1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <array> 74 #include <cassert> 75 #include <cstdint> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace llvm::PatternMatch; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 // According to the LangRef, branching on a poison condition is absolutely 88 // immediate full UB. However, historically we haven't implemented that 89 // consistently as we have an important transformation (non-trivial unswitch) 90 // which introduces instances of branch on poison/undef to otherwise well 91 // defined programs. This flag exists to let us test optimization benefit 92 // of exploiting the specified behavior (in combination with enabling the 93 // unswitch fix.) 94 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 95 cl::Hidden, cl::init(false)); 96 97 98 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 99 /// returns the element type's bitwidth. 100 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 101 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 102 return BitWidth; 103 104 return DL.getPointerTypeSizeInBits(Ty); 105 } 106 107 namespace { 108 109 // Simplifying using an assume can only be done in a particular control-flow 110 // context (the context instruction provides that context). If an assume and 111 // the context instruction are not in the same block then the DT helps in 112 // figuring out if we can use it. 113 struct Query { 114 const DataLayout &DL; 115 AssumptionCache *AC; 116 const Instruction *CxtI; 117 const DominatorTree *DT; 118 119 // Unlike the other analyses, this may be a nullptr because not all clients 120 // provide it currently. 121 OptimizationRemarkEmitter *ORE; 122 123 /// If true, it is safe to use metadata during simplification. 124 InstrInfoQuery IIQ; 125 126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT, bool UseInstrInfo, 128 OptimizationRemarkEmitter *ORE = nullptr) 129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 130 }; 131 132 } // end anonymous namespace 133 134 // Given the provided Value and, potentially, a context instruction, return 135 // the preferred context instruction (if any). 136 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 137 // If we've been provided with a context instruction, then use that (provided 138 // it has been inserted). 139 if (CxtI && CxtI->getParent()) 140 return CxtI; 141 142 // If the value is really an already-inserted instruction, then use that. 143 CxtI = dyn_cast<Instruction>(V); 144 if (CxtI && CxtI->getParent()) 145 return CxtI; 146 147 return nullptr; 148 } 149 150 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V1); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 CxtI = dyn_cast<Instruction>(V2); 162 if (CxtI && CxtI->getParent()) 163 return CxtI; 164 165 return nullptr; 166 } 167 168 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 169 const APInt &DemandedElts, 170 APInt &DemandedLHS, APInt &DemandedRHS) { 171 // The length of scalable vectors is unknown at compile time, thus we 172 // cannot check their values 173 if (isa<ScalableVectorType>(Shuf->getType())) 174 return false; 175 176 int NumElts = 177 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 178 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 179 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 180 if (DemandedElts.isZero()) 181 return true; 182 // Simple case of a shuffle with zeroinitializer. 183 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 184 DemandedLHS.setBit(0); 185 return true; 186 } 187 for (int i = 0; i != NumMaskElts; ++i) { 188 if (!DemandedElts[i]) 189 continue; 190 int M = Shuf->getMaskValue(i); 191 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 192 193 // For undef elements, we don't know anything about the common state of 194 // the shuffle result. 195 if (M == -1) 196 return false; 197 if (M < NumElts) 198 DemandedLHS.setBit(M % NumElts); 199 else 200 DemandedRHS.setBit(M % NumElts); 201 } 202 203 return true; 204 } 205 206 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 207 KnownBits &Known, unsigned Depth, const Query &Q); 208 209 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 210 const Query &Q) { 211 // FIXME: We currently have no way to represent the DemandedElts of a scalable 212 // vector 213 if (isa<ScalableVectorType>(V->getType())) { 214 Known.resetAll(); 215 return; 216 } 217 218 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 219 APInt DemandedElts = 220 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 221 computeKnownBits(V, DemandedElts, Known, Depth, Q); 222 } 223 224 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 225 const DataLayout &DL, unsigned Depth, 226 AssumptionCache *AC, const Instruction *CxtI, 227 const DominatorTree *DT, 228 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 229 ::computeKnownBits(V, Known, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 231 } 232 233 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 234 KnownBits &Known, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, const DominatorTree *DT, 237 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 238 ::computeKnownBits(V, DemandedElts, Known, Depth, 239 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 240 } 241 242 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 243 unsigned Depth, const Query &Q); 244 245 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 246 const Query &Q); 247 248 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, 251 const DominatorTree *DT, 252 OptimizationRemarkEmitter *ORE, 253 bool UseInstrInfo) { 254 return ::computeKnownBits( 255 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 256 } 257 258 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 259 const DataLayout &DL, unsigned Depth, 260 AssumptionCache *AC, const Instruction *CxtI, 261 const DominatorTree *DT, 262 OptimizationRemarkEmitter *ORE, 263 bool UseInstrInfo) { 264 return ::computeKnownBits( 265 V, DemandedElts, Depth, 266 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 267 } 268 269 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 270 const DataLayout &DL, AssumptionCache *AC, 271 const Instruction *CxtI, const DominatorTree *DT, 272 bool UseInstrInfo) { 273 assert(LHS->getType() == RHS->getType() && 274 "LHS and RHS should have the same type"); 275 assert(LHS->getType()->isIntOrIntVectorTy() && 276 "LHS and RHS should be integers"); 277 // Look for an inverted mask: (X & ~M) op (Y & M). 278 { 279 Value *M; 280 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(RHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 284 match(LHS, m_c_And(m_Specific(M), m_Value()))) 285 return true; 286 } 287 // Look for: (A & B) op ~(A | B) 288 { 289 Value *A, *B; 290 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 291 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 292 return true; 293 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 294 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 295 return true; 296 } 297 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 298 KnownBits LHSKnown(IT->getBitWidth()); 299 KnownBits RHSKnown(IT->getBitWidth()); 300 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 301 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 302 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 303 } 304 305 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 306 return !I->user_empty() && all_of(I->users(), [](const User *U) { 307 ICmpInst::Predicate P; 308 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 309 }); 310 } 311 312 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 313 const Query &Q); 314 315 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 316 bool OrZero, unsigned Depth, 317 AssumptionCache *AC, const Instruction *CxtI, 318 const DominatorTree *DT, bool UseInstrInfo) { 319 return ::isKnownToBeAPowerOfTwo( 320 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 321 } 322 323 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 324 unsigned Depth, const Query &Q); 325 326 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 327 328 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 329 AssumptionCache *AC, const Instruction *CxtI, 330 const DominatorTree *DT, bool UseInstrInfo) { 331 return ::isKnownNonZero(V, Depth, 332 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 333 } 334 335 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 336 unsigned Depth, AssumptionCache *AC, 337 const Instruction *CxtI, const DominatorTree *DT, 338 bool UseInstrInfo) { 339 KnownBits Known = 340 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 341 return Known.isNonNegative(); 342 } 343 344 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 345 AssumptionCache *AC, const Instruction *CxtI, 346 const DominatorTree *DT, bool UseInstrInfo) { 347 if (auto *CI = dyn_cast<ConstantInt>(V)) 348 return CI->getValue().isStrictlyPositive(); 349 350 // TODO: We'd doing two recursive queries here. We should factor this such 351 // that only a single query is needed. 352 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 353 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 354 } 355 356 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 357 AssumptionCache *AC, const Instruction *CxtI, 358 const DominatorTree *DT, bool UseInstrInfo) { 359 KnownBits Known = 360 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 361 return Known.isNegative(); 362 } 363 364 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 368 const DataLayout &DL, AssumptionCache *AC, 369 const Instruction *CxtI, const DominatorTree *DT, 370 bool UseInstrInfo) { 371 return ::isKnownNonEqual(V1, V2, 0, 372 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 373 UseInstrInfo, /*ORE=*/nullptr)); 374 } 375 376 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 377 const Query &Q); 378 379 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 380 const DataLayout &DL, unsigned Depth, 381 AssumptionCache *AC, const Instruction *CxtI, 382 const DominatorTree *DT, bool UseInstrInfo) { 383 return ::MaskedValueIsZero( 384 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 385 } 386 387 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 388 unsigned Depth, const Query &Q); 389 390 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 391 const Query &Q) { 392 // FIXME: We currently have no way to represent the DemandedElts of a scalable 393 // vector 394 if (isa<ScalableVectorType>(V->getType())) 395 return 1; 396 397 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 398 APInt DemandedElts = 399 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 400 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 401 } 402 403 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 404 unsigned Depth, AssumptionCache *AC, 405 const Instruction *CxtI, 406 const DominatorTree *DT, bool UseInstrInfo) { 407 return ::ComputeNumSignBits( 408 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 409 } 410 411 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 412 unsigned Depth, AssumptionCache *AC, 413 const Instruction *CxtI, 414 const DominatorTree *DT) { 415 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 416 return V->getType()->getScalarSizeInBits() - SignBits + 1; 417 } 418 419 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 420 bool NSW, const APInt &DemandedElts, 421 KnownBits &KnownOut, KnownBits &Known2, 422 unsigned Depth, const Query &Q) { 423 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 424 425 // If one operand is unknown and we have no nowrap information, 426 // the result will be unknown independently of the second operand. 427 if (KnownOut.isUnknown() && !NSW) 428 return; 429 430 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 431 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 432 } 433 434 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 435 const APInt &DemandedElts, KnownBits &Known, 436 KnownBits &Known2, unsigned Depth, 437 const Query &Q) { 438 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 439 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 440 441 bool isKnownNegative = false; 442 bool isKnownNonNegative = false; 443 // If the multiplication is known not to overflow, compute the sign bit. 444 if (NSW) { 445 if (Op0 == Op1) { 446 // The product of a number with itself is non-negative. 447 isKnownNonNegative = true; 448 } else { 449 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 450 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 451 bool isKnownNegativeOp1 = Known.isNegative(); 452 bool isKnownNegativeOp0 = Known2.isNegative(); 453 // The product of two numbers with the same sign is non-negative. 454 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 455 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 456 // The product of a negative number and a non-negative number is either 457 // negative or zero. 458 if (!isKnownNonNegative) 459 isKnownNegative = 460 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 461 Known2.isNonZero()) || 462 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 463 } 464 } 465 466 bool SelfMultiply = Op0 == Op1; 467 // TODO: SelfMultiply can be poison, but not undef. 468 if (SelfMultiply) 469 SelfMultiply &= 470 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 471 Known = KnownBits::mul(Known, Known2, SelfMultiply); 472 473 // Only make use of no-wrap flags if we failed to compute the sign bit 474 // directly. This matters if the multiplication always overflows, in 475 // which case we prefer to follow the result of the direct computation, 476 // though as the program is invoking undefined behaviour we can choose 477 // whatever we like here. 478 if (isKnownNonNegative && !Known.isNegative()) 479 Known.makeNonNegative(); 480 else if (isKnownNegative && !Known.isNonNegative()) 481 Known.makeNegative(); 482 } 483 484 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 485 KnownBits &Known) { 486 unsigned BitWidth = Known.getBitWidth(); 487 unsigned NumRanges = Ranges.getNumOperands() / 2; 488 assert(NumRanges >= 1); 489 490 Known.Zero.setAllBits(); 491 Known.One.setAllBits(); 492 493 for (unsigned i = 0; i < NumRanges; ++i) { 494 ConstantInt *Lower = 495 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 496 ConstantInt *Upper = 497 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 498 ConstantRange Range(Lower->getValue(), Upper->getValue()); 499 500 // The first CommonPrefixBits of all values in Range are equal. 501 unsigned CommonPrefixBits = 502 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 503 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 504 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 505 Known.One &= UnsignedMax & Mask; 506 Known.Zero &= ~UnsignedMax & Mask; 507 } 508 } 509 510 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 511 SmallVector<const Value *, 16> WorkSet(1, I); 512 SmallPtrSet<const Value *, 32> Visited; 513 SmallPtrSet<const Value *, 16> EphValues; 514 515 // The instruction defining an assumption's condition itself is always 516 // considered ephemeral to that assumption (even if it has other 517 // non-ephemeral users). See r246696's test case for an example. 518 if (is_contained(I->operands(), E)) 519 return true; 520 521 while (!WorkSet.empty()) { 522 const Value *V = WorkSet.pop_back_val(); 523 if (!Visited.insert(V).second) 524 continue; 525 526 // If all uses of this value are ephemeral, then so is this value. 527 if (llvm::all_of(V->users(), [&](const User *U) { 528 return EphValues.count(U); 529 })) { 530 if (V == E) 531 return true; 532 533 if (V == I || (isa<Instruction>(V) && 534 !cast<Instruction>(V)->mayHaveSideEffects() && 535 !cast<Instruction>(V)->isTerminator())) { 536 EphValues.insert(V); 537 if (const User *U = dyn_cast<User>(V)) 538 append_range(WorkSet, U->operands()); 539 } 540 } 541 } 542 543 return false; 544 } 545 546 // Is this an intrinsic that cannot be speculated but also cannot trap? 547 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 548 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 549 return CI->isAssumeLikeIntrinsic(); 550 551 return false; 552 } 553 554 bool llvm::isValidAssumeForContext(const Instruction *Inv, 555 const Instruction *CxtI, 556 const DominatorTree *DT) { 557 // There are two restrictions on the use of an assume: 558 // 1. The assume must dominate the context (or the control flow must 559 // reach the assume whenever it reaches the context). 560 // 2. The context must not be in the assume's set of ephemeral values 561 // (otherwise we will use the assume to prove that the condition 562 // feeding the assume is trivially true, thus causing the removal of 563 // the assume). 564 565 if (Inv->getParent() == CxtI->getParent()) { 566 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 567 // in the BB. 568 if (Inv->comesBefore(CxtI)) 569 return true; 570 571 // Don't let an assume affect itself - this would cause the problems 572 // `isEphemeralValueOf` is trying to prevent, and it would also make 573 // the loop below go out of bounds. 574 if (Inv == CxtI) 575 return false; 576 577 // The context comes first, but they're both in the same block. 578 // Make sure there is nothing in between that might interrupt 579 // the control flow, not even CxtI itself. 580 // We limit the scan distance between the assume and its context instruction 581 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 582 // it can be adjusted if needed (could be turned into a cl::opt). 583 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 584 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 585 return false; 586 587 return !isEphemeralValueOf(Inv, CxtI); 588 } 589 590 // Inv and CxtI are in different blocks. 591 if (DT) { 592 if (DT->dominates(Inv, CxtI)) 593 return true; 594 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 595 // We don't have a DT, but this trivially dominates. 596 return true; 597 } 598 599 return false; 600 } 601 602 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 603 // v u> y implies v != 0. 604 if (Pred == ICmpInst::ICMP_UGT) 605 return true; 606 607 // Special-case v != 0 to also handle v != null. 608 if (Pred == ICmpInst::ICMP_NE) 609 return match(RHS, m_Zero()); 610 611 // All other predicates - rely on generic ConstantRange handling. 612 const APInt *C; 613 if (!match(RHS, m_APInt(C))) 614 return false; 615 616 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 617 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 618 } 619 620 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 621 // Use of assumptions is context-sensitive. If we don't have a context, we 622 // cannot use them! 623 if (!Q.AC || !Q.CxtI) 624 return false; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 643 // Warning: This loop can end up being somewhat performance sensitive. 644 // We're running this loop for once for each value queried resulting in a 645 // runtime of ~O(#assumes * #values). 