1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 178 if (DemandedElts.isNullValue()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 // FIXME: We currently have no way to represent the DemandedElts of a scalable 210 // vector 211 if (isa<ScalableVectorType>(V->getType())) { 212 Known.resetAll(); 213 return; 214 } 215 216 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 217 APInt DemandedElts = 218 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 219 computeKnownBits(V, DemandedElts, Known, Depth, Q); 220 } 221 222 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 223 const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, const Instruction *CxtI, 225 const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 232 KnownBits &Known, const DataLayout &DL, 233 unsigned Depth, AssumptionCache *AC, 234 const Instruction *CxtI, const DominatorTree *DT, 235 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 236 ::computeKnownBits(V, DemandedElts, Known, Depth, 237 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 238 } 239 240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 241 unsigned Depth, const Query &Q); 242 243 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 257 const DataLayout &DL, unsigned Depth, 258 AssumptionCache *AC, const Instruction *CxtI, 259 const DominatorTree *DT, 260 OptimizationRemarkEmitter *ORE, 261 bool UseInstrInfo) { 262 return ::computeKnownBits( 263 V, DemandedElts, Depth, 264 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 265 } 266 267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 268 const DataLayout &DL, AssumptionCache *AC, 269 const Instruction *CxtI, const DominatorTree *DT, 270 bool UseInstrInfo) { 271 assert(LHS->getType() == RHS->getType() && 272 "LHS and RHS should have the same type"); 273 assert(LHS->getType()->isIntOrIntVectorTy() && 274 "LHS and RHS should be integers"); 275 // Look for an inverted mask: (X & ~M) op (Y & M). 276 Value *M; 277 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 278 match(RHS, m_c_And(m_Specific(M), m_Value()))) 279 return true; 280 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(LHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 284 KnownBits LHSKnown(IT->getBitWidth()); 285 KnownBits RHSKnown(IT->getBitWidth()); 286 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 287 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 288 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 289 } 290 291 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 292 for (const User *U : CxtI->users()) { 293 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 294 if (IC->isEquality()) 295 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 296 if (C->isNullValue()) 297 continue; 298 return false; 299 } 300 return true; 301 } 302 303 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 304 const Query &Q); 305 306 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 307 bool OrZero, unsigned Depth, 308 AssumptionCache *AC, const Instruction *CxtI, 309 const DominatorTree *DT, bool UseInstrInfo) { 310 return ::isKnownToBeAPowerOfTwo( 311 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 312 } 313 314 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 315 unsigned Depth, const Query &Q); 316 317 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 318 319 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 320 AssumptionCache *AC, const Instruction *CxtI, 321 const DominatorTree *DT, bool UseInstrInfo) { 322 return ::isKnownNonZero(V, Depth, 323 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 324 } 325 326 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 327 unsigned Depth, AssumptionCache *AC, 328 const Instruction *CxtI, const DominatorTree *DT, 329 bool UseInstrInfo) { 330 KnownBits Known = 331 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 332 return Known.isNonNegative(); 333 } 334 335 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 if (auto *CI = dyn_cast<ConstantInt>(V)) 339 return CI->getValue().isStrictlyPositive(); 340 341 // TODO: We'd doing two recursive queries here. We should factor this such 342 // that only a single query is needed. 343 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 344 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 345 } 346 347 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 348 AssumptionCache *AC, const Instruction *CxtI, 349 const DominatorTree *DT, bool UseInstrInfo) { 350 KnownBits Known = 351 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 352 return Known.isNegative(); 353 } 354 355 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 356 357 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 358 const DataLayout &DL, AssumptionCache *AC, 359 const Instruction *CxtI, const DominatorTree *DT, 360 bool UseInstrInfo) { 361 return ::isKnownNonEqual(V1, V2, 362 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 363 UseInstrInfo, /*ORE=*/nullptr)); 364 } 365 366 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 367 const Query &Q); 368 369 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 370 const DataLayout &DL, unsigned Depth, 371 AssumptionCache *AC, const Instruction *CxtI, 372 const DominatorTree *DT, bool UseInstrInfo) { 373 return ::MaskedValueIsZero( 374 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 375 } 376 377 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 378 unsigned Depth, const Query &Q); 379 380 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 381 const Query &Q) { 382 // FIXME: We currently have no way to represent the DemandedElts of a scalable 383 // vector 384 if (isa<ScalableVectorType>(V->getType())) 385 return 1; 386 387 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 388 APInt DemandedElts = 389 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 390 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 391 } 392 393 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 394 unsigned Depth, AssumptionCache *AC, 395 const Instruction *CxtI, 396 const DominatorTree *DT, bool UseInstrInfo) { 397 return ::ComputeNumSignBits( 398 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 399 } 400 401 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 402 bool NSW, const APInt &DemandedElts, 403 KnownBits &KnownOut, KnownBits &Known2, 404 unsigned Depth, const Query &Q) { 405 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 406 407 // If one operand is unknown and we have no nowrap information, 408 // the result will be unknown independently of the second operand. 409 if (KnownOut.isUnknown() && !NSW) 410 return; 411 412 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 413 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 414 } 415 416 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 417 const APInt &DemandedElts, KnownBits &Known, 418 KnownBits &Known2, unsigned Depth, 419 const Query &Q) { 420 unsigned BitWidth = Known.getBitWidth(); 421 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 422 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 423 424 bool isKnownNegative = false; 425 bool isKnownNonNegative = false; 426 // If the multiplication is known not to overflow, compute the sign bit. 427 if (NSW) { 428 if (Op0 == Op1) { 429 // The product of a number with itself is non-negative. 430 isKnownNonNegative = true; 431 } else { 432 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 433 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 434 bool isKnownNegativeOp1 = Known.isNegative(); 435 bool isKnownNegativeOp0 = Known2.isNegative(); 436 // The product of two numbers with the same sign is non-negative. 437 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 438 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 439 // The product of a negative number and a non-negative number is either 440 // negative or zero. 441 if (!isKnownNonNegative) 442 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 443 isKnownNonZero(Op0, Depth, Q)) || 444 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 445 isKnownNonZero(Op1, Depth, Q)); 446 } 447 } 448 449 assert(!Known.hasConflict() && !Known2.hasConflict()); 450 // Compute a conservative estimate for high known-0 bits. 451 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 452 Known2.countMinLeadingZeros(), 453 BitWidth) - BitWidth; 454 LeadZ = std::min(LeadZ, BitWidth); 455 456 // The result of the bottom bits of an integer multiply can be 457 // inferred by looking at the bottom bits of both operands and 458 // multiplying them together. 459 // We can infer at least the minimum number of known trailing bits 460 // of both operands. Depending on number of trailing zeros, we can 461 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 462 // a and b are divisible by m and n respectively. 463 // We then calculate how many of those bits are inferrable and set 464 // the output. For example, the i8 mul: 465 // a = XXXX1100 (12) 466 // b = XXXX1110 (14) 467 // We know the bottom 3 bits are zero since the first can be divided by 468 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 469 // Applying the multiplication to the trimmed arguments gets: 470 // XX11 (3) 471 // X111 (7) 472 // ------- 473 // XX11 474 // XX11 475 // XX11 476 // XX11 477 // ------- 478 // XXXXX01 479 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 480 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 481 // The proof for this can be described as: 482 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 483 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 484 // umin(countTrailingZeros(C2), C6) + 485 // umin(C5 - umin(countTrailingZeros(C1), C5), 486 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 487 // %aa = shl i8 %a, C5 488 // %bb = shl i8 %b, C6 489 // %aaa = or i8 %aa, C1 490 // %bbb = or i8 %bb, C2 491 // %mul = mul i8 %aaa, %bbb 492 // %mask = and i8 %mul, C7 493 // => 494 // %mask = i8 ((C1*C2)&C7) 495 // Where C5, C6 describe the known bits of %a, %b 496 // C1, C2 describe the known bottom bits of %a, %b. 497 // C7 describes the mask of the known bits of the result. 498 APInt Bottom0 = Known.One; 499 APInt Bottom1 = Known2.One; 500 501 // How many times we'd be able to divide each argument by 2 (shr by 1). 502 // This gives us the number of trailing zeros on the multiplication result. 503 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 504 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 505 unsigned TrailZero0 = Known.countMinTrailingZeros(); 506 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 507 unsigned TrailZ = TrailZero0 + TrailZero1; 508 509 // Figure out the fewest known-bits operand. 510 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 511 TrailBitsKnown1 - TrailZero1); 512 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 513 514 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 515 Bottom1.getLoBits(TrailBitsKnown1); 516 517 Known.resetAll(); 518 Known.Zero.setHighBits(LeadZ); 519 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 520 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 521 522 // Only make use of no-wrap flags if we failed to compute the sign bit 523 // directly. This matters if the multiplication always overflows, in 524 // which case we prefer to follow the result of the direct computation, 525 // though as the program is invoking undefined behaviour we can choose 526 // whatever we like here. 527 if (isKnownNonNegative && !Known.isNegative()) 528 Known.makeNonNegative(); 529 else if (isKnownNegative && !Known.isNonNegative()) 530 Known.makeNegative(); 531 } 532 533 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 534 KnownBits &Known) { 535 unsigned BitWidth = Known.getBitWidth(); 536 unsigned NumRanges = Ranges.getNumOperands() / 2; 537 assert(NumRanges >= 1); 538 539 Known.Zero.setAllBits(); 540 Known.One.setAllBits(); 541 542 for (unsigned i = 0; i < NumRanges; ++i) { 543 ConstantInt *Lower = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 545 ConstantInt *Upper = 546 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 547 ConstantRange Range(Lower->getValue(), Upper->getValue()); 548 549 // The first CommonPrefixBits of all values in Range are equal. 550 unsigned CommonPrefixBits = 551 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 552 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 553 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 554 Known.One &= UnsignedMax & Mask; 555 Known.Zero &= ~UnsignedMax & Mask; 556 } 557 } 558 559 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 560 SmallVector<const Value *, 16> WorkSet(1, I); 561 SmallPtrSet<const Value *, 32> Visited; 562 SmallPtrSet<const Value *, 16> EphValues; 563 564 // The instruction defining an assumption's condition itself is always 565 // considered ephemeral to that assumption (even if it has other 566 // non-ephemeral users). See r246696's test case for an example. 567 if (is_contained(I->operands(), E)) 568 return true; 569 570 while (!WorkSet.empty()) { 571 const Value *V = WorkSet.pop_back_val(); 572 if (!Visited.insert(V).second) 573 continue; 574 575 // If all uses of this value are ephemeral, then so is this value. 576 if (llvm::all_of(V->users(), [&](const User *U) { 577 return EphValues.count(U); 578 })) { 579 if (V == E) 580 return true; 581 582 if (V == I || isSafeToSpeculativelyExecute(V)) { 583 EphValues.insert(V); 584 if (const User *U = dyn_cast<User>(V)) 585 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 586 J != JE; ++J) 587 WorkSet.push_back(*J); 588 } 589 } 590 } 591 592 return false; 593 } 594 595 // Is this an intrinsic that cannot be speculated but also cannot trap? 596 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 597 if (const CallInst *CI = dyn_cast<CallInst>(I)) 598 if (Function *F = CI->getCalledFunction()) 599 switch (F->getIntrinsicID()) { 600 default: break; 601 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 602 case Intrinsic::assume: 603 case Intrinsic::sideeffect: 604 case Intrinsic::dbg_declare: 605 case Intrinsic::dbg_value: 606 case Intrinsic::dbg_label: 607 case Intrinsic::invariant_start: 608 case Intrinsic::invariant_end: 609 case Intrinsic::lifetime_start: 610 case Intrinsic::lifetime_end: 611 case Intrinsic::objectsize: 612 case Intrinsic::ptr_annotation: 613 case Intrinsic::var_annotation: 614 return true; 615 } 616 617 return false; 618 } 619 620 bool llvm::isValidAssumeForContext(const Instruction *Inv, 621 const Instruction *CxtI, 622 const DominatorTree *DT) { 623 // There are two restrictions on the use of an assume: 624 // 1. The assume must dominate the context (or the control flow must 625 // reach the assume whenever it reaches the context). 626 // 2. The context must not be in the assume's set of ephemeral values 627 // (otherwise we will use the assume to prove that the condition 628 // feeding the assume is trivially true, thus causing the removal of 629 // the assume). 630 631 if (Inv->getParent() == CxtI->getParent()) { 632 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 633 // in the BB. 634 if (Inv->comesBefore(CxtI)) 635 return true; 636 637 // Don't let an assume affect itself - this would cause the problems 638 // `isEphemeralValueOf` is trying to prevent, and it would also make 639 // the loop below go out of bounds. 640 if (Inv == CxtI) 641 return false; 642 643 // The context comes first, but they're both in the same block. 644 // Make sure there is nothing in between that might interrupt 645 // the control flow, not even CxtI itself. 646 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 647 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 648 return false; 649 650 return !isEphemeralValueOf(Inv, CxtI); 651 } 652 653 // Inv and CxtI are in different blocks. 654 if (DT) { 655 if (DT->dominates(Inv, CxtI)) 656 return true; 657 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 658 // We don't have a DT, but this trivially dominates. 659 return true; 660 } 661 662 return false; 663 } 664 665 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return false; 670 671 // Note that the patterns below need to be kept in sync with the code 672 // in AssumptionCache::updateAffectedValues. 673 674 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 675 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 676 677 Value *RHS; 678 CmpInst::Predicate Pred; 679 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 680 return false; 681 // assume(v u> y) -> assume(v != 0) 682 if (Pred == ICmpInst::ICMP_UGT) 683 return true; 684 685 // assume(v != 0) 686 // We special-case this one to ensure that we handle `assume(v != null)`. 687 if (Pred == ICmpInst::ICMP_NE) 688 return match(RHS, m_Zero()); 689 690 // All other predicates - rely on generic ConstantRange handling. 691 ConstantInt *CI; 692 if (!match(RHS, m_ConstantInt(CI))) 693 return false; 694 ConstantRange RHSRange(CI->getValue()); 695 ConstantRange TrueValues = 696 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 697 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 698 }; 699 700 if (Q.CxtI && V->getType()->isPointerTy()) { 701 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 702 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 703 V->getType()->getPointerAddressSpace())) 704 AttrKinds.push_back(Attribute::Dereferenceable); 705 706 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 707 return true; 708 } 709 710 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 711 if (!AssumeVH) 712 continue; 713 CallInst *I = cast<CallInst>(AssumeVH); 714 assert(I->getFunction() == Q.CxtI->getFunction() && 715 "Got assumption for the wrong function!"); 716 if (Q.isExcluded(I)) 717 continue; 718 719 // Warning: This loop can end up being somewhat performance sensitive. 720 // We're running this loop for once for each value queried resulting in a 721 // runtime of ~O(#assumes * #values). 722 723 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 724 "must be an assume intrinsic"); 725 726 Value *Arg = I->getArgOperand(0); 727 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 728 if (!Cmp) 729 continue; 730 731 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 732 return true; 733 } 734 735 return false; 736 } 737 738 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 739 unsigned Depth, const Query &Q) { 740 // Use of assumptions is context-sensitive. If we don't have a context, we 741 // cannot use them! 742 if (!Q.AC || !Q.CxtI) 743 return; 744 745 unsigned BitWidth = Known.getBitWidth(); 746 747 // Note that the patterns below need to be kept in sync with the code 748 // in AssumptionCache::updateAffectedValues. 749 750 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 751 if (!AssumeVH) 752 continue; 753 CallInst *I = cast<CallInst>(AssumeVH); 754 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 755 "Got assumption for the wrong function!"); 756 if (Q.isExcluded(I)) 757 continue; 758 759 // Warning: This loop can end up being somewhat performance sensitive. 760 // We're running this loop for once for each value queried resulting in a 761 // runtime of ~O(#assumes * #values). 762 763 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 764 "must be an assume intrinsic"); 765 766 Value *Arg = I->getArgOperand(0); 767 768 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 assert(BitWidth == 1 && "assume operand is not i1?"); 770 Known.setAllOnes(); 771 return; 772 } 773 if (match(Arg, m_Not(m_Specific(V))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 assert(BitWidth == 1 && "assume operand is not i1?"); 776 Known.setAllZero(); 777 return; 778 } 779 780 // The remaining tests are all recursive, so bail out if we hit the limit. 781 if (Depth == MaxDepth) 782 continue; 783 784 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 785 if (!Cmp) 786 continue; 787 788 // Note that ptrtoint may change the bitwidth. 789 Value *A, *B; 790 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 791 792 CmpInst::Predicate Pred; 793 uint64_t C; 794 switch (Cmp->getPredicate()) { 795 default: 796 break; 797 case ICmpInst::ICMP_EQ: 798 // assume(v = a) 799 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown = 802 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 803 Known.Zero |= RHSKnown.Zero; 804 Known.One |= RHSKnown.One; 805 // assume(v & b = a) 806 } else if (match(Cmp, 807 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 808 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 809 KnownBits RHSKnown = 810 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 KnownBits MaskKnown = 812 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 814 // For those bits in the mask that are known to be one, we can propagate 815 // known bits from the RHS to V. 816 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 817 Known.One |= RHSKnown.One & MaskKnown.One; 818 // assume(~(v & b) = a) 819 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 820 m_Value(A))) && 821 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 822 KnownBits RHSKnown = 823 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 KnownBits MaskKnown = 825 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 826 827 // For those bits in the mask that are known to be one, we can propagate 828 // inverted known bits from the RHS to V. 829 Known.Zero |= RHSKnown.One & MaskKnown.One; 830 Known.One |= RHSKnown.Zero & MaskKnown.One; 831 // assume(v | b = a) 832 } else if (match(Cmp, 833 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 834 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 835 KnownBits RHSKnown = 836 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 KnownBits BKnown = 838 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 839 840 // For those bits in B that are known to be zero, we can propagate known 841 // bits from the RHS to V. 842 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 843 Known.One |= RHSKnown.One & BKnown.Zero; 844 // assume(~(v | b) = a) 845 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 846 m_Value(A))) && 847 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 848 KnownBits RHSKnown = 849 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 KnownBits BKnown = 851 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 852 853 // For those bits in B that are known to be zero, we can propagate 854 // inverted known bits from the RHS to V. 855 Known.Zero |= RHSKnown.One & BKnown.Zero; 856 Known.One |= RHSKnown.Zero & BKnown.Zero; 857 // assume(v ^ b = a) 858 } else if (match(Cmp, 859 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 860 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 861 KnownBits RHSKnown = 862 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 KnownBits BKnown = 864 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 865 866 // For those bits in B that are known to be zero, we can propagate known 867 // bits from the RHS to V. For those bits in B that are known to be one, 868 // we can propagate inverted known bits from the RHS to V. 869 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 870 Known.One |= RHSKnown.One & BKnown.Zero; 871 Known.Zero |= RHSKnown.One & BKnown.One; 872 Known.One |= RHSKnown.Zero & BKnown.One; 873 // assume(~(v ^ b) = a) 874 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 875 m_Value(A))) && 876 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 877 KnownBits RHSKnown = 878 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 KnownBits BKnown = 880 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 881 882 // For those bits in B that are known to be zero, we can propagate 883 // inverted known bits from the RHS to V. For those bits in B that are 884 // known to be one, we can propagate known bits from the RHS to V. 885 Known.Zero |= RHSKnown.One & BKnown.Zero; 886 Known.One |= RHSKnown.Zero & BKnown.Zero; 887 Known.Zero |= RHSKnown.Zero & BKnown.One; 888 Known.One |= RHSKnown.One & BKnown.One; 889 // assume(v << c = a) 890 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 891 m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 895 896 // For those bits in RHS that are known, we can propagate them to known 897 // bits in V shifted to the right by C. 898 RHSKnown.Zero.lshrInPlace(C); 899 Known.Zero |= RHSKnown.Zero; 900 RHSKnown.One.lshrInPlace(C); 901 Known.One |= RHSKnown.One; 902 // assume(~(v << c) = a) 903 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 904 m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 908 // For those bits in RHS that are known, we can propagate them inverted 909 // to known bits in V shifted to the right by C. 910 RHSKnown.One.lshrInPlace(C); 911 Known.Zero |= RHSKnown.One; 912 RHSKnown.Zero.lshrInPlace(C); 913 Known.One |= RHSKnown.Zero; 914 // assume(v >> c = a) 915 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 916 m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 920 // For those bits in RHS that are known, we can propagate them to known 921 // bits in V shifted to the right by C. 922 Known.Zero |= RHSKnown.Zero << C; 923 Known.One |= RHSKnown.One << C; 924 // assume(~(v >> c) = a) 925 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 926 m_Value(A))) && 927 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 928 KnownBits RHSKnown = 929 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 930 // For those bits in RHS that are known, we can propagate them inverted 931 // to known bits in V shifted to the right by C. 932 Known.Zero |= RHSKnown.One << C; 933 Known.One |= RHSKnown.Zero << C; 934 } 935 break; 936 case ICmpInst::ICMP_SGE: 937 // assume(v >=_s c) where c is non-negative 938 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 939 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 940 KnownBits RHSKnown = 941 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 942 943 if (RHSKnown.isNonNegative()) { 944 // We know that the sign bit is zero. 945 Known.makeNonNegative(); 946 } 947 } 948 break; 949 case ICmpInst::ICMP_SGT: 950 // assume(v >_s c) where c is at least -1. 951 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 952 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 953 KnownBits RHSKnown = 954 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 955 956 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 957 // We know that the sign bit is zero. 958 Known.makeNonNegative(); 959 } 960 } 961 break; 962 case ICmpInst::ICMP_SLE: 963 // assume(v <=_s c) where c is negative 964 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 965 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 966 KnownBits RHSKnown = 967 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 968 969 if (RHSKnown.isNegative()) { 970 // We know that the sign bit is one. 971 Known.makeNegative(); 972 } 973 } 974 break; 975 case ICmpInst::ICMP_SLT: 976 // assume(v <_s c) where c is non-positive 977 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 978 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 979 KnownBits RHSKnown = 980 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 981 982 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 983 // We know that the sign bit is one. 984 Known.makeNegative(); 985 } 986 } 987 break; 988 case ICmpInst::ICMP_ULE: 989 // assume(v <=_u c) 990 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 991 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 992 KnownBits RHSKnown = 993 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 994 995 // Whatever high bits in c are zero are known to be zero. 996 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 997 } 998 break; 999 case ICmpInst::ICMP_ULT: 1000 // assume(v <_u c) 1001 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1002 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1003 KnownBits RHSKnown = 1004 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1005 1006 // If the RHS is known zero, then this assumption must be wrong (nothing 1007 // is unsigned less than zero). Signal a conflict and get out of here. 1008 if (RHSKnown.isZero()) { 1009 Known.Zero.setAllBits(); 1010 Known.One.setAllBits(); 1011 break; 1012 } 1013 1014 // Whatever high bits in c are zero are known to be zero (if c is a power 1015 // of 2, then one more). 