1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (Shuf->getMask()->getType()->getVectorElementCount().Scalable) 172 return false; 173 174 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 175 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 177 178 for (int i = 0; i != NumMaskElts; ++i) { 179 if (!DemandedElts[i]) 180 continue; 181 int M = Shuf->getMaskValue(i); 182 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 183 184 // For undef elements, we don't know anything about the common state of 185 // the shuffle result. 186 if (M == -1) 187 return false; 188 if (M < NumElts) 189 DemandedLHS.setBit(M % NumElts); 190 else 191 DemandedRHS.setBit(M % NumElts); 192 } 193 194 return true; 195 } 196 197 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 198 KnownBits &Known, unsigned Depth, const Query &Q); 199 200 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 201 const Query &Q) { 202 Type *Ty = V->getType(); 203 APInt DemandedElts = Ty->isVectorTy() 204 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 205 : APInt(1, 1); 206 computeKnownBits(V, DemandedElts, Known, Depth, Q); 207 } 208 209 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 210 const DataLayout &DL, unsigned Depth, 211 AssumptionCache *AC, const Instruction *CxtI, 212 const DominatorTree *DT, 213 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 214 ::computeKnownBits(V, Known, Depth, 215 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 216 } 217 218 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 219 KnownBits &Known, const DataLayout &DL, 220 unsigned Depth, AssumptionCache *AC, 221 const Instruction *CxtI, const DominatorTree *DT, 222 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 223 ::computeKnownBits(V, DemandedElts, Known, Depth, 224 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 225 } 226 227 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 228 unsigned Depth, const Query &Q); 229 230 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 231 const Query &Q); 232 233 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 234 unsigned Depth, AssumptionCache *AC, 235 const Instruction *CxtI, 236 const DominatorTree *DT, 237 OptimizationRemarkEmitter *ORE, 238 bool UseInstrInfo) { 239 return ::computeKnownBits( 240 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 241 } 242 243 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 244 const DataLayout &DL, unsigned Depth, 245 AssumptionCache *AC, const Instruction *CxtI, 246 const DominatorTree *DT, 247 OptimizationRemarkEmitter *ORE, 248 bool UseInstrInfo) { 249 return ::computeKnownBits( 250 V, DemandedElts, Depth, 251 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 255 const DataLayout &DL, AssumptionCache *AC, 256 const Instruction *CxtI, const DominatorTree *DT, 257 bool UseInstrInfo) { 258 assert(LHS->getType() == RHS->getType() && 259 "LHS and RHS should have the same type"); 260 assert(LHS->getType()->isIntOrIntVectorTy() && 261 "LHS and RHS should be integers"); 262 // Look for an inverted mask: (X & ~M) op (Y & M). 263 Value *M; 264 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 265 match(RHS, m_c_And(m_Specific(M), m_Value()))) 266 return true; 267 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 268 match(LHS, m_c_And(m_Specific(M), m_Value()))) 269 return true; 270 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 271 KnownBits LHSKnown(IT->getBitWidth()); 272 KnownBits RHSKnown(IT->getBitWidth()); 273 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 274 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 275 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 276 } 277 278 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 279 for (const User *U : CxtI->users()) { 280 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 281 if (IC->isEquality()) 282 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 283 if (C->isNullValue()) 284 continue; 285 return false; 286 } 287 return true; 288 } 289 290 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 291 const Query &Q); 292 293 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 294 bool OrZero, unsigned Depth, 295 AssumptionCache *AC, const Instruction *CxtI, 296 const DominatorTree *DT, bool UseInstrInfo) { 297 return ::isKnownToBeAPowerOfTwo( 298 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 299 } 300 301 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 302 unsigned Depth, const Query &Q); 303 304 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 305 306 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 307 AssumptionCache *AC, const Instruction *CxtI, 308 const DominatorTree *DT, bool UseInstrInfo) { 309 return ::isKnownNonZero(V, Depth, 310 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 311 } 312 313 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 314 unsigned Depth, AssumptionCache *AC, 315 const Instruction *CxtI, const DominatorTree *DT, 316 bool UseInstrInfo) { 317 KnownBits Known = 318 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 319 return Known.isNonNegative(); 320 } 321 322 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 323 AssumptionCache *AC, const Instruction *CxtI, 324 const DominatorTree *DT, bool UseInstrInfo) { 325 if (auto *CI = dyn_cast<ConstantInt>(V)) 326 return CI->getValue().isStrictlyPositive(); 327 328 // TODO: We'd doing two recursive queries here. We should factor this such 329 // that only a single query is needed. 330 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 331 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 332 } 333 334 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 335 AssumptionCache *AC, const Instruction *CxtI, 336 const DominatorTree *DT, bool UseInstrInfo) { 337 KnownBits Known = 338 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 339 return Known.isNegative(); 340 } 341 342 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 343 344 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 345 const DataLayout &DL, AssumptionCache *AC, 346 const Instruction *CxtI, const DominatorTree *DT, 347 bool UseInstrInfo) { 348 return ::isKnownNonEqual(V1, V2, 349 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 350 UseInstrInfo, /*ORE=*/nullptr)); 351 } 352 353 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 357 const DataLayout &DL, unsigned Depth, 358 AssumptionCache *AC, const Instruction *CxtI, 359 const DominatorTree *DT, bool UseInstrInfo) { 360 return ::MaskedValueIsZero( 361 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 362 } 363 364 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 365 unsigned Depth, const Query &Q); 366 367 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 368 const Query &Q) { 369 Type *Ty = V->getType(); 370 APInt DemandedElts = Ty->isVectorTy() 371 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 372 : APInt(1, 1); 373 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 374 } 375 376 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 377 unsigned Depth, AssumptionCache *AC, 378 const Instruction *CxtI, 379 const DominatorTree *DT, bool UseInstrInfo) { 380 return ::ComputeNumSignBits( 381 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 382 } 383 384 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 385 bool NSW, const APInt &DemandedElts, 386 KnownBits &KnownOut, KnownBits &Known2, 387 unsigned Depth, const Query &Q) { 388 unsigned BitWidth = KnownOut.getBitWidth(); 389 390 // If an initial sequence of bits in the result is not needed, the 391 // corresponding bits in the operands are not needed. 392 KnownBits LHSKnown(BitWidth); 393 computeKnownBits(Op0, DemandedElts, LHSKnown, Depth + 1, Q); 394 computeKnownBits(Op1, DemandedElts, Known2, Depth + 1, Q); 395 396 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 397 } 398 399 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 400 const APInt &DemandedElts, KnownBits &Known, 401 KnownBits &Known2, unsigned Depth, 402 const Query &Q) { 403 unsigned BitWidth = Known.getBitWidth(); 404 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 405 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 406 407 bool isKnownNegative = false; 408 bool isKnownNonNegative = false; 409 // If the multiplication is known not to overflow, compute the sign bit. 410 if (NSW) { 411 if (Op0 == Op1) { 412 // The product of a number with itself is non-negative. 413 isKnownNonNegative = true; 414 } else { 415 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 416 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 417 bool isKnownNegativeOp1 = Known.isNegative(); 418 bool isKnownNegativeOp0 = Known2.isNegative(); 419 // The product of two numbers with the same sign is non-negative. 420 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 421 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 422 // The product of a negative number and a non-negative number is either 423 // negative or zero. 424 if (!isKnownNonNegative) 425 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 426 isKnownNonZero(Op0, Depth, Q)) || 427 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 428 isKnownNonZero(Op1, Depth, Q)); 429 } 430 } 431 432 assert(!Known.hasConflict() && !Known2.hasConflict()); 433 // Compute a conservative estimate for high known-0 bits. 434 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 435 Known2.countMinLeadingZeros(), 436 BitWidth) - BitWidth; 437 LeadZ = std::min(LeadZ, BitWidth); 438 439 // The result of the bottom bits of an integer multiply can be 440 // inferred by looking at the bottom bits of both operands and 441 // multiplying them together. 442 // We can infer at least the minimum number of known trailing bits 443 // of both operands. Depending on number of trailing zeros, we can 444 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 445 // a and b are divisible by m and n respectively. 446 // We then calculate how many of those bits are inferrable and set 447 // the output. For example, the i8 mul: 448 // a = XXXX1100 (12) 449 // b = XXXX1110 (14) 450 // We know the bottom 3 bits are zero since the first can be divided by 451 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 452 // Applying the multiplication to the trimmed arguments gets: 453 // XX11 (3) 454 // X111 (7) 455 // ------- 456 // XX11 457 // XX11 458 // XX11 459 // XX11 460 // ------- 461 // XXXXX01 462 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 463 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 464 // The proof for this can be described as: 465 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 466 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 467 // umin(countTrailingZeros(C2), C6) + 468 // umin(C5 - umin(countTrailingZeros(C1), C5), 469 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 470 // %aa = shl i8 %a, C5 471 // %bb = shl i8 %b, C6 472 // %aaa = or i8 %aa, C1 473 // %bbb = or i8 %bb, C2 474 // %mul = mul i8 %aaa, %bbb 475 // %mask = and i8 %mul, C7 476 // => 477 // %mask = i8 ((C1*C2)&C7) 478 // Where C5, C6 describe the known bits of %a, %b 479 // C1, C2 describe the known bottom bits of %a, %b. 480 // C7 describes the mask of the known bits of the result. 481 APInt Bottom0 = Known.One; 482 APInt Bottom1 = Known2.One; 483 484 // How many times we'd be able to divide each argument by 2 (shr by 1). 485 // This gives us the number of trailing zeros on the multiplication result. 486 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 487 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 488 unsigned TrailZero0 = Known.countMinTrailingZeros(); 489 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 490 unsigned TrailZ = TrailZero0 + TrailZero1; 491 492 // Figure out the fewest known-bits operand. 493 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 494 TrailBitsKnown1 - TrailZero1); 495 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 496 497 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 498 Bottom1.getLoBits(TrailBitsKnown1); 499 500 Known.resetAll(); 501 Known.Zero.setHighBits(LeadZ); 502 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 503 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 504 505 // Only make use of no-wrap flags if we failed to compute the sign bit 506 // directly. This matters if the multiplication always overflows, in 507 // which case we prefer to follow the result of the direct computation, 508 // though as the program is invoking undefined behaviour we can choose 509 // whatever we like here. 510 if (isKnownNonNegative && !Known.isNegative()) 511 Known.makeNonNegative(); 512 else if (isKnownNegative && !Known.isNonNegative()) 513 Known.makeNegative(); 514 } 515 516 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 517 KnownBits &Known) { 518 unsigned BitWidth = Known.getBitWidth(); 519 unsigned NumRanges = Ranges.getNumOperands() / 2; 520 assert(NumRanges >= 1); 521 522 Known.Zero.setAllBits(); 523 Known.One.setAllBits(); 524 525 for (unsigned i = 0; i < NumRanges; ++i) { 526 ConstantInt *Lower = 527 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 528 ConstantInt *Upper = 529 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 530 ConstantRange Range(Lower->getValue(), Upper->getValue()); 531 532 // The first CommonPrefixBits of all values in Range are equal. 533 unsigned CommonPrefixBits = 534 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 535 536 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 537 Known.One &= Range.getUnsignedMax() & Mask; 538 Known.Zero &= ~Range.getUnsignedMax() & Mask; 539 } 540 } 541 542 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 543 SmallVector<const Value *, 16> WorkSet(1, I); 544 SmallPtrSet<const Value *, 32> Visited; 545 SmallPtrSet<const Value *, 16> EphValues; 546 547 // The instruction defining an assumption's condition itself is always 548 // considered ephemeral to that assumption (even if it has other 549 // non-ephemeral users). See r246696's test case for an example. 550 if (is_contained(I->operands(), E)) 551 return true; 552 553 while (!WorkSet.empty()) { 554 const Value *V = WorkSet.pop_back_val(); 555 if (!Visited.insert(V).second) 556 continue; 557 558 // If all uses of this value are ephemeral, then so is this value. 559 if (llvm::all_of(V->users(), [&](const User *U) { 560 return EphValues.count(U); 561 })) { 562 if (V == E) 563 return true; 564 565 if (V == I || isSafeToSpeculativelyExecute(V)) { 566 EphValues.insert(V); 567 if (const User *U = dyn_cast<User>(V)) 568 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 569 J != JE; ++J) 570 WorkSet.push_back(*J); 571 } 572 } 573 } 574 575 return false; 576 } 577 578 // Is this an intrinsic that cannot be speculated but also cannot trap? 579 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 580 if (const CallInst *CI = dyn_cast<CallInst>(I)) 581 if (Function *F = CI->getCalledFunction()) 582 switch (F->getIntrinsicID()) { 583 default: break; 584 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 585 case Intrinsic::assume: 586 case Intrinsic::sideeffect: 587 case Intrinsic::dbg_declare: 588 case Intrinsic::dbg_value: 589 case Intrinsic::dbg_label: 590 case Intrinsic::invariant_start: 591 case Intrinsic::invariant_end: 592 case Intrinsic::lifetime_start: 593 case Intrinsic::lifetime_end: 594 case Intrinsic::objectsize: 595 case Intrinsic::ptr_annotation: 596 case Intrinsic::var_annotation: 597 return true; 598 } 599 600 return false; 601 } 602 603 bool llvm::isValidAssumeForContext(const Instruction *Inv, 604 const Instruction *CxtI, 605 const DominatorTree *DT) { 606 // There are two restrictions on the use of an assume: 607 // 1. The assume must dominate the context (or the control flow must 608 // reach the assume whenever it reaches the context). 609 // 2. The context must not be in the assume's set of ephemeral values 610 // (otherwise we will use the assume to prove that the condition 611 // feeding the assume is trivially true, thus causing the removal of 612 // the assume). 613 614 if (DT) { 615 if (DT->dominates(Inv, CxtI)) 616 return true; 617 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 618 // We don't have a DT, but this trivially dominates. 619 return true; 620 } 621 622 // With or without a DT, the only remaining case we will check is if the 623 // instructions are in the same BB. Give up if that is not the case. 624 if (Inv->getParent() != CxtI->getParent()) 625 return false; 626 627 // If we have a dom tree, then we now know that the assume doesn't dominate 628 // the other instruction. If we don't have a dom tree then we can check if 629 // the assume is first in the BB. 630 if (!DT) { 631 // Search forward from the assume until we reach the context (or the end 632 // of the block); the common case is that the assume will come first. 633 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 634 IE = Inv->getParent()->end(); I != IE; ++I) 635 if (&*I == CxtI) 636 return true; 637 } 638 639 // Don't let an assume affect itself - this would cause the problems 640 // `isEphemeralValueOf` is trying to prevent, and it would also make 641 // the loop below go out of bounds. 642 if (Inv == CxtI) 643 return false; 644 645 // The context comes first, but they're both in the same block. 646 // Make sure there is nothing in between that might interrupt 647 // the control flow, not even CxtI itself. 648 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 649 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 650 return false; 651 652 return !isEphemeralValueOf(Inv, CxtI); 653 } 654 655 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 656 // Use of assumptions is context-sensitive. If we don't have a context, we 657 // cannot use them! 658 if (!Q.AC || !Q.CxtI) 659 return false; 660 661 // Note that the patterns below need to be kept in sync with the code 662 // in AssumptionCache::updateAffectedValues. 663 664 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 665 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 666 667 Value *RHS; 668 CmpInst::Predicate Pred; 669 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 670 return false; 671 // assume(v u> y) -> assume(v != 0) 672 if (Pred == ICmpInst::ICMP_UGT) 673 return true; 674 675 // assume(v != 0) 676 // We special-case this one to ensure that we handle `assume(v != null)`. 677 if (Pred == ICmpInst::ICMP_NE) 678 return match(RHS, m_Zero()); 679 680 // All other predicates - rely on generic ConstantRange handling. 681 ConstantInt *CI; 682 if (!match(RHS, m_ConstantInt(CI))) 683 return false; 684 ConstantRange RHSRange(CI->getValue()); 685 ConstantRange TrueValues = 686 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 687 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 688 }; 689 690 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 691 if (!AssumeVH) 692 continue; 693 CallInst *I = cast<CallInst>(AssumeVH); 694 assert(I->getFunction() == Q.CxtI->getFunction() && 695 "Got assumption for the wrong function!"); 696 if (Q.isExcluded(I)) 697 continue; 698 699 // Warning: This loop can end up being somewhat performance sensitive. 700 // We're running this loop for once for each value queried resulting in a 701 // runtime of ~O(#assumes * #values). 702 703 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 704 "must be an assume intrinsic"); 705 706 Value *Arg = I->getArgOperand(0); 707 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 708 if (!Cmp) 709 continue; 710 711 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 712 return true; 713 } 714 715 return false; 716 } 717 718 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 719 unsigned Depth, const Query &Q) { 720 // Use of assumptions is context-sensitive. If we don't have a context, we 721 // cannot use them! 722 if (!Q.AC || !Q.CxtI) 723 return; 724 725 unsigned BitWidth = Known.getBitWidth(); 726 727 // Note that the patterns below need to be kept in sync with the code 728 // in AssumptionCache::updateAffectedValues. 729 730 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 731 if (!AssumeVH) 732 continue; 733 CallInst *I = cast<CallInst>(AssumeVH); 734 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 735 "Got assumption for the wrong function!"); 736 if (Q.isExcluded(I)) 737 continue; 738 739 // Warning: This loop can end up being somewhat performance sensitive. 740 // We're running this loop for once for each value queried resulting in a 741 // runtime of ~O(#assumes * #values). 742 743 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 744 "must be an assume intrinsic"); 745 746 Value *Arg = I->getArgOperand(0); 747 748 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 749 assert(BitWidth == 1 && "assume operand is not i1?"); 750 Known.setAllOnes(); 751 return; 752 } 753 if (match(Arg, m_Not(m_Specific(V))) && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 assert(BitWidth == 1 && "assume operand is not i1?"); 756 Known.setAllZero(); 757 return; 758 } 759 760 // The remaining tests are all recursive, so bail out if we hit the limit. 761 if (Depth == MaxDepth) 762 continue; 763 764 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 765 if (!Cmp) 766 continue; 767 768 Value *A, *B; 769 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 770 771 CmpInst::Predicate Pred; 772 uint64_t C; 773 switch (Cmp->getPredicate()) { 774 default: 775 break; 776 case ICmpInst::ICMP_EQ: 777 // assume(v = a) 778 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 779 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 780 KnownBits RHSKnown(BitWidth); 781 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 782 Known.Zero |= RHSKnown.Zero; 783 Known.One |= RHSKnown.One; 784 // assume(v & b = a) 785 } else if (match(Cmp, 786 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown(BitWidth); 789 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 790 KnownBits MaskKnown(BitWidth); 791 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 792 793 // For those bits in the mask that are known to be one, we can propagate 794 // known bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 796 Known.One |= RHSKnown.One & MaskKnown.One; 797 // assume(~(v & b) = a) 798 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 799 m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown(BitWidth); 802 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 803 KnownBits MaskKnown(BitWidth); 804 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 805 806 // For those bits in the mask that are known to be one, we can propagate 807 // inverted known bits from the RHS to V. 808 Known.Zero |= RHSKnown.One & MaskKnown.One; 809 Known.One |= RHSKnown.Zero & MaskKnown.One; 810 // assume(v | b = a) 811 } else if (match(Cmp, 812 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 813 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 814 KnownBits RHSKnown(BitWidth); 815 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 816 KnownBits BKnown(BitWidth); 817 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 818 819 // For those bits in B that are known to be zero, we can propagate known 820 // bits from the RHS to V. 821 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 822 Known.One |= RHSKnown.One & BKnown.Zero; 823 // assume(~(v | b) = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 827 KnownBits RHSKnown(BitWidth); 828 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 829 KnownBits BKnown(BitWidth); 830 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 831 832 // For those bits in B that are known to be zero, we can propagate 833 // inverted known bits from the RHS to V. 834 Known.Zero |= RHSKnown.One & BKnown.Zero; 835 Known.One |= RHSKnown.Zero & BKnown.Zero; 836 // assume(v ^ b = a) 837 } else if (match(Cmp, 838 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 840 KnownBits RHSKnown(BitWidth); 841 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 842 KnownBits BKnown(BitWidth); 843 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 844 845 // For those bits in B that are known to be zero, we can propagate known 846 // bits from the RHS to V. For those bits in B that are known to be one, 847 // we can propagate inverted known bits from the RHS to V. 848 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 849 Known.One |= RHSKnown.One & BKnown.Zero; 850 Known.Zero |= RHSKnown.One & BKnown.One; 851 Known.One |= RHSKnown.Zero & BKnown.One; 852 // assume(~(v ^ b) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 856 KnownBits RHSKnown(BitWidth); 857 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 858 KnownBits BKnown(BitWidth); 859 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 860 861 // For those bits in B that are known to be zero, we can propagate 862 // inverted known bits from the RHS to V. For those bits in B that are 863 // known to be one, we can propagate known bits from the RHS to V. 864 Known.Zero |= RHSKnown.One & BKnown.Zero; 865 Known.One |= RHSKnown.Zero & BKnown.Zero; 866 Known.Zero |= RHSKnown.Zero & BKnown.One; 867 Known.One |= RHSKnown.One & BKnown.One; 868 // assume(v << c = a) 869 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 870 m_Value(A))) && 871 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 872 KnownBits RHSKnown(BitWidth); 873 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 874 // For those bits in RHS that are known, we can propagate them to known 875 // bits in V shifted to the right by C. 876 RHSKnown.Zero.lshrInPlace(C); 877 Known.Zero |= RHSKnown.Zero; 878 RHSKnown.One.lshrInPlace(C); 879 Known.One |= RHSKnown.One; 880 // assume(~(v << c) = a) 881 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 882 m_Value(A))) && 883 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 884 KnownBits RHSKnown(BitWidth); 885 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 886 // For those bits in RHS that are known, we can propagate them inverted 887 // to known bits in V shifted to the right by C. 888 RHSKnown.One.lshrInPlace(C); 889 Known.Zero |= RHSKnown.One; 890 RHSKnown.Zero.lshrInPlace(C); 891 Known.One |= RHSKnown.Zero; 892 // assume(v >> c = a) 893 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 894 m_Value(A))) && 895 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 896 KnownBits RHSKnown(BitWidth); 897 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 898 // For those bits in RHS that are known, we can propagate them to known 899 // bits in V shifted to the right by C. 900 Known.Zero |= RHSKnown.Zero << C; 901 Known.One |= RHSKnown.One << C; 902 // assume(~(v >> c) = a) 903 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 904 m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 906 KnownBits RHSKnown(BitWidth); 907 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 908 // For those bits in RHS that are known, we can propagate them inverted 909 // to known bits in V shifted to the right by C. 910 Known.Zero |= RHSKnown.One << C; 911 Known.One |= RHSKnown.Zero << C; 912 } 913 break; 914 case ICmpInst::ICMP_SGE: 915 // assume(v >=_s c) where c is non-negative 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown(BitWidth); 919 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 920 921 if (RHSKnown.isNonNegative()) { 922 // We know that the sign bit is zero. 923 Known.makeNonNegative(); 924 } 925 } 926 break; 927 case ICmpInst::ICMP_SGT: 928 // assume(v >_s c) where c is at least -1. 