1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <cstring> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 const unsigned MaxDepth = 6; 43 44 /// Enable an experimental feature to leverage information about dominating 45 /// conditions to compute known bits. The individual options below control how 46 /// hard we search. The defaults are choosen to be fairly aggressive. If you 47 /// run into compile time problems when testing, scale them back and report 48 /// your findings. 49 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 50 cl::Hidden, cl::init(false)); 51 52 // This is expensive, so we only do it for the top level query value. 53 // (TODO: evaluate cost vs profit, consider higher thresholds) 54 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 55 cl::Hidden, cl::init(1)); 56 57 /// How many dominating blocks should be scanned looking for dominating 58 /// conditions? 59 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 60 cl::Hidden, 61 cl::init(20000)); 62 63 // Controls the number of uses of the value searched for possible 64 // dominating comparisons. 65 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 66 cl::Hidden, cl::init(2000)); 67 68 // If true, don't consider only compares whose only use is a branch. 69 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 70 cl::Hidden, cl::init(false)); 71 72 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 73 /// 0). For vector types, returns the element type's bitwidth. 74 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 75 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 76 return BitWidth; 77 78 return DL.getPointerTypeSizeInBits(Ty); 79 } 80 81 // Many of these functions have internal versions that take an assumption 82 // exclusion set. This is because of the potential for mutual recursion to 83 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 84 // classic case of this is assume(x = y), which will attempt to determine 85 // bits in x from bits in y, which will attempt to determine bits in y from 86 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 87 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 88 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 89 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 90 91 namespace { 92 // Simplifying using an assume can only be done in a particular control-flow 93 // context (the context instruction provides that context). If an assume and 94 // the context instruction are not in the same block then the DT helps in 95 // figuring out if we can use it. 96 struct Query { 97 ExclInvsSet ExclInvs; 98 AssumptionCache *AC; 99 const Instruction *CxtI; 100 const DominatorTree *DT; 101 102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 103 const DominatorTree *DT = nullptr) 104 : AC(AC), CxtI(CxtI), DT(DT) {} 105 106 Query(const Query &Q, const Value *NewExcl) 107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 108 ExclInvs.insert(NewExcl); 109 } 110 }; 111 } // end anonymous namespace 112 113 // Given the provided Value and, potentially, a context instruction, return 114 // the preferred context instruction (if any). 115 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 116 // If we've been provided with a context instruction, then use that (provided 117 // it has been inserted). 118 if (CxtI && CxtI->getParent()) 119 return CxtI; 120 121 // If the value is really an already-inserted instruction, then use that. 122 CxtI = dyn_cast<Instruction>(V); 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 return nullptr; 127 } 128 129 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 130 const DataLayout &DL, unsigned Depth, 131 const Query &Q); 132 133 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 134 const DataLayout &DL, unsigned Depth, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 138 Query(AC, safeCxtI(V, CxtI), DT)); 139 } 140 141 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 142 AssumptionCache *AC, const Instruction *CxtI, 143 const DominatorTree *DT) { 144 assert(LHS->getType() == RHS->getType() && 145 "LHS and RHS should have the same type"); 146 assert(LHS->getType()->isIntOrIntVectorTy() && 147 "LHS and RHS should be integers"); 148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 154 } 155 156 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 157 const DataLayout &DL, unsigned Depth, 158 const Query &Q); 159 160 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 161 const DataLayout &DL, unsigned Depth, 162 AssumptionCache *AC, const Instruction *CxtI, 163 const DominatorTree *DT) { 164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 165 Query(AC, safeCxtI(V, CxtI), DT)); 166 } 167 168 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 169 const Query &Q, const DataLayout &DL); 170 171 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 172 unsigned Depth, AssumptionCache *AC, 173 const Instruction *CxtI, 174 const DominatorTree *DT) { 175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 176 Query(AC, safeCxtI(V, CxtI), DT), DL); 177 } 178 179 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 180 const Query &Q); 181 182 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 183 AssumptionCache *AC, const Instruction *CxtI, 184 const DominatorTree *DT) { 185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 186 } 187 188 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 189 unsigned Depth, const Query &Q); 190 191 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 192 unsigned Depth, AssumptionCache *AC, 193 const Instruction *CxtI, const DominatorTree *DT) { 194 return ::MaskedValueIsZero(V, Mask, DL, Depth, 195 Query(AC, safeCxtI(V, CxtI), DT)); 196 } 197 198 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 199 unsigned Depth, const Query &Q); 200 201 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 202 unsigned Depth, AssumptionCache *AC, 203 const Instruction *CxtI, 204 const DominatorTree *DT) { 205 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 206 } 207 208 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 209 APInt &KnownZero, APInt &KnownOne, 210 APInt &KnownZero2, APInt &KnownOne2, 211 const DataLayout &DL, unsigned Depth, 212 const Query &Q) { 213 if (!Add) { 214 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 215 // We know that the top bits of C-X are clear if X contains less bits 216 // than C (i.e. no wrap-around can happen). For example, 20-X is 217 // positive if we can prove that X is >= 0 and < 16. 218 if (!CLHS->getValue().isNegative()) { 219 unsigned BitWidth = KnownZero.getBitWidth(); 220 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 221 // NLZ can't be BitWidth with no sign bit 222 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 223 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 224 225 // If all of the MaskV bits are known to be zero, then we know the 226 // output top bits are zero, because we now know that the output is 227 // from [0-C]. 228 if ((KnownZero2 & MaskV) == MaskV) { 229 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 230 // Top bits known zero. 231 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 232 } 233 } 234 } 235 } 236 237 unsigned BitWidth = KnownZero.getBitWidth(); 238 239 // If an initial sequence of bits in the result is not needed, the 240 // corresponding bits in the operands are not needed. 241 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 242 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 243 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 244 245 // Carry in a 1 for a subtract, rather than a 0. 246 APInt CarryIn(BitWidth, 0); 247 if (!Add) { 248 // Sum = LHS + ~RHS + 1 249 std::swap(KnownZero2, KnownOne2); 250 CarryIn.setBit(0); 251 } 252 253 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 254 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 255 256 // Compute known bits of the carry. 257 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 258 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 259 260 // Compute set of known bits (where all three relevant bits are known). 261 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 262 APInt RHSKnown = KnownZero2 | KnownOne2; 263 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 264 APInt Known = LHSKnown & RHSKnown & CarryKnown; 265 266 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 267 "known bits of sum differ"); 268 269 // Compute known bits of the result. 270 KnownZero = ~PossibleSumOne & Known; 271 KnownOne = PossibleSumOne & Known; 272 273 // Are we still trying to solve for the sign bit? 274 if (!Known.isNegative()) { 275 if (NSW) { 276 // Adding two non-negative numbers, or subtracting a negative number from 277 // a non-negative one, can't wrap into negative. 278 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 279 KnownZero |= APInt::getSignBit(BitWidth); 280 // Adding two negative numbers, or subtracting a non-negative number from 281 // a negative one, can't wrap into non-negative. 282 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 283 KnownOne |= APInt::getSignBit(BitWidth); 284 } 285 } 286 } 287 288 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 289 APInt &KnownZero, APInt &KnownOne, 290 APInt &KnownZero2, APInt &KnownOne2, 291 const DataLayout &DL, unsigned Depth, 292 const Query &Q) { 293 unsigned BitWidth = KnownZero.getBitWidth(); 294 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 295 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 296 297 bool isKnownNegative = false; 298 bool isKnownNonNegative = false; 299 // If the multiplication is known not to overflow, compute the sign bit. 300 if (NSW) { 301 if (Op0 == Op1) { 302 // The product of a number with itself is non-negative. 303 isKnownNonNegative = true; 304 } else { 305 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 306 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 307 bool isKnownNegativeOp1 = KnownOne.isNegative(); 308 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 309 // The product of two numbers with the same sign is non-negative. 310 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 311 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 312 // The product of a negative number and a non-negative number is either 313 // negative or zero. 314 if (!isKnownNonNegative) 315 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 316 isKnownNonZero(Op0, DL, Depth, Q)) || 317 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 318 isKnownNonZero(Op1, DL, Depth, Q)); 319 } 320 } 321 322 // If low bits are zero in either operand, output low known-0 bits. 323 // Also compute a conserative estimate for high known-0 bits. 324 // More trickiness is possible, but this is sufficient for the 325 // interesting case of alignment computation. 326 KnownOne.clearAllBits(); 327 unsigned TrailZ = KnownZero.countTrailingOnes() + 328 KnownZero2.countTrailingOnes(); 329 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 330 KnownZero2.countLeadingOnes(), 331 BitWidth) - BitWidth; 332 333 TrailZ = std::min(TrailZ, BitWidth); 334 LeadZ = std::min(LeadZ, BitWidth); 335 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 336 APInt::getHighBitsSet(BitWidth, LeadZ); 337 338 // Only make use of no-wrap flags if we failed to compute the sign bit 339 // directly. This matters if the multiplication always overflows, in 340 // which case we prefer to follow the result of the direct computation, 341 // though as the program is invoking undefined behaviour we can choose 342 // whatever we like here. 343 if (isKnownNonNegative && !KnownOne.isNegative()) 344 KnownZero.setBit(BitWidth - 1); 345 else if (isKnownNegative && !KnownZero.isNegative()) 346 KnownOne.setBit(BitWidth - 1); 347 } 348 349 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 350 APInt &KnownZero) { 351 unsigned BitWidth = KnownZero.getBitWidth(); 352 unsigned NumRanges = Ranges.getNumOperands() / 2; 353 assert(NumRanges >= 1); 354 355 // Use the high end of the ranges to find leading zeros. 356 unsigned MinLeadingZeros = BitWidth; 357 for (unsigned i = 0; i < NumRanges; ++i) { 358 ConstantInt *Lower = 359 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 360 ConstantInt *Upper = 361 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 362 ConstantRange Range(Lower->getValue(), Upper->getValue()); 363 if (Range.isWrappedSet()) 364 MinLeadingZeros = 0; // -1 has no zeros 365 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 366 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 367 } 368 369 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 370 } 371 372 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 373 SmallVector<const Value *, 16> WorkSet(1, I); 374 SmallPtrSet<const Value *, 32> Visited; 375 SmallPtrSet<const Value *, 16> EphValues; 376 377 while (!WorkSet.empty()) { 378 const Value *V = WorkSet.pop_back_val(); 379 if (!Visited.insert(V).second) 380 continue; 381 382 // If all uses of this value are ephemeral, then so is this value. 383 bool FoundNEUse = false; 384 for (const User *I : V->users()) 385 if (!EphValues.count(I)) { 386 FoundNEUse = true; 387 break; 388 } 389 390 if (!FoundNEUse) { 391 if (V == E) 392 return true; 393 394 EphValues.insert(V); 395 if (const User *U = dyn_cast<User>(V)) 396 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 397 J != JE; ++J) { 398 if (isSafeToSpeculativelyExecute(*J)) 399 WorkSet.push_back(*J); 400 } 401 } 402 } 403 404 return false; 405 } 406 407 // Is this an intrinsic that cannot be speculated but also cannot trap? 408 static bool isAssumeLikeIntrinsic(const Instruction *I) { 409 if (const CallInst *CI = dyn_cast<CallInst>(I)) 410 if (Function *F = CI->getCalledFunction()) 411 switch (F->getIntrinsicID()) { 412 default: break; 413 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 414 case Intrinsic::assume: 415 case Intrinsic::dbg_declare: 416 case Intrinsic::dbg_value: 417 case Intrinsic::invariant_start: 418 case Intrinsic::invariant_end: 419 case Intrinsic::lifetime_start: 420 case Intrinsic::lifetime_end: 421 case Intrinsic::objectsize: 422 case Intrinsic::ptr_annotation: 423 case Intrinsic::var_annotation: 424 return true; 425 } 426 427 return false; 428 } 429 430 static bool isValidAssumeForContext(Value *V, const Query &Q) { 431 Instruction *Inv = cast<Instruction>(V); 432 433 // There are two restrictions on the use of an assume: 434 // 1. The assume must dominate the context (or the control flow must 435 // reach the assume whenever it reaches the context). 436 // 2. The context must not be in the assume's set of ephemeral values 437 // (otherwise we will use the assume to prove that the condition 438 // feeding the assume is trivially true, thus causing the removal of 439 // the assume). 440 441 if (Q.DT) { 442 if (Q.DT->dominates(Inv, Q.CxtI)) { 443 return true; 444 } else if (Inv->getParent() == Q.CxtI->getParent()) { 445 // The context comes first, but they're both in the same block. Make sure 446 // there is nothing in between that might interrupt the control flow. 447 for (BasicBlock::const_iterator I = 448 std::next(BasicBlock::const_iterator(Q.CxtI)), 449 IE(Inv); I != IE; ++I) 450 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I)) 451 return false; 452 453 return !isEphemeralValueOf(Inv, Q.CxtI); 454 } 455 456 return false; 457 } 458 459 // When we don't have a DT, we do a limited search... 460 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 461 return true; 462 } else if (Inv->getParent() == Q.CxtI->getParent()) { 463 // Search forward from the assume until we reach the context (or the end 464 // of the block); the common case is that the assume will come first. 465 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 466 IE = Inv->getParent()->end(); I != IE; ++I) 467 if (I == Q.CxtI) 468 return true; 469 470 // The context must come first... 