1016 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1018 else 1019 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1020 } 1021 break; 1022 } 1023 } 1024 1025 // If assumptions conflict with each other or previous known bits, then we 1026 // have a logical fallacy. It's possible that the assumption is not reachable, 1027 // so this isn't a real bug. On the other hand, the program may have undefined 1028 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1029 // clear out the known bits, try to warn the user, and hope for the best. 1030 if (Known.Zero.intersects(Known.One)) { 1031 Known.resetAll(); 1032 1033 if (Q.ORE) 1034 Q.ORE->emit([&]() { 1035 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1036 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1037 CxtI) 1038 << "Detected conflicting code assumptions. Program may " 1039 "have undefined behavior, or compiler may have " 1040 "internal error."; 1041 }); 1042 } 1043 } 1044 1045 /// Compute known bits from a shift operator, including those with a 1046 /// non-constant shift amount. Known is the output of this function. Known2 is a 1047 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1048 /// operator-specific functions that, given the known-zero or known-one bits 1049 /// respectively, and a shift amount, compute the implied known-zero or 1050 /// known-one bits of the shift operator's result respectively for that shift 1051 /// amount. The results from calling KZF and KOF are conservatively combined for 1052 /// all permitted shift amounts. 1053 static void computeKnownBitsFromShiftOperator( 1054 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1055 KnownBits &Known2, unsigned Depth, const Query &Q, 1056 function_ref<APInt(const APInt &, unsigned)> KZF, 1057 function_ref<APInt(const APInt &, unsigned)> KOF) { 1058 unsigned BitWidth = Known.getBitWidth(); 1059 1060 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1061 if (Known.isConstant()) { 1062 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1063 1064 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1065 Known.Zero = KZF(Known.Zero, ShiftAmt); 1066 Known.One = KOF(Known.One, ShiftAmt); 1067 // If the known bits conflict, this must be an overflowing left shift, so 1068 // the shift result is poison. We can return anything we want. Choose 0 for 1069 // the best folding opportunity. 1070 if (Known.hasConflict()) 1071 Known.setAllZero(); 1072 1073 return; 1074 } 1075 1076 // If the shift amount could be greater than or equal to the bit-width of the 1077 // LHS, the value could be poison, but bail out because the check below is 1078 // expensive. 1079 // TODO: Should we just carry on? 1080 if (Known.getMaxValue().uge(BitWidth)) { 1081 Known.resetAll(); 1082 return; 1083 } 1084 1085 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1086 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1087 // limit value (which implies all bits are known). 1088 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1089 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1090 1091 // It would be more-clearly correct to use the two temporaries for this 1092 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1093 Known.resetAll(); 1094 1095 // If we know the shifter operand is nonzero, we can sometimes infer more 1096 // known bits. However this is expensive to compute, so be lazy about it and 1097 // only compute it when absolutely necessary. 1098 Optional<bool> ShifterOperandIsNonZero; 1099 1100 // Early exit if we can't constrain any well-defined shift amount. 1101 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1102 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1103 ShifterOperandIsNonZero = 1104 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1105 if (!*ShifterOperandIsNonZero) 1106 return; 1107 } 1108 1109 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1110 1111 Known.Zero.setAllBits(); 1112 Known.One.setAllBits(); 1113 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1114 // Combine the shifted known input bits only for those shift amounts 1115 // compatible with its known constraints. 1116 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1117 continue; 1118 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1119 continue; 1120 // If we know the shifter is nonzero, we may be able to infer more known 1121 // bits. This check is sunk down as far as possible to avoid the expensive 1122 // call to isKnownNonZero if the cheaper checks above fail. 1123 if (ShiftAmt == 0) { 1124 if (!ShifterOperandIsNonZero.hasValue()) 1125 ShifterOperandIsNonZero = 1126 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1127 if (*ShifterOperandIsNonZero) 1128 continue; 1129 } 1130 1131 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1132 Known.One &= KOF(Known2.One, ShiftAmt); 1133 } 1134 1135 // If the known bits conflict, the result is poison. Return a 0 and hope the 1136 // caller can further optimize that. 1137 if (Known.hasConflict()) 1138 Known.setAllZero(); 1139 } 1140 1141 static void computeKnownBitsFromOperator(const Operator *I, 1142 const APInt &DemandedElts, 1143 KnownBits &Known, unsigned Depth, 1144 const Query &Q) { 1145 unsigned BitWidth = Known.getBitWidth(); 1146 1147 KnownBits Known2(BitWidth); 1148 switch (I->getOpcode()) { 1149 default: break; 1150 case Instruction::Load: 1151 if (MDNode *MD = 1152 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1153 computeKnownBitsFromRangeMetadata(*MD, Known); 1154 break; 1155 case Instruction::And: { 1156 // If either the LHS or the RHS are Zero, the result is zero. 1157 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1158 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1159 1160 Known &= Known2; 1161 1162 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1163 // here we handle the more general case of adding any odd number by 1164 // matching the form add(x, add(x, y)) where y is odd. 1165 // TODO: This could be generalized to clearing any bit set in y where the 1166 // following bit is known to be unset in y. 1167 Value *X = nullptr, *Y = nullptr; 1168 if (!Known.Zero[0] && !Known.One[0] && 1169 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1170 Known2.resetAll(); 1171 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1172 if (Known2.countMinTrailingOnes() > 0) 1173 Known.Zero.setBit(0); 1174 } 1175 break; 1176 } 1177 case Instruction::Or: 1178 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1179 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1180 1181 Known |= Known2; 1182 break; 1183 case Instruction::Xor: 1184 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1185 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1186 1187 Known ^= Known2; 1188 break; 1189 case Instruction::Mul: { 1190 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1191 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1192 Known, Known2, Depth, Q); 1193 break; 1194 } 1195 case Instruction::UDiv: { 1196 // For the purposes of computing leading zeros we can conservatively 1197 // treat a udiv as a logical right shift by the power of 2 known to 1198 // be less than the denominator. 1199 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1200 unsigned LeadZ = Known2.countMinLeadingZeros(); 1201 1202 Known2.resetAll(); 1203 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1204 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1205 if (RHSMaxLeadingZeros != BitWidth) 1206 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1207 1208 Known.Zero.setHighBits(LeadZ); 1209 break; 1210 } 1211 case Instruction::Select: { 1212 const Value *LHS = nullptr, *RHS = nullptr; 1213 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1214 if (SelectPatternResult::isMinOrMax(SPF)) { 1215 computeKnownBits(RHS, Known, Depth + 1, Q); 1216 computeKnownBits(LHS, Known2, Depth + 1, Q); 1217 } else { 1218 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1219 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1220 } 1221 1222 unsigned MaxHighOnes = 0; 1223 unsigned MaxHighZeros = 0; 1224 if (SPF == SPF_SMAX) { 1225 // If both sides are negative, the result is negative. 1226 if (Known.isNegative() && Known2.isNegative()) 1227 // We can derive a lower bound on the result by taking the max of the 1228 // leading one bits. 1229 MaxHighOnes = 1230 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1231 // If either side is non-negative, the result is non-negative. 1232 else if (Known.isNonNegative() || Known2.isNonNegative()) 1233 MaxHighZeros = 1; 1234 } else if (SPF == SPF_SMIN) { 1235 // If both sides are non-negative, the result is non-negative. 1236 if (Known.isNonNegative() && Known2.isNonNegative()) 1237 // We can derive an upper bound on the result by taking the max of the 1238 // leading zero bits. 1239 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1240 Known2.countMinLeadingZeros()); 1241 // If either side is negative, the result is negative. 1242 else if (Known.isNegative() || Known2.isNegative()) 1243 MaxHighOnes = 1; 1244 } else if (SPF == SPF_UMAX) { 1245 // We can derive a lower bound on the result by taking the max of the 1246 // leading one bits. 1247 MaxHighOnes = 1248 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1249 } else if (SPF == SPF_UMIN) { 1250 // We can derive an upper bound on the result by taking the max of the 1251 // leading zero bits. 1252 MaxHighZeros = 1253 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1254 } else if (SPF == SPF_ABS) { 1255 // RHS from matchSelectPattern returns the negation part of abs pattern. 1256 // If the negate has an NSW flag we can assume the sign bit of the result 1257 // will be 0 because that makes abs(INT_MIN) undefined. 1258 if (match(RHS, m_Neg(m_Specific(LHS))) && 1259 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1260 MaxHighZeros = 1; 1261 } 1262 1263 // Only known if known in both the LHS and RHS. 1264 Known.One &= Known2.One; 1265 Known.Zero &= Known2.Zero; 1266 if (MaxHighOnes > 0) 1267 Known.One.setHighBits(MaxHighOnes); 1268 if (MaxHighZeros > 0) 1269 Known.Zero.setHighBits(MaxHighZeros); 1270 break; 1271 } 1272 case Instruction::FPTrunc: 1273 case Instruction::FPExt: 1274 case Instruction::FPToUI: 1275 case Instruction::FPToSI: 1276 case Instruction::SIToFP: 1277 case Instruction::UIToFP: 1278 break; // Can't work with floating point. 1279 case Instruction::PtrToInt: 1280 case Instruction::IntToPtr: 1281 // Fall through and handle them the same as zext/trunc. 1282 LLVM_FALLTHROUGH; 1283 case Instruction::ZExt: 1284 case Instruction::Trunc: { 1285 Type *SrcTy = I->getOperand(0)->getType(); 1286 1287 unsigned SrcBitWidth; 1288 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1289 // which fall through here. 1290 Type *ScalarTy = SrcTy->getScalarType(); 1291 SrcBitWidth = ScalarTy->isPointerTy() ? 1292 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1293 Q.DL.getTypeSizeInBits(ScalarTy); 1294 1295 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1296 Known = Known.anyextOrTrunc(SrcBitWidth); 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 Known = Known.zextOrTrunc(BitWidth); 1299 break; 1300 } 1301 case Instruction::BitCast: { 1302 Type *SrcTy = I->getOperand(0)->getType(); 1303 if (SrcTy->isIntOrPtrTy() && 1304 // TODO: For now, not handling conversions like: 1305 // (bitcast i64 %x to <2 x i32>) 1306 !I->getType()->isVectorTy()) { 1307 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1308 break; 1309 } 1310 break; 1311 } 1312 case Instruction::SExt: { 1313 // Compute the bits in the result that are not present in the input. 1314 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1315 1316 Known = Known.trunc(SrcBitWidth); 1317 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1318 // If the sign bit of the input is known set or clear, then we know the 1319 // top bits of the result. 1320 Known = Known.sext(BitWidth); 1321 break; 1322 } 1323 case Instruction::Shl: { 1324 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1325 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1326 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1327 APInt KZResult = KnownZero << ShiftAmt; 1328 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1329 // If this shift has "nsw" keyword, then the result is either a poison 1330 // value or has the same sign bit as the first operand. 1331 if (NSW && KnownZero.isSignBitSet()) 1332 KZResult.setSignBit(); 1333 return KZResult; 1334 }; 1335 1336 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1337 APInt KOResult = KnownOne << ShiftAmt; 1338 if (NSW && KnownOne.isSignBitSet()) 1339 KOResult.setSignBit(); 1340 return KOResult; 1341 }; 1342 1343 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1344 KZF, KOF); 1345 break; 1346 } 1347 case Instruction::LShr: { 1348 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1349 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1350 APInt KZResult = KnownZero.lshr(ShiftAmt); 1351 // High bits known zero. 1352 KZResult.setHighBits(ShiftAmt); 1353 return KZResult; 1354 }; 1355 1356 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1357 return KnownOne.lshr(ShiftAmt); 1358 }; 1359 1360 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1361 KZF, KOF); 1362 break; 1363 } 1364 case Instruction::AShr: { 1365 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1366 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1367 return KnownZero.ashr(ShiftAmt); 1368 }; 1369 1370 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1371 return KnownOne.ashr(ShiftAmt); 1372 }; 1373 1374 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1375 KZF, KOF); 1376 break; 1377 } 1378 case Instruction::Sub: { 1379 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1380 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1381 DemandedElts, Known, Known2, Depth, Q); 1382 break; 1383 } 1384 case Instruction::Add: { 1385 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1386 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1387 DemandedElts, Known, Known2, Depth, Q); 1388 break; 1389 } 1390 case Instruction::SRem: 1391 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1392 APInt RA = Rem->getValue().abs(); 1393 if (RA.isPowerOf2()) { 1394 APInt LowBits = RA - 1; 1395 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1396 1397 // The low bits of the first operand are unchanged by the srem. 1398 Known.Zero = Known2.Zero & LowBits; 1399 Known.One = Known2.One & LowBits; 1400 1401 // If the first operand is non-negative or has all low bits zero, then 1402 // the upper bits are all zero. 1403 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1404 Known.Zero |= ~LowBits; 1405 1406 // If the first operand is negative and not all low bits are zero, then 1407 // the upper bits are all one. 1408 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1409 Known.One |= ~LowBits; 1410 1411 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1412 break; 1413 } 1414 } 1415 1416 // The sign bit is the LHS's sign bit, except when the result of the 1417 // remainder is zero. 1418 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1419 // If it's known zero, our sign bit is also zero. 1420 if (Known2.isNonNegative()) 1421 Known.makeNonNegative(); 1422 1423 break; 1424 case Instruction::URem: { 1425 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1426 const APInt &RA = Rem->getValue(); 1427 if (RA.isPowerOf2()) { 1428 APInt LowBits = (RA - 1); 1429 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1430 Known.Zero |= ~LowBits; 1431 Known.One &= LowBits; 1432 break; 1433 } 1434 } 1435 1436 // Since the result is less than or equal to either operand, any leading 1437 // zero bits in either operand must also exist in the result. 1438 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1439 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1440 1441 unsigned Leaders = 1442 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1443 Known.resetAll(); 1444 Known.Zero.setHighBits(Leaders); 1445 break; 1446 } 1447 case Instruction::Alloca: 1448 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1449 break; 1450 case Instruction::GetElementPtr: { 1451 // Analyze all of the subscripts of this getelementptr instruction 1452 // to determine if we can prove known low zero bits. 1453 KnownBits LocalKnown(BitWidth); 1454 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1455 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1456 1457 gep_type_iterator GTI = gep_type_begin(I); 1458 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1459 // TrailZ can only become smaller, short-circuit if we hit zero. 1460 if (TrailZ == 0) 1461 break; 1462 1463 Value *Index = I->getOperand(i); 1464 if (StructType *STy = GTI.getStructTypeOrNull()) { 1465 // Handle struct member offset arithmetic. 1466 1467 // Handle case when index is vector zeroinitializer 1468 Constant *CIndex = cast<Constant>(Index); 1469 if (CIndex->isZeroValue()) 1470 continue; 1471 1472 if (CIndex->getType()->isVectorTy()) 1473 Index = CIndex->getSplatValue(); 1474 1475 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1476 const StructLayout *SL = Q.DL.getStructLayout(STy); 1477 uint64_t Offset = SL->getElementOffset(Idx); 1478 TrailZ = std::min<unsigned>(TrailZ, 1479 countTrailingZeros(Offset)); 1480 } else { 1481 // Handle array index arithmetic. 1482 Type *IndexedTy = GTI.getIndexedType(); 1483 if (!IndexedTy->isSized()) { 1484 TrailZ = 0; 1485 break; 1486 } 1487 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1488 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1489 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1490 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1491 TrailZ = std::min(TrailZ, 1492 unsigned(countTrailingZeros(TypeSize) + 1493 LocalKnown.countMinTrailingZeros())); 1494 } 1495 } 1496 1497 Known.Zero.setLowBits(TrailZ); 1498 break; 1499 } 1500 case Instruction::PHI: { 1501 const PHINode *P = cast<PHINode>(I); 1502 // Handle the case of a simple two-predecessor recurrence PHI. 1503 // There's a lot more that could theoretically be done here, but 1504 // this is sufficient to catch some interesting cases. 1505 if (P->getNumIncomingValues() == 2) { 1506 for (unsigned i = 0; i != 2; ++i) { 1507 Value *L = P->getIncomingValue(i); 1508 Value *R = P->getIncomingValue(!i); 1509 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1510 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1511 Operator *LU = dyn_cast<Operator>(L); 1512 if (!LU) 1513 continue; 1514 unsigned Opcode = LU->getOpcode(); 1515 // Check for operations that have the property that if 1516 // both their operands have low zero bits, the result 1517 // will have low zero bits. 1518 if (Opcode == Instruction::Add || 1519 Opcode == Instruction::Sub || 1520 Opcode == Instruction::And || 1521 Opcode == Instruction::Or || 1522 Opcode == Instruction::Mul) { 1523 Value *LL = LU->getOperand(0); 1524 Value *LR = LU->getOperand(1); 1525 // Find a recurrence. 1526 if (LL == I) 1527 L = LR; 1528 else if (LR == I) 1529 L = LL; 1530 else 1531 continue; // Check for recurrence with L and R flipped. 1532 1533 // Change the context instruction to the "edge" that flows into the 1534 // phi. This is important because that is where the value is actually 1535 // "evaluated" even though it is used later somewhere else. (see also 1536 // D69571). 1537 Query RecQ = Q; 1538 1539 // Ok, we have a PHI of the form L op= R. Check for low 1540 // zero bits. 1541 RecQ.CxtI = RInst; 1542 computeKnownBits(R, Known2, Depth + 1, RecQ); 1543 1544 // We need to take the minimum number of known bits 1545 KnownBits Known3(BitWidth); 1546 RecQ.CxtI = LInst; 1547 computeKnownBits(L, Known3, Depth + 1, RecQ); 1548 1549 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1550 Known3.countMinTrailingZeros())); 1551 1552 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1553 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1554 // If initial value of recurrence is nonnegative, and we are adding 1555 // a nonnegative number with nsw, the result can only be nonnegative 1556 // or poison value regardless of the number of times we execute the 1557 // add in phi recurrence. If initial value is negative and we are 1558 // adding a negative number with nsw, the result can only be 1559 // negative or poison value. Similar arguments apply to sub and mul. 1560 // 1561 // (add non-negative, non-negative) --> non-negative 1562 // (add negative, negative) --> negative 1563 if (Opcode == Instruction::Add) { 1564 if (Known2.isNonNegative() && Known3.isNonNegative()) 1565 Known.makeNonNegative(); 1566 else if (Known2.isNegative() && Known3.isNegative()) 1567 Known.makeNegative(); 1568 } 1569 1570 // (sub nsw non-negative, negative) --> non-negative 1571 // (sub nsw negative, non-negative) --> negative 1572 else if (Opcode == Instruction::Sub && LL == I) { 1573 if (Known2.isNonNegative() && Known3.isNegative()) 1574 Known.makeNonNegative(); 1575 else if (Known2.isNegative() && Known3.isNonNegative()) 1576 Known.makeNegative(); 1577 } 1578 1579 // (mul nsw non-negative, non-negative) --> non-negative 1580 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1581 Known3.isNonNegative()) 1582 Known.makeNonNegative(); 1583 } 1584 1585 break; 1586 } 1587 } 1588 } 1589 1590 // Unreachable blocks may have zero-operand PHI nodes. 1591 if (P->getNumIncomingValues() == 0) 1592 break; 1593 1594 // Otherwise take the unions of the known bit sets of the operands, 1595 // taking conservative care to avoid excessive recursion. 1596 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1597 // Skip if every incoming value references to ourself. 1598 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1599 break; 1600 1601 Known.Zero.setAllBits(); 1602 Known.One.setAllBits(); 1603 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1604 Value *IncValue = P->getIncomingValue(u); 1605 // Skip direct self references. 1606 if (IncValue == P) continue; 1607 1608 // Change the context instruction to the "edge" that flows into the 1609 // phi. This is important because that is where the value is actually 1610 // "evaluated" even though it is used later somewhere else. (see also 1611 // D69571). 1612 Query RecQ = Q; 1613 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1614 1615 Known2 = KnownBits(BitWidth); 1616 // Recurse, but cap the recursion to one level, because we don't 1617 // want to waste time spinning around in loops. 1618 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1619 Known.Zero &= Known2.Zero; 1620 Known.One &= Known2.One; 1621 // If all bits have been ruled out, there's no need to check 1622 // more operands. 1623 if (!Known.Zero && !Known.One) 1624 break; 1625 } 1626 } 1627 break; 1628 } 1629 case Instruction::Call: 1630 case Instruction::Invoke: 1631 // If range metadata is attached to this call, set known bits from that, 1632 // and then intersect with known bits based on other properties of the 1633 // function. 1634 if (MDNode *MD = 1635 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1636 computeKnownBitsFromRangeMetadata(*MD, Known); 1637 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1638 computeKnownBits(RV, Known2, Depth + 1, Q); 1639 Known.Zero |= Known2.Zero; 1640 Known.One |= Known2.One; 1641 } 1642 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1643 switch (II->getIntrinsicID()) { 1644 default: break; 1645 case Intrinsic::abs: 1646 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1647 1648 // If the source's MSB is zero then we know the rest of the bits. 1649 if (Known2.isNonNegative()) { 1650 Known.Zero |= Known2.Zero; 1651 Known.One |= Known2.One; 1652 break; 1653 } 1654 1655 // Absolute value preserves trailing zero count. 1656 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1657 1658 // If this call is undefined for INT_MIN, the result is positive. We 1659 // also know it can't be INT_MIN if there is a set bit that isn't the 1660 // sign bit. 1661 Known2.One.clearSignBit(); 1662 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1663 Known.Zero.setSignBit(); 1664 // FIXME: Handle known negative input? 1665 // FIXME: Calculate the negated Known bits and combine them? 1666 break; 1667 case Intrinsic::bitreverse: 1668 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1669 Known.Zero |= Known2.Zero.reverseBits(); 1670 Known.One |= Known2.One.reverseBits(); 1671 break; 1672 case Intrinsic::bswap: 1673 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1674 Known.Zero |= Known2.Zero.byteSwap(); 1675 Known.One |= Known2.One.byteSwap(); 1676 break; 1677 case Intrinsic::ctlz: { 1678 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1679 // If we have a known 1, its position is our upper bound. 1680 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1681 // If this call is undefined for 0, the result will be less than 2^n. 1682 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1683 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1684 unsigned LowBits = Log2_32(PossibleLZ)+1; 1685 Known.Zero.setBitsFrom(LowBits); 1686 break; 1687 } 1688 case Intrinsic::cttz: { 1689 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1690 // If we have a known 1, its position is our upper bound. 1691 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1692 // If this call is undefined for 0, the result will be less than 2^n. 1693 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1694 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1695 unsigned LowBits = Log2_32(PossibleTZ)+1; 1696 Known.Zero.setBitsFrom(LowBits); 1697 break; 1698 } 1699 case Intrinsic::ctpop: { 1700 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1701 // We can bound the space the count needs. Also, bits known to be zero 1702 // can't contribute to the population. 1703 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1704 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1705 Known.Zero.setBitsFrom(LowBits); 1706 // TODO: we could bound KnownOne using the lower bound on the number 1707 // of bits which might be set provided by popcnt KnownOne2. 1708 break; 1709 } 1710 case Intrinsic::fshr: 1711 case Intrinsic::fshl: { 1712 const APInt *SA; 1713 if (!match(I->getOperand(2), m_APInt(SA))) 1714 break; 1715 1716 // Normalize to funnel shift left. 1717 uint64_t ShiftAmt = SA->urem(BitWidth); 1718 if (II->getIntrinsicID() == Intrinsic::fshr) 1719 ShiftAmt = BitWidth - ShiftAmt; 1720 1721 KnownBits Known3(BitWidth); 1722 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1723 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1724 1725 Known.Zero = 1726 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1727 Known.One = 1728 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1729 break; 1730 } 1731 case Intrinsic::uadd_sat: 1732 case Intrinsic::usub_sat: { 1733 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1734 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1735 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1736 1737 // Add: Leading ones of either operand are preserved. 1738 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1739 // as leading zeros in the result. 1740 unsigned LeadingKnown; 1741 if (IsAdd) 1742 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1743 Known2.countMinLeadingOnes()); 1744 else 1745 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1746 Known2.countMinLeadingOnes()); 1747 1748 Known = KnownBits::computeForAddSub( 1749 IsAdd, /* NSW */ false, Known, Known2); 1750 1751 // We select between the operation result and all-ones/zero 1752 // respectively, so we can preserve known ones/zeros. 1753 if (IsAdd) { 1754 Known.One.setHighBits(LeadingKnown); 1755 Known.Zero.clearAllBits(); 1756 } else { 1757 Known.Zero.setHighBits(LeadingKnown); 1758 Known.One.clearAllBits(); 1759 } 1760 break; 1761 } 1762 case Intrinsic::x86_sse42_crc32_64_64: 1763 Known.Zero.setBitsFrom(32); 1764 break; 1765 } 1766 } 1767 break; 1768 case Instruction::ShuffleVector: { 1769 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1770 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1771 if (!Shuf) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 // For undef elements, we don't know anything about the common state of 1776 // the shuffle result. 1777 APInt DemandedLHS, DemandedRHS; 1778 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1779 Known.resetAll(); 1780 return; 1781 } 1782 Known.One.setAllBits(); 1783 Known.Zero.setAllBits(); 1784 if (!!DemandedLHS) { 1785 const Value *LHS = Shuf->getOperand(0); 1786 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1787 // If we don't know any bits, early out. 1788 if (Known.isUnknown()) 1789 break; 1790 } 1791 if (!!DemandedRHS) { 1792 const Value *RHS = Shuf->getOperand(1); 1793 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1794 Known.One &= Known2.One; 1795 Known.Zero &= Known2.Zero; 1796 } 1797 break; 1798 } 1799 case Instruction::InsertElement: { 1800 const Value *Vec = I->getOperand(0); 1801 const Value *Elt = I->getOperand(1); 1802 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1803 // Early out if the index is non-constant or out-of-range. 