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown(BitWidth); 932 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 933 934 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 935 // We know that the sign bit is zero. 936 Known.makeNonNegative(); 937 } 938 } 939 break; 940 case ICmpInst::ICMP_SLE: 941 // assume(v <=_s c) where c is negative 942 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 943 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 944 KnownBits RHSKnown(BitWidth); 945 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 946 947 if (RHSKnown.isNegative()) { 948 // We know that the sign bit is one. 949 Known.makeNegative(); 950 } 951 } 952 break; 953 case ICmpInst::ICMP_SLT: 954 // assume(v <_s c) where c is non-positive 955 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 956 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 957 KnownBits RHSKnown(BitWidth); 958 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 959 960 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 961 // We know that the sign bit is one. 962 Known.makeNegative(); 963 } 964 } 965 break; 966 case ICmpInst::ICMP_ULE: 967 // assume(v <=_u c) 968 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 969 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 970 KnownBits RHSKnown(BitWidth); 971 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 972 973 // Whatever high bits in c are zero are known to be zero. 974 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 975 } 976 break; 977 case ICmpInst::ICMP_ULT: 978 // assume(v <_u c) 979 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 980 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 981 KnownBits RHSKnown(BitWidth); 982 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 983 984 // If the RHS is known zero, then this assumption must be wrong (nothing 985 // is unsigned less than zero). Signal a conflict and get out of here. 986 if (RHSKnown.isZero()) { 987 Known.Zero.setAllBits(); 988 Known.One.setAllBits(); 989 break; 990 } 991 992 // Whatever high bits in c are zero are known to be zero (if c is a power 993 // of 2, then one more). 994 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 995 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 996 else 997 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 998 } 999 break; 1000 } 1001 } 1002 1003 // If assumptions conflict with each other or previous known bits, then we 1004 // have a logical fallacy. It's possible that the assumption is not reachable, 1005 // so this isn't a real bug. On the other hand, the program may have undefined 1006 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1007 // clear out the known bits, try to warn the user, and hope for the best. 1008 if (Known.Zero.intersects(Known.One)) { 1009 Known.resetAll(); 1010 1011 if (Q.ORE) 1012 Q.ORE->emit([&]() { 1013 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1014 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1015 CxtI) 1016 << "Detected conflicting code assumptions. Program may " 1017 "have undefined behavior, or compiler may have " 1018 "internal error."; 1019 }); 1020 } 1021 } 1022 1023 /// Compute known bits from a shift operator, including those with a 1024 /// non-constant shift amount. Known is the output of this function. Known2 is a 1025 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1026 /// operator-specific functions that, given the known-zero or known-one bits 1027 /// respectively, and a shift amount, compute the implied known-zero or 1028 /// known-one bits of the shift operator's result respectively for that shift 1029 /// amount. The results from calling KZF and KOF are conservatively combined for 1030 /// all permitted shift amounts. 1031 static void computeKnownBitsFromShiftOperator( 1032 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1033 KnownBits &Known2, unsigned Depth, const Query &Q, 1034 function_ref<APInt(const APInt &, unsigned)> KZF, 1035 function_ref<APInt(const APInt &, unsigned)> KOF) { 1036 unsigned BitWidth = Known.getBitWidth(); 1037 1038 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1039 if (Known.isConstant()) { 1040 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1041 1042 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1043 Known.Zero = KZF(Known.Zero, ShiftAmt); 1044 Known.One = KOF(Known.One, ShiftAmt); 1045 // If the known bits conflict, this must be an overflowing left shift, so 1046 // the shift result is poison. We can return anything we want. Choose 0 for 1047 // the best folding opportunity. 1048 if (Known.hasConflict()) 1049 Known.setAllZero(); 1050 1051 return; 1052 } 1053 1054 // If the shift amount could be greater than or equal to the bit-width of the 1055 // LHS, the value could be poison, but bail out because the check below is 1056 // expensive. 1057 // TODO: Should we just carry on? 1058 if (Known.getMaxValue().uge(BitWidth)) { 1059 Known.resetAll(); 1060 return; 1061 } 1062 1063 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1064 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1065 // limit value (which implies all bits are known). 1066 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1067 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1068 1069 // It would be more-clearly correct to use the two temporaries for this 1070 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1071 Known.resetAll(); 1072 1073 // If we know the shifter operand is nonzero, we can sometimes infer more 1074 // known bits. However this is expensive to compute, so be lazy about it and 1075 // only compute it when absolutely necessary. 1076 Optional<bool> ShifterOperandIsNonZero; 1077 1078 // Early exit if we can't constrain any well-defined shift amount. 1079 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1080 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1081 ShifterOperandIsNonZero = 1082 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1083 if (!*ShifterOperandIsNonZero) 1084 return; 1085 } 1086 1087 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1088 1089 Known.Zero.setAllBits(); 1090 Known.One.setAllBits(); 1091 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1092 // Combine the shifted known input bits only for those shift amounts 1093 // compatible with its known constraints. 1094 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1095 continue; 1096 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1097 continue; 1098 // If we know the shifter is nonzero, we may be able to infer more known 1099 // bits. This check is sunk down as far as possible to avoid the expensive 1100 // call to isKnownNonZero if the cheaper checks above fail. 1101 if (ShiftAmt == 0) { 1102 if (!ShifterOperandIsNonZero.hasValue()) 1103 ShifterOperandIsNonZero = 1104 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1105 if (*ShifterOperandIsNonZero) 1106 continue; 1107 } 1108 1109 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1110 Known.One &= KOF(Known2.One, ShiftAmt); 1111 } 1112 1113 // If the known bits conflict, the result is poison. Return a 0 and hope the 1114 // caller can further optimize that. 1115 if (Known.hasConflict()) 1116 Known.setAllZero(); 1117 } 1118 1119 static void computeKnownBitsFromOperator(const Operator *I, 1120 const APInt &DemandedElts, 1121 KnownBits &Known, unsigned Depth, 1122 const Query &Q) { 1123 unsigned BitWidth = Known.getBitWidth(); 1124 1125 KnownBits Known2(Known); 1126 switch (I->getOpcode()) { 1127 default: break; 1128 case Instruction::Load: 1129 if (MDNode *MD = 1130 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1131 computeKnownBitsFromRangeMetadata(*MD, Known); 1132 break; 1133 case Instruction::And: { 1134 // If either the LHS or the RHS are Zero, the result is zero. 1135 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1136 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1137 1138 // Output known-1 bits are only known if set in both the LHS & RHS. 1139 Known.One &= Known2.One; 1140 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1141 Known.Zero |= Known2.Zero; 1142 1143 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1144 // here we handle the more general case of adding any odd number by 1145 // matching the form add(x, add(x, y)) where y is odd. 1146 // TODO: This could be generalized to clearing any bit set in y where the 1147 // following bit is known to be unset in y. 1148 Value *X = nullptr, *Y = nullptr; 1149 if (!Known.Zero[0] && !Known.One[0] && 1150 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1151 Known2.resetAll(); 1152 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1153 if (Known2.countMinTrailingOnes() > 0) 1154 Known.Zero.setBit(0); 1155 } 1156 break; 1157 } 1158 case Instruction::Or: 1159 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1160 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1161 1162 // Output known-0 bits are only known if clear in both the LHS & RHS. 1163 Known.Zero &= Known2.Zero; 1164 // Output known-1 are known to be set if set in either the LHS | RHS. 1165 Known.One |= Known2.One; 1166 break; 1167 case Instruction::Xor: { 1168 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1169 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1170 1171 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1172 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1173 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1174 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1175 Known.Zero = std::move(KnownZeroOut); 1176 break; 1177 } 1178 case Instruction::Mul: { 1179 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1180 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1181 Known, Known2, Depth, Q); 1182 break; 1183 } 1184 case Instruction::UDiv: { 1185 // For the purposes of computing leading zeros we can conservatively 1186 // treat a udiv as a logical right shift by the power of 2 known to 1187 // be less than the denominator. 1188 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1189 unsigned LeadZ = Known2.countMinLeadingZeros(); 1190 1191 Known2.resetAll(); 1192 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1193 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1194 if (RHSMaxLeadingZeros != BitWidth) 1195 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1196 1197 Known.Zero.setHighBits(LeadZ); 1198 break; 1199 } 1200 case Instruction::Select: { 1201 const Value *LHS = nullptr, *RHS = nullptr; 1202 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1203 if (SelectPatternResult::isMinOrMax(SPF)) { 1204 computeKnownBits(RHS, Known, Depth + 1, Q); 1205 computeKnownBits(LHS, Known2, Depth + 1, Q); 1206 } else { 1207 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1208 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1209 } 1210 1211 unsigned MaxHighOnes = 0; 1212 unsigned MaxHighZeros = 0; 1213 if (SPF == SPF_SMAX) { 1214 // If both sides are negative, the result is negative. 1215 if (Known.isNegative() && Known2.isNegative()) 1216 // We can derive a lower bound on the result by taking the max of the 1217 // leading one bits. 1218 MaxHighOnes = 1219 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1220 // If either side is non-negative, the result is non-negative. 1221 else if (Known.isNonNegative() || Known2.isNonNegative()) 1222 MaxHighZeros = 1; 1223 } else if (SPF == SPF_SMIN) { 1224 // If both sides are non-negative, the result is non-negative. 1225 if (Known.isNonNegative() && Known2.isNonNegative()) 1226 // We can derive an upper bound on the result by taking the max of the 1227 // leading zero bits. 1228 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1229 Known2.countMinLeadingZeros()); 1230 // If either side is negative, the result is negative. 1231 else if (Known.isNegative() || Known2.isNegative()) 1232 MaxHighOnes = 1; 1233 } else if (SPF == SPF_UMAX) { 1234 // We can derive a lower bound on the result by taking the max of the 1235 // leading one bits. 1236 MaxHighOnes = 1237 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1238 } else if (SPF == SPF_UMIN) { 1239 // We can derive an upper bound on the result by taking the max of the 1240 // leading zero bits. 1241 MaxHighZeros = 1242 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1243 } else if (SPF == SPF_ABS) { 1244 // RHS from matchSelectPattern returns the negation part of abs pattern. 1245 // If the negate has an NSW flag we can assume the sign bit of the result 1246 // will be 0 because that makes abs(INT_MIN) undefined. 1247 if (match(RHS, m_Neg(m_Specific(LHS))) && 1248 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1249 MaxHighZeros = 1; 1250 } 1251 1252 // Only known if known in both the LHS and RHS. 1253 Known.One &= Known2.One; 1254 Known.Zero &= Known2.Zero; 1255 if (MaxHighOnes > 0) 1256 Known.One.setHighBits(MaxHighOnes); 1257 if (MaxHighZeros > 0) 1258 Known.Zero.setHighBits(MaxHighZeros); 1259 break; 1260 } 1261 case Instruction::FPTrunc: 1262 case Instruction::FPExt: 1263 case Instruction::FPToUI: 1264 case Instruction::FPToSI: 1265 case Instruction::SIToFP: 1266 case Instruction::UIToFP: 1267 break; // Can't work with floating point. 1268 case Instruction::PtrToInt: 1269 case Instruction::IntToPtr: 1270 // Fall through and handle them the same as zext/trunc. 1271 LLVM_FALLTHROUGH; 1272 case Instruction::ZExt: 1273 case Instruction::Trunc: { 1274 Type *SrcTy = I->getOperand(0)->getType(); 1275 1276 unsigned SrcBitWidth; 1277 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1278 // which fall through here. 1279 Type *ScalarTy = SrcTy->getScalarType(); 1280 SrcBitWidth = ScalarTy->isPointerTy() ? 1281 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1282 Q.DL.getTypeSizeInBits(ScalarTy); 1283 1284 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1285 Known = Known.anyextOrTrunc(SrcBitWidth); 1286 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1287 Known = Known.zextOrTrunc(BitWidth); 1288 break; 1289 } 1290 case Instruction::BitCast: { 1291 Type *SrcTy = I->getOperand(0)->getType(); 1292 if (SrcTy->isIntOrPtrTy() && 1293 // TODO: For now, not handling conversions like: 1294 // (bitcast i64 %x to <2 x i32>) 1295 !I->getType()->isVectorTy()) { 1296 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1297 break; 1298 } 1299 break; 1300 } 1301 case Instruction::SExt: { 1302 // Compute the bits in the result that are not present in the input. 1303 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1304 1305 Known = Known.trunc(SrcBitWidth); 1306 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1307 // If the sign bit of the input is known set or clear, then we know the 1308 // top bits of the result. 1309 Known = Known.sext(BitWidth); 1310 break; 1311 } 1312 case Instruction::Shl: { 1313 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1314 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1315 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1316 APInt KZResult = KnownZero << ShiftAmt; 1317 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1318 // If this shift has "nsw" keyword, then the result is either a poison 1319 // value or has the same sign bit as the first operand. 1320 if (NSW && KnownZero.isSignBitSet()) 1321 KZResult.setSignBit(); 1322 return KZResult; 1323 }; 1324 1325 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1326 APInt KOResult = KnownOne << ShiftAmt; 1327 if (NSW && KnownOne.isSignBitSet()) 1328 KOResult.setSignBit(); 1329 return KOResult; 1330 }; 1331 1332 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1333 KZF, KOF); 1334 break; 1335 } 1336 case Instruction::LShr: { 1337 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1338 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1339 APInt KZResult = KnownZero.lshr(ShiftAmt); 1340 // High bits known zero. 1341 KZResult.setHighBits(ShiftAmt); 1342 return KZResult; 1343 }; 1344 1345 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1346 return KnownOne.lshr(ShiftAmt); 1347 }; 1348 1349 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1350 KZF, KOF); 1351 break; 1352 } 1353 case Instruction::AShr: { 1354 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1355 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1356 return KnownZero.ashr(ShiftAmt); 1357 }; 1358 1359 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1360 return KnownOne.ashr(ShiftAmt); 1361 }; 1362 1363 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1364 KZF, KOF); 1365 break; 1366 } 1367 case Instruction::Sub: { 1368 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1369 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1370 DemandedElts, Known, Known2, Depth, Q); 1371 break; 1372 } 1373 case Instruction::Add: { 1374 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1375 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1376 DemandedElts, Known, Known2, Depth, Q); 1377 break; 1378 } 1379 case Instruction::SRem: 1380 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1381 APInt RA = Rem->getValue().abs(); 1382 if (RA.isPowerOf2()) { 1383 APInt LowBits = RA - 1; 1384 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1385 1386 // The low bits of the first operand are unchanged by the srem. 1387 Known.Zero = Known2.Zero & LowBits; 1388 Known.One = Known2.One & LowBits; 1389 1390 // If the first operand is non-negative or has all low bits zero, then 1391 // the upper bits are all zero. 1392 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1393 Known.Zero |= ~LowBits; 1394 1395 // If the first operand is negative and not all low bits are zero, then 1396 // the upper bits are all one. 1397 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1398 Known.One |= ~LowBits; 1399 1400 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1401 break; 1402 } 1403 } 1404 1405 // The sign bit is the LHS's sign bit, except when the result of the 1406 // remainder is zero. 1407 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1408 // If it's known zero, our sign bit is also zero. 1409 if (Known2.isNonNegative()) 1410 Known.makeNonNegative(); 1411 1412 break; 1413 case Instruction::URem: { 1414 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1415 const APInt &RA = Rem->getValue(); 1416 if (RA.isPowerOf2()) { 1417 APInt LowBits = (RA - 1); 1418 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1419 Known.Zero |= ~LowBits; 1420 Known.One &= LowBits; 1421 break; 1422 } 1423 } 1424 1425 // Since the result is less than or equal to either operand, any leading 1426 // zero bits in either operand must also exist in the result. 1427 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1428 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1429 1430 unsigned Leaders = 1431 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1432 Known.resetAll(); 1433 Known.Zero.setHighBits(Leaders); 1434 break; 1435 } 1436 1437 case Instruction::Alloca: { 1438 const AllocaInst *AI = cast<AllocaInst>(I); 1439 unsigned Align = AI->getAlignment(); 1440 if (Align == 0) 1441 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1442 1443 if (Align > 0) 1444 Known.Zero.setLowBits(countTrailingZeros(Align)); 1445 break; 1446 } 1447 case Instruction::GetElementPtr: { 1448 // Analyze all of the subscripts of this getelementptr instruction 1449 // to determine if we can prove known low zero bits. 1450 KnownBits LocalKnown(BitWidth); 1451 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1452 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1453 1454 gep_type_iterator GTI = gep_type_begin(I); 1455 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1456 Value *Index = I->getOperand(i); 1457 if (StructType *STy = GTI.getStructTypeOrNull()) { 1458 // Handle struct member offset arithmetic. 1459 1460 // Handle case when index is vector zeroinitializer 1461 Constant *CIndex = cast<Constant>(Index); 1462 if (CIndex->isZeroValue()) 1463 continue; 1464 1465 if (CIndex->getType()->isVectorTy()) 1466 Index = CIndex->getSplatValue(); 1467 1468 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1469 const StructLayout *SL = Q.DL.getStructLayout(STy); 1470 uint64_t Offset = SL->getElementOffset(Idx); 1471 TrailZ = std::min<unsigned>(TrailZ, 1472 countTrailingZeros(Offset)); 1473 } else { 1474 // Handle array index arithmetic. 1475 Type *IndexedTy = GTI.getIndexedType(); 1476 if (!IndexedTy->isSized()) { 1477 TrailZ = 0; 1478 break; 1479 } 1480 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1481 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1482 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1483 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1484 TrailZ = std::min(TrailZ, 1485 unsigned(countTrailingZeros(TypeSize) + 1486 LocalKnown.countMinTrailingZeros())); 1487 } 1488 } 1489 1490 Known.Zero.setLowBits(TrailZ); 1491 break; 1492 } 1493 case Instruction::PHI: { 1494 const PHINode *P = cast<PHINode>(I); 1495 // Handle the case of a simple two-predecessor recurrence PHI. 1496 // There's a lot more that could theoretically be done here, but 1497 // this is sufficient to catch some interesting cases. 1498 if (P->getNumIncomingValues() == 2) { 1499 for (unsigned i = 0; i != 2; ++i) { 1500 Value *L = P->getIncomingValue(i); 1501 Value *R = P->getIncomingValue(!i); 1502 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1503 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1504 Operator *LU = dyn_cast<Operator>(L); 1505 if (!LU) 1506 continue; 1507 unsigned Opcode = LU->getOpcode(); 1508 // Check for operations that have the property that if 1509 // both their operands have low zero bits, the result 1510 // will have low zero bits. 1511 if (Opcode == Instruction::Add || 1512 Opcode == Instruction::Sub || 1513 Opcode == Instruction::And || 1514 Opcode == Instruction::Or || 1515 Opcode == Instruction::Mul) { 1516 Value *LL = LU->getOperand(0); 1517 Value *LR = LU->getOperand(1); 1518 // Find a recurrence. 1519 if (LL == I) 1520 L = LR; 1521 else if (LR == I) 1522 L = LL; 1523 else 1524 continue; // Check for recurrence with L and R flipped. 1525 1526 // Change the context instruction to the "edge" that flows into the 1527 // phi. This is important because that is where the value is actually 1528 // "evaluated" even though it is used later somewhere else. (see also 1529 // D69571). 1530 Query RecQ = Q; 1531 1532 // Ok, we have a PHI of the form L op= R. Check for low 1533 // zero bits. 1534 RecQ.CxtI = RInst; 1535 computeKnownBits(R, Known2, Depth + 1, RecQ); 1536 1537 // We need to take the minimum number of known bits 1538 KnownBits Known3(Known); 1539 RecQ.CxtI = LInst; 1540 computeKnownBits(L, Known3, Depth + 1, RecQ); 1541 1542 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1543 Known3.countMinTrailingZeros())); 1544 1545 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1546 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1547 // If initial value of recurrence is nonnegative, and we are adding 1548 // a nonnegative number with nsw, the result can only be nonnegative 1549 // or poison value regardless of the number of times we execute the 1550 // add in phi recurrence. If initial value is negative and we are 1551 // adding a negative number with nsw, the result can only be 1552 // negative or poison value. Similar arguments apply to sub and mul. 1553 // 1554 // (add non-negative, non-negative) --> non-negative 1555 // (add negative, negative) --> negative 1556 if (Opcode == Instruction::Add) { 1557 if (Known2.isNonNegative() && Known3.isNonNegative()) 1558 Known.makeNonNegative(); 1559 else if (Known2.isNegative() && Known3.isNegative()) 1560 Known.makeNegative(); 1561 } 1562 1563 // (sub nsw non-negative, negative) --> non-negative 1564 // (sub nsw negative, non-negative) --> negative 1565 else if (Opcode == Instruction::Sub && LL == I) { 1566 if (Known2.isNonNegative() && Known3.isNegative()) 1567 Known.makeNonNegative(); 1568 else if (Known2.isNegative() && Known3.isNonNegative()) 1569 Known.makeNegative(); 1570 } 1571 1572 // (mul nsw non-negative, non-negative) --> non-negative 1573 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1574 Known3.isNonNegative()) 1575 Known.makeNonNegative(); 1576 } 1577 1578 break; 1579 } 1580 } 1581 } 1582 1583 // Unreachable blocks may have zero-operand PHI nodes. 1584 if (P->getNumIncomingValues() == 0) 1585 break; 1586 1587 // Otherwise take the unions of the known bit sets of the operands, 1588 // taking conservative care to avoid excessive recursion. 1589 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1590 // Skip if every incoming value references to ourself. 1591 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1592 break; 1593 1594 Known.Zero.setAllBits(); 1595 Known.One.setAllBits(); 1596 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1597 Value *IncValue = P->getIncomingValue(u); 1598 // Skip direct self references. 1599 if (IncValue == P) continue; 1600 1601 // Change the context instruction to the "edge" that flows into the 1602 // phi. This is important because that is where the value is actually 1603 // "evaluated" even though it is used later somewhere else. (see also 1604 // D69571). 1605 Query RecQ = Q; 1606 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1607 1608 Known2 = KnownBits(BitWidth); 1609 // Recurse, but cap the recursion to one level, because we don't 1610 // want to waste time spinning around in loops. 1611 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1612 Known.Zero &= Known2.Zero; 1613 Known.One &= Known2.One; 1614 // If all bits have been ruled out, there's no need to check 1615 // more operands. 1616 if (!Known.Zero && !Known.One) 1617 break; 1618 } 1619 } 1620 break; 1621 } 1622 case Instruction::Call: 1623 case Instruction::Invoke: 1624 // If range metadata is attached to this call, set known bits from that, 1625 // and then intersect with known bits based on other properties of the 1626 // function. 1627 if (MDNode *MD = 1628 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1629 computeKnownBitsFromRangeMetadata(*MD, Known); 1630 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1631 computeKnownBits(RV, Known2, Depth + 1, Q); 1632 Known.Zero |= Known2.Zero; 1633 Known.One |= Known2.One; 1634 } 1635 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1636 switch (II->getIntrinsicID()) { 1637 default: break; 1638 case Intrinsic::bitreverse: 1639 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1640 Known.Zero |= Known2.Zero.reverseBits(); 1641 Known.One |= Known2.One.reverseBits(); 1642 break; 1643 case Intrinsic::bswap: 1644 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1645 Known.Zero |= Known2.Zero.byteSwap(); 1646 Known.One |= Known2.One.byteSwap(); 1647 break; 1648 case Intrinsic::ctlz: { 1649 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1650 // If we have a known 1, its position is our upper bound. 1651 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1652 // If this call is undefined for 0, the result will be less than 2^n. 1653 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1654 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1655 unsigned LowBits = Log2_32(PossibleLZ)+1; 1656 Known.Zero.setBitsFrom(LowBits); 1657 break; 1658 } 1659 case Intrinsic::cttz: { 1660 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1661 // If we have a known 1, its position is our upper bound. 