471 for (BasicBlock::const_iterator I = 472 std::next(BasicBlock::const_iterator(Q.CxtI)), 473 IE(Inv); I != IE; ++I) 474 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I)) 475 return false; 476 477 return !isEphemeralValueOf(Inv, Q.CxtI); 478 } 479 480 return false; 481 } 482 483 bool llvm::isValidAssumeForContext(const Instruction *I, 484 const Instruction *CxtI, 485 const DominatorTree *DT) { 486 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 487 Query(nullptr, CxtI, DT)); 488 } 489 490 template<typename LHS, typename RHS> 491 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 492 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 493 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 494 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 495 } 496 497 template<typename LHS, typename RHS> 498 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 499 BinaryOp_match<RHS, LHS, Instruction::And>> 500 m_c_And(const LHS &L, const RHS &R) { 501 return m_CombineOr(m_And(L, R), m_And(R, L)); 502 } 503 504 template<typename LHS, typename RHS> 505 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 506 BinaryOp_match<RHS, LHS, Instruction::Or>> 507 m_c_Or(const LHS &L, const RHS &R) { 508 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 509 } 510 511 template<typename LHS, typename RHS> 512 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 513 BinaryOp_match<RHS, LHS, Instruction::Xor>> 514 m_c_Xor(const LHS &L, const RHS &R) { 515 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 516 } 517 518 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 519 /// true (at the context instruction.) This is mostly a utility function for 520 /// the prototype dominating conditions reasoning below. 521 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 522 APInt &KnownZero, 523 APInt &KnownOne, 524 const DataLayout &DL, 525 unsigned Depth, const Query &Q) { 526 Value *LHS = Cmp->getOperand(0); 527 Value *RHS = Cmp->getOperand(1); 528 // TODO: We could potentially be more aggressive here. This would be worth 529 // evaluating. If we can, explore commoning this code with the assume 530 // handling logic. 531 if (LHS != V && RHS != V) 532 return; 533 534 const unsigned BitWidth = KnownZero.getBitWidth(); 535 536 switch (Cmp->getPredicate()) { 537 default: 538 // We know nothing from this condition 539 break; 540 // TODO: implement unsigned bound from below (known one bits) 541 // TODO: common condition check implementations with assumes 542 // TODO: implement other patterns from assume (e.g. V & B == A) 543 case ICmpInst::ICMP_SGT: 544 if (LHS == V) { 545 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 546 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 547 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 548 // We know that the sign bit is zero. 549 KnownZero |= APInt::getSignBit(BitWidth); 550 } 551 } 552 break; 553 case ICmpInst::ICMP_EQ: 554 { 555 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 556 if (LHS == V) 557 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 558 else if (RHS == V) 559 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 560 else 561 llvm_unreachable("missing use?"); 562 KnownZero |= KnownZeroTemp; 563 KnownOne |= KnownOneTemp; 564 } 565 break; 566 case ICmpInst::ICMP_ULE: 567 if (LHS == V) { 568 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 569 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 570 // The known zero bits carry over 571 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 572 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 573 } 574 break; 575 case ICmpInst::ICMP_ULT: 576 if (LHS == V) { 577 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 578 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 579 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 580 // power of 2, then one more). 581 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 582 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 583 SignBits++; 584 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 585 } 586 break; 587 }; 588 } 589 590 /// Compute known bits in 'V' from conditions which are known to be true along 591 /// all paths leading to the context instruction. In particular, look for 592 /// cases where one branch of an interesting condition dominates the context 593 /// instruction. This does not do general dataflow. 594 /// NOTE: This code is EXPERIMENTAL and currently off by default. 595 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 596 APInt &KnownOne, 597 const DataLayout &DL, 598 unsigned Depth, 599 const Query &Q) { 600 // Need both the dominator tree and the query location to do anything useful 601 if (!Q.DT || !Q.CxtI) 602 return; 603 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 604 605 // Avoid useless work 606 if (auto VI = dyn_cast<Instruction>(V)) 607 if (VI->getParent() == Cxt->getParent()) 608 return; 609 610 // Note: We currently implement two options. It's not clear which of these 611 // will survive long term, we need data for that. 612 // Option 1 - Try walking the dominator tree looking for conditions which 613 // might apply. This works well for local conditions (loop guards, etc..), 614 // but not as well for things far from the context instruction (presuming a 615 // low max blocks explored). If we can set an high enough limit, this would 616 // be all we need. 617 // Option 2 - We restrict out search to those conditions which are uses of 618 // the value we're interested in. This is independent of dom structure, 619 // but is slightly less powerful without looking through lots of use chains. 620 // It does handle conditions far from the context instruction (e.g. early 621 // function exits on entry) really well though. 622 623 // Option 1 - Search the dom tree 624 unsigned NumBlocksExplored = 0; 625 BasicBlock *Current = Cxt->getParent(); 626 while (true) { 627 // Stop searching if we've gone too far up the chain 628 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 629 break; 630 NumBlocksExplored++; 631 632 if (!Q.DT->getNode(Current)->getIDom()) 633 break; 634 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 635 if (!Current) 636 // found function entry 637 break; 638 639 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 640 if (!BI || BI->isUnconditional()) 641 continue; 642 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 643 if (!Cmp) 644 continue; 645 646 // We're looking for conditions that are guaranteed to hold at the context 647 // instruction. Finding a condition where one path dominates the context 648 // isn't enough because both the true and false cases could merge before 649 // the context instruction we're actually interested in. Instead, we need 650 // to ensure that the taken *edge* dominates the context instruction. 651 BasicBlock *BB0 = BI->getSuccessor(0); 652 BasicBlockEdge Edge(BI->getParent(), BB0); 653 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 654 continue; 655 656 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 657 Q); 658 } 659 660 // Option 2 - Search the other uses of V 661 unsigned NumUsesExplored = 0; 662 for (auto U : V->users()) { 663 // Avoid massive lists 664 if (NumUsesExplored >= DomConditionsMaxUses) 665 break; 666 NumUsesExplored++; 667 // Consider only compare instructions uniquely controlling a branch 668 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 669 if (!Cmp) 670 continue; 671 672 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 673 continue; 674 675 for (auto *CmpU : Cmp->users()) { 676 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 677 if (!BI || BI->isUnconditional()) 678 continue; 679 // We're looking for conditions that are guaranteed to hold at the 680 // context instruction. Finding a condition where one path dominates 681 // the context isn't enough because both the true and false cases could 682 // merge before the context instruction we're actually interested in. 683 // Instead, we need to ensure that the taken *edge* dominates the context 684 // instruction. 685 BasicBlock *BB0 = BI->getSuccessor(0); 686 BasicBlockEdge Edge(BI->getParent(), BB0); 687 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 688 continue; 689 690 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 691 Q); 692 } 693 } 694 } 695 696 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 697 APInt &KnownOne, const DataLayout &DL, 698 unsigned Depth, const Query &Q) { 699 // Use of assumptions is context-sensitive. If we don't have a context, we 700 // cannot use them! 701 if (!Q.AC || !Q.CxtI) 702 return; 703 704 unsigned BitWidth = KnownZero.getBitWidth(); 705 706 for (auto &AssumeVH : Q.AC->assumptions()) { 707 if (!AssumeVH) 708 continue; 709 CallInst *I = cast<CallInst>(AssumeVH); 710 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 711 "Got assumption for the wrong function!"); 712 if (Q.ExclInvs.count(I)) 713 continue; 714 715 // Warning: This loop can end up being somewhat performance sensetive. 716 // We're running this loop for once for each value queried resulting in a 717 // runtime of ~O(#assumes * #values). 718 719 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 720 "must be an assume intrinsic"); 721 722 Value *Arg = I->getArgOperand(0); 723 724 if (Arg == V && isValidAssumeForContext(I, Q)) { 725 assert(BitWidth == 1 && "assume operand is not i1?"); 726 KnownZero.clearAllBits(); 727 KnownOne.setAllBits(); 728 return; 729 } 730 731 // The remaining tests are all recursive, so bail out if we hit the limit. 732 if (Depth == MaxDepth) 733 continue; 734 735 Value *A, *B; 736 auto m_V = m_CombineOr(m_Specific(V), 737 m_CombineOr(m_PtrToInt(m_Specific(V)), 738 m_BitCast(m_Specific(V)))); 739 740 CmpInst::Predicate Pred; 741 ConstantInt *C; 742 // assume(v = a) 743 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 744 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 745 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 746 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 747 KnownZero |= RHSKnownZero; 748 KnownOne |= RHSKnownOne; 749 // assume(v & b = a) 750 } else if (match(Arg, 751 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 752 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 753 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 754 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 755 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 756 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 757 758 // For those bits in the mask that are known to be one, we can propagate 759 // known bits from the RHS to V. 760 KnownZero |= RHSKnownZero & MaskKnownOne; 761 KnownOne |= RHSKnownOne & MaskKnownOne; 762 // assume(~(v & b) = a) 763 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 764 m_Value(A))) && 765 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 766 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 767 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 768 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 769 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 770 771 // For those bits in the mask that are known to be one, we can propagate 772 // inverted known bits from the RHS to V. 773 KnownZero |= RHSKnownOne & MaskKnownOne; 774 KnownOne |= RHSKnownZero & MaskKnownOne; 775 // assume(v | b = a) 776 } else if (match(Arg, 777 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 778 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 779 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 780 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 781 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 782 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 783 784 // For those bits in B that are known to be zero, we can propagate known 785 // bits from the RHS to V. 786 KnownZero |= RHSKnownZero & BKnownZero; 787 KnownOne |= RHSKnownOne & BKnownZero; 788 // assume(~(v | b) = a) 789 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 790 m_Value(A))) && 791 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 792 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 793 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 794 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 795 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 796 797 // For those bits in B that are known to be zero, we can propagate 798 // inverted known bits from the RHS to V. 799 KnownZero |= RHSKnownOne & BKnownZero; 800 KnownOne |= RHSKnownZero & BKnownZero; 801 // assume(v ^ b = a) 802 } else if (match(Arg, 803 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 804 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 805 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 806 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 807 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 808 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 809 810 // For those bits in B that are known to be zero, we can propagate known 811 // bits from the RHS to V. For those bits in B that are known to be one, 812 // we can propagate inverted known bits from the RHS to V. 813 KnownZero |= RHSKnownZero & BKnownZero; 814 KnownOne |= RHSKnownOne & BKnownZero; 815 KnownZero |= RHSKnownOne & BKnownOne; 816 KnownOne |= RHSKnownZero & BKnownOne; 817 // assume(~(v ^ b) = a) 818 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 819 m_Value(A))) && 820 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 821 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 822 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 823 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 824 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 825 826 // For those bits in B that are known to be zero, we can propagate 827 // inverted known bits from the RHS to V. For those bits in B that are 828 // known to be one, we can propagate known bits from the RHS to V. 829 KnownZero |= RHSKnownOne & BKnownZero; 830 KnownOne |= RHSKnownZero & BKnownZero; 831 KnownZero |= RHSKnownZero & BKnownOne; 832 KnownOne |= RHSKnownOne & BKnownOne; 833 // assume(v << c = a) 834 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 835 m_Value(A))) && 836 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 837 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 838 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 839 // For those bits in RHS that are known, we can propagate them to known 840 // bits in V shifted to the right by C. 841 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 842 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 843 // assume(~(v << c) = a) 844 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 845 m_Value(A))) && 846 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 847 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 848 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 849 // For those bits in RHS that are known, we can propagate them inverted 850 // to known bits in V shifted to the right by C. 851 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 852 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 853 // assume(v >> c = a) 854 } else if (match(Arg, 855 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 856 m_AShr(m_V, m_ConstantInt(C))), 857 m_Value(A))) && 858 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 859 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 860 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 861 // For those bits in RHS that are known, we can propagate them to known 862 // bits in V shifted to the right by C. 863 KnownZero |= RHSKnownZero << C->getZExtValue(); 864 KnownOne |= RHSKnownOne << C->getZExtValue(); 865 // assume(~(v >> c) = a) 866 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 867 m_LShr(m_V, m_ConstantInt(C)), 868 m_AShr(m_V, m_ConstantInt(C)))), 869 m_Value(A))) && 870 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 871 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 872 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 873 // For those bits in RHS that are known, we can propagate them inverted 874 // to known bits in V shifted to the right by C. 875 KnownZero |= RHSKnownOne << C->getZExtValue(); 876 KnownOne |= RHSKnownZero << C->getZExtValue(); 877 // assume(v >=_s c) where c is non-negative 878 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 879 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 880 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 881 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 882 883 if (RHSKnownZero.isNegative()) { 884 // We know that the sign bit is zero. 885 KnownZero |= APInt::getSignBit(BitWidth); 886 } 887 // assume(v >_s c) where c is at least -1. 