1804 unsigned NumElts = DemandedElts.getBitWidth(); 1805 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1806 Known.resetAll(); 1807 return; 1808 } 1809 Known.One.setAllBits(); 1810 Known.Zero.setAllBits(); 1811 unsigned EltIdx = CIdx->getZExtValue(); 1812 // Do we demand the inserted element? 1813 if (DemandedElts[EltIdx]) { 1814 computeKnownBits(Elt, Known, Depth + 1, Q); 1815 // If we don't know any bits, early out. 1816 if (Known.isUnknown()) 1817 break; 1818 } 1819 // We don't need the base vector element that has been inserted. 1820 APInt DemandedVecElts = DemandedElts; 1821 DemandedVecElts.clearBit(EltIdx); 1822 if (!!DemandedVecElts) { 1823 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1824 Known.One &= Known2.One; 1825 Known.Zero &= Known2.Zero; 1826 } 1827 break; 1828 } 1829 case Instruction::ExtractElement: { 1830 // Look through extract element. If the index is non-constant or 1831 // out-of-range demand all elements, otherwise just the extracted element. 1832 const Value *Vec = I->getOperand(0); 1833 const Value *Idx = I->getOperand(1); 1834 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1835 if (isa<ScalableVectorType>(Vec->getType())) { 1836 // FIXME: there's probably *something* we can do with scalable vectors 1837 Known.resetAll(); 1838 break; 1839 } 1840 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1841 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1842 if (CIdx && CIdx->getValue().ult(NumElts)) 1843 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1844 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1845 break; 1846 } 1847 case Instruction::ExtractValue: 1848 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1849 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1850 if (EVI->getNumIndices() != 1) break; 1851 if (EVI->getIndices()[0] == 0) { 1852 switch (II->getIntrinsicID()) { 1853 default: break; 1854 case Intrinsic::uadd_with_overflow: 1855 case Intrinsic::sadd_with_overflow: 1856 computeKnownBitsAddSub(true, II->getArgOperand(0), 1857 II->getArgOperand(1), false, DemandedElts, 1858 Known, Known2, Depth, Q); 1859 break; 1860 case Intrinsic::usub_with_overflow: 1861 case Intrinsic::ssub_with_overflow: 1862 computeKnownBitsAddSub(false, II->getArgOperand(0), 1863 II->getArgOperand(1), false, DemandedElts, 1864 Known, Known2, Depth, Q); 1865 break; 1866 case Intrinsic::umul_with_overflow: 1867 case Intrinsic::smul_with_overflow: 1868 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1869 DemandedElts, Known, Known2, Depth, Q); 1870 break; 1871 } 1872 } 1873 } 1874 break; 1875 } 1876 } 1877 1878 /// Determine which bits of V are known to be either zero or one and return 1879 /// them. 1880 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1881 unsigned Depth, const Query &Q) { 1882 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1883 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1884 return Known; 1885 } 1886 1887 /// Determine which bits of V are known to be either zero or one and return 1888 /// them. 1889 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1890 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1891 computeKnownBits(V, Known, Depth, Q); 1892 return Known; 1893 } 1894 1895 /// Determine which bits of V are known to be either zero or one and return 1896 /// them in the Known bit set. 1897 /// 1898 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1899 /// we cannot optimize based on the assumption that it is zero without changing 1900 /// it to be an explicit zero. If we don't change it to zero, other code could 1901 /// optimized based on the contradictory assumption that it is non-zero. 1902 /// Because instcombine aggressively folds operations with undef args anyway, 1903 /// this won't lose us code quality. 1904 /// 1905 /// This function is defined on values with integer type, values with pointer 1906 /// type, and vectors of integers. In the case 1907 /// where V is a vector, known zero, and known one values are the 1908 /// same width as the vector element, and the bit is set only if it is true 1909 /// for all of the demanded elements in the vector specified by DemandedElts. 1910 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1911 KnownBits &Known, unsigned Depth, const Query &Q) { 1912 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1913 // No demanded elts or V is a scalable vector, better to assume we don't 1914 // know anything. 1915 Known.resetAll(); 1916 return; 1917 } 1918 1919 assert(V && "No Value?"); 1920 assert(Depth <= MaxDepth && "Limit Search Depth"); 1921 1922 #ifndef NDEBUG 1923 Type *Ty = V->getType(); 1924 unsigned BitWidth = Known.getBitWidth(); 1925 1926 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1927 "Not integer or pointer type!"); 1928 1929 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1930 assert( 1931 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1932 "DemandedElt width should equal the fixed vector number of elements"); 1933 } else { 1934 assert(DemandedElts == APInt(1, 1) && 1935 "DemandedElt width should be 1 for scalars"); 1936 } 1937 1938 Type *ScalarTy = Ty->getScalarType(); 1939 if (ScalarTy->isPointerTy()) { 1940 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1941 "V and Known should have same BitWidth"); 1942 } else { 1943 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1944 "V and Known should have same BitWidth"); 1945 } 1946 #endif 1947 1948 const APInt *C; 1949 if (match(V, m_APInt(C))) { 1950 // We know all of the bits for a scalar constant or a splat vector constant! 1951 Known.One = *C; 1952 Known.Zero = ~Known.One; 1953 return; 1954 } 1955 // Null and aggregate-zero are all-zeros. 1956 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1957 Known.setAllZero(); 1958 return; 1959 } 1960 // Handle a constant vector by taking the intersection of the known bits of 1961 // each element. 1962 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1963 // We know that CDV must be a vector of integers. Take the intersection of 1964 // each element. 1965 Known.Zero.setAllBits(); Known.One.setAllBits(); 1966 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1967 if (!DemandedElts[i]) 1968 continue; 1969 APInt Elt = CDV->getElementAsAPInt(i); 1970 Known.Zero &= ~Elt; 1971 Known.One &= Elt; 1972 } 1973 return; 1974 } 1975 1976 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1977 // We know that CV must be a vector of integers. Take the intersection of 1978 // each element. 1979 Known.Zero.setAllBits(); Known.One.setAllBits(); 1980 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1981 if (!DemandedElts[i]) 1982 continue; 1983 Constant *Element = CV->getAggregateElement(i); 1984 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1985 if (!ElementCI) { 1986 Known.resetAll(); 1987 return; 1988 } 1989 const APInt &Elt = ElementCI->getValue(); 1990 Known.Zero &= ~Elt; 1991 Known.One &= Elt; 1992 } 1993 return; 1994 } 1995 1996 // Start out not knowing anything. 1997 Known.resetAll(); 1998 1999 // We can't imply anything about undefs. 2000 if (isa<UndefValue>(V)) 2001 return; 2002 2003 // There's no point in looking through other users of ConstantData for 2004 // assumptions. Confirm that we've handled them all. 2005 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2006 2007 // Limit search depth. 2008 // All recursive calls that increase depth must come after this. 2009 if (Depth == MaxDepth) 2010 return; 2011 2012 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2013 // the bits of its aliasee. 2014 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2015 if (!GA->isInterposable()) 2016 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2017 return; 2018 } 2019 2020 if (const Operator *I = dyn_cast<Operator>(V)) 2021 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2022 2023 // Aligned pointers have trailing zeros - refine Known.Zero set 2024 if (isa<PointerType>(V->getType())) { 2025 Align Alignment = V->getPointerAlignment(Q.DL); 2026 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2027 } 2028 2029 // computeKnownBitsFromAssume strictly refines Known. 2030 // Therefore, we run them after computeKnownBitsFromOperator. 2031 2032 // Check whether a nearby assume intrinsic can determine some known bits. 2033 computeKnownBitsFromAssume(V, Known, Depth, Q); 2034 2035 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2036 } 2037 2038 /// Return true if the given value is known to have exactly one 2039 /// bit set when defined. For vectors return true if every element is known to 2040 /// be a power of two when defined. Supports values with integer or pointer 2041 /// types and vectors of integers. 2042 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2043 const Query &Q) { 2044 assert(Depth <= MaxDepth && "Limit Search Depth"); 2045 2046 // Attempt to match against constants. 2047 if (OrZero && match(V, m_Power2OrZero())) 2048 return true; 2049 if (match(V, m_Power2())) 2050 return true; 2051 2052 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2053 // it is shifted off the end then the result is undefined. 2054 if (match(V, m_Shl(m_One(), m_Value()))) 2055 return true; 2056 2057 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2058 // the bottom. If it is shifted off the bottom then the result is undefined. 2059 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2060 return true; 2061 2062 // The remaining tests are all recursive, so bail out if we hit the limit. 2063 if (Depth++ == MaxDepth) 2064 return false; 2065 2066 Value *X = nullptr, *Y = nullptr; 2067 // A shift left or a logical shift right of a power of two is a power of two 2068 // or zero. 2069 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2070 match(V, m_LShr(m_Value(X), m_Value())))) 2071 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2072 2073 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2074 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2075 2076 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2077 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2078 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2079 2080 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2081 // A power of two and'd with anything is a power of two or zero. 2082 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2083 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2084 return true; 2085 // X & (-X) is always a power of two or zero. 2086 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2087 return true; 2088 return false; 2089 } 2090 2091 // Adding a power-of-two or zero to the same power-of-two or zero yields 2092 // either the original power-of-two, a larger power-of-two or zero. 2093 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2094 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2095 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2096 Q.IIQ.hasNoSignedWrap(VOBO)) { 2097 if (match(X, m_And(m_Specific(Y), m_Value())) || 2098 match(X, m_And(m_Value(), m_Specific(Y)))) 2099 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2100 return true; 2101 if (match(Y, m_And(m_Specific(X), m_Value())) || 2102 match(Y, m_And(m_Value(), m_Specific(X)))) 2103 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2104 return true; 2105 2106 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2107 KnownBits LHSBits(BitWidth); 2108 computeKnownBits(X, LHSBits, Depth, Q); 2109 2110 KnownBits RHSBits(BitWidth); 2111 computeKnownBits(Y, RHSBits, Depth, Q); 2112 // If i8 V is a power of two or zero: 2113 // ZeroBits: 1 1 1 0 1 1 1 1 2114 // ~ZeroBits: 0 0 0 1 0 0 0 0 2115 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2116 // If OrZero isn't set, we cannot give back a zero result. 2117 // Make sure either the LHS or RHS has a bit set. 2118 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2119 return true; 2120 } 2121 } 2122 2123 // An exact divide or right shift can only shift off zero bits, so the result 2124 // is a power of two only if the first operand is a power of two and not 2125 // copying a sign bit (sdiv int_min, 2). 2126 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2127 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2128 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2129 Depth, Q); 2130 } 2131 2132 return false; 2133 } 2134 2135 /// Test whether a GEP's result is known to be non-null. 2136 /// 2137 /// Uses properties inherent in a GEP to try to determine whether it is known 2138 /// to be non-null. 2139 /// 2140 /// Currently this routine does not support vector GEPs. 2141 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2142 const Query &Q) { 2143 const Function *F = nullptr; 2144 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2145 F = I->getFunction(); 2146 2147 if (!GEP->isInBounds() || 2148 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2149 return false; 2150 2151 // FIXME: Support vector-GEPs. 2152 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2153 2154 // If the base pointer is non-null, we cannot walk to a null address with an 2155 // inbounds GEP in address space zero. 2156 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2157 return true; 2158 2159 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2160 // If so, then the GEP cannot produce a null pointer, as doing so would 2161 // inherently violate the inbounds contract within address space zero. 2162 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2163 GTI != GTE; ++GTI) { 2164 // Struct types are easy -- they must always be indexed by a constant. 2165 if (StructType *STy = GTI.getStructTypeOrNull()) { 2166 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2167 unsigned ElementIdx = OpC->getZExtValue(); 2168 const StructLayout *SL = Q.DL.getStructLayout(STy); 2169 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2170 if (ElementOffset > 0) 2171 return true; 2172 continue; 2173 } 2174 2175 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2176 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2177 continue; 2178 2179 // Fast path the constant operand case both for efficiency and so we don't 2180 // increment Depth when just zipping down an all-constant GEP. 2181 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2182 if (!OpC->isZero()) 2183 return true; 2184 continue; 2185 } 2186 2187 // We post-increment Depth here because while isKnownNonZero increments it 2188 // as well, when we pop back up that increment won't persist. We don't want 2189 // to recurse 10k times just because we have 10k GEP operands. We don't 2190 // bail completely out because we want to handle constant GEPs regardless 2191 // of depth. 2192 if (Depth++ >= MaxDepth) 2193 continue; 2194 2195 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2196 return true; 2197 } 2198 2199 return false; 2200 } 2201 2202 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2203 const Instruction *CtxI, 2204 const DominatorTree *DT) { 2205 if (isa<Constant>(V)) 2206 return false; 2207 2208 if (!CtxI || !DT) 2209 return false; 2210 2211 unsigned NumUsesExplored = 0; 2212 for (auto *U : V->users()) { 2213 // Avoid massive lists 2214 if (NumUsesExplored >= DomConditionsMaxUses) 2215 break; 2216 NumUsesExplored++; 2217 2218 // If the value is used as an argument to a call or invoke, then argument 2219 // attributes may provide an answer about null-ness. 2220 if (const auto *CB = dyn_cast<CallBase>(U)) 2221 if (auto *CalledFunc = CB->getCalledFunction()) 2222 for (const Argument &Arg : CalledFunc->args()) 2223 if (CB->getArgOperand(Arg.getArgNo()) == V && 2224 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2225 return true; 2226 2227 // If the value is used as a load/store, then the pointer must be non null. 2228 if (V == getLoadStorePointerOperand(U)) { 2229 const Instruction *I = cast<Instruction>(U); 2230 if (!NullPointerIsDefined(I->getFunction(), 2231 V->getType()->getPointerAddressSpace()) && 2232 DT->dominates(I, CtxI)) 2233 return true; 2234 } 2235 2236 // Consider only compare instructions uniquely controlling a branch 2237 CmpInst::Predicate Pred; 2238 if (!match(const_cast<User *>(U), 2239 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2240 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2241 continue; 2242 2243 SmallVector<const User *, 4> WorkList; 2244 SmallPtrSet<const User *, 4> Visited; 2245 for (auto *CmpU : U->users()) { 2246 assert(WorkList.empty() && "Should be!"); 2247 if (Visited.insert(CmpU).second) 2248 WorkList.push_back(CmpU); 2249 2250 while (!WorkList.empty()) { 2251 auto *Curr = WorkList.pop_back_val(); 2252 2253 // If a user is an AND, add all its users to the work list. We only 2254 // propagate "pred != null" condition through AND because it is only 2255 // correct to assume that all conditions of AND are met in true branch. 2256 // TODO: Support similar logic of OR and EQ predicate? 2257 if (Pred == ICmpInst::ICMP_NE) 2258 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2259 if (BO->getOpcode() == Instruction::And) { 2260 for (auto *BOU : BO->users()) 2261 if (Visited.insert(BOU).second) 2262 WorkList.push_back(BOU); 2263 continue; 2264 } 2265 2266 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2267 assert(BI->isConditional() && "uses a comparison!"); 2268 2269 BasicBlock *NonNullSuccessor = 2270 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2271 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2272 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2273 return true; 2274 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2275 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2276 return true; 2277 } 2278 } 2279 } 2280 } 2281 2282 return false; 2283 } 2284 2285 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2286 /// ensure that the value it's attached to is never Value? 'RangeType' is 2287 /// is the type of the value described by the range. 2288 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2289 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2290 assert(NumRanges >= 1); 2291 for (unsigned i = 0; i < NumRanges; ++i) { 2292 ConstantInt *Lower = 2293 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2294 ConstantInt *Upper = 2295 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2296 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2297 if (Range.contains(Value)) 2298 return false; 2299 } 2300 return true; 2301 } 2302 2303 /// Return true if the given value is known to be non-zero when defined. For 2304 /// vectors, return true if every demanded element is known to be non-zero when 2305 /// defined. For pointers, if the context instruction and dominator tree are 2306 /// specified, perform context-sensitive analysis and return true if the 2307 /// pointer couldn't possibly be null at the specified instruction. 2308 /// Supports values with integer or pointer type and vectors of integers. 2309 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2310 const Query &Q) { 2311 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2312 // vector 2313 if (isa<ScalableVectorType>(V->getType())) 2314 return false; 2315 2316 if (auto *C = dyn_cast<Constant>(V)) { 2317 if (C->isNullValue()) 2318 return false; 2319 if (isa<ConstantInt>(C)) 2320 // Must be non-zero due to null test above. 2321 return true; 2322 2323 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2324 // See the comment for IntToPtr/PtrToInt instructions below. 2325 if (CE->getOpcode() == Instruction::IntToPtr || 2326 CE->getOpcode() == Instruction::PtrToInt) 2327 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2328 Q.DL.getTypeSizeInBits(CE->getType())) 2329 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2330 } 2331 2332 // For constant vectors, check that all elements are undefined or known 2333 // non-zero to determine that the whole vector is known non-zero. 2334 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2335 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2336 if (!DemandedElts[i]) 2337 continue; 2338 Constant *Elt = C->getAggregateElement(i); 2339 if (!Elt || Elt->isNullValue()) 2340 return false; 2341 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2342 return false; 2343 } 2344 return true; 2345 } 2346 2347 // A global variable in address space 0 is non null unless extern weak 2348 // or an absolute symbol reference. Other address spaces may have null as a 2349 // valid address for a global, so we can't assume anything. 2350 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2351 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2352 GV->getType()->getAddressSpace() == 0) 2353 return true; 2354 } else 2355 return false; 2356 } 2357 2358 if (auto *I = dyn_cast<Instruction>(V)) { 2359 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2360 // If the possible ranges don't contain zero, then the value is 2361 // definitely non-zero. 2362 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2363 const APInt ZeroValue(Ty->getBitWidth(), 0); 2364 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2365 return true; 2366 } 2367 } 2368 } 2369 2370 if (isKnownNonZeroFromAssume(V, Q)) 2371 return true; 2372 2373 // Some of the tests below are recursive, so bail out if we hit the limit. 2374 if (Depth++ >= MaxDepth) 2375 return false; 2376 2377 // Check for pointer simplifications. 2378 2379 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2380 // Alloca never returns null, malloc might. 2381 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2382 return true; 2383 2384 // A byval, inalloca may not be null in a non-default addres space. A 2385 // nonnull argument is assumed never 0. 2386 if (const Argument *A = dyn_cast<Argument>(V)) { 2387 if (((A->hasPassPointeeByValueCopyAttr() && 2388 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2389 A->hasNonNullAttr())) 2390 return true; 2391 } 2392 2393 // A Load tagged with nonnull metadata is never null. 2394 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2395 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2396 return true; 2397 2398 if (const auto *Call = dyn_cast<CallBase>(V)) { 2399 if (Call->isReturnNonNull()) 2400 return true; 2401 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2402 return isKnownNonZero(RP, Depth, Q); 2403 } 2404 } 2405 2406 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2407 return true; 2408 2409 // Check for recursive pointer simplifications. 2410 if (V->getType()->isPointerTy()) { 2411 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2412 // do not alter the value, or at least not the nullness property of the 2413 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2414 // 2415 // Note that we have to take special care to avoid looking through 2416 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2417 // as casts that can alter the value, e.g., AddrSpaceCasts. 2418 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2419 if (isGEPKnownNonNull(GEP, Depth, Q)) 2420 return true; 2421 2422 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2423 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2424 2425 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2426 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2427 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2428 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2429 } 2430 2431 // Similar to int2ptr above, we can look through ptr2int here if the cast 2432 // is a no-op or an extend and not a truncate. 2433 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2434 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2435 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2436 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2437 2438 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2439 2440 // X | Y != 0 if X != 0 or Y != 0. 2441 Value *X = nullptr, *Y = nullptr; 2442 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2443 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2444 isKnownNonZero(Y, DemandedElts, Depth, Q); 2445 2446 // ext X != 0 if X != 0. 2447 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2448 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2449 2450 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2451 // if the lowest bit is shifted off the end. 2452 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2453 // shl nuw can't remove any non-zero bits. 2454 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2455 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2456 return isKnownNonZero(X, Depth, Q); 2457 2458 KnownBits Known(BitWidth); 2459 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2460 if (Known.One[0]) 2461 return true; 2462 } 2463 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2464 // defined if the sign bit is shifted off the end. 2465 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2466 // shr exact can only shift out zero bits. 2467 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2468 if (BO->isExact()) 2469 return isKnownNonZero(X, Depth, Q); 2470 2471 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2472 if (Known.isNegative()) 2473 return true; 2474 2475 // If the shifter operand is a constant, and all of the bits shifted 2476 // out are known to be zero, and X is known non-zero then at least one 2477 // non-zero bit must remain. 2478 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2479 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2480 // Is there a known one in the portion not shifted out? 2481 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2482 return true; 2483 // Are all the bits to be shifted out known zero? 2484 if (Known.countMinTrailingZeros() >= ShiftVal) 2485 return isKnownNonZero(X, DemandedElts, Depth, Q); 2486 } 2487 } 2488 // div exact can only produce a zero if the dividend is zero. 2489 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2490 return isKnownNonZero(X, DemandedElts, Depth, Q); 2491 } 2492 // X + Y. 2493 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2494 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2495 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2496 2497 // If X and Y are both non-negative (as signed values) then their sum is not 2498 // zero unless both X and Y are zero. 2499 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2500 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2501 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2502 return true; 2503 2504 // If X and Y are both negative (as signed values) then their sum is not 2505 // zero unless both X and Y equal INT_MIN. 2506 if (XKnown.isNegative() && YKnown.isNegative()) { 2507 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2508 // The sign bit of X is set. If some other bit is set then X is not equal 2509 // to INT_MIN. 2510 if (XKnown.One.intersects(Mask)) 2511 return true; 2512 // The sign bit of Y is set. If some other bit is set then Y is not equal 2513 // to INT_MIN. 2514 if (YKnown.One.intersects(Mask)) 2515 return true; 2516 } 2517 2518 // The sum of a non-negative number and a power of two is not zero. 2519 if (XKnown.isNonNegative() && 2520 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2521 return true; 2522 if (YKnown.isNonNegative() && 2523 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2524 return true; 2525 } 2526 // X * Y. 2527 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2528 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2529 // If X and Y are non-zero then so is X * Y as long as the multiplication 2530 // does not overflow. 2531 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2532 isKnownNonZero(X, DemandedElts, Depth, Q) && 2533 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2534 return true; 2535 } 2536 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2537 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2538 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2539 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2540 return true; 2541 } 2542 // PHI 2543 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2544 // Try and detect a recurrence that monotonically increases from a 2545 // starting value, as these are common as induction variables. 2546 if (PN->getNumIncomingValues() == 2) { 2547 Value *Start = PN->getIncomingValue(0); 2548 Value *Induction = PN->getIncomingValue(1); 2549 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2550 std::swap(Start, Induction); 2551 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2552 if (!C->isZero() && !C->isNegative()) { 2553 ConstantInt *X; 2554 if (Q.IIQ.UseInstrInfo && 2555 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2556 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2557 !X->isNegative()) 2558 return true; 2559 } 2560 } 2561 } 2562 // Check if all incoming values are non-zero constant. 