1662 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1663 // If this call is undefined for 0, the result will be less than 2^n. 1664 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1665 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1666 unsigned LowBits = Log2_32(PossibleTZ)+1; 1667 Known.Zero.setBitsFrom(LowBits); 1668 break; 1669 } 1670 case Intrinsic::ctpop: { 1671 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1672 // We can bound the space the count needs. Also, bits known to be zero 1673 // can't contribute to the population. 1674 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1675 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1676 Known.Zero.setBitsFrom(LowBits); 1677 // TODO: we could bound KnownOne using the lower bound on the number 1678 // of bits which might be set provided by popcnt KnownOne2. 1679 break; 1680 } 1681 case Intrinsic::fshr: 1682 case Intrinsic::fshl: { 1683 const APInt *SA; 1684 if (!match(I->getOperand(2), m_APInt(SA))) 1685 break; 1686 1687 // Normalize to funnel shift left. 1688 uint64_t ShiftAmt = SA->urem(BitWidth); 1689 if (II->getIntrinsicID() == Intrinsic::fshr) 1690 ShiftAmt = BitWidth - ShiftAmt; 1691 1692 KnownBits Known3(Known); 1693 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1694 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1695 1696 Known.Zero = 1697 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1698 Known.One = 1699 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1700 break; 1701 } 1702 case Intrinsic::uadd_sat: 1703 case Intrinsic::usub_sat: { 1704 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1705 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1706 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1707 1708 // Add: Leading ones of either operand are preserved. 1709 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1710 // as leading zeros in the result. 1711 unsigned LeadingKnown; 1712 if (IsAdd) 1713 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1714 Known2.countMinLeadingOnes()); 1715 else 1716 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1717 Known2.countMinLeadingOnes()); 1718 1719 Known = KnownBits::computeForAddSub( 1720 IsAdd, /* NSW */ false, Known, Known2); 1721 1722 // We select between the operation result and all-ones/zero 1723 // respectively, so we can preserve known ones/zeros. 1724 if (IsAdd) { 1725 Known.One.setHighBits(LeadingKnown); 1726 Known.Zero.clearAllBits(); 1727 } else { 1728 Known.Zero.setHighBits(LeadingKnown); 1729 Known.One.clearAllBits(); 1730 } 1731 break; 1732 } 1733 case Intrinsic::x86_sse42_crc32_64_64: 1734 Known.Zero.setBitsFrom(32); 1735 break; 1736 } 1737 } 1738 break; 1739 case Instruction::ShuffleVector: { 1740 auto *Shuf = cast<ShuffleVectorInst>(I); 1741 // For undef elements, we don't know anything about the common state of 1742 // the shuffle result. 1743 APInt DemandedLHS, DemandedRHS; 1744 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1745 Known.resetAll(); 1746 return; 1747 } 1748 Known.One.setAllBits(); 1749 Known.Zero.setAllBits(); 1750 if (!!DemandedLHS) { 1751 const Value *LHS = Shuf->getOperand(0); 1752 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1753 // If we don't know any bits, early out. 1754 if (Known.isUnknown()) 1755 break; 1756 } 1757 if (!!DemandedRHS) { 1758 const Value *RHS = Shuf->getOperand(1); 1759 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1760 Known.One &= Known2.One; 1761 Known.Zero &= Known2.Zero; 1762 } 1763 break; 1764 } 1765 case Instruction::InsertElement: { 1766 auto *IEI = cast<InsertElementInst>(I); 1767 Value *Vec = IEI->getOperand(0); 1768 Value *Elt = IEI->getOperand(1); 1769 auto *CIdx = dyn_cast<ConstantInt>(IEI->getOperand(2)); 1770 // Early out if the index is non-constant or out-of-range. 1771 unsigned NumElts = DemandedElts.getBitWidth(); 1772 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1773 Known.resetAll(); 1774 return; 1775 } 1776 Known.One.setAllBits(); 1777 Known.Zero.setAllBits(); 1778 unsigned EltIdx = CIdx->getZExtValue(); 1779 // Do we demand the inserted element? 1780 if (DemandedElts[EltIdx]) { 1781 computeKnownBits(Elt, Known, Depth + 1, Q); 1782 // If we don't know any bits, early out. 1783 if (Known.isUnknown()) 1784 break; 1785 } 1786 // We don't need the base vector element that has been inserted. 1787 APInt DemandedVecElts = DemandedElts; 1788 DemandedVecElts.clearBit(EltIdx); 1789 if (!!DemandedVecElts) { 1790 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1791 Known.One &= Known2.One; 1792 Known.Zero &= Known2.Zero; 1793 } 1794 break; 1795 } 1796 case Instruction::ExtractElement: { 1797 // Look through extract element. If the index is non-constant or 1798 // out-of-range demand all elements, otherwise just the extracted element. 1799 auto* EEI = cast<ExtractElementInst>(I); 1800 const Value* Vec = EEI->getVectorOperand(); 1801 const Value* Idx = EEI->getIndexOperand(); 1802 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1803 unsigned NumElts = Vec->getType()->getVectorNumElements(); 1804 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1805 if (CIdx && CIdx->getValue().ult(NumElts)) 1806 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1807 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1808 break; 1809 } 1810 case Instruction::ExtractValue: 1811 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1812 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1813 if (EVI->getNumIndices() != 1) break; 1814 if (EVI->getIndices()[0] == 0) { 1815 switch (II->getIntrinsicID()) { 1816 default: break; 1817 case Intrinsic::uadd_with_overflow: 1818 case Intrinsic::sadd_with_overflow: 1819 computeKnownBitsAddSub(true, II->getArgOperand(0), 1820 II->getArgOperand(1), false, DemandedElts, 1821 Known, Known2, Depth, Q); 1822 break; 1823 case Intrinsic::usub_with_overflow: 1824 case Intrinsic::ssub_with_overflow: 1825 computeKnownBitsAddSub(false, II->getArgOperand(0), 1826 II->getArgOperand(1), false, DemandedElts, 1827 Known, Known2, Depth, Q); 1828 break; 1829 case Intrinsic::umul_with_overflow: 1830 case Intrinsic::smul_with_overflow: 1831 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1832 DemandedElts, Known, Known2, Depth, Q); 1833 break; 1834 } 1835 } 1836 } 1837 break; 1838 } 1839 } 1840 1841 /// Determine which bits of V are known to be either zero or one and return 1842 /// them. 1843 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1844 unsigned Depth, const Query &Q) { 1845 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1846 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1847 return Known; 1848 } 1849 1850 /// Determine which bits of V are known to be either zero or one and return 1851 /// them. 1852 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1853 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1854 computeKnownBits(V, Known, Depth, Q); 1855 return Known; 1856 } 1857 1858 /// Determine which bits of V are known to be either zero or one and return 1859 /// them in the Known bit set. 1860 /// 1861 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1862 /// we cannot optimize based on the assumption that it is zero without changing 1863 /// it to be an explicit zero. If we don't change it to zero, other code could 1864 /// optimized based on the contradictory assumption that it is non-zero. 1865 /// Because instcombine aggressively folds operations with undef args anyway, 1866 /// this won't lose us code quality. 1867 /// 1868 /// This function is defined on values with integer type, values with pointer 1869 /// type, and vectors of integers. In the case 1870 /// where V is a vector, known zero, and known one values are the 1871 /// same width as the vector element, and the bit is set only if it is true 1872 /// for all of the demanded elements in the vector specified by DemandedElts. 1873 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1874 KnownBits &Known, unsigned Depth, const Query &Q) { 1875 assert(V && "No Value?"); 1876 assert(Depth <= MaxDepth && "Limit Search Depth"); 1877 unsigned BitWidth = Known.getBitWidth(); 1878 1879 Type *Ty = V->getType(); 1880 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1881 "Not integer or pointer type!"); 1882 assert(((Ty->isVectorTy() && 1883 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 1884 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1885 "Unexpected vector size"); 1886 1887 Type *ScalarTy = Ty->getScalarType(); 1888 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1889 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1890 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1891 (void)BitWidth; 1892 (void)ExpectedWidth; 1893 1894 if (!DemandedElts) { 1895 // No demanded elts, better to assume we don't know anything. 1896 Known.resetAll(); 1897 return; 1898 } 1899 1900 const APInt *C; 1901 if (match(V, m_APInt(C))) { 1902 // We know all of the bits for a scalar constant or a splat vector constant! 1903 Known.One = *C; 1904 Known.Zero = ~Known.One; 1905 return; 1906 } 1907 // Null and aggregate-zero are all-zeros. 1908 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1909 Known.setAllZero(); 1910 return; 1911 } 1912 // Handle a constant vector by taking the intersection of the known bits of 1913 // each element. 1914 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1915 assert((!Ty->isVectorTy() || 1916 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1917 "Unexpected vector size"); 1918 // We know that CDS must be a vector of integers. Take the intersection of 1919 // each element. 1920 Known.Zero.setAllBits(); Known.One.setAllBits(); 1921 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1922 if (Ty->isVectorTy() && !DemandedElts[i]) 1923 continue; 1924 APInt Elt = CDS->getElementAsAPInt(i); 1925 Known.Zero &= ~Elt; 1926 Known.One &= Elt; 1927 } 1928 return; 1929 } 1930 1931 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1932 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1933 "Unexpected vector size"); 1934 // We know that CV must be a vector of integers. Take the intersection of 1935 // each element. 1936 Known.Zero.setAllBits(); Known.One.setAllBits(); 1937 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1938 if (!DemandedElts[i]) 1939 continue; 1940 Constant *Element = CV->getAggregateElement(i); 1941 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1942 if (!ElementCI) { 1943 Known.resetAll(); 1944 return; 1945 } 1946 const APInt &Elt = ElementCI->getValue(); 1947 Known.Zero &= ~Elt; 1948 Known.One &= Elt; 1949 } 1950 return; 1951 } 1952 1953 // Start out not knowing anything. 1954 Known.resetAll(); 1955 1956 // We can't imply anything about undefs. 1957 if (isa<UndefValue>(V)) 1958 return; 1959 1960 // There's no point in looking through other users of ConstantData for 1961 // assumptions. Confirm that we've handled them all. 1962 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1963 1964 // Limit search depth. 1965 // All recursive calls that increase depth must come after this. 1966 if (Depth == MaxDepth) 1967 return; 1968 1969 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1970 // the bits of its aliasee. 1971 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1972 if (!GA->isInterposable()) 1973 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1974 return; 1975 } 1976 1977 if (const Operator *I = dyn_cast<Operator>(V)) 1978 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1979 1980 // Aligned pointers have trailing zeros - refine Known.Zero set 1981 if (Ty->isPointerTy()) { 1982 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1983 if (Align) 1984 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1985 } 1986 1987 // computeKnownBitsFromAssume strictly refines Known. 1988 // Therefore, we run them after computeKnownBitsFromOperator. 1989 1990 // Check whether a nearby assume intrinsic can determine some known bits. 1991 computeKnownBitsFromAssume(V, Known, Depth, Q); 1992 1993 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1994 } 1995 1996 /// Return true if the given value is known to have exactly one 1997 /// bit set when defined. For vectors return true if every element is known to 1998 /// be a power of two when defined. Supports values with integer or pointer 1999 /// types and vectors of integers. 2000 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2001 const Query &Q) { 2002 assert(Depth <= MaxDepth && "Limit Search Depth"); 2003 2004 // Attempt to match against constants. 2005 if (OrZero && match(V, m_Power2OrZero())) 2006 return true; 2007 if (match(V, m_Power2())) 2008 return true; 2009 2010 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2011 // it is shifted off the end then the result is undefined. 2012 if (match(V, m_Shl(m_One(), m_Value()))) 2013 return true; 2014 2015 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2016 // the bottom. If it is shifted off the bottom then the result is undefined. 2017 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2018 return true; 2019 2020 // The remaining tests are all recursive, so bail out if we hit the limit. 2021 if (Depth++ == MaxDepth) 2022 return false; 2023 2024 Value *X = nullptr, *Y = nullptr; 2025 // A shift left or a logical shift right of a power of two is a power of two 2026 // or zero. 2027 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2028 match(V, m_LShr(m_Value(X), m_Value())))) 2029 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2030 2031 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2032 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2033 2034 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2035 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2036 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2037 2038 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2039 // A power of two and'd with anything is a power of two or zero. 2040 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2041 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2042 return true; 2043 // X & (-X) is always a power of two or zero. 2044 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2045 return true; 2046 return false; 2047 } 2048 2049 // Adding a power-of-two or zero to the same power-of-two or zero yields 2050 // either the original power-of-two, a larger power-of-two or zero. 2051 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2052 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2053 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2054 Q.IIQ.hasNoSignedWrap(VOBO)) { 2055 if (match(X, m_And(m_Specific(Y), m_Value())) || 2056 match(X, m_And(m_Value(), m_Specific(Y)))) 2057 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2058 return true; 2059 if (match(Y, m_And(m_Specific(X), m_Value())) || 2060 match(Y, m_And(m_Value(), m_Specific(X)))) 2061 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2062 return true; 2063 2064 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2065 KnownBits LHSBits(BitWidth); 2066 computeKnownBits(X, LHSBits, Depth, Q); 2067 2068 KnownBits RHSBits(BitWidth); 2069 computeKnownBits(Y, RHSBits, Depth, Q); 2070 // If i8 V is a power of two or zero: 2071 // ZeroBits: 1 1 1 0 1 1 1 1 2072 // ~ZeroBits: 0 0 0 1 0 0 0 0 2073 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2074 // If OrZero isn't set, we cannot give back a zero result. 2075 // Make sure either the LHS or RHS has a bit set. 2076 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2077 return true; 2078 } 2079 } 2080 2081 // An exact divide or right shift can only shift off zero bits, so the result 2082 // is a power of two only if the first operand is a power of two and not 2083 // copying a sign bit (sdiv int_min, 2). 2084 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2085 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2086 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2087 Depth, Q); 2088 } 2089 2090 return false; 2091 } 2092 2093 /// Test whether a GEP's result is known to be non-null. 2094 /// 2095 /// Uses properties inherent in a GEP to try to determine whether it is known 2096 /// to be non-null. 2097 /// 2098 /// Currently this routine does not support vector GEPs. 2099 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2100 const Query &Q) { 2101 const Function *F = nullptr; 2102 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2103 F = I->getFunction(); 2104 2105 if (!GEP->isInBounds() || 2106 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2107 return false; 2108 2109 // FIXME: Support vector-GEPs. 2110 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2111 2112 // If the base pointer is non-null, we cannot walk to a null address with an 2113 // inbounds GEP in address space zero. 2114 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2115 return true; 2116 2117 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2118 // If so, then the GEP cannot produce a null pointer, as doing so would 2119 // inherently violate the inbounds contract within address space zero. 2120 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2121 GTI != GTE; ++GTI) { 2122 // Struct types are easy -- they must always be indexed by a constant. 2123 if (StructType *STy = GTI.getStructTypeOrNull()) { 2124 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2125 unsigned ElementIdx = OpC->getZExtValue(); 2126 const StructLayout *SL = Q.DL.getStructLayout(STy); 2127 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2128 if (ElementOffset > 0) 2129 return true; 2130 continue; 2131 } 2132 2133 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2134 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2135 continue; 2136 2137 // Fast path the constant operand case both for efficiency and so we don't 2138 // increment Depth when just zipping down an all-constant GEP. 2139 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2140 if (!OpC->isZero()) 2141 return true; 2142 continue; 2143 } 2144 2145 // We post-increment Depth here because while isKnownNonZero increments it 2146 // as well, when we pop back up that increment won't persist. We don't want 2147 // to recurse 10k times just because we have 10k GEP operands. We don't 2148 // bail completely out because we want to handle constant GEPs regardless 2149 // of depth. 2150 if (Depth++ >= MaxDepth) 2151 continue; 2152 2153 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2154 return true; 2155 } 2156 2157 return false; 2158 } 2159 2160 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2161 const Instruction *CtxI, 2162 const DominatorTree *DT) { 2163 if (isa<Constant>(V)) 2164 return false; 2165 2166 if (!CtxI || !DT) 2167 return false; 2168 2169 unsigned NumUsesExplored = 0; 2170 for (auto *U : V->users()) { 2171 // Avoid massive lists 2172 if (NumUsesExplored >= DomConditionsMaxUses) 2173 break; 2174 NumUsesExplored++; 2175 2176 // If the value is used as an argument to a call or invoke, then argument 2177 // attributes may provide an answer about null-ness. 2178 if (auto CS = ImmutableCallSite(U)) 2179 if (auto *CalledFunc = CS.getCalledFunction()) 2180 for (const Argument &Arg : CalledFunc->args()) 2181 if (CS.getArgOperand(Arg.getArgNo()) == V && 2182 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2183 return true; 2184 2185 // If the value is used as a load/store, then the pointer must be non null. 2186 if (V == getLoadStorePointerOperand(U)) { 2187 const Instruction *I = cast<Instruction>(U); 2188 if (!NullPointerIsDefined(I->getFunction(), 2189 V->getType()->getPointerAddressSpace()) && 2190 DT->dominates(I, CtxI)) 2191 return true; 2192 } 2193 2194 // Consider only compare instructions uniquely controlling a branch 2195 CmpInst::Predicate Pred; 2196 if (!match(const_cast<User *>(U), 2197 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2198 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2199 continue; 2200 2201 SmallVector<const User *, 4> WorkList; 2202 SmallPtrSet<const User *, 4> Visited; 2203 for (auto *CmpU : U->users()) { 2204 assert(WorkList.empty() && "Should be!"); 2205 if (Visited.insert(CmpU).second) 2206 WorkList.push_back(CmpU); 2207 2208 while (!WorkList.empty()) { 2209 auto *Curr = WorkList.pop_back_val(); 2210 2211 // If a user is an AND, add all its users to the work list. We only 2212 // propagate "pred != null" condition through AND because it is only 2213 // correct to assume that all conditions of AND are met in true branch. 2214 // TODO: Support similar logic of OR and EQ predicate? 2215 if (Pred == ICmpInst::ICMP_NE) 2216 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2217 if (BO->getOpcode() == Instruction::And) { 2218 for (auto *BOU : BO->users()) 2219 if (Visited.insert(BOU).second) 2220 WorkList.push_back(BOU); 2221 continue; 2222 } 2223 2224 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2225 assert(BI->isConditional() && "uses a comparison!"); 2226 2227 BasicBlock *NonNullSuccessor = 2228 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2229 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2230 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2231 return true; 2232 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2233 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2234 return true; 2235 } 2236 } 2237 } 2238 } 2239 2240 return false; 2241 } 2242 2243 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2244 /// ensure that the value it's attached to is never Value? 'RangeType' is 2245 /// is the type of the value described by the range. 2246 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2247 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2248 assert(NumRanges >= 1); 2249 for (unsigned i = 0; i < NumRanges; ++i) { 2250 ConstantInt *Lower = 2251 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2252 ConstantInt *Upper = 2253 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2254 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2255 if (Range.contains(Value)) 2256 return false; 2257 } 2258 return true; 2259 } 2260 2261 /// Return true if the given value is known to be non-zero when defined. For 2262 /// vectors, return true if every demanded element is known to be non-zero when 2263 /// defined. For pointers, if the context instruction and dominator tree are 2264 /// specified, perform context-sensitive analysis and return true if the 2265 /// pointer couldn't possibly be null at the specified instruction. 2266 /// Supports values with integer or pointer type and vectors of integers. 2267 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2268 const Query &Q) { 2269 if (auto *C = dyn_cast<Constant>(V)) { 2270 if (C->isNullValue()) 2271 return false; 2272 if (isa<ConstantInt>(C)) 2273 // Must be non-zero due to null test above. 2274 return true; 2275 2276 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2277 // See the comment for IntToPtr/PtrToInt instructions below. 2278 if (CE->getOpcode() == Instruction::IntToPtr || 2279 CE->getOpcode() == Instruction::PtrToInt) 2280 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2281 Q.DL.getTypeSizeInBits(CE->getType())) 2282 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2283 } 2284 2285 // For constant vectors, check that all elements are undefined or known 2286 // non-zero to determine that the whole vector is known non-zero. 2287 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2288 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2289 if (!DemandedElts[i]) 2290 continue; 2291 Constant *Elt = C->getAggregateElement(i); 2292 if (!Elt || Elt->isNullValue()) 2293 return false; 2294 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2295 return false; 2296 } 2297 return true; 2298 } 2299 2300 // A global variable in address space 0 is non null unless extern weak 2301 // or an absolute symbol reference. Other address spaces may have null as a 2302 // valid address for a global, so we can't assume anything. 2303 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2304 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2305 GV->getType()->getAddressSpace() == 0) 2306 return true; 2307 } else 2308 return false; 2309 } 2310 2311 if (auto *I = dyn_cast<Instruction>(V)) { 2312 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2313 // If the possible ranges don't contain zero, then the value is 2314 // definitely non-zero. 2315 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2316 const APInt ZeroValue(Ty->getBitWidth(), 0); 2317 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2318 return true; 2319 } 2320 } 2321 } 2322 2323 if (isKnownNonZeroFromAssume(V, Q)) 2324 return true; 2325 2326 // Some of the tests below are recursive, so bail out if we hit the limit. 2327 if (Depth++ >= MaxDepth) 2328 return false; 2329 2330 // Check for pointer simplifications. 2331 if (V->getType()->isPointerTy()) { 2332 // Alloca never returns null, malloc might. 2333 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2334 return true; 2335 2336 // A byval, inalloca, or nonnull argument is never null. 2337 if (const Argument *A = dyn_cast<Argument>(V)) 2338 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2339 return true; 2340 2341 // A Load tagged with nonnull metadata is never null. 2342 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2343 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2344 return true; 2345 2346 if (const auto *Call = dyn_cast<CallBase>(V)) { 2347 if (Call->isReturnNonNull()) 2348 return true; 2349 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2350 return isKnownNonZero(RP, Depth, Q); 2351 } 2352 } 2353 2354 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2355 return true; 2356 2357 // Check for recursive pointer simplifications. 2358 if (V->getType()->isPointerTy()) { 2359 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2360 // do not alter the value, or at least not the nullness property of the 2361 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2362 // 2363 // Note that we have to take special care to avoid looking through 2364 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2365 // as casts that can alter the value, e.g., AddrSpaceCasts. 2366 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2367 if (isGEPKnownNonNull(GEP, Depth, Q)) 2368 return true; 2369 2370 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2371 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2372 2373 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2374 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2375 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2376 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2377 } 2378 2379 // Similar to int2ptr above, we can look through ptr2int here if the cast 2380 // is a no-op or an extend and not a truncate. 2381 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2382 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2383 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2384 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2385 2386 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2387 2388 // X | Y != 0 if X != 0 or Y != 0. 2389 Value *X = nullptr, *Y = nullptr; 2390 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2391 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2392 isKnownNonZero(Y, DemandedElts, Depth, Q); 2393 2394 // ext X != 0 if X != 0. 