888 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 889 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 890 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 891 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 892 893 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 894 // We know that the sign bit is zero. 895 KnownZero |= APInt::getSignBit(BitWidth); 896 } 897 // assume(v <=_s c) where c is negative 898 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 899 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 900 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 901 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 902 903 if (RHSKnownOne.isNegative()) { 904 // We know that the sign bit is one. 905 KnownOne |= APInt::getSignBit(BitWidth); 906 } 907 // assume(v <_s c) where c is non-positive 908 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 909 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 910 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 911 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 912 913 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 914 // We know that the sign bit is one. 915 KnownOne |= APInt::getSignBit(BitWidth); 916 } 917 // assume(v <=_u c) 918 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 919 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 920 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 921 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 922 923 // Whatever high bits in c are zero are known to be zero. 924 KnownZero |= 925 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 926 // assume(v <_u c) 927 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 928 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 929 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 930 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 931 932 // Whatever high bits in c are zero are known to be zero (if c is a power 933 // of 2, then one more). 934 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 935 KnownZero |= 936 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 937 else 938 KnownZero |= 939 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 940 } 941 } 942 } 943 944 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 945 APInt &KnownOne, const DataLayout &DL, 946 unsigned Depth, const Query &Q) { 947 unsigned BitWidth = KnownZero.getBitWidth(); 948 949 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 950 switch (I->getOpcode()) { 951 default: break; 952 case Instruction::Load: 953 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 954 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 955 break; 956 case Instruction::And: { 957 // If either the LHS or the RHS are Zero, the result is zero. 958 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 959 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 960 961 // Output known-1 bits are only known if set in both the LHS & RHS. 962 KnownOne &= KnownOne2; 963 // Output known-0 are known to be clear if zero in either the LHS | RHS. 964 KnownZero |= KnownZero2; 965 break; 966 } 967 case Instruction::Or: { 968 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 969 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 970 971 // Output known-0 bits are only known if clear in both the LHS & RHS. 972 KnownZero &= KnownZero2; 973 // Output known-1 are known to be set if set in either the LHS | RHS. 974 KnownOne |= KnownOne2; 975 break; 976 } 977 case Instruction::Xor: { 978 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 979 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 980 981 // Output known-0 bits are known if clear or set in both the LHS & RHS. 982 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 983 // Output known-1 are known to be set if set in only one of the LHS, RHS. 984 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 985 KnownZero = KnownZeroOut; 986 break; 987 } 988 case Instruction::Mul: { 989 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 990 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 991 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 992 break; 993 } 994 case Instruction::UDiv: { 995 // For the purposes of computing leading zeros we can conservatively 996 // treat a udiv as a logical right shift by the power of 2 known to 997 // be less than the denominator. 998 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 999 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1000 1001 KnownOne2.clearAllBits(); 1002 KnownZero2.clearAllBits(); 1003 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1004 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1005 if (RHSUnknownLeadingOnes != BitWidth) 1006 LeadZ = std::min(BitWidth, 1007 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1008 1009 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1010 break; 1011 } 1012 case Instruction::Select: 1013 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1014 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1015 1016 // Only known if known in both the LHS and RHS. 1017 KnownOne &= KnownOne2; 1018 KnownZero &= KnownZero2; 1019 break; 1020 case Instruction::FPTrunc: 1021 case Instruction::FPExt: 1022 case Instruction::FPToUI: 1023 case Instruction::FPToSI: 1024 case Instruction::SIToFP: 1025 case Instruction::UIToFP: 1026 break; // Can't work with floating point. 1027 case Instruction::PtrToInt: 1028 case Instruction::IntToPtr: 1029 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1030 // FALL THROUGH and handle them the same as zext/trunc. 1031 case Instruction::ZExt: 1032 case Instruction::Trunc: { 1033 Type *SrcTy = I->getOperand(0)->getType(); 1034 1035 unsigned SrcBitWidth; 1036 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1037 // which fall through here. 1038 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1039 1040 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1041 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1042 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1043 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1044 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1045 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1046 // Any top bits are known to be zero. 1047 if (BitWidth > SrcBitWidth) 1048 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1049 break; 1050 } 1051 case Instruction::BitCast: { 1052 Type *SrcTy = I->getOperand(0)->getType(); 1053 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1054 // TODO: For now, not handling conversions like: 1055 // (bitcast i64 %x to <2 x i32>) 1056 !I->getType()->isVectorTy()) { 1057 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1058 break; 1059 } 1060 break; 1061 } 1062 case Instruction::SExt: { 1063 // Compute the bits in the result that are not present in the input. 1064 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1065 1066 KnownZero = KnownZero.trunc(SrcBitWidth); 1067 KnownOne = KnownOne.trunc(SrcBitWidth); 1068 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1069 KnownZero = KnownZero.zext(BitWidth); 1070 KnownOne = KnownOne.zext(BitWidth); 1071 1072 // If the sign bit of the input is known set or clear, then we know the 1073 // top bits of the result. 1074 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1075 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1076 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1077 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1078 break; 1079 } 1080 case Instruction::Shl: 1081 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1082 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1083 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1084 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1085 KnownZero <<= ShiftAmt; 1086 KnownOne <<= ShiftAmt; 1087 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1088 } 1089 break; 1090 case Instruction::LShr: 1091 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1092 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1093 // Compute the new bits that are at the top now. 1094 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1095 1096 // Unsigned shift right. 1097 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1098 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1099 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1100 // high bits known zero. 1101 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1102 } 1103 break; 1104 case Instruction::AShr: 1105 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1106 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1107 // Compute the new bits that are at the top now. 1108 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1109 1110 // Signed shift right. 1111 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1112 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1113 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1114 1115 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1116 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1117 KnownZero |= HighBits; 1118 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1119 KnownOne |= HighBits; 1120 } 1121 break; 1122 case Instruction::Sub: { 1123 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1124 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1125 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1126 Depth, Q); 1127 break; 1128 } 1129 case Instruction::Add: { 1130 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1131 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1132 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1133 Depth, Q); 1134 break; 1135 } 1136 case Instruction::SRem: 1137 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1138 APInt RA = Rem->getValue().abs(); 1139 if (RA.isPowerOf2()) { 1140 APInt LowBits = RA - 1; 1141 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1142 Q); 1143 1144 // The low bits of the first operand are unchanged by the srem. 1145 KnownZero = KnownZero2 & LowBits; 1146 KnownOne = KnownOne2 & LowBits; 1147 1148 // If the first operand is non-negative or has all low bits zero, then 1149 // the upper bits are all zero. 1150 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1151 KnownZero |= ~LowBits; 1152 1153 // If the first operand is negative and not all low bits are zero, then 1154 // the upper bits are all one. 1155 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1156 KnownOne |= ~LowBits; 1157 1158 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1159 } 1160 } 1161 1162 // The sign bit is the LHS's sign bit, except when the result of the 1163 // remainder is zero. 1164 if (KnownZero.isNonNegative()) { 1165 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1166 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1167 Depth + 1, Q); 1168 // If it's known zero, our sign bit is also zero. 1169 if (LHSKnownZero.isNegative()) 1170 KnownZero.setBit(BitWidth - 1); 1171 } 1172 1173 break; 1174 case Instruction::URem: { 1175 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1176 APInt RA = Rem->getValue(); 1177 if (RA.isPowerOf2()) { 1178 APInt LowBits = (RA - 1); 1179 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1180 Q); 1181 KnownZero |= ~LowBits; 1182 KnownOne &= LowBits; 1183 break; 1184 } 1185 } 1186 1187 // Since the result is less than or equal to either operand, any leading 1188 // zero bits in either operand must also exist in the result. 1189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1190 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1191 1192 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1193 KnownZero2.countLeadingOnes()); 1194 KnownOne.clearAllBits(); 1195 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1196 break; 1197 } 1198 1199 case Instruction::Alloca: { 1200 AllocaInst *AI = cast<AllocaInst>(I); 1201 unsigned Align = AI->getAlignment(); 1202 if (Align == 0) 1203 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1204 1205 if (Align > 0) 1206 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1207 break; 1208 } 1209 case Instruction::GetElementPtr: { 1210 // Analyze all of the subscripts of this getelementptr instruction 1211 // to determine if we can prove known low zero bits. 1212 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1213 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1214 Depth + 1, Q); 1215 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1216 1217 gep_type_iterator GTI = gep_type_begin(I); 1218 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1219 Value *Index = I->getOperand(i); 1220 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1221 // Handle struct member offset arithmetic. 1222 1223 // Handle case when index is vector zeroinitializer 1224 Constant *CIndex = cast<Constant>(Index); 1225 if (CIndex->isZeroValue()) 1226 continue; 1227 1228 if (CIndex->getType()->isVectorTy()) 1229 Index = CIndex->getSplatValue(); 1230 1231 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1232 const StructLayout *SL = DL.getStructLayout(STy); 1233 uint64_t Offset = SL->getElementOffset(Idx); 1234 TrailZ = std::min<unsigned>(TrailZ, 1235 countTrailingZeros(Offset)); 1236 } else { 1237 // Handle array index arithmetic. 1238 Type *IndexedTy = GTI.getIndexedType(); 1239 if (!IndexedTy->isSized()) { 1240 TrailZ = 0; 1241 break; 1242 } 1243 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1244 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1245 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1246 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1247 Q); 1248 TrailZ = std::min(TrailZ, 1249 unsigned(countTrailingZeros(TypeSize) + 1250 LocalKnownZero.countTrailingOnes())); 1251 } 1252 } 1253 1254 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1255 break; 1256 } 1257 case Instruction::PHI: { 1258 PHINode *P = cast<PHINode>(I); 1259 // Handle the case of a simple two-predecessor recurrence PHI. 1260 // There's a lot more that could theoretically be done here, but 1261 // this is sufficient to catch some interesting cases. 1262 if (P->getNumIncomingValues() == 2) { 1263 for (unsigned i = 0; i != 2; ++i) { 1264 Value *L = P->getIncomingValue(i); 1265 Value *R = P->getIncomingValue(!i); 1266 Operator *LU = dyn_cast<Operator>(L); 1267 if (!LU) 1268 continue; 1269 unsigned Opcode = LU->getOpcode(); 1270 // Check for operations that have the property that if 1271 // both their operands have low zero bits, the result 1272 // will have low zero bits. 1273 if (Opcode == Instruction::Add || 1274 Opcode == Instruction::Sub || 1275 Opcode == Instruction::And || 1276 Opcode == Instruction::Or || 1277 Opcode == Instruction::Mul) { 1278 Value *LL = LU->getOperand(0); 1279 Value *LR = LU->getOperand(1); 1280 // Find a recurrence. 