2563 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2564 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2565 }); 2566 if (AllNonZeroConstants) 2567 return true; 2568 } 2569 // ExtractElement 2570 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2571 const Value *Vec = EEI->getVectorOperand(); 2572 const Value *Idx = EEI->getIndexOperand(); 2573 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2574 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 2575 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2576 if (CIdx && CIdx->getValue().ult(NumElts)) 2577 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2578 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2579 } 2580 2581 KnownBits Known(BitWidth); 2582 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2583 return Known.One != 0; 2584 } 2585 2586 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2587 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2588 // vector 2589 if (isa<ScalableVectorType>(V->getType())) 2590 return false; 2591 2592 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2593 APInt DemandedElts = 2594 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2595 return isKnownNonZero(V, DemandedElts, Depth, Q); 2596 } 2597 2598 /// Return true if V2 == V1 + X, where X is known non-zero. 2599 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2600 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2601 if (!BO || BO->getOpcode() != Instruction::Add) 2602 return false; 2603 Value *Op = nullptr; 2604 if (V2 == BO->getOperand(0)) 2605 Op = BO->getOperand(1); 2606 else if (V2 == BO->getOperand(1)) 2607 Op = BO->getOperand(0); 2608 else 2609 return false; 2610 return isKnownNonZero(Op, 0, Q); 2611 } 2612 2613 /// Return true if it is known that V1 != V2. 2614 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2615 if (V1 == V2) 2616 return false; 2617 if (V1->getType() != V2->getType()) 2618 // We can't look through casts yet. 2619 return false; 2620 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2621 return true; 2622 2623 if (V1->getType()->isIntOrIntVectorTy()) { 2624 // Are any known bits in V1 contradictory to known bits in V2? If V1 2625 // has a known zero where V2 has a known one, they must not be equal. 2626 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2627 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2628 2629 if (Known1.Zero.intersects(Known2.One) || 2630 Known2.Zero.intersects(Known1.One)) 2631 return true; 2632 } 2633 return false; 2634 } 2635 2636 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2637 /// simplify operations downstream. Mask is known to be zero for bits that V 2638 /// cannot have. 2639 /// 2640 /// This function is defined on values with integer type, values with pointer 2641 /// type, and vectors of integers. In the case 2642 /// where V is a vector, the mask, known zero, and known one values are the 2643 /// same width as the vector element, and the bit is set only if it is true 2644 /// for all of the elements in the vector. 2645 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2646 const Query &Q) { 2647 KnownBits Known(Mask.getBitWidth()); 2648 computeKnownBits(V, Known, Depth, Q); 2649 return Mask.isSubsetOf(Known.Zero); 2650 } 2651 2652 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2653 // Returns the input and lower/upper bounds. 2654 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2655 const APInt *&CLow, const APInt *&CHigh) { 2656 assert(isa<Operator>(Select) && 2657 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2658 "Input should be a Select!"); 2659 2660 const Value *LHS = nullptr, *RHS = nullptr; 2661 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2662 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2663 return false; 2664 2665 if (!match(RHS, m_APInt(CLow))) 2666 return false; 2667 2668 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2669 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2670 if (getInverseMinMaxFlavor(SPF) != SPF2) 2671 return false; 2672 2673 if (!match(RHS2, m_APInt(CHigh))) 2674 return false; 2675 2676 if (SPF == SPF_SMIN) 2677 std::swap(CLow, CHigh); 2678 2679 In = LHS2; 2680 return CLow->sle(*CHigh); 2681 } 2682 2683 /// For vector constants, loop over the elements and find the constant with the 2684 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2685 /// or if any element was not analyzed; otherwise, return the count for the 2686 /// element with the minimum number of sign bits. 2687 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2688 const APInt &DemandedElts, 2689 unsigned TyBits) { 2690 const auto *CV = dyn_cast<Constant>(V); 2691 if (!CV || !isa<FixedVectorType>(CV->getType())) 2692 return 0; 2693 2694 unsigned MinSignBits = TyBits; 2695 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2696 for (unsigned i = 0; i != NumElts; ++i) { 2697 if (!DemandedElts[i]) 2698 continue; 2699 // If we find a non-ConstantInt, bail out. 2700 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2701 if (!Elt) 2702 return 0; 2703 2704 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2705 } 2706 2707 return MinSignBits; 2708 } 2709 2710 static unsigned ComputeNumSignBitsImpl(const Value *V, 2711 const APInt &DemandedElts, 2712 unsigned Depth, const Query &Q); 2713 2714 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2715 unsigned Depth, const Query &Q) { 2716 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2717 assert(Result > 0 && "At least one sign bit needs to be present!"); 2718 return Result; 2719 } 2720 2721 /// Return the number of times the sign bit of the register is replicated into 2722 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2723 /// (itself), but other cases can give us information. For example, immediately 2724 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2725 /// other, so we return 3. For vectors, return the number of sign bits for the 2726 /// vector element with the minimum number of known sign bits of the demanded 2727 /// elements in the vector specified by DemandedElts. 2728 static unsigned ComputeNumSignBitsImpl(const Value *V, 2729 const APInt &DemandedElts, 2730 unsigned Depth, const Query &Q) { 2731 Type *Ty = V->getType(); 2732 2733 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2734 // vector 2735 if (isa<ScalableVectorType>(Ty)) 2736 return 1; 2737 2738 #ifndef NDEBUG 2739 assert(Depth <= MaxDepth && "Limit Search Depth"); 2740 2741 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2742 assert( 2743 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2744 "DemandedElt width should equal the fixed vector number of elements"); 2745 } else { 2746 assert(DemandedElts == APInt(1, 1) && 2747 "DemandedElt width should be 1 for scalars"); 2748 } 2749 #endif 2750 2751 // We return the minimum number of sign bits that are guaranteed to be present 2752 // in V, so for undef we have to conservatively return 1. We don't have the 2753 // same behavior for poison though -- that's a FIXME today. 2754 2755 Type *ScalarTy = Ty->getScalarType(); 2756 unsigned TyBits = ScalarTy->isPointerTy() ? 2757 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2758 Q.DL.getTypeSizeInBits(ScalarTy); 2759 2760 unsigned Tmp, Tmp2; 2761 unsigned FirstAnswer = 1; 2762 2763 // Note that ConstantInt is handled by the general computeKnownBits case 2764 // below. 2765 2766 if (Depth == MaxDepth) 2767 return 1; // Limit search depth. 2768 2769 if (auto *U = dyn_cast<Operator>(V)) { 2770 switch (Operator::getOpcode(V)) { 2771 default: break; 2772 case Instruction::SExt: 2773 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2774 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2775 2776 case Instruction::SDiv: { 2777 const APInt *Denominator; 2778 // sdiv X, C -> adds log(C) sign bits. 2779 if (match(U->getOperand(1), m_APInt(Denominator))) { 2780 2781 // Ignore non-positive denominator. 2782 if (!Denominator->isStrictlyPositive()) 2783 break; 2784 2785 // Calculate the incoming numerator bits. 2786 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2787 2788 // Add floor(log(C)) bits to the numerator bits. 2789 return std::min(TyBits, NumBits + Denominator->logBase2()); 2790 } 2791 break; 2792 } 2793 2794 case Instruction::SRem: { 2795 const APInt *Denominator; 2796 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2797 // positive constant. This let us put a lower bound on the number of sign 2798 // bits. 2799 if (match(U->getOperand(1), m_APInt(Denominator))) { 2800 2801 // Ignore non-positive denominator. 2802 if (!Denominator->isStrictlyPositive()) 2803 break; 2804 2805 // Calculate the incoming numerator bits. SRem by a positive constant 2806 // can't lower the number of sign bits. 2807 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2808 2809 // Calculate the leading sign bit constraints by examining the 2810 // denominator. Given that the denominator is positive, there are two 2811 // cases: 2812 // 2813 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2814 // (1 << ceilLogBase2(C)). 2815 // 2816 // 2. the numerator is negative. Then the result range is (-C,0] and 2817 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2818 // 2819 // Thus a lower bound on the number of sign bits is `TyBits - 2820 // ceilLogBase2(C)`. 2821 2822 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2823 return std::max(NumrBits, ResBits); 2824 } 2825 break; 2826 } 2827 2828 case Instruction::AShr: { 2829 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2830 // ashr X, C -> adds C sign bits. Vectors too. 2831 const APInt *ShAmt; 2832 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2833 if (ShAmt->uge(TyBits)) 2834 break; // Bad shift. 2835 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2836 Tmp += ShAmtLimited; 2837 if (Tmp > TyBits) Tmp = TyBits; 2838 } 2839 return Tmp; 2840 } 2841 case Instruction::Shl: { 2842 const APInt *ShAmt; 2843 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2844 // shl destroys sign bits. 2845 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2846 if (ShAmt->uge(TyBits) || // Bad shift. 2847 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2848 Tmp2 = ShAmt->getZExtValue(); 2849 return Tmp - Tmp2; 2850 } 2851 break; 2852 } 2853 case Instruction::And: 2854 case Instruction::Or: 2855 case Instruction::Xor: // NOT is handled here. 2856 // Logical binary ops preserve the number of sign bits at the worst. 2857 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2858 if (Tmp != 1) { 2859 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2860 FirstAnswer = std::min(Tmp, Tmp2); 2861 // We computed what we know about the sign bits as our first 2862 // answer. Now proceed to the generic code that uses 2863 // computeKnownBits, and pick whichever answer is better. 2864 } 2865 break; 2866 2867 case Instruction::Select: { 2868 // If we have a clamp pattern, we know that the number of sign bits will 2869 // be the minimum of the clamp min/max range. 2870 const Value *X; 2871 const APInt *CLow, *CHigh; 2872 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2873 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2874 2875 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2876 if (Tmp == 1) break; 2877 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2878 return std::min(Tmp, Tmp2); 2879 } 2880 2881 case Instruction::Add: 2882 // Add can have at most one carry bit. Thus we know that the output 2883 // is, at worst, one more bit than the inputs. 2884 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2885 if (Tmp == 1) break; 2886 2887 // Special case decrementing a value (ADD X, -1): 2888 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2889 if (CRHS->isAllOnesValue()) { 2890 KnownBits Known(TyBits); 2891 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2892 2893 // If the input is known to be 0 or 1, the output is 0/-1, which is 2894 // all sign bits set. 2895 if ((Known.Zero | 1).isAllOnesValue()) 2896 return TyBits; 2897 2898 // If we are subtracting one from a positive number, there is no carry 2899 // out of the result. 2900 if (Known.isNonNegative()) 2901 return Tmp; 2902 } 2903 2904 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2905 if (Tmp2 == 1) break; 2906 return std::min(Tmp, Tmp2) - 1; 2907 2908 case Instruction::Sub: 2909 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2910 if (Tmp2 == 1) break; 2911 2912 // Handle NEG. 2913 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2914 if (CLHS->isNullValue()) { 2915 KnownBits Known(TyBits); 2916 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2917 // If the input is known to be 0 or 1, the output is 0/-1, which is 2918 // all sign bits set. 2919 if ((Known.Zero | 1).isAllOnesValue()) 2920 return TyBits; 2921 2922 // If the input is known to be positive (the sign bit is known clear), 2923 // the output of the NEG has the same number of sign bits as the 2924 // input. 2925 if (Known.isNonNegative()) 2926 return Tmp2; 2927 2928 // Otherwise, we treat this like a SUB. 2929 } 2930 2931 // Sub can have at most one carry bit. Thus we know that the output 2932 // is, at worst, one more bit than the inputs. 2933 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2934 if (Tmp == 1) break; 2935 return std::min(Tmp, Tmp2) - 1; 2936 2937 case Instruction::Mul: { 2938 // The output of the Mul can be at most twice the valid bits in the 2939 // inputs. 2940 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2941 if (SignBitsOp0 == 1) break; 2942 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2943 if (SignBitsOp1 == 1) break; 2944 unsigned OutValidBits = 2945 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2946 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2947 } 2948 2949 case Instruction::PHI: { 2950 const PHINode *PN = cast<PHINode>(U); 2951 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2952 // Don't analyze large in-degree PHIs. 2953 if (NumIncomingValues > 4) break; 2954 // Unreachable blocks may have zero-operand PHI nodes. 2955 if (NumIncomingValues == 0) break; 2956 2957 // Take the minimum of all incoming values. This can't infinitely loop 2958 // because of our depth threshold. 2959 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2960 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2961 if (Tmp == 1) return Tmp; 2962 Tmp = std::min( 2963 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2964 } 2965 return Tmp; 2966 } 2967 2968 case Instruction::Trunc: 2969 // FIXME: it's tricky to do anything useful for this, but it is an 2970 // important case for targets like X86. 2971 break; 2972 2973 case Instruction::ExtractElement: 2974 // Look through extract element. At the moment we keep this simple and 2975 // skip tracking the specific element. But at least we might find 2976 // information valid for all elements of the vector (for example if vector 2977 // is sign extended, shifted, etc). 2978 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2979 2980 case Instruction::ShuffleVector: { 2981 // Collect the minimum number of sign bits that are shared by every vector 2982 // element referenced by the shuffle. 2983 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2984 if (!Shuf) { 2985 // FIXME: Add support for shufflevector constant expressions. 2986 return 1; 2987 } 2988 APInt DemandedLHS, DemandedRHS; 2989 // For undef elements, we don't know anything about the common state of 2990 // the shuffle result. 2991 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2992 return 1; 2993 Tmp = std::numeric_limits<unsigned>::max(); 2994 if (!!DemandedLHS) { 2995 const Value *LHS = Shuf->getOperand(0); 2996 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2997 } 2998 // If we don't know anything, early out and try computeKnownBits 2999 // fall-back. 3000 if (Tmp == 1) 3001 break; 3002 if (!!DemandedRHS) { 3003 const Value *RHS = Shuf->getOperand(1); 3004 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3005 Tmp = std::min(Tmp, Tmp2); 3006 } 3007 // If we don't know anything, early out and try computeKnownBits 3008 // fall-back. 3009 if (Tmp == 1) 3010 break; 3011 assert(Tmp <= Ty->getScalarSizeInBits() && 3012 "Failed to determine minimum sign bits"); 3013 return Tmp; 3014 } 3015 case Instruction::Call: { 3016 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3017 switch (II->getIntrinsicID()) { 3018 default: break; 3019 case Intrinsic::abs: 3020 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3021 if (Tmp == 1) break; 3022 3023 // Absolute value reduces number of sign bits by at most 1. 3024 return Tmp - 1; 3025 } 3026 } 3027 } 3028 } 3029 } 3030 3031 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3032 // use this information. 3033 3034 // If we can examine all elements of a vector constant successfully, we're 3035 // done (we can't do any better than that). If not, keep trying. 3036 if (unsigned VecSignBits = 3037 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3038 return VecSignBits; 3039 3040 KnownBits Known(TyBits); 3041 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3042 3043 // If we know that the sign bit is either zero or one, determine the number of 3044 // identical bits in the top of the input value. 3045 return std::max(FirstAnswer, Known.countMinSignBits()); 3046 } 3047 3048 /// This function computes the integer multiple of Base that equals V. 3049 /// If successful, it returns true and returns the multiple in 3050 /// Multiple. If unsuccessful, it returns false. It looks 3051 /// through SExt instructions only if LookThroughSExt is true. 3052 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3053 bool LookThroughSExt, unsigned Depth) { 3054 assert(V && "No Value?"); 3055 assert(Depth <= MaxDepth && "Limit Search Depth"); 3056 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3057 3058 Type *T = V->getType(); 3059 3060 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3061 3062 if (Base == 0) 3063 return false; 3064 3065 if (Base == 1) { 3066 Multiple = V; 3067 return true; 3068 } 3069 3070 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3071 Constant *BaseVal = ConstantInt::get(T, Base); 3072 if (CO && CO == BaseVal) { 3073 // Multiple is 1. 3074 Multiple = ConstantInt::get(T, 1); 3075 return true; 3076 } 3077 3078 if (CI && CI->getZExtValue() % Base == 0) { 3079 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3080 return true; 3081 } 3082 3083 if (Depth == MaxDepth) return false; // Limit search depth. 3084 3085 Operator *I = dyn_cast<Operator>(V); 3086 if (!I) return false; 3087 3088 switch (I->getOpcode()) { 3089 default: break; 3090 case Instruction::SExt: 3091 if (!LookThroughSExt) return false; 3092 // otherwise fall through to ZExt 3093 LLVM_FALLTHROUGH; 3094 case Instruction::ZExt: 3095 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3096 LookThroughSExt, Depth+1); 3097 case Instruction::Shl: 3098 case Instruction::Mul: { 3099 Value *Op0 = I->getOperand(0); 3100 Value *Op1 = I->getOperand(1); 3101 3102 if (I->getOpcode() == Instruction::Shl) { 3103 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3104 if (!Op1CI) return false; 3105 // Turn Op0 << Op1 into Op0 * 2^Op1 3106 APInt Op1Int = Op1CI->getValue(); 3107 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3108 APInt API(Op1Int.getBitWidth(), 0); 3109 API.setBit(BitToSet); 3110 Op1 = ConstantInt::get(V->getContext(), API); 3111 } 3112 3113 Value *Mul0 = nullptr; 3114 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3115 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3116 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3117 if (Op1C->getType()->getPrimitiveSizeInBits() < 3118 MulC->getType()->getPrimitiveSizeInBits()) 3119 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3120 if (Op1C->getType()->getPrimitiveSizeInBits() > 3121 MulC->getType()->getPrimitiveSizeInBits()) 3122 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3123 3124 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3125 Multiple = ConstantExpr::getMul(MulC, Op1C); 3126 return true; 3127 } 3128 3129 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3130 if (Mul0CI->getValue() == 1) { 3131 // V == Base * Op1, so return Op1 3132 Multiple = Op1; 3133 return true; 3134 } 3135 } 3136 3137 Value *Mul1 = nullptr; 3138 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3139 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3140 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3141 if (Op0C->getType()->getPrimitiveSizeInBits() < 3142 MulC->getType()->getPrimitiveSizeInBits()) 3143 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3144 if (Op0C->getType()->getPrimitiveSizeInBits() > 3145 MulC->getType()->getPrimitiveSizeInBits()) 3146 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3147 3148 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3149 Multiple = ConstantExpr::getMul(MulC, Op0C); 3150 return true; 3151 } 3152 3153 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3154 if (Mul1CI->getValue() == 1) { 3155 // V == Base * Op0, so return Op0 3156 Multiple = Op0; 3157 return true; 3158 } 3159 } 3160 } 3161 } 3162 3163 // We could not determine if V is a multiple of Base. 3164 return false; 3165 } 3166 3167 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3168 const TargetLibraryInfo *TLI) { 3169 const Function *F = CB.getCalledFunction(); 3170 if (!F) 3171 return Intrinsic::not_intrinsic; 3172 3173 if (F->isIntrinsic()) 3174 return F->getIntrinsicID(); 3175 3176 // We are going to infer semantics of a library function based on mapping it 3177 // to an LLVM intrinsic. Check that the library function is available from 3178 // this callbase and in this environment. 3179 LibFunc Func; 3180 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3181 !CB.onlyReadsMemory()) 3182 return Intrinsic::not_intrinsic; 3183 3184 switch (Func) { 3185 default: 3186 break; 3187 case LibFunc_sin: 3188 case LibFunc_sinf: 3189 case LibFunc_sinl: 3190 return Intrinsic::sin; 3191 case LibFunc_cos: 3192 case LibFunc_cosf: 3193 case LibFunc_cosl: 3194 return Intrinsic::cos; 3195 case LibFunc_exp: 3196 case LibFunc_expf: 3197 case LibFunc_expl: 3198 return Intrinsic::exp; 3199 case LibFunc_exp2: 3200 case LibFunc_exp2f: 3201 case LibFunc_exp2l: 3202 return Intrinsic::exp2; 3203 case LibFunc_log: 3204 case LibFunc_logf: 3205 case LibFunc_logl: 3206 return Intrinsic::log; 3207 case LibFunc_log10: 3208 case LibFunc_log10f: 3209 case LibFunc_log10l: 3210 return Intrinsic::log10; 3211 case LibFunc_log2: 3212 case LibFunc_log2f: 3213 case LibFunc_log2l: 3214 return Intrinsic::log2; 3215 case LibFunc_fabs: 3216 case LibFunc_fabsf: 3217 case LibFunc_fabsl: 3218 return Intrinsic::fabs; 3219 case LibFunc_fmin: 3220 case LibFunc_fminf: 3221 case LibFunc_fminl: 3222 return Intrinsic::minnum; 3223 case LibFunc_fmax: 3224 case LibFunc_fmaxf: 3225 case LibFunc_fmaxl: 3226 return Intrinsic::maxnum; 3227 case LibFunc_copysign: 3228 case LibFunc_copysignf: 3229 case LibFunc_copysignl: 3230 return Intrinsic::copysign; 3231 case LibFunc_floor: 3232 case LibFunc_floorf: 3233 case LibFunc_floorl: 3234 return Intrinsic::floor; 3235 case LibFunc_ceil: 3236 case LibFunc_ceilf: 3237 case LibFunc_ceill: 3238 return Intrinsic::ceil; 3239 case LibFunc_trunc: 3240 case LibFunc_truncf: 3241 case LibFunc_truncl: 3242 return Intrinsic::trunc; 3243 case LibFunc_rint: 3244 case LibFunc_rintf: 3245 case LibFunc_rintl: 3246 return Intrinsic::rint; 3247 case LibFunc_nearbyint: 3248 case LibFunc_nearbyintf: 3249 case LibFunc_nearbyintl: 3250 return Intrinsic::nearbyint; 3251 case LibFunc_round: 3252 case LibFunc_roundf: 3253 case LibFunc_roundl: 3254 return Intrinsic::round; 3255 case LibFunc_roundeven: 3256 case LibFunc_roundevenf: 3257 case LibFunc_roundevenl: 3258 return Intrinsic::roundeven; 3259 case LibFunc_pow: 3260 case LibFunc_powf: 3261 case LibFunc_powl: 3262 return Intrinsic::pow; 3263 case LibFunc_sqrt: 3264 case LibFunc_sqrtf: 3265 case LibFunc_sqrtl: 3266 return Intrinsic::sqrt; 3267 } 3268 3269 return Intrinsic::not_intrinsic; 3270 } 3271 3272 /// Return true if we can prove that the specified FP value is never equal to 3273 /// -0.0. 3274 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3275 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3276 /// the same as +0.0 in floating-point ops. 3277 /// 3278 /// NOTE: this function will need to be revisited when we support non-default 3279 /// rounding modes! 3280 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3281 unsigned Depth) { 3282 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3283 return !CFP->getValueAPF().isNegZero(); 3284 3285 // Limit search depth. 3286 if (Depth == MaxDepth) 3287 return false; 3288 3289 auto *Op = dyn_cast<Operator>(V); 3290 if (!Op) 3291 return false; 3292 3293 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3294 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3295 return true; 3296 3297 // sitofp and uitofp turn into +0.0 for zero. 3298 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3299 return true; 3300 3301 if (auto *Call = dyn_cast<CallInst>(Op)) { 3302 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3303 switch (IID) { 3304 default: 3305 break; 3306 // sqrt(-0.0) = -0.0, no other negative results are possible. 3307 case Intrinsic::sqrt: 3308 case Intrinsic::canonicalize: 3309 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3310 // fabs(x) != -0.0 3311 case Intrinsic::fabs: 3312 return true; 3313 } 3314 } 3315 3316 return false; 3317 } 3318 3319 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3320 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3321 /// bit despite comparing equal. 3322 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3323 const TargetLibraryInfo *TLI, 3324 bool SignBitOnly, 3325 unsigned Depth) { 3326 // TODO: This function does not do the right thing when SignBitOnly is true 3327 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3328 // which flips the sign bits of NaNs. See 3329 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3330 3331 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3332 return !CFP->getValueAPF().isNegative() || 3333 (!SignBitOnly && CFP->getValueAPF().isZero()); 3334 } 3335 3336 // Handle vector of constants. 3337 if (auto *CV = dyn_cast<Constant>(V)) { 3338 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3339 unsigned NumElts = CVFVTy->getNumElements(); 3340 for (unsigned i = 0; i != NumElts; ++i) { 3341 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3342 if (!CFP) 3343 return false; 3344 if (CFP->getValueAPF().isNegative() && 3345 (SignBitOnly || !CFP->getValueAPF().isZero())) 3346 return false; 3347 } 3348 3349 // All non-negative ConstantFPs. 3350 return true; 3351 } 3352 } 3353 3354 if (Depth == MaxDepth) 3355 return false; // Limit search depth. 3356 3357 const Operator *I = dyn_cast<Operator>(V); 3358 if (!I) 3359 return false; 3360 3361 switch (I->getOpcode()) { 3362 default: 3363 break; 3364 // Unsigned integers are always nonnegative. 3365 case Instruction::UIToFP: 3366 return true; 3367 case Instruction::FMul: 3368 case Instruction::FDiv: 3369 // X * X is always non-negative or a NaN. 3370 // X / X is always exactly 1.0 or a NaN. 3371 if (I->getOperand(0) == I->getOperand(1) && 3372 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3373 return true; 3374 3375 LLVM_FALLTHROUGH; 3376 case Instruction::FAdd: 3377 case Instruction::FRem: 3378 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3379 Depth + 1) && 3380 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3381 Depth + 1); 3382 case Instruction::Select: 3383 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3384 Depth + 1) && 3385 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3386 Depth + 1); 3387 case Instruction::FPExt: 3388 case Instruction::FPTrunc: 3389 // Widening/narrowing never change sign. 3390 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3391 Depth + 1); 3392 case Instruction::ExtractElement: 3393 // Look through extract element. At the moment we keep this simple and skip 3394 // tracking the specific element. But at least we might find information 3395 // valid for all elements of the vector. 3396 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3397 Depth + 1); 3398 case Instruction::Call: 3399 const auto *CI = cast<CallInst>(I); 3400 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3401 switch (IID) { 3402 default: 3403 break; 3404 case Intrinsic::maxnum: { 3405 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3406 auto isPositiveNum = [&](Value *V) { 3407 if (SignBitOnly) { 3408 // With SignBitOnly, this is tricky because the result of 3409 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3410 // a constant strictly greater than 0.0. 