_UNKNOWN, SPNB_NA, false};
4675   default:
4676     return {SPF_UNKNOWN, SPNB_NA, false};
4677   }
4678 
4679   // If there is a common operand in the already matched min/max and the other
4680   // min/max operands match the compare operands (either directly or inverted),
4681   // then this is min/max of the same flavor.
4682 
4683   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4684   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4685   if (D == B) {
4686     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4687                                          match(A, m_Not(m_Specific(CmpRHS)))))
4688       return {L.Flavor, SPNB_NA, false};
4689   }
4690   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4691   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4692   if (C == B) {
4693     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4694                                          match(A, m_Not(m_Specific(CmpRHS)))))
4695       return {L.Flavor, SPNB_NA, false};
4696   }
4697   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4698   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4699   if (D == A) {
4700     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4701                                          match(B, m_Not(m_Specific(CmpRHS)))))
4702       return {L.Flavor, SPNB_NA, false};
4703   }
4704   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4705   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4706   if (C == A) {
4707     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4708                                          match(B, m_Not(m_Specific(CmpRHS)))))
4709       return {L.Flavor, SPNB_NA, false};
4710   }
4711 
4712   return {SPF_UNKNOWN, SPNB_NA, false};
4713 }
4714 
4715 /// Match non-obvious integer minimum and maximum sequences.
4716 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4717                                        Value *CmpLHS, Value *CmpRHS,
4718                                        Value *TrueVal, Value *FalseVal,
4719                                        Value *&LHS, Value *&RHS,
4720                                        unsigned Depth) {
4721   // Assume success. If there's no match, callers should not use these anyway.
4722   LHS = TrueVal;
4723   RHS = FalseVal;
4724 
4725   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4726   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4727     return SPR;
4728 
4729   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4730   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4731     return SPR;
4732 
4733   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4734     return {SPF_UNKNOWN, SPNB_NA, false};
4735 
4736   // Z = X -nsw Y
4737   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4738   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4739   if (match(TrueVal, m_Zero()) &&
4740       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4741     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4742 
4743   // Z = X -nsw Y
4744   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4745   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4746   if (match(FalseVal, m_Zero()) &&
4747       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4748     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4749 
4750   const APInt *C1;
4751   if (!match(CmpRHS, m_APInt(C1)))
4752     return {SPF_UNKNOWN, SPNB_NA, false};
4753 
4754   // An unsigned min/max can be written with a signed compare.
4755   const APInt *C2;
4756   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4757       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4758     // Is the sign bit set?
4759     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4760     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4761     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4762         C2->isMaxSignedValue())
4763       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4764 
4765     // Is the sign bit clear?
4766     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4767     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4768     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4769         C2->isMinSignedValue())
4770       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4771   }
4772 
4773   // Look through 'not' ops to find disguised signed min/max.
4774   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4775   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4776   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4777       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4778     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4779 
4780   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4781   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4782   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4783       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4784     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4785 
4786   return {SPF_UNKNOWN, SPNB_NA, false};
4787 }
4788 
4789 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4790   assert(X && Y && "Invalid operand");
4791 
4792   // X = sub (0, Y) || X = sub nsw (0, Y)
4793   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4794       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4795     return true;
4796 
4797   // Y = sub (0, X) || Y = sub nsw (0, X)
4798   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4799       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4800     return true;
4801 
4802   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4803   Value *A, *B;
4804   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4805                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4806          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4807                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4808 }
4809 
4810 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4811                                               FastMathFlags FMF,
4812                                               Value *CmpLHS, Value *CmpRHS,
4813                                               Value *TrueVal, Value *FalseVal,
4814                                               Value *&LHS, Value *&RHS,
4815                                               unsigned Depth) {
4816   if (CmpInst::isFPPredicate(Pred)) {
4817     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4818     // 0.0 operand, set the compare's 0.0 operands to that same value for the
4819     // purpose of identifying min/max. Disregard vector constants with undefined
4820     // elements because those can not be back-propagated for analysis.