1281 if (LL == I) 1282 L = LR; 1283 else if (LR == I) 1284 L = LL; 1285 else 1286 break; 1287 // Ok, we have a PHI of the form L op= R. Check for low 1288 // zero bits. 1289 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1290 1291 // We need to take the minimum number of known bits 1292 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1293 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1294 1295 KnownZero = APInt::getLowBitsSet(BitWidth, 1296 std::min(KnownZero2.countTrailingOnes(), 1297 KnownZero3.countTrailingOnes())); 1298 break; 1299 } 1300 } 1301 } 1302 1303 // Unreachable blocks may have zero-operand PHI nodes. 1304 if (P->getNumIncomingValues() == 0) 1305 break; 1306 1307 // Otherwise take the unions of the known bit sets of the operands, 1308 // taking conservative care to avoid excessive recursion. 1309 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1310 // Skip if every incoming value references to ourself. 1311 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1312 break; 1313 1314 KnownZero = APInt::getAllOnesValue(BitWidth); 1315 KnownOne = APInt::getAllOnesValue(BitWidth); 1316 for (Value *IncValue : P->incoming_values()) { 1317 // Skip direct self references. 1318 if (IncValue == P) continue; 1319 1320 KnownZero2 = APInt(BitWidth, 0); 1321 KnownOne2 = APInt(BitWidth, 0); 1322 // Recurse, but cap the recursion to one level, because we don't 1323 // want to waste time spinning around in loops. 1324 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, 1325 MaxDepth - 1, Q); 1326 KnownZero &= KnownZero2; 1327 KnownOne &= KnownOne2; 1328 // If all bits have been ruled out, there's no need to check 1329 // more operands. 1330 if (!KnownZero && !KnownOne) 1331 break; 1332 } 1333 } 1334 break; 1335 } 1336 case Instruction::Call: 1337 case Instruction::Invoke: 1338 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1339 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1340 // If a range metadata is attached to this IntrinsicInst, intersect the 1341 // explicit range specified by the metadata and the implicit range of 1342 // the intrinsic. 1343 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1344 switch (II->getIntrinsicID()) { 1345 default: break; 1346 case Intrinsic::ctlz: 1347 case Intrinsic::cttz: { 1348 unsigned LowBits = Log2_32(BitWidth)+1; 1349 // If this call is undefined for 0, the result will be less than 2^n. 1350 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1351 LowBits -= 1; 1352 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1353 break; 1354 } 1355 case Intrinsic::ctpop: { 1356 unsigned LowBits = Log2_32(BitWidth)+1; 1357 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1358 break; 1359 } 1360 case Intrinsic::x86_sse42_crc32_64_64: 1361 KnownZero |= APInt::getHighBitsSet(64, 32); 1362 break; 1363 } 1364 } 1365 break; 1366 case Instruction::ExtractValue: 1367 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1368 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1369 if (EVI->getNumIndices() != 1) break; 1370 if (EVI->getIndices()[0] == 0) { 1371 switch (II->getIntrinsicID()) { 1372 default: break; 1373 case Intrinsic::uadd_with_overflow: 1374 case Intrinsic::sadd_with_overflow: 1375 computeKnownBitsAddSub(true, II->getArgOperand(0), 1376 II->getArgOperand(1), false, KnownZero, 1377 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1378 break; 1379 case Intrinsic::usub_with_overflow: 1380 case Intrinsic::ssub_with_overflow: 1381 computeKnownBitsAddSub(false, II->getArgOperand(0), 1382 II->getArgOperand(1), false, KnownZero, 1383 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1384 break; 1385 case Intrinsic::umul_with_overflow: 1386 case Intrinsic::smul_with_overflow: 1387 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1388 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1389 Depth, Q); 1390 break; 1391 } 1392 } 1393 } 1394 } 1395 } 1396 1397 /// Determine which bits of V are known to be either zero or one and return 1398 /// them in the KnownZero/KnownOne bit sets. 1399 /// 1400 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1401 /// we cannot optimize based on the assumption that it is zero without changing 1402 /// it to be an explicit zero. If we don't change it to zero, other code could 1403 /// optimized based on the contradictory assumption that it is non-zero. 1404 /// Because instcombine aggressively folds operations with undef args anyway, 1405 /// this won't lose us code quality. 1406 /// 1407 /// This function is defined on values with integer type, values with pointer 1408 /// type, and vectors of integers. In the case 1409 /// where V is a vector, known zero, and known one values are the 1410 /// same width as the vector element, and the bit is set only if it is true 1411 /// for all of the elements in the vector. 1412 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1413 const DataLayout &DL, unsigned Depth, const Query &Q) { 1414 assert(V && "No Value?"); 1415 assert(Depth <= MaxDepth && "Limit Search Depth"); 1416 unsigned BitWidth = KnownZero.getBitWidth(); 1417 1418 assert((V->getType()->isIntOrIntVectorTy() || 1419 V->getType()->getScalarType()->isPointerTy()) && 1420 "Not integer or pointer type!"); 1421 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1422 (!V->getType()->isIntOrIntVectorTy() || 1423 V->getType()->getScalarSizeInBits() == BitWidth) && 1424 KnownZero.getBitWidth() == BitWidth && 1425 KnownOne.getBitWidth() == BitWidth && 1426 "V, KnownOne and KnownZero should have same BitWidth"); 1427 1428 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1429 // We know all of the bits for a constant! 1430 KnownOne = CI->getValue(); 1431 KnownZero = ~KnownOne; 1432 return; 1433 } 1434 // Null and aggregate-zero are all-zeros. 1435 if (isa<ConstantPointerNull>(V) || 1436 isa<ConstantAggregateZero>(V)) { 1437 KnownOne.clearAllBits(); 1438 KnownZero = APInt::getAllOnesValue(BitWidth); 1439 return; 1440 } 1441 // Handle a constant vector by taking the intersection of the known bits of 1442 // each element. There is no real need to handle ConstantVector here, because 1443 // we don't handle undef in any particularly useful way. 1444 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1445 // We know that CDS must be a vector of integers. Take the intersection of 1446 // each element. 1447 KnownZero.setAllBits(); KnownOne.setAllBits(); 1448 APInt Elt(KnownZero.getBitWidth(), 0); 1449 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1450 Elt = CDS->getElementAsInteger(i); 1451 KnownZero &= ~Elt; 1452 KnownOne &= Elt; 1453 } 1454 return; 1455 } 1456 1457 // The address of an aligned GlobalValue has trailing zeros. 1458 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1459 unsigned Align = GO->getAlignment(); 1460 if (Align == 0) { 1461 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1462 Type *ObjectType = GVar->getType()->getElementType(); 1463 if (ObjectType->isSized()) { 1464 // If the object is defined in the current Module, we'll be giving 1465 // it the preferred alignment. Otherwise, we have to assume that it 1466 // may only have the minimum ABI alignment. 1467 if (GVar->isStrongDefinitionForLinker()) 1468 Align = DL.getPreferredAlignment(GVar); 1469 else 1470 Align = DL.getABITypeAlignment(ObjectType); 1471 } 1472 } 1473 } 1474 if (Align > 0) 1475 KnownZero = APInt::getLowBitsSet(BitWidth, 1476 countTrailingZeros(Align)); 1477 else 1478 KnownZero.clearAllBits(); 1479 KnownOne.clearAllBits(); 1480 return; 1481 } 1482 1483 if (Argument *A = dyn_cast<Argument>(V)) { 1484 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1485 1486 if (!Align && A->hasStructRetAttr()) { 1487 // An sret parameter has at least the ABI alignment of the return type. 1488 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1489 if (EltTy->isSized()) 1490 Align = DL.getABITypeAlignment(EltTy); 1491 } 1492 1493 if (Align) 1494 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1495 else 1496 KnownZero.clearAllBits(); 1497 KnownOne.clearAllBits(); 1498 1499 // Don't give up yet... there might be an assumption that provides more 1500 // information... 1501 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1502 1503 // Or a dominating condition for that matter 1504 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1505 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, 1506 Depth, Q); 1507 return; 1508 } 1509 1510 // Start out not knowing anything. 1511 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1512 1513 // Limit search depth. 1514 // All recursive calls that increase depth must come after this. 1515 if (Depth == MaxDepth) 1516 return; 1517 1518 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1519 // the bits of its aliasee. 1520 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1521 if (!GA->mayBeOverridden()) 1522 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1523 return; 1524 } 1525 1526 if (Operator *I = dyn_cast<Operator>(V)) 1527 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); 1528 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1529 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1530 // computeKnownBitsFromOperator. 1531 1532 // Check whether a nearby assume intrinsic can determine some known bits. 1533 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1534 1535 // Check whether there's a dominating condition which implies something about 1536 // this value at the given context. 1537 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1538 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1539 Q); 1540 1541 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1542 } 1543 1544 /// Determine whether the sign bit is known to be zero or one. 1545 /// Convenience wrapper around computeKnownBits. 1546 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1547 const DataLayout &DL, unsigned Depth, const Query &Q) { 1548 unsigned BitWidth = getBitWidth(V->getType(), DL); 1549 if (!BitWidth) { 1550 KnownZero = false; 1551 KnownOne = false; 1552 return; 1553 } 1554 APInt ZeroBits(BitWidth, 0); 1555 APInt OneBits(BitWidth, 0); 1556 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1557 KnownOne = OneBits[BitWidth - 1]; 1558 KnownZero = ZeroBits[BitWidth - 1]; 1559 } 1560 1561 /// Return true if the given value is known to have exactly one 1562 /// bit set when defined. For vectors return true if every element is known to 1563 /// be a power of two when defined. Supports values with integer or pointer 1564 /// types and vectors of integers. 1565 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1566 const Query &Q, const DataLayout &DL) { 1567 if (Constant *C = dyn_cast<Constant>(V)) { 1568 if (C->isNullValue()) 1569 return OrZero; 1570 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1571 return CI->getValue().isPowerOf2(); 1572 // TODO: Handle vector constants. 1573 } 1574 1575 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1576 // it is shifted off the end then the result is undefined. 1577 if (match(V, m_Shl(m_One(), m_Value()))) 1578 return true; 1579 1580 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1581 // bottom. If it is shifted off the bottom then the result is undefined. 1582 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1583 return true; 1584 1585 // The remaining tests are all recursive, so bail out if we hit the limit. 1586 if (Depth++ == MaxDepth) 1587 return false; 1588 1589 Value *X = nullptr, *Y = nullptr; 1590 // A shift of a power of two is a power of two or zero. 1591 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1592 match(V, m_Shr(m_Value(X), m_Value())))) 1593 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1594 1595 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1596 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1597 1598 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1599 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1600 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1601 1602 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1603 // A power of two and'd with anything is a power of two or zero. 1604 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1605 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1606 return true; 1607 // X & (-X) is always a power of two or zero. 1608 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1609 return true; 1610 return false; 1611 } 1612 1613 // Adding a power-of-two or zero to the same power-of-two or zero yields 1614 // either the original power-of-two, a larger power-of-two or zero. 1615 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1616 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1617 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1618 if (match(X, m_And(m_Specific(Y), m_Value())) || 1619 match(X, m_And(m_Value(), m_Specific(Y)))) 1620 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1621 return true; 1622 if (match(Y, m_And(m_Specific(X), m_Value())) || 1623 match(Y, m_And(m_Value(), m_Specific(X)))) 1624 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1625 return true; 1626 1627 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1628 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1629 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1630 1631 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1632 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1633 // If i8 V is a power of two or zero: 1634 // ZeroBits: 1 1 1 0 1 1 1 1 1635 // ~ZeroBits: 0 0 0 1 0 0 0 0 1636 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1637 // If OrZero isn't set, we cannot give back a zero result. 1638 // Make sure either the LHS or RHS has a bit set. 1639 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1640 return true; 1641 } 1642 } 1643 1644 // An exact divide or right shift can only shift off zero bits, so the result 1645 // is a power of two only if the first operand is a power of two and not 1646 // copying a sign bit (sdiv int_min, 2). 1647 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1648 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1649 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1650 Depth, Q, DL); 1651 } 1652 1653 return false; 1654 } 1655 1656 /// \brief Test whether a GEP's result is known to be non-null. 1657 /// 1658 /// Uses properties inherent in a GEP to try to determine whether it is known 1659 /// to be non-null. 1660 /// 1661 /// Currently this routine does not support vector GEPs. 1662 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1663 unsigned Depth, const Query &Q) { 1664 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1665 return false; 1666 1667 // FIXME: Support vector-GEPs. 1668 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1669 1670 // If the base pointer is non-null, we cannot walk to a null address with an 1671 // inbounds GEP in address space zero. 1672 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1673 return true; 1674 1675 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1676 // If so, then the GEP cannot produce a null pointer, as doing so would 1677 // inherently violate the inbounds contract within address space zero. 1678 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1679 GTI != GTE; ++GTI) { 1680 // Struct types are easy -- they must always be indexed by a constant. 1681 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1682 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1683 unsigned ElementIdx = OpC->getZExtValue(); 1684 const StructLayout *SL = DL.getStructLayout(STy); 1685 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1686 if (ElementOffset > 0) 1687 return true; 1688 continue; 1689 } 1690 1691 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1692 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1693 continue; 1694 1695 // Fast path the constant operand case both for efficiency and so we don't 1696 // increment Depth when just zipping down an all-constant GEP. 1697 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1698 if (!OpC->isZero()) 1699 return true; 1700 continue; 1701 } 1702 1703 // We post-increment Depth here because while isKnownNonZero increments it 1704 // as well, when we pop back up that increment won't persist. We don't want 1705 // to recurse 10k times just because we have 10k GEP operands. We don't 1706 // bail completely out because we want to handle constant GEPs regardless 1707 // of depth. 