2395 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2396 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2397 2398 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2399 // if the lowest bit is shifted off the end. 2400 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2401 // shl nuw can't remove any non-zero bits. 2402 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2403 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2404 return isKnownNonZero(X, Depth, Q); 2405 2406 KnownBits Known(BitWidth); 2407 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2408 if (Known.One[0]) 2409 return true; 2410 } 2411 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2412 // defined if the sign bit is shifted off the end. 2413 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2414 // shr exact can only shift out zero bits. 2415 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2416 if (BO->isExact()) 2417 return isKnownNonZero(X, Depth, Q); 2418 2419 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2420 if (Known.isNegative()) 2421 return true; 2422 2423 // If the shifter operand is a constant, and all of the bits shifted 2424 // out are known to be zero, and X is known non-zero then at least one 2425 // non-zero bit must remain. 2426 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2427 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2428 // Is there a known one in the portion not shifted out? 2429 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2430 return true; 2431 // Are all the bits to be shifted out known zero? 2432 if (Known.countMinTrailingZeros() >= ShiftVal) 2433 return isKnownNonZero(X, DemandedElts, Depth, Q); 2434 } 2435 } 2436 // div exact can only produce a zero if the dividend is zero. 2437 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2438 return isKnownNonZero(X, DemandedElts, Depth, Q); 2439 } 2440 // X + Y. 2441 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2442 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2443 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2444 2445 // If X and Y are both non-negative (as signed values) then their sum is not 2446 // zero unless both X and Y are zero. 2447 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2448 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2449 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2450 return true; 2451 2452 // If X and Y are both negative (as signed values) then their sum is not 2453 // zero unless both X and Y equal INT_MIN. 2454 if (XKnown.isNegative() && YKnown.isNegative()) { 2455 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2456 // The sign bit of X is set. If some other bit is set then X is not equal 2457 // to INT_MIN. 2458 if (XKnown.One.intersects(Mask)) 2459 return true; 2460 // The sign bit of Y is set. If some other bit is set then Y is not equal 2461 // to INT_MIN. 2462 if (YKnown.One.intersects(Mask)) 2463 return true; 2464 } 2465 2466 // The sum of a non-negative number and a power of two is not zero. 2467 if (XKnown.isNonNegative() && 2468 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2469 return true; 2470 if (YKnown.isNonNegative() && 2471 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2472 return true; 2473 } 2474 // X * Y. 2475 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2476 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2477 // If X and Y are non-zero then so is X * Y as long as the multiplication 2478 // does not overflow. 2479 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2480 isKnownNonZero(X, DemandedElts, Depth, Q) && 2481 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2482 return true; 2483 } 2484 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2485 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2486 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2487 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2488 return true; 2489 } 2490 // PHI 2491 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2492 // Try and detect a recurrence that monotonically increases from a 2493 // starting value, as these are common as induction variables. 2494 if (PN->getNumIncomingValues() == 2) { 2495 Value *Start = PN->getIncomingValue(0); 2496 Value *Induction = PN->getIncomingValue(1); 2497 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2498 std::swap(Start, Induction); 2499 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2500 if (!C->isZero() && !C->isNegative()) { 2501 ConstantInt *X; 2502 if (Q.IIQ.UseInstrInfo && 2503 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2504 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2505 !X->isNegative()) 2506 return true; 2507 } 2508 } 2509 } 2510 // Check if all incoming values are non-zero constant. 2511 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2512 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2513 }); 2514 if (AllNonZeroConstants) 2515 return true; 2516 } 2517 // ExtractElement 2518 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2519 const Value *Vec = EEI->getVectorOperand(); 2520 const Value *Idx = EEI->getIndexOperand(); 2521 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2522 unsigned NumElts = Vec->getType()->getVectorNumElements(); 2523 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2524 if (CIdx && CIdx->getValue().ult(NumElts)) 2525 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2526 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2527 } 2528 2529 KnownBits Known(BitWidth); 2530 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2531 return Known.One != 0; 2532 } 2533 2534 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2535 Type *Ty = V->getType(); 2536 APInt DemandedElts = Ty->isVectorTy() 2537 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 2538 : APInt(1, 1); 2539 return isKnownNonZero(V, DemandedElts, Depth, Q); 2540 } 2541 2542 /// Return true if V2 == V1 + X, where X is known non-zero. 2543 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2544 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2545 if (!BO || BO->getOpcode() != Instruction::Add) 2546 return false; 2547 Value *Op = nullptr; 2548 if (V2 == BO->getOperand(0)) 2549 Op = BO->getOperand(1); 2550 else if (V2 == BO->getOperand(1)) 2551 Op = BO->getOperand(0); 2552 else 2553 return false; 2554 return isKnownNonZero(Op, 0, Q); 2555 } 2556 2557 /// Return true if it is known that V1 != V2. 2558 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2559 if (V1 == V2) 2560 return false; 2561 if (V1->getType() != V2->getType()) 2562 // We can't look through casts yet. 2563 return false; 2564 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2565 return true; 2566 2567 if (V1->getType()->isIntOrIntVectorTy()) { 2568 // Are any known bits in V1 contradictory to known bits in V2? If V1 2569 // has a known zero where V2 has a known one, they must not be equal. 2570 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2571 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2572 2573 if (Known1.Zero.intersects(Known2.One) || 2574 Known2.Zero.intersects(Known1.One)) 2575 return true; 2576 } 2577 return false; 2578 } 2579 2580 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2581 /// simplify operations downstream. Mask is known to be zero for bits that V 2582 /// cannot have. 2583 /// 2584 /// This function is defined on values with integer type, values with pointer 2585 /// type, and vectors of integers. In the case 2586 /// where V is a vector, the mask, known zero, and known one values are the 2587 /// same width as the vector element, and the bit is set only if it is true 2588 /// for all of the elements in the vector. 2589 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2590 const Query &Q) { 2591 KnownBits Known(Mask.getBitWidth()); 2592 computeKnownBits(V, Known, Depth, Q); 2593 return Mask.isSubsetOf(Known.Zero); 2594 } 2595 2596 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2597 // Returns the input and lower/upper bounds. 2598 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2599 const APInt *&CLow, const APInt *&CHigh) { 2600 assert(isa<Operator>(Select) && 2601 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2602 "Input should be a Select!"); 2603 2604 const Value *LHS = nullptr, *RHS = nullptr; 2605 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2606 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2607 return false; 2608 2609 if (!match(RHS, m_APInt(CLow))) 2610 return false; 2611 2612 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2613 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2614 if (getInverseMinMaxFlavor(SPF) != SPF2) 2615 return false; 2616 2617 if (!match(RHS2, m_APInt(CHigh))) 2618 return false; 2619 2620 if (SPF == SPF_SMIN) 2621 std::swap(CLow, CHigh); 2622 2623 In = LHS2; 2624 return CLow->sle(*CHigh); 2625 } 2626 2627 /// For vector constants, loop over the elements and find the constant with the 2628 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2629 /// or if any element was not analyzed; otherwise, return the count for the 2630 /// element with the minimum number of sign bits. 2631 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2632 const APInt &DemandedElts, 2633 unsigned TyBits) { 2634 const auto *CV = dyn_cast<Constant>(V); 2635 if (!CV || !CV->getType()->isVectorTy()) 2636 return 0; 2637 2638 unsigned MinSignBits = TyBits; 2639 unsigned NumElts = CV->getType()->getVectorNumElements(); 2640 for (unsigned i = 0; i != NumElts; ++i) { 2641 if (!DemandedElts[i]) 2642 continue; 2643 // If we find a non-ConstantInt, bail out. 2644 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2645 if (!Elt) 2646 return 0; 2647 2648 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2649 } 2650 2651 return MinSignBits; 2652 } 2653 2654 static unsigned ComputeNumSignBitsImpl(const Value *V, 2655 const APInt &DemandedElts, 2656 unsigned Depth, const Query &Q); 2657 2658 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2659 unsigned Depth, const Query &Q) { 2660 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2661 assert(Result > 0 && "At least one sign bit needs to be present!"); 2662 return Result; 2663 } 2664 2665 /// Return the number of times the sign bit of the register is replicated into 2666 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2667 /// (itself), but other cases can give us information. For example, immediately 2668 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2669 /// other, so we return 3. For vectors, return the number of sign bits for the 2670 /// vector element with the minimum number of known sign bits of the demanded 2671 /// elements in the vector specified by DemandedElts. 2672 static unsigned ComputeNumSignBitsImpl(const Value *V, 2673 const APInt &DemandedElts, 2674 unsigned Depth, const Query &Q) { 2675 assert(Depth <= MaxDepth && "Limit Search Depth"); 2676 2677 // We return the minimum number of sign bits that are guaranteed to be present 2678 // in V, so for undef we have to conservatively return 1. We don't have the 2679 // same behavior for poison though -- that's a FIXME today. 2680 2681 Type *Ty = V->getType(); 2682 assert(((Ty->isVectorTy() && 2683 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 2684 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2685 "Unexpected vector size"); 2686 2687 Type *ScalarTy = Ty->getScalarType(); 2688 unsigned TyBits = ScalarTy->isPointerTy() ? 2689 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2690 Q.DL.getTypeSizeInBits(ScalarTy); 2691 2692 unsigned Tmp, Tmp2; 2693 unsigned FirstAnswer = 1; 2694 2695 // Note that ConstantInt is handled by the general computeKnownBits case 2696 // below. 2697 2698 if (Depth == MaxDepth) 2699 return 1; // Limit search depth. 2700 2701 if (auto *U = dyn_cast<Operator>(V)) { 2702 switch (Operator::getOpcode(V)) { 2703 default: break; 2704 case Instruction::SExt: 2705 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2706 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2707 2708 case Instruction::SDiv: { 2709 const APInt *Denominator; 2710 // sdiv X, C -> adds log(C) sign bits. 2711 if (match(U->getOperand(1), m_APInt(Denominator))) { 2712 2713 // Ignore non-positive denominator. 2714 if (!Denominator->isStrictlyPositive()) 2715 break; 2716 2717 // Calculate the incoming numerator bits. 2718 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2719 2720 // Add floor(log(C)) bits to the numerator bits. 2721 return std::min(TyBits, NumBits + Denominator->logBase2()); 2722 } 2723 break; 2724 } 2725 2726 case Instruction::SRem: { 2727 const APInt *Denominator; 2728 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2729 // positive constant. This let us put a lower bound on the number of sign 2730 // bits. 2731 if (match(U->getOperand(1), m_APInt(Denominator))) { 2732 2733 // Ignore non-positive denominator. 2734 if (!Denominator->isStrictlyPositive()) 2735 break; 2736 2737 // Calculate the incoming numerator bits. SRem by a positive constant 2738 // can't lower the number of sign bits. 2739 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2740 2741 // Calculate the leading sign bit constraints by examining the 2742 // denominator. Given that the denominator is positive, there are two 2743 // cases: 2744 // 2745 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2746 // (1 << ceilLogBase2(C)). 2747 // 2748 // 2. the numerator is negative. Then the result range is (-C,0] and 2749 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2750 // 2751 // Thus a lower bound on the number of sign bits is `TyBits - 2752 // ceilLogBase2(C)`. 2753 2754 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2755 return std::max(NumrBits, ResBits); 2756 } 2757 break; 2758 } 2759 2760 case Instruction::AShr: { 2761 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2762 // ashr X, C -> adds C sign bits. Vectors too. 2763 const APInt *ShAmt; 2764 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2765 if (ShAmt->uge(TyBits)) 2766 break; // Bad shift. 2767 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2768 Tmp += ShAmtLimited; 2769 if (Tmp > TyBits) Tmp = TyBits; 2770 } 2771 return Tmp; 2772 } 2773 case Instruction::Shl: { 2774 const APInt *ShAmt; 2775 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2776 // shl destroys sign bits. 2777 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2778 if (ShAmt->uge(TyBits) || // Bad shift. 2779 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2780 Tmp2 = ShAmt->getZExtValue(); 2781 return Tmp - Tmp2; 2782 } 2783 break; 2784 } 2785 case Instruction::And: 2786 case Instruction::Or: 2787 case Instruction::Xor: // NOT is handled here. 2788 // Logical binary ops preserve the number of sign bits at the worst. 2789 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2790 if (Tmp != 1) { 2791 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2792 FirstAnswer = std::min(Tmp, Tmp2); 2793 // We computed what we know about the sign bits as our first 2794 // answer. Now proceed to the generic code that uses 2795 // computeKnownBits, and pick whichever answer is better. 2796 } 2797 break; 2798 2799 case Instruction::Select: { 2800 // If we have a clamp pattern, we know that the number of sign bits will 2801 // be the minimum of the clamp min/max range. 2802 const Value *X; 2803 const APInt *CLow, *CHigh; 2804 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2805 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2806 2807 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2808 if (Tmp == 1) break; 2809 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2810 return std::min(Tmp, Tmp2); 2811 } 2812 2813 case Instruction::Add: 2814 // Add can have at most one carry bit. Thus we know that the output 2815 // is, at worst, one more bit than the inputs. 2816 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2817 if (Tmp == 1) break; 2818 2819 // Special case decrementing a value (ADD X, -1): 2820 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2821 if (CRHS->isAllOnesValue()) { 2822 KnownBits Known(TyBits); 2823 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2824 2825 // If the input is known to be 0 or 1, the output is 0/-1, which is 2826 // all sign bits set. 2827 if ((Known.Zero | 1).isAllOnesValue()) 2828 return TyBits; 2829 2830 // If we are subtracting one from a positive number, there is no carry 2831 // out of the result. 2832 if (Known.isNonNegative()) 2833 return Tmp; 2834 } 2835 2836 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2837 if (Tmp2 == 1) break; 2838 return std::min(Tmp, Tmp2) - 1; 2839 2840 case Instruction::Sub: 2841 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2842 if (Tmp2 == 1) break; 2843 2844 // Handle NEG. 2845 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2846 if (CLHS->isNullValue()) { 2847 KnownBits Known(TyBits); 2848 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2849 // If the input is known to be 0 or 1, the output is 0/-1, which is 2850 // all sign bits set. 2851 if ((Known.Zero | 1).isAllOnesValue()) 2852 return TyBits; 2853 2854 // If the input is known to be positive (the sign bit is known clear), 2855 // the output of the NEG has the same number of sign bits as the 2856 // input. 2857 if (Known.isNonNegative()) 2858 return Tmp2; 2859 2860 // Otherwise, we treat this like a SUB. 2861 } 2862 2863 // Sub can have at most one carry bit. Thus we know that the output 2864 // is, at worst, one more bit than the inputs. 2865 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2866 if (Tmp == 1) break; 2867 return std::min(Tmp, Tmp2) - 1; 2868 2869 case Instruction::Mul: { 2870 // The output of the Mul can be at most twice the valid bits in the 2871 // inputs. 2872 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2873 if (SignBitsOp0 == 1) break; 2874 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2875 if (SignBitsOp1 == 1) break; 2876 unsigned OutValidBits = 2877 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2878 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2879 } 2880 2881 case Instruction::PHI: { 2882 const PHINode *PN = cast<PHINode>(U); 2883 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2884 // Don't analyze large in-degree PHIs. 2885 if (NumIncomingValues > 4) break; 2886 // Unreachable blocks may have zero-operand PHI nodes. 2887 if (NumIncomingValues == 0) break; 2888 2889 // Take the minimum of all incoming values. This can't infinitely loop 2890 // because of our depth threshold. 2891 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2892 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2893 if (Tmp == 1) return Tmp; 2894 Tmp = std::min( 2895 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2896 } 2897 return Tmp; 2898 } 2899 2900 case Instruction::Trunc: 2901 // FIXME: it's tricky to do anything useful for this, but it is an 2902 // important case for targets like X86. 2903 break; 2904 2905 case Instruction::ExtractElement: 2906 // Look through extract element. At the moment we keep this simple and 2907 // skip tracking the specific element. But at least we might find 2908 // information valid for all elements of the vector (for example if vector 2909 // is sign extended, shifted, etc). 2910 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2911 2912 case Instruction::ShuffleVector: { 2913 // Collect the minimum number of sign bits that are shared by every vector 2914 // element referenced by the shuffle. 2915 auto *Shuf = cast<ShuffleVectorInst>(U); 2916 APInt DemandedLHS, DemandedRHS; 2917 // For undef elements, we don't know anything about the common state of 2918 // the shuffle result. 2919 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2920 return 1; 2921 Tmp = std::numeric_limits<unsigned>::max(); 2922 if (!!DemandedLHS) { 2923 const Value *LHS = Shuf->getOperand(0); 2924 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2925 } 2926 // If we don't know anything, early out and try computeKnownBits 2927 // fall-back. 2928 if (Tmp == 1) 2929 break; 2930 if (!!DemandedRHS) { 2931 const Value *RHS = Shuf->getOperand(1); 2932 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2933 Tmp = std::min(Tmp, Tmp2); 2934 } 2935 // If we don't know anything, early out and try computeKnownBits 2936 // fall-back. 2937 if (Tmp == 1) 2938 break; 2939 assert(Tmp <= Ty->getScalarSizeInBits() && 2940 "Failed to determine minimum sign bits"); 2941 return Tmp; 2942 } 2943 } 2944 } 2945 2946 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2947 // use this information. 2948 2949 // If we can examine all elements of a vector constant successfully, we're 2950 // done (we can't do any better than that). If not, keep trying. 2951 if (unsigned VecSignBits = 2952 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2953 return VecSignBits; 2954 2955 KnownBits Known(TyBits); 2956 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2957 2958 // If we know that the sign bit is either zero or one, determine the number of 2959 // identical bits in the top of the input value. 2960 return std::max(FirstAnswer, Known.countMinSignBits()); 2961 } 2962 2963 /// This function computes the integer multiple of Base that equals V. 2964 /// If successful, it returns true and returns the multiple in 2965 /// Multiple. If unsuccessful, it returns false. It looks 2966 /// through SExt instructions only if LookThroughSExt is true. 2967 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2968 bool LookThroughSExt, unsigned Depth) { 2969 assert(V && "No Value?"); 2970 assert(Depth <= MaxDepth && "Limit Search Depth"); 2971 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2972 2973 Type *T = V->getType(); 2974 2975 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2976 2977 if (Base == 0) 2978 return false; 2979 2980 if (Base == 1) { 2981 Multiple = V; 2982 return true; 2983 } 2984 2985 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2986 Constant *BaseVal = ConstantInt::get(T, Base); 2987 if (CO && CO == BaseVal) { 2988 // Multiple is 1. 2989 Multiple = ConstantInt::get(T, 1); 2990 return true; 2991 } 2992 2993 if (CI && CI->getZExtValue() % Base == 0) { 2994 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2995 return true; 2996 } 2997 2998 if (Depth == MaxDepth) return false; // Limit search depth. 2999 3000 Operator *I = dyn_cast<Operator>(V); 3001 if (!I) return false; 3002 3003 switch (I->getOpcode()) { 3004 default: break; 3005 case Instruction::SExt: 3006 if (!LookThroughSExt) return false; 3007 // otherwise fall through to ZExt 3008 LLVM_FALLTHROUGH; 3009 case Instruction::ZExt: 3010 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3011 LookThroughSExt, Depth+1); 3012 case Instruction::Shl: 3013 case Instruction::Mul: { 3014 Value *Op0 = I->getOperand(0); 3015 Value *Op1 = I->getOperand(1); 3016 3017 if (I->getOpcode() == Instruction::Shl) { 3018 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3019 if (!Op1CI) return false; 3020 // Turn Op0 << Op1 into Op0 * 2^Op1 3021 APInt Op1Int = Op1CI->getValue(); 3022 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3023 APInt API(Op1Int.getBitWidth(), 0); 3024 API.setBit(BitToSet); 3025 Op1 = ConstantInt::get(V->getContext(), API); 3026 } 3027 3028 Value *Mul0 = nullptr; 3029 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3030 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3031 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3032 if (Op1C->getType()->getPrimitiveSizeInBits() < 3033 MulC->getType()->getPrimitiveSizeInBits()) 3034 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3035 if (Op1C->getType()->getPrimitiveSizeInBits() > 3036 MulC->getType()->getPrimitiveSizeInBits()) 3037 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3038 3039 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3040 Multiple = ConstantExpr::getMul(MulC, Op1C); 3041 return true; 3042 } 3043 3044 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3045 if (Mul0CI->getValue() == 1) { 3046 // V == Base * Op1, so return Op1 3047 Multiple = Op1; 3048 return true; 3049 } 3050 } 3051 3052 Value *Mul1 = nullptr; 3053 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3054 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3055 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3056 if (Op0C->getType()->getPrimitiveSizeInBits() < 3057 MulC->getType()->getPrimitiveSizeInBits()) 3058 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3059 if (Op0C->getType()->getPrimitiveSizeInBits() > 3060 MulC->getType()->getPrimitiveSizeInBits()) 3061 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3062 3063 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3064 Multiple = ConstantExpr::getMul(MulC, Op0C); 3065 return true; 3066 } 3067 3068 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3069 if (Mul1CI->getValue() == 1) { 3070 // V == Base * Op0, so return Op0 3071 Multiple = Op0; 3072 return true; 3073 } 3074 } 3075 } 3076 } 3077 3078 // We could not determine if V is a multiple of Base. 3079 return false; 3080 } 3081 3082 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3083 const TargetLibraryInfo *TLI) { 3084 const Function *F = ICS.getCalledFunction(); 3085 if (!F) 3086 return Intrinsic::not_intrinsic; 3087 3088 if (F->isIntrinsic()) 3089 return F->getIntrinsicID(); 3090 3091 if (!TLI) 3092 return Intrinsic::not_intrinsic; 3093 3094 LibFunc Func; 3095 // We're going to make assumptions on the semantics of the functions, check 3096 // that the target knows that it's available in this environment and it does 3097 // not have local linkage. 3098 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3099 return Intrinsic::not_intrinsic; 3100 3101 if (!ICS.onlyReadsMemory()) 3102 return Intrinsic::not_intrinsic; 3103 3104 // Otherwise check if we have a call to a function that can be turned into a 3105 // vector intrinsic. 3106 switch (Func) { 3107 default: 3108 break; 3109 case LibFunc_sin: 3110 case LibFunc_sinf: 3111 case LibFunc_sinl: 3112 return Intrinsic::sin; 3113 case LibFunc_cos: 3114 case LibFunc_cosf: 3115 case LibFunc_cosl: 3116 return Intrinsic::cos; 3117 case LibFunc_exp: 3118 case LibFunc_expf: 3119 case LibFunc_expl: 3120 return Intrinsic::exp; 3121 case LibFunc_exp2: 3122 case LibFunc_exp2f: 3123 case LibFunc_exp2l: 3124 return Intrinsic::exp2; 3125 case LibFunc_log: 3126 case LibFunc_logf: 3127 case LibFunc_logl: 3128 return Intrinsic::log; 3129 case LibFunc_log10: 3130 case LibFunc_log10f: 3131 case LibFunc_log10l: 3132 return Intrinsic::log10; 3133 case LibFunc_log2: 3134 case LibFunc_log2f: 3135 case LibFunc_log2l: 3136 return Intrinsic::log2; 3137 case LibFunc_fabs: 3138 case LibFunc_fabsf: 3139 case LibFunc_fabsl: 3140 return Intrinsic::fabs; 3141 case LibFunc_fmin: 3142 case LibFunc_fminf: 3143 case LibFunc_fminl: 3144 return Intrinsic::minnum; 3145 case LibFunc_fmax: 3146 case LibFunc_fmaxf: 3147 case LibFunc_fmaxl: 3148 return Intrinsic::maxnum; 3149 case LibFunc_copysign: 3150 case LibFunc_copysignf: 3151 case LibFunc_copysignl: 3152 return Intrinsic::copysign; 3153 case LibFunc_floor: 3154 case LibFunc_floorf: 3155 case LibFunc_floorl: 3156 return Intrinsic::floor; 3157 case LibFunc_ceil: 3158 case LibFunc_ceilf: 3159 case LibFunc_ceill: 3160 return Intrinsic::ceil; 3161 case LibFunc_trunc: 3162 case LibFunc_truncf: 3163 case LibFunc_truncl: 3164 return Intrinsic::trunc; 3165 case LibFunc_rint: 3166 case LibFunc_rintf: 3167 case LibFunc_rintl: 3168 return Intrinsic::rint; 3169 case LibFunc_nearbyint: 3170 case LibFunc_nearbyintf: 3171 case LibFunc_nearbyintl: 3172 return Intrinsic::nearbyint; 3173 case LibFunc_round: 3174 case LibFunc_roundf: 3175 case LibFunc_roundl: 3176 return Intrinsic::round; 3177 case LibFunc_pow: 3178 case LibFunc_powf: 3179 case LibFunc_powl: 3180 return Intrinsic::pow; 3181 case LibFunc_sqrt: 3182 case LibFunc_sqrtf: 3183 case LibFunc_sqrtl: 3184 return Intrinsic::sqrt; 3185 } 3186 3187 return Intrinsic::not_intrinsic; 3188 } 3189 3190 /// Return true if we can prove that the specified FP value is never equal to 3191 /// -0.0. 