4821     Value *OutputZeroVal = nullptr;
4822     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4823         !cast<Constant>(TrueVal)->containsUndefElement())
4824       OutputZeroVal = TrueVal;
4825     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4826              !cast<Constant>(FalseVal)->containsUndefElement())
4827       OutputZeroVal = FalseVal;
4828 
4829     if (OutputZeroVal) {
4830       if (match(CmpLHS, m_AnyZeroFP()))
4831         CmpLHS = OutputZeroVal;
4832       if (match(CmpRHS, m_AnyZeroFP()))
4833         CmpRHS = OutputZeroVal;
4834     }
4835   }
4836 
4837   LHS = CmpLHS;
4838   RHS = CmpRHS;
4839 
4840   // Signed zero may return inconsistent results between implementations.
4841   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4842   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4843   // Therefore, we behave conservatively and only proceed if at least one of the
4844   // operands is known to not be zero or if we don't care about signed zero.
4845   switch (Pred) {
4846   default: break;
4847   // FIXME: Include OGT/OLT/UGT/ULT.
4848   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4849   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4850     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4851         !isKnownNonZero(CmpRHS))
4852       return {SPF_UNKNOWN, SPNB_NA, false};
4853   }
4854 
4855   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4856   bool Ordered = false;
4857 
4858   // When given one NaN and one non-NaN input:
4859   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4860   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4861   //     ordered comparison fails), which could be NaN or non-NaN.
4862   // so here we discover exactly what NaN behavior is required/accepted.
4863   if (CmpInst::isFPPredicate(Pred)) {
4864     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4865     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4866 
4867     if (LHSSafe && RHSSafe) {
4868       // Both operands are known non-NaN.
4869       NaNBehavior = SPNB_RETURNS_ANY;
4870     } else if (CmpInst::isOrdered(Pred)) {
4871       // An ordered comparison will return false when given a NaN, so it
4872       // returns the RHS.
4873       Ordered = true;
4874       if (LHSSafe)
4875         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4876         NaNBehavior = SPNB_RETURNS_NAN;
4877       else if (RHSSafe)
4878         NaNBehavior = SPNB_RETURNS_OTHER;
4879       else
4880         // Completely unsafe.
4881         return {SPF_UNKNOWN, SPNB_NA, false};
4882     } else {
4883       Ordered = false;
4884       // An unordered comparison will return true when given a NaN, so it
4885       // returns the LHS.
4886       if (LHSSafe)
4887         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4888         NaNBehavior = SPNB_RETURNS_OTHER;
4889       else if (RHSSafe)
4890         NaNBehavior = SPNB_RETURNS_NAN;
4891       else
4892         // Completely unsafe.
4893         return {SPF_UNKNOWN, SPNB_NA, false};
4894     }
4895   }
4896 
4897   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4898     std::swap(CmpLHS, CmpRHS);
4899     Pred = CmpInst::getSwappedPredicate(Pred);
4900     if (NaNBehavior == SPNB_RETURNS_NAN)
4901       NaNBehavior = SPNB_RETURNS_OTHER;
4902     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4903       NaNBehavior = SPNB_RETURNS_NAN;
4904     Ordered = !Ordered;
4905   }
4906 
4907   // ([if]cmp X, Y) ? X : Y
4908   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4909     switch (Pred) {
4910     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4911     case ICmpInst::ICMP_UGT:
4912     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4913     case ICmpInst::ICMP_SGT:
4914     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4915     case ICmpInst::ICMP_ULT:
4916     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4917     case ICmpInst::ICMP_SLT:
4918     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4919     case FCmpInst::FCMP_UGT:
4920     case FCmpInst::FCMP_UGE:
4921     case FCmpInst::FCMP_OGT:
4922     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4923     case FCmpInst::FCMP_ULT:
4924     case FCmpInst::FCMP_ULE:
4925     case FCmpInst::FCMP_OLT:
4926     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4927     }
4928   }
4929 
4930   if (isKnownNegation(TrueVal, FalseVal)) {
4931     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4932     // match against either LHS or sext(LHS).