1708 if (Depth++ >= MaxDepth) 1709 continue; 1710 1711 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1712 return true; 1713 } 1714 1715 return false; 1716 } 1717 1718 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1719 /// ensure that the value it's attached to is never Value? 'RangeType' is 1720 /// is the type of the value described by the range. 1721 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1722 const APInt& Value) { 1723 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1724 assert(NumRanges >= 1); 1725 for (unsigned i = 0; i < NumRanges; ++i) { 1726 ConstantInt *Lower = 1727 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1728 ConstantInt *Upper = 1729 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1730 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1731 if (Range.contains(Value)) 1732 return false; 1733 } 1734 return true; 1735 } 1736 1737 /// Return true if the given value is known to be non-zero when defined. 1738 /// For vectors return true if every element is known to be non-zero when 1739 /// defined. Supports values with integer or pointer type and vectors of 1740 /// integers. 1741 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1742 const Query &Q) { 1743 if (Constant *C = dyn_cast<Constant>(V)) { 1744 if (C->isNullValue()) 1745 return false; 1746 if (isa<ConstantInt>(C)) 1747 // Must be non-zero due to null test above. 1748 return true; 1749 // TODO: Handle vectors 1750 return false; 1751 } 1752 1753 if (Instruction* I = dyn_cast<Instruction>(V)) { 1754 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1755 // If the possible ranges don't contain zero, then the value is 1756 // definitely non-zero. 1757 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1758 const APInt ZeroValue(Ty->getBitWidth(), 0); 1759 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1760 return true; 1761 } 1762 } 1763 } 1764 1765 // The remaining tests are all recursive, so bail out if we hit the limit. 1766 if (Depth++ >= MaxDepth) 1767 return false; 1768 1769 // Check for pointer simplifications. 1770 if (V->getType()->isPointerTy()) { 1771 if (isKnownNonNull(V)) 1772 return true; 1773 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1774 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1775 return true; 1776 } 1777 1778 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1779 1780 // X | Y != 0 if X != 0 or Y != 0. 1781 Value *X = nullptr, *Y = nullptr; 1782 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1783 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1784 1785 // ext X != 0 if X != 0. 1786 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1787 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1788 1789 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1790 // if the lowest bit is shifted off the end. 1791 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1792 // shl nuw can't remove any non-zero bits. 1793 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1794 if (BO->hasNoUnsignedWrap()) 1795 return isKnownNonZero(X, DL, Depth, Q); 1796 1797 APInt KnownZero(BitWidth, 0); 1798 APInt KnownOne(BitWidth, 0); 1799 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1800 if (KnownOne[0]) 1801 return true; 1802 } 1803 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1804 // defined if the sign bit is shifted off the end. 1805 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1806 // shr exact can only shift out zero bits. 1807 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1808 if (BO->isExact()) 1809 return isKnownNonZero(X, DL, Depth, Q); 1810 1811 bool XKnownNonNegative, XKnownNegative; 1812 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1813 if (XKnownNegative) 1814 return true; 1815 } 1816 // div exact can only produce a zero if the dividend is zero. 1817 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1818 return isKnownNonZero(X, DL, Depth, Q); 1819 } 1820 // X + Y. 1821 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1822 bool XKnownNonNegative, XKnownNegative; 1823 bool YKnownNonNegative, YKnownNegative; 1824 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1825 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 1826 1827 // If X and Y are both non-negative (as signed values) then their sum is not 1828 // zero unless both X and Y are zero. 1829 if (XKnownNonNegative && YKnownNonNegative) 1830 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 1831 return true; 1832 1833 // If X and Y are both negative (as signed values) then their sum is not 1834 // zero unless both X and Y equal INT_MIN. 1835 if (BitWidth && XKnownNegative && YKnownNegative) { 1836 APInt KnownZero(BitWidth, 0); 1837 APInt KnownOne(BitWidth, 0); 1838 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1839 // The sign bit of X is set. If some other bit is set then X is not equal 1840 // to INT_MIN. 1841 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1842 if ((KnownOne & Mask) != 0) 1843 return true; 1844 // The sign bit of Y is set. If some other bit is set then Y is not equal 1845 // to INT_MIN. 1846 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 1847 if ((KnownOne & Mask) != 0) 1848 return true; 1849 } 1850 1851 // The sum of a non-negative number and a power of two is not zero. 1852 if (XKnownNonNegative && 1853 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 1854 return true; 1855 if (YKnownNonNegative && 1856 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 1857 return true; 1858 } 1859 // X * Y. 1860 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1861 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1862 // If X and Y are non-zero then so is X * Y as long as the multiplication 1863 // does not overflow. 1864 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1865 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 1866 return true; 1867 } 1868 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1869 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1870 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 1871 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 1872 return true; 1873 } 1874 1875 if (!BitWidth) return false; 1876 APInt KnownZero(BitWidth, 0); 1877 APInt KnownOne(BitWidth, 0); 1878 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1879 return KnownOne != 0; 1880 } 1881 1882 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1883 /// simplify operations downstream. Mask is known to be zero for bits that V 1884 /// cannot have. 1885 /// 1886 /// This function is defined on values with integer type, values with pointer 1887 /// type, and vectors of integers. In the case 1888 /// where V is a vector, the mask, known zero, and known one values are the 1889 /// same width as the vector element, and the bit is set only if it is true 1890 /// for all of the elements in the vector. 1891 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 1892 unsigned Depth, const Query &Q) { 1893 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1894 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1895 return (KnownZero & Mask) == Mask; 1896 } 1897 1898 1899 1900 /// Return the number of times the sign bit of the register is replicated into 1901 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1902 /// (itself), but other cases can give us information. For example, immediately 1903 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1904 /// other, so we return 3. 1905 /// 1906 /// 'Op' must have a scalar integer type. 1907 /// 1908 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 1909 const Query &Q) { 1910 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 1911 unsigned Tmp, Tmp2; 1912 unsigned FirstAnswer = 1; 1913 1914 // Note that ConstantInt is handled by the general computeKnownBits case 1915 // below. 1916 1917 if (Depth == 6) 1918 return 1; // Limit search depth. 1919 1920 Operator *U = dyn_cast<Operator>(V); 1921 switch (Operator::getOpcode(V)) { 1922 default: break; 1923 case Instruction::SExt: 1924 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1925 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 1926 1927 case Instruction::SDiv: { 1928 const APInt *Denominator; 1929 // sdiv X, C -> adds log(C) sign bits. 1930 if (match(U->getOperand(1), m_APInt(Denominator))) { 1931 1932 // Ignore non-positive denominator. 1933 if (!Denominator->isStrictlyPositive()) 1934 break; 1935 1936 // Calculate the incoming numerator bits. 1937 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1938 1939 // Add floor(log(C)) bits to the numerator bits. 1940 return std::min(TyBits, NumBits + Denominator->logBase2()); 1941 } 1942 break; 1943 } 1944 1945 case Instruction::SRem: { 1946 const APInt *Denominator; 1947 // srem X, C -> we know that the result is within [-C+1,C) when C is a 1948 // positive constant. This let us put a lower bound on the number of sign 1949 // bits. 1950 if (match(U->getOperand(1), m_APInt(Denominator))) { 1951 1952 // Ignore non-positive denominator. 1953 if (!Denominator->isStrictlyPositive()) 1954 break; 1955 1956 // Calculate the incoming numerator bits. SRem by a positive constant 1957 // can't lower the number of sign bits. 1958 unsigned NumrBits = 1959 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1960 1961 // Calculate the leading sign bit constraints by examining the 1962 // denominator. Given that the denominator is positive, there are two 1963 // cases: 1964 // 1965 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 1966 // (1 << ceilLogBase2(C)). 1967 // 1968 // 2. the numerator is negative. Then the result range is (-C,0] and 1969 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 1970 // 1971 // Thus a lower bound on the number of sign bits is `TyBits - 1972 // ceilLogBase2(C)`. 1973 1974 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 1975 return std::max(NumrBits, ResBits); 1976 } 1977 break; 1978 } 1979 1980 case Instruction::AShr: { 1981 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1982 // ashr X, C -> adds C sign bits. Vectors too. 1983 const APInt *ShAmt; 1984 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1985 Tmp += ShAmt->getZExtValue(); 1986 if (Tmp > TyBits) Tmp = TyBits; 1987 } 1988 return Tmp; 1989 } 1990 case Instruction::Shl: { 1991 const APInt *ShAmt; 1992 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1993 // shl destroys sign bits. 1994 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1995 Tmp2 = ShAmt->getZExtValue(); 1996 if (Tmp2 >= TyBits || // Bad shift. 1997 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1998 return Tmp - Tmp2; 1999 } 2000 break; 2001 } 2002 case Instruction::And: 2003 case Instruction::Or: 2004 case Instruction::Xor: // NOT is handled here. 2005 // Logical binary ops preserve the number of sign bits at the worst. 2006 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2007 if (Tmp != 1) { 2008 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2009 FirstAnswer = std::min(Tmp, Tmp2); 2010 // We computed what we know about the sign bits as our first 2011 // answer. Now proceed to the generic code that uses 2012 // computeKnownBits, and pick whichever answer is better. 2013 } 2014 break; 2015 2016 case Instruction::Select: 2017 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2018 if (Tmp == 1) return 1; // Early out. 2019 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 2020 return std::min(Tmp, Tmp2); 2021 2022 case Instruction::Add: 2023 // Add can have at most one carry bit. Thus we know that the output 2024 // is, at worst, one more bit than the inputs. 2025 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2026 if (Tmp == 1) return 1; // Early out. 2027 2028 // Special case decrementing a value (ADD X, -1): 2029 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2030 if (CRHS->isAllOnesValue()) { 2031 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2032 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2033 Q); 2034 2035 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2036 // sign bits set. 2037 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2038 return TyBits; 2039 2040 // If we are subtracting one from a positive number, there is no carry 2041 // out of the result. 2042 if (KnownZero.isNegative()) 2043 return Tmp; 2044 } 2045 2046 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2047 if (Tmp2 == 1) return 1; 2048 return std::min(Tmp, Tmp2)-1; 2049 2050 case Instruction::Sub: 2051 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2052 if (Tmp2 == 1) return 1; 2053 2054 // Handle NEG. 2055 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2056 if (CLHS->isNullValue()) { 2057 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2058 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2059 Q); 2060 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2061 // sign bits set. 2062 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2063 return TyBits; 2064 2065 // If the input is known to be positive (the sign bit is known clear), 2066 // the output of the NEG has the same number of sign bits as the input. 2067 if (KnownZero.isNegative()) 2068 return Tmp2; 2069 2070 // Otherwise, we treat this like a SUB. 2071 } 2072 2073 // Sub can have at most one carry bit. Thus we know that the output 2074 // is, at worst, one more bit than the inputs. 2075 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2076 if (Tmp == 1) return 1; // Early out. 2077 return std::min(Tmp, Tmp2)-1; 2078 2079 case Instruction::PHI: { 2080 PHINode *PN = cast<PHINode>(U); 2081 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2082 // Don't analyze large in-degree PHIs. 2083 if (NumIncomingValues > 4) break; 2084 // Unreachable blocks may have zero-operand PHI nodes. 2085 if (NumIncomingValues == 0) break; 2086 2087 // Take the minimum of all incoming values. This can't infinitely loop 2088 // because of our depth threshold. 2089 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2090 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2091 if (Tmp == 1) return Tmp; 2092 Tmp = std::min( 2093 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2094 } 2095 return Tmp; 2096 } 2097 2098 case Instruction::Trunc: 2099 // FIXME: it's tricky to do anything useful for this, but it is an important 2100 // case for targets like X86. 2101 break; 2102 } 2103 2104 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2105 // use this information. 2106 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2107 APInt Mask; 2108 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2109 2110 if (KnownZero.isNegative()) { // sign bit is 0 2111 Mask = KnownZero; 2112 } else if (KnownOne.isNegative()) { // sign bit is 1; 2113 Mask = KnownOne; 2114 } else { 2115 // Nothing known. 2116 return FirstAnswer; 2117 } 2118 2119 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2120 // the number of identical bits in the top of the input value. 2121 Mask = ~Mask; 2122 Mask <<= Mask.getBitWidth()-TyBits; 2123 // Return # leading zeros. We use 'min' here in case Val was zero before 2124 // shifting. We don't want to return '64' as for an i32 "0". 