3192 /// 3193 /// NOTE: this function will need to be revisited when we support non-default 3194 /// rounding modes! 3195 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3196 unsigned Depth) { 3197 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3198 return !CFP->getValueAPF().isNegZero(); 3199 3200 // Limit search depth. 3201 if (Depth == MaxDepth) 3202 return false; 3203 3204 auto *Op = dyn_cast<Operator>(V); 3205 if (!Op) 3206 return false; 3207 3208 // Check if the nsz fast-math flag is set. 3209 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3210 if (FPO->hasNoSignedZeros()) 3211 return true; 3212 3213 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3214 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3215 return true; 3216 3217 // sitofp and uitofp turn into +0.0 for zero. 3218 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3219 return true; 3220 3221 if (auto *Call = dyn_cast<CallInst>(Op)) { 3222 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3223 switch (IID) { 3224 default: 3225 break; 3226 // sqrt(-0.0) = -0.0, no other negative results are possible. 3227 case Intrinsic::sqrt: 3228 case Intrinsic::canonicalize: 3229 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3230 // fabs(x) != -0.0 3231 case Intrinsic::fabs: 3232 return true; 3233 } 3234 } 3235 3236 return false; 3237 } 3238 3239 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3240 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3241 /// bit despite comparing equal. 3242 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3243 const TargetLibraryInfo *TLI, 3244 bool SignBitOnly, 3245 unsigned Depth) { 3246 // TODO: This function does not do the right thing when SignBitOnly is true 3247 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3248 // which flips the sign bits of NaNs. See 3249 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3250 3251 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3252 return !CFP->getValueAPF().isNegative() || 3253 (!SignBitOnly && CFP->getValueAPF().isZero()); 3254 } 3255 3256 // Handle vector of constants. 3257 if (auto *CV = dyn_cast<Constant>(V)) { 3258 if (CV->getType()->isVectorTy()) { 3259 unsigned NumElts = CV->getType()->getVectorNumElements(); 3260 for (unsigned i = 0; i != NumElts; ++i) { 3261 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3262 if (!CFP) 3263 return false; 3264 if (CFP->getValueAPF().isNegative() && 3265 (SignBitOnly || !CFP->getValueAPF().isZero())) 3266 return false; 3267 } 3268 3269 // All non-negative ConstantFPs. 3270 return true; 3271 } 3272 } 3273 3274 if (Depth == MaxDepth) 3275 return false; // Limit search depth. 3276 3277 const Operator *I = dyn_cast<Operator>(V); 3278 if (!I) 3279 return false; 3280 3281 switch (I->getOpcode()) { 3282 default: 3283 break; 3284 // Unsigned integers are always nonnegative. 3285 case Instruction::UIToFP: 3286 return true; 3287 case Instruction::FMul: 3288 // x*x is always non-negative or a NaN. 3289 if (I->getOperand(0) == I->getOperand(1) && 3290 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3291 return true; 3292 3293 LLVM_FALLTHROUGH; 3294 case Instruction::FAdd: 3295 case Instruction::FDiv: 3296 case Instruction::FRem: 3297 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3298 Depth + 1) && 3299 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3300 Depth + 1); 3301 case Instruction::Select: 3302 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3303 Depth + 1) && 3304 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3305 Depth + 1); 3306 case Instruction::FPExt: 3307 case Instruction::FPTrunc: 3308 // Widening/narrowing never change sign. 3309 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3310 Depth + 1); 3311 case Instruction::ExtractElement: 3312 // Look through extract element. At the moment we keep this simple and skip 3313 // tracking the specific element. But at least we might find information 3314 // valid for all elements of the vector. 3315 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3316 Depth + 1); 3317 case Instruction::Call: 3318 const auto *CI = cast<CallInst>(I); 3319 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3320 switch (IID) { 3321 default: 3322 break; 3323 case Intrinsic::maxnum: 3324 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3325 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3326 SignBitOnly, Depth + 1)) || 3327 (isKnownNeverNaN(I->getOperand(1), TLI) && 3328 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3329 SignBitOnly, Depth + 1)); 3330 3331 case Intrinsic::maximum: 3332 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3333 Depth + 1) || 3334 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3335 Depth + 1); 3336 case Intrinsic::minnum: 3337 case Intrinsic::minimum: 3338 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3339 Depth + 1) && 3340 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3341 Depth + 1); 3342 case Intrinsic::exp: 3343 case Intrinsic::exp2: 3344 case Intrinsic::fabs: 3345 return true; 3346 3347 case Intrinsic::sqrt: 3348 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3349 if (!SignBitOnly) 3350 return true; 3351 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3352 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3353 3354 case Intrinsic::powi: 3355 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3356 // powi(x,n) is non-negative if n is even. 3357 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3358 return true; 3359 } 3360 // TODO: This is not correct. Given that exp is an integer, here are the 3361 // ways that pow can return a negative value: 3362 // 3363 // pow(x, exp) --> negative if exp is odd and x is negative. 3364 // pow(-0, exp) --> -inf if exp is negative odd. 3365 // pow(-0, exp) --> -0 if exp is positive odd. 3366 // pow(-inf, exp) --> -0 if exp is negative odd. 3367 // pow(-inf, exp) --> -inf if exp is positive odd. 3368 // 3369 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3370 // but we must return false if x == -0. Unfortunately we do not currently 3371 // have a way of expressing this constraint. See details in 3372 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3373 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3374 Depth + 1); 3375 3376 case Intrinsic::fma: 3377 case Intrinsic::fmuladd: 3378 // x*x+y is non-negative if y is non-negative. 3379 return I->getOperand(0) == I->getOperand(1) && 3380 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3381 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3382 Depth + 1); 3383 } 3384 break; 3385 } 3386 return false; 3387 } 3388 3389 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3390 const TargetLibraryInfo *TLI) { 3391 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3392 } 3393 3394 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3395 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3396 } 3397 3398 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3399 unsigned Depth) { 3400 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3401 3402 // If we're told that infinities won't happen, assume they won't. 3403 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3404 if (FPMathOp->hasNoInfs()) 3405 return true; 3406 3407 // Handle scalar constants. 3408 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3409 return !CFP->isInfinity(); 3410 3411 if (Depth == MaxDepth) 3412 return false; 3413 3414 if (auto *Inst = dyn_cast<Instruction>(V)) { 3415 switch (Inst->getOpcode()) { 3416 case Instruction::Select: { 3417 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3418 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3419 } 3420 case Instruction::UIToFP: 3421 // If the input type fits into the floating type the result is finite. 3422 return ilogb(APFloat::getLargest( 3423 Inst->getType()->getScalarType()->getFltSemantics())) >= 3424 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3425 default: 3426 break; 3427 } 3428 } 3429 3430 // Bail out for constant expressions, but try to handle vector constants. 3431 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3432 return false; 3433 3434 // For vectors, verify that each element is not infinity. 3435 unsigned NumElts = V->getType()->getVectorNumElements(); 3436 for (unsigned i = 0; i != NumElts; ++i) { 3437 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3438 if (!Elt) 3439 return false; 3440 if (isa<UndefValue>(Elt)) 3441 continue; 3442 auto *CElt = dyn_cast<ConstantFP>(Elt); 3443 if (!CElt || CElt->isInfinity()) 3444 return false; 3445 } 3446 // All elements were confirmed non-infinity or undefined. 3447 return true; 3448 } 3449 3450 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3451 unsigned Depth) { 3452 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3453 3454 // If we're told that NaNs won't happen, assume they won't. 3455 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3456 if (FPMathOp->hasNoNaNs()) 3457 return true; 3458 3459 // Handle scalar constants. 3460 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3461 return !CFP->isNaN(); 3462 3463 if (Depth == MaxDepth) 3464 return false; 3465 3466 if (auto *Inst = dyn_cast<Instruction>(V)) { 3467 switch (Inst->getOpcode()) { 3468 case Instruction::FAdd: 3469 case Instruction::FSub: 3470 // Adding positive and negative infinity produces NaN. 3471 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3472 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3473 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3474 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3475 3476 case Instruction::FMul: 3477 // Zero multiplied with infinity produces NaN. 3478 // FIXME: If neither side can be zero fmul never produces NaN. 3479 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3480 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3481 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3482 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3483 3484 case Instruction::FDiv: 3485 case Instruction::FRem: 3486 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3487 return false; 3488 3489 case Instruction::Select: { 3490 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3491 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3492 } 3493 case Instruction::SIToFP: 3494 case Instruction::UIToFP: 3495 return true; 3496 case Instruction::FPTrunc: 3497 case Instruction::FPExt: 3498 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3499 default: 3500 break; 3501 } 3502 } 3503 3504 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3505 switch (II->getIntrinsicID()) { 3506 case Intrinsic::canonicalize: 3507 case Intrinsic::fabs: 3508 case Intrinsic::copysign: 3509 case Intrinsic::exp: 3510 case Intrinsic::exp2: 3511 case Intrinsic::floor: 3512 case Intrinsic::ceil: 3513 case Intrinsic::trunc: 3514 case Intrinsic::rint: 3515 case Intrinsic::nearbyint: 3516 case Intrinsic::round: 3517 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3518 case Intrinsic::sqrt: 3519 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3520 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3521 case Intrinsic::minnum: 3522 case Intrinsic::maxnum: 3523 // If either operand is not NaN, the result is not NaN. 3524 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3525 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3526 default: 3527 return false; 3528 } 3529 } 3530 3531 // Bail out for constant expressions, but try to handle vector constants. 3532 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3533 return false; 3534 3535 // For vectors, verify that each element is not NaN. 3536 unsigned NumElts = V->getType()->getVectorNumElements(); 3537 for (unsigned i = 0; i != NumElts; ++i) { 3538 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3539 if (!Elt) 3540 return false; 3541 if (isa<UndefValue>(Elt)) 3542 continue; 3543 auto *CElt = dyn_cast<ConstantFP>(Elt); 3544 if (!CElt || CElt->isNaN()) 3545 return false; 3546 } 3547 // All elements were confirmed not-NaN or undefined. 3548 return true; 3549 } 3550 3551 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3552 3553 // All byte-wide stores are splatable, even of arbitrary variables. 3554 if (V->getType()->isIntegerTy(8)) 3555 return V; 3556 3557 LLVMContext &Ctx = V->getContext(); 3558 3559 // Undef don't care. 3560 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3561 if (isa<UndefValue>(V)) 3562 return UndefInt8; 3563 3564 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3565 if (!Size) 3566 return UndefInt8; 3567 3568 Constant *C = dyn_cast<Constant>(V); 3569 if (!C) { 3570 // Conceptually, we could handle things like: 3571 // %a = zext i8 %X to i16 3572 // %b = shl i16 %a, 8 3573 // %c = or i16 %a, %b 3574 // but until there is an example that actually needs this, it doesn't seem 3575 // worth worrying about. 3576 return nullptr; 3577 } 3578 3579 // Handle 'null' ConstantArrayZero etc. 3580 if (C->isNullValue()) 3581 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3582 3583 // Constant floating-point values can be handled as integer values if the 3584 // corresponding integer value is "byteable". An important case is 0.0. 3585 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3586 Type *Ty = nullptr; 3587 if (CFP->getType()->isHalfTy()) 3588 Ty = Type::getInt16Ty(Ctx); 3589 else if (CFP->getType()->isFloatTy()) 3590 Ty = Type::getInt32Ty(Ctx); 3591 else if (CFP->getType()->isDoubleTy()) 3592 Ty = Type::getInt64Ty(Ctx); 3593 // Don't handle long double formats, which have strange constraints. 3594 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3595 : nullptr; 3596 } 3597 3598 // We can handle constant integers that are multiple of 8 bits. 3599 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3600 if (CI->getBitWidth() % 8 == 0) { 3601 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3602 if (!CI->getValue().isSplat(8)) 3603 return nullptr; 3604 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3605 } 3606 } 3607 3608 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3609 if (CE->getOpcode() == Instruction::IntToPtr) { 3610 auto PS = DL.getPointerSizeInBits( 3611 cast<PointerType>(CE->getType())->getAddressSpace()); 3612 return isBytewiseValue( 3613 ConstantExpr::getIntegerCast(CE->getOperand(0), 3614 Type::getIntNTy(Ctx, PS), false), 3615 DL); 3616 } 3617 } 3618 3619 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3620 if (LHS == RHS) 3621 return LHS; 3622 if (!LHS || !RHS) 3623 return nullptr; 3624 if (LHS == UndefInt8) 3625 return RHS; 3626 if (RHS == UndefInt8) 3627 return LHS; 3628 return nullptr; 3629 }; 3630 3631 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3632 Value *Val = UndefInt8; 3633 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3634 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3635 return nullptr; 3636 return Val; 3637 } 3638 3639 if (isa<ConstantAggregate>(C)) { 3640 Value *Val = UndefInt8; 3641 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3642 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3643 return nullptr; 3644 return Val; 3645 } 3646 3647 // Don't try to handle the handful of other constants. 3648 return nullptr; 3649 } 3650 3651 // This is the recursive version of BuildSubAggregate. It takes a few different 3652 // arguments. Idxs is the index within the nested struct From that we are 3653 // looking at now (which is of type IndexedType). IdxSkip is the number of 3654 // indices from Idxs that should be left out when inserting into the resulting 3655 // struct. To is the result struct built so far, new insertvalue instructions 3656 // build on that. 3657 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3658 SmallVectorImpl<unsigned> &Idxs, 3659 unsigned IdxSkip, 3660 Instruction *InsertBefore) { 3661 StructType *STy = dyn_cast<StructType>(IndexedType); 3662 if (STy) { 3663 // Save the original To argument so we can modify it 3664 Value *OrigTo = To; 3665 // General case, the type indexed by Idxs is a struct 3666 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3667 // Process each struct element recursively 3668 Idxs.push_back(i); 3669 Value *PrevTo = To; 3670 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3671 InsertBefore); 3672 Idxs.pop_back(); 3673 if (!To) { 3674 // Couldn't find any inserted value for this index? Cleanup 3675 while (PrevTo != OrigTo) { 3676 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3677 PrevTo = Del->getAggregateOperand(); 3678 Del->eraseFromParent(); 3679 } 3680 // Stop processing elements 3681 break; 3682 } 3683 } 3684 // If we successfully found a value for each of our subaggregates 3685 if (To) 3686 return To; 3687 } 3688 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3689 // the struct's elements had a value that was inserted directly. In the latter 3690 // case, perhaps we can't determine each of the subelements individually, but 3691 // we might be able to find the complete struct somewhere. 3692 3693 // Find the value that is at that particular spot 3694 Value *V = FindInsertedValue(From, Idxs); 3695 3696 if (!V) 3697 return nullptr; 3698 3699 // Insert the value in the new (sub) aggregate 3700 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3701 "tmp", InsertBefore); 3702 } 3703 3704 // This helper takes a nested struct and extracts a part of it (which is again a 3705 // struct) into a new value. For example, given the struct: 3706 // { a, { b, { c, d }, e } } 3707 // and the indices "1, 1" this returns 3708 // { c, d }. 3709 // 3710 // It does this by inserting an insertvalue for each element in the resulting 3711 // struct, as opposed to just inserting a single struct. This will only work if 3712 // each of the elements of the substruct are known (ie, inserted into From by an 3713 // insertvalue instruction somewhere). 3714 // 3715 // All inserted insertvalue instructions are inserted before InsertBefore 3716 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3717 Instruction *InsertBefore) { 3718 assert(InsertBefore && "Must have someplace to insert!"); 3719 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3720 idx_range); 3721 Value *To = UndefValue::get(IndexedType); 3722 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3723 unsigned IdxSkip = Idxs.size(); 3724 3725 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3726 } 3727 3728 /// Given an aggregate and a sequence of indices, see if the scalar value 3729 /// indexed is already around as a register, for example if it was inserted 3730 /// directly into the aggregate. 3731 /// 3732 /// If InsertBefore is not null, this function will duplicate (modified) 3733 /// insertvalues when a part of a nested struct is extracted. 3734 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3735 Instruction *InsertBefore) { 3736 // Nothing to index? Just return V then (this is useful at the end of our 3737 // recursion). 3738 if (idx_range.empty()) 3739 return V; 3740 // We have indices, so V should have an indexable type. 3741 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3742 "Not looking at a struct or array?"); 3743 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3744 "Invalid indices for type?"); 3745 3746 if (Constant *C = dyn_cast<Constant>(V)) { 3747 C = C->getAggregateElement(idx_range[0]); 3748 if (!C) return nullptr; 3749 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3750 } 3751 3752 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3753 // Loop the indices for the insertvalue instruction in parallel with the 3754 // requested indices 3755 const unsigned *req_idx = idx_range.begin(); 3756 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3757 i != e; ++i, ++req_idx) { 3758 if (req_idx == idx_range.end()) { 3759 // We can't handle this without inserting insertvalues 3760 if (!InsertBefore) 3761 return nullptr; 3762 3763 // The requested index identifies a part of a nested aggregate. Handle 3764 // this specially. For example, 3765 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3766 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3767 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3768 // This can be changed into 3769 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3770 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3771 // which allows the unused 0,0 element from the nested struct to be 3772 // removed. 3773 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3774 InsertBefore); 3775 } 3776 3777 // This insert value inserts something else than what we are looking for. 3778 // See if the (aggregate) value inserted into has the value we are 3779 // looking for, then. 3780 if (*req_idx != *i) 3781 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3782 InsertBefore); 3783 } 3784 // If we end up here, the indices of the insertvalue match with those 3785 // requested (though possibly only partially). Now we recursively look at 3786 // the inserted value, passing any remaining indices. 3787 return FindInsertedValue(I->getInsertedValueOperand(), 3788 makeArrayRef(req_idx, idx_range.end()), 3789 InsertBefore); 3790 } 3791 3792 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3793 // If we're extracting a value from an aggregate that was extracted from 3794 // something else, we can extract from that something else directly instead. 3795 // However, we will need to chain I's indices with the requested indices. 3796 3797 // Calculate the number of indices required 3798 unsigned size = I->getNumIndices() + idx_range.size(); 3799 // Allocate some space to put the new indices in 3800 SmallVector<unsigned, 5> Idxs; 3801 Idxs.reserve(size); 3802 // Add indices from the extract value instruction 3803 Idxs.append(I->idx_begin(), I->idx_end()); 3804 3805 // Add requested indices 3806 Idxs.append(idx_range.begin(), idx_range.end()); 3807 3808 assert(Idxs.size() == size 3809 && "Number of indices added not correct?"); 3810 3811 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3812 } 3813 // Otherwise, we don't know (such as, extracting from a function return value 3814 // or load instruction) 3815 return nullptr; 3816 } 3817 3818 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3819 unsigned CharSize) { 3820 // Make sure the GEP has exactly three arguments. 3821 if (GEP->getNumOperands() != 3) 3822 return false; 3823 3824 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3825 // CharSize. 3826 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3827 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3828 return false; 3829 3830 // Check to make sure that the first operand of the GEP is an integer and 3831 // has value 0 so that we are sure we're indexing into the initializer. 3832 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3833 if (!FirstIdx || !FirstIdx->isZero()) 3834 return false; 3835 3836 return true; 3837 } 3838 3839 bool llvm::getConstantDataArrayInfo(const Value *V, 3840 ConstantDataArraySlice &Slice, 3841 unsigned ElementSize, uint64_t Offset) { 3842 assert(V); 3843 3844 // Look through bitcast instructions and geps. 3845 V = V->stripPointerCasts(); 3846 3847 // If the value is a GEP instruction or constant expression, treat it as an 3848 // offset. 3849 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3850 // The GEP operator should be based on a pointer to string constant, and is 3851 // indexing into the string constant. 3852 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3853 return false; 3854 3855 // If the second index isn't a ConstantInt, then this is a variable index 3856 // into the array. If this occurs, we can't say anything meaningful about 3857 // the string. 3858 uint64_t StartIdx = 0; 3859 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3860 StartIdx = CI->getZExtValue(); 3861 else 3862 return false; 3863 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3864 StartIdx + Offset); 3865 } 3866 3867 // The GEP instruction, constant or instruction, must reference a global 3868 // variable that is a constant and is initialized. The referenced constant 3869 // initializer is the array that we'll use for optimization. 3870 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3871 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3872 return false; 3873 3874 const ConstantDataArray *Array; 3875 ArrayType *ArrayTy; 3876 if (GV->getInitializer()->isNullValue()) { 3877 Type *GVTy = GV->getValueType(); 3878 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3879 // A zeroinitializer for the array; there is no ConstantDataArray. 3880 Array = nullptr; 3881 } else { 3882 const DataLayout &DL = GV->getParent()->getDataLayout(); 3883 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3884 uint64_t Length = SizeInBytes / (ElementSize / 8); 3885 if (Length <= Offset) 3886 return false; 3887 3888 Slice.Array = nullptr; 3889 Slice.Offset = 0; 3890 Slice.Length = Length - Offset; 3891 return true; 3892 } 3893 } else { 3894 // This must be a ConstantDataArray. 3895 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3896 if (!Array) 3897 return false; 3898 ArrayTy = Array->getType(); 3899 } 3900 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3901 return false; 3902 3903 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3904 if (Offset > NumElts) 3905 return false; 3906 3907 Slice.Array = Array; 3908 Slice.Offset = Offset; 3909 Slice.Length = NumElts - Offset; 3910 return true; 3911 } 3912 3913 /// This function computes the length of a null-terminated C string pointed to 3914 /// by V. If successful, it returns true and returns the string in Str. 3915 /// If unsuccessful, it returns false. 3916 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3917 uint64_t Offset, bool TrimAtNul) { 3918 ConstantDataArraySlice Slice; 3919 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3920 return false; 3921 3922 if (Slice.Array == nullptr) { 3923 if (TrimAtNul) { 3924 Str = StringRef(); 3925 return true; 3926 } 3927 if (Slice.Length == 1) { 3928 Str = StringRef("", 1); 3929 return true; 3930 } 3931 // We cannot instantiate a StringRef as we do not have an appropriate string 3932 // of 0s at hand. 3933 return false; 3934 } 3935 3936 // Start out with the entire array in the StringRef. 3937 Str = Slice.Array->getAsString(); 3938 // Skip over 'offset' bytes. 3939 Str = Str.substr(Slice.Offset); 3940 3941 if (TrimAtNul) { 3942 // Trim off the \0 and anything after it. If the array is not nul 3943 // terminated, we just return the whole end of string. The client may know 3944 // some other way that the string is length-bound. 3945 Str = Str.substr(0, Str.find('\0')); 3946 } 3947 return true; 3948 } 3949 3950 // These next two are very similar to the above, but also look through PHI 3951 // nodes. 3952 // TODO: See if we can integrate these two together. 3953 3954 /// If we can compute the length of the string pointed to by 3955 /// the specified pointer, return 'len+1'. If we can't, return 0. 3956 static uint64_t GetStringLengthH(const Value *V, 3957 SmallPtrSetImpl<const PHINode*> &PHIs, 3958 unsigned CharSize) { 3959 // Look through noop bitcast instructions. 3960 V = V->stripPointerCasts(); 3961 3962 // If this is a PHI node, there are two cases: either we have already seen it 3963 // or we haven't. 3964 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3965 if (!PHIs.insert(PN).second) 3966 return ~0ULL; // already in the set. 3967 3968 // If it was new, see if all the input strings are the same length. 