4933     auto MaybeSExtCmpLHS =
4934         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4935     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4936     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4937     if (match(TrueVal, MaybeSExtCmpLHS)) {
4938       // Set the return values. If the compare uses the negated value (-X >s 0),
4939       // swap the return values because the negated value is always 'RHS'.
4940       LHS = TrueVal;
4941       RHS = FalseVal;
4942       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4943         std::swap(LHS, RHS);
4944 
4945       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4946       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4947       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4948         return {SPF_ABS, SPNB_NA, false};
4949 
4950       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4951       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4952       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4953         return {SPF_NABS, SPNB_NA, false};
4954     }
4955     else if (match(FalseVal, MaybeSExtCmpLHS)) {
4956       // Set the return values. If the compare uses the negated value (-X >s 0),
4957       // swap the return values because the negated value is always 'RHS'.
4958       LHS = FalseVal;
4959       RHS = TrueVal;
4960       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4961         std::swap(LHS, RHS);
4962 
4963       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4964       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4965       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4966         return {SPF_NABS, SPNB_NA, false};
4967 
4968       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4969       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4970       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4971         return {SPF_ABS, SPNB_NA, false};
4972     }
4973   }
4974 
4975   if (CmpInst::isIntPredicate(Pred))
4976     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4977 
4978   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4979   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4980   // semantics than minNum. Be conservative in such case.
4981   if (NaNBehavior != SPNB_RETURNS_ANY ||
4982       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4983        !isKnownNonZero(CmpRHS)))
4984     return {SPF_UNKNOWN, SPNB_NA, false};
4985 
4986   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4987 }
4988 
4989 /// Helps to match a select pattern in case of a type mismatch.
4990 ///
4991 /// The function processes the case when type of true and false values of a
4992 /// select instruction differs from type of the cmp instruction operands because
4993 /// of a cast instruction. The function checks if it is legal to move the cast
4994 /// operation after "select". If yes, it returns the new second value of
4995 /// "select" (with the assumption that cast is moved):
4996 /// 1. As operand of cast instruction when both values of "select" are same cast
4997 /// instructions.
4998 /// 2. As restored constant (by applying reverse cast operation) when the first
4999 /// value of the "select" is a cast operation and the second value is a
5000 /// constant.
5001 /// NOTE: We return only the new second value because the first value could be
5002 /// accessed as operand of cast instruction.
5003 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5004                               Instruction::CastOps *CastOp) {
5005   auto *Cast1 = dyn_cast<CastInst>(V1);
5006   if (!Cast1)
5007     return nullptr;
5008 
5009   *CastOp = Cast1->getOpcode();
5010   Type *SrcTy = Cast1->getSrcTy();
5011   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5012     // If V1 and V2 are both the same cast from the same type, look through V1.
5013     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5014       return Cast2->getOperand(0);
5015     return nullptr;
5016   }
5017 
5018   auto *C = dyn_cast<Constant>(V2);
5019   if (!C)
5020     return nullptr;
5021 
5022   Constant *CastedTo = nullptr;
5023   switch (*CastOp) {
5024   case Instruction::ZExt:
5025     if (CmpI->isUnsigned())
5026       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5027     break;
5028   case Instruction::SExt:
5029     if (CmpI->isSigned())
5030       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5031     break;
5032   case Instruction::Trunc:
5033     Constant *CmpConst;
5034     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5035         CmpConst->getType() == SrcTy) {
5036       // Here we have the following case:
5037       //
5038       //   %cond = cmp iN %x, CmpConst
5039       //   %tr = trunc iN %x to iK
5040       //   %narrowsel = select i1 %cond, iK %t, iK C
5041       //
5042       // We can always move trunc after select operation:
5043       //
5044       //   %cond = cmp iN %x, CmpConst
5045       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5046       //   %tr = trunc iN %widesel to iK
5047       //
5048       // Note that C could be extended in any way because we don't care about
5049       // upper bits after truncation. It can't be abs pattern, because it would
5050       // look like:
5051       //
5052       //   select i1 %cond, x, -x.