2125 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2126 } 2127 2128 /// This function computes the integer multiple of Base that equals V. 2129 /// If successful, it returns true and returns the multiple in 2130 /// Multiple. If unsuccessful, it returns false. It looks 2131 /// through SExt instructions only if LookThroughSExt is true. 2132 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2133 bool LookThroughSExt, unsigned Depth) { 2134 const unsigned MaxDepth = 6; 2135 2136 assert(V && "No Value?"); 2137 assert(Depth <= MaxDepth && "Limit Search Depth"); 2138 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2139 2140 Type *T = V->getType(); 2141 2142 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2143 2144 if (Base == 0) 2145 return false; 2146 2147 if (Base == 1) { 2148 Multiple = V; 2149 return true; 2150 } 2151 2152 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2153 Constant *BaseVal = ConstantInt::get(T, Base); 2154 if (CO && CO == BaseVal) { 2155 // Multiple is 1. 2156 Multiple = ConstantInt::get(T, 1); 2157 return true; 2158 } 2159 2160 if (CI && CI->getZExtValue() % Base == 0) { 2161 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2162 return true; 2163 } 2164 2165 if (Depth == MaxDepth) return false; // Limit search depth. 2166 2167 Operator *I = dyn_cast<Operator>(V); 2168 if (!I) return false; 2169 2170 switch (I->getOpcode()) { 2171 default: break; 2172 case Instruction::SExt: 2173 if (!LookThroughSExt) return false; 2174 // otherwise fall through to ZExt 2175 case Instruction::ZExt: 2176 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2177 LookThroughSExt, Depth+1); 2178 case Instruction::Shl: 2179 case Instruction::Mul: { 2180 Value *Op0 = I->getOperand(0); 2181 Value *Op1 = I->getOperand(1); 2182 2183 if (I->getOpcode() == Instruction::Shl) { 2184 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2185 if (!Op1CI) return false; 2186 // Turn Op0 << Op1 into Op0 * 2^Op1 2187 APInt Op1Int = Op1CI->getValue(); 2188 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2189 APInt API(Op1Int.getBitWidth(), 0); 2190 API.setBit(BitToSet); 2191 Op1 = ConstantInt::get(V->getContext(), API); 2192 } 2193 2194 Value *Mul0 = nullptr; 2195 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2196 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2197 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2198 if (Op1C->getType()->getPrimitiveSizeInBits() < 2199 MulC->getType()->getPrimitiveSizeInBits()) 2200 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2201 if (Op1C->getType()->getPrimitiveSizeInBits() > 2202 MulC->getType()->getPrimitiveSizeInBits()) 2203 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2204 2205 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2206 Multiple = ConstantExpr::getMul(MulC, Op1C); 2207 return true; 2208 } 2209 2210 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2211 if (Mul0CI->getValue() == 1) { 2212 // V == Base * Op1, so return Op1 2213 Multiple = Op1; 2214 return true; 2215 } 2216 } 2217 2218 Value *Mul1 = nullptr; 2219 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2220 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2221 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2222 if (Op0C->getType()->getPrimitiveSizeInBits() < 2223 MulC->getType()->getPrimitiveSizeInBits()) 2224 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2225 if (Op0C->getType()->getPrimitiveSizeInBits() > 2226 MulC->getType()->getPrimitiveSizeInBits()) 2227 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2228 2229 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2230 Multiple = ConstantExpr::getMul(MulC, Op0C); 2231 return true; 2232 } 2233 2234 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2235 if (Mul1CI->getValue() == 1) { 2236 // V == Base * Op0, so return Op0 2237 Multiple = Op0; 2238 return true; 2239 } 2240 } 2241 } 2242 } 2243 2244 // We could not determine if V is a multiple of Base. 2245 return false; 2246 } 2247 2248 /// Return true if we can prove that the specified FP value is never equal to 2249 /// -0.0. 2250 /// 2251 /// NOTE: this function will need to be revisited when we support non-default 2252 /// rounding modes! 2253 /// 2254 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2255 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2256 return !CFP->getValueAPF().isNegZero(); 2257 2258 // FIXME: Magic number! At the least, this should be given a name because it's 2259 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2260 // expose it as a parameter, so it can be used for testing / experimenting. 2261 if (Depth == 6) 2262 return false; // Limit search depth. 2263 2264 const Operator *I = dyn_cast<Operator>(V); 2265 if (!I) return false; 2266 2267 // Check if the nsz fast-math flag is set 2268 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2269 if (FPO->hasNoSignedZeros()) 2270 return true; 2271 2272 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2273 if (I->getOpcode() == Instruction::FAdd) 2274 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2275 if (CFP->isNullValue()) 2276 return true; 2277 2278 // sitofp and uitofp turn into +0.0 for zero. 2279 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2280 return true; 2281 2282 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2283 // sqrt(-0.0) = -0.0, no other negative results are possible. 2284 if (II->getIntrinsicID() == Intrinsic::sqrt) 2285 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2286 2287 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2288 if (const Function *F = CI->getCalledFunction()) { 2289 if (F->isDeclaration()) { 2290 // abs(x) != -0.0 2291 if (F->getName() == "abs") return true; 2292 // fabs[lf](x) != -0.0 2293 if (F->getName() == "fabs") return true; 2294 if (F->getName() == "fabsf") return true; 2295 if (F->getName() == "fabsl") return true; 2296 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2297 F->getName() == "sqrtl") 2298 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2299 } 2300 } 2301 2302 return false; 2303 } 2304 2305 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2306 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2307 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2308 2309 // FIXME: Magic number! At the least, this should be given a name because it's 2310 // used similarly in CannotBeNegativeZero(). A better fix may be to 2311 // expose it as a parameter, so it can be used for testing / experimenting. 2312 if (Depth == 6) 2313 return false; // Limit search depth. 2314 2315 const Operator *I = dyn_cast<Operator>(V); 2316 if (!I) return false; 2317 2318 switch (I->getOpcode()) { 2319 default: break; 2320 case Instruction::FMul: 2321 // x*x is always non-negative or a NaN. 2322 if (I->getOperand(0) == I->getOperand(1)) 2323 return true; 2324 // Fall through 2325 case Instruction::FAdd: 2326 case Instruction::FDiv: 2327 case Instruction::FRem: 2328 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2329 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2330 case Instruction::FPExt: 2331 case Instruction::FPTrunc: 2332 // Widening/narrowing never change sign. 2333 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2334 case Instruction::Call: 2335 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2336 switch (II->getIntrinsicID()) { 2337 default: break; 2338 case Intrinsic::exp: 2339 case Intrinsic::exp2: 2340 case Intrinsic::fabs: 2341 case Intrinsic::sqrt: 2342 return true; 2343 case Intrinsic::powi: 2344 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2345 // powi(x,n) is non-negative if n is even. 2346 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2347 return true; 2348 } 2349 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2350 case Intrinsic::fma: 2351 case Intrinsic::fmuladd: 2352 // x*x+y is non-negative if y is non-negative. 2353 return I->getOperand(0) == I->getOperand(1) && 2354 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2355 } 2356 break; 2357 } 2358 return false; 2359 } 2360 2361 /// If the specified value can be set by repeating the same byte in memory, 2362 /// return the i8 value that it is represented with. This is 2363 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2364 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2365 /// byte store (e.g. i16 0x1234), return null. 2366 Value *llvm::isBytewiseValue(Value *V) { 2367 // All byte-wide stores are splatable, even of arbitrary variables. 2368 if (V->getType()->isIntegerTy(8)) return V; 2369 2370 // Handle 'null' ConstantArrayZero etc. 2371 if (Constant *C = dyn_cast<Constant>(V)) 2372 if (C->isNullValue()) 2373 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2374 2375 // Constant float and double values can be handled as integer values if the 2376 // corresponding integer value is "byteable". An important case is 0.0. 2377 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2378 if (CFP->getType()->isFloatTy()) 2379 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2380 if (CFP->getType()->isDoubleTy()) 2381 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2382 // Don't handle long double formats, which have strange constraints. 2383 } 2384 2385 // We can handle constant integers that are multiple of 8 bits. 2386 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2387 if (CI->getBitWidth() % 8 == 0) { 2388 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2389 2390 if (!CI->getValue().isSplat(8)) 2391 return nullptr; 2392 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2393 } 2394 } 2395 2396 // A ConstantDataArray/Vector is splatable if all its members are equal and 2397 // also splatable. 2398 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2399 Value *Elt = CA->getElementAsConstant(0); 2400 Value *Val = isBytewiseValue(Elt); 2401 if (!Val) 2402 return nullptr; 2403 2404 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2405 if (CA->getElementAsConstant(I) != Elt) 2406 return nullptr; 2407 2408 return Val; 2409 } 2410 2411 // Conceptually, we could handle things like: 2412 // %a = zext i8 %X to i16 2413 // %b = shl i16 %a, 8 2414 // %c = or i16 %a, %b 2415 // but until there is an example that actually needs this, it doesn't seem 2416 // worth worrying about. 2417 return nullptr; 2418 } 2419 2420 2421 // This is the recursive version of BuildSubAggregate. It takes a few different 2422 // arguments. Idxs is the index within the nested struct From that we are 2423 // looking at now (which is of type IndexedType). IdxSkip is the number of 2424 // indices from Idxs that should be left out when inserting into the resulting 2425 // struct. To is the result struct built so far, new insertvalue instructions 2426 // build on that. 2427 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2428 SmallVectorImpl<unsigned> &Idxs, 2429 unsigned IdxSkip, 2430 Instruction *InsertBefore) { 2431 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2432 if (STy) { 2433 // Save the original To argument so we can modify it 2434 Value *OrigTo = To; 2435 // General case, the type indexed by Idxs is a struct 2436 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2437 // Process each struct element recursively 2438 Idxs.push_back(i); 2439 Value *PrevTo = To; 2440 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2441 InsertBefore); 2442 Idxs.pop_back(); 2443 if (!To) { 2444 // Couldn't find any inserted value for this index? Cleanup 2445 while (PrevTo != OrigTo) { 2446 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2447 PrevTo = Del->getAggregateOperand(); 2448 Del->eraseFromParent(); 2449 } 2450 // Stop processing elements 2451 break; 2452 } 2453 } 2454 // If we successfully found a value for each of our subaggregates 2455 if (To) 2456 return To; 2457 } 2458 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2459 // the struct's elements had a value that was inserted directly. In the latter 2460 // case, perhaps we can't determine each of the subelements individually, but 2461 // we might be able to find the complete struct somewhere. 2462 2463 // Find the value that is at that particular spot 2464 Value *V = FindInsertedValue(From, Idxs); 2465 2466 if (!V) 2467 return nullptr; 2468 2469 // Insert the value in the new (sub) aggregrate 2470 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2471 "tmp", InsertBefore); 2472 } 2473 2474 // This helper takes a nested struct and extracts a part of it (which is again a 2475 // struct) into a new value. For example, given the struct: 2476 // { a, { b, { c, d }, e } } 2477 // and the indices "1, 1" this returns 2478 // { c, d }. 2479 // 2480 // It does this by inserting an insertvalue for each element in the resulting 2481 // struct, as opposed to just inserting a single struct. This will only work if 2482 // each of the elements of the substruct are known (ie, inserted into From by an 2483 // insertvalue instruction somewhere). 2484 // 2485 // All inserted insertvalue instructions are inserted before InsertBefore 2486 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2487 Instruction *InsertBefore) { 2488 assert(InsertBefore && "Must have someplace to insert!"); 2489 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2490 idx_range); 2491 Value *To = UndefValue::get(IndexedType); 2492 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2493 unsigned IdxSkip = Idxs.size(); 2494 2495 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2496 } 2497 2498 /// Given an aggregrate and an sequence of indices, see if 2499 /// the scalar value indexed is already around as a register, for example if it 2500 /// were inserted directly into the aggregrate. 2501 /// 2502 /// If InsertBefore is not null, this function will duplicate (modified) 2503 /// insertvalues when a part of a nested struct is extracted. 2504 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2505 Instruction *InsertBefore) { 2506 // Nothing to index? Just return V then (this is useful at the end of our 2507 // recursion). 2508 if (idx_range.empty()) 2509 return V; 2510 // We have indices, so V should have an indexable type. 2511 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2512 "Not looking at a struct or array?"); 2513 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2514 "Invalid indices for type?"); 2515 2516 if (Constant *C = dyn_cast<Constant>(V)) { 2517 C = C->getAggregateElement(idx_range[0]); 2518 if (!C) return nullptr; 2519 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2520 } 2521 2522 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2523 // Loop the indices for the insertvalue instruction in parallel with the 2524 // requested indices 2525 const unsigned *req_idx = idx_range.begin(); 2526 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2527 i != e; ++i, ++req_idx) { 2528 if (req_idx == idx_range.end()) { 2529 // We can't handle this without inserting insertvalues 2530 if (!InsertBefore) 2531 return nullptr; 2532 2533 // The requested index identifies a part of a nested aggregate. Handle 2534 // this specially. For example, 2535 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2536 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2537 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2538 // This can be changed into 2539 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2540 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2541 // which allows the unused 0,0 element from the nested struct to be 2542 // removed. 2543 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2544 InsertBefore); 2545 } 2546 2547 // This insert value inserts something else than what we are looking for. 2548 // See if the (aggregrate) value inserted into has the value we are 2549 // looking for, then. 2550 if (*req_idx != *i) 2551 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2552 InsertBefore); 2553 } 2554 // If we end up here, the indices of the insertvalue match with those 2555 // requested (though possibly only partially). Now we recursively look at 2556 // the inserted value, passing any remaining indices. 