3969 uint64_t LenSoFar = ~0ULL; 3970 for (Value *IncValue : PN->incoming_values()) { 3971 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3972 if (Len == 0) return 0; // Unknown length -> unknown. 3973 3974 if (Len == ~0ULL) continue; 3975 3976 if (Len != LenSoFar && LenSoFar != ~0ULL) 3977 return 0; // Disagree -> unknown. 3978 LenSoFar = Len; 3979 } 3980 3981 // Success, all agree. 3982 return LenSoFar; 3983 } 3984 3985 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3986 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3987 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3988 if (Len1 == 0) return 0; 3989 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3990 if (Len2 == 0) return 0; 3991 if (Len1 == ~0ULL) return Len2; 3992 if (Len2 == ~0ULL) return Len1; 3993 if (Len1 != Len2) return 0; 3994 return Len1; 3995 } 3996 3997 // Otherwise, see if we can read the string. 3998 ConstantDataArraySlice Slice; 3999 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4000 return 0; 4001 4002 if (Slice.Array == nullptr) 4003 return 1; 4004 4005 // Search for nul characters 4006 unsigned NullIndex = 0; 4007 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4008 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4009 break; 4010 } 4011 4012 return NullIndex + 1; 4013 } 4014 4015 /// If we can compute the length of the string pointed to by 4016 /// the specified pointer, return 'len+1'. If we can't, return 0. 4017 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4018 if (!V->getType()->isPointerTy()) 4019 return 0; 4020 4021 SmallPtrSet<const PHINode*, 32> PHIs; 4022 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4023 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4024 // an empty string as a length. 4025 return Len == ~0ULL ? 1 : Len; 4026 } 4027 4028 const Value * 4029 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4030 bool MustPreserveNullness) { 4031 assert(Call && 4032 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4033 if (const Value *RV = Call->getReturnedArgOperand()) 4034 return RV; 4035 // This can be used only as a aliasing property. 4036 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4037 Call, MustPreserveNullness)) 4038 return Call->getArgOperand(0); 4039 return nullptr; 4040 } 4041 4042 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4043 const CallBase *Call, bool MustPreserveNullness) { 4044 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4045 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4046 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4047 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4048 (!MustPreserveNullness && 4049 Call->getIntrinsicID() == Intrinsic::ptrmask); 4050 } 4051 4052 /// \p PN defines a loop-variant pointer to an object. Check if the 4053 /// previous iteration of the loop was referring to the same object as \p PN. 4054 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4055 const LoopInfo *LI) { 4056 // Find the loop-defined value. 4057 Loop *L = LI->getLoopFor(PN->getParent()); 4058 if (PN->getNumIncomingValues() != 2) 4059 return true; 4060 4061 // Find the value from previous iteration. 4062 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4063 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4064 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4065 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4066 return true; 4067 4068 // If a new pointer is loaded in the loop, the pointer references a different 4069 // object in every iteration. E.g.: 4070 // for (i) 4071 // int *p = a[i]; 4072 // ... 4073 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4074 if (!L->isLoopInvariant(Load->getPointerOperand())) 4075 return false; 4076 return true; 4077 } 4078 4079 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4080 unsigned MaxLookup) { 4081 if (!V->getType()->isPointerTy()) 4082 return V; 4083 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4084 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4085 V = GEP->getPointerOperand(); 4086 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4087 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4088 V = cast<Operator>(V)->getOperand(0); 4089 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4090 if (GA->isInterposable()) 4091 return V; 4092 V = GA->getAliasee(); 4093 } else if (isa<AllocaInst>(V)) { 4094 // An alloca can't be further simplified. 4095 return V; 4096 } else { 4097 if (auto *Call = dyn_cast<CallBase>(V)) { 4098 // CaptureTracking can know about special capturing properties of some 4099 // intrinsics like launder.invariant.group, that can't be expressed with 4100 // the attributes, but have properties like returning aliasing pointer. 4101 // Because some analysis may assume that nocaptured pointer is not 4102 // returned from some special intrinsic (because function would have to 4103 // be marked with returns attribute), it is crucial to use this function 4104 // because it should be in sync with CaptureTracking. Not using it may 4105 // cause weird miscompilations where 2 aliasing pointers are assumed to 4106 // noalias. 4107 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4108 V = RP; 4109 continue; 4110 } 4111 } 4112 4113 // See if InstructionSimplify knows any relevant tricks. 4114 if (Instruction *I = dyn_cast<Instruction>(V)) 4115 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4116 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4117 V = Simplified; 4118 continue; 4119 } 4120 4121 return V; 4122 } 4123 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4124 } 4125 return V; 4126 } 4127 4128 void llvm::GetUnderlyingObjects(const Value *V, 4129 SmallVectorImpl<const Value *> &Objects, 4130 const DataLayout &DL, LoopInfo *LI, 4131 unsigned MaxLookup) { 4132 SmallPtrSet<const Value *, 4> Visited; 4133 SmallVector<const Value *, 4> Worklist; 4134 Worklist.push_back(V); 4135 do { 4136 const Value *P = Worklist.pop_back_val(); 4137 P = GetUnderlyingObject(P, DL, MaxLookup); 4138 4139 if (!Visited.insert(P).second) 4140 continue; 4141 4142 if (auto *SI = dyn_cast<SelectInst>(P)) { 4143 Worklist.push_back(SI->getTrueValue()); 4144 Worklist.push_back(SI->getFalseValue()); 4145 continue; 4146 } 4147 4148 if (auto *PN = dyn_cast<PHINode>(P)) { 4149 // If this PHI changes the underlying object in every iteration of the 4150 // loop, don't look through it. Consider: 4151 // int **A; 4152 // for (i) { 4153 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4154 // Curr = A[i]; 4155 // *Prev, *Curr; 4156 // 4157 // Prev is tracking Curr one iteration behind so they refer to different 4158 // underlying objects. 4159 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4160 isSameUnderlyingObjectInLoop(PN, LI)) 4161 for (Value *IncValue : PN->incoming_values()) 4162 Worklist.push_back(IncValue); 4163 continue; 4164 } 4165 4166 Objects.push_back(P); 4167 } while (!Worklist.empty()); 4168 } 4169 4170 /// This is the function that does the work of looking through basic 4171 /// ptrtoint+arithmetic+inttoptr sequences. 4172 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4173 do { 4174 if (const Operator *U = dyn_cast<Operator>(V)) { 4175 // If we find a ptrtoint, we can transfer control back to the 4176 // regular getUnderlyingObjectFromInt. 4177 if (U->getOpcode() == Instruction::PtrToInt) 4178 return U->getOperand(0); 4179 // If we find an add of a constant, a multiplied value, or a phi, it's 4180 // likely that the other operand will lead us to the base 4181 // object. We don't have to worry about the case where the 4182 // object address is somehow being computed by the multiply, 4183 // because our callers only care when the result is an 4184 // identifiable object. 4185 if (U->getOpcode() != Instruction::Add || 4186 (!isa<ConstantInt>(U->getOperand(1)) && 4187 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4188 !isa<PHINode>(U->getOperand(1)))) 4189 return V; 4190 V = U->getOperand(0); 4191 } else { 4192 return V; 4193 } 4194 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4195 } while (true); 4196 } 4197 4198 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4199 /// ptrtoint+arithmetic+inttoptr sequences. 4200 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4201 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4202 SmallVectorImpl<Value *> &Objects, 4203 const DataLayout &DL) { 4204 SmallPtrSet<const Value *, 16> Visited; 4205 SmallVector<const Value *, 4> Working(1, V); 4206 do { 4207 V = Working.pop_back_val(); 4208 4209 SmallVector<const Value *, 4> Objs; 4210 GetUnderlyingObjects(V, Objs, DL); 4211 4212 for (const Value *V : Objs) { 4213 if (!Visited.insert(V).second) 4214 continue; 4215 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4216 const Value *O = 4217 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4218 if (O->getType()->isPointerTy()) { 4219 Working.push_back(O); 4220 continue; 4221 } 4222 } 4223 // If GetUnderlyingObjects fails to find an identifiable object, 4224 // getUnderlyingObjectsForCodeGen also fails for safety. 4225 if (!isIdentifiedObject(V)) { 4226 Objects.clear(); 4227 return false; 4228 } 4229 Objects.push_back(const_cast<Value *>(V)); 4230 } 4231 } while (!Working.empty()); 4232 return true; 4233 } 4234 4235 /// Return true if the only users of this pointer are lifetime markers. 4236 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4237 for (const User *U : V->users()) { 4238 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4239 if (!II) return false; 4240 4241 if (!II->isLifetimeStartOrEnd()) 4242 return false; 4243 } 4244 return true; 4245 } 4246 4247 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4248 if (!LI.isUnordered()) 4249 return true; 4250 const Function &F = *LI.getFunction(); 4251 // Speculative load may create a race that did not exist in the source. 4252 return F.hasFnAttribute(Attribute::SanitizeThread) || 4253 // Speculative load may load data from dirty regions. 4254 F.hasFnAttribute(Attribute::SanitizeAddress) || 4255 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4256 } 4257 4258 4259 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4260 const Instruction *CtxI, 4261 const DominatorTree *DT) { 4262 const Operator *Inst = dyn_cast<Operator>(V); 4263 if (!Inst) 4264 return false; 4265 4266 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4267 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4268 if (C->canTrap()) 4269 return false; 4270 4271 switch (Inst->getOpcode()) { 4272 default: 4273 return true; 4274 case Instruction::UDiv: 4275 case Instruction::URem: { 4276 // x / y is undefined if y == 0. 4277 const APInt *V; 4278 if (match(Inst->getOperand(1), m_APInt(V))) 4279 return *V != 0; 4280 return false; 4281 } 4282 case Instruction::SDiv: 4283 case Instruction::SRem: { 4284 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4285 const APInt *Numerator, *Denominator; 4286 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4287 return false; 4288 // We cannot hoist this division if the denominator is 0. 4289 if (*Denominator == 0) 4290 return false; 4291 // It's safe to hoist if the denominator is not 0 or -1. 4292 if (*Denominator != -1) 4293 return true; 4294 // At this point we know that the denominator is -1. It is safe to hoist as 4295 // long we know that the numerator is not INT_MIN. 4296 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4297 return !Numerator->isMinSignedValue(); 4298 // The numerator *might* be MinSignedValue. 4299 return false; 4300 } 4301 case Instruction::Load: { 4302 const LoadInst *LI = cast<LoadInst>(Inst); 4303 if (mustSuppressSpeculation(*LI)) 4304 return false; 4305 const DataLayout &DL = LI->getModule()->getDataLayout(); 4306 return isDereferenceableAndAlignedPointer( 4307 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4308 DL, CtxI, DT); 4309 } 4310 case Instruction::Call: { 4311 auto *CI = cast<const CallInst>(Inst); 4312 const Function *Callee = CI->getCalledFunction(); 4313 4314 // The called function could have undefined behavior or side-effects, even 4315 // if marked readnone nounwind. 4316 return Callee && Callee->isSpeculatable(); 4317 } 4318 case Instruction::VAArg: 4319 case Instruction::Alloca: 4320 case Instruction::Invoke: 4321 case Instruction::CallBr: 4322 case Instruction::PHI: 4323 case Instruction::Store: 4324 case Instruction::Ret: 4325 case Instruction::Br: 4326 case Instruction::IndirectBr: 4327 case Instruction::Switch: 4328 case Instruction::Unreachable: 4329 case Instruction::Fence: 4330 case Instruction::AtomicRMW: 4331 case Instruction::AtomicCmpXchg: 4332 case Instruction::LandingPad: 4333 case Instruction::Resume: 4334 case Instruction::CatchSwitch: 4335 case Instruction::CatchPad: 4336 case Instruction::CatchRet: 4337 case Instruction::CleanupPad: 4338 case Instruction::CleanupRet: 4339 return false; // Misc instructions which have effects 4340 } 4341 } 4342 4343 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4344 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4345 } 4346 4347 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4348 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4349 switch (OR) { 4350 case ConstantRange::OverflowResult::MayOverflow: 4351 return OverflowResult::MayOverflow; 4352 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4353 return OverflowResult::AlwaysOverflowsLow; 4354 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4355 return OverflowResult::AlwaysOverflowsHigh; 4356 case ConstantRange::OverflowResult::NeverOverflows: 4357 return OverflowResult::NeverOverflows; 4358 } 4359 llvm_unreachable("Unknown OverflowResult"); 4360 } 4361 4362 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4363 static ConstantRange computeConstantRangeIncludingKnownBits( 4364 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4365 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4366 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4367 KnownBits Known = computeKnownBits( 4368 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4369 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4370 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4371 ConstantRange::PreferredRangeType RangeType = 4372 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4373 return CR1.intersectWith(CR2, RangeType); 4374 } 4375 4376 OverflowResult llvm::computeOverflowForUnsignedMul( 4377 const Value *LHS, const Value *RHS, const DataLayout &DL, 4378 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4379 bool UseInstrInfo) { 4380 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4381 nullptr, UseInstrInfo); 4382 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4383 nullptr, UseInstrInfo); 4384 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4385 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4386 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4387 } 4388 4389 OverflowResult 4390 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4391 const DataLayout &DL, AssumptionCache *AC, 4392 const Instruction *CxtI, 4393 const DominatorTree *DT, bool UseInstrInfo) { 4394 // Multiplying n * m significant bits yields a result of n + m significant 4395 // bits. If the total number of significant bits does not exceed the 4396 // result bit width (minus 1), there is no overflow. 4397 // This means if we have enough leading sign bits in the operands 4398 // we can guarantee that the result does not overflow. 4399 // Ref: "Hacker's Delight" by Henry Warren 4400 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4401 4402 // Note that underestimating the number of sign bits gives a more 4403 // conservative answer. 4404 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4405 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4406 4407 // First handle the easy case: if we have enough sign bits there's 4408 // definitely no overflow. 4409 if (SignBits > BitWidth + 1) 4410 return OverflowResult::NeverOverflows; 4411 4412 // There are two ambiguous cases where there can be no overflow: 4413 // SignBits == BitWidth + 1 and 4414 // SignBits == BitWidth 4415 // The second case is difficult to check, therefore we only handle the 4416 // first case. 4417 if (SignBits == BitWidth + 1) { 4418 // It overflows only when both arguments are negative and the true 4419 // product is exactly the minimum negative number. 4420 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4421 // For simplicity we just check if at least one side is not negative. 4422 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4423 nullptr, UseInstrInfo); 4424 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4425 nullptr, UseInstrInfo); 4426 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4427 return OverflowResult::NeverOverflows; 4428 } 4429 return OverflowResult::MayOverflow; 4430 } 4431 4432 OverflowResult llvm::computeOverflowForUnsignedAdd( 4433 const Value *LHS, const Value *RHS, const DataLayout &DL, 4434 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4435 bool UseInstrInfo) { 4436 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4437 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4438 nullptr, UseInstrInfo); 4439 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4440 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4441 nullptr, UseInstrInfo); 4442 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4443 } 4444 4445 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4446 const Value *RHS, 4447 const AddOperator *Add, 4448 const DataLayout &DL, 4449 AssumptionCache *AC, 4450 const Instruction *CxtI, 4451 const DominatorTree *DT) { 4452 if (Add && Add->hasNoSignedWrap()) { 4453 return OverflowResult::NeverOverflows; 4454 } 4455 4456 // If LHS and RHS each have at least two sign bits, the addition will look 4457 // like 4458 // 4459 // XX..... + 4460 // YY..... 4461 // 4462 // If the carry into the most significant position is 0, X and Y can't both 4463 // be 1 and therefore the carry out of the addition is also 0. 4464 // 4465 // If the carry into the most significant position is 1, X and Y can't both 4466 // be 0 and therefore the carry out of the addition is also 1. 4467 // 4468 // Since the carry into the most significant position is always equal to 4469 // the carry out of the addition, there is no signed overflow. 4470 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4471 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4472 return OverflowResult::NeverOverflows; 4473 4474 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4475 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4476 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4477 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4478 OverflowResult OR = 4479 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4480 if (OR != OverflowResult::MayOverflow) 4481 return OR; 4482 4483 // The remaining code needs Add to be available. Early returns if not so. 4484 if (!Add) 4485 return OverflowResult::MayOverflow; 4486 4487 // If the sign of Add is the same as at least one of the operands, this add 4488 // CANNOT overflow. If this can be determined from the known bits of the 4489 // operands the above signedAddMayOverflow() check will have already done so. 4490 // The only other way to improve on the known bits is from an assumption, so 4491 // call computeKnownBitsFromAssume() directly. 4492 bool LHSOrRHSKnownNonNegative = 4493 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4494 bool LHSOrRHSKnownNegative = 4495 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4496 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4497 KnownBits AddKnown(LHSRange.getBitWidth()); 4498 computeKnownBitsFromAssume( 4499 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4500 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4501 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4502 return OverflowResult::NeverOverflows; 4503 } 4504 4505 return OverflowResult::MayOverflow; 4506 } 4507 4508 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4509 const Value *RHS, 4510 const DataLayout &DL, 4511 AssumptionCache *AC, 4512 const Instruction *CxtI, 4513 const DominatorTree *DT) { 4514 // Checking for conditions implied by dominating conditions may be expensive. 4515 // Limit it to usub_with_overflow calls for now. 4516 if (match(CxtI, 4517 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4518 if (auto C = 4519 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4520 if (*C) 4521 return OverflowResult::NeverOverflows; 4522 return OverflowResult::AlwaysOverflowsLow; 4523 } 4524 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4525 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4526 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4527 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4528 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4529 } 4530 4531 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4532 const Value *RHS, 4533 const DataLayout &DL, 4534 AssumptionCache *AC, 4535 const Instruction *CxtI, 4536 const DominatorTree *DT) { 4537 // If LHS and RHS each have at least two sign bits, the subtraction 4538 // cannot overflow. 4539 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4540 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4541 return OverflowResult::NeverOverflows; 4542 4543 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4544 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4545 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4546 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4547 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4548 } 4549 4550 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4551 const DominatorTree &DT) { 4552 SmallVector<const BranchInst *, 2> GuardingBranches; 4553 SmallVector<const ExtractValueInst *, 2> Results; 4554 4555 for (const User *U : WO->users()) { 4556 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4557 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4558 4559 if (EVI->getIndices()[0] == 0) 4560 Results.push_back(EVI); 4561 else { 4562 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4563 4564 for (const auto *U : EVI->users()) 4565 if (const auto *B = dyn_cast<BranchInst>(U)) { 4566 assert(B->isConditional() && "How else is it using an i1?"); 4567 GuardingBranches.push_back(B); 4568 } 4569 } 4570 } else { 4571 // We are using the aggregate directly in a way we don't want to analyze 4572 // here (storing it to a global, say). 4573 return false; 4574 } 4575 } 4576 4577 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4578 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4579 if (!NoWrapEdge.isSingleEdge()) 4580 return false; 4581 4582 // Check if all users of the add are provably no-wrap. 4583 for (const auto *Result : Results) { 4584 // If the extractvalue itself is not executed on overflow, the we don't 4585 // need to check each use separately, since domination is transitive. 4586 if (DT.dominates(NoWrapEdge, Result->getParent())) 4587 continue; 4588 4589 for (auto &RU : Result->uses()) 4590 if (!DT.dominates(NoWrapEdge, RU)) 4591 return false; 4592 } 4593 4594 return true; 4595 }; 4596 4597 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4598 } 4599 4600 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4601 const Instruction *CtxI, 4602 const DominatorTree *DT) { 4603 // If the value is a freeze instruction, then it can never 4604 // be undef or poison. 4605 if (isa<FreezeInst>(V)) 4606 return true; 4607 // TODO: Some instructions are guaranteed to return neither undef 4608 // nor poison if their arguments are not poison/undef. 4609 4610 // TODO: Deal with other Constant subclasses. 4611 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4612 return true; 4613 4614 if (auto PN = dyn_cast<PHINode>(V)) { 4615 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4616 return isa<ConstantInt>(U.get()); 4617 })) 4618 return true; 4619 } 4620 4621 if (auto II = dyn_cast<ICmpInst>(V)) { 4622 if (llvm::all_of(II->operands(), [](const Value *V) { 4623 return isGuaranteedNotToBeUndefOrPoison(V); 4624 })) 4625 return true; 4626 } 4627 4628 if (auto I = dyn_cast<Instruction>(V)) { 4629 if (programUndefinedIfFullPoison(I) && I->getType()->isIntegerTy(1)) 4630 // Note: once we have an agreement that poison is a value-wise concept, 4631 // we can remove the isIntegerTy(1) constraint. 4632 return true; 4633 } 4634 4635 // CxtI may be null or a cloned instruction. 4636 if (!CtxI || !CtxI->getParent() || !DT) 4637 return false; 4638 4639 // If V is used as a branch condition before reaching CtxI, V cannot be 4640 // undef or poison. 4641 // br V, BB1, BB2 4642 // BB1: 4643 // CtxI ; V cannot be undef or poison here 4644 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4645 while (Dominator) { 4646 auto *TI = Dominator->getBlock()->getTerminator(); 4647 4648 if (auto BI = dyn_cast<BranchInst>(TI)) { 4649 if (BI->isConditional() && BI->getCondition() == V) 4650 return true; 4651 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4652 if (SI->getCondition() == V) 4653 return true; 4654 } 4655 4656 Dominator = Dominator->getIDom(); 4657 } 4658 4659 return false; 4660 } 4661 4662 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4663 const DataLayout &DL, 4664 AssumptionCache *AC, 4665 const Instruction *CxtI, 4666 const DominatorTree *DT) { 4667 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4668 Add, DL, AC, CxtI, DT); 4669 } 4670 4671 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4672 const Value *RHS, 4673 const DataLayout &DL, 4674 AssumptionCache *AC, 4675 const Instruction *CxtI, 4676 const DominatorTree *DT) { 4677 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4678 } 4679 4680 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4681 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4682 // of time because it's possible for another thread to interfere with it for an 4683 // arbitrary length of time, but programs aren't allowed to rely on that. 4684 4685 // If there is no successor, then execution can't transfer to it. 4686 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4687 return !CRI->unwindsToCaller(); 4688 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4689 return !CatchSwitch->unwindsToCaller(); 4690 if (isa<ResumeInst>(I)) 4691 return false; 4692 if (isa<ReturnInst>(I)) 4693 return false; 4694 if (isa<UnreachableInst>(I)) 4695 return false; 4696 4697 // Calls can throw, or contain an infinite loop, or kill the process. 4698 if (auto CS = ImmutableCallSite(I)) { 4699 // Call sites that throw have implicit non-local control flow. 4700 if (!CS.doesNotThrow()) 4701 return false; 4702 4703 // A function which doens't throw and has "willreturn" attribute will 4704 // always return. 4705 if (CS.hasFnAttr(Attribute::WillReturn)) 4706 return true; 4707 4708 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4709 // etc. and thus not return. However, LLVM already assumes that 4710 // 4711 // - Thread exiting actions are modeled as writes to memory invisible to 4712 // the program. 4713 // 4714 // - Loops that don't have side effects (side effects are volatile/atomic 4715 // stores and IO) always terminate (see http://llvm.org/PR965). 4716 // Furthermore IO itself is also modeled as writes to memory invisible to 4717 // the program. 