3411 const APFloat *C; 3412 return match(V, m_APFloat(C)) && 3413 *C > APFloat::getZero(C->getSemantics()); 3414 } 3415 3416 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3417 // maxnum can't be ordered-less-than-zero. 3418 return isKnownNeverNaN(V, TLI) && 3419 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3420 }; 3421 3422 // TODO: This could be improved. We could also check that neither operand 3423 // has its sign bit set (and at least 1 is not-NAN?). 3424 return isPositiveNum(V0) || isPositiveNum(V1); 3425 } 3426 3427 case Intrinsic::maximum: 3428 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3429 Depth + 1) || 3430 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3431 Depth + 1); 3432 case Intrinsic::minnum: 3433 case Intrinsic::minimum: 3434 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3435 Depth + 1) && 3436 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3437 Depth + 1); 3438 case Intrinsic::exp: 3439 case Intrinsic::exp2: 3440 case Intrinsic::fabs: 3441 return true; 3442 3443 case Intrinsic::sqrt: 3444 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3445 if (!SignBitOnly) 3446 return true; 3447 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3448 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3449 3450 case Intrinsic::powi: 3451 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3452 // powi(x,n) is non-negative if n is even. 3453 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3454 return true; 3455 } 3456 // TODO: This is not correct. Given that exp is an integer, here are the 3457 // ways that pow can return a negative value: 3458 // 3459 // pow(x, exp) --> negative if exp is odd and x is negative. 3460 // pow(-0, exp) --> -inf if exp is negative odd. 3461 // pow(-0, exp) --> -0 if exp is positive odd. 3462 // pow(-inf, exp) --> -0 if exp is negative odd. 3463 // pow(-inf, exp) --> -inf if exp is positive odd. 3464 // 3465 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3466 // but we must return false if x == -0. Unfortunately we do not currently 3467 // have a way of expressing this constraint. See details in 3468 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3469 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3470 Depth + 1); 3471 3472 case Intrinsic::fma: 3473 case Intrinsic::fmuladd: 3474 // x*x+y is non-negative if y is non-negative. 3475 return I->getOperand(0) == I->getOperand(1) && 3476 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3477 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3478 Depth + 1); 3479 } 3480 break; 3481 } 3482 return false; 3483 } 3484 3485 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3486 const TargetLibraryInfo *TLI) { 3487 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3488 } 3489 3490 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3491 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3492 } 3493 3494 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3495 unsigned Depth) { 3496 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3497 3498 // If we're told that infinities won't happen, assume they won't. 3499 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3500 if (FPMathOp->hasNoInfs()) 3501 return true; 3502 3503 // Handle scalar constants. 3504 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3505 return !CFP->isInfinity(); 3506 3507 if (Depth == MaxDepth) 3508 return false; 3509 3510 if (auto *Inst = dyn_cast<Instruction>(V)) { 3511 switch (Inst->getOpcode()) { 3512 case Instruction::Select: { 3513 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3514 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3515 } 3516 case Instruction::UIToFP: 3517 // If the input type fits into the floating type the result is finite. 3518 return ilogb(APFloat::getLargest( 3519 Inst->getType()->getScalarType()->getFltSemantics())) >= 3520 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3521 default: 3522 break; 3523 } 3524 } 3525 3526 // try to handle fixed width vector constants 3527 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3528 if (VFVTy && isa<Constant>(V)) { 3529 // For vectors, verify that each element is not infinity. 3530 unsigned NumElts = VFVTy->getNumElements(); 3531 for (unsigned i = 0; i != NumElts; ++i) { 3532 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3533 if (!Elt) 3534 return false; 3535 if (isa<UndefValue>(Elt)) 3536 continue; 3537 auto *CElt = dyn_cast<ConstantFP>(Elt); 3538 if (!CElt || CElt->isInfinity()) 3539 return false; 3540 } 3541 // All elements were confirmed non-infinity or undefined. 3542 return true; 3543 } 3544 3545 // was not able to prove that V never contains infinity 3546 return false; 3547 } 3548 3549 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3550 unsigned Depth) { 3551 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3552 3553 // If we're told that NaNs won't happen, assume they won't. 3554 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3555 if (FPMathOp->hasNoNaNs()) 3556 return true; 3557 3558 // Handle scalar constants. 3559 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3560 return !CFP->isNaN(); 3561 3562 if (Depth == MaxDepth) 3563 return false; 3564 3565 if (auto *Inst = dyn_cast<Instruction>(V)) { 3566 switch (Inst->getOpcode()) { 3567 case Instruction::FAdd: 3568 case Instruction::FSub: 3569 // Adding positive and negative infinity produces NaN. 3570 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3571 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3572 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3573 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3574 3575 case Instruction::FMul: 3576 // Zero multiplied with infinity produces NaN. 3577 // FIXME: If neither side can be zero fmul never produces NaN. 3578 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3579 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3580 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3581 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3582 3583 case Instruction::FDiv: 3584 case Instruction::FRem: 3585 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3586 return false; 3587 3588 case Instruction::Select: { 3589 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3590 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3591 } 3592 case Instruction::SIToFP: 3593 case Instruction::UIToFP: 3594 return true; 3595 case Instruction::FPTrunc: 3596 case Instruction::FPExt: 3597 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3598 default: 3599 break; 3600 } 3601 } 3602 3603 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3604 switch (II->getIntrinsicID()) { 3605 case Intrinsic::canonicalize: 3606 case Intrinsic::fabs: 3607 case Intrinsic::copysign: 3608 case Intrinsic::exp: 3609 case Intrinsic::exp2: 3610 case Intrinsic::floor: 3611 case Intrinsic::ceil: 3612 case Intrinsic::trunc: 3613 case Intrinsic::rint: 3614 case Intrinsic::nearbyint: 3615 case Intrinsic::round: 3616 case Intrinsic::roundeven: 3617 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3618 case Intrinsic::sqrt: 3619 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3620 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3621 case Intrinsic::minnum: 3622 case Intrinsic::maxnum: 3623 // If either operand is not NaN, the result is not NaN. 3624 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3625 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3626 default: 3627 return false; 3628 } 3629 } 3630 3631 // Try to handle fixed width vector constants 3632 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3633 if (VFVTy && isa<Constant>(V)) { 3634 // For vectors, verify that each element is not NaN. 3635 unsigned NumElts = VFVTy->getNumElements(); 3636 for (unsigned i = 0; i != NumElts; ++i) { 3637 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3638 if (!Elt) 3639 return false; 3640 if (isa<UndefValue>(Elt)) 3641 continue; 3642 auto *CElt = dyn_cast<ConstantFP>(Elt); 3643 if (!CElt || CElt->isNaN()) 3644 return false; 3645 } 3646 // All elements were confirmed not-NaN or undefined. 3647 return true; 3648 } 3649 3650 // Was not able to prove that V never contains NaN 3651 return false; 3652 } 3653 3654 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3655 3656 // All byte-wide stores are splatable, even of arbitrary variables. 3657 if (V->getType()->isIntegerTy(8)) 3658 return V; 3659 3660 LLVMContext &Ctx = V->getContext(); 3661 3662 // Undef don't care. 3663 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3664 if (isa<UndefValue>(V)) 3665 return UndefInt8; 3666 3667 // Return Undef for zero-sized type. 3668 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3669 return UndefInt8; 3670 3671 Constant *C = dyn_cast<Constant>(V); 3672 if (!C) { 3673 // Conceptually, we could handle things like: 3674 // %a = zext i8 %X to i16 3675 // %b = shl i16 %a, 8 3676 // %c = or i16 %a, %b 3677 // but until there is an example that actually needs this, it doesn't seem 3678 // worth worrying about. 3679 return nullptr; 3680 } 3681 3682 // Handle 'null' ConstantArrayZero etc. 3683 if (C->isNullValue()) 3684 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3685 3686 // Constant floating-point values can be handled as integer values if the 3687 // corresponding integer value is "byteable". An important case is 0.0. 3688 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3689 Type *Ty = nullptr; 3690 if (CFP->getType()->isHalfTy()) 3691 Ty = Type::getInt16Ty(Ctx); 3692 else if (CFP->getType()->isFloatTy()) 3693 Ty = Type::getInt32Ty(Ctx); 3694 else if (CFP->getType()->isDoubleTy()) 3695 Ty = Type::getInt64Ty(Ctx); 3696 // Don't handle long double formats, which have strange constraints. 3697 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3698 : nullptr; 3699 } 3700 3701 // We can handle constant integers that are multiple of 8 bits. 3702 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3703 if (CI->getBitWidth() % 8 == 0) { 3704 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3705 if (!CI->getValue().isSplat(8)) 3706 return nullptr; 3707 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3708 } 3709 } 3710 3711 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3712 if (CE->getOpcode() == Instruction::IntToPtr) { 3713 auto PS = DL.getPointerSizeInBits( 3714 cast<PointerType>(CE->getType())->getAddressSpace()); 3715 return isBytewiseValue( 3716 ConstantExpr::getIntegerCast(CE->getOperand(0), 3717 Type::getIntNTy(Ctx, PS), false), 3718 DL); 3719 } 3720 } 3721 3722 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3723 if (LHS == RHS) 3724 return LHS; 3725 if (!LHS || !RHS) 3726 return nullptr; 3727 if (LHS == UndefInt8) 3728 return RHS; 3729 if (RHS == UndefInt8) 3730 return LHS; 3731 return nullptr; 3732 }; 3733 3734 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3735 Value *Val = UndefInt8; 3736 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3737 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3738 return nullptr; 3739 return Val; 3740 } 3741 3742 if (isa<ConstantAggregate>(C)) { 3743 Value *Val = UndefInt8; 3744 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3745 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3746 return nullptr; 3747 return Val; 3748 } 3749 3750 // Don't try to handle the handful of other constants. 3751 return nullptr; 3752 } 3753 3754 // This is the recursive version of BuildSubAggregate. It takes a few different 3755 // arguments. Idxs is the index within the nested struct From that we are 3756 // looking at now (which is of type IndexedType). IdxSkip is the number of 3757 // indices from Idxs that should be left out when inserting into the resulting 3758 // struct. To is the result struct built so far, new insertvalue instructions 3759 // build on that. 3760 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3761 SmallVectorImpl<unsigned> &Idxs, 3762 unsigned IdxSkip, 3763 Instruction *InsertBefore) { 3764 StructType *STy = dyn_cast<StructType>(IndexedType); 3765 if (STy) { 3766 // Save the original To argument so we can modify it 3767 Value *OrigTo = To; 3768 // General case, the type indexed by Idxs is a struct 3769 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3770 // Process each struct element recursively 3771 Idxs.push_back(i); 3772 Value *PrevTo = To; 3773 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3774 InsertBefore); 3775 Idxs.pop_back(); 3776 if (!To) { 3777 // Couldn't find any inserted value for this index? Cleanup 3778 while (PrevTo != OrigTo) { 3779 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3780 PrevTo = Del->getAggregateOperand(); 3781 Del->eraseFromParent(); 3782 } 3783 // Stop processing elements 3784 break; 3785 } 3786 } 3787 // If we successfully found a value for each of our subaggregates 3788 if (To) 3789 return To; 3790 } 3791 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3792 // the struct's elements had a value that was inserted directly. In the latter 3793 // case, perhaps we can't determine each of the subelements individually, but 3794 // we might be able to find the complete struct somewhere. 3795 3796 // Find the value that is at that particular spot 3797 Value *V = FindInsertedValue(From, Idxs); 3798 3799 if (!V) 3800 return nullptr; 3801 3802 // Insert the value in the new (sub) aggregate 3803 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3804 "tmp", InsertBefore); 3805 } 3806 3807 // This helper takes a nested struct and extracts a part of it (which is again a 3808 // struct) into a new value. For example, given the struct: 3809 // { a, { b, { c, d }, e } } 3810 // and the indices "1, 1" this returns 3811 // { c, d }. 3812 // 3813 // It does this by inserting an insertvalue for each element in the resulting 3814 // struct, as opposed to just inserting a single struct. This will only work if 3815 // each of the elements of the substruct are known (ie, inserted into From by an 3816 // insertvalue instruction somewhere). 3817 // 3818 // All inserted insertvalue instructions are inserted before InsertBefore 3819 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3820 Instruction *InsertBefore) { 3821 assert(InsertBefore && "Must have someplace to insert!"); 3822 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3823 idx_range); 3824 Value *To = UndefValue::get(IndexedType); 3825 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3826 unsigned IdxSkip = Idxs.size(); 3827 3828 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3829 } 3830 3831 /// Given an aggregate and a sequence of indices, see if the scalar value 3832 /// indexed is already around as a register, for example if it was inserted 3833 /// directly into the aggregate. 3834 /// 3835 /// If InsertBefore is not null, this function will duplicate (modified) 3836 /// insertvalues when a part of a nested struct is extracted. 3837 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3838 Instruction *InsertBefore) { 3839 // Nothing to index? Just return V then (this is useful at the end of our 3840 // recursion). 3841 if (idx_range.empty()) 3842 return V; 3843 // We have indices, so V should have an indexable type. 3844 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3845 "Not looking at a struct or array?"); 3846 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3847 "Invalid indices for type?"); 3848 3849 if (Constant *C = dyn_cast<Constant>(V)) { 3850 C = C->getAggregateElement(idx_range[0]); 3851 if (!C) return nullptr; 3852 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3853 } 3854 3855 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3856 // Loop the indices for the insertvalue instruction in parallel with the 3857 // requested indices 3858 const unsigned *req_idx = idx_range.begin(); 3859 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3860 i != e; ++i, ++req_idx) { 3861 if (req_idx == idx_range.end()) { 3862 // We can't handle this without inserting insertvalues 3863 if (!InsertBefore) 3864 return nullptr; 3865 3866 // The requested index identifies a part of a nested aggregate. Handle 3867 // this specially. For example, 3868 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3869 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3870 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3871 // This can be changed into 3872 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3873 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3874 // which allows the unused 0,0 element from the nested struct to be 3875 // removed. 3876 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3877 InsertBefore); 3878 } 3879 3880 // This insert value inserts something else than what we are looking for. 3881 // See if the (aggregate) value inserted into has the value we are 3882 // looking for, then. 3883 if (*req_idx != *i) 3884 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3885 InsertBefore); 3886 } 3887 // If we end up here, the indices of the insertvalue match with those 3888 // requested (though possibly only partially). Now we recursively look at 3889 // the inserted value, passing any remaining indices. 3890 return FindInsertedValue(I->getInsertedValueOperand(), 3891 makeArrayRef(req_idx, idx_range.end()), 3892 InsertBefore); 3893 } 3894 3895 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3896 // If we're extracting a value from an aggregate that was extracted from 3897 // something else, we can extract from that something else directly instead. 3898 // However, we will need to chain I's indices with the requested indices. 3899 3900 // Calculate the number of indices required 3901 unsigned size = I->getNumIndices() + idx_range.size(); 3902 // Allocate some space to put the new indices in 3903 SmallVector<unsigned, 5> Idxs; 3904 Idxs.reserve(size); 3905 // Add indices from the extract value instruction 3906 Idxs.append(I->idx_begin(), I->idx_end()); 3907 3908 // Add requested indices 3909 Idxs.append(idx_range.begin(), idx_range.end()); 3910 3911 assert(Idxs.size() == size 3912 && "Number of indices added not correct?"); 3913 3914 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3915 } 3916 // Otherwise, we don't know (such as, extracting from a function return value 3917 // or load instruction) 3918 return nullptr; 3919 } 3920 3921 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3922 unsigned CharSize) { 3923 // Make sure the GEP has exactly three arguments. 3924 if (GEP->getNumOperands() != 3) 3925 return false; 3926 3927 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3928 // CharSize. 3929 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3930 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3931 return false; 3932 3933 // Check to make sure that the first operand of the GEP is an integer and 3934 // has value 0 so that we are sure we're indexing into the initializer. 3935 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3936 if (!FirstIdx || !FirstIdx->isZero()) 3937 return false; 3938 3939 return true; 3940 } 3941 3942 bool llvm::getConstantDataArrayInfo(const Value *V, 3943 ConstantDataArraySlice &Slice, 3944 unsigned ElementSize, uint64_t Offset) { 3945 assert(V); 3946 3947 // Look through bitcast instructions and geps. 3948 V = V->stripPointerCasts(); 3949 3950 // If the value is a GEP instruction or constant expression, treat it as an 3951 // offset. 3952 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3953 // The GEP operator should be based on a pointer to string constant, and is 3954 // indexing into the string constant. 3955 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3956 return false; 3957 3958 // If the second index isn't a ConstantInt, then this is a variable index 3959 // into the array. If this occurs, we can't say anything meaningful about 3960 // the string. 3961 uint64_t StartIdx = 0; 3962 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3963 StartIdx = CI->getZExtValue(); 3964 else 3965 return false; 3966 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3967 StartIdx + Offset); 3968 } 3969 3970 // The GEP instruction, constant or instruction, must reference a global 3971 // variable that is a constant and is initialized. The referenced constant 3972 // initializer is the array that we'll use for optimization. 3973 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3974 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3975 return false; 3976 3977 const ConstantDataArray *Array; 3978 ArrayType *ArrayTy; 3979 if (GV->getInitializer()->isNullValue()) { 3980 Type *GVTy = GV->getValueType(); 3981 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3982 // A zeroinitializer for the array; there is no ConstantDataArray. 3983 Array = nullptr; 3984 } else { 3985 const DataLayout &DL = GV->getParent()->getDataLayout(); 3986 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3987 uint64_t Length = SizeInBytes / (ElementSize / 8); 3988 if (Length <= Offset) 3989 return false; 3990 3991 Slice.Array = nullptr; 3992 Slice.Offset = 0; 3993 Slice.Length = Length - Offset; 3994 return true; 3995 } 3996 } else { 3997 // This must be a ConstantDataArray. 3998 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3999 if (!Array) 4000 return false; 4001 ArrayTy = Array->getType(); 4002 } 4003 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4004 return false; 4005 4006 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4007 if (Offset > NumElts) 4008 return false; 4009 4010 Slice.Array = Array; 4011 Slice.Offset = Offset; 4012 Slice.Length = NumElts - Offset; 4013 return true; 4014 } 4015 4016 /// This function computes the length of a null-terminated C string pointed to 4017 /// by V. If successful, it returns true and returns the string in Str. 4018 /// If unsuccessful, it returns false. 4019 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4020 uint64_t Offset, bool TrimAtNul) { 4021 ConstantDataArraySlice Slice; 4022 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4023 return false; 4024 4025 if (Slice.Array == nullptr) { 4026 if (TrimAtNul) { 4027 Str = StringRef(); 4028 return true; 4029 } 4030 if (Slice.Length == 1) { 4031 Str = StringRef("", 1); 4032 return true; 4033 } 4034 // We cannot instantiate a StringRef as we do not have an appropriate string 4035 // of 0s at hand. 4036 return false; 4037 } 4038 4039 // Start out with the entire array in the StringRef. 4040 Str = Slice.Array->getAsString(); 4041 // Skip over 'offset' bytes. 4042 Str = Str.substr(Slice.Offset); 4043 4044 if (TrimAtNul) { 4045 // Trim off the \0 and anything after it. If the array is not nul 4046 // terminated, we just return the whole end of string. The client may know 4047 // some other way that the string is length-bound. 4048 Str = Str.substr(0, Str.find('\0')); 4049 } 4050 return true; 4051 } 4052 4053 // These next two are very similar to the above, but also look through PHI 4054 // nodes. 4055 // TODO: See if we can integrate these two together. 4056 4057 /// If we can compute the length of the string pointed to by 4058 /// the specified pointer, return 'len+1'. If we can't, return 0. 4059 static uint64_t GetStringLengthH(const Value *V, 4060 SmallPtrSetImpl<const PHINode*> &PHIs, 4061 unsigned CharSize) { 4062 // Look through noop bitcast instructions. 4063 V = V->stripPointerCasts(); 4064 4065 // If this is a PHI node, there are two cases: either we have already seen it 4066 // or we haven't. 4067 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4068 if (!PHIs.insert(PN).second) 4069 return ~0ULL; // already in the set. 4070 4071 // If it was new, see if all the input strings are the same length. 4072 uint64_t LenSoFar = ~0ULL; 4073 for (Value *IncValue : PN->incoming_values()) { 4074 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4075 if (Len == 0) return 0; // Unknown length -> unknown. 4076 4077 if (Len == ~0ULL) continue; 4078 4079 if (Len != LenSoFar && LenSoFar != ~0ULL) 4080 return 0; // Disagree -> unknown. 4081 LenSoFar = Len; 4082 } 4083 4084 // Success, all agree. 4085 return LenSoFar; 4086 } 4087 4088 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4089 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4090 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4091 if (Len1 == 0) return 0; 4092 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4093 if (Len2 == 0) return 0; 4094 if (Len1 == ~0ULL) return Len2; 4095 if (Len2 == ~0ULL) return Len1; 4096 if (Len1 != Len2) return 0; 4097 return Len1; 4098 } 4099 4100 // Otherwise, see if we can read the string. 4101 ConstantDataArraySlice Slice; 4102 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4103 return 0; 4104 4105 if (Slice.Array == nullptr) 4106 return 1; 4107 4108 // Search for nul characters 4109 unsigned NullIndex = 0; 4110 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4111 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4112 break; 4113 } 4114 4115 return NullIndex + 1; 4116 } 4117 4118 /// If we can compute the length of the string pointed to by 4119 /// the specified pointer, return 'len+1'. If we can't, return 0. 4120 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4121 if (!V->getType()->isPointerTy()) 4122 return 0; 4123 4124 SmallPtrSet<const PHINode*, 32> PHIs; 4125 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4126 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4127 // an empty string as a length. 4128 return Len == ~0ULL ? 1 : Len; 4129 } 4130 4131 const Value * 4132 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4133 bool MustPreserveNullness) { 4134 assert(Call && 4135 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4136 if (const Value *RV = Call->getReturnedArgOperand()) 4137 return RV; 4138 // This can be used only as a aliasing property. 4139 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4140 Call, MustPreserveNullness)) 4141 return Call->getArgOperand(0); 4142 return nullptr; 4143 } 4144 4145 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4146 const CallBase *Call, bool MustPreserveNullness) { 4147 switch (Call->getIntrinsicID()) { 4148 case Intrinsic::launder_invariant_group: 4149 case Intrinsic::strip_invariant_group: 4150 case Intrinsic::aarch64_irg: 4151 case Intrinsic::aarch64_tagp: 4152 return true; 4153 case Intrinsic::ptrmask: 4154 return !MustPreserveNullness; 4155 default: 4156 return false; 4157 } 4158 } 4159 4160 /// \p PN defines a loop-variant pointer to an object. Check if the 4161 /// previous iteration of the loop was referring to the same object as \p PN. 4162 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4163 const LoopInfo *LI) { 4164 // Find the loop-defined value. 4165 Loop *L = LI->getLoopFor(PN->getParent()); 4166 if (PN->getNumIncomingValues() != 2) 4167 return true; 4168 4169 // Find the value from previous iteration. 4170 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4171 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4172 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4173 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4174 return true; 4175 4176 // If a new pointer is loaded in the loop, the pointer references a different 4177 // object in every iteration. E.g.: 4178 // for (i) 4179 // int *p = a[i]; 4180 // ... 4181 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4182 if (!L->isLoopInvariant(Load->getPointerOperand())) 4183 return false; 4184 return true; 4185 } 4186 4187 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4188 if (!V->getType()->isPointerTy()) 4189 return V; 4190 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4191 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4192 V = GEP->getPointerOperand(); 4193 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4194 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4195 V = cast<Operator>(V)->getOperand(0); 4196 if (!V->getType()->isPointerTy()) 4197 return V; 4198 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4199 if (GA->isInterposable()) 4200 return V; 4201 V = GA->getAliasee(); 4202 } else { 4203 if (auto *PHI = dyn_cast<PHINode>(V)) { 4204 // Look through single-arg phi nodes created by LCSSA. 4205 if (PHI->getNumIncomingValues() == 1) { 4206 V = PHI->getIncomingValue(0); 4207 continue; 4208 } 4209 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4210 // CaptureTracking can know about special capturing properties of some 4211 // intrinsics like launder.invariant.group, that can't be expressed with 4212 // the attributes, but have properties like returning aliasing pointer. 4213 // Because some analysis may assume that nocaptured pointer is not 4214 // returned from some special intrinsic (because function would have to 4215 // be marked with returns attribute), it is crucial to use this function 4216 // because it should be in sync with CaptureTracking. Not using it may 4217 // cause weird miscompilations where 2 aliasing pointers are assumed to 4218 // noalias. 