5053       //
5054       // So only min/max pattern could be matched. Such match requires widened C
5055       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5056       // CmpConst == C is checked below.
5057       CastedTo = CmpConst;
5058     } else {
5059       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5060     }
5061     break;
5062   case Instruction::FPTrunc:
5063     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5064     break;
5065   case Instruction::FPExt:
5066     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5067     break;
5068   case Instruction::FPToUI:
5069     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5070     break;
5071   case Instruction::FPToSI:
5072     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5073     break;
5074   case Instruction::UIToFP:
5075     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5076     break;
5077   case Instruction::SIToFP:
5078     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5079     break;
5080   default:
5081     break;
5082   }
5083 
5084   if (!CastedTo)
5085     return nullptr;
5086 
5087   // Make sure the cast doesn't lose any information.
5088   Constant *CastedBack =
5089       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5090   if (CastedBack != C)
5091     return nullptr;
5092 
5093   return CastedTo;
5094 }
5095 
5096 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5097                                              Instruction::CastOps *CastOp,
5098                                              unsigned Depth) {
5099   if (Depth >= MaxDepth)
5100     return {SPF_UNKNOWN, SPNB_NA, false};
5101 
5102   SelectInst *SI = dyn_cast<SelectInst>(V);
5103   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5104 
5105   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5106   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5107 
5108   CmpInst::Predicate Pred = CmpI->getPredicate();
5109   Value *CmpLHS = CmpI->getOperand(0);
5110   Value *CmpRHS = CmpI->getOperand(1);
5111   Value *TrueVal = SI->getTrueValue();
5112   Value *FalseVal = SI->getFalseValue();
5113   FastMathFlags FMF;
5114   if (isa<FPMathOperator>(CmpI))
5115     FMF = CmpI->getFastMathFlags();
5116 
5117   // Bail out early.
5118   if (CmpI->isEquality())
5119     return {SPF_UNKNOWN, SPNB_NA, false};
5120 
5121   // Deal with type mismatches.
5122   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5123     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5124       // If this is a potential fmin/fmax with a cast to integer, then ignore
5125       // -0.0 because there is no corresponding integer value.
5126       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5127         FMF.setNoSignedZeros();
5128       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5129                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5130                                   LHS, RHS, Depth);
5131     }
5132     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5133       // If this is a potential fmin/fmax with a cast to integer, then ignore
5134       // -0.0 because there is no corresponding integer value.
5135       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5136         FMF.setNoSignedZeros();
5137       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5138                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5139                                   LHS, RHS, Depth);
5140     }
5141   }
5142   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5143                               LHS, RHS, Depth);
5144 }
5145 
5146 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5147   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5148   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5149   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5150   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5151   if (SPF == SPF_FMINNUM)
5152     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5153   if (SPF == SPF_FMAXNUM)
5154     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5155   llvm_unreachable("unhandled!");
5156 }
5157 
5158 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5159   if (SPF == SPF_SMIN) return SPF_SMAX;
5160   if (SPF == SPF_UMIN) return SPF_UMAX;
5161   if (SPF == SPF_SMAX) return SPF_SMIN;
5162   if (SPF == SPF_UMAX) return SPF_UMIN;
5163   llvm_unreachable("unhandled!");
5164 }
5165 
5166 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5167   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5168 }
5169 
5170 /// Return true if "icmp Pred LHS RHS" is always true.