4718 // 4719 // We rely on those assumptions here, and use the memory effects of the call 4720 // target as a proxy for checking that it always returns. 4721 4722 // FIXME: This isn't aggressive enough; a call which only writes to a global 4723 // is guaranteed to return. 4724 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4725 } 4726 4727 // Other instructions return normally. 4728 return true; 4729 } 4730 4731 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4732 // TODO: This is slightly conservative for invoke instruction since exiting 4733 // via an exception *is* normal control for them. 4734 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4735 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4736 return false; 4737 return true; 4738 } 4739 4740 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4741 const Loop *L) { 4742 // The loop header is guaranteed to be executed for every iteration. 4743 // 4744 // FIXME: Relax this constraint to cover all basic blocks that are 4745 // guaranteed to be executed at every iteration. 4746 if (I->getParent() != L->getHeader()) return false; 4747 4748 for (const Instruction &LI : *L->getHeader()) { 4749 if (&LI == I) return true; 4750 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4751 } 4752 llvm_unreachable("Instruction not contained in its own parent basic block."); 4753 } 4754 4755 bool llvm::propagatesFullPoison(const Instruction *I) { 4756 // TODO: This should include all instructions apart from phis, selects and 4757 // call-like instructions. 4758 switch (I->getOpcode()) { 4759 case Instruction::Add: 4760 case Instruction::Sub: 4761 case Instruction::Xor: 4762 case Instruction::Trunc: 4763 case Instruction::BitCast: 4764 case Instruction::AddrSpaceCast: 4765 case Instruction::Mul: 4766 case Instruction::Shl: 4767 case Instruction::GetElementPtr: 4768 // These operations all propagate poison unconditionally. Note that poison 4769 // is not any particular value, so xor or subtraction of poison with 4770 // itself still yields poison, not zero. 4771 return true; 4772 4773 case Instruction::AShr: 4774 case Instruction::SExt: 4775 // For these operations, one bit of the input is replicated across 4776 // multiple output bits. A replicated poison bit is still poison. 4777 return true; 4778 4779 case Instruction::ICmp: 4780 // Comparing poison with any value yields poison. This is why, for 4781 // instance, x s< (x +nsw 1) can be folded to true. 4782 return true; 4783 4784 default: 4785 return false; 4786 } 4787 } 4788 4789 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4790 switch (I->getOpcode()) { 4791 case Instruction::Store: 4792 return cast<StoreInst>(I)->getPointerOperand(); 4793 4794 case Instruction::Load: 4795 return cast<LoadInst>(I)->getPointerOperand(); 4796 4797 case Instruction::AtomicCmpXchg: 4798 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4799 4800 case Instruction::AtomicRMW: 4801 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4802 4803 case Instruction::UDiv: 4804 case Instruction::SDiv: 4805 case Instruction::URem: 4806 case Instruction::SRem: 4807 return I->getOperand(1); 4808 4809 case Instruction::Call: 4810 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4811 switch (II->getIntrinsicID()) { 4812 case Intrinsic::assume: 4813 return II->getArgOperand(0); 4814 default: 4815 return nullptr; 4816 } 4817 } 4818 return nullptr; 4819 4820 default: 4821 return nullptr; 4822 } 4823 } 4824 4825 bool llvm::mustTriggerUB(const Instruction *I, 4826 const SmallSet<const Value *, 16>& KnownPoison) { 4827 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4828 return (NotPoison && KnownPoison.count(NotPoison)); 4829 } 4830 4831 4832 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4833 // We currently only look for uses of poison values within the same basic 4834 // block, as that makes it easier to guarantee that the uses will be 4835 // executed given that PoisonI is executed. 4836 // 4837 // FIXME: Expand this to consider uses beyond the same basic block. To do 4838 // this, look out for the distinction between post-dominance and strong 4839 // post-dominance. 4840 const BasicBlock *BB = PoisonI->getParent(); 4841 4842 // Set of instructions that we have proved will yield poison if PoisonI 4843 // does. 4844 SmallSet<const Value *, 16> YieldsPoison; 4845 SmallSet<const BasicBlock *, 4> Visited; 4846 YieldsPoison.insert(PoisonI); 4847 Visited.insert(PoisonI->getParent()); 4848 4849 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4850 4851 unsigned Iter = 0; 4852 while (Iter++ < MaxDepth) { 4853 for (auto &I : make_range(Begin, End)) { 4854 if (&I != PoisonI) { 4855 if (mustTriggerUB(&I, YieldsPoison)) 4856 return true; 4857 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4858 return false; 4859 } 4860 4861 // Mark poison that propagates from I through uses of I. 4862 if (YieldsPoison.count(&I)) { 4863 for (const User *User : I.users()) { 4864 const Instruction *UserI = cast<Instruction>(User); 4865 if (propagatesFullPoison(UserI)) 4866 YieldsPoison.insert(User); 4867 } 4868 } 4869 } 4870 4871 if (auto *NextBB = BB->getSingleSuccessor()) { 4872 if (Visited.insert(NextBB).second) { 4873 BB = NextBB; 4874 Begin = BB->getFirstNonPHI()->getIterator(); 4875 End = BB->end(); 4876 continue; 4877 } 4878 } 4879 4880 break; 4881 } 4882 return false; 4883 } 4884 4885 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4886 if (FMF.noNaNs()) 4887 return true; 4888 4889 if (auto *C = dyn_cast<ConstantFP>(V)) 4890 return !C->isNaN(); 4891 4892 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4893 if (!C->getElementType()->isFloatingPointTy()) 4894 return false; 4895 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4896 if (C->getElementAsAPFloat(I).isNaN()) 4897 return false; 4898 } 4899 return true; 4900 } 4901 4902 if (isa<ConstantAggregateZero>(V)) 4903 return true; 4904 4905 return false; 4906 } 4907 4908 static bool isKnownNonZero(const Value *V) { 4909 if (auto *C = dyn_cast<ConstantFP>(V)) 4910 return !C->isZero(); 4911 4912 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4913 if (!C->getElementType()->isFloatingPointTy()) 4914 return false; 4915 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4916 if (C->getElementAsAPFloat(I).isZero()) 4917 return false; 4918 } 4919 return true; 4920 } 4921 4922 return false; 4923 } 4924 4925 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4926 /// Given non-min/max outer cmp/select from the clamp pattern this 4927 /// function recognizes if it can be substitued by a "canonical" min/max 4928 /// pattern. 4929 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4930 Value *CmpLHS, Value *CmpRHS, 4931 Value *TrueVal, Value *FalseVal, 4932 Value *&LHS, Value *&RHS) { 4933 // Try to match 4934 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4935 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4936 // and return description of the outer Max/Min. 4937 4938 // First, check if select has inverse order: 4939 if (CmpRHS == FalseVal) { 4940 std::swap(TrueVal, FalseVal); 4941 Pred = CmpInst::getInversePredicate(Pred); 4942 } 4943 4944 // Assume success now. If there's no match, callers should not use these anyway. 4945 LHS = TrueVal; 4946 RHS = FalseVal; 4947 4948 const APFloat *FC1; 4949 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4950 return {SPF_UNKNOWN, SPNB_NA, false}; 4951 4952 const APFloat *FC2; 4953 switch (Pred) { 4954 case CmpInst::FCMP_OLT: 4955 case CmpInst::FCMP_OLE: 4956 case CmpInst::FCMP_ULT: 4957 case CmpInst::FCMP_ULE: 4958 if (match(FalseVal, 4959 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4960 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4961 *FC1 < *FC2) 4962 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4963 break; 4964 case CmpInst::FCMP_OGT: 4965 case CmpInst::FCMP_OGE: 4966 case CmpInst::FCMP_UGT: 4967 case CmpInst::FCMP_UGE: 4968 if (match(FalseVal, 4969 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4970 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4971 *FC1 > *FC2) 4972 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4973 break; 4974 default: 4975 break; 4976 } 4977 4978 return {SPF_UNKNOWN, SPNB_NA, false}; 4979 } 4980 4981 /// Recognize variations of: 4982 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4983 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4984 Value *CmpLHS, Value *CmpRHS, 4985 Value *TrueVal, Value *FalseVal) { 4986 // Swap the select operands and predicate to match the patterns below. 4987 if (CmpRHS != TrueVal) { 4988 Pred = ICmpInst::getSwappedPredicate(Pred); 4989 std::swap(TrueVal, FalseVal); 4990 } 4991 const APInt *C1; 4992 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4993 const APInt *C2; 4994 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4995 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4996 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4997 return {SPF_SMAX, SPNB_NA, false}; 4998 4999 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5000 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5001 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5002 return {SPF_SMIN, SPNB_NA, false}; 5003 5004 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5005 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5006 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5007 return {SPF_UMAX, SPNB_NA, false}; 5008 5009 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5010 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5011 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5012 return {SPF_UMIN, SPNB_NA, false}; 5013 } 5014 return {SPF_UNKNOWN, SPNB_NA, false}; 5015 } 5016 5017 /// Recognize variations of: 5018 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5019 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5020 Value *CmpLHS, Value *CmpRHS, 5021 Value *TVal, Value *FVal, 5022 unsigned Depth) { 5023 // TODO: Allow FP min/max with nnan/nsz. 5024 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5025 5026 Value *A = nullptr, *B = nullptr; 5027 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5028 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5029 return {SPF_UNKNOWN, SPNB_NA, false}; 5030 5031 Value *C = nullptr, *D = nullptr; 5032 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5033 if (L.Flavor != R.Flavor) 5034 return {SPF_UNKNOWN, SPNB_NA, false}; 5035 5036 // We have something like: x Pred y ? min(a, b) : min(c, d). 5037 // Try to match the compare to the min/max operations of the select operands. 5038 // First, make sure we have the right compare predicate. 5039 switch (L.Flavor) { 5040 case SPF_SMIN: 5041 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5042 Pred = ICmpInst::getSwappedPredicate(Pred); 5043 std::swap(CmpLHS, CmpRHS); 5044 } 5045 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5046 break; 5047 return {SPF_UNKNOWN, SPNB_NA, false}; 5048 case SPF_SMAX: 5049 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5050 Pred = ICmpInst::getSwappedPredicate(Pred); 5051 std::swap(CmpLHS, CmpRHS); 5052 } 5053 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5054 break; 5055 return {SPF_UNKNOWN, SPNB_NA, false}; 5056 case SPF_UMIN: 5057 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5058 Pred = ICmpInst::getSwappedPredicate(Pred); 5059 std::swap(CmpLHS, CmpRHS); 5060 } 5061 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5062 break; 5063 return {SPF_UNKNOWN, SPNB_NA, false}; 5064 case SPF_UMAX: 5065 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5066 Pred = ICmpInst::getSwappedPredicate(Pred); 5067 std::swap(CmpLHS, CmpRHS); 5068 } 5069 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5070 break; 5071 return {SPF_UNKNOWN, SPNB_NA, false}; 5072 default: 5073 return {SPF_UNKNOWN, SPNB_NA, false}; 5074 } 5075 5076 // If there is a common operand in the already matched min/max and the other 5077 // min/max operands match the compare operands (either directly or inverted), 5078 // then this is min/max of the same flavor. 5079 5080 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5081 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5082 if (D == B) { 5083 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5084 match(A, m_Not(m_Specific(CmpRHS))))) 5085 return {L.Flavor, SPNB_NA, false}; 5086 } 5087 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5088 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5089 if (C == B) { 5090 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5091 match(A, m_Not(m_Specific(CmpRHS))))) 5092 return {L.Flavor, SPNB_NA, false}; 5093 } 5094 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5095 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5096 if (D == A) { 5097 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5098 match(B, m_Not(m_Specific(CmpRHS))))) 5099 return {L.Flavor, SPNB_NA, false}; 5100 } 5101 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5102 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5103 if (C == A) { 5104 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5105 match(B, m_Not(m_Specific(CmpRHS))))) 5106 return {L.Flavor, SPNB_NA, false}; 5107 } 5108 5109 return {SPF_UNKNOWN, SPNB_NA, false}; 5110 } 5111 5112 /// Match non-obvious integer minimum and maximum sequences. 5113 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5114 Value *CmpLHS, Value *CmpRHS, 5115 Value *TrueVal, Value *FalseVal, 5116 Value *&LHS, Value *&RHS, 5117 unsigned Depth) { 5118 // Assume success. If there's no match, callers should not use these anyway. 5119 LHS = TrueVal; 5120 RHS = FalseVal; 5121 5122 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5123 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5124 return SPR; 5125 5126 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5127 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5128 return SPR; 5129 5130 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5131 return {SPF_UNKNOWN, SPNB_NA, false}; 5132 5133 // Z = X -nsw Y 5134 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5135 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5136 if (match(TrueVal, m_Zero()) && 5137 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5138 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5139 5140 // Z = X -nsw Y 5141 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5142 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5143 if (match(FalseVal, m_Zero()) && 5144 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5145 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5146 5147 const APInt *C1; 5148 if (!match(CmpRHS, m_APInt(C1))) 5149 return {SPF_UNKNOWN, SPNB_NA, false}; 5150 5151 // An unsigned min/max can be written with a signed compare. 5152 const APInt *C2; 5153 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5154 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5155 // Is the sign bit set? 5156 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5157 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5158 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5159 C2->isMaxSignedValue()) 5160 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5161 5162 // Is the sign bit clear? 5163 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5164 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5165 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5166 C2->isMinSignedValue()) 5167 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5168 } 5169 5170 // Look through 'not' ops to find disguised signed min/max. 5171 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 5172 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 5173 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 5174 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 5175 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5176 5177 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 5178 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 5179 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 5180 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 5181 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5182 5183 return {SPF_UNKNOWN, SPNB_NA, false}; 5184 } 5185 5186 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5187 assert(X && Y && "Invalid operand"); 5188 5189 // X = sub (0, Y) || X = sub nsw (0, Y) 5190 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5191 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5192 return true; 5193 5194 // Y = sub (0, X) || Y = sub nsw (0, X) 5195 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5196 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5197 return true; 5198 5199 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5200 Value *A, *B; 5201 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5202 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5203 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5204 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5205 } 5206 5207 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5208 FastMathFlags FMF, 5209 Value *CmpLHS, Value *CmpRHS, 5210 Value *TrueVal, Value *FalseVal, 5211 Value *&LHS, Value *&RHS, 5212 unsigned Depth) { 5213 if (CmpInst::isFPPredicate(Pred)) { 5214 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5215 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5216 // purpose of identifying min/max. Disregard vector constants with undefined 5217 // elements because those can not be back-propagated for analysis. 5218 Value *OutputZeroVal = nullptr; 5219 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5220 !cast<Constant>(TrueVal)->containsUndefElement()) 5221 OutputZeroVal = TrueVal; 5222 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5223 !cast<Constant>(FalseVal)->containsUndefElement()) 5224 OutputZeroVal = FalseVal; 5225 5226 if (OutputZeroVal) { 5227 if (match(CmpLHS, m_AnyZeroFP())) 5228 CmpLHS = OutputZeroVal; 5229 if (match(CmpRHS, m_AnyZeroFP())) 5230 CmpRHS = OutputZeroVal; 5231 } 5232 } 5233 5234 LHS = CmpLHS; 5235 RHS = CmpRHS; 5236 5237 // Signed zero may return inconsistent results between implementations. 5238 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5239 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5240 // Therefore, we behave conservatively and only proceed if at least one of the 5241 // operands is known to not be zero or if we don't care about signed zero. 5242 switch (Pred) { 5243 default: break; 5244 // FIXME: Include OGT/OLT/UGT/ULT. 5245 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5246 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5247 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5248 !isKnownNonZero(CmpRHS)) 5249 return {SPF_UNKNOWN, SPNB_NA, false}; 5250 } 5251 5252 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5253 bool Ordered = false; 5254 5255 // When given one NaN and one non-NaN input: 5256 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5257 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5258 // ordered comparison fails), which could be NaN or non-NaN. 5259 // so here we discover exactly what NaN behavior is required/accepted. 5260 if (CmpInst::isFPPredicate(Pred)) { 5261 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5262 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5263 5264 if (LHSSafe && RHSSafe) { 5265 // Both operands are known non-NaN. 5266 NaNBehavior = SPNB_RETURNS_ANY; 5267 } else if (CmpInst::isOrdered(Pred)) { 5268 // An ordered comparison will return false when given a NaN, so it 5269 // returns the RHS. 5270 Ordered = true; 5271 if (LHSSafe) 5272 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5273 NaNBehavior = SPNB_RETURNS_NAN; 5274 else if (RHSSafe) 5275 NaNBehavior = SPNB_RETURNS_OTHER; 5276 else 5277 // Completely unsafe. 5278 return {SPF_UNKNOWN, SPNB_NA, false}; 5279 } else { 5280 Ordered = false; 5281 // An unordered comparison will return true when given a NaN, so it 5282 // returns the LHS. 5283 if (LHSSafe) 5284 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5285 NaNBehavior = SPNB_RETURNS_OTHER; 5286 else if (RHSSafe) 5287 NaNBehavior = SPNB_RETURNS_NAN; 5288 else 5289 // Completely unsafe. 5290 return {SPF_UNKNOWN, SPNB_NA, false}; 5291 } 5292 } 5293 5294 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5295 std::swap(CmpLHS, CmpRHS); 5296 Pred = CmpInst::getSwappedPredicate(Pred); 5297 if (NaNBehavior == SPNB_RETURNS_NAN) 5298 NaNBehavior = SPNB_RETURNS_OTHER; 5299 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5300 NaNBehavior = SPNB_RETURNS_NAN; 5301 Ordered = !Ordered; 5302 } 5303 5304 // ([if]cmp X, Y) ? X : Y 5305 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5306 switch (Pred) { 5307 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5308 case ICmpInst::ICMP_UGT: 5309 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5310 case ICmpInst::ICMP_SGT: 5311 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5312 case ICmpInst::ICMP_ULT: 5313 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5314 case ICmpInst::ICMP_SLT: 5315 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5316 case FCmpInst::FCMP_UGT: 5317 case FCmpInst::FCMP_UGE: 5318 case FCmpInst::FCMP_OGT: 5319 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5320 case FCmpInst::FCMP_ULT: 5321 case FCmpInst::FCMP_ULE: 5322 case FCmpInst::FCMP_OLT: 5323 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5324 } 5325 } 5326 5327 if (isKnownNegation(TrueVal, FalseVal)) { 5328 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5329 // match against either LHS or sext(LHS). 5330 auto MaybeSExtCmpLHS = 5331 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5332 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5333 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5334 if (match(TrueVal, MaybeSExtCmpLHS)) { 5335 // Set the return values. If the compare uses the negated value (-X >s 0), 5336 // swap the return values because the negated value is always 'RHS'. 5337 LHS = TrueVal; 5338 RHS = FalseVal; 5339 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5340 std::swap(LHS, RHS); 5341 5342 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5343 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5344 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5345 return {SPF_ABS, SPNB_NA, false}; 5346 5347 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5348 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5349 return {SPF_ABS, SPNB_NA, false}; 5350 5351 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5352 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5353 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5354 return {SPF_NABS, SPNB_NA, false}; 5355 } 5356 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5357 // Set the return values. If the compare uses the negated value (-X >s 0), 5358 // swap the return values because the negated value is always 'RHS'. 5359 LHS = FalseVal; 5360 RHS = TrueVal; 5361 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5362 std::swap(LHS, RHS); 5363 5364 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5365 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5366 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5367 return {SPF_NABS, SPNB_NA, false}; 5368 5369 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5370 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5371 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5372 return {SPF_ABS, SPNB_NA, false}; 5373 } 5374 } 5375 5376 if (CmpInst::isIntPredicate(Pred)) 5377 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5378 5379 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5380 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5381 // semantics than minNum. Be conservative in such case. 5382 if (NaNBehavior != SPNB_RETURNS_ANY || 5383 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5384 !isKnownNonZero(CmpRHS))) 5385 return {SPF_UNKNOWN, SPNB_NA, false}; 5386 5387 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5388 } 5389 5390 /// Helps to match a select pattern in case of a type mismatch. 5391 /// 5392 /// The function processes the case when type of true and false values of a 5393 /// select instruction differs from type of the cmp instruction operands because 5394 /// of a cast instruction. The function checks if it is legal to move the cast 5395 /// operation after "select". If yes, it returns the new second value of 5396 /// "select" (with the assumption that cast is moved): 5397 /// 1. As operand of cast instruction when both values of "select" are same cast 5398 /// instructions. 5399 /// 2. As restored constant (by applying reverse cast operation) when the first 5400 /// value of the "select" is a cast operation and the second value is a 5401 /// constant. 5402 /// NOTE: We return only the new second value because the first value could be 5403 /// accessed as operand of cast instruction. 5404 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5405 Instruction::CastOps *CastOp) { 5406 auto *Cast1 = dyn_cast<CastInst>(V1); 5407 if (!Cast1) 5408 return nullptr; 5409 5410 *CastOp = Cast1->getOpcode(); 5411 Type *SrcTy = Cast1->getSrcTy(); 5412 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5413 // If V1 and V2 are both the same cast from the same type, look through V1. 5414 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5415 return Cast2->getOperand(0); 5416 return nullptr; 5417 } 5418 5419 auto *C = dyn_cast<Constant>(V2); 5420 if (!C) 5421 return nullptr; 5422 5423 Constant *CastedTo = nullptr; 5424 switch (*CastOp) { 5425 case Instruction::ZExt: 5426 if (CmpI->isUnsigned()) 5427 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5428 break; 5429 case Instruction::SExt: 5430 if (CmpI->isSigned()) 5431 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5432 break; 5433 case Instruction::Trunc: 5434 Constant *CmpConst; 5435 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5436 CmpConst->getType() == SrcTy) { 5437 // Here we have the following case: 5438 // 5439 // %cond = cmp iN %x, CmpConst 5440 // %tr = trunc iN %x to iK 5441 // %narrowsel = select i1 %cond, iK %t, iK C 5442 // 5443 // We can always move trunc after select operation: 5444 // 5445 // %cond = cmp iN %x, CmpConst 5446 // %widesel = select i1 %cond, iN %x, iN CmpConst 5447 // %tr = trunc iN %widesel to iK 5448 // 5449 // Note that C could be extended in any way because we don't care about 5450 // upper bits after truncation. It can't be abs pattern, because it would 5451 // look like: 5452 // 5453 // select i1 %cond, x, -x. 5454 // 5455 // So only min/max pattern could be matched. Such match requires widened C 5456 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5457 // CmpConst == C is checked below. 5458 CastedTo = CmpConst; 5459 } else { 5460 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5461 } 5462 break; 5463 case Instruction::FPTrunc: 5464 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5465 break; 5466 case Instruction::FPExt: 5467 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5468 break; 5469 case Instruction::FPToUI: 5470 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5471 break; 5472 case Instruction::FPToSI: 5473 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5474 break; 5475 case Instruction::UIToFP: 5476 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5477 break; 5478 case Instruction::SIToFP: 5479 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5480 break; 5481 default: 5482 break; 5483 } 5484 5485 if (!CastedTo) 5486 return nullptr; 5487 5488 // Make sure the cast doesn't lose any information. 