646 647 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 648 "must be an assume intrinsic"); 649 650 Value *RHS; 651 CmpInst::Predicate Pred; 652 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 653 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 654 return false; 655 656 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 657 return true; 658 } 659 660 return false; 661 } 662 663 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 664 unsigned Depth, const Query &Q) { 665 // Use of assumptions is context-sensitive. If we don't have a context, we 666 // cannot use them! 667 if (!Q.AC || !Q.CxtI) 668 return; 669 670 unsigned BitWidth = Known.getBitWidth(); 671 672 // Refine Known set if the pointer alignment is set by assume bundles. 673 if (V->getType()->isPointerTy()) { 674 if (RetainedKnowledge RK = getKnowledgeValidInContext( 675 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 676 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 677 } 678 } 679 680 // Note that the patterns below need to be kept in sync with the code 681 // in AssumptionCache::updateAffectedValues. 682 683 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 684 if (!AssumeVH) 685 continue; 686 CallInst *I = cast<CallInst>(AssumeVH); 687 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 688 "Got assumption for the wrong function!"); 689 690 // Warning: This loop can end up being somewhat performance sensitive. 691 // We're running this loop for once for each value queried resulting in a 692 // runtime of ~O(#assumes * #values). 693 694 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 695 "must be an assume intrinsic"); 696 697 Value *Arg = I->getArgOperand(0); 698 699 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 700 assert(BitWidth == 1 && "assume operand is not i1?"); 701 Known.setAllOnes(); 702 return; 703 } 704 if (match(Arg, m_Not(m_Specific(V))) && 705 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 706 assert(BitWidth == 1 && "assume operand is not i1?"); 707 Known.setAllZero(); 708 return; 709 } 710 711 // The remaining tests are all recursive, so bail out if we hit the limit. 712 if (Depth == MaxAnalysisRecursionDepth) 713 continue; 714 715 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 716 if (!Cmp) 717 continue; 718 719 // We are attempting to compute known bits for the operands of an assume. 720 // Do not try to use other assumptions for those recursive calls because 721 // that can lead to mutual recursion and a compile-time explosion. 722 // An example of the mutual recursion: computeKnownBits can call 723 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 724 // and so on. 725 Query QueryNoAC = Q; 726 QueryNoAC.AC = nullptr; 727 728 // Note that ptrtoint may change the bitwidth. 729 Value *A, *B; 730 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 731 732 CmpInst::Predicate Pred; 733 uint64_t C; 734 switch (Cmp->getPredicate()) { 735 default: 736 break; 737 case ICmpInst::ICMP_EQ: 738 // assume(v = a) 739 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 KnownBits RHSKnown = 742 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 743 Known.Zero |= RHSKnown.Zero; 744 Known.One |= RHSKnown.One; 745 // assume(v & b = a) 746 } else if (match(Cmp, 747 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 748 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 749 KnownBits RHSKnown = 750 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 751 KnownBits MaskKnown = 752 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 753 754 // For those bits in the mask that are known to be one, we can propagate 755 // known bits from the RHS to V. 756 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 757 Known.One |= RHSKnown.One & MaskKnown.One; 758 // assume(~(v & b) = a) 759 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 760 m_Value(A))) && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 KnownBits RHSKnown = 763 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 764 KnownBits MaskKnown = 765 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 766 767 // For those bits in the mask that are known to be one, we can propagate 768 // inverted known bits from the RHS to V. 769 Known.Zero |= RHSKnown.One & MaskKnown.One; 770 Known.One |= RHSKnown.Zero & MaskKnown.One; 771 // assume(v | b = a) 772 } else if (match(Cmp, 773 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 KnownBits RHSKnown = 776 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 777 KnownBits BKnown = 778 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 779 780 // For those bits in B that are known to be zero, we can propagate known 781 // bits from the RHS to V. 782 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 783 Known.One |= RHSKnown.One & BKnown.Zero; 784 // assume(~(v | b) = a) 785 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 786 m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown = 789 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 790 KnownBits BKnown = 791 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 792 793 // For those bits in B that are known to be zero, we can propagate 794 // inverted known bits from the RHS to V. 795 Known.Zero |= RHSKnown.One & BKnown.Zero; 796 Known.One |= RHSKnown.Zero & BKnown.Zero; 797 // assume(v ^ b = a) 798 } else if (match(Cmp, 799 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown = 802 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 803 KnownBits BKnown = 804 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 805 806 // For those bits in B that are known to be zero, we can propagate known 807 // bits from the RHS to V. For those bits in B that are known to be one, 808 // we can propagate inverted known bits from the RHS to V. 809 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 810 Known.One |= RHSKnown.One & BKnown.Zero; 811 Known.Zero |= RHSKnown.One & BKnown.One; 812 Known.One |= RHSKnown.Zero & BKnown.One; 813 // assume(~(v ^ b) = a) 814 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 815 m_Value(A))) && 816 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 817 KnownBits RHSKnown = 818 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 819 KnownBits BKnown = 820 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 821 822 // For those bits in B that are known to be zero, we can propagate 823 // inverted known bits from the RHS to V. For those bits in B that are 824 // known to be one, we can propagate known bits from the RHS to V. 825 Known.Zero |= RHSKnown.One & BKnown.Zero; 826 Known.One |= RHSKnown.Zero & BKnown.Zero; 827 Known.Zero |= RHSKnown.Zero & BKnown.One; 828 Known.One |= RHSKnown.One & BKnown.One; 829 // assume(v << c = a) 830 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 831 m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 835 836 // For those bits in RHS that are known, we can propagate them to known 837 // bits in V shifted to the right by C. 838 RHSKnown.Zero.lshrInPlace(C); 839 Known.Zero |= RHSKnown.Zero; 840 RHSKnown.One.lshrInPlace(C); 841 Known.One |= RHSKnown.One; 842 // assume(~(v << c) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them inverted 849 // to known bits in V shifted to the right by C. 850 RHSKnown.One.lshrInPlace(C); 851 Known.Zero |= RHSKnown.One; 852 RHSKnown.Zero.lshrInPlace(C); 853 Known.One |= RHSKnown.Zero; 854 // assume(v >> c = a) 855 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 856 m_Value(A))) && 857 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 858 KnownBits RHSKnown = 859 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 860 // For those bits in RHS that are known, we can propagate them to known 861 // bits in V shifted to the right by C. 862 Known.Zero |= RHSKnown.Zero << C; 863 Known.One |= RHSKnown.One << C; 864 // assume(~(v >> c) = a) 865 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 866 m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 870 // For those bits in RHS that are known, we can propagate them inverted 871 // to known bits in V shifted to the right by C. 872 Known.Zero |= RHSKnown.One << C; 873 Known.One |= RHSKnown.Zero << C; 874 } 875 break; 876 case ICmpInst::ICMP_SGE: 877 // assume(v >=_s c) where c is non-negative 878 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 879 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 880 KnownBits RHSKnown = 881 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 882 883 if (RHSKnown.isNonNegative()) { 884 // We know that the sign bit is zero. 885 Known.makeNonNegative(); 886 } 887 } 888 break; 889 case ICmpInst::ICMP_SGT: 890 // assume(v >_s c) where c is at least -1. 891 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 895 896 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 897 // We know that the sign bit is zero. 898 Known.makeNonNegative(); 899 } 900 } 901 break; 902 case ICmpInst::ICMP_SLE: 903 // assume(v <=_s c) where c is negative 904 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 908 909 if (RHSKnown.isNegative()) { 910 // We know that the sign bit is one. 911 Known.makeNegative(); 912 } 913 } 914 break; 915 case ICmpInst::ICMP_SLT: 916 // assume(v <_s c) where c is non-positive 917 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 918 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 919 KnownBits RHSKnown = 920 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 921 922 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 923 // We know that the sign bit is one. 924 Known.makeNegative(); 925 } 926 } 927 break; 928 case ICmpInst::ICMP_ULE: 929 // assume(v <=_u c) 930 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 931 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 932 KnownBits RHSKnown = 933 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 934 935 // Whatever high bits in c are zero are known to be zero. 936 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 937 } 938 break; 939 case ICmpInst::ICMP_ULT: 940 // assume(v <_u c) 941 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 942 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 943 KnownBits RHSKnown = 944 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 945 946 // If the RHS is known zero, then this assumption must be wrong (nothing 947 // is unsigned less than zero). Signal a conflict and get out of here. 948 if (RHSKnown.isZero()) { 949 Known.Zero.setAllBits(); 950 Known.One.setAllBits(); 951 break; 952 } 953 954 // Whatever high bits in c are zero are known to be zero (if c is a power 955 // of 2, then one more). 956 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 957 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 958 else 959 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 960 } 961 break; 962 } 963 } 964 965 // If assumptions conflict with each other or previous known bits, then we 966 // have a logical fallacy. It's possible that the assumption is not reachable, 967 // so this isn't a real bug. On the other hand, the program may have undefined 968 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 969 // clear out the known bits, try to warn the user, and hope for the best. 970 if (Known.Zero.intersects(Known.One)) { 971 Known.resetAll(); 972 973 if (Q.ORE) 974 Q.ORE->emit([&]() { 975 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 976 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 977 CxtI) 978 << "Detected conflicting code assumptions. Program may " 979 "have undefined behavior, or compiler may have " 980 "internal error."; 981 }); 982 } 983 } 984 985 /// Compute known bits from a shift operator, including those with a 986 /// non-constant shift amount. Known is the output of this function. Known2 is a 987 /// pre-allocated temporary with the same bit width as Known and on return 988 /// contains the known bit of the shift value source. KF is an 989 /// operator-specific function that, given the known-bits and a shift amount, 990 /// compute the implied known-bits of the shift operator's result respectively 991 /// for that shift amount. The results from calling KF are conservatively 992 /// combined for all permitted shift amounts. 993 static void computeKnownBitsFromShiftOperator( 994 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 995 KnownBits &Known2, unsigned Depth, const Query &Q, 996 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 997 unsigned BitWidth = Known.getBitWidth(); 998 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 999 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1000 1001 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1002 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1003 // limit value (which implies all bits are known). 1004 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1005 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1006 bool ShiftAmtIsConstant = Known.isConstant(); 1007 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1008 1009 if (ShiftAmtIsConstant) { 1010 Known = KF(Known2, Known); 1011 1012 // If the known bits conflict, this must be an overflowing left shift, so 1013 // the shift result is poison. We can return anything we want. Choose 0 for 1014 // the best folding opportunity. 1015 if (Known.hasConflict()) 1016 Known.setAllZero(); 1017 1018 return; 1019 } 1020 1021 // If the shift amount could be greater than or equal to the bit-width of the 1022 // LHS, the value could be poison, but bail out because the check below is 1023 // expensive. 1024 // TODO: Should we just carry on? 1025 if (MaxShiftAmtIsOutOfRange) { 1026 Known.resetAll(); 1027 return; 1028 } 1029 1030 // It would be more-clearly correct to use the two temporaries for this 1031 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1032 Known.resetAll(); 1033 1034 // If we know the shifter operand is nonzero, we can sometimes infer more 1035 // known bits. However this is expensive to compute, so be lazy about it and 1036 // only compute it when absolutely necessary. 1037 Optional<bool> ShifterOperandIsNonZero; 1038 1039 // Early exit if we can't constrain any well-defined shift amount. 1040 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1041 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1042 ShifterOperandIsNonZero = 1043 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1044 if (!*ShifterOperandIsNonZero) 1045 return; 1046 } 1047 1048 Known.Zero.setAllBits(); 1049 Known.One.setAllBits(); 1050 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1051 // Combine the shifted known input bits only for those shift amounts 1052 // compatible with its known constraints. 1053 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1054 continue; 1055 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1056 continue; 1057 // If we know the shifter is nonzero, we may be able to infer more known 1058 // bits. This check is sunk down as far as possible to avoid the expensive 1059 // call to isKnownNonZero if the cheaper checks above fail. 1060 if (ShiftAmt == 0) { 1061 if (!ShifterOperandIsNonZero.hasValue()) 1062 ShifterOperandIsNonZero = 1063 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1064 if (*ShifterOperandIsNonZero) 1065 continue; 1066 } 1067 1068 Known = KnownBits::commonBits( 1069 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1070 } 1071 1072 // If the known bits conflict, the result is poison. Return a 0 and hope the 1073 // caller can further optimize that. 1074 if (Known.hasConflict()) 1075 Known.setAllZero(); 1076 } 1077 1078 static void computeKnownBitsFromOperator(const Operator *I, 1079 const APInt &DemandedElts, 1080 KnownBits &Known, unsigned Depth, 1081 const Query &Q) { 1082 unsigned BitWidth = Known.getBitWidth(); 1083 1084 KnownBits Known2(BitWidth); 1085 switch (I->getOpcode()) { 1086 default: break; 1087 case Instruction::Load: 1088 if (MDNode *MD = 1089 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1090 computeKnownBitsFromRangeMetadata(*MD, Known); 1091 break; 1092 case Instruction::And: { 1093 // If either the LHS or the RHS are Zero, the result is zero. 1094 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1095 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1096 1097 Known &= Known2; 1098 1099 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1100 // here we handle the more general case of adding any odd number by 1101 // matching the form add(x, add(x, y)) where y is odd. 1102 // TODO: This could be generalized to clearing any bit set in y where the 1103 // following bit is known to be unset in y. 1104 Value *X = nullptr, *Y = nullptr; 1105 if (!Known.Zero[0] && !Known.One[0] && 1106 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1107 Known2.resetAll(); 1108 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1109 if (Known2.countMinTrailingOnes() > 0) 1110 Known.Zero.setBit(0); 1111 } 1112 break; 1113 } 1114 case Instruction::Or: 1115 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1116 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1117 1118 Known |= Known2; 1119 break; 1120 case Instruction::Xor: 1121 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1123 1124 Known ^= Known2; 1125 break; 1126 case Instruction::Mul: { 1127 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1128 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1129 Known, Known2, Depth, Q); 1130 break; 1131 } 1132 case Instruction::UDiv: { 1133 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1134 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1135 Known = KnownBits::udiv(Known, Known2); 1136 break; 1137 } 1138 case Instruction::Select: { 1139 const Value *LHS = nullptr, *RHS = nullptr; 1140 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1141 if (SelectPatternResult::isMinOrMax(SPF)) { 1142 computeKnownBits(RHS, Known, Depth + 1, Q); 1143 computeKnownBits(LHS, Known2, Depth + 1, Q); 1144 switch (SPF) { 1145 default: 1146 llvm_unreachable("Unhandled select pattern flavor!"); 1147 case SPF_SMAX: 1148 Known = KnownBits::smax(Known, Known2); 1149 break; 1150 case SPF_SMIN: 1151 Known = KnownBits::smin(Known, Known2); 1152 break; 1153 case SPF_UMAX: 1154 Known = KnownBits::umax(Known, Known2); 1155 break; 1156 case SPF_UMIN: 1157 Known = KnownBits::umin(Known, Known2); 1158 break; 1159 } 1160 break; 1161 } 1162 1163 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1164 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1165 1166 // Only known if known in both the LHS and RHS. 1167 Known = KnownBits::commonBits(Known, Known2); 1168 1169 if (SPF == SPF_ABS) { 1170 // RHS from matchSelectPattern returns the negation part of abs pattern. 1171 // If the negate has an NSW flag we can assume the sign bit of the result 1172 // will be 0 because that makes abs(INT_MIN) undefined. 1173 if (match(RHS, m_Neg(m_Specific(LHS))) && 1174 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1175 Known.Zero.setSignBit(); 1176 } 1177 1178 break; 1179 } 1180 case Instruction::FPTrunc: 1181 case Instruction::FPExt: 1182 case Instruction::FPToUI: 1183 case Instruction::FPToSI: 1184 case Instruction::SIToFP: 1185 case Instruction::UIToFP: 1186 break; // Can't work with floating point. 