4219 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4220 V = RP; 4221 continue; 4222 } 4223 } 4224 4225 return V; 4226 } 4227 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4228 } 4229 return V; 4230 } 4231 4232 void llvm::getUnderlyingObjects(const Value *V, 4233 SmallVectorImpl<const Value *> &Objects, 4234 LoopInfo *LI, unsigned MaxLookup) { 4235 SmallPtrSet<const Value *, 4> Visited; 4236 SmallVector<const Value *, 4> Worklist; 4237 Worklist.push_back(V); 4238 do { 4239 const Value *P = Worklist.pop_back_val(); 4240 P = getUnderlyingObject(P, MaxLookup); 4241 4242 if (!Visited.insert(P).second) 4243 continue; 4244 4245 if (auto *SI = dyn_cast<SelectInst>(P)) { 4246 Worklist.push_back(SI->getTrueValue()); 4247 Worklist.push_back(SI->getFalseValue()); 4248 continue; 4249 } 4250 4251 if (auto *PN = dyn_cast<PHINode>(P)) { 4252 // If this PHI changes the underlying object in every iteration of the 4253 // loop, don't look through it. Consider: 4254 // int **A; 4255 // for (i) { 4256 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4257 // Curr = A[i]; 4258 // *Prev, *Curr; 4259 // 4260 // Prev is tracking Curr one iteration behind so they refer to different 4261 // underlying objects. 4262 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4263 isSameUnderlyingObjectInLoop(PN, LI)) 4264 for (Value *IncValue : PN->incoming_values()) 4265 Worklist.push_back(IncValue); 4266 continue; 4267 } 4268 4269 Objects.push_back(P); 4270 } while (!Worklist.empty()); 4271 } 4272 4273 /// This is the function that does the work of looking through basic 4274 /// ptrtoint+arithmetic+inttoptr sequences. 4275 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4276 do { 4277 if (const Operator *U = dyn_cast<Operator>(V)) { 4278 // If we find a ptrtoint, we can transfer control back to the 4279 // regular getUnderlyingObjectFromInt. 4280 if (U->getOpcode() == Instruction::PtrToInt) 4281 return U->getOperand(0); 4282 // If we find an add of a constant, a multiplied value, or a phi, it's 4283 // likely that the other operand will lead us to the base 4284 // object. We don't have to worry about the case where the 4285 // object address is somehow being computed by the multiply, 4286 // because our callers only care when the result is an 4287 // identifiable object. 4288 if (U->getOpcode() != Instruction::Add || 4289 (!isa<ConstantInt>(U->getOperand(1)) && 4290 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4291 !isa<PHINode>(U->getOperand(1)))) 4292 return V; 4293 V = U->getOperand(0); 4294 } else { 4295 return V; 4296 } 4297 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4298 } while (true); 4299 } 4300 4301 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4302 /// ptrtoint+arithmetic+inttoptr sequences. 4303 /// It returns false if unidentified object is found in getUnderlyingObjects. 4304 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4305 SmallVectorImpl<Value *> &Objects) { 4306 SmallPtrSet<const Value *, 16> Visited; 4307 SmallVector<const Value *, 4> Working(1, V); 4308 do { 4309 V = Working.pop_back_val(); 4310 4311 SmallVector<const Value *, 4> Objs; 4312 getUnderlyingObjects(V, Objs); 4313 4314 for (const Value *V : Objs) { 4315 if (!Visited.insert(V).second) 4316 continue; 4317 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4318 const Value *O = 4319 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4320 if (O->getType()->isPointerTy()) { 4321 Working.push_back(O); 4322 continue; 4323 } 4324 } 4325 // If getUnderlyingObjects fails to find an identifiable object, 4326 // getUnderlyingObjectsForCodeGen also fails for safety. 4327 if (!isIdentifiedObject(V)) { 4328 Objects.clear(); 4329 return false; 4330 } 4331 Objects.push_back(const_cast<Value *>(V)); 4332 } 4333 } while (!Working.empty()); 4334 return true; 4335 } 4336 4337 static AllocaInst * 4338 findAllocaForValue(Value *V, DenseMap<Value *, AllocaInst *> &AllocaForValue) { 4339 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 4340 return AI; 4341 // See if we've already calculated (or started to calculate) alloca for a 4342 // given value. 4343 auto I = AllocaForValue.find(V); 4344 if (I != AllocaForValue.end()) 4345 return I->second; 4346 // Store 0 while we're calculating alloca for value V to avoid 4347 // infinite recursion if the value references itself. 4348 AllocaForValue[V] = nullptr; 4349 AllocaInst *Res = nullptr; 4350 if (CastInst *CI = dyn_cast<CastInst>(V)) 4351 Res = findAllocaForValue(CI->getOperand(0), AllocaForValue); 4352 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4353 for (Value *IncValue : PN->incoming_values()) { 4354 // Allow self-referencing phi-nodes. 4355 if (IncValue == PN) 4356 continue; 4357 AllocaInst *IncValueAI = findAllocaForValue(IncValue, AllocaForValue); 4358 // AI for incoming values should exist and should all be equal. 4359 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res)) 4360 return nullptr; 4361 Res = IncValueAI; 4362 } 4363 } else if (GetElementPtrInst *EP = dyn_cast<GetElementPtrInst>(V)) { 4364 Res = findAllocaForValue(EP->getPointerOperand(), AllocaForValue); 4365 } 4366 if (Res) 4367 AllocaForValue[V] = Res; 4368 return Res; 4369 } 4370 4371 AllocaInst *llvm::findAllocaForValue(Value *V) { 4372 DenseMap<Value *, AllocaInst *> AllocaForValue; 4373 return ::findAllocaForValue(V, AllocaForValue); 4374 } 4375 4376 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4377 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4378 for (const User *U : V->users()) { 4379 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4380 if (!II) 4381 return false; 4382 4383 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4384 continue; 4385 4386 if (AllowDroppable && II->isDroppable()) 4387 continue; 4388 4389 return false; 4390 } 4391 return true; 4392 } 4393 4394 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4395 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4396 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4397 } 4398 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4399 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4400 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4401 } 4402 4403 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4404 if (!LI.isUnordered()) 4405 return true; 4406 const Function &F = *LI.getFunction(); 4407 // Speculative load may create a race that did not exist in the source. 4408 return F.hasFnAttribute(Attribute::SanitizeThread) || 4409 // Speculative load may load data from dirty regions. 4410 F.hasFnAttribute(Attribute::SanitizeAddress) || 4411 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4412 } 4413 4414 4415 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4416 const Instruction *CtxI, 4417 const DominatorTree *DT) { 4418 const Operator *Inst = dyn_cast<Operator>(V); 4419 if (!Inst) 4420 return false; 4421 4422 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4423 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4424 if (C->canTrap()) 4425 return false; 4426 4427 switch (Inst->getOpcode()) { 4428 default: 4429 return true; 4430 case Instruction::UDiv: 4431 case Instruction::URem: { 4432 // x / y is undefined if y == 0. 4433 const APInt *V; 4434 if (match(Inst->getOperand(1), m_APInt(V))) 4435 return *V != 0; 4436 return false; 4437 } 4438 case Instruction::SDiv: 4439 case Instruction::SRem: { 4440 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4441 const APInt *Numerator, *Denominator; 4442 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4443 return false; 4444 // We cannot hoist this division if the denominator is 0. 4445 if (*Denominator == 0) 4446 return false; 4447 // It's safe to hoist if the denominator is not 0 or -1. 4448 if (*Denominator != -1) 4449 return true; 4450 // At this point we know that the denominator is -1. It is safe to hoist as 4451 // long we know that the numerator is not INT_MIN. 4452 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4453 return !Numerator->isMinSignedValue(); 4454 // The numerator *might* be MinSignedValue. 4455 return false; 4456 } 4457 case Instruction::Load: { 4458 const LoadInst *LI = cast<LoadInst>(Inst); 4459 if (mustSuppressSpeculation(*LI)) 4460 return false; 4461 const DataLayout &DL = LI->getModule()->getDataLayout(); 4462 return isDereferenceableAndAlignedPointer( 4463 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4464 DL, CtxI, DT); 4465 } 4466 case Instruction::Call: { 4467 auto *CI = cast<const CallInst>(Inst); 4468 const Function *Callee = CI->getCalledFunction(); 4469 4470 // The called function could have undefined behavior or side-effects, even 4471 // if marked readnone nounwind. 4472 return Callee && Callee->isSpeculatable(); 4473 } 4474 case Instruction::VAArg: 4475 case Instruction::Alloca: 4476 case Instruction::Invoke: 4477 case Instruction::CallBr: 4478 case Instruction::PHI: 4479 case Instruction::Store: 4480 case Instruction::Ret: 4481 case Instruction::Br: 4482 case Instruction::IndirectBr: 4483 case Instruction::Switch: 4484 case Instruction::Unreachable: 4485 case Instruction::Fence: 4486 case Instruction::AtomicRMW: 4487 case Instruction::AtomicCmpXchg: 4488 case Instruction::LandingPad: 4489 case Instruction::Resume: 4490 case Instruction::CatchSwitch: 4491 case Instruction::CatchPad: 4492 case Instruction::CatchRet: 4493 case Instruction::CleanupPad: 4494 case Instruction::CleanupRet: 4495 return false; // Misc instructions which have effects 4496 } 4497 } 4498 4499 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4500 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4501 } 4502 4503 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4504 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4505 switch (OR) { 4506 case ConstantRange::OverflowResult::MayOverflow: 4507 return OverflowResult::MayOverflow; 4508 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4509 return OverflowResult::AlwaysOverflowsLow; 4510 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4511 return OverflowResult::AlwaysOverflowsHigh; 4512 case ConstantRange::OverflowResult::NeverOverflows: 4513 return OverflowResult::NeverOverflows; 4514 } 4515 llvm_unreachable("Unknown OverflowResult"); 4516 } 4517 4518 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4519 static ConstantRange computeConstantRangeIncludingKnownBits( 4520 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4521 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4522 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4523 KnownBits Known = computeKnownBits( 4524 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4525 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4526 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4527 ConstantRange::PreferredRangeType RangeType = 4528 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4529 return CR1.intersectWith(CR2, RangeType); 4530 } 4531 4532 OverflowResult llvm::computeOverflowForUnsignedMul( 4533 const Value *LHS, const Value *RHS, const DataLayout &DL, 4534 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4535 bool UseInstrInfo) { 4536 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4537 nullptr, UseInstrInfo); 4538 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4539 nullptr, UseInstrInfo); 4540 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4541 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4542 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4543 } 4544 4545 OverflowResult 4546 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4547 const DataLayout &DL, AssumptionCache *AC, 4548 const Instruction *CxtI, 4549 const DominatorTree *DT, bool UseInstrInfo) { 4550 // Multiplying n * m significant bits yields a result of n + m significant 4551 // bits. If the total number of significant bits does not exceed the 4552 // result bit width (minus 1), there is no overflow. 4553 // This means if we have enough leading sign bits in the operands 4554 // we can guarantee that the result does not overflow. 4555 // Ref: "Hacker's Delight" by Henry Warren 4556 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4557 4558 // Note that underestimating the number of sign bits gives a more 4559 // conservative answer. 4560 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4561 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4562 4563 // First handle the easy case: if we have enough sign bits there's 4564 // definitely no overflow. 4565 if (SignBits > BitWidth + 1) 4566 return OverflowResult::NeverOverflows; 4567 4568 // There are two ambiguous cases where there can be no overflow: 4569 // SignBits == BitWidth + 1 and 4570 // SignBits == BitWidth 4571 // The second case is difficult to check, therefore we only handle the 4572 // first case. 4573 if (SignBits == BitWidth + 1) { 4574 // It overflows only when both arguments are negative and the true 4575 // product is exactly the minimum negative number. 4576 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4577 // For simplicity we just check if at least one side is not negative. 4578 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4579 nullptr, UseInstrInfo); 4580 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4581 nullptr, UseInstrInfo); 4582 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4583 return OverflowResult::NeverOverflows; 4584 } 4585 return OverflowResult::MayOverflow; 4586 } 4587 4588 OverflowResult llvm::computeOverflowForUnsignedAdd( 4589 const Value *LHS, const Value *RHS, const DataLayout &DL, 4590 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4591 bool UseInstrInfo) { 4592 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4593 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4594 nullptr, UseInstrInfo); 4595 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4596 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4597 nullptr, UseInstrInfo); 4598 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4599 } 4600 4601 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4602 const Value *RHS, 4603 const AddOperator *Add, 4604 const DataLayout &DL, 4605 AssumptionCache *AC, 4606 const Instruction *CxtI, 4607 const DominatorTree *DT) { 4608 if (Add && Add->hasNoSignedWrap()) { 4609 return OverflowResult::NeverOverflows; 4610 } 4611 4612 // If LHS and RHS each have at least two sign bits, the addition will look 4613 // like 4614 // 4615 // XX..... + 4616 // YY..... 4617 // 4618 // If the carry into the most significant position is 0, X and Y can't both 4619 // be 1 and therefore the carry out of the addition is also 0. 4620 // 4621 // If the carry into the most significant position is 1, X and Y can't both 4622 // be 0 and therefore the carry out of the addition is also 1. 4623 // 4624 // Since the carry into the most significant position is always equal to 4625 // the carry out of the addition, there is no signed overflow. 4626 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4627 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4628 return OverflowResult::NeverOverflows; 4629 4630 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4631 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4632 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4633 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4634 OverflowResult OR = 4635 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4636 if (OR != OverflowResult::MayOverflow) 4637 return OR; 4638 4639 // The remaining code needs Add to be available. Early returns if not so. 4640 if (!Add) 4641 return OverflowResult::MayOverflow; 4642 4643 // If the sign of Add is the same as at least one of the operands, this add 4644 // CANNOT overflow. If this can be determined from the known bits of the 4645 // operands the above signedAddMayOverflow() check will have already done so. 4646 // The only other way to improve on the known bits is from an assumption, so 4647 // call computeKnownBitsFromAssume() directly. 4648 bool LHSOrRHSKnownNonNegative = 4649 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4650 bool LHSOrRHSKnownNegative = 4651 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4652 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4653 KnownBits AddKnown(LHSRange.getBitWidth()); 4654 computeKnownBitsFromAssume( 4655 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4656 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4657 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4658 return OverflowResult::NeverOverflows; 4659 } 4660 4661 return OverflowResult::MayOverflow; 4662 } 4663 4664 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4665 const Value *RHS, 4666 const DataLayout &DL, 4667 AssumptionCache *AC, 4668 const Instruction *CxtI, 4669 const DominatorTree *DT) { 4670 // Checking for conditions implied by dominating conditions may be expensive. 4671 // Limit it to usub_with_overflow calls for now. 4672 if (match(CxtI, 4673 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4674 if (auto C = 4675 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4676 if (*C) 4677 return OverflowResult::NeverOverflows; 4678 return OverflowResult::AlwaysOverflowsLow; 4679 } 4680 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4681 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4682 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4683 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4684 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4685 } 4686 4687 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4688 const Value *RHS, 4689 const DataLayout &DL, 4690 AssumptionCache *AC, 4691 const Instruction *CxtI, 4692 const DominatorTree *DT) { 4693 // If LHS and RHS each have at least two sign bits, the subtraction 4694 // cannot overflow. 4695 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4696 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4697 return OverflowResult::NeverOverflows; 4698 4699 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4700 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4701 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4702 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4703 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4704 } 4705 4706 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4707 const DominatorTree &DT) { 4708 SmallVector<const BranchInst *, 2> GuardingBranches; 4709 SmallVector<const ExtractValueInst *, 2> Results; 4710 4711 for (const User *U : WO->users()) { 4712 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4713 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4714 4715 if (EVI->getIndices()[0] == 0) 4716 Results.push_back(EVI); 4717 else { 4718 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4719 4720 for (const auto *U : EVI->users()) 4721 if (const auto *B = dyn_cast<BranchInst>(U)) { 4722 assert(B->isConditional() && "How else is it using an i1?"); 4723 GuardingBranches.push_back(B); 4724 } 4725 } 4726 } else { 4727 // We are using the aggregate directly in a way we don't want to analyze 4728 // here (storing it to a global, say). 4729 return false; 4730 } 4731 } 4732 4733 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4734 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4735 if (!NoWrapEdge.isSingleEdge()) 4736 return false; 4737 4738 // Check if all users of the add are provably no-wrap. 4739 for (const auto *Result : Results) { 4740 // If the extractvalue itself is not executed on overflow, the we don't 4741 // need to check each use separately, since domination is transitive. 4742 if (DT.dominates(NoWrapEdge, Result->getParent())) 4743 continue; 4744 4745 for (auto &RU : Result->uses()) 4746 if (!DT.dominates(NoWrapEdge, RU)) 4747 return false; 4748 } 4749 4750 return true; 4751 }; 4752 4753 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4754 } 4755 4756 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4757 // See whether I has flags that may create poison 4758 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4759 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4760 return true; 4761 } 4762 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4763 if (ExactOp->isExact()) 4764 return true; 4765 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4766 auto FMF = FP->getFastMathFlags(); 4767 if (FMF.noNaNs() || FMF.noInfs()) 4768 return true; 4769 } 4770 4771 unsigned Opcode = Op->getOpcode(); 4772 4773 // Check whether opcode is a poison/undef-generating operation 4774 switch (Opcode) { 4775 case Instruction::Shl: 4776 case Instruction::AShr: 4777 case Instruction::LShr: { 4778 // Shifts return poison if shiftwidth is larger than the bitwidth. 4779 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4780 SmallVector<Constant *, 4> ShiftAmounts; 4781 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4782 unsigned NumElts = FVTy->getNumElements(); 4783 for (unsigned i = 0; i < NumElts; ++i) 4784 ShiftAmounts.push_back(C->getAggregateElement(i)); 4785 } else if (isa<ScalableVectorType>(C->getType())) 4786 return true; // Can't tell, just return true to be safe 4787 else 4788 ShiftAmounts.push_back(C); 4789 4790 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4791 auto *CI = dyn_cast<ConstantInt>(C); 4792 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4793 }); 4794 return !Safe; 4795 } 4796 return true; 4797 } 4798 case Instruction::FPToSI: 4799 case Instruction::FPToUI: 4800 // fptosi/ui yields poison if the resulting value does not fit in the 4801 // destination type. 4802 return true; 4803 case Instruction::Call: 4804 case Instruction::CallBr: 4805 case Instruction::Invoke: { 4806 const auto *CB = cast<CallBase>(Op); 4807 return !CB->hasRetAttr(Attribute::NoUndef); 4808 } 4809 case Instruction::InsertElement: 4810 case Instruction::ExtractElement: { 4811 // If index exceeds the length of the vector, it returns poison 4812 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4813 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4814 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4815 if (!Idx || Idx->getZExtValue() >= VTy->getElementCount().Min) 4816 return true; 4817 return false; 4818 } 4819 case Instruction::ShuffleVector: { 4820 // shufflevector may return undef. 4821 if (PoisonOnly) 4822 return false; 4823 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4824 ? cast<ConstantExpr>(Op)->getShuffleMask() 4825 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4826 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4827 } 4828 case Instruction::FNeg: 4829 case Instruction::PHI: 4830 case Instruction::Select: 4831 case Instruction::URem: 4832 case Instruction::SRem: 4833 case Instruction::ExtractValue: 4834 case Instruction::InsertValue: 4835 case Instruction::Freeze: 4836 case Instruction::ICmp: 4837 case Instruction::FCmp: 4838 return false; 4839 case Instruction::GetElementPtr: { 4840 const auto *GEP = cast<GEPOperator>(Op); 4841 return GEP->isInBounds(); 4842 } 4843 default: { 4844 const auto *CE = dyn_cast<ConstantExpr>(Op); 4845 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4846 return false; 4847 else if (Instruction::isBinaryOp(Opcode)) 4848 return false; 4849 // Be conservative and return true. 4850 return true; 4851 } 4852 } 4853 } 4854 4855 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4856 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4857 } 4858 4859 bool llvm::canCreatePoison(const Operator *Op) { 4860 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4861 } 4862 4863 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4864 const Instruction *CtxI, 4865 const DominatorTree *DT, 4866 unsigned Depth) { 4867 if (Depth >= MaxDepth) 4868 return false; 4869 4870 if (const auto *A = dyn_cast<Argument>(V)) { 4871 if (A->hasAttribute(Attribute::NoUndef)) 4872 return true; 4873 } 4874 4875 if (auto *C = dyn_cast<Constant>(V)) { 4876 if (isa<UndefValue>(C)) 4877 return false; 4878 4879 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4880 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4881 return true; 4882 4883 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4884 return !C->containsConstantExpression() && !C->containsUndefElement(); 4885 } 4886 4887 // Strip cast operations from a pointer value. 4888 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4889 // inbounds with zero offset. To guarantee that the result isn't poison, the 4890 // stripped pointer is checked as it has to be pointing into an allocated 4891 // object or be null `null` to ensure `inbounds` getelement pointers with a 4892 // zero offset could not produce poison. 4893 // It can strip off addrspacecast that do not change bit representation as 4894 // well. We believe that such addrspacecast is equivalent to no-op. 4895 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4896 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4897 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4898 return true; 4899 4900 auto OpCheck = [&](const Value *V) { 4901 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4902 }; 4903 4904 if (auto *Opr = dyn_cast<Operator>(V)) { 4905 // If the value is a freeze instruction, then it can never 4906 // be undef or poison. 4907 if (isa<FreezeInst>(V)) 4908 return true; 4909 4910 if (const auto *CB = dyn_cast<CallBase>(V)) { 4911 if (CB->hasRetAttr(Attribute::NoUndef)) 4912 return true; 4913 } 4914 4915 if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4916 return true; 4917 } 4918 4919 if (auto *I = dyn_cast<Instruction>(V)) { 4920 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4921 // Note: once we have an agreement that poison is a value-wise concept, 4922 // we can remove the isIntegerTy(1) constraint. 4923 return true; 4924 } 4925 4926 // CxtI may be null or a cloned instruction. 4927 if (!CtxI || !CtxI->getParent() || !DT) 4928 return false; 4929 4930 auto *DNode = DT->getNode(CtxI->getParent()); 4931 if (!DNode) 4932 // Unreachable block 4933 return false; 4934 4935 // If V is used as a branch condition before reaching CtxI, V cannot be 4936 // undef or poison. 4937 // br V, BB1, BB2 4938 // BB1: 4939 // CtxI ; V cannot be undef or poison here 4940 auto *Dominator = DNode->getIDom(); 4941 while (Dominator) { 4942 auto *TI = Dominator->getBlock()->getTerminator(); 4943 4944 if (auto BI = dyn_cast<BranchInst>(TI)) { 4945 if (BI->isConditional() && BI->getCondition() == V) 4946 return true; 4947 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4948 if (SI->getCondition() == V) 4949 return true; 4950 } 4951 4952 Dominator = Dominator->getIDom(); 4953 } 4954 4955 return false; 4956 } 4957 4958 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4959 const DataLayout &DL, 4960 AssumptionCache *AC, 4961 const Instruction *CxtI, 4962 const DominatorTree *DT) { 4963 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4964 Add, DL, AC, CxtI, DT); 4965 } 4966 4967 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4968 const Value *RHS, 4969 const DataLayout &DL, 4970 AssumptionCache *AC, 4971 const Instruction *CxtI, 4972 const DominatorTree *DT) { 4973 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4974 } 4975 4976 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4977 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4978 // of time because it's possible for another thread to interfere with it for an 4979 // arbitrary length of time, but programs aren't allowed to rely on that. 4980 4981 // If there is no successor, then execution can't transfer to it. 4982 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4983 return !CRI->unwindsToCaller(); 4984 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4985 return !CatchSwitch->unwindsToCaller(); 4986 if (isa<ResumeInst>(I)) 4987 return false; 4988 if (isa<ReturnInst>(I)) 4989 return false; 4990 if (isa<UnreachableInst>(I)) 4991 return false; 4992 4993 // Calls can throw, or contain an infinite loop, or kill the process. 4994 if (const auto *CB = dyn_cast<CallBase>(I)) { 4995 // Call sites that throw have implicit non-local control flow. 4996 if (!CB->doesNotThrow()) 4997 return false; 4998 4999 // A function which doens't throw and has "willreturn" attribute will 5000 // always return. 5001 if (CB->hasFnAttr(Attribute::WillReturn)) 5002 return true; 5003 5004 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5005 // etc. and thus not return. However, LLVM already assumes that 5006 // 5007 // - Thread exiting actions are modeled as writes to memory invisible to 5008 // the program. 5009 // 5010 // - Loops that don't have side effects (side effects are volatile/atomic 5011 // stores and IO) always terminate (see http://llvm.org/PR965). 