2557 return FindInsertedValue(I->getInsertedValueOperand(), 2558 makeArrayRef(req_idx, idx_range.end()), 2559 InsertBefore); 2560 } 2561 2562 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2563 // If we're extracting a value from an aggregrate that was extracted from 2564 // something else, we can extract from that something else directly instead. 2565 // However, we will need to chain I's indices with the requested indices. 2566 2567 // Calculate the number of indices required 2568 unsigned size = I->getNumIndices() + idx_range.size(); 2569 // Allocate some space to put the new indices in 2570 SmallVector<unsigned, 5> Idxs; 2571 Idxs.reserve(size); 2572 // Add indices from the extract value instruction 2573 Idxs.append(I->idx_begin(), I->idx_end()); 2574 2575 // Add requested indices 2576 Idxs.append(idx_range.begin(), idx_range.end()); 2577 2578 assert(Idxs.size() == size 2579 && "Number of indices added not correct?"); 2580 2581 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2582 } 2583 // Otherwise, we don't know (such as, extracting from a function return value 2584 // or load instruction) 2585 return nullptr; 2586 } 2587 2588 /// Analyze the specified pointer to see if it can be expressed as a base 2589 /// pointer plus a constant offset. Return the base and offset to the caller. 2590 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2591 const DataLayout &DL) { 2592 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2593 APInt ByteOffset(BitWidth, 0); 2594 while (1) { 2595 if (Ptr->getType()->isVectorTy()) 2596 break; 2597 2598 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2599 APInt GEPOffset(BitWidth, 0); 2600 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2601 break; 2602 2603 ByteOffset += GEPOffset; 2604 2605 Ptr = GEP->getPointerOperand(); 2606 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2607 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2608 Ptr = cast<Operator>(Ptr)->getOperand(0); 2609 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2610 if (GA->mayBeOverridden()) 2611 break; 2612 Ptr = GA->getAliasee(); 2613 } else { 2614 break; 2615 } 2616 } 2617 Offset = ByteOffset.getSExtValue(); 2618 return Ptr; 2619 } 2620 2621 2622 /// This function computes the length of a null-terminated C string pointed to 2623 /// by V. If successful, it returns true and returns the string in Str. 2624 /// If unsuccessful, it returns false. 2625 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2626 uint64_t Offset, bool TrimAtNul) { 2627 assert(V); 2628 2629 // Look through bitcast instructions and geps. 2630 V = V->stripPointerCasts(); 2631 2632 // If the value is a GEP instruction or constant expression, treat it as an 2633 // offset. 2634 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2635 // Make sure the GEP has exactly three arguments. 2636 if (GEP->getNumOperands() != 3) 2637 return false; 2638 2639 // Make sure the index-ee is a pointer to array of i8. 2640 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2641 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2642 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2643 return false; 2644 2645 // Check to make sure that the first operand of the GEP is an integer and 2646 // has value 0 so that we are sure we're indexing into the initializer. 2647 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2648 if (!FirstIdx || !FirstIdx->isZero()) 2649 return false; 2650 2651 // If the second index isn't a ConstantInt, then this is a variable index 2652 // into the array. If this occurs, we can't say anything meaningful about 2653 // the string. 2654 uint64_t StartIdx = 0; 2655 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2656 StartIdx = CI->getZExtValue(); 2657 else 2658 return false; 2659 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2660 TrimAtNul); 2661 } 2662 2663 // The GEP instruction, constant or instruction, must reference a global 2664 // variable that is a constant and is initialized. The referenced constant 2665 // initializer is the array that we'll use for optimization. 2666 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2667 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2668 return false; 2669 2670 // Handle the all-zeros case 2671 if (GV->getInitializer()->isNullValue()) { 2672 // This is a degenerate case. The initializer is constant zero so the 2673 // length of the string must be zero. 2674 Str = ""; 2675 return true; 2676 } 2677 2678 // Must be a Constant Array 2679 const ConstantDataArray *Array = 2680 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2681 if (!Array || !Array->isString()) 2682 return false; 2683 2684 // Get the number of elements in the array 2685 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2686 2687 // Start out with the entire array in the StringRef. 2688 Str = Array->getAsString(); 2689 2690 if (Offset > NumElts) 2691 return false; 2692 2693 // Skip over 'offset' bytes. 2694 Str = Str.substr(Offset); 2695 2696 if (TrimAtNul) { 2697 // Trim off the \0 and anything after it. If the array is not nul 2698 // terminated, we just return the whole end of string. The client may know 2699 // some other way that the string is length-bound. 2700 Str = Str.substr(0, Str.find('\0')); 2701 } 2702 return true; 2703 } 2704 2705 // These next two are very similar to the above, but also look through PHI 2706 // nodes. 2707 // TODO: See if we can integrate these two together. 2708 2709 /// If we can compute the length of the string pointed to by 2710 /// the specified pointer, return 'len+1'. If we can't, return 0. 2711 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2712 // Look through noop bitcast instructions. 2713 V = V->stripPointerCasts(); 2714 2715 // If this is a PHI node, there are two cases: either we have already seen it 2716 // or we haven't. 2717 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2718 if (!PHIs.insert(PN).second) 2719 return ~0ULL; // already in the set. 2720 2721 // If it was new, see if all the input strings are the same length. 2722 uint64_t LenSoFar = ~0ULL; 2723 for (Value *IncValue : PN->incoming_values()) { 2724 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2725 if (Len == 0) return 0; // Unknown length -> unknown. 2726 2727 if (Len == ~0ULL) continue; 2728 2729 if (Len != LenSoFar && LenSoFar != ~0ULL) 2730 return 0; // Disagree -> unknown. 2731 LenSoFar = Len; 2732 } 2733 2734 // Success, all agree. 2735 return LenSoFar; 2736 } 2737 2738 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2739 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2740 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2741 if (Len1 == 0) return 0; 2742 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2743 if (Len2 == 0) return 0; 2744 if (Len1 == ~0ULL) return Len2; 2745 if (Len2 == ~0ULL) return Len1; 2746 if (Len1 != Len2) return 0; 2747 return Len1; 2748 } 2749 2750 // Otherwise, see if we can read the string. 2751 StringRef StrData; 2752 if (!getConstantStringInfo(V, StrData)) 2753 return 0; 2754 2755 return StrData.size()+1; 2756 } 2757 2758 /// If we can compute the length of the string pointed to by 2759 /// the specified pointer, return 'len+1'. If we can't, return 0. 2760 uint64_t llvm::GetStringLength(Value *V) { 2761 if (!V->getType()->isPointerTy()) return 0; 2762 2763 SmallPtrSet<PHINode*, 32> PHIs; 2764 uint64_t Len = GetStringLengthH(V, PHIs); 2765 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2766 // an empty string as a length. 2767 return Len == ~0ULL ? 1 : Len; 2768 } 2769 2770 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2771 /// previous iteration of the loop was referring to the same object as \p PN. 2772 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2773 // Find the loop-defined value. 2774 Loop *L = LI->getLoopFor(PN->getParent()); 2775 if (PN->getNumIncomingValues() != 2) 2776 return true; 2777 2778 // Find the value from previous iteration. 2779 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2780 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2781 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2782 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2783 return true; 2784 2785 // If a new pointer is loaded in the loop, the pointer references a different 2786 // object in every iteration. E.g.: 2787 // for (i) 2788 // int *p = a[i]; 2789 // ... 2790 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2791 if (!L->isLoopInvariant(Load->getPointerOperand())) 2792 return false; 2793 return true; 2794 } 2795 2796 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2797 unsigned MaxLookup) { 2798 if (!V->getType()->isPointerTy()) 2799 return V; 2800 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2801 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2802 V = GEP->getPointerOperand(); 2803 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2804 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2805 V = cast<Operator>(V)->getOperand(0); 2806 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2807 if (GA->mayBeOverridden()) 2808 return V; 2809 V = GA->getAliasee(); 2810 } else { 2811 // See if InstructionSimplify knows any relevant tricks. 2812 if (Instruction *I = dyn_cast<Instruction>(V)) 2813 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2814 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2815 V = Simplified; 2816 continue; 2817 } 2818 2819 return V; 2820 } 2821 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2822 } 2823 return V; 2824 } 2825 2826 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2827 const DataLayout &DL, LoopInfo *LI, 2828 unsigned MaxLookup) { 2829 SmallPtrSet<Value *, 4> Visited; 2830 SmallVector<Value *, 4> Worklist; 2831 Worklist.push_back(V); 2832 do { 2833 Value *P = Worklist.pop_back_val(); 2834 P = GetUnderlyingObject(P, DL, MaxLookup); 2835 2836 if (!Visited.insert(P).second) 2837 continue; 2838 2839 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2840 Worklist.push_back(SI->getTrueValue()); 2841 Worklist.push_back(SI->getFalseValue()); 2842 continue; 2843 } 2844 2845 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2846 // If this PHI changes the underlying object in every iteration of the 2847 // loop, don't look through it. Consider: 2848 // int **A; 2849 // for (i) { 2850 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2851 // Curr = A[i]; 2852 // *Prev, *Curr; 2853 // 2854 // Prev is tracking Curr one iteration behind so they refer to different 2855 // underlying objects. 2856 if (!LI || !LI->isLoopHeader(PN->getParent()) || 2857 isSameUnderlyingObjectInLoop(PN, LI)) 2858 for (Value *IncValue : PN->incoming_values()) 2859 Worklist.push_back(IncValue); 2860 continue; 2861 } 2862 2863 Objects.push_back(P); 2864 } while (!Worklist.empty()); 2865 } 2866 2867 /// Return true if the only users of this pointer are lifetime markers. 2868 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2869 for (const User *U : V->users()) { 2870 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2871 if (!II) return false; 2872 2873 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2874 II->getIntrinsicID() != Intrinsic::lifetime_end) 2875 return false; 2876 } 2877 return true; 2878 } 2879 2880 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 2881 Type *Ty, const DataLayout &DL, 2882 const Instruction *CtxI, 2883 const DominatorTree *DT, 2884 const TargetLibraryInfo *TLI) { 2885 assert(Offset.isNonNegative() && "offset can't be negative"); 2886 assert(Ty->isSized() && "must be sized"); 2887 2888 APInt DerefBytes(Offset.getBitWidth(), 0); 2889 bool CheckForNonNull = false; 2890 if (const Argument *A = dyn_cast<Argument>(BV)) { 2891 DerefBytes = A->getDereferenceableBytes(); 2892 if (!DerefBytes.getBoolValue()) { 2893 DerefBytes = A->getDereferenceableOrNullBytes(); 2894 CheckForNonNull = true; 2895 } 2896 } else if (auto CS = ImmutableCallSite(BV)) { 2897 DerefBytes = CS.getDereferenceableBytes(0); 2898 if (!DerefBytes.getBoolValue()) { 2899 DerefBytes = CS.getDereferenceableOrNullBytes(0); 2900 CheckForNonNull = true; 2901 } 2902 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 2903 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 2904 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2905 DerefBytes = CI->getLimitedValue(); 2906 } 2907 if (!DerefBytes.getBoolValue()) { 2908 if (MDNode *MD = 2909 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 2910 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 2911 DerefBytes = CI->getLimitedValue(); 2912 } 2913 CheckForNonNull = true; 2914 } 2915 } 2916 2917 if (DerefBytes.getBoolValue()) 2918 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 2919 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 2920 return true; 2921 2922 return false; 2923 } 2924 2925 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 2926 const Instruction *CtxI, 2927 const DominatorTree *DT, 2928 const TargetLibraryInfo *TLI) { 2929 Type *VTy = V->getType(); 2930 Type *Ty = VTy->getPointerElementType(); 2931 if (!Ty->isSized()) 2932 return false; 2933 2934 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 2935 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 2936 } 2937 2938 /// Return true if Value is always a dereferenceable pointer. 2939 /// 2940 /// Test if V is always a pointer to allocated and suitably aligned memory for 2941 /// a simple load or store. 2942 static bool isDereferenceablePointer(const Value *V, const DataLayout &DL, 2943 const Instruction *CtxI, 2944 const DominatorTree *DT, 2945 const TargetLibraryInfo *TLI, 2946 SmallPtrSetImpl<const Value *> &Visited) { 2947 // Note that it is not safe to speculate into a malloc'd region because 2948 // malloc may return null. 2949 2950 // These are obviously ok. 2951 if (isa<AllocaInst>(V)) return true; 2952 2953 // It's not always safe to follow a bitcast, for example: 2954 // bitcast i8* (alloca i8) to i32* 2955 // would result in a 4-byte load from a 1-byte alloca. However, 2956 // if we're casting from a pointer from a type of larger size 2957 // to a type of smaller size (or the same size), and the alignment 2958 // is at least as large as for the resulting pointer type, then 2959 // we can look through the bitcast. 2960 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 2961 Type *STy = BC->getSrcTy()->getPointerElementType(), 2962 *DTy = BC->getDestTy()->getPointerElementType(); 2963 if (STy->isSized() && DTy->isSized() && 2964 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 2965 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 2966 return isDereferenceablePointer(BC->getOperand(0), DL, CtxI, 2967 DT, TLI, Visited); 2968 } 2969 2970 // Global variables which can't collapse to null are ok. 2971 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 2972 return !GV->hasExternalWeakLinkage(); 2973 2974 // byval arguments are okay. 2975 if (const Argument *A = dyn_cast<Argument>(V)) 2976 if (A->hasByValAttr()) 2977 return true; 2978 2979 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 2980 return true; 2981 2982 // For GEPs, determine if the indexing lands within the allocated object. 2983 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2984 Type *VTy = GEP->getType(); 2985 Type *Ty = VTy->getPointerElementType(); 2986 const Value *Base = GEP->getPointerOperand(); 2987 2988 // Conservatively require that the base pointer be fully dereferenceable. 2989 if (!Visited.insert(Base).second) 2990 return false; 2991 if (!isDereferenceablePointer(Base, DL, CtxI, 2992 DT, TLI, Visited)) 2993 return false; 2994 2995 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); 2996 if (!GEP->accumulateConstantOffset(DL, Offset)) 2997 return false; 2998 2999 // Check if the load is within the bounds of the underlying object. 