1187 case Instruction::PtrToInt: 1188 case Instruction::IntToPtr: 1189 // Fall through and handle them the same as zext/trunc. 1190 LLVM_FALLTHROUGH; 1191 case Instruction::ZExt: 1192 case Instruction::Trunc: { 1193 Type *SrcTy = I->getOperand(0)->getType(); 1194 1195 unsigned SrcBitWidth; 1196 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1197 // which fall through here. 1198 Type *ScalarTy = SrcTy->getScalarType(); 1199 SrcBitWidth = ScalarTy->isPointerTy() ? 1200 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1201 Q.DL.getTypeSizeInBits(ScalarTy); 1202 1203 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1204 Known = Known.anyextOrTrunc(SrcBitWidth); 1205 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1206 Known = Known.zextOrTrunc(BitWidth); 1207 break; 1208 } 1209 case Instruction::BitCast: { 1210 Type *SrcTy = I->getOperand(0)->getType(); 1211 if (SrcTy->isIntOrPtrTy() && 1212 // TODO: For now, not handling conversions like: 1213 // (bitcast i64 %x to <2 x i32>) 1214 !I->getType()->isVectorTy()) { 1215 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1216 break; 1217 } 1218 1219 // Handle cast from vector integer type to scalar or vector integer. 1220 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1221 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1222 !I->getType()->isIntOrIntVectorTy()) 1223 break; 1224 1225 // Look through a cast from narrow vector elements to wider type. 1226 // Examples: v4i32 -> v2i64, v3i8 -> v24 1227 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1228 if (BitWidth % SubBitWidth == 0) { 1229 // Known bits are automatically intersected across demanded elements of a 1230 // vector. So for example, if a bit is computed as known zero, it must be 1231 // zero across all demanded elements of the vector. 1232 // 1233 // For this bitcast, each demanded element of the output is sub-divided 1234 // across a set of smaller vector elements in the source vector. To get 1235 // the known bits for an entire element of the output, compute the known 1236 // bits for each sub-element sequentially. This is done by shifting the 1237 // one-set-bit demanded elements parameter across the sub-elements for 1238 // consecutive calls to computeKnownBits. We are using the demanded 1239 // elements parameter as a mask operator. 1240 // 1241 // The known bits of each sub-element are then inserted into place 1242 // (dependent on endian) to form the full result of known bits. 1243 unsigned NumElts = DemandedElts.getBitWidth(); 1244 unsigned SubScale = BitWidth / SubBitWidth; 1245 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1246 for (unsigned i = 0; i != NumElts; ++i) { 1247 if (DemandedElts[i]) 1248 SubDemandedElts.setBit(i * SubScale); 1249 } 1250 1251 KnownBits KnownSrc(SubBitWidth); 1252 for (unsigned i = 0; i != SubScale; ++i) { 1253 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1254 Depth + 1, Q); 1255 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1256 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1257 } 1258 } 1259 break; 1260 } 1261 case Instruction::SExt: { 1262 // Compute the bits in the result that are not present in the input. 1263 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1264 1265 Known = Known.trunc(SrcBitWidth); 1266 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1267 // If the sign bit of the input is known set or clear, then we know the 1268 // top bits of the result. 1269 Known = Known.sext(BitWidth); 1270 break; 1271 } 1272 case Instruction::Shl: { 1273 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1274 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1275 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1276 // If this shift has "nsw" keyword, then the result is either a poison 1277 // value or has the same sign bit as the first operand. 1278 if (NSW) { 1279 if (KnownVal.Zero.isSignBitSet()) 1280 Result.Zero.setSignBit(); 1281 if (KnownVal.One.isSignBitSet()) 1282 Result.One.setSignBit(); 1283 } 1284 return Result; 1285 }; 1286 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1287 KF); 1288 // Trailing zeros of a right-shifted constant never decrease. 1289 const APInt *C; 1290 if (match(I->getOperand(0), m_APInt(C))) 1291 Known.Zero.setLowBits(C->countTrailingZeros()); 1292 break; 1293 } 1294 case Instruction::LShr: { 1295 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1296 return KnownBits::lshr(KnownVal, KnownAmt); 1297 }; 1298 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1299 KF); 1300 // Leading zeros of a left-shifted constant never decrease. 1301 const APInt *C; 1302 if (match(I->getOperand(0), m_APInt(C))) 1303 Known.Zero.setHighBits(C->countLeadingZeros()); 1304 break; 1305 } 1306 case Instruction::AShr: { 1307 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1308 return KnownBits::ashr(KnownVal, KnownAmt); 1309 }; 1310 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1311 KF); 1312 break; 1313 } 1314 case Instruction::Sub: { 1315 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1316 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1317 DemandedElts, Known, Known2, Depth, Q); 1318 break; 1319 } 1320 case Instruction::Add: { 1321 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1322 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1323 DemandedElts, Known, Known2, Depth, Q); 1324 break; 1325 } 1326 case Instruction::SRem: 1327 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1328 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1329 Known = KnownBits::srem(Known, Known2); 1330 break; 1331 1332 case Instruction::URem: 1333 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1334 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1335 Known = KnownBits::urem(Known, Known2); 1336 break; 1337 case Instruction::Alloca: 1338 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1339 break; 1340 case Instruction::GetElementPtr: { 1341 // Analyze all of the subscripts of this getelementptr instruction 1342 // to determine if we can prove known low zero bits. 1343 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1344 // Accumulate the constant indices in a separate variable 1345 // to minimize the number of calls to computeForAddSub. 1346 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1347 1348 gep_type_iterator GTI = gep_type_begin(I); 1349 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1350 // TrailZ can only become smaller, short-circuit if we hit zero. 1351 if (Known.isUnknown()) 1352 break; 1353 1354 Value *Index = I->getOperand(i); 1355 1356 // Handle case when index is zero. 1357 Constant *CIndex = dyn_cast<Constant>(Index); 1358 if (CIndex && CIndex->isZeroValue()) 1359 continue; 1360 1361 if (StructType *STy = GTI.getStructTypeOrNull()) { 1362 // Handle struct member offset arithmetic. 1363 1364 assert(CIndex && 1365 "Access to structure field must be known at compile time"); 1366 1367 if (CIndex->getType()->isVectorTy()) 1368 Index = CIndex->getSplatValue(); 1369 1370 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1371 const StructLayout *SL = Q.DL.getStructLayout(STy); 1372 uint64_t Offset = SL->getElementOffset(Idx); 1373 AccConstIndices += Offset; 1374 continue; 1375 } 1376 1377 // Handle array index arithmetic. 1378 Type *IndexedTy = GTI.getIndexedType(); 1379 if (!IndexedTy->isSized()) { 1380 Known.resetAll(); 1381 break; 1382 } 1383 1384 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1385 KnownBits IndexBits(IndexBitWidth); 1386 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1387 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1388 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1389 KnownBits ScalingFactor(IndexBitWidth); 1390 // Multiply by current sizeof type. 1391 // &A[i] == A + i * sizeof(*A[i]). 1392 if (IndexTypeSize.isScalable()) { 1393 // For scalable types the only thing we know about sizeof is 1394 // that this is a multiple of the minimum size. 1395 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1396 } else if (IndexBits.isConstant()) { 1397 APInt IndexConst = IndexBits.getConstant(); 1398 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1399 IndexConst *= ScalingFactor; 1400 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1401 continue; 1402 } else { 1403 ScalingFactor = 1404 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1405 } 1406 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1407 1408 // If the offsets have a different width from the pointer, according 1409 // to the language reference we need to sign-extend or truncate them 1410 // to the width of the pointer. 1411 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1412 1413 // Note that inbounds does *not* guarantee nsw for the addition, as only 1414 // the offset is signed, while the base address is unsigned. 1415 Known = KnownBits::computeForAddSub( 1416 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1417 } 1418 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1419 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1420 Known = KnownBits::computeForAddSub( 1421 /*Add=*/true, /*NSW=*/false, Known, Index); 1422 } 1423 break; 1424 } 1425 case Instruction::PHI: { 1426 const PHINode *P = cast<PHINode>(I); 1427 BinaryOperator *BO = nullptr; 1428 Value *R = nullptr, *L = nullptr; 1429 if (matchSimpleRecurrence(P, BO, R, L)) { 1430 // Handle the case of a simple two-predecessor recurrence PHI. 1431 // There's a lot more that could theoretically be done here, but 1432 // this is sufficient to catch some interesting cases. 1433 unsigned Opcode = BO->getOpcode(); 1434 1435 // If this is a shift recurrence, we know the bits being shifted in. 1436 // We can combine that with information about the start value of the 1437 // recurrence to conclude facts about the result. 1438 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1439 Opcode == Instruction::Shl) && 1440 BO->getOperand(0) == I) { 1441 1442 // We have matched a recurrence of the form: 1443 // %iv = [R, %entry], [%iv.next, %backedge] 1444 // %iv.next = shift_op %iv, L 1445 1446 // Recurse with the phi context to avoid concern about whether facts 1447 // inferred hold at original context instruction. TODO: It may be 1448 // correct to use the original context. IF warranted, explore and 1449 // add sufficient tests to cover. 1450 Query RecQ = Q; 1451 RecQ.CxtI = P; 1452 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1453 switch (Opcode) { 1454 case Instruction::Shl: 1455 // A shl recurrence will only increase the tailing zeros 1456 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1457 break; 1458 case Instruction::LShr: 1459 // A lshr recurrence will preserve the leading zeros of the 1460 // start value 1461 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1462 break; 1463 case Instruction::AShr: 1464 // An ashr recurrence will extend the initial sign bit 1465 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1466 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1467 break; 1468 }; 1469 } 1470 1471 // Check for operations that have the property that if 1472 // both their operands have low zero bits, the result 1473 // will have low zero bits. 1474 if (Opcode == Instruction::Add || 1475 Opcode == Instruction::Sub || 1476 Opcode == Instruction::And || 1477 Opcode == Instruction::Or || 1478 Opcode == Instruction::Mul) { 1479 // Change the context instruction to the "edge" that flows into the 1480 // phi. This is important because that is where the value is actually 1481 // "evaluated" even though it is used later somewhere else. (see also 1482 // D69571). 1483 Query RecQ = Q; 1484 1485 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1486 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1487 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1488 1489 // Ok, we have a PHI of the form L op= R. Check for low 1490 // zero bits. 1491 RecQ.CxtI = RInst; 1492 computeKnownBits(R, Known2, Depth + 1, RecQ); 1493 1494 // We need to take the minimum number of known bits 1495 KnownBits Known3(BitWidth); 1496 RecQ.CxtI = LInst; 1497 computeKnownBits(L, Known3, Depth + 1, RecQ); 1498 1499 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1500 Known3.countMinTrailingZeros())); 1501 1502 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1503 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1504 // If initial value of recurrence is nonnegative, and we are adding 1505 // a nonnegative number with nsw, the result can only be nonnegative 1506 // or poison value regardless of the number of times we execute the 1507 // add in phi recurrence. If initial value is negative and we are 1508 // adding a negative number with nsw, the result can only be 1509 // negative or poison value. Similar arguments apply to sub and mul. 1510 // 1511 // (add non-negative, non-negative) --> non-negative 1512 // (add negative, negative) --> negative 1513 if (Opcode == Instruction::Add) { 1514 if (Known2.isNonNegative() && Known3.isNonNegative()) 1515 Known.makeNonNegative(); 1516 else if (Known2.isNegative() && Known3.isNegative()) 1517 Known.makeNegative(); 1518 } 1519 1520 // (sub nsw non-negative, negative) --> non-negative 1521 // (sub nsw negative, non-negative) --> negative 1522 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1523 if (Known2.isNonNegative() && Known3.isNegative()) 1524 Known.makeNonNegative(); 1525 else if (Known2.isNegative() && Known3.isNonNegative()) 1526 Known.makeNegative(); 1527 } 1528 1529 // (mul nsw non-negative, non-negative) --> non-negative 1530 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1531 Known3.isNonNegative()) 1532 Known.makeNonNegative(); 1533 } 1534 1535 break; 1536 } 1537 } 1538 1539 // Unreachable blocks may have zero-operand PHI nodes. 1540 if (P->getNumIncomingValues() == 0) 1541 break; 1542 1543 // Otherwise take the unions of the known bit sets of the operands, 1544 // taking conservative care to avoid excessive recursion. 1545 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1546 // Skip if every incoming value references to ourself. 1547 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1548 break; 1549 1550 Known.Zero.setAllBits(); 1551 Known.One.setAllBits(); 1552 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1553 Value *IncValue = P->getIncomingValue(u); 1554 // Skip direct self references. 1555 if (IncValue == P) continue; 1556 1557 // Change the context instruction to the "edge" that flows into the 1558 // phi. This is important because that is where the value is actually 1559 // "evaluated" even though it is used later somewhere else. (see also 1560 // D69571). 1561 Query RecQ = Q; 1562 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1563 1564 Known2 = KnownBits(BitWidth); 1565 // Recurse, but cap the recursion to one level, because we don't 1566 // want to waste time spinning around in loops. 1567 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1568 Known = KnownBits::commonBits(Known, Known2); 1569 // If all bits have been ruled out, there's no need to check 1570 // more operands. 1571 if (Known.isUnknown()) 1572 break; 1573 } 1574 } 1575 break; 1576 } 1577 case Instruction::Call: 1578 case Instruction::Invoke: 1579 // If range metadata is attached to this call, set known bits from that, 1580 // and then intersect with known bits based on other properties of the 1581 // function. 1582 if (MDNode *MD = 1583 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1584 computeKnownBitsFromRangeMetadata(*MD, Known); 1585 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1586 computeKnownBits(RV, Known2, Depth + 1, Q); 1587 Known.Zero |= Known2.Zero; 1588 Known.One |= Known2.One; 1589 } 1590 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1591 switch (II->getIntrinsicID()) { 1592 default: break; 1593 case Intrinsic::abs: { 1594 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1595 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1596 Known = Known2.abs(IntMinIsPoison); 1597 break; 1598 } 1599 case Intrinsic::bitreverse: 1600 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1601 Known.Zero |= Known2.Zero.reverseBits(); 1602 Known.One |= Known2.One.reverseBits(); 1603 break; 1604 case Intrinsic::bswap: 1605 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1606 Known.Zero |= Known2.Zero.byteSwap(); 1607 Known.One |= Known2.One.byteSwap(); 1608 break; 1609 case Intrinsic::ctlz: { 1610 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1611 // If we have a known 1, its position is our upper bound. 1612 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1613 // If this call is poison for 0 input, the result will be less than 2^n. 1614 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1615 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1616 unsigned LowBits = Log2_32(PossibleLZ)+1; 1617 Known.Zero.setBitsFrom(LowBits); 1618 break; 1619 } 1620 case Intrinsic::cttz: { 1621 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1622 // If we have a known 1, its position is our upper bound. 1623 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1624 // If this call is poison for 0 input, the result will be less than 2^n. 1625 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1626 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1627 unsigned LowBits = Log2_32(PossibleTZ)+1; 1628 Known.Zero.setBitsFrom(LowBits); 1629 break; 1630 } 1631 case Intrinsic::ctpop: { 1632 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1633 // We can bound the space the count needs. Also, bits known to be zero 1634 // can't contribute to the population. 1635 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1636 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1637 Known.Zero.setBitsFrom(LowBits); 1638 // TODO: we could bound KnownOne using the lower bound on the number 1639 // of bits which might be set provided by popcnt KnownOne2. 1640 break; 1641 } 1642 case Intrinsic::fshr: 1643 case Intrinsic::fshl: { 1644 const APInt *SA; 1645 if (!match(I->getOperand(2), m_APInt(SA))) 1646 break; 1647 1648 // Normalize to funnel shift left. 1649 uint64_t ShiftAmt = SA->urem(BitWidth); 1650 if (II->getIntrinsicID() == Intrinsic::fshr) 1651 ShiftAmt = BitWidth - ShiftAmt; 1652 1653 KnownBits Known3(BitWidth); 1654 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1655 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1656 1657 Known.Zero = 1658 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1659 Known.One = 1660 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1661 break; 1662 } 1663 case Intrinsic::uadd_sat: 1664 case Intrinsic::usub_sat: { 1665 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1666 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1667 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1668 1669 // Add: Leading ones of either operand are preserved. 1670 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1671 // as leading zeros in the result. 