5171 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5172                             const Value *RHS, const DataLayout &DL,
5173                             unsigned Depth) {
5174   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5175   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5176     return true;
5177 
5178   switch (Pred) {
5179   default:
5180     return false;
5181 
5182   case CmpInst::ICMP_SLE: {
5183     const APInt *C;
5184 
5185     // LHS s<= LHS +_{nsw} C   if C >= 0
5186     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5187       return !C->isNegative();
5188     return false;
5189   }
5190 
5191   case CmpInst::ICMP_ULE: {
5192     const APInt *C;
5193 
5194     // LHS u<= LHS +_{nuw} C   for any C
5195     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5196       return true;
5197 
5198     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5199     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5200                                        const Value *&X,
5201                                        const APInt *&CA, const APInt *&CB) {
5202       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5203           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5204         return true;
5205 
5206       // If X & C == 0 then (X | C) == X +_{nuw} C
5207       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5208           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5209         KnownBits Known(CA->getBitWidth());
5210         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5211                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5212         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5213           return true;
5214       }
5215 
5216       return false;
5217     };
5218 
5219     const Value *X;
5220     const APInt *CLHS, *CRHS;
5221     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5222       return CLHS->ule(*CRHS);
5223 
5224     return false;
5225   }
5226   }
5227 }
5228 
5229 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5230 /// ALHS ARHS" is true.  Otherwise, return None.
5231 static Optional<bool>
5232 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5233                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5234                       const DataLayout &DL, unsigned Depth) {
5235   switch (Pred) {
5236   default:
5237     return None;
5238 
5239   case CmpInst::ICMP_SLT:
5240   case CmpInst::ICMP_SLE:
5241     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5242         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5243       return true;
5244     return None;
5245 
5246   case CmpInst::ICMP_ULT:
5247   case CmpInst::ICMP_ULE:
5248     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5249         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5250       return true;
5251     return None;
5252   }
5253 }
5254 
5255 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5256 /// when the operands match, but are swapped.
5257 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5258                           const Value *BLHS, const Value *BRHS,
5259                           bool &IsSwappedOps) {
5260 
5261   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5262   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5263   return IsMatchingOps || IsSwappedOps;
5264 }
5265 
5266 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5267 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5268 /// Otherwise, return None if we can't infer anything.
5269 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5270                                                     CmpInst::Predicate BPred,
5271                                                     bool AreSwappedOps) {
5272   // Canonicalize the predicate as if the operands were not commuted.
5273   if (AreSwappedOps)
5274     BPred = ICmpInst::getSwappedPredicate(BPred);
5275 
5276   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5277     return true;
5278   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5279     return false;
5280 
5281   return None;
5282 }
5283 
5284 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5285 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5286 /// Otherwise, return None if we can't infer anything.
5287 static Optional<bool>
5288 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
5289                                  const ConstantInt *C1,
5290                                  CmpInst::Predicate BPred,
5291                                  const ConstantInt *C2) {
5292   ConstantRange DomCR =
5293       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5294   ConstantRange CR =
5295       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5296   ConstantRange Intersection = DomCR.intersectWith(CR);
5297   ConstantRange Difference = DomCR.difference(CR);
5298   if (Intersection.isEmptySet())
5299     return false;
5300   if (Difference.isEmptySet())
5301     return true;
5302   return None;
5303 }
5304 
5305 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5306 /// false.  Otherwise, return None if we can't infer anything.
5307 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5308                                          const ICmpInst *RHS,
5309                                          const DataLayout &DL, bool LHSIsTrue,
5310                                          unsigned Depth) {
5311   Value *ALHS = LHS->getOperand(0);
5312   Value *ARHS = LHS->getOperand(1);
5313   // The rest of the logic assumes the LHS condition is true.  If that's not the
5314   // case, invert the predicate to make it so.
5315   ICmpInst::Predicate APred =
5316       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5317 
5318   Value *BLHS = RHS->getOperand(0);
5319   Value *BRHS = RHS->getOperand(1);
5320   ICmpInst::Predicate BPred = RHS->getPredicate();
5321 
5322   // Can we infer anything when the two compares have matching operands?