3000 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3001 Type *BaseType = Base->getType()->getPointerElementType(); 3002 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)); 3003 } 3004 3005 // For gc.relocate, look through relocations 3006 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V)) 3007 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) { 3008 GCRelocateOperands RelocateInst(I); 3009 return isDereferenceablePointer(RelocateInst.getDerivedPtr(), DL, CtxI, 3010 DT, TLI, Visited); 3011 } 3012 3013 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3014 return isDereferenceablePointer(ASC->getOperand(0), DL, CtxI, 3015 DT, TLI, Visited); 3016 3017 // If we don't know, assume the worst. 3018 return false; 3019 } 3020 3021 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3022 const Instruction *CtxI, 3023 const DominatorTree *DT, 3024 const TargetLibraryInfo *TLI) { 3025 // When dereferenceability information is provided by a dereferenceable 3026 // attribute, we know exactly how many bytes are dereferenceable. If we can 3027 // determine the exact offset to the attributed variable, we can use that 3028 // information here. 3029 Type *VTy = V->getType(); 3030 Type *Ty = VTy->getPointerElementType(); 3031 if (Ty->isSized()) { 3032 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3033 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3034 3035 if (Offset.isNonNegative()) 3036 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, 3037 CtxI, DT, TLI)) 3038 return true; 3039 } 3040 3041 SmallPtrSet<const Value *, 32> Visited; 3042 return ::isDereferenceablePointer(V, DL, CtxI, DT, TLI, Visited); 3043 } 3044 3045 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3046 const Instruction *CtxI, 3047 const DominatorTree *DT, 3048 const TargetLibraryInfo *TLI) { 3049 const Operator *Inst = dyn_cast<Operator>(V); 3050 if (!Inst) 3051 return false; 3052 3053 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3054 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3055 if (C->canTrap()) 3056 return false; 3057 3058 switch (Inst->getOpcode()) { 3059 default: 3060 return true; 3061 case Instruction::UDiv: 3062 case Instruction::URem: { 3063 // x / y is undefined if y == 0. 3064 const APInt *V; 3065 if (match(Inst->getOperand(1), m_APInt(V))) 3066 return *V != 0; 3067 return false; 3068 } 3069 case Instruction::SDiv: 3070 case Instruction::SRem: { 3071 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3072 const APInt *Numerator, *Denominator; 3073 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3074 return false; 3075 // We cannot hoist this division if the denominator is 0. 3076 if (*Denominator == 0) 3077 return false; 3078 // It's safe to hoist if the denominator is not 0 or -1. 3079 if (*Denominator != -1) 3080 return true; 3081 // At this point we know that the denominator is -1. It is safe to hoist as 3082 // long we know that the numerator is not INT_MIN. 3083 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3084 return !Numerator->isMinSignedValue(); 3085 // The numerator *might* be MinSignedValue. 3086 return false; 3087 } 3088 case Instruction::Load: { 3089 const LoadInst *LI = cast<LoadInst>(Inst); 3090 if (!LI->isUnordered() || 3091 // Speculative load may create a race that did not exist in the source. 3092 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 3093 return false; 3094 const DataLayout &DL = LI->getModule()->getDataLayout(); 3095 return isDereferenceablePointer(LI->getPointerOperand(), DL, CtxI, DT, TLI); 3096 } 3097 case Instruction::Call: { 3098 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3099 switch (II->getIntrinsicID()) { 3100 // These synthetic intrinsics have no side-effects and just mark 3101 // information about their operands. 3102 // FIXME: There are other no-op synthetic instructions that potentially 3103 // should be considered at least *safe* to speculate... 3104 case Intrinsic::dbg_declare: 3105 case Intrinsic::dbg_value: 3106 return true; 3107 3108 case Intrinsic::bswap: 3109 case Intrinsic::ctlz: 3110 case Intrinsic::ctpop: 3111 case Intrinsic::cttz: 3112 case Intrinsic::objectsize: 3113 case Intrinsic::sadd_with_overflow: 3114 case Intrinsic::smul_with_overflow: 3115 case Intrinsic::ssub_with_overflow: 3116 case Intrinsic::uadd_with_overflow: 3117 case Intrinsic::umul_with_overflow: 3118 case Intrinsic::usub_with_overflow: 3119 return true; 3120 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3121 // errno like libm sqrt would. 3122 case Intrinsic::sqrt: 3123 case Intrinsic::fma: 3124 case Intrinsic::fmuladd: 3125 case Intrinsic::fabs: 3126 case Intrinsic::minnum: 3127 case Intrinsic::maxnum: 3128 return true; 3129 // TODO: some fp intrinsics are marked as having the same error handling 3130 // as libm. They're safe to speculate when they won't error. 3131 // TODO: are convert_{from,to}_fp16 safe? 3132 // TODO: can we list target-specific intrinsics here? 3133 default: break; 3134 } 3135 } 3136 return false; // The called function could have undefined behavior or 3137 // side-effects, even if marked readnone nounwind. 3138 } 3139 case Instruction::VAArg: 3140 case Instruction::Alloca: 3141 case Instruction::Invoke: 3142 case Instruction::PHI: 3143 case Instruction::Store: 3144 case Instruction::Ret: 3145 case Instruction::Br: 3146 case Instruction::IndirectBr: 3147 case Instruction::Switch: 3148 case Instruction::Unreachable: 3149 case Instruction::Fence: 3150 case Instruction::LandingPad: 3151 case Instruction::AtomicRMW: 3152 case Instruction::AtomicCmpXchg: 3153 case Instruction::Resume: 3154 return false; // Misc instructions which have effects 3155 } 3156 } 3157 3158 /// Return true if we know that the specified value is never null. 3159 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3160 // Alloca never returns null, malloc might. 3161 if (isa<AllocaInst>(V)) return true; 3162 3163 // A byval, inalloca, or nonnull argument is never null. 3164 if (const Argument *A = dyn_cast<Argument>(V)) 3165 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3166 3167 // Global values are not null unless extern weak. 3168 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3169 return !GV->hasExternalWeakLinkage(); 3170 3171 // A Load tagged w/nonnull metadata is never null. 3172 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3173 return LI->getMetadata(LLVMContext::MD_nonnull); 3174 3175 if (auto CS = ImmutableCallSite(V)) 3176 if (CS.isReturnNonNull()) 3177 return true; 3178 3179 // operator new never returns null. 3180 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 3181 return true; 3182 3183 return false; 3184 } 3185 3186 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3187 const Instruction *CtxI, 3188 const DominatorTree *DT) { 3189 unsigned NumUsesExplored = 0; 3190 for (auto U : V->users()) { 3191 // Avoid massive lists 3192 if (NumUsesExplored >= DomConditionsMaxUses) 3193 break; 3194 NumUsesExplored++; 3195 // Consider only compare instructions uniquely controlling a branch 3196 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3197 if (!Cmp) 3198 continue; 3199 3200 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3201 continue; 3202 3203 for (auto *CmpU : Cmp->users()) { 3204 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3205 if (!BI) 3206 continue; 3207 3208 assert(BI->isConditional() && "uses a comparison!"); 3209 3210 BasicBlock *NonNullSuccessor = nullptr; 3211 CmpInst::Predicate Pred; 3212 3213 if (match(const_cast<ICmpInst*>(Cmp), 3214 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3215 if (Pred == ICmpInst::ICMP_EQ) 3216 NonNullSuccessor = BI->getSuccessor(1); 3217 else if (Pred == ICmpInst::ICMP_NE) 3218 NonNullSuccessor = BI->getSuccessor(0); 3219 } 3220 3221 if (NonNullSuccessor) { 3222 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3223 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3224 return true; 3225 } 3226 } 3227 } 3228 3229 return false; 3230 } 3231 3232 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3233 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3234 if (isKnownNonNull(V, TLI)) 3235 return true; 3236 3237 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3238 } 3239 3240 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3241 const DataLayout &DL, 3242 AssumptionCache *AC, 3243 const Instruction *CxtI, 3244 const DominatorTree *DT) { 3245 // Multiplying n * m significant bits yields a result of n + m significant 3246 // bits. If the total number of significant bits does not exceed the 3247 // result bit width (minus 1), there is no overflow. 3248 // This means if we have enough leading zero bits in the operands 3249 // we can guarantee that the result does not overflow. 3250 // Ref: "Hacker's Delight" by Henry Warren 3251 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3252 APInt LHSKnownZero(BitWidth, 0); 3253 APInt LHSKnownOne(BitWidth, 0); 3254 APInt RHSKnownZero(BitWidth, 0); 3255 APInt RHSKnownOne(BitWidth, 0); 3256 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3257 DT); 3258 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3259 DT); 3260 // Note that underestimating the number of zero bits gives a more 3261 // conservative answer. 3262 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3263 RHSKnownZero.countLeadingOnes(); 3264 // First handle the easy case: if we have enough zero bits there's 3265 // definitely no overflow. 3266 if (ZeroBits >= BitWidth) 3267 return OverflowResult::NeverOverflows; 3268 3269 // Get the largest possible values for each operand. 3270 APInt LHSMax = ~LHSKnownZero; 3271 APInt RHSMax = ~RHSKnownZero; 3272 3273 // We know the multiply operation doesn't overflow if the maximum values for 3274 // each operand will not overflow after we multiply them together. 3275 bool MaxOverflow; 3276 LHSMax.umul_ov(RHSMax, MaxOverflow); 3277 if (!MaxOverflow) 3278 return OverflowResult::NeverOverflows; 3279 3280 // We know it always overflows if multiplying the smallest possible values for 3281 // the operands also results in overflow. 3282 bool MinOverflow; 3283 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3284 if (MinOverflow) 3285 return OverflowResult::AlwaysOverflows; 3286 3287 return OverflowResult::MayOverflow; 3288 } 3289 3290 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3291 const DataLayout &DL, 3292 AssumptionCache *AC, 3293 const Instruction *CxtI, 3294 const DominatorTree *DT) { 3295 bool LHSKnownNonNegative, LHSKnownNegative; 3296 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3297 AC, CxtI, DT); 3298 if (LHSKnownNonNegative || LHSKnownNegative) { 3299 bool RHSKnownNonNegative, RHSKnownNegative; 3300 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3301 AC, CxtI, DT); 3302 3303 if (LHSKnownNegative && RHSKnownNegative) { 3304 // The sign bit is set in both cases: this MUST overflow. 3305 // Create a simple add instruction, and insert it into the struct. 3306 return OverflowResult::AlwaysOverflows; 3307 } 3308 3309 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3310 // The sign bit is clear in both cases: this CANNOT overflow. 3311 // Create a simple add instruction, and insert it into the struct. 3312 return OverflowResult::NeverOverflows; 3313 } 3314 } 3315 3316 return OverflowResult::MayOverflow; 3317 } 3318 3319 static SelectPatternFlavor matchSelectPattern(ICmpInst::Predicate Pred, 3320 Value *CmpLHS, Value *CmpRHS, 3321 Value *TrueVal, Value *FalseVal, 3322 Value *&LHS, Value *&RHS) { 3323 LHS = CmpLHS; 3324 RHS = CmpRHS; 3325 3326 // (icmp X, Y) ? X : Y 3327 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3328 switch (Pred) { 3329 default: return SPF_UNKNOWN; // Equality. 3330 case ICmpInst::ICMP_UGT: 3331 case ICmpInst::ICMP_UGE: return SPF_UMAX; 3332 case ICmpInst::ICMP_SGT: 3333 case ICmpInst::ICMP_SGE: return SPF_SMAX; 3334 case ICmpInst::ICMP_ULT: 3335 case ICmpInst::ICMP_ULE: return SPF_UMIN; 3336 case ICmpInst::ICMP_SLT: 3337 case ICmpInst::ICMP_SLE: return SPF_SMIN; 3338 } 3339 } 3340 3341 // (icmp X, Y) ? Y : X 3342 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3343 switch (Pred) { 3344 default: return SPF_UNKNOWN; // Equality. 3345 case ICmpInst::ICMP_UGT: 3346 case ICmpInst::ICMP_UGE: return SPF_UMIN; 3347 case ICmpInst::ICMP_SGT: 3348 case ICmpInst::ICMP_SGE: return SPF_SMIN; 3349 case ICmpInst::ICMP_ULT: 3350 case ICmpInst::ICMP_ULE: return SPF_UMAX; 3351 case ICmpInst::ICMP_SLT: 3352 case ICmpInst::ICMP_SLE: return SPF_SMAX; 3353 } 3354 } 3355 3356 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3357 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3358 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3359 3360 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3361 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3362 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3363 return (CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS; 3364 } 3365 3366 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3367 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3368 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3369 return (CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS; 3370 } 3371 } 3372 3373 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3374 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3375 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3376 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3377 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3378 LHS = TrueVal; 3379 RHS = FalseVal; 3380 return SPF_SMIN; 3381 } 3382 } 3383 } 3384 3385 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3386 3387 return SPF_UNKNOWN; 3388 } 3389 3390 static Constant *lookThroughCast(ICmpInst *CmpI, Value *V1, Value *V2, 3391 Instruction::CastOps *CastOp) { 3392 CastInst *CI = dyn_cast<CastInst>(V1); 3393 Constant *C = dyn_cast<Constant>(V2); 3394 if (!CI || !C) 3395 return nullptr; 3396 *CastOp = CI->getOpcode(); 3397 3398 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3399 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3400 // This is only valid if the truncated value can be sign-extended 3401 // back to the original value. 3402 if (ConstantExpr::getSExt(T, C->getType()) == C) 3403 return T; 3404 return nullptr; 3405 } 3406 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3407 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3408 3409 if (isa<TruncInst>(CI)) 3410 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3411 3412 return nullptr; 3413 } 3414 3415 SelectPatternFlavor llvm::matchSelectPattern(Value *V, 3416 Value *&LHS, Value *&RHS, 3417 Instruction::CastOps *CastOp) { 3418 SelectInst *SI = dyn_cast<SelectInst>(V); 3419 if (!SI) return SPF_UNKNOWN; 3420 3421 ICmpInst *CmpI = dyn_cast<ICmpInst>(SI->getCondition()); 3422 if (!CmpI) return SPF_UNKNOWN; 3423 3424 ICmpInst::Predicate Pred = CmpI->getPredicate(); 3425 Value *CmpLHS = CmpI->getOperand(0); 3426 Value *CmpRHS = CmpI->getOperand(1); 3427 Value *TrueVal = SI->getTrueValue(); 3428 Value *FalseVal = SI->getFalseValue(); 3429 3430 // Bail out early. 3431 if (CmpI->isEquality()) 3432 return SPF_UNKNOWN; 3433 3434 // Deal with type mismatches. 3435 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3436 if (Constant *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3437 return ::matchSelectPattern(Pred, CmpLHS, CmpRHS, 3438 cast<CastInst>(TrueVal)->getOperand(0), C, 3439 LHS, RHS); 3440 if (Constant *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3441 return ::matchSelectPattern(Pred, CmpLHS, CmpRHS, 3442 C, cast<CastInst>(FalseVal)->getOperand(0), 3443 LHS, RHS); 3444 } 3445 return ::matchSelectPattern(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, 3446 LHS, RHS); 3447 } 3448