1672 unsigned LeadingKnown; 1673 if (IsAdd) 1674 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1675 Known2.countMinLeadingOnes()); 1676 else 1677 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1678 Known2.countMinLeadingOnes()); 1679 1680 Known = KnownBits::computeForAddSub( 1681 IsAdd, /* NSW */ false, Known, Known2); 1682 1683 // We select between the operation result and all-ones/zero 1684 // respectively, so we can preserve known ones/zeros. 1685 if (IsAdd) { 1686 Known.One.setHighBits(LeadingKnown); 1687 Known.Zero.clearAllBits(); 1688 } else { 1689 Known.Zero.setHighBits(LeadingKnown); 1690 Known.One.clearAllBits(); 1691 } 1692 break; 1693 } 1694 case Intrinsic::umin: 1695 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1696 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1697 Known = KnownBits::umin(Known, Known2); 1698 break; 1699 case Intrinsic::umax: 1700 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1701 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1702 Known = KnownBits::umax(Known, Known2); 1703 break; 1704 case Intrinsic::smin: 1705 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1706 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1707 Known = KnownBits::smin(Known, Known2); 1708 break; 1709 case Intrinsic::smax: 1710 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1711 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1712 Known = KnownBits::smax(Known, Known2); 1713 break; 1714 case Intrinsic::x86_sse42_crc32_64_64: 1715 Known.Zero.setBitsFrom(32); 1716 break; 1717 case Intrinsic::riscv_vsetvli: 1718 case Intrinsic::riscv_vsetvlimax: 1719 // Assume that VL output is positive and would fit in an int32_t. 1720 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1721 if (BitWidth >= 32) 1722 Known.Zero.setBitsFrom(31); 1723 break; 1724 case Intrinsic::vscale: { 1725 if (!II->getParent() || !II->getFunction() || 1726 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1727 break; 1728 1729 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1730 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1731 1732 if (!VScaleMax) 1733 break; 1734 1735 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1736 1737 // If vscale min = max then we know the exact value at compile time 1738 // and hence we know the exact bits. 1739 if (VScaleMin == VScaleMax) { 1740 Known.One = VScaleMin; 1741 Known.Zero = VScaleMin; 1742 Known.Zero.flipAllBits(); 1743 break; 1744 } 1745 1746 unsigned FirstZeroHighBit = 1747 32 - countLeadingZeros(VScaleMax.getValue()); 1748 if (FirstZeroHighBit < BitWidth) 1749 Known.Zero.setBitsFrom(FirstZeroHighBit); 1750 1751 break; 1752 } 1753 } 1754 } 1755 break; 1756 case Instruction::ShuffleVector: { 1757 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1758 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1759 if (!Shuf) { 1760 Known.resetAll(); 1761 return; 1762 } 1763 // For undef elements, we don't know anything about the common state of 1764 // the shuffle result. 1765 APInt DemandedLHS, DemandedRHS; 1766 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1767 Known.resetAll(); 1768 return; 1769 } 1770 Known.One.setAllBits(); 1771 Known.Zero.setAllBits(); 1772 if (!!DemandedLHS) { 1773 const Value *LHS = Shuf->getOperand(0); 1774 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1775 // If we don't know any bits, early out. 1776 if (Known.isUnknown()) 1777 break; 1778 } 1779 if (!!DemandedRHS) { 1780 const Value *RHS = Shuf->getOperand(1); 1781 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1782 Known = KnownBits::commonBits(Known, Known2); 1783 } 1784 break; 1785 } 1786 case Instruction::InsertElement: { 1787 const Value *Vec = I->getOperand(0); 1788 const Value *Elt = I->getOperand(1); 1789 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1790 // Early out if the index is non-constant or out-of-range. 1791 unsigned NumElts = DemandedElts.getBitWidth(); 1792 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1793 Known.resetAll(); 1794 return; 1795 } 1796 Known.One.setAllBits(); 1797 Known.Zero.setAllBits(); 1798 unsigned EltIdx = CIdx->getZExtValue(); 1799 // Do we demand the inserted element? 1800 if (DemandedElts[EltIdx]) { 1801 computeKnownBits(Elt, Known, Depth + 1, Q); 1802 // If we don't know any bits, early out. 1803 if (Known.isUnknown()) 1804 break; 1805 } 1806 // We don't need the base vector element that has been inserted. 1807 APInt DemandedVecElts = DemandedElts; 1808 DemandedVecElts.clearBit(EltIdx); 1809 if (!!DemandedVecElts) { 1810 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1811 Known = KnownBits::commonBits(Known, Known2); 1812 } 1813 break; 1814 } 1815 case Instruction::ExtractElement: { 1816 // Look through extract element. If the index is non-constant or 1817 // out-of-range demand all elements, otherwise just the extracted element. 1818 const Value *Vec = I->getOperand(0); 1819 const Value *Idx = I->getOperand(1); 1820 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1821 if (isa<ScalableVectorType>(Vec->getType())) { 1822 // FIXME: there's probably *something* we can do with scalable vectors 1823 Known.resetAll(); 1824 break; 1825 } 1826 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1827 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1828 if (CIdx && CIdx->getValue().ult(NumElts)) 1829 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1830 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1831 break; 1832 } 1833 case Instruction::ExtractValue: 1834 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1835 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1836 if (EVI->getNumIndices() != 1) break; 1837 if (EVI->getIndices()[0] == 0) { 1838 switch (II->getIntrinsicID()) { 1839 default: break; 1840 case Intrinsic::uadd_with_overflow: 1841 case Intrinsic::sadd_with_overflow: 1842 computeKnownBitsAddSub(true, II->getArgOperand(0), 1843 II->getArgOperand(1), false, DemandedElts, 1844 Known, Known2, Depth, Q); 1845 break; 1846 case Intrinsic::usub_with_overflow: 1847 case Intrinsic::ssub_with_overflow: 1848 computeKnownBitsAddSub(false, II->getArgOperand(0), 1849 II->getArgOperand(1), false, DemandedElts, 1850 Known, Known2, Depth, Q); 1851 break; 1852 case Intrinsic::umul_with_overflow: 1853 case Intrinsic::smul_with_overflow: 1854 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1855 DemandedElts, Known, Known2, Depth, Q); 1856 break; 1857 } 1858 } 1859 } 1860 break; 1861 case Instruction::Freeze: 1862 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1863 Depth + 1)) 1864 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1865 break; 1866 } 1867 } 1868 1869 /// Determine which bits of V are known to be either zero or one and return 1870 /// them. 1871 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1872 unsigned Depth, const Query &Q) { 1873 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1874 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1875 return Known; 1876 } 1877 1878 /// Determine which bits of V are known to be either zero or one and return 1879 /// them. 1880 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1881 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1882 computeKnownBits(V, Known, Depth, Q); 1883 return Known; 1884 } 1885 1886 /// Determine which bits of V are known to be either zero or one and return 1887 /// them in the Known bit set. 1888 /// 1889 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1890 /// we cannot optimize based on the assumption that it is zero without changing 1891 /// it to be an explicit zero. If we don't change it to zero, other code could 1892 /// optimized based on the contradictory assumption that it is non-zero. 1893 /// Because instcombine aggressively folds operations with undef args anyway, 1894 /// this won't lose us code quality. 1895 /// 1896 /// This function is defined on values with integer type, values with pointer 1897 /// type, and vectors of integers. In the case 1898 /// where V is a vector, known zero, and known one values are the 1899 /// same width as the vector element, and the bit is set only if it is true 1900 /// for all of the demanded elements in the vector specified by DemandedElts. 1901 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1902 KnownBits &Known, unsigned Depth, const Query &Q) { 1903 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1904 // No demanded elts or V is a scalable vector, better to assume we don't 1905 // know anything. 1906 Known.resetAll(); 1907 return; 1908 } 1909 1910 assert(V && "No Value?"); 1911 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1912 1913 #ifndef NDEBUG 1914 Type *Ty = V->getType(); 1915 unsigned BitWidth = Known.getBitWidth(); 1916 1917 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1918 "Not integer or pointer type!"); 1919 1920 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1921 assert( 1922 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1923 "DemandedElt width should equal the fixed vector number of elements"); 1924 } else { 1925 assert(DemandedElts == APInt(1, 1) && 1926 "DemandedElt width should be 1 for scalars"); 1927 } 1928 1929 Type *ScalarTy = Ty->getScalarType(); 1930 if (ScalarTy->isPointerTy()) { 1931 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1932 "V and Known should have same BitWidth"); 1933 } else { 1934 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1935 "V and Known should have same BitWidth"); 1936 } 1937 #endif 1938 1939 const APInt *C; 1940 if (match(V, m_APInt(C))) { 1941 // We know all of the bits for a scalar constant or a splat vector constant! 1942 Known = KnownBits::makeConstant(*C); 1943 return; 1944 } 1945 // Null and aggregate-zero are all-zeros. 1946 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1947 Known.setAllZero(); 1948 return; 1949 } 1950 // Handle a constant vector by taking the intersection of the known bits of 1951 // each element. 1952 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1953 // We know that CDV must be a vector of integers. Take the intersection of 1954 // each element. 1955 Known.Zero.setAllBits(); Known.One.setAllBits(); 1956 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1957 if (!DemandedElts[i]) 1958 continue; 1959 APInt Elt = CDV->getElementAsAPInt(i); 1960 Known.Zero &= ~Elt; 1961 Known.One &= Elt; 1962 } 1963 return; 1964 } 1965 1966 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1967 // We know that CV must be a vector of integers. Take the intersection of 1968 // each element. 1969 Known.Zero.setAllBits(); Known.One.setAllBits(); 1970 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1971 if (!DemandedElts[i]) 1972 continue; 1973 Constant *Element = CV->getAggregateElement(i); 1974 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1975 if (!ElementCI) { 1976 Known.resetAll(); 1977 return; 1978 } 1979 const APInt &Elt = ElementCI->getValue(); 1980 Known.Zero &= ~Elt; 1981 Known.One &= Elt; 1982 } 1983 return; 1984 } 1985 1986 // Start out not knowing anything. 1987 Known.resetAll(); 1988 1989 // We can't imply anything about undefs. 1990 if (isa<UndefValue>(V)) 1991 return; 1992 1993 // There's no point in looking through other users of ConstantData for 1994 // assumptions. Confirm that we've handled them all. 1995 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1996 1997 // All recursive calls that increase depth must come after this. 1998 if (Depth == MaxAnalysisRecursionDepth) 1999 return; 2000 2001 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2002 // the bits of its aliasee. 2003 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2004 if (!GA->isInterposable()) 2005 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2006 return; 2007 } 2008 2009 if (const Operator *I = dyn_cast<Operator>(V)) 2010 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2011 2012 // Aligned pointers have trailing zeros - refine Known.Zero set 2013 if (isa<PointerType>(V->getType())) { 2014 Align Alignment = V->getPointerAlignment(Q.DL); 2015 Known.Zero.setLowBits(Log2(Alignment)); 2016 } 2017 2018 // computeKnownBitsFromAssume strictly refines Known. 2019 // Therefore, we run them after computeKnownBitsFromOperator. 2020 2021 // Check whether a nearby assume intrinsic can determine some known bits. 2022 computeKnownBitsFromAssume(V, Known, Depth, Q); 2023 2024 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2025 } 2026 2027 /// Return true if the given value is known to have exactly one 2028 /// bit set when defined. For vectors return true if every element is known to 2029 /// be a power of two when defined. Supports values with integer or pointer 2030 /// types and vectors of integers. 2031 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2032 const Query &Q) { 2033 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2034 2035 // Attempt to match against constants. 2036 if (OrZero && match(V, m_Power2OrZero())) 2037 return true; 2038 if (match(V, m_Power2())) 2039 return true; 2040 2041 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2042 // it is shifted off the end then the result is undefined. 2043 if (match(V, m_Shl(m_One(), m_Value()))) 2044 return true; 2045 2046 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2047 // the bottom. If it is shifted off the bottom then the result is undefined. 2048 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2049 return true; 2050 2051 // The remaining tests are all recursive, so bail out if we hit the limit. 2052 if (Depth++ == MaxAnalysisRecursionDepth) 2053 return false; 2054 2055 Value *X = nullptr, *Y = nullptr; 2056 // A shift left or a logical shift right of a power of two is a power of two 2057 // or zero. 2058 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2059 match(V, m_LShr(m_Value(X), m_Value())))) 2060 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2061 2062 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2063 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2064 2065 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2066 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2067 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2068 2069 // Peek through min/max. 2070 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2071 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2072 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2073 } 2074 2075 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2076 // A power of two and'd with anything is a power of two or zero. 2077 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2078 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2079 return true; 2080 // X & (-X) is always a power of two or zero. 2081 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2082 return true; 2083 return false; 2084 } 2085 2086 // Adding a power-of-two or zero to the same power-of-two or zero yields 2087 // either the original power-of-two, a larger power-of-two or zero. 2088 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2089 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2090 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2091 Q.IIQ.hasNoSignedWrap(VOBO)) { 2092 if (match(X, m_And(m_Specific(Y), m_Value())) || 2093 match(X, m_And(m_Value(), m_Specific(Y)))) 2094 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2095 return true; 2096 if (match(Y, m_And(m_Specific(X), m_Value())) || 2097 match(Y, m_And(m_Value(), m_Specific(X)))) 2098 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2099 return true; 2100 2101 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2102 KnownBits LHSBits(BitWidth); 2103 computeKnownBits(X, LHSBits, Depth, Q); 2104 2105 KnownBits RHSBits(BitWidth); 2106 computeKnownBits(Y, RHSBits, Depth, Q); 2107 // If i8 V is a power of two or zero: 2108 // ZeroBits: 1 1 1 0 1 1 1 1 2109 // ~ZeroBits: 0 0 0 1 0 0 0 0 2110 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2111 // If OrZero isn't set, we cannot give back a zero result. 2112 // Make sure either the LHS or RHS has a bit set. 2113 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2114 return true; 2115 } 2116 } 2117 2118 // An exact divide or right shift can only shift off zero bits, so the result 2119 // is a power of two only if the first operand is a power of two and not 2120 // copying a sign bit (sdiv int_min, 2). 2121 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2122 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2123 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2124 Depth, Q); 2125 } 2126 2127 return false; 2128 } 2129 2130 /// Test whether a GEP's result is known to be non-null. 2131 /// 2132 /// Uses properties inherent in a GEP to try to determine whether it is known 2133 /// to be non-null. 2134 /// 2135 /// Currently this routine does not support vector GEPs. 2136 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2137 const Query &Q) { 2138 const Function *F = nullptr; 2139 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2140 F = I->getFunction(); 2141 2142 if (!GEP->isInBounds() || 2143 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2144 return false; 2145 2146 // FIXME: Support vector-GEPs. 2147 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2148 2149 // If the base pointer is non-null, we cannot walk to a null address with an 2150 // inbounds GEP in address space zero. 2151 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2152 return true; 2153 2154 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2155 // If so, then the GEP cannot produce a null pointer, as doing so would 2156 // inherently violate the inbounds contract within address space zero. 2157 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2158 GTI != GTE; ++GTI) { 2159 // Struct types are easy -- they must always be indexed by a constant. 2160 if (StructType *STy = GTI.getStructTypeOrNull()) { 2161 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2162 unsigned ElementIdx = OpC->getZExtValue(); 2163 const StructLayout *SL = Q.DL.getStructLayout(STy); 2164 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2165 if (ElementOffset > 0) 2166 return true; 2167 continue; 2168 } 2169 2170 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2171 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2172 continue; 2173 2174 // Fast path the constant operand case both for efficiency and so we don't 2175 // increment Depth when just zipping down an all-constant GEP. 2176 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2177 if (!OpC->isZero()) 2178 return true; 2179 continue; 2180 } 2181 2182 // We post-increment Depth here because while isKnownNonZero increments it 2183 // as well, when we pop back up that increment won't persist. We don't want 2184 // to recurse 10k times just because we have 10k GEP operands. We don't 2185 // bail completely out because we want to handle constant GEPs regardless 2186 // of depth. 