5012 // Furthermore IO itself is also modeled as writes to memory invisible to 5013 // the program. 5014 // 5015 // We rely on those assumptions here, and use the memory effects of the call 5016 // target as a proxy for checking that it always returns. 5017 5018 // FIXME: This isn't aggressive enough; a call which only writes to a global 5019 // is guaranteed to return. 5020 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5021 } 5022 5023 // Other instructions return normally. 5024 return true; 5025 } 5026 5027 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5028 // TODO: This is slightly conservative for invoke instruction since exiting 5029 // via an exception *is* normal control for them. 5030 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5031 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5032 return false; 5033 return true; 5034 } 5035 5036 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5037 const Loop *L) { 5038 // The loop header is guaranteed to be executed for every iteration. 5039 // 5040 // FIXME: Relax this constraint to cover all basic blocks that are 5041 // guaranteed to be executed at every iteration. 5042 if (I->getParent() != L->getHeader()) return false; 5043 5044 for (const Instruction &LI : *L->getHeader()) { 5045 if (&LI == I) return true; 5046 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5047 } 5048 llvm_unreachable("Instruction not contained in its own parent basic block."); 5049 } 5050 5051 bool llvm::propagatesPoison(const Instruction *I) { 5052 switch (I->getOpcode()) { 5053 case Instruction::Freeze: 5054 case Instruction::Select: 5055 case Instruction::PHI: 5056 case Instruction::Call: 5057 case Instruction::Invoke: 5058 return false; 5059 case Instruction::ICmp: 5060 case Instruction::FCmp: 5061 case Instruction::GetElementPtr: 5062 return true; 5063 default: 5064 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5065 return true; 5066 5067 // Be conservative and return false. 5068 return false; 5069 } 5070 } 5071 5072 const Value *llvm::getGuaranteedNonPoisonOp(const Instruction *I) { 5073 switch (I->getOpcode()) { 5074 case Instruction::Store: 5075 return cast<StoreInst>(I)->getPointerOperand(); 5076 5077 case Instruction::Load: 5078 return cast<LoadInst>(I)->getPointerOperand(); 5079 5080 case Instruction::AtomicCmpXchg: 5081 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 5082 5083 case Instruction::AtomicRMW: 5084 return cast<AtomicRMWInst>(I)->getPointerOperand(); 5085 5086 case Instruction::UDiv: 5087 case Instruction::SDiv: 5088 case Instruction::URem: 5089 case Instruction::SRem: 5090 return I->getOperand(1); 5091 5092 case Instruction::Call: 5093 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5094 switch (II->getIntrinsicID()) { 5095 case Intrinsic::assume: 5096 return II->getArgOperand(0); 5097 default: 5098 return nullptr; 5099 } 5100 } 5101 return nullptr; 5102 5103 default: 5104 return nullptr; 5105 } 5106 } 5107 5108 bool llvm::mustTriggerUB(const Instruction *I, 5109 const SmallSet<const Value *, 16>& KnownPoison) { 5110 auto *NotPoison = getGuaranteedNonPoisonOp(I); 5111 return (NotPoison && KnownPoison.count(NotPoison)); 5112 } 5113 5114 5115 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 5116 // We currently only look for uses of poison values within the same basic 5117 // block, as that makes it easier to guarantee that the uses will be 5118 // executed given that PoisonI is executed. 5119 // 5120 // FIXME: Expand this to consider uses beyond the same basic block. To do 5121 // this, look out for the distinction between post-dominance and strong 5122 // post-dominance. 5123 const BasicBlock *BB = PoisonI->getParent(); 5124 5125 // Set of instructions that we have proved will yield poison if PoisonI 5126 // does. 5127 SmallSet<const Value *, 16> YieldsPoison; 5128 SmallSet<const BasicBlock *, 4> Visited; 5129 YieldsPoison.insert(PoisonI); 5130 Visited.insert(PoisonI->getParent()); 5131 5132 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 5133 5134 unsigned Iter = 0; 5135 while (Iter++ < MaxDepth) { 5136 for (auto &I : make_range(Begin, End)) { 5137 if (&I != PoisonI) { 5138 if (mustTriggerUB(&I, YieldsPoison)) 5139 return true; 5140 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5141 return false; 5142 } 5143 5144 // Mark poison that propagates from I through uses of I. 5145 if (YieldsPoison.count(&I)) { 5146 for (const User *User : I.users()) { 5147 const Instruction *UserI = cast<Instruction>(User); 5148 if (propagatesPoison(UserI)) 5149 YieldsPoison.insert(User); 5150 } 5151 } 5152 } 5153 5154 if (auto *NextBB = BB->getSingleSuccessor()) { 5155 if (Visited.insert(NextBB).second) { 5156 BB = NextBB; 5157 Begin = BB->getFirstNonPHI()->getIterator(); 5158 End = BB->end(); 5159 continue; 5160 } 5161 } 5162 5163 break; 5164 } 5165 return false; 5166 } 5167 5168 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5169 if (FMF.noNaNs()) 5170 return true; 5171 5172 if (auto *C = dyn_cast<ConstantFP>(V)) 5173 return !C->isNaN(); 5174 5175 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5176 if (!C->getElementType()->isFloatingPointTy()) 5177 return false; 5178 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5179 if (C->getElementAsAPFloat(I).isNaN()) 5180 return false; 5181 } 5182 return true; 5183 } 5184 5185 if (isa<ConstantAggregateZero>(V)) 5186 return true; 5187 5188 return false; 5189 } 5190 5191 static bool isKnownNonZero(const Value *V) { 5192 if (auto *C = dyn_cast<ConstantFP>(V)) 5193 return !C->isZero(); 5194 5195 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5196 if (!C->getElementType()->isFloatingPointTy()) 5197 return false; 5198 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5199 if (C->getElementAsAPFloat(I).isZero()) 5200 return false; 5201 } 5202 return true; 5203 } 5204 5205 return false; 5206 } 5207 5208 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5209 /// Given non-min/max outer cmp/select from the clamp pattern this 5210 /// function recognizes if it can be substitued by a "canonical" min/max 5211 /// pattern. 5212 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5213 Value *CmpLHS, Value *CmpRHS, 5214 Value *TrueVal, Value *FalseVal, 5215 Value *&LHS, Value *&RHS) { 5216 // Try to match 5217 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5218 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5219 // and return description of the outer Max/Min. 5220 5221 // First, check if select has inverse order: 5222 if (CmpRHS == FalseVal) { 5223 std::swap(TrueVal, FalseVal); 5224 Pred = CmpInst::getInversePredicate(Pred); 5225 } 5226 5227 // Assume success now. If there's no match, callers should not use these anyway. 5228 LHS = TrueVal; 5229 RHS = FalseVal; 5230 5231 const APFloat *FC1; 5232 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5233 return {SPF_UNKNOWN, SPNB_NA, false}; 5234 5235 const APFloat *FC2; 5236 switch (Pred) { 5237 case CmpInst::FCMP_OLT: 5238 case CmpInst::FCMP_OLE: 5239 case CmpInst::FCMP_ULT: 5240 case CmpInst::FCMP_ULE: 5241 if (match(FalseVal, 5242 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5243 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5244 *FC1 < *FC2) 5245 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5246 break; 5247 case CmpInst::FCMP_OGT: 5248 case CmpInst::FCMP_OGE: 5249 case CmpInst::FCMP_UGT: 5250 case CmpInst::FCMP_UGE: 5251 if (match(FalseVal, 5252 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5253 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5254 *FC1 > *FC2) 5255 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5256 break; 5257 default: 5258 break; 5259 } 5260 5261 return {SPF_UNKNOWN, SPNB_NA, false}; 5262 } 5263 5264 /// Recognize variations of: 5265 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5266 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5267 Value *CmpLHS, Value *CmpRHS, 5268 Value *TrueVal, Value *FalseVal) { 5269 // Swap the select operands and predicate to match the patterns below. 5270 if (CmpRHS != TrueVal) { 5271 Pred = ICmpInst::getSwappedPredicate(Pred); 5272 std::swap(TrueVal, FalseVal); 5273 } 5274 const APInt *C1; 5275 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5276 const APInt *C2; 5277 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5278 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5279 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5280 return {SPF_SMAX, SPNB_NA, false}; 5281 5282 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5283 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5284 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5285 return {SPF_SMIN, SPNB_NA, false}; 5286 5287 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5288 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5289 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5290 return {SPF_UMAX, SPNB_NA, false}; 5291 5292 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5293 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5294 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5295 return {SPF_UMIN, SPNB_NA, false}; 5296 } 5297 return {SPF_UNKNOWN, SPNB_NA, false}; 5298 } 5299 5300 /// Recognize variations of: 5301 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5302 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5303 Value *CmpLHS, Value *CmpRHS, 5304 Value *TVal, Value *FVal, 5305 unsigned Depth) { 5306 // TODO: Allow FP min/max with nnan/nsz. 5307 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5308 5309 Value *A = nullptr, *B = nullptr; 5310 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5311 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5312 return {SPF_UNKNOWN, SPNB_NA, false}; 5313 5314 Value *C = nullptr, *D = nullptr; 5315 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5316 if (L.Flavor != R.Flavor) 5317 return {SPF_UNKNOWN, SPNB_NA, false}; 5318 5319 // We have something like: x Pred y ? min(a, b) : min(c, d). 5320 // Try to match the compare to the min/max operations of the select operands. 5321 // First, make sure we have the right compare predicate. 5322 switch (L.Flavor) { 5323 case SPF_SMIN: 5324 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5325 Pred = ICmpInst::getSwappedPredicate(Pred); 5326 std::swap(CmpLHS, CmpRHS); 5327 } 5328 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5329 break; 5330 return {SPF_UNKNOWN, SPNB_NA, false}; 5331 case SPF_SMAX: 5332 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5333 Pred = ICmpInst::getSwappedPredicate(Pred); 5334 std::swap(CmpLHS, CmpRHS); 5335 } 5336 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5337 break; 5338 return {SPF_UNKNOWN, SPNB_NA, false}; 5339 case SPF_UMIN: 5340 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5341 Pred = ICmpInst::getSwappedPredicate(Pred); 5342 std::swap(CmpLHS, CmpRHS); 5343 } 5344 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5345 break; 5346 return {SPF_UNKNOWN, SPNB_NA, false}; 5347 case SPF_UMAX: 5348 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5349 Pred = ICmpInst::getSwappedPredicate(Pred); 5350 std::swap(CmpLHS, CmpRHS); 5351 } 5352 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5353 break; 5354 return {SPF_UNKNOWN, SPNB_NA, false}; 5355 default: 5356 return {SPF_UNKNOWN, SPNB_NA, false}; 5357 } 5358 5359 // If there is a common operand in the already matched min/max and the other 5360 // min/max operands match the compare operands (either directly or inverted), 5361 // then this is min/max of the same flavor. 5362 5363 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5364 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5365 if (D == B) { 5366 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5367 match(A, m_Not(m_Specific(CmpRHS))))) 5368 return {L.Flavor, SPNB_NA, false}; 5369 } 5370 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5371 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5372 if (C == B) { 5373 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5374 match(A, m_Not(m_Specific(CmpRHS))))) 5375 return {L.Flavor, SPNB_NA, false}; 5376 } 5377 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5378 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5379 if (D == A) { 5380 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5381 match(B, m_Not(m_Specific(CmpRHS))))) 5382 return {L.Flavor, SPNB_NA, false}; 5383 } 5384 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5385 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5386 if (C == A) { 5387 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5388 match(B, m_Not(m_Specific(CmpRHS))))) 5389 return {L.Flavor, SPNB_NA, false}; 5390 } 5391 5392 return {SPF_UNKNOWN, SPNB_NA, false}; 5393 } 5394 5395 /// If the input value is the result of a 'not' op, constant integer, or vector 5396 /// splat of a constant integer, return the bitwise-not source value. 5397 /// TODO: This could be extended to handle non-splat vector integer constants. 5398 static Value *getNotValue(Value *V) { 5399 Value *NotV; 5400 if (match(V, m_Not(m_Value(NotV)))) 5401 return NotV; 5402 5403 const APInt *C; 5404 if (match(V, m_APInt(C))) 5405 return ConstantInt::get(V->getType(), ~(*C)); 5406 5407 return nullptr; 5408 } 5409 5410 /// Match non-obvious integer minimum and maximum sequences. 5411 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5412 Value *CmpLHS, Value *CmpRHS, 5413 Value *TrueVal, Value *FalseVal, 5414 Value *&LHS, Value *&RHS, 5415 unsigned Depth) { 5416 // Assume success. If there's no match, callers should not use these anyway. 5417 LHS = TrueVal; 5418 RHS = FalseVal; 5419 5420 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5421 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5422 return SPR; 5423 5424 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5425 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5426 return SPR; 5427 5428 // Look through 'not' ops to find disguised min/max. 5429 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5430 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5431 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5432 switch (Pred) { 5433 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5434 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5435 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5436 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5437 default: break; 5438 } 5439 } 5440 5441 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5442 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5443 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5444 switch (Pred) { 5445 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5446 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5447 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5448 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5449 default: break; 5450 } 5451 } 5452 5453 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5454 return {SPF_UNKNOWN, SPNB_NA, false}; 5455 5456 // Z = X -nsw Y 5457 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5458 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5459 if (match(TrueVal, m_Zero()) && 5460 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5461 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5462 5463 // Z = X -nsw Y 5464 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5465 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5466 if (match(FalseVal, m_Zero()) && 5467 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5468 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5469 5470 const APInt *C1; 5471 if (!match(CmpRHS, m_APInt(C1))) 5472 return {SPF_UNKNOWN, SPNB_NA, false}; 5473 5474 // An unsigned min/max can be written with a signed compare. 5475 const APInt *C2; 5476 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5477 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5478 // Is the sign bit set? 5479 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5480 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5481 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5482 C2->isMaxSignedValue()) 5483 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5484 5485 // Is the sign bit clear? 5486 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5487 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5488 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5489 C2->isMinSignedValue()) 5490 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5491 } 5492 5493 return {SPF_UNKNOWN, SPNB_NA, false}; 5494 } 5495 5496 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5497 assert(X && Y && "Invalid operand"); 5498 5499 // X = sub (0, Y) || X = sub nsw (0, Y) 5500 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5501 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5502 return true; 5503 5504 // Y = sub (0, X) || Y = sub nsw (0, X) 5505 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5506 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5507 return true; 5508 5509 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5510 Value *A, *B; 5511 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5512 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5513 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5514 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5515 } 5516 5517 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5518 FastMathFlags FMF, 5519 Value *CmpLHS, Value *CmpRHS, 5520 Value *TrueVal, Value *FalseVal, 5521 Value *&LHS, Value *&RHS, 5522 unsigned Depth) { 5523 if (CmpInst::isFPPredicate(Pred)) { 5524 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5525 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5526 // purpose of identifying min/max. Disregard vector constants with undefined 5527 // elements because those can not be back-propagated for analysis. 5528 Value *OutputZeroVal = nullptr; 5529 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5530 !cast<Constant>(TrueVal)->containsUndefElement()) 5531 OutputZeroVal = TrueVal; 5532 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5533 !cast<Constant>(FalseVal)->containsUndefElement()) 5534 OutputZeroVal = FalseVal; 5535 5536 if (OutputZeroVal) { 5537 if (match(CmpLHS, m_AnyZeroFP())) 5538 CmpLHS = OutputZeroVal; 5539 if (match(CmpRHS, m_AnyZeroFP())) 5540 CmpRHS = OutputZeroVal; 5541 } 5542 } 5543 5544 LHS = CmpLHS; 5545 RHS = CmpRHS; 5546 5547 // Signed zero may return inconsistent results between implementations. 5548 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5549 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5550 // Therefore, we behave conservatively and only proceed if at least one of the 5551 // operands is known to not be zero or if we don't care about signed zero. 5552 switch (Pred) { 5553 default: break; 5554 // FIXME: Include OGT/OLT/UGT/ULT. 5555 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5556 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5557 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5558 !isKnownNonZero(CmpRHS)) 5559 return {SPF_UNKNOWN, SPNB_NA, false}; 5560 } 5561 5562 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5563 bool Ordered = false; 5564 5565 // When given one NaN and one non-NaN input: 5566 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5567 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5568 // ordered comparison fails), which could be NaN or non-NaN. 5569 // so here we discover exactly what NaN behavior is required/accepted. 5570 if (CmpInst::isFPPredicate(Pred)) { 5571 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5572 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5573 5574 if (LHSSafe && RHSSafe) { 5575 // Both operands are known non-NaN. 5576 NaNBehavior = SPNB_RETURNS_ANY; 5577 } else if (CmpInst::isOrdered(Pred)) { 5578 // An ordered comparison will return false when given a NaN, so it 5579 // returns the RHS. 5580 Ordered = true; 5581 if (LHSSafe) 5582 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5583 NaNBehavior = SPNB_RETURNS_NAN; 5584 else if (RHSSafe) 5585 NaNBehavior = SPNB_RETURNS_OTHER; 5586 else 5587 // Completely unsafe. 5588 return {SPF_UNKNOWN, SPNB_NA, false}; 5589 } else { 5590 Ordered = false; 5591 // An unordered comparison will return true when given a NaN, so it 5592 // returns the LHS. 5593 if (LHSSafe) 5594 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5595 NaNBehavior = SPNB_RETURNS_OTHER; 5596 else if (RHSSafe) 5597 NaNBehavior = SPNB_RETURNS_NAN; 5598 else 5599 // Completely unsafe. 5600 return {SPF_UNKNOWN, SPNB_NA, false}; 5601 } 5602 } 5603 5604 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5605 std::swap(CmpLHS, CmpRHS); 5606 Pred = CmpInst::getSwappedPredicate(Pred); 5607 if (NaNBehavior == SPNB_RETURNS_NAN) 5608 NaNBehavior = SPNB_RETURNS_OTHER; 5609 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5610 NaNBehavior = SPNB_RETURNS_NAN; 5611 Ordered = !Ordered; 5612 } 5613 5614 // ([if]cmp X, Y) ? X : Y 5615 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5616 switch (Pred) { 5617 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5618 case ICmpInst::ICMP_UGT: 5619 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5620 case ICmpInst::ICMP_SGT: 5621 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5622 case ICmpInst::ICMP_ULT: 5623 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5624 case ICmpInst::ICMP_SLT: 5625 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5626 case FCmpInst::FCMP_UGT: 5627 case FCmpInst::FCMP_UGE: 5628 case FCmpInst::FCMP_OGT: 5629 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5630 case FCmpInst::FCMP_ULT: 5631 case FCmpInst::FCMP_ULE: 5632 case FCmpInst::FCMP_OLT: 5633 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5634 } 5635 } 5636 5637 if (isKnownNegation(TrueVal, FalseVal)) { 5638 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5639 // match against either LHS or sext(LHS). 5640 auto MaybeSExtCmpLHS = 5641 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5642 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5643 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5644 if (match(TrueVal, MaybeSExtCmpLHS)) { 5645 // Set the return values. If the compare uses the negated value (-X >s 0), 5646 // swap the return values because the negated value is always 'RHS'. 5647 LHS = TrueVal; 5648 RHS = FalseVal; 5649 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5650 std::swap(LHS, RHS); 5651 5652 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5653 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5654 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5655 return {SPF_ABS, SPNB_NA, false}; 5656 5657 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5658 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5659 return {SPF_ABS, SPNB_NA, false}; 5660 5661 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5662 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5663 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5664 return {SPF_NABS, SPNB_NA, false}; 5665 } 5666 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5667 // Set the return values. If the compare uses the negated value (-X >s 0), 5668 // swap the return values because the negated value is always 'RHS'. 5669 LHS = FalseVal; 5670 RHS = TrueVal; 5671 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5672 std::swap(LHS, RHS); 5673 5674 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5675 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5676 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5677 return {SPF_NABS, SPNB_NA, false}; 5678 5679 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5680 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5681 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5682 return {SPF_ABS, SPNB_NA, false}; 5683 } 5684 } 5685 5686 if (CmpInst::isIntPredicate(Pred)) 5687 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5688 5689 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5690 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5691 // semantics than minNum. Be conservative in such case. 5692 if (NaNBehavior != SPNB_RETURNS_ANY || 5693 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5694 !isKnownNonZero(CmpRHS))) 5695 return {SPF_UNKNOWN, SPNB_NA, false}; 5696 5697 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5698 } 5699 5700 /// Helps to match a select pattern in case of a type mismatch. 5701 /// 5702 /// The function processes the case when type of true and false values of a 5703 /// select instruction differs from type of the cmp instruction operands because 5704 /// of a cast instruction. The function checks if it is legal to move the cast 5705 /// operation after "select". If yes, it returns the new second value of 5706 /// "select" (with the assumption that cast is moved): 5707 /// 1. As operand of cast instruction when both values of "select" are same cast 5708 /// instructions. 5709 /// 2. As restored constant (by applying reverse cast operation) when the first 5710 /// value of the "select" is a cast operation and the second value is a 5711 /// constant. 5712 /// NOTE: We return only the new second value because the first value could be 5713 /// accessed as operand of cast instruction. 5714 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5715 Instruction::CastOps *CastOp) { 5716 auto *Cast1 = dyn_cast<CastInst>(V1); 5717 if (!Cast1) 5718 return nullptr; 5719 5720 *CastOp = Cast1->getOpcode(); 5721 Type *SrcTy = Cast1->getSrcTy(); 5722 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5723 // If V1 and V2 are both the same cast from the same type, look through V1. 5724 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5725 return Cast2->getOperand(0); 5726 return nullptr; 5727 } 5728 5729 auto *C = dyn_cast<Constant>(V2); 5730 if (!C) 5731 return nullptr; 5732 5733 Constant *CastedTo = nullptr; 5734 switch (*CastOp) { 5735 case Instruction::ZExt: 5736 if (CmpI->isUnsigned()) 5737 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5738 break; 5739 case Instruction::SExt: 5740 if (CmpI->isSigned()) 5741 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5742 break; 5743 case Instruction::Trunc: 5744 Constant *CmpConst; 5745 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5746 CmpConst->getType() == SrcTy) { 5747 // Here we have the following case: 5748 // 5749 // %cond = cmp iN %x, CmpConst 5750 // %tr = trunc iN %x to iK 5751 // %narrowsel = select i1 %cond, iK %t, iK C 5752 // 5753 // We can always move trunc after select operation: 5754 // 5755 // %cond = cmp iN %x, CmpConst 5756 // %widesel = select i1 %cond, iN %x, iN CmpConst 5757 // %tr = trunc iN %widesel to iK 5758 // 5759 // Note that C could be extended in any way because we don't care about 5760 // upper bits after truncation. It can't be abs pattern, because it would 5761 // look like: 5762 // 5763 // select i1 %cond, x, -x. 5764 // 5765 // So only min/max pattern could be matched. Such match requires widened C 5766 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5767 // CmpConst == C is checked below. 5768 CastedTo = CmpConst; 5769 } else { 5770 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5771 } 5772 break; 5773 case Instruction::FPTrunc: 5774 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5775 break; 5776 case Instruction::FPExt: 5777 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5778 break; 5779 case Instruction::FPToUI: 5780 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5781 break; 5782 case Instruction::FPToSI: 5783 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5784 break; 5785 case Instruction::UIToFP: 5786 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5787 break; 5788 case Instruction::SIToFP: 5789 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5790 break; 5791 default: 5792 break; 5793 } 5794 5795 if (!CastedTo) 5796 return nullptr; 5797 5798 // Make sure the cast doesn't lose any information. 5799 Constant *CastedBack = 5800 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5801 if (CastedBack != C) 5802 return nullptr; 5803 5804 return CastedTo; 5805 } 5806 5807 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5808 Instruction::CastOps *CastOp, 5809 unsigned Depth) { 5810 if (Depth >= MaxDepth) 5811 return {SPF_UNKNOWN, SPNB_NA, false}; 5812 5813 SelectInst *SI = dyn_cast<SelectInst>(V); 5814 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5815 5816 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5817 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5818 5819 Value *TrueVal = SI->getTrueValue(); 5820 Value *FalseVal = SI->getFalseValue(); 5821 5822 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5823 CastOp, Depth); 5824 } 5825 5826 SelectPatternResult llvm::matchDecomposedSelectPattern( 5827 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5828 Instruction::CastOps *CastOp, unsigned Depth) { 5829 CmpInst::Predicate Pred = CmpI->getPredicate(); 5830 Value *CmpLHS = CmpI->getOperand(0); 5831 Value *CmpRHS = CmpI->getOperand(1); 5832 FastMathFlags FMF; 5833 if (isa<FPMathOperator>(CmpI)) 5834 FMF = CmpI->getFastMathFlags(); 5835 5836 // Bail out early. 