5489 Constant *CastedBack = 5490 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5491 if (CastedBack != C) 5492 return nullptr; 5493 5494 return CastedTo; 5495 } 5496 5497 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5498 Instruction::CastOps *CastOp, 5499 unsigned Depth) { 5500 if (Depth >= MaxDepth) 5501 return {SPF_UNKNOWN, SPNB_NA, false}; 5502 5503 SelectInst *SI = dyn_cast<SelectInst>(V); 5504 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5505 5506 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5507 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5508 5509 Value *TrueVal = SI->getTrueValue(); 5510 Value *FalseVal = SI->getFalseValue(); 5511 5512 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5513 CastOp, Depth); 5514 } 5515 5516 SelectPatternResult llvm::matchDecomposedSelectPattern( 5517 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5518 Instruction::CastOps *CastOp, unsigned Depth) { 5519 CmpInst::Predicate Pred = CmpI->getPredicate(); 5520 Value *CmpLHS = CmpI->getOperand(0); 5521 Value *CmpRHS = CmpI->getOperand(1); 5522 FastMathFlags FMF; 5523 if (isa<FPMathOperator>(CmpI)) 5524 FMF = CmpI->getFastMathFlags(); 5525 5526 // Bail out early. 5527 if (CmpI->isEquality()) 5528 return {SPF_UNKNOWN, SPNB_NA, false}; 5529 5530 // Deal with type mismatches. 5531 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5532 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5533 // If this is a potential fmin/fmax with a cast to integer, then ignore 5534 // -0.0 because there is no corresponding integer value. 5535 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5536 FMF.setNoSignedZeros(); 5537 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5538 cast<CastInst>(TrueVal)->getOperand(0), C, 5539 LHS, RHS, Depth); 5540 } 5541 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5542 // If this is a potential fmin/fmax with a cast to integer, then ignore 5543 // -0.0 because there is no corresponding integer value. 5544 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5545 FMF.setNoSignedZeros(); 5546 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5547 C, cast<CastInst>(FalseVal)->getOperand(0), 5548 LHS, RHS, Depth); 5549 } 5550 } 5551 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5552 LHS, RHS, Depth); 5553 } 5554 5555 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5556 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5557 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5558 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5559 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5560 if (SPF == SPF_FMINNUM) 5561 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5562 if (SPF == SPF_FMAXNUM) 5563 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5564 llvm_unreachable("unhandled!"); 5565 } 5566 5567 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5568 if (SPF == SPF_SMIN) return SPF_SMAX; 5569 if (SPF == SPF_UMIN) return SPF_UMAX; 5570 if (SPF == SPF_SMAX) return SPF_SMIN; 5571 if (SPF == SPF_UMAX) return SPF_UMIN; 5572 llvm_unreachable("unhandled!"); 5573 } 5574 5575 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5576 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5577 } 5578 5579 /// Return true if "icmp Pred LHS RHS" is always true. 5580 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5581 const Value *RHS, const DataLayout &DL, 5582 unsigned Depth) { 5583 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5584 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5585 return true; 5586 5587 switch (Pred) { 5588 default: 5589 return false; 5590 5591 case CmpInst::ICMP_SLE: { 5592 const APInt *C; 5593 5594 // LHS s<= LHS +_{nsw} C if C >= 0 5595 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5596 return !C->isNegative(); 5597 return false; 5598 } 5599 5600 case CmpInst::ICMP_ULE: { 5601 const APInt *C; 5602 5603 // LHS u<= LHS +_{nuw} C for any C 5604 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5605 return true; 5606 5607 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5608 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5609 const Value *&X, 5610 const APInt *&CA, const APInt *&CB) { 5611 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5612 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5613 return true; 5614 5615 // If X & C == 0 then (X | C) == X +_{nuw} C 5616 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5617 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5618 KnownBits Known(CA->getBitWidth()); 5619 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5620 /*CxtI*/ nullptr, /*DT*/ nullptr); 5621 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5622 return true; 5623 } 5624 5625 return false; 5626 }; 5627 5628 const Value *X; 5629 const APInt *CLHS, *CRHS; 5630 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5631 return CLHS->ule(*CRHS); 5632 5633 return false; 5634 } 5635 } 5636 } 5637 5638 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5639 /// ALHS ARHS" is true. Otherwise, return None. 5640 static Optional<bool> 5641 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5642 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5643 const DataLayout &DL, unsigned Depth) { 5644 switch (Pred) { 5645 default: 5646 return None; 5647 5648 case CmpInst::ICMP_SLT: 5649 case CmpInst::ICMP_SLE: 5650 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5651 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5652 return true; 5653 return None; 5654 5655 case CmpInst::ICMP_ULT: 5656 case CmpInst::ICMP_ULE: 5657 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5658 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5659 return true; 5660 return None; 5661 } 5662 } 5663 5664 /// Return true if the operands of the two compares match. IsSwappedOps is true 5665 /// when the operands match, but are swapped. 5666 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5667 const Value *BLHS, const Value *BRHS, 5668 bool &IsSwappedOps) { 5669 5670 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5671 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5672 return IsMatchingOps || IsSwappedOps; 5673 } 5674 5675 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5676 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5677 /// Otherwise, return None if we can't infer anything. 5678 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5679 CmpInst::Predicate BPred, 5680 bool AreSwappedOps) { 5681 // Canonicalize the predicate as if the operands were not commuted. 5682 if (AreSwappedOps) 5683 BPred = ICmpInst::getSwappedPredicate(BPred); 5684 5685 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5686 return true; 5687 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5688 return false; 5689 5690 return None; 5691 } 5692 5693 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5694 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5695 /// Otherwise, return None if we can't infer anything. 5696 static Optional<bool> 5697 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5698 const ConstantInt *C1, 5699 CmpInst::Predicate BPred, 5700 const ConstantInt *C2) { 5701 ConstantRange DomCR = 5702 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5703 ConstantRange CR = 5704 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5705 ConstantRange Intersection = DomCR.intersectWith(CR); 5706 ConstantRange Difference = DomCR.difference(CR); 5707 if (Intersection.isEmptySet()) 5708 return false; 5709 if (Difference.isEmptySet()) 5710 return true; 5711 return None; 5712 } 5713 5714 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5715 /// false. Otherwise, return None if we can't infer anything. 5716 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5717 CmpInst::Predicate BPred, 5718 const Value *BLHS, const Value *BRHS, 5719 const DataLayout &DL, bool LHSIsTrue, 5720 unsigned Depth) { 5721 Value *ALHS = LHS->getOperand(0); 5722 Value *ARHS = LHS->getOperand(1); 5723 5724 // The rest of the logic assumes the LHS condition is true. If that's not the 5725 // case, invert the predicate to make it so. 5726 CmpInst::Predicate APred = 5727 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5728 5729 // Can we infer anything when the two compares have matching operands? 5730 bool AreSwappedOps; 5731 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5732 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5733 APred, BPred, AreSwappedOps)) 5734 return Implication; 5735 // No amount of additional analysis will infer the second condition, so 5736 // early exit. 5737 return None; 5738 } 5739 5740 // Can we infer anything when the LHS operands match and the RHS operands are 5741 // constants (not necessarily matching)? 5742 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5743 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5744 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5745 return Implication; 5746 // No amount of additional analysis will infer the second condition, so 5747 // early exit. 5748 return None; 5749 } 5750 5751 if (APred == BPred) 5752 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5753 return None; 5754 } 5755 5756 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5757 /// false. Otherwise, return None if we can't infer anything. We expect the 5758 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5759 static Optional<bool> 5760 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5761 const Value *RHSOp0, const Value *RHSOp1, 5762 5763 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5764 // The LHS must be an 'or' or an 'and' instruction. 5765 assert((LHS->getOpcode() == Instruction::And || 5766 LHS->getOpcode() == Instruction::Or) && 5767 "Expected LHS to be 'and' or 'or'."); 5768 5769 assert(Depth <= MaxDepth && "Hit recursion limit"); 5770 5771 // If the result of an 'or' is false, then we know both legs of the 'or' are 5772 // false. Similarly, if the result of an 'and' is true, then we know both 5773 // legs of the 'and' are true. 5774 Value *ALHS, *ARHS; 5775 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5776 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5777 // FIXME: Make this non-recursion. 5778 if (Optional<bool> Implication = isImpliedCondition( 5779 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5780 return Implication; 5781 if (Optional<bool> Implication = isImpliedCondition( 5782 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5783 return Implication; 5784 return None; 5785 } 5786 return None; 5787 } 5788 5789 Optional<bool> 5790 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5791 const Value *RHSOp0, const Value *RHSOp1, 5792 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5793 // Bail out when we hit the limit. 5794 if (Depth == MaxDepth) 5795 return None; 5796 5797 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5798 // example. 5799 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5800 return None; 5801 5802 Type *OpTy = LHS->getType(); 5803 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5804 5805 // FIXME: Extending the code below to handle vectors. 5806 if (OpTy->isVectorTy()) 5807 return None; 5808 5809 assert(OpTy->isIntegerTy(1) && "implied by above"); 5810 5811 // Both LHS and RHS are icmps. 5812 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5813 if (LHSCmp) 5814 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5815 Depth); 5816 5817 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5818 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5819 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5820 if (LHSBO) { 5821 if ((LHSBO->getOpcode() == Instruction::And || 5822 LHSBO->getOpcode() == Instruction::Or)) 5823 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5824 Depth); 5825 } 5826 return None; 5827 } 5828 5829 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5830 const DataLayout &DL, bool LHSIsTrue, 5831 unsigned Depth) { 5832 // LHS ==> RHS by definition 5833 if (LHS == RHS) 5834 return LHSIsTrue; 5835 5836 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5837 if (RHSCmp) 5838 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 5839 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 5840 LHSIsTrue, Depth); 5841 return None; 5842 } 5843 5844 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 5845 // condition dominating ContextI or nullptr, if no condition is found. 5846 static std::pair<Value *, bool> 5847 getDomPredecessorCondition(const Instruction *ContextI) { 5848 if (!ContextI || !ContextI->getParent()) 5849 return {nullptr, false}; 5850 5851 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5852 // dominator tree (eg, from a SimplifyQuery) instead? 5853 const BasicBlock *ContextBB = ContextI->getParent(); 5854 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5855 if (!PredBB) 5856 return {nullptr, false}; 5857 5858 // We need a conditional branch in the predecessor. 5859 Value *PredCond; 5860 BasicBlock *TrueBB, *FalseBB; 5861 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5862 return {nullptr, false}; 5863 5864 // The branch should get simplified. Don't bother simplifying this condition. 5865 if (TrueBB == FalseBB) 5866 return {nullptr, false}; 5867 5868 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5869 "Predecessor block does not point to successor?"); 5870 5871 // Is this condition implied by the predecessor condition? 5872 return {PredCond, TrueBB == ContextBB}; 5873 } 5874 5875 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5876 const Instruction *ContextI, 5877 const DataLayout &DL) { 5878 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5879 auto PredCond = getDomPredecessorCondition(ContextI); 5880 if (PredCond.first) 5881 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 5882 return None; 5883 } 5884 5885 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 5886 const Value *LHS, const Value *RHS, 5887 const Instruction *ContextI, 5888 const DataLayout &DL) { 5889 auto PredCond = getDomPredecessorCondition(ContextI); 5890 if (PredCond.first) 5891 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 5892 PredCond.second); 5893 return None; 5894 } 5895 5896 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5897 APInt &Upper, const InstrInfoQuery &IIQ) { 5898 unsigned Width = Lower.getBitWidth(); 5899 const APInt *C; 5900 switch (BO.getOpcode()) { 5901 case Instruction::Add: 5902 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5903 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5904 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5905 // 'add nuw x, C' produces [C, UINT_MAX]. 5906 Lower = *C; 5907 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5908 if (C->isNegative()) { 5909 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5910 Lower = APInt::getSignedMinValue(Width); 5911 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5912 } else { 5913 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5914 Lower = APInt::getSignedMinValue(Width) + *C; 5915 Upper = APInt::getSignedMaxValue(Width) + 1; 5916 } 5917 } 5918 } 5919 break; 5920 5921 case Instruction::And: 5922 if (match(BO.getOperand(1), m_APInt(C))) 5923 // 'and x, C' produces [0, C]. 5924 Upper = *C + 1; 5925 break; 5926 5927 case Instruction::Or: 5928 if (match(BO.getOperand(1), m_APInt(C))) 5929 // 'or x, C' produces [C, UINT_MAX]. 5930 Lower = *C; 5931 break; 5932 5933 case Instruction::AShr: 5934 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5935 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5936 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5937 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5938 } else if (match(BO.getOperand(0), m_APInt(C))) { 5939 unsigned ShiftAmount = Width - 1; 5940 if (!C->isNullValue() && IIQ.isExact(&BO)) 5941 ShiftAmount = C->countTrailingZeros(); 5942 if (C->isNegative()) { 5943 // 'ashr C, x' produces [C, C >> (Width-1)] 5944 Lower = *C; 5945 Upper = C->ashr(ShiftAmount) + 1; 5946 } else { 5947 // 'ashr C, x' produces [C >> (Width-1), C] 5948 Lower = C->ashr(ShiftAmount); 5949 Upper = *C + 1; 5950 } 5951 } 5952 break; 5953 5954 case Instruction::LShr: 5955 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5956 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5957 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5958 } else if (match(BO.getOperand(0), m_APInt(C))) { 5959 // 'lshr C, x' produces [C >> (Width-1), C]. 5960 unsigned ShiftAmount = Width - 1; 5961 if (!C->isNullValue() && IIQ.isExact(&BO)) 5962 ShiftAmount = C->countTrailingZeros(); 5963 Lower = C->lshr(ShiftAmount); 5964 Upper = *C + 1; 5965 } 5966 break; 5967 5968 case Instruction::Shl: 5969 if (match(BO.getOperand(0), m_APInt(C))) { 5970 if (IIQ.hasNoUnsignedWrap(&BO)) { 5971 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5972 Lower = *C; 5973 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5974 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5975 if (C->isNegative()) { 5976 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5977 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5978 Lower = C->shl(ShiftAmount); 5979 Upper = *C + 1; 5980 } else { 5981 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5982 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5983 Lower = *C; 5984 Upper = C->shl(ShiftAmount) + 1; 5985 } 5986 } 5987 } 5988 break; 5989 5990 case Instruction::SDiv: 5991 if (match(BO.getOperand(1), m_APInt(C))) { 5992 APInt IntMin = APInt::getSignedMinValue(Width); 5993 APInt IntMax = APInt::getSignedMaxValue(Width); 5994 if (C->isAllOnesValue()) { 5995 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5996 // where C != -1 and C != 0 and C != 1 5997 Lower = IntMin + 1; 5998 Upper = IntMax + 1; 5999 } else if (C->countLeadingZeros() < Width - 1) { 6000 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6001 // where C != -1 and C != 0 and C != 1 6002 Lower = IntMin.sdiv(*C); 6003 Upper = IntMax.sdiv(*C); 6004 if (Lower.sgt(Upper)) 6005 std::swap(Lower, Upper); 6006 Upper = Upper + 1; 6007 assert(Upper != Lower && "Upper part of range has wrapped!"); 6008 } 6009 } else if (match(BO.getOperand(0), m_APInt(C))) { 6010 if (C->isMinSignedValue()) { 6011 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6012 Lower = *C; 6013 Upper = Lower.lshr(1) + 1; 6014 } else { 6015 // 'sdiv C, x' produces [-|C|, |C|]. 6016 Upper = C->abs() + 1; 6017 Lower = (-Upper) + 1; 6018 } 6019 } 6020 break; 6021 6022 case Instruction::UDiv: 6023 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6024 // 'udiv x, C' produces [0, UINT_MAX / C]. 6025 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6026 } else if (match(BO.getOperand(0), m_APInt(C))) { 6027 // 'udiv C, x' produces [0, C]. 6028 Upper = *C + 1; 6029 } 6030 break; 6031 6032 case Instruction::SRem: 6033 if (match(BO.getOperand(1), m_APInt(C))) { 6034 // 'srem x, C' produces (-|C|, |C|). 6035 Upper = C->abs(); 6036 Lower = (-Upper) + 1; 6037 } 6038 break; 6039 6040 case Instruction::URem: 6041 if (match(BO.getOperand(1), m_APInt(C))) 6042 // 'urem x, C' produces [0, C). 6043 Upper = *C; 6044 break; 6045 6046 default: 6047 break; 6048 } 6049 } 6050 6051 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6052 APInt &Upper) { 6053 unsigned Width = Lower.getBitWidth(); 6054 const APInt *C; 6055 switch (II.getIntrinsicID()) { 6056 case Intrinsic::uadd_sat: 6057 // uadd.sat(x, C) produces [C, UINT_MAX]. 6058 if (match(II.getOperand(0), m_APInt(C)) || 6059 match(II.getOperand(1), m_APInt(C))) 6060 Lower = *C; 6061 break; 6062 case Intrinsic::sadd_sat: 6063 if (match(II.getOperand(0), m_APInt(C)) || 6064 match(II.getOperand(1), m_APInt(C))) { 6065 if (C->isNegative()) { 6066 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6067 Lower = APInt::getSignedMinValue(Width); 6068 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6069 } else { 6070 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6071 Lower = APInt::getSignedMinValue(Width) + *C; 6072 Upper = APInt::getSignedMaxValue(Width) + 1; 6073 } 6074 } 6075 break; 6076 case Intrinsic::usub_sat: 6077 // usub.sat(C, x) produces [0, C]. 6078 if (match(II.getOperand(0), m_APInt(C))) 6079 Upper = *C + 1; 6080 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6081 else if (match(II.getOperand(1), m_APInt(C))) 6082 Upper = APInt::getMaxValue(Width) - *C + 1; 6083 break; 6084 case Intrinsic::ssub_sat: 6085 if (match(II.getOperand(0), m_APInt(C))) { 6086 if (C->isNegative()) { 6087 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6088 Lower = APInt::getSignedMinValue(Width); 6089 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6090 } else { 6091 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6092 Lower = *C - APInt::getSignedMaxValue(Width); 6093 Upper = APInt::getSignedMaxValue(Width) + 1; 6094 } 6095 } else if (match(II.getOperand(1), m_APInt(C))) { 6096 if (C->isNegative()) { 6097 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6098 Lower = APInt::getSignedMinValue(Width) - *C; 6099 Upper = APInt::getSignedMaxValue(Width) + 1; 6100 } else { 6101 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6102 Lower = APInt::getSignedMinValue(Width); 6103 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6104 } 6105 } 6106 break; 6107 default: 6108 break; 6109 } 6110 } 6111 6112 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6113 APInt &Upper, const InstrInfoQuery &IIQ) { 6114 const Value *LHS = nullptr, *RHS = nullptr; 6115 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6116 if (R.Flavor == SPF_UNKNOWN) 6117 return; 6118 6119 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6120 6121 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6122 // If the negation part of the abs (in RHS) has the NSW flag, 6123 // then the result of abs(X) is [0..SIGNED_MAX], 6124 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6125 Lower = APInt::getNullValue(BitWidth); 6126 if (match(RHS, m_Neg(m_Specific(LHS))) && 6127 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6128 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6129 else 6130 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6131 return; 6132 } 6133 6134 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6135 // The result of -abs(X) is <= 0. 6136 Lower = APInt::getSignedMinValue(BitWidth); 6137 Upper = APInt(BitWidth, 1); 6138 return; 6139 } 6140 6141 const APInt *C; 6142 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6143 return; 6144 6145 switch (R.Flavor) { 6146 case SPF_UMIN: 6147 Upper = *C + 1; 6148 break; 6149 case SPF_UMAX: 6150 Lower = *C; 6151 break; 6152 case SPF_SMIN: 6153 Lower = APInt::getSignedMinValue(BitWidth); 6154 Upper = *C + 1; 6155 break; 6156 case SPF_SMAX: 6157 Lower = *C; 6158 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6159 break; 6160 default: 6161 break; 6162 } 6163 } 6164 6165 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6166 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6167 6168 const APInt *C; 6169 if (match(V, m_APInt(C))) 6170 return ConstantRange(*C); 6171 6172 InstrInfoQuery IIQ(UseInstrInfo); 6173 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6174 APInt Lower = APInt(BitWidth, 0); 6175 APInt Upper = APInt(BitWidth, 0); 6176 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6177 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6178 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6179 setLimitsForIntrinsic(*II, Lower, Upper); 6180 else if (auto *SI = dyn_cast<SelectInst>(V)) 6181 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6182 6183 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6184 6185 if (auto *I = dyn_cast<Instruction>(V)) 6186 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6187 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6188 6189 return CR; 6190 } 6191 6192 static Optional<int64_t> 6193 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6194 // Skip over the first indices. 6195 gep_type_iterator GTI = gep_type_begin(GEP); 6196 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6197 /*skip along*/; 6198 6199 // Compute the offset implied by the rest of the indices. 6200 int64_t Offset = 0; 6201 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6202 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6203 if (!OpC) 6204 return None; 6205 if (OpC->isZero()) 6206 continue; // No offset. 6207 6208 // Handle struct indices, which add their field offset to the pointer. 6209 if (StructType *STy = GTI.getStructTypeOrNull()) { 6210 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6211 continue; 6212 } 6213 6214 // Otherwise, we have a sequential type like an array or vector. Multiply 6215 // the index by the ElementSize. 6216 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6217 Offset += Size * OpC->getSExtValue(); 6218 } 6219 6220 return Offset; 6221 } 6222 6223 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6224 const DataLayout &DL) { 6225 Ptr1 = Ptr1->stripPointerCasts(); 6226 Ptr2 = Ptr2->stripPointerCasts(); 6227 6228 // Handle the trivial case first. 6229 if (Ptr1 == Ptr2) { 6230 return 0; 6231 } 6232 6233 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6234 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6235 6236 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6237 // as in "P" and "gep P, 1". 6238 // Also do this iteratively to handle the the following case: 6239 // Ptr_t1 = GEP Ptr1, c1 6240 // Ptr_t2 = GEP Ptr_t1, c2 6241 // Ptr2 = GEP Ptr_t2, c3 6242 // where we will return c1+c2+c3. 6243 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6244 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6245 // are the same, and return the difference between offsets. 6246 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6247 const Value *Ptr) -> Optional<int64_t> { 6248 const GEPOperator *GEP_T = GEP; 6249 int64_t OffsetVal = 0; 6250 bool HasSameBase = false; 6251 while (GEP_T) { 6252 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6253 if (!Offset) 6254 return None; 6255 OffsetVal += *Offset; 6256 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6257 if (Op0 == Ptr) { 6258 HasSameBase = true; 6259 break; 6260 } 6261 GEP_T = dyn_cast<GEPOperator>(Op0); 6262 } 6263 if (!HasSameBase) 6264 return None; 6265 return OffsetVal; 6266 }; 6267 6268 if (GEP1) { 6269 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6270 if (Offset) 6271 return -*Offset; 6272 } 6273 if (GEP2) { 6274 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6275 if (Offset) 6276 return Offset; 6277 } 6278 6279 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6280 // base. After that base, they may have some number of common (and 6281 // potentially variable) indices. After that they handle some constant 6282 // offset, which determines their offset from each other. At this point, we 6283 // handle no other case. 6284 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6285 return None; 6286 6287 // Skip any common indices and track the GEP types. 6288 unsigned Idx = 1; 6289 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6290 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6291 break; 6292 6293 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6294 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6295 if (!Offset1 || !Offset2) 6296 return None; 6297 return *Offset2 - *Offset1; 6298 } 6299