2187 if (Depth++ >= MaxAnalysisRecursionDepth) 2188 continue; 2189 2190 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2191 return true; 2192 } 2193 2194 return false; 2195 } 2196 2197 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2198 const Instruction *CtxI, 2199 const DominatorTree *DT) { 2200 if (isa<Constant>(V)) 2201 return false; 2202 2203 if (!CtxI || !DT) 2204 return false; 2205 2206 unsigned NumUsesExplored = 0; 2207 for (auto *U : V->users()) { 2208 // Avoid massive lists 2209 if (NumUsesExplored >= DomConditionsMaxUses) 2210 break; 2211 NumUsesExplored++; 2212 2213 // If the value is used as an argument to a call or invoke, then argument 2214 // attributes may provide an answer about null-ness. 2215 if (const auto *CB = dyn_cast<CallBase>(U)) 2216 if (auto *CalledFunc = CB->getCalledFunction()) 2217 for (const Argument &Arg : CalledFunc->args()) 2218 if (CB->getArgOperand(Arg.getArgNo()) == V && 2219 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2220 DT->dominates(CB, CtxI)) 2221 return true; 2222 2223 // If the value is used as a load/store, then the pointer must be non null. 2224 if (V == getLoadStorePointerOperand(U)) { 2225 const Instruction *I = cast<Instruction>(U); 2226 if (!NullPointerIsDefined(I->getFunction(), 2227 V->getType()->getPointerAddressSpace()) && 2228 DT->dominates(I, CtxI)) 2229 return true; 2230 } 2231 2232 // Consider only compare instructions uniquely controlling a branch 2233 Value *RHS; 2234 CmpInst::Predicate Pred; 2235 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2236 continue; 2237 2238 bool NonNullIfTrue; 2239 if (cmpExcludesZero(Pred, RHS)) 2240 NonNullIfTrue = true; 2241 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2242 NonNullIfTrue = false; 2243 else 2244 continue; 2245 2246 SmallVector<const User *, 4> WorkList; 2247 SmallPtrSet<const User *, 4> Visited; 2248 for (auto *CmpU : U->users()) { 2249 assert(WorkList.empty() && "Should be!"); 2250 if (Visited.insert(CmpU).second) 2251 WorkList.push_back(CmpU); 2252 2253 while (!WorkList.empty()) { 2254 auto *Curr = WorkList.pop_back_val(); 2255 2256 // If a user is an AND, add all its users to the work list. We only 2257 // propagate "pred != null" condition through AND because it is only 2258 // correct to assume that all conditions of AND are met in true branch. 2259 // TODO: Support similar logic of OR and EQ predicate? 2260 if (NonNullIfTrue) 2261 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2262 for (auto *CurrU : Curr->users()) 2263 if (Visited.insert(CurrU).second) 2264 WorkList.push_back(CurrU); 2265 continue; 2266 } 2267 2268 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2269 assert(BI->isConditional() && "uses a comparison!"); 2270 2271 BasicBlock *NonNullSuccessor = 2272 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2273 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2274 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2275 return true; 2276 } else if (NonNullIfTrue && isGuard(Curr) && 2277 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2278 return true; 2279 } 2280 } 2281 } 2282 } 2283 2284 return false; 2285 } 2286 2287 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2288 /// ensure that the value it's attached to is never Value? 'RangeType' is 2289 /// is the type of the value described by the range. 2290 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2291 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2292 assert(NumRanges >= 1); 2293 for (unsigned i = 0; i < NumRanges; ++i) { 2294 ConstantInt *Lower = 2295 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2296 ConstantInt *Upper = 2297 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2298 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2299 if (Range.contains(Value)) 2300 return false; 2301 } 2302 return true; 2303 } 2304 2305 /// Try to detect a recurrence that monotonically increases/decreases from a 2306 /// non-zero starting value. These are common as induction variables. 2307 static bool isNonZeroRecurrence(const PHINode *PN) { 2308 BinaryOperator *BO = nullptr; 2309 Value *Start = nullptr, *Step = nullptr; 2310 const APInt *StartC, *StepC; 2311 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2312 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2313 return false; 2314 2315 switch (BO->getOpcode()) { 2316 case Instruction::Add: 2317 // Starting from non-zero and stepping away from zero can never wrap back 2318 // to zero. 2319 return BO->hasNoUnsignedWrap() || 2320 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2321 StartC->isNegative() == StepC->isNegative()); 2322 case Instruction::Mul: 2323 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2324 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2325 case Instruction::Shl: 2326 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2327 case Instruction::AShr: 2328 case Instruction::LShr: 2329 return BO->isExact(); 2330 default: 2331 return false; 2332 } 2333 } 2334 2335 /// Return true if the given value is known to be non-zero when defined. For 2336 /// vectors, return true if every demanded element is known to be non-zero when 2337 /// defined. For pointers, if the context instruction and dominator tree are 2338 /// specified, perform context-sensitive analysis and return true if the 2339 /// pointer couldn't possibly be null at the specified instruction. 2340 /// Supports values with integer or pointer type and vectors of integers. 2341 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2342 const Query &Q) { 2343 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2344 // vector 2345 if (isa<ScalableVectorType>(V->getType())) 2346 return false; 2347 2348 if (auto *C = dyn_cast<Constant>(V)) { 2349 if (C->isNullValue()) 2350 return false; 2351 if (isa<ConstantInt>(C)) 2352 // Must be non-zero due to null test above. 2353 return true; 2354 2355 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2356 // See the comment for IntToPtr/PtrToInt instructions below. 2357 if (CE->getOpcode() == Instruction::IntToPtr || 2358 CE->getOpcode() == Instruction::PtrToInt) 2359 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2360 .getFixedSize() <= 2361 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2362 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2363 } 2364 2365 // For constant vectors, check that all elements are undefined or known 2366 // non-zero to determine that the whole vector is known non-zero. 2367 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2368 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2369 if (!DemandedElts[i]) 2370 continue; 2371 Constant *Elt = C->getAggregateElement(i); 2372 if (!Elt || Elt->isNullValue()) 2373 return false; 2374 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2375 return false; 2376 } 2377 return true; 2378 } 2379 2380 // A global variable in address space 0 is non null unless extern weak 2381 // or an absolute symbol reference. Other address spaces may have null as a 2382 // valid address for a global, so we can't assume anything. 2383 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2384 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2385 GV->getType()->getAddressSpace() == 0) 2386 return true; 2387 } else 2388 return false; 2389 } 2390 2391 if (auto *I = dyn_cast<Instruction>(V)) { 2392 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2393 // If the possible ranges don't contain zero, then the value is 2394 // definitely non-zero. 2395 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2396 const APInt ZeroValue(Ty->getBitWidth(), 0); 2397 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2398 return true; 2399 } 2400 } 2401 } 2402 2403 if (isKnownNonZeroFromAssume(V, Q)) 2404 return true; 2405 2406 // Some of the tests below are recursive, so bail out if we hit the limit. 2407 if (Depth++ >= MaxAnalysisRecursionDepth) 2408 return false; 2409 2410 // Check for pointer simplifications. 2411 2412 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2413 // Alloca never returns null, malloc might. 2414 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2415 return true; 2416 2417 // A byval, inalloca may not be null in a non-default addres space. A 2418 // nonnull argument is assumed never 0. 2419 if (const Argument *A = dyn_cast<Argument>(V)) { 2420 if (((A->hasPassPointeeByValueCopyAttr() && 2421 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2422 A->hasNonNullAttr())) 2423 return true; 2424 } 2425 2426 // A Load tagged with nonnull metadata is never null. 2427 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2428 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2429 return true; 2430 2431 if (const auto *Call = dyn_cast<CallBase>(V)) { 2432 if (Call->isReturnNonNull()) 2433 return true; 2434 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2435 return isKnownNonZero(RP, Depth, Q); 2436 } 2437 } 2438 2439 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2440 return true; 2441 2442 // Check for recursive pointer simplifications. 2443 if (V->getType()->isPointerTy()) { 2444 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2445 // do not alter the value, or at least not the nullness property of the 2446 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2447 // 2448 // Note that we have to take special care to avoid looking through 2449 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2450 // as casts that can alter the value, e.g., AddrSpaceCasts. 2451 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2452 return isGEPKnownNonNull(GEP, Depth, Q); 2453 2454 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2455 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2456 2457 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2458 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2459 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2460 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2461 } 2462 2463 // Similar to int2ptr above, we can look through ptr2int here if the cast 2464 // is a no-op or an extend and not a truncate. 2465 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2466 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2467 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2468 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2469 2470 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2471 2472 // X | Y != 0 if X != 0 or Y != 0. 2473 Value *X = nullptr, *Y = nullptr; 2474 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2475 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2476 isKnownNonZero(Y, DemandedElts, Depth, Q); 2477 2478 // ext X != 0 if X != 0. 2479 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2480 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2481 2482 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2483 // if the lowest bit is shifted off the end. 2484 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2485 // shl nuw can't remove any non-zero bits. 2486 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2487 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2488 return isKnownNonZero(X, Depth, Q); 2489 2490 KnownBits Known(BitWidth); 2491 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2492 if (Known.One[0]) 2493 return true; 2494 } 2495 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2496 // defined if the sign bit is shifted off the end. 2497 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2498 // shr exact can only shift out zero bits. 2499 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2500 if (BO->isExact()) 2501 return isKnownNonZero(X, Depth, Q); 2502 2503 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2504 if (Known.isNegative()) 2505 return true; 2506 2507 // If the shifter operand is a constant, and all of the bits shifted 2508 // out are known to be zero, and X is known non-zero then at least one 2509 // non-zero bit must remain. 2510 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2511 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2512 // Is there a known one in the portion not shifted out? 2513 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2514 return true; 2515 // Are all the bits to be shifted out known zero? 2516 if (Known.countMinTrailingZeros() >= ShiftVal) 2517 return isKnownNonZero(X, DemandedElts, Depth, Q); 2518 } 2519 } 2520 // div exact can only produce a zero if the dividend is zero. 2521 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2522 return isKnownNonZero(X, DemandedElts, Depth, Q); 2523 } 2524 // X + Y. 2525 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2526 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2527 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2528 2529 // If X and Y are both non-negative (as signed values) then their sum is not 2530 // zero unless both X and Y are zero. 2531 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2532 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2533 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2534 return true; 2535 2536 // If X and Y are both negative (as signed values) then their sum is not 2537 // zero unless both X and Y equal INT_MIN. 2538 if (XKnown.isNegative() && YKnown.isNegative()) { 2539 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2540 // The sign bit of X is set. If some other bit is set then X is not equal 2541 // to INT_MIN. 2542 if (XKnown.One.intersects(Mask)) 2543 return true; 2544 // The sign bit of Y is set. If some other bit is set then Y is not equal 2545 // to INT_MIN. 2546 if (YKnown.One.intersects(Mask)) 2547 return true; 2548 } 2549 2550 // The sum of a non-negative number and a power of two is not zero. 2551 if (XKnown.isNonNegative() && 2552 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2553 return true; 2554 if (YKnown.isNonNegative() && 2555 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2556 return true; 2557 } 2558 // X * Y. 2559 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2560 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2561 // If X and Y are non-zero then so is X * Y as long as the multiplication 2562 // does not overflow. 2563 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2564 isKnownNonZero(X, DemandedElts, Depth, Q) && 2565 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2566 return true; 2567 } 2568 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2569 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2570 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2571 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2572 return true; 2573 } 2574 // PHI 2575 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2576 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2577 return true; 2578 2579 // Check if all incoming values are non-zero using recursion. 2580 Query RecQ = Q; 2581 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2582 return llvm::all_of(PN->operands(), [&](const Use &U) { 2583 if (U.get() == PN) 2584 return true; 2585 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2586 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2587 }); 2588 } 2589 // ExtractElement 2590 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2591 const Value *Vec = EEI->getVectorOperand(); 2592 const Value *Idx = EEI->getIndexOperand(); 2593 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2594 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2595 unsigned NumElts = VecTy->getNumElements(); 2596 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2597 if (CIdx && CIdx->getValue().ult(NumElts)) 2598 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2599 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2600 } 2601 } 2602 // Freeze 2603 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2604 auto *Op = FI->getOperand(0); 2605 if (isKnownNonZero(Op, Depth, Q) && 2606 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2607 return true; 2608 } 2609 2610 KnownBits Known(BitWidth); 2611 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2612 return Known.One != 0; 2613 } 2614 2615 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2616 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2617 // vector 2618 if (isa<ScalableVectorType>(V->getType())) 2619 return false; 2620 2621 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2622 APInt DemandedElts = 2623 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2624 return isKnownNonZero(V, DemandedElts, Depth, Q); 2625 } 2626 2627 /// If the pair of operators are the same invertible function, return the 2628 /// the operands of the function corresponding to each input. Otherwise, 2629 /// return None. An invertible function is one that is 1-to-1 and maps 2630 /// every input value to exactly one output value. This is equivalent to 2631 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2632 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2633 static Optional<std::pair<Value*, Value*>> 2634 getInvertibleOperands(const Operator *Op1, 2635 const Operator *Op2) { 2636 if (Op1->getOpcode() != Op2->getOpcode()) 2637 return None; 2638 2639 auto getOperands = [&](unsigned OpNum) -> auto { 2640 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2641 }; 2642 2643 switch (Op1->getOpcode()) { 2644 default: 2645 break; 2646 case Instruction::Add: 2647 case Instruction::Sub: 2648 if (Op1->getOperand(0) == Op2->getOperand(0)) 2649 return getOperands(1); 2650 if (Op1->getOperand(1) == Op2->getOperand(1)) 2651 return getOperands(0); 2652 break; 2653 case Instruction::Mul: { 2654 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2655 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2656 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2657 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2658 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2659 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2660 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2661 break; 2662 2663 // Assume operand order has been canonicalized 2664 if (Op1->getOperand(1) == Op2->getOperand(1) && 2665 isa<ConstantInt>(Op1->getOperand(1)) && 2666 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2667 return getOperands(0); 2668 break; 2669 } 2670 case Instruction::Shl: { 2671 // Same as multiplies, with the difference that we don't need to check 2672 // for a non-zero multiply. Shifts always multiply by non-zero. 2673 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2674 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2675 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2676 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2677 break; 2678 2679 if (Op1->getOperand(1) == Op2->getOperand(1)) 2680 return getOperands(0); 2681 break; 2682 } 2683 case Instruction::AShr: 2684 case Instruction::LShr: { 2685 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2686 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2687 if (!PEO1->isExact() || !PEO2->isExact()) 2688 break; 2689 2690 if (Op1->getOperand(1) == Op2->getOperand(1)) 2691 return getOperands(0); 2692 break; 2693 } 2694 case Instruction::SExt: 2695 case Instruction::ZExt: 2696 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2697 return getOperands(0); 2698 break; 2699 case Instruction::PHI: { 2700 const PHINode *PN1 = cast<PHINode>(Op1); 2701 const PHINode *PN2 = cast<PHINode>(Op2); 2702 2703 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2704 // are a single invertible function of the start values? Note that repeated 2705 // application of an invertible function is also invertible 2706 BinaryOperator *BO1 = nullptr; 2707 Value *Start1 = nullptr, *Step1 = nullptr; 2708 BinaryOperator *BO2 = nullptr; 2709 Value *Start2 = nullptr, *Step2 = nullptr; 2710 if (PN1->getParent() != PN2->getParent() || 2711 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2712 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2713 break; 2714 2715 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2716 cast<Operator>(BO2)); 2717 if (!Values) 2718 break; 2719 2720 // We have to be careful of mutually defined recurrences here. Ex: 2721 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2722 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2723 // The invertibility of these is complicated, and not worth reasoning 2724 // about (yet?). 