5323   bool AreSwappedOps;
5324   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
5325     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5326             APred, BPred, AreSwappedOps))
5327       return Implication;
5328     // No amount of additional analysis will infer the second condition, so
5329     // early exit.
5330     return None;
5331   }
5332 
5333   // Can we infer anything when the LHS operands match and the RHS operands are
5334   // constants (not necessarily matching)?
5335   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5336     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5337             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
5338       return Implication;
5339     // No amount of additional analysis will infer the second condition, so
5340     // early exit.
5341     return None;
5342   }
5343 
5344   if (APred == BPred)
5345     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5346   return None;
5347 }
5348 
5349 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5350 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5351 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5352 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5353                                          const ICmpInst *RHS,
5354                                          const DataLayout &DL, bool LHSIsTrue,
5355                                          unsigned Depth) {
5356   // The LHS must be an 'or' or an 'and' instruction.
5357   assert((LHS->getOpcode() == Instruction::And ||
5358           LHS->getOpcode() == Instruction::Or) &&
5359          "Expected LHS to be 'and' or 'or'.");
5360 
5361   assert(Depth <= MaxDepth && "Hit recursion limit");
5362 
5363   // If the result of an 'or' is false, then we know both legs of the 'or' are
5364   // false.  Similarly, if the result of an 'and' is true, then we know both
5365   // legs of the 'and' are true.
5366   Value *ALHS, *ARHS;
5367   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5368       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5369     // FIXME: Make this non-recursion.
5370     if (Optional<bool> Implication =
5371             isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5372       return Implication;
5373     if (Optional<bool> Implication =
5374             isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5375       return Implication;
5376     return None;
5377   }
5378   return None;
5379 }
5380 
5381 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5382                                         const DataLayout &DL, bool LHSIsTrue,
5383                                         unsigned Depth) {
5384   // Bail out when we hit the limit.
5385   if (Depth == MaxDepth)
5386     return None;
5387 
5388   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5389   // example.
5390   if (LHS->getType() != RHS->getType())
5391     return None;
5392 
5393   Type *OpTy = LHS->getType();
5394   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5395 
5396   // LHS ==> RHS by definition
5397   if (LHS == RHS)
5398     return LHSIsTrue;
5399 
5400   // FIXME: Extending the code below to handle vectors.
5401   if (OpTy->isVectorTy())
5402     return None;
5403 
5404   assert(OpTy->isIntegerTy(1) && "implied by above");
5405 
5406   // Both LHS and RHS are icmps.
5407   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5408   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5409   if (LHSCmp && RHSCmp)
5410     return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5411 
5412   // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
5413   // an icmp. FIXME: Add support for and/or on the RHS.
5414   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5415   if (LHSBO && RHSCmp) {
5416     if ((LHSBO->getOpcode() == Instruction::And ||
5417          LHSBO->getOpcode() == Instruction::Or))
5418       return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5419   }
5420   return None;
5421 }
5422 
5423 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5424                                              const Instruction *ContextI,
5425                                              const DataLayout &DL) {
5426   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
5427   if (!ContextI || !ContextI->getParent())
5428     return None;
5429 
5430   // TODO: This is a poor/cheap way to determine dominance. Should we use a
5431   // dominator tree (eg, from a SimplifyQuery) instead?
5432   const BasicBlock *ContextBB = ContextI->getParent();
5433   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5434   if (!PredBB)
5435     return None;
5436 
5437   // We need a conditional branch in the predecessor.
5438   Value *PredCond;
5439   BasicBlock *TrueBB, *FalseBB;
5440   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5441     return None;
5442 
5443   // The branch should get simplified. Don't bother simplifying this condition.
5444   if (TrueBB == FalseBB)
5445     return None;
5446 
5447   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
5448          "Predecessor block does not point to successor?");
5449 
5450   // Is this condition implied by the predecessor condition?
5451   bool CondIsTrue = TrueBB == ContextBB;
5452   return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5453 }
5454