5837 if (CmpI->isEquality()) 5838 return {SPF_UNKNOWN, SPNB_NA, false}; 5839 5840 // Deal with type mismatches. 5841 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5842 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5843 // If this is a potential fmin/fmax with a cast to integer, then ignore 5844 // -0.0 because there is no corresponding integer value. 5845 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5846 FMF.setNoSignedZeros(); 5847 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5848 cast<CastInst>(TrueVal)->getOperand(0), C, 5849 LHS, RHS, Depth); 5850 } 5851 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5852 // If this is a potential fmin/fmax with a cast to integer, then ignore 5853 // -0.0 because there is no corresponding integer value. 5854 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5855 FMF.setNoSignedZeros(); 5856 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5857 C, cast<CastInst>(FalseVal)->getOperand(0), 5858 LHS, RHS, Depth); 5859 } 5860 } 5861 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5862 LHS, RHS, Depth); 5863 } 5864 5865 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5866 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5867 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5868 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5869 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5870 if (SPF == SPF_FMINNUM) 5871 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5872 if (SPF == SPF_FMAXNUM) 5873 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5874 llvm_unreachable("unhandled!"); 5875 } 5876 5877 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5878 if (SPF == SPF_SMIN) return SPF_SMAX; 5879 if (SPF == SPF_UMIN) return SPF_UMAX; 5880 if (SPF == SPF_SMAX) return SPF_SMIN; 5881 if (SPF == SPF_UMAX) return SPF_UMIN; 5882 llvm_unreachable("unhandled!"); 5883 } 5884 5885 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5886 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5887 } 5888 5889 /// Return true if "icmp Pred LHS RHS" is always true. 5890 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5891 const Value *RHS, const DataLayout &DL, 5892 unsigned Depth) { 5893 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5894 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5895 return true; 5896 5897 switch (Pred) { 5898 default: 5899 return false; 5900 5901 case CmpInst::ICMP_SLE: { 5902 const APInt *C; 5903 5904 // LHS s<= LHS +_{nsw} C if C >= 0 5905 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5906 return !C->isNegative(); 5907 return false; 5908 } 5909 5910 case CmpInst::ICMP_ULE: { 5911 const APInt *C; 5912 5913 // LHS u<= LHS +_{nuw} C for any C 5914 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5915 return true; 5916 5917 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5918 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5919 const Value *&X, 5920 const APInt *&CA, const APInt *&CB) { 5921 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5922 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5923 return true; 5924 5925 // If X & C == 0 then (X | C) == X +_{nuw} C 5926 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5927 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5928 KnownBits Known(CA->getBitWidth()); 5929 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5930 /*CxtI*/ nullptr, /*DT*/ nullptr); 5931 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5932 return true; 5933 } 5934 5935 return false; 5936 }; 5937 5938 const Value *X; 5939 const APInt *CLHS, *CRHS; 5940 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5941 return CLHS->ule(*CRHS); 5942 5943 return false; 5944 } 5945 } 5946 } 5947 5948 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5949 /// ALHS ARHS" is true. Otherwise, return None. 5950 static Optional<bool> 5951 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5952 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5953 const DataLayout &DL, unsigned Depth) { 5954 switch (Pred) { 5955 default: 5956 return None; 5957 5958 case CmpInst::ICMP_SLT: 5959 case CmpInst::ICMP_SLE: 5960 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5961 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5962 return true; 5963 return None; 5964 5965 case CmpInst::ICMP_ULT: 5966 case CmpInst::ICMP_ULE: 5967 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5968 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5969 return true; 5970 return None; 5971 } 5972 } 5973 5974 /// Return true if the operands of the two compares match. IsSwappedOps is true 5975 /// when the operands match, but are swapped. 5976 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5977 const Value *BLHS, const Value *BRHS, 5978 bool &IsSwappedOps) { 5979 5980 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5981 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5982 return IsMatchingOps || IsSwappedOps; 5983 } 5984 5985 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5986 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5987 /// Otherwise, return None if we can't infer anything. 5988 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5989 CmpInst::Predicate BPred, 5990 bool AreSwappedOps) { 5991 // Canonicalize the predicate as if the operands were not commuted. 5992 if (AreSwappedOps) 5993 BPred = ICmpInst::getSwappedPredicate(BPred); 5994 5995 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5996 return true; 5997 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5998 return false; 5999 6000 return None; 6001 } 6002 6003 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6004 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6005 /// Otherwise, return None if we can't infer anything. 6006 static Optional<bool> 6007 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6008 const ConstantInt *C1, 6009 CmpInst::Predicate BPred, 6010 const ConstantInt *C2) { 6011 ConstantRange DomCR = 6012 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6013 ConstantRange CR = 6014 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6015 ConstantRange Intersection = DomCR.intersectWith(CR); 6016 ConstantRange Difference = DomCR.difference(CR); 6017 if (Intersection.isEmptySet()) 6018 return false; 6019 if (Difference.isEmptySet()) 6020 return true; 6021 return None; 6022 } 6023 6024 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6025 /// false. Otherwise, return None if we can't infer anything. 6026 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6027 CmpInst::Predicate BPred, 6028 const Value *BLHS, const Value *BRHS, 6029 const DataLayout &DL, bool LHSIsTrue, 6030 unsigned Depth) { 6031 Value *ALHS = LHS->getOperand(0); 6032 Value *ARHS = LHS->getOperand(1); 6033 6034 // The rest of the logic assumes the LHS condition is true. If that's not the 6035 // case, invert the predicate to make it so. 6036 CmpInst::Predicate APred = 6037 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6038 6039 // Can we infer anything when the two compares have matching operands? 6040 bool AreSwappedOps; 6041 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6042 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6043 APred, BPred, AreSwappedOps)) 6044 return Implication; 6045 // No amount of additional analysis will infer the second condition, so 6046 // early exit. 6047 return None; 6048 } 6049 6050 // Can we infer anything when the LHS operands match and the RHS operands are 6051 // constants (not necessarily matching)? 6052 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6053 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6054 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6055 return Implication; 6056 // No amount of additional analysis will infer the second condition, so 6057 // early exit. 6058 return None; 6059 } 6060 6061 if (APred == BPred) 6062 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6063 return None; 6064 } 6065 6066 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6067 /// false. Otherwise, return None if we can't infer anything. We expect the 6068 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6069 static Optional<bool> 6070 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6071 const Value *RHSOp0, const Value *RHSOp1, 6072 6073 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6074 // The LHS must be an 'or' or an 'and' instruction. 6075 assert((LHS->getOpcode() == Instruction::And || 6076 LHS->getOpcode() == Instruction::Or) && 6077 "Expected LHS to be 'and' or 'or'."); 6078 6079 assert(Depth <= MaxDepth && "Hit recursion limit"); 6080 6081 // If the result of an 'or' is false, then we know both legs of the 'or' are 6082 // false. Similarly, if the result of an 'and' is true, then we know both 6083 // legs of the 'and' are true. 6084 Value *ALHS, *ARHS; 6085 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6086 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6087 // FIXME: Make this non-recursion. 6088 if (Optional<bool> Implication = isImpliedCondition( 6089 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6090 return Implication; 6091 if (Optional<bool> Implication = isImpliedCondition( 6092 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6093 return Implication; 6094 return None; 6095 } 6096 return None; 6097 } 6098 6099 Optional<bool> 6100 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6101 const Value *RHSOp0, const Value *RHSOp1, 6102 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6103 // Bail out when we hit the limit. 6104 if (Depth == MaxDepth) 6105 return None; 6106 6107 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6108 // example. 6109 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6110 return None; 6111 6112 Type *OpTy = LHS->getType(); 6113 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6114 6115 // FIXME: Extending the code below to handle vectors. 6116 if (OpTy->isVectorTy()) 6117 return None; 6118 6119 assert(OpTy->isIntegerTy(1) && "implied by above"); 6120 6121 // Both LHS and RHS are icmps. 6122 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6123 if (LHSCmp) 6124 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6125 Depth); 6126 6127 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6128 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6129 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6130 if (LHSBO) { 6131 if ((LHSBO->getOpcode() == Instruction::And || 6132 LHSBO->getOpcode() == Instruction::Or)) 6133 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6134 Depth); 6135 } 6136 return None; 6137 } 6138 6139 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6140 const DataLayout &DL, bool LHSIsTrue, 6141 unsigned Depth) { 6142 // LHS ==> RHS by definition 6143 if (LHS == RHS) 6144 return LHSIsTrue; 6145 6146 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6147 if (RHSCmp) 6148 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6149 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6150 LHSIsTrue, Depth); 6151 return None; 6152 } 6153 6154 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6155 // condition dominating ContextI or nullptr, if no condition is found. 6156 static std::pair<Value *, bool> 6157 getDomPredecessorCondition(const Instruction *ContextI) { 6158 if (!ContextI || !ContextI->getParent()) 6159 return {nullptr, false}; 6160 6161 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6162 // dominator tree (eg, from a SimplifyQuery) instead? 6163 const BasicBlock *ContextBB = ContextI->getParent(); 6164 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6165 if (!PredBB) 6166 return {nullptr, false}; 6167 6168 // We need a conditional branch in the predecessor. 6169 Value *PredCond; 6170 BasicBlock *TrueBB, *FalseBB; 6171 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6172 return {nullptr, false}; 6173 6174 // The branch should get simplified. Don't bother simplifying this condition. 6175 if (TrueBB == FalseBB) 6176 return {nullptr, false}; 6177 6178 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6179 "Predecessor block does not point to successor?"); 6180 6181 // Is this condition implied by the predecessor condition? 6182 return {PredCond, TrueBB == ContextBB}; 6183 } 6184 6185 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6186 const Instruction *ContextI, 6187 const DataLayout &DL) { 6188 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6189 auto PredCond = getDomPredecessorCondition(ContextI); 6190 if (PredCond.first) 6191 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6192 return None; 6193 } 6194 6195 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6196 const Value *LHS, const Value *RHS, 6197 const Instruction *ContextI, 6198 const DataLayout &DL) { 6199 auto PredCond = getDomPredecessorCondition(ContextI); 6200 if (PredCond.first) 6201 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6202 PredCond.second); 6203 return None; 6204 } 6205 6206 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6207 APInt &Upper, const InstrInfoQuery &IIQ) { 6208 unsigned Width = Lower.getBitWidth(); 6209 const APInt *C; 6210 switch (BO.getOpcode()) { 6211 case Instruction::Add: 6212 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6213 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6214 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6215 // 'add nuw x, C' produces [C, UINT_MAX]. 6216 Lower = *C; 6217 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6218 if (C->isNegative()) { 6219 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6220 Lower = APInt::getSignedMinValue(Width); 6221 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6222 } else { 6223 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6224 Lower = APInt::getSignedMinValue(Width) + *C; 6225 Upper = APInt::getSignedMaxValue(Width) + 1; 6226 } 6227 } 6228 } 6229 break; 6230 6231 case Instruction::And: 6232 if (match(BO.getOperand(1), m_APInt(C))) 6233 // 'and x, C' produces [0, C]. 6234 Upper = *C + 1; 6235 break; 6236 6237 case Instruction::Or: 6238 if (match(BO.getOperand(1), m_APInt(C))) 6239 // 'or x, C' produces [C, UINT_MAX]. 6240 Lower = *C; 6241 break; 6242 6243 case Instruction::AShr: 6244 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6245 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6246 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6247 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6248 } else if (match(BO.getOperand(0), m_APInt(C))) { 6249 unsigned ShiftAmount = Width - 1; 6250 if (!C->isNullValue() && IIQ.isExact(&BO)) 6251 ShiftAmount = C->countTrailingZeros(); 6252 if (C->isNegative()) { 6253 // 'ashr C, x' produces [C, C >> (Width-1)] 6254 Lower = *C; 6255 Upper = C->ashr(ShiftAmount) + 1; 6256 } else { 6257 // 'ashr C, x' produces [C >> (Width-1), C] 6258 Lower = C->ashr(ShiftAmount); 6259 Upper = *C + 1; 6260 } 6261 } 6262 break; 6263 6264 case Instruction::LShr: 6265 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6266 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6267 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6268 } else if (match(BO.getOperand(0), m_APInt(C))) { 6269 // 'lshr C, x' produces [C >> (Width-1), C]. 6270 unsigned ShiftAmount = Width - 1; 6271 if (!C->isNullValue() && IIQ.isExact(&BO)) 6272 ShiftAmount = C->countTrailingZeros(); 6273 Lower = C->lshr(ShiftAmount); 6274 Upper = *C + 1; 6275 } 6276 break; 6277 6278 case Instruction::Shl: 6279 if (match(BO.getOperand(0), m_APInt(C))) { 6280 if (IIQ.hasNoUnsignedWrap(&BO)) { 6281 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6282 Lower = *C; 6283 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6284 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6285 if (C->isNegative()) { 6286 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6287 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6288 Lower = C->shl(ShiftAmount); 6289 Upper = *C + 1; 6290 } else { 6291 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6292 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6293 Lower = *C; 6294 Upper = C->shl(ShiftAmount) + 1; 6295 } 6296 } 6297 } 6298 break; 6299 6300 case Instruction::SDiv: 6301 if (match(BO.getOperand(1), m_APInt(C))) { 6302 APInt IntMin = APInt::getSignedMinValue(Width); 6303 APInt IntMax = APInt::getSignedMaxValue(Width); 6304 if (C->isAllOnesValue()) { 6305 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6306 // where C != -1 and C != 0 and C != 1 6307 Lower = IntMin + 1; 6308 Upper = IntMax + 1; 6309 } else if (C->countLeadingZeros() < Width - 1) { 6310 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6311 // where C != -1 and C != 0 and C != 1 6312 Lower = IntMin.sdiv(*C); 6313 Upper = IntMax.sdiv(*C); 6314 if (Lower.sgt(Upper)) 6315 std::swap(Lower, Upper); 6316 Upper = Upper + 1; 6317 assert(Upper != Lower && "Upper part of range has wrapped!"); 6318 } 6319 } else if (match(BO.getOperand(0), m_APInt(C))) { 6320 if (C->isMinSignedValue()) { 6321 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6322 Lower = *C; 6323 Upper = Lower.lshr(1) + 1; 6324 } else { 6325 // 'sdiv C, x' produces [-|C|, |C|]. 6326 Upper = C->abs() + 1; 6327 Lower = (-Upper) + 1; 6328 } 6329 } 6330 break; 6331 6332 case Instruction::UDiv: 6333 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6334 // 'udiv x, C' produces [0, UINT_MAX / C]. 6335 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6336 } else if (match(BO.getOperand(0), m_APInt(C))) { 6337 // 'udiv C, x' produces [0, C]. 6338 Upper = *C + 1; 6339 } 6340 break; 6341 6342 case Instruction::SRem: 6343 if (match(BO.getOperand(1), m_APInt(C))) { 6344 // 'srem x, C' produces (-|C|, |C|). 6345 Upper = C->abs(); 6346 Lower = (-Upper) + 1; 6347 } 6348 break; 6349 6350 case Instruction::URem: 6351 if (match(BO.getOperand(1), m_APInt(C))) 6352 // 'urem x, C' produces [0, C). 6353 Upper = *C; 6354 break; 6355 6356 default: 6357 break; 6358 } 6359 } 6360 6361 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6362 APInt &Upper) { 6363 unsigned Width = Lower.getBitWidth(); 6364 const APInt *C; 6365 switch (II.getIntrinsicID()) { 6366 case Intrinsic::uadd_sat: 6367 // uadd.sat(x, C) produces [C, UINT_MAX]. 6368 if (match(II.getOperand(0), m_APInt(C)) || 6369 match(II.getOperand(1), m_APInt(C))) 6370 Lower = *C; 6371 break; 6372 case Intrinsic::sadd_sat: 6373 if (match(II.getOperand(0), m_APInt(C)) || 6374 match(II.getOperand(1), m_APInt(C))) { 6375 if (C->isNegative()) { 6376 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6377 Lower = APInt::getSignedMinValue(Width); 6378 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6379 } else { 6380 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6381 Lower = APInt::getSignedMinValue(Width) + *C; 6382 Upper = APInt::getSignedMaxValue(Width) + 1; 6383 } 6384 } 6385 break; 6386 case Intrinsic::usub_sat: 6387 // usub.sat(C, x) produces [0, C]. 6388 if (match(II.getOperand(0), m_APInt(C))) 6389 Upper = *C + 1; 6390 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6391 else if (match(II.getOperand(1), m_APInt(C))) 6392 Upper = APInt::getMaxValue(Width) - *C + 1; 6393 break; 6394 case Intrinsic::ssub_sat: 6395 if (match(II.getOperand(0), m_APInt(C))) { 6396 if (C->isNegative()) { 6397 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6398 Lower = APInt::getSignedMinValue(Width); 6399 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6400 } else { 6401 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6402 Lower = *C - APInt::getSignedMaxValue(Width); 6403 Upper = APInt::getSignedMaxValue(Width) + 1; 6404 } 6405 } else if (match(II.getOperand(1), m_APInt(C))) { 6406 if (C->isNegative()) { 6407 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6408 Lower = APInt::getSignedMinValue(Width) - *C; 6409 Upper = APInt::getSignedMaxValue(Width) + 1; 6410 } else { 6411 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6412 Lower = APInt::getSignedMinValue(Width); 6413 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6414 } 6415 } 6416 break; 6417 case Intrinsic::umin: 6418 case Intrinsic::umax: 6419 case Intrinsic::smin: 6420 case Intrinsic::smax: 6421 if (!match(II.getOperand(0), m_APInt(C)) && 6422 !match(II.getOperand(1), m_APInt(C))) 6423 break; 6424 6425 switch (II.getIntrinsicID()) { 6426 case Intrinsic::umin: 6427 Upper = *C + 1; 6428 break; 6429 case Intrinsic::umax: 6430 Lower = *C; 6431 break; 6432 case Intrinsic::smin: 6433 Lower = APInt::getSignedMinValue(Width); 6434 Upper = *C + 1; 6435 break; 6436 case Intrinsic::smax: 6437 Lower = *C; 6438 Upper = APInt::getSignedMaxValue(Width) + 1; 6439 break; 6440 default: 6441 llvm_unreachable("Must be min/max intrinsic"); 6442 } 6443 break; 6444 case Intrinsic::abs: 6445 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6446 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6447 if (match(II.getOperand(1), m_One())) 6448 Upper = APInt::getSignedMaxValue(Width) + 1; 6449 else 6450 Upper = APInt::getSignedMinValue(Width) + 1; 6451 break; 6452 default: 6453 break; 6454 } 6455 } 6456 6457 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6458 APInt &Upper, const InstrInfoQuery &IIQ) { 6459 const Value *LHS = nullptr, *RHS = nullptr; 6460 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6461 if (R.Flavor == SPF_UNKNOWN) 6462 return; 6463 6464 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6465 6466 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6467 // If the negation part of the abs (in RHS) has the NSW flag, 6468 // then the result of abs(X) is [0..SIGNED_MAX], 6469 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6470 Lower = APInt::getNullValue(BitWidth); 6471 if (match(RHS, m_Neg(m_Specific(LHS))) && 6472 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6473 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6474 else 6475 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6476 return; 6477 } 6478 6479 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6480 // The result of -abs(X) is <= 0. 6481 Lower = APInt::getSignedMinValue(BitWidth); 6482 Upper = APInt(BitWidth, 1); 6483 return; 6484 } 6485 6486 const APInt *C; 6487 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6488 return; 6489 6490 switch (R.Flavor) { 6491 case SPF_UMIN: 6492 Upper = *C + 1; 6493 break; 6494 case SPF_UMAX: 6495 Lower = *C; 6496 break; 6497 case SPF_SMIN: 6498 Lower = APInt::getSignedMinValue(BitWidth); 6499 Upper = *C + 1; 6500 break; 6501 case SPF_SMAX: 6502 Lower = *C; 6503 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6504 break; 6505 default: 6506 break; 6507 } 6508 } 6509 6510 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6511 AssumptionCache *AC, 6512 const Instruction *CtxI, 6513 unsigned Depth) { 6514 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6515 6516 if (Depth == MaxDepth) 6517 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6518 6519 const APInt *C; 6520 if (match(V, m_APInt(C))) 6521 return ConstantRange(*C); 6522 6523 InstrInfoQuery IIQ(UseInstrInfo); 6524 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6525 APInt Lower = APInt(BitWidth, 0); 6526 APInt Upper = APInt(BitWidth, 0); 6527 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6528 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6529 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6530 setLimitsForIntrinsic(*II, Lower, Upper); 6531 else if (auto *SI = dyn_cast<SelectInst>(V)) 6532 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6533 6534 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6535 6536 if (auto *I = dyn_cast<Instruction>(V)) 6537 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6538 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6539 6540 if (CtxI && AC) { 6541 // Try to restrict the range based on information from assumptions. 6542 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6543 if (!AssumeVH) 6544 continue; 6545 CallInst *I = cast<CallInst>(AssumeVH); 6546 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6547 "Got assumption for the wrong function!"); 6548 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6549 "must be an assume intrinsic"); 6550 6551 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6552 continue; 6553 Value *Arg = I->getArgOperand(0); 6554 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6555 // Currently we just use information from comparisons. 6556 if (!Cmp || Cmp->getOperand(0) != V) 6557 continue; 6558 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6559 AC, I, Depth + 1); 6560 CR = CR.intersectWith( 6561 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6562 } 6563 } 6564 6565 return CR; 6566 } 6567 6568 static Optional<int64_t> 6569 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6570 // Skip over the first indices. 6571 gep_type_iterator GTI = gep_type_begin(GEP); 6572 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6573 /*skip along*/; 6574 6575 // Compute the offset implied by the rest of the indices. 6576 int64_t Offset = 0; 6577 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6578 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6579 if (!OpC) 6580 return None; 6581 if (OpC->isZero()) 6582 continue; // No offset. 6583 6584 // Handle struct indices, which add their field offset to the pointer. 6585 if (StructType *STy = GTI.getStructTypeOrNull()) { 6586 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6587 continue; 6588 } 6589 6590 // Otherwise, we have a sequential type like an array or fixed-length 6591 // vector. Multiply the index by the ElementSize. 6592 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6593 if (Size.isScalable()) 6594 return None; 6595 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6596 } 6597 6598 return Offset; 6599 } 6600 6601 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6602 const DataLayout &DL) { 6603 Ptr1 = Ptr1->stripPointerCasts(); 6604 Ptr2 = Ptr2->stripPointerCasts(); 6605 6606 // Handle the trivial case first. 6607 if (Ptr1 == Ptr2) { 6608 return 0; 6609 } 6610 6611 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6612 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6613 6614 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6615 // as in "P" and "gep P, 1". 6616 // Also do this iteratively to handle the the following case: 6617 // Ptr_t1 = GEP Ptr1, c1 6618 // Ptr_t2 = GEP Ptr_t1, c2 6619 // Ptr2 = GEP Ptr_t2, c3 6620 // where we will return c1+c2+c3. 6621 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6622 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6623 // are the same, and return the difference between offsets. 6624 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6625 const Value *Ptr) -> Optional<int64_t> { 6626 const GEPOperator *GEP_T = GEP; 6627 int64_t OffsetVal = 0; 6628 bool HasSameBase = false; 6629 while (GEP_T) { 6630 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6631 if (!Offset) 6632 return None; 6633 OffsetVal += *Offset; 6634 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6635 if (Op0 == Ptr) { 6636 HasSameBase = true; 6637 break; 6638 } 6639 GEP_T = dyn_cast<GEPOperator>(Op0); 6640 } 6641 if (!HasSameBase) 6642 return None; 6643 return OffsetVal; 6644 }; 6645 6646 if (GEP1) { 6647 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6648 if (Offset) 6649 return -*Offset; 6650 } 6651 if (GEP2) { 6652 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6653 if (Offset) 6654 return Offset; 6655 } 6656 6657 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6658 // base. After that base, they may have some number of common (and 6659 // potentially variable) indices. After that they handle some constant 6660 // offset, which determines their offset from each other. At this point, we 6661 // handle no other case. 6662 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6663 return None; 6664 6665 // Skip any common indices and track the GEP types. 6666 unsigned Idx = 1; 6667 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6668 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6669 break; 6670 6671 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6672 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6673 if (!Offset1 || !Offset2) 6674 return None; 6675 return *Offset2 - *Offset1; 6676 } 6677