2725 if (Values->first != PN1 || Values->second != PN2) 2726 break; 2727 2728 return std::make_pair(Start1, Start2); 2729 } 2730 } 2731 return None; 2732 } 2733 2734 /// Return true if V2 == V1 + X, where X is known non-zero. 2735 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2736 const Query &Q) { 2737 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2738 if (!BO || BO->getOpcode() != Instruction::Add) 2739 return false; 2740 Value *Op = nullptr; 2741 if (V2 == BO->getOperand(0)) 2742 Op = BO->getOperand(1); 2743 else if (V2 == BO->getOperand(1)) 2744 Op = BO->getOperand(0); 2745 else 2746 return false; 2747 return isKnownNonZero(Op, Depth + 1, Q); 2748 } 2749 2750 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2751 /// the multiplication is nuw or nsw. 2752 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2753 const Query &Q) { 2754 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2755 const APInt *C; 2756 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2757 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2758 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2759 } 2760 return false; 2761 } 2762 2763 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2764 /// the shift is nuw or nsw. 2765 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2766 const Query &Q) { 2767 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2768 const APInt *C; 2769 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2770 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2771 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2772 } 2773 return false; 2774 } 2775 2776 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2777 unsigned Depth, const Query &Q) { 2778 // Check two PHIs are in same block. 2779 if (PN1->getParent() != PN2->getParent()) 2780 return false; 2781 2782 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2783 bool UsedFullRecursion = false; 2784 for (const BasicBlock *IncomBB : PN1->blocks()) { 2785 if (!VisitedBBs.insert(IncomBB).second) 2786 continue; // Don't reprocess blocks that we have dealt with already. 2787 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2788 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2789 const APInt *C1, *C2; 2790 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2791 continue; 2792 2793 // Only one pair of phi operands is allowed for full recursion. 2794 if (UsedFullRecursion) 2795 return false; 2796 2797 Query RecQ = Q; 2798 RecQ.CxtI = IncomBB->getTerminator(); 2799 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2800 return false; 2801 UsedFullRecursion = true; 2802 } 2803 return true; 2804 } 2805 2806 /// Return true if it is known that V1 != V2. 2807 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2808 const Query &Q) { 2809 if (V1 == V2) 2810 return false; 2811 if (V1->getType() != V2->getType()) 2812 // We can't look through casts yet. 2813 return false; 2814 2815 if (Depth >= MaxAnalysisRecursionDepth) 2816 return false; 2817 2818 // See if we can recurse through (exactly one of) our operands. This 2819 // requires our operation be 1-to-1 and map every input value to exactly 2820 // one output value. Such an operation is invertible. 2821 auto *O1 = dyn_cast<Operator>(V1); 2822 auto *O2 = dyn_cast<Operator>(V2); 2823 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2824 if (auto Values = getInvertibleOperands(O1, O2)) 2825 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2826 2827 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2828 const PHINode *PN2 = cast<PHINode>(V2); 2829 // FIXME: This is missing a generalization to handle the case where one is 2830 // a PHI and another one isn't. 2831 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2832 return true; 2833 }; 2834 } 2835 2836 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2837 return true; 2838 2839 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2840 return true; 2841 2842 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2843 return true; 2844 2845 if (V1->getType()->isIntOrIntVectorTy()) { 2846 // Are any known bits in V1 contradictory to known bits in V2? If V1 2847 // has a known zero where V2 has a known one, they must not be equal. 2848 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2849 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2850 2851 if (Known1.Zero.intersects(Known2.One) || 2852 Known2.Zero.intersects(Known1.One)) 2853 return true; 2854 } 2855 return false; 2856 } 2857 2858 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2859 /// simplify operations downstream. Mask is known to be zero for bits that V 2860 /// cannot have. 2861 /// 2862 /// This function is defined on values with integer type, values with pointer 2863 /// type, and vectors of integers. In the case 2864 /// where V is a vector, the mask, known zero, and known one values are the 2865 /// same width as the vector element, and the bit is set only if it is true 2866 /// for all of the elements in the vector. 2867 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2868 const Query &Q) { 2869 KnownBits Known(Mask.getBitWidth()); 2870 computeKnownBits(V, Known, Depth, Q); 2871 return Mask.isSubsetOf(Known.Zero); 2872 } 2873 2874 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2875 // Returns the input and lower/upper bounds. 2876 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2877 const APInt *&CLow, const APInt *&CHigh) { 2878 assert(isa<Operator>(Select) && 2879 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2880 "Input should be a Select!"); 2881 2882 const Value *LHS = nullptr, *RHS = nullptr; 2883 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2884 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2885 return false; 2886 2887 if (!match(RHS, m_APInt(CLow))) 2888 return false; 2889 2890 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2891 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2892 if (getInverseMinMaxFlavor(SPF) != SPF2) 2893 return false; 2894 2895 if (!match(RHS2, m_APInt(CHigh))) 2896 return false; 2897 2898 if (SPF == SPF_SMIN) 2899 std::swap(CLow, CHigh); 2900 2901 In = LHS2; 2902 return CLow->sle(*CHigh); 2903 } 2904 2905 /// For vector constants, loop over the elements and find the constant with the 2906 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2907 /// or if any element was not analyzed; otherwise, return the count for the 2908 /// element with the minimum number of sign bits. 2909 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2910 const APInt &DemandedElts, 2911 unsigned TyBits) { 2912 const auto *CV = dyn_cast<Constant>(V); 2913 if (!CV || !isa<FixedVectorType>(CV->getType())) 2914 return 0; 2915 2916 unsigned MinSignBits = TyBits; 2917 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2918 for (unsigned i = 0; i != NumElts; ++i) { 2919 if (!DemandedElts[i]) 2920 continue; 2921 // If we find a non-ConstantInt, bail out. 2922 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2923 if (!Elt) 2924 return 0; 2925 2926 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2927 } 2928 2929 return MinSignBits; 2930 } 2931 2932 static unsigned ComputeNumSignBitsImpl(const Value *V, 2933 const APInt &DemandedElts, 2934 unsigned Depth, const Query &Q); 2935 2936 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2937 unsigned Depth, const Query &Q) { 2938 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2939 assert(Result > 0 && "At least one sign bit needs to be present!"); 2940 return Result; 2941 } 2942 2943 /// Return the number of times the sign bit of the register is replicated into 2944 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2945 /// (itself), but other cases can give us information. For example, immediately 2946 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2947 /// other, so we return 3. For vectors, return the number of sign bits for the 2948 /// vector element with the minimum number of known sign bits of the demanded 2949 /// elements in the vector specified by DemandedElts. 2950 static unsigned ComputeNumSignBitsImpl(const Value *V, 2951 const APInt &DemandedElts, 2952 unsigned Depth, const Query &Q) { 2953 Type *Ty = V->getType(); 2954 2955 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2956 // vector 2957 if (isa<ScalableVectorType>(Ty)) 2958 return 1; 2959 2960 #ifndef NDEBUG 2961 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2962 2963 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2964 assert( 2965 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2966 "DemandedElt width should equal the fixed vector number of elements"); 2967 } else { 2968 assert(DemandedElts == APInt(1, 1) && 2969 "DemandedElt width should be 1 for scalars"); 2970 } 2971 #endif 2972 2973 // We return the minimum number of sign bits that are guaranteed to be present 2974 // in V, so for undef we have to conservatively return 1. We don't have the 2975 // same behavior for poison though -- that's a FIXME today. 2976 2977 Type *ScalarTy = Ty->getScalarType(); 2978 unsigned TyBits = ScalarTy->isPointerTy() ? 2979 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2980 Q.DL.getTypeSizeInBits(ScalarTy); 2981 2982 unsigned Tmp, Tmp2; 2983 unsigned FirstAnswer = 1; 2984 2985 // Note that ConstantInt is handled by the general computeKnownBits case 2986 // below. 2987 2988 if (Depth == MaxAnalysisRecursionDepth) 2989 return 1; 2990 2991 if (auto *U = dyn_cast<Operator>(V)) { 2992 switch (Operator::getOpcode(V)) { 2993 default: break; 2994 case Instruction::SExt: 2995 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2996 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2997 2998 case Instruction::SDiv: { 2999 const APInt *Denominator; 3000 // sdiv X, C -> adds log(C) sign bits. 3001 if (match(U->getOperand(1), m_APInt(Denominator))) { 3002 3003 // Ignore non-positive denominator. 3004 if (!Denominator->isStrictlyPositive()) 3005 break; 3006 3007 // Calculate the incoming numerator bits. 3008 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3009 3010 // Add floor(log(C)) bits to the numerator bits. 3011 return std::min(TyBits, NumBits + Denominator->logBase2()); 3012 } 3013 break; 3014 } 3015 3016 case Instruction::SRem: { 3017 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3018 3019 const APInt *Denominator; 3020 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3021 // positive constant. This let us put a lower bound on the number of sign 3022 // bits. 3023 if (match(U->getOperand(1), m_APInt(Denominator))) { 3024 3025 // Ignore non-positive denominator. 3026 if (Denominator->isStrictlyPositive()) { 3027 // Calculate the leading sign bit constraints by examining the 3028 // denominator. Given that the denominator is positive, there are two 3029 // cases: 3030 // 3031 // 1. The numerator is positive. The result range is [0,C) and 3032 // [0,C) u< (1 << ceilLogBase2(C)). 3033 // 3034 // 2. The numerator is negative. Then the result range is (-C,0] and 3035 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3036 // 3037 // Thus a lower bound on the number of sign bits is `TyBits - 3038 // ceilLogBase2(C)`. 3039 3040 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3041 Tmp = std::max(Tmp, ResBits); 3042 } 3043 } 3044 return Tmp; 3045 } 3046 3047 case Instruction::AShr: { 3048 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3049 // ashr X, C -> adds C sign bits. Vectors too. 3050 const APInt *ShAmt; 3051 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3052 if (ShAmt->uge(TyBits)) 3053 break; // Bad shift. 3054 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3055 Tmp += ShAmtLimited; 3056 if (Tmp > TyBits) Tmp = TyBits; 3057 } 3058 return Tmp; 3059 } 3060 case Instruction::Shl: { 3061 const APInt *ShAmt; 3062 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3063 // shl destroys sign bits. 3064 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3065 if (ShAmt->uge(TyBits) || // Bad shift. 3066 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3067 Tmp2 = ShAmt->getZExtValue(); 3068 return Tmp - Tmp2; 3069 } 3070 break; 3071 } 3072 case Instruction::And: 3073 case Instruction::Or: 3074 case Instruction::Xor: // NOT is handled here. 3075 // Logical binary ops preserve the number of sign bits at the worst. 3076 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3077 if (Tmp != 1) { 3078 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3079 FirstAnswer = std::min(Tmp, Tmp2); 3080 // We computed what we know about the sign bits as our first 3081 // answer. Now proceed to the generic code that uses 3082 // computeKnownBits, and pick whichever answer is better. 3083 } 3084 break; 3085 3086 case Instruction::Select: { 3087 // If we have a clamp pattern, we know that the number of sign bits will 3088 // be the minimum of the clamp min/max range. 3089 const Value *X; 3090 const APInt *CLow, *CHigh; 3091 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3092 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3093 3094 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3095 if (Tmp == 1) break; 3096 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3097 return std::min(Tmp, Tmp2); 3098 } 3099 3100 case Instruction::Add: 3101 // Add can have at most one carry bit. Thus we know that the output 3102 // is, at worst, one more bit than the inputs. 3103 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3104 if (Tmp == 1) break; 3105 3106 // Special case decrementing a value (ADD X, -1): 3107 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3108 if (CRHS->isAllOnesValue()) { 3109 KnownBits Known(TyBits); 3110 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3111 3112 // If the input is known to be 0 or 1, the output is 0/-1, which is 3113 // all sign bits set. 3114 if ((Known.Zero | 1).isAllOnes()) 3115 return TyBits; 3116 3117 // If we are subtracting one from a positive number, there is no carry 3118 // out of the result. 3119 if (Known.isNonNegative()) 3120 return Tmp; 3121 } 3122 3123 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3124 if (Tmp2 == 1) break; 3125 return std::min(Tmp, Tmp2) - 1; 3126 3127 case Instruction::Sub: 3128 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3129 if (Tmp2 == 1) break; 3130 3131 // Handle NEG. 3132 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3133 if (CLHS->isNullValue()) { 3134 KnownBits Known(TyBits); 3135 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3136 // If the input is known to be 0 or 1, the output is 0/-1, which is 3137 // all sign bits set. 3138 if ((Known.Zero | 1).isAllOnes()) 3139 return TyBits; 3140 3141 // If the input is known to be positive (the sign bit is known clear), 3142 // the output of the NEG has the same number of sign bits as the 3143 // input. 3144 if (Known.isNonNegative()) 3145 return Tmp2; 3146 3147 // Otherwise, we treat this like a SUB. 3148 } 3149 3150 // Sub can have at most one carry bit. Thus we know that the output 3151 // is, at worst, one more bit than the inputs. 3152 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3153 if (Tmp == 1) break; 3154 return std::min(Tmp, Tmp2) - 1; 3155 3156 case Instruction::Mul: { 3157 // The output of the Mul can be at most twice the valid bits in the 3158 // inputs. 3159 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3160 if (SignBitsOp0 == 1) break; 3161 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3162 if (SignBitsOp1 == 1) break; 3163 unsigned OutValidBits = 3164 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3165 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3166 } 3167 3168 case Instruction::PHI: { 3169 const PHINode *PN = cast<PHINode>(U); 3170 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3171 // Don't analyze large in-degree PHIs. 3172 if (NumIncomingValues > 4) break; 3173 // Unreachable blocks may have zero-operand PHI nodes. 3174 if (NumIncomingValues == 0) break; 3175 3176 // Take the minimum of all incoming values. This can't infinitely loop 3177 // because of our depth threshold. 3178 Query RecQ = Q; 3179 Tmp = TyBits; 3180 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3181 if (Tmp == 1) return Tmp; 3182 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3183 Tmp = std::min( 3184 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3185 } 3186 return Tmp; 3187 } 3188 3189 case Instruction::Trunc: 3190 // FIXME: it's tricky to do anything useful for this, but it is an 3191 // important case for targets like X86. 3192 break; 3193 3194 case Instruction::ExtractElement: 3195 // Look through extract element. At the moment we keep this simple and 3196 // skip tracking the specific element. But at least we might find 3197 // information valid for all elements of the vector (for example if vector 3198 // is sign extended, shifted, etc). 3199 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3200 3201 case Instruction::ShuffleVector: { 3202 // Collect the minimum number of sign bits that are shared by every vector 3203 // element referenced by the shuffle. 3204 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3205 if (!Shuf) { 3206 // FIXME: Add support for shufflevector constant expressions. 3207 return 1; 3208 } 3209 APInt DemandedLHS, DemandedRHS; 3210 // For undef elements, we don't know anything about the common state of 3211 // the shuffle result. 3212 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3213 return 1; 3214 Tmp = std::numeric_limits<unsigned>::max(); 3215 if (!!DemandedLHS) { 3216 const Value *LHS = Shuf->getOperand(0); 3217 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3218 } 3219 // If we don't know anything, early out and try computeKnownBits 3220 // fall-back. 3221 if (Tmp == 1) 3222 break; 3223 if (!!DemandedRHS) { 3224 const Value *RHS = Shuf->getOperand(1); 3225 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3226 Tmp = std::min(Tmp, Tmp2); 3227 } 3228 // If we don't know anything, early out and try computeKnownBits 3229 // fall-back. 3230 if (Tmp == 1) 3231 break; 3232 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3233 return Tmp; 3234 } 3235 case Instruction::Call: { 3236 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3237 switch (II->getIntrinsicID()) { 3238 default: break; 3239 case Intrinsic::abs: 3240 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3241 if (Tmp == 1) break; 3242 3243 // Absolute value reduces number of sign bits by at most 1. 3244 return Tmp - 1; 3245 } 3246 } 3247 } 3248 } 3249 } 3250 3251 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3252 // use this information. 3253 3254 // If we can examine all elements of a vector constant successfully, we're 3255 // done (we can't do any better than that). If not, keep trying. 3256 if (unsigned VecSignBits = 3257 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3258 return VecSignBits; 3259 3260 KnownBits Known(TyBits); 3261 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3262 3263 // If we know that the sign bit is either zero or one, determine the number of 3264 // identical bits in the top of the input value. 3265 return std::max(FirstAnswer, Known.countMinSignBits()); 3266 } 3267 3268 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3269 const TargetLibraryInfo *TLI) { 3270 const Function *F = CB.getCalledFunction(); 3271 if (!F) 3272 return Intrinsic::not_intrinsic; 3273 3274 if (F->isIntrinsic()) 3275 return F->getIntrinsicID(); 3276 3277 // We are going to infer semantics of a library function based on mapping it 3278 // to an LLVM intrinsic. Check that the library function is available from 3279 // this callbase and in this environment. 3280 LibFunc Func; 3281 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3282 !CB.onlyReadsMemory()) 3283 return Intrinsic::not_intrinsic; 3284 3285 switch (Func) { 3286 default: 3287 break; 3288 case LibFunc_sin: 3289 case LibFunc_sinf: 3290 case LibFunc_sinl: 3291 return Intrinsic::sin; 3292 case LibFunc_cos: 3293 case LibFunc_cosf: 3294 case LibFunc_cosl: 3295 return Intrinsic::cos; 3296 case LibFunc_exp: 3297 case LibFunc_expf: 3298 case LibFunc_expl: 3299 return Intrinsic::exp; 3300 case LibFunc_exp2: 3301 case LibFunc_exp2f: 3302 case LibFunc_exp2l: 3303 return Intrinsic::exp2; 3304 case LibFunc_log: 3305 case LibFunc_logf: 3306 case LibFunc_logl: 3307 return Intrinsic::log; 3308 case LibFunc_log10: 3309 case LibFunc_log10f: 3310 case LibFunc_log10l: 3311 return Intrinsic::log10; 3312 case LibFunc_log2: 3313 case LibFunc_log2f: 3314 case LibFunc_log2l: 3315 return Intrinsic::log2; 3316 case LibFunc_fabs: 3317 case LibFunc_fabsf: 3318 case LibFunc_fabsl: 3319 return Intrinsic::fabs; 3320 case LibFunc_fmin: 3321 case LibFunc_fminf: 3322 case LibFunc_fminl: 3323 return Intrinsic::minnum; 3324 case LibFunc_fmax: 3325 case LibFunc_fmaxf: 3326 case LibFunc_fmaxl: 3327 return Intrinsic::maxnum; 3328 case LibFunc_copysign: 3329 case LibFunc_copysignf: 3330 case LibFunc_copysignl: 3331 return Intrinsic::copysign; 3332 case LibFunc_floor: 3333 case LibFunc_floorf: 3334 case LibFunc_floorl: 3335 return Intrinsic::floor; 3336 case LibFunc_ceil: 3337 case LibFunc_ceilf: 3338 case LibFunc_ceill: 3339 return Intrinsic::ceil; 3340 case LibFunc_trunc: 3341 case LibFunc_truncf: 3342 case LibFunc_truncl: 3343 return Intrinsic::trunc; 3344 case LibFunc_rint: 3345 case LibFunc_rintf: 3346 case LibFunc_rintl: 3347 return Intrinsic::rint; 3348 case LibFunc_nearbyint: 3349 case LibFunc_nearbyintf: 3350 case LibFunc_nearbyintl: 3351 return Intrinsic::nearbyint; 3352 case LibFunc_round: 3353 case LibFunc_roundf: 3354 case LibFunc_roundl: 3355 return Intrinsic::round; 3356 case LibFunc_roundeven: 3357 case LibFunc_roundevenf: 3358 case LibFunc_roundevenl: 3359 return Intrinsic::roundeven; 3360 case LibFunc_pow: 3361 case LibFunc_powf: 3362 case LibFunc_powl: 3363 return Intrinsic::pow; 3364 case LibFunc_sqrt: 3365 case LibFunc_sqrtf: 3366 case LibFunc_sqrtl: 3367 return Intrinsic::sqrt; 3368 } 3369 3370 return Intrinsic::not_intrinsic; 3371 } 3372 3373 /// Return true if we can prove that the specified FP value is never equal to 3374 /// -0.0. 3375 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3376 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3377 /// the same as +0.0 in floating-point ops. 3378 /// 3379 /// NOTE: this function will need to be revisited when we support non-default 3380 /// rounding modes! 3381 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3382 unsigned Depth) { 3383 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3384 return !CFP->getValueAPF().isNegZero(); 3385 3386 if (Depth == MaxAnalysisRecursionDepth) 3387 return false; 3388 3389 auto *Op = dyn_cast<Operator>(V); 3390 if (!Op) 3391 return false; 3392 3393 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3394 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3395 return true; 3396 3397 // sitofp and uitofp turn into +0.0 for zero. 3398 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3399 return true; 3400 3401 if (auto *Call = dyn_cast<CallInst>(Op)) { 3402 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3403 switch (IID) { 3404 default: 3405 break; 3406 // sqrt(-0.0) = -0.0, no other negative results are possible. 3407 case Intrinsic::sqrt: 3408 case Intrinsic::canonicalize: 3409 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3410 // fabs(x) != -0.0 3411 case Intrinsic::fabs: 3412 return true; 3413 } 3414 } 3415 3416 return false; 3417 } 3418 3419 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3420 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3421 /// bit despite comparing equal. 3422 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3423 const TargetLibraryInfo *TLI, 3424 bool SignBitOnly, 3425 unsigned Depth) { 3426 // TODO: This function does not do the right thing when SignBitOnly is true 3427 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3428 // which flips the sign bits of NaNs. See 3429 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3430 3431 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3432 return !CFP->getValueAPF().isNegative() || 3433 (!SignBitOnly && CFP->getValueAPF().isZero()); 3434 } 3435 3436 // Handle vector of constants. 3437 if (auto *CV = dyn_cast<Constant>(V)) { 3438 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3439 unsigned NumElts = CVFVTy->getNumElements(); 3440 for (unsigned i = 0; i != NumElts; ++i) { 3441 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3442 if (!CFP) 3443 return false; 3444 if (CFP->getValueAPF().isNegative() && 3445 (SignBitOnly || !CFP->getValueAPF().isZero())) 3446 return false; 3447 } 3448 3449 // All non-negative ConstantFPs. 3450 return true; 3451 } 3452 } 3453 3454 if (Depth == MaxAnalysisRecursionDepth) 3455 return false; 3456 3457 const Operator *I = dyn_cast<Operator>(V); 3458 if (!I) 3459 return false; 3460 3461 switch (I->getOpcode()) { 3462 default: 3463 break; 3464 // Unsigned integers are always nonnegative. 3465 case Instruction::UIToFP: 3466 return true; 3467 case Instruction::FMul: 3468 case Instruction::FDiv: 3469 // X * X is always non-negative or a NaN. 3470 // X / X is always exactly 1.0 or a NaN. 3471 if (I->getOperand(0) == I->getOperand(1) && 3472 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3473 return true; 3474 3475 LLVM_FALLTHROUGH; 3476 case Instruction::FAdd: 3477 case Instruction::FRem: 3478 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3479 Depth + 1) && 3480 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3481 Depth + 1); 3482 case Instruction::Select: 3483 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3484 Depth + 1) && 3485 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3486 Depth + 1); 3487 case Instruction::FPExt: 3488 case Instruction::FPTrunc: 3489 // Widening/narrowing never change sign. 3490 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3491 Depth + 1); 3492 case Instruction::ExtractElement: 3493 // Look through extract element. At the moment we keep this simple and skip 3494 // tracking the specific element. But at least we might find information 3495 // valid for all elements of the vector. 3496 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3497 Depth + 1); 3498 case Instruction::Call: 3499 const auto *CI = cast<CallInst>(I); 3500 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3501 switch (IID) { 3502 default: 3503 break; 3504 case Intrinsic::maxnum: { 3505 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3506 auto isPositiveNum = [&](Value *V) { 3507 if (SignBitOnly) { 3508 // With SignBitOnly, this is tricky because the result of 3509 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3510 // a constant strictly greater than 0.0. 3511 const APFloat *C; 3512 return match(V, m_APFloat(C)) && 3513 *C > APFloat::getZero(C->getSemantics()); 3514 } 3515 3516 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3517 // maxnum can't be ordered-less-than-zero. 3518 return isKnownNeverNaN(V, TLI) && 3519 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3520 }; 3521 3522 // TODO: This could be improved. We could also check that neither operand 3523 // has its sign bit set (and at least 1 is not-NAN?). 3524 return isPositiveNum(V0) || isPositiveNum(V1); 3525 } 3526 3527 case Intrinsic::maximum: 3528 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3529 Depth + 1) || 3530 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3531 Depth + 1); 3532 case Intrinsic::minnum: 3533 case Intrinsic::minimum: 3534 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3535 Depth + 1) && 3536 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3537 Depth + 1); 3538 case Intrinsic::exp: 3539 case Intrinsic::exp2: 3540 case Intrinsic::fabs: 3541 return true; 3542 3543 case Intrinsic::sqrt: 3544 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3545 if (!SignBitOnly) 3546 return true; 3547 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3548 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3549 3550 case Intrinsic::powi: 3551 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3552 // powi(x,n) is non-negative if n is even. 3553 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3554 return true; 3555 } 3556 // TODO: This is not correct. Given that exp is an integer, here are the 3557 // ways that pow can return a negative value: 3558 // 3559 // pow(x, exp) --> negative if exp is odd and x is negative. 3560 // pow(-0, exp) --> -inf if exp is negative odd. 3561 // pow(-0, exp) --> -0 if exp is positive odd. 3562 // pow(-inf, exp) --> -0 if exp is negative odd. 3563 // pow(-inf, exp) --> -inf if exp is positive odd. 3564 // 3565 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3566 // but we must return false if x == -0. Unfortunately we do not currently 3567 // have a way of expressing this constraint. See details in 3568 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3569 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3570 Depth + 1); 3571 3572 case Intrinsic::fma: 3573 case Intrinsic::fmuladd: 3574 // x*x+y is non-negative if y is non-negative. 3575 return I->getOperand(0) == I->getOperand(1) && 3576 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3577 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3578 Depth + 1); 3579 } 3580 break; 3581 } 3582 return false; 3583 } 3584 3585 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3586 const TargetLibraryInfo *TLI) { 3587 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3588 } 3589 3590 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3591 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3592 } 3593 3594 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3595 unsigned Depth) { 3596 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3597 3598 // If we're told that infinities won't happen, assume they won't. 3599 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3600 if (FPMathOp->hasNoInfs()) 3601 return true; 3602 3603 // Handle scalar constants. 3604 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3605 return !CFP->isInfinity(); 3606 3607 if (Depth == MaxAnalysisRecursionDepth) 3608 return false; 3609 3610 if (auto *Inst = dyn_cast<Instruction>(V)) { 3611 switch (Inst->getOpcode()) { 3612 case Instruction::Select: { 3613 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3614 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3615 } 3616 case Instruction::SIToFP: 3617 case Instruction::UIToFP: { 3618 // Get width of largest magnitude integer (remove a bit if signed). 3619 // This still works for a signed minimum value because the largest FP 3620 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3621 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3622 if (Inst->getOpcode() == Instruction::SIToFP) 3623 --IntSize; 3624 3625 // If the exponent of the largest finite FP value can hold the largest 3626 // integer, the result of the cast must be finite. 3627 Type *FPTy = Inst->getType()->getScalarType(); 3628 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3629 } 3630 default: 3631 break; 3632 } 3633 } 3634 3635 // try to handle fixed width vector constants 3636 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3637 if (VFVTy && isa<Constant>(V)) { 3638 // For vectors, verify that each element is not infinity. 3639 unsigned NumElts = VFVTy->getNumElements(); 3640 for (unsigned i = 0; i != NumElts; ++i) { 3641 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3642 if (!Elt) 3643 return false; 3644 if (isa<UndefValue>(Elt)) 3645 continue; 3646 auto *CElt = dyn_cast<ConstantFP>(Elt); 3647 if (!CElt || CElt->isInfinity()) 3648 return false; 3649 } 3650 // All elements were confirmed non-infinity or undefined. 3651 return true; 3652 } 3653 3654 // was not able to prove that V never contains infinity 3655 return false; 3656 } 3657 3658 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3659 unsigned Depth) { 3660 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3661 3662 // If we're told that NaNs won't happen, assume they won't. 3663 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3664 if (FPMathOp->hasNoNaNs()) 3665 return true; 3666 3667 // Handle scalar constants. 3668 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3669 return !CFP->isNaN(); 3670 3671 if (Depth == MaxAnalysisRecursionDepth) 3672 return false; 3673 3674 if (auto *Inst = dyn_cast<Instruction>(V)) { 3675 switch (Inst->getOpcode()) { 3676 case Instruction::FAdd: 3677 case Instruction::FSub: 3678 // Adding positive and negative infinity produces NaN. 3679 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3680 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3681 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3682 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3683 3684 case Instruction::FMul: 3685 // Zero multiplied with infinity produces NaN. 3686 // FIXME: If neither side can be zero fmul never produces NaN. 3687 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3688 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3689 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3690 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3691 3692 case Instruction::FDiv: 3693 case Instruction::FRem: 3694 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3695 return false; 3696 3697 case Instruction::Select: { 3698 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3699 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3700 } 3701 case Instruction::SIToFP: 3702 case Instruction::UIToFP: 3703 return true; 3704 case Instruction::FPTrunc: 3705 case Instruction::FPExt: 3706 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3707 default: 3708 break; 3709 } 3710 } 3711 3712 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3713 switch (II->getIntrinsicID()) { 3714 case Intrinsic::canonicalize: 3715 case Intrinsic::fabs: 3716 case Intrinsic::copysign: 3717 case Intrinsic::exp: 3718 case Intrinsic::exp2: 3719 case Intrinsic::floor: 3720 case Intrinsic::ceil: 3721 case Intrinsic::trunc: 3722 case Intrinsic::rint: 3723 case Intrinsic::nearbyint: 3724 case Intrinsic::round: 3725 case Intrinsic::roundeven: 3726 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3727 case Intrinsic::sqrt: 3728 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3729 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3730 case Intrinsic::minnum: 3731 case Intrinsic::maxnum: 3732 // If either operand is not NaN, the result is not NaN. 3733 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3734 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3735 default: 3736 return false; 3737 } 3738 } 3739 3740 // Try to handle fixed width vector constants 3741 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3742 if (VFVTy && isa<Constant>(V)) { 3743 // For vectors, verify that each element is not NaN. 3744 unsigned NumElts = VFVTy->getNumElements(); 3745 for (unsigned i = 0; i != NumElts; ++i) { 3746 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3747 if (!Elt) 3748 return false; 3749 if (isa<UndefValue>(Elt)) 3750 continue; 3751 auto *CElt = dyn_cast<ConstantFP>(Elt); 3752 if (!CElt || CElt->isNaN()) 3753 return false; 3754 } 3755 // All elements were confirmed not-NaN or undefined. 3756 return true; 3757 } 3758 3759 // Was not able to prove that V never contains NaN 3760 return false; 3761 } 3762 3763 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3764 3765 // All byte-wide stores are splatable, even of arbitrary variables. 3766 if (V->getType()->isIntegerTy(8)) 3767 return V; 3768 3769 LLVMContext &Ctx = V->getContext(); 3770 3771 // Undef don't care. 3772 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3773 if (isa<UndefValue>(V)) 3774 return UndefInt8; 3775 3776 // Return Undef for zero-sized type. 3777 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3778 return UndefInt8; 3779 3780 Constant *C = dyn_cast<Constant>(V); 3781 if (!C) { 3782 // Conceptually, we could handle things like: 3783 // %a = zext i8 %X to i16 3784 // %b = shl i16 %a, 8 3785 // %c = or i16 %a, %b 3786 // but until there is an example that actually needs this, it doesn't seem 3787 // worth worrying about. 3788 return nullptr; 3789 } 3790 3791 // Handle 'null' ConstantArrayZero etc. 3792 if (C->isNullValue()) 3793 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3794 3795 // Constant floating-point values can be handled as integer values if the 3796 // corresponding integer value is "byteable". An important case is 0.0. 3797 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3798 Type *Ty = nullptr; 3799 if (CFP->getType()->isHalfTy()) 3800 Ty = Type::getInt16Ty(Ctx); 3801 else if (CFP->getType()->isFloatTy()) 3802 Ty = Type::getInt32Ty(Ctx); 3803 else if (CFP->getType()->isDoubleTy()) 3804 Ty = Type::getInt64Ty(Ctx); 3805 // Don't handle long double formats, which have strange constraints. 3806 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3807 : nullptr; 3808 } 3809 3810 // We can handle constant integers that are multiple of 8 bits. 3811 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3812 if (CI->getBitWidth() % 8 == 0) { 3813 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3814 if (!CI->getValue().isSplat(8)) 3815 return nullptr; 3816 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3817 } 3818 } 3819 3820 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3821 if (CE->getOpcode() == Instruction::IntToPtr) { 3822 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3823 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3824 return isBytewiseValue( 3825 ConstantExpr::getIntegerCast(CE->getOperand(0), 3826 Type::getIntNTy(Ctx, BitWidth), false), 3827 DL); 3828 } 3829 } 3830 } 3831 3832 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3833 if (LHS == RHS) 3834 return LHS; 3835 if (!LHS || !RHS) 3836 return nullptr; 3837 if (LHS == UndefInt8) 3838 return RHS; 3839 if (RHS == UndefInt8) 3840 return LHS; 3841 return nullptr; 3842 }; 3843 3844 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3845 Value *Val = UndefInt8; 3846 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3847 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3848 return nullptr; 3849 return Val; 3850 } 3851 3852 if (isa<ConstantAggregate>(C)) { 3853 Value *Val = UndefInt8; 3854 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3855 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3856 return nullptr; 3857 return Val; 3858 } 3859 3860 // Don't try to handle the handful of other constants. 3861 return nullptr; 3862 } 3863 3864 // This is the recursive version of BuildSubAggregate. It takes a few different 3865 // arguments. Idxs is the index within the nested struct From that we are 3866 // looking at now (which is of type IndexedType). IdxSkip is the number of 3867 // indices from Idxs that should be left out when inserting into the resulting 3868 // struct. To is the result struct built so far, new insertvalue instructions 3869 // build on that. 3870 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3871 SmallVectorImpl<unsigned> &Idxs, 3872 unsigned IdxSkip, 3873 Instruction *InsertBefore) { 3874 StructType *STy = dyn_cast<StructType>(IndexedType); 3875 if (STy) { 3876 // Save the original To argument so we can modify it 3877 Value *OrigTo = To; 3878 // General case, the type indexed by Idxs is a struct 3879 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3880 // Process each struct element recursively 3881 Idxs.push_back(i); 3882 Value *PrevTo = To; 3883 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3884 InsertBefore); 3885 Idxs.pop_back(); 3886 if (!To) { 3887 // Couldn't find any inserted value for this index? Cleanup 3888 while (PrevTo != OrigTo) { 3889 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3890 PrevTo = Del->getAggregateOperand(); 3891 Del->eraseFromParent(); 3892 } 3893 // Stop processing elements 3894 break; 3895 } 3896 } 3897 // If we successfully found a value for each of our subaggregates 3898 if (To) 3899 return To; 3900 } 3901 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3902 // the struct's elements had a value that was inserted directly. In the latter 3903 // case, perhaps we can't determine each of the subelements individually, but 3904 // we might be able to find the complete struct somewhere. 3905 3906 // Find the value that is at that particular spot 3907 Value *V = FindInsertedValue(From, Idxs); 3908 3909 if (!V) 3910 return nullptr; 3911 3912 // Insert the value in the new (sub) aggregate 3913 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3914 "tmp", InsertBefore); 3915 } 3916 3917 // This helper takes a nested struct and extracts a part of it (which is again a 3918 // struct) into a new value. For example, given the struct: 3919 // { a, { b, { c, d }, e } } 3920 // and the indices "1, 1" this returns 3921 // { c, d }. 3922 // 3923 // It does this by inserting an insertvalue for each element in the resulting 3924 // struct, as opposed to just inserting a single struct. This will only work if 3925 // each of the elements of the substruct are known (ie, inserted into From by an 3926 // insertvalue instruction somewhere). 3927 // 3928 // All inserted insertvalue instructions are inserted before InsertBefore 3929 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3930 Instruction *InsertBefore) { 3931 assert(InsertBefore && "Must have someplace to insert!"); 3932 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3933 idx_range); 3934 Value *To = UndefValue::get(IndexedType); 3935 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3936 unsigned IdxSkip = Idxs.size(); 3937 3938 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3939 } 3940 3941 /// Given an aggregate and a sequence of indices, see if the scalar value 3942 /// indexed is already around as a register, for example if it was inserted 3943 /// directly into the aggregate. 3944 /// 3945 /// If InsertBefore is not null, this function will duplicate (modified) 3946 /// insertvalues when a part of a nested struct is extracted. 3947 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3948 Instruction *InsertBefore) { 3949 // Nothing to index? Just return V then (this is useful at the end of our 3950 // recursion). 3951 if (idx_range.empty()) 3952 return V; 3953 // We have indices, so V should have an indexable type. 3954 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3955 "Not looking at a struct or array?"); 3956 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3957 "Invalid indices for type?"); 3958 3959 if (Constant *C = dyn_cast<Constant>(V)) { 3960 C = C->getAggregateElement(idx_range[0]); 3961 if (!C) return nullptr; 3962 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3963 } 3964 3965 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3966 // Loop the indices for the insertvalue instruction in parallel with the 3967 // requested indices 3968 const unsigned *req_idx = idx_range.begin(); 3969 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3970 i != e; ++i, ++req_idx) { 3971 if (req_idx == idx_range.end()) { 3972 // We can't handle this without inserting insertvalues 3973 if (!InsertBefore) 3974 return nullptr; 3975 3976 // The requested index identifies a part of a nested aggregate. Handle 3977 // this specially. For example, 3978 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3979 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3980 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3981 // This can be changed into 3982 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3983 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3984 // which allows the unused 0,0 element from the nested struct to be 3985 // removed. 3986 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3987 InsertBefore); 3988 } 3989 3990 // This insert value inserts something else than what we are looking for. 3991 // See if the (aggregate) value inserted into has the value we are 3992 // looking for, then. 3993 if (*req_idx != *i) 3994 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3995 InsertBefore); 3996 } 3997 // If we end up here, the indices of the insertvalue match with those 3998 // requested (though possibly only partially). Now we recursively look at 3999 // the inserted value, passing any remaining indices. 4000 return FindInsertedValue(I->getInsertedValueOperand(), 4001 makeArrayRef(req_idx, idx_range.end()), 4002 InsertBefore); 4003 } 4004 4005 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4006 // If we're extracting a value from an aggregate that was extracted from 4007 // something else, we can extract from that something else directly instead. 4008 // However, we will need to chain I's indices with the requested indices. 4009 4010 // Calculate the number of indices required 4011 unsigned size = I->getNumIndices() + idx_range.size(); 4012 // Allocate some space to put the new indices in 4013 SmallVector<unsigned, 5> Idxs; 4014 Idxs.reserve(size); 4015 // Add indices from the extract value instruction 4016 Idxs.append(I->idx_begin(), I->idx_end()); 4017 4018 // Add requested indices 4019 Idxs.append(idx_range.begin(), idx_range.end()); 4020 4021 assert(Idxs.size() == size 4022 && "Number of indices added not correct?"); 4023 4024 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4025 } 4026 // Otherwise, we don't know (such as, extracting from a function return value 4027 // or load instruction) 4028 return nullptr; 4029 } 4030 4031 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4032 unsigned CharSize) { 4033 // Make sure the GEP has exactly three arguments. 4034 if (GEP->getNumOperands() != 3) 4035 return false; 4036 4037 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4038 // CharSize. 4039 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4040 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4041 return false; 4042 4043 // Check to make sure that the first operand of the GEP is an integer and 4044 // has value 0 so that we are sure we're indexing into the initializer. 4045 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4046 if (!FirstIdx || !FirstIdx->isZero()) 4047 return false; 4048 4049 return true; 4050 } 4051 4052 bool llvm::getConstantDataArrayInfo(const Value *V, 4053 ConstantDataArraySlice &Slice, 4054 unsigned ElementSize, uint64_t Offset) { 4055 assert(V); 4056 4057 // Look through bitcast instructions and geps. 4058 V = V->stripPointerCasts(); 4059 4060 // If the value is a GEP instruction or constant expression, treat it as an 4061 // offset. 4062 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4063 // The GEP operator should be based on a pointer to string constant, and is 4064 // indexing into the string constant. 4065 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4066 return false; 4067 4068 // If the second index isn't a ConstantInt, then this is a variable index 4069 // into the array. If this occurs, we can't say anything meaningful about 4070 // the string. 4071 uint64_t StartIdx = 0; 4072 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4073 StartIdx = CI->getZExtValue(); 4074 else 4075 return false; 4076 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4077 StartIdx + Offset); 4078 } 4079 4080 // The GEP instruction, constant or instruction, must reference a global 4081 // variable that is a constant and is initialized. The referenced constant 4082 // initializer is the array that we'll use for optimization. 4083 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4084 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4085 return false; 4086 4087 const ConstantDataArray *Array; 4088 ArrayType *ArrayTy; 4089 if (GV->getInitializer()->isNullValue()) { 4090 Type *GVTy = GV->getValueType(); 4091 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4092 // A zeroinitializer for the array; there is no ConstantDataArray. 4093 Array = nullptr; 4094 } else { 4095 const DataLayout &DL = GV->getParent()->getDataLayout(); 4096 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4097 uint64_t Length = SizeInBytes / (ElementSize / 8); 4098 if (Length <= Offset) 4099 return false; 4100 4101 Slice.Array = nullptr; 4102 Slice.Offset = 0; 4103 Slice.Length = Length - Offset; 4104 return true; 4105 } 4106 } else { 4107 // This must be a ConstantDataArray. 4108 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4109 if (!Array) 4110 return false; 4111 ArrayTy = Array->getType(); 4112 } 4113 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4114 return false; 4115 4116 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4117 if (Offset > NumElts) 4118 return false; 4119 4120 Slice.Array = Array; 4121 Slice.Offset = Offset; 4122 Slice.Length = NumElts - Offset; 4123 return true; 4124 } 4125 4126 /// This function computes the length of a null-terminated C string pointed to 4127 /// by V. If successful, it returns true and returns the string in Str. 4128 /// If unsuccessful, it returns false. 4129 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4130 uint64_t Offset, bool TrimAtNul) { 4131 ConstantDataArraySlice Slice; 4132 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4133 return false; 4134 4135 if (Slice.Array == nullptr) { 4136 if (TrimAtNul) { 4137 Str = StringRef(); 4138 return true; 4139 } 4140 if (Slice.Length == 1) { 4141 Str = StringRef("", 1); 4142 return true; 4143 } 4144 // We cannot instantiate a StringRef as we do not have an appropriate string 4145 // of 0s at hand. 4146 return false; 4147 } 4148 4149 // Start out with the entire array in the StringRef. 4150 Str = Slice.Array->getAsString(); 4151 // Skip over 'offset' bytes. 4152 Str = Str.substr(Slice.Offset); 4153 4154 if (TrimAtNul) { 4155 // Trim off the \0 and anything after it. If the array is not nul 4156 // terminated, we just return the whole end of string. The client may know 4157 // some other way that the string is length-bound. 4158 Str = Str.substr(0, Str.find('\0')); 4159 } 4160 return true; 4161 } 4162 4163 // These next two are very similar to the above, but also look through PHI 4164 // nodes. 4165 // TODO: See if we can integrate these two together. 4166 4167 /// If we can compute the length of the string pointed to by 4168 /// the specified pointer, return 'len+1'. If we can't, return 0. 4169 static uint64_t GetStringLengthH(const Value *V, 4170 SmallPtrSetImpl<const PHINode*> &PHIs, 4171 unsigned CharSize) { 4172 // Look through noop bitcast instructions. 4173 V = V->stripPointerCasts(); 4174 4175 // If this is a PHI node, there are two cases: either we have already seen it 4176 // or we haven't. 4177 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4178 if (!PHIs.insert(PN).second) 4179 return ~0ULL; // already in the set. 4180 4181 // If it was new, see if all the input strings are the same length. 4182 uint64_t LenSoFar = ~0ULL; 4183 for (Value *IncValue : PN->incoming_values()) { 4184 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4185 if (Len == 0) return 0; // Unknown length -> unknown. 4186 4187 if (Len == ~0ULL) continue; 4188 4189 if (Len != LenSoFar && LenSoFar != ~0ULL) 4190 return 0; // Disagree -> unknown. 4191 LenSoFar = Len; 4192 } 4193 4194 // Success, all agree. 4195 return LenSoFar; 4196 } 4197 4198 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4199 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4200 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4201 if (Len1 == 0) return 0; 4202 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4203 if (Len2 == 0) return 0; 4204 if (Len1 == ~0ULL) return Len2; 4205 if (Len2 == ~0ULL) return Len1; 4206 if (Len1 != Len2) return 0; 4207 return Len1; 4208 } 4209 4210 // Otherwise, see if we can read the string. 4211 ConstantDataArraySlice Slice; 4212 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4213 return 0; 4214 4215 if (Slice.Array == nullptr) 4216 return 1; 4217 4218 // Search for nul characters 4219 unsigned NullIndex = 0; 4220 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4221 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4222 break; 4223 } 4224 4225 return NullIndex + 1; 4226 } 4227 4228 /// If we can compute the length of the string pointed to by 4229 /// the specified pointer, return 'len+1'. If we can't, return 0. 4230 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4231 if (!V->getType()->isPointerTy()) 4232 return 0; 4233 4234 SmallPtrSet<const PHINode*, 32> PHIs; 4235 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4236 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4237 // an empty string as a length. 4238 return Len == ~0ULL ? 1 : Len; 4239 } 4240 4241 const Value * 4242 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4243 bool MustPreserveNullness) { 4244 assert(Call && 4245 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4246 if (const Value *RV = Call->getReturnedArgOperand()) 4247 return RV; 4248 // This can be used only as a aliasing property. 4249 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4250 Call, MustPreserveNullness)) 4251 return Call->getArgOperand(0); 4252 return nullptr; 4253 } 4254 4255 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4256 const CallBase *Call, bool MustPreserveNullness) { 4257 switch (Call->getIntrinsicID()) { 4258 case Intrinsic::launder_invariant_group: 4259 case Intrinsic::strip_invariant_group: 4260 case Intrinsic::aarch64_irg: 4261 case Intrinsic::aarch64_tagp: 4262 return true; 4263 case Intrinsic::ptrmask: 4264 return !MustPreserveNullness; 4265 default: 4266 return false; 4267 } 4268 } 4269 4270 /// \p PN defines a loop-variant pointer to an object. Check if the 4271 /// previous iteration of the loop was referring to the same object as \p PN. 4272 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4273 const LoopInfo *LI) { 4274 // Find the loop-defined value. 4275 Loop *L = LI->getLoopFor(PN->getParent()); 4276 if (PN->getNumIncomingValues() != 2) 4277 return true; 4278 4279 // Find the value from previous iteration. 4280 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4281 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4282 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4283 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4284 return true; 4285 4286 // If a new pointer is loaded in the loop, the pointer references a different 4287 // object in every iteration. E.g.: 4288 // for (i) 4289 // int *p = a[i]; 4290 // ... 4291 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4292 if (!L->isLoopInvariant(Load->getPointerOperand())) 4293 return false; 4294 return true; 4295 } 4296 4297 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4298 if (!V->getType()->isPointerTy()) 4299 return V; 4300 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4301 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4302 V = GEP->getPointerOperand(); 4303 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4304 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4305 V = cast<Operator>(V)->getOperand(0); 4306 if (!V->getType()->isPointerTy()) 4307 return V; 4308 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4309 if (GA->isInterposable()) 4310 return V; 4311 V = GA->getAliasee(); 4312 } else { 4313 if (auto *PHI = dyn_cast<PHINode>(V)) { 4314 // Look through single-arg phi nodes created by LCSSA. 4315 if (PHI->getNumIncomingValues() == 1) { 4316 V = PHI->getIncomingValue(0); 4317 continue; 4318 } 4319 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4320 // CaptureTracking can know about special capturing properties of some 4321 // intrinsics like launder.invariant.group, that can't be expressed with 4322 // the attributes, but have properties like returning aliasing pointer. 4323 // Because some analysis may assume that nocaptured pointer is not 4324 // returned from some special intrinsic (because function would have to 4325 // be marked with returns attribute), it is crucial to use this function 4326 // because it should be in sync with CaptureTracking. Not using it may 4327 // cause weird miscompilations where 2 aliasing pointers are assumed to 4328 // noalias. 4329 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4330 V = RP; 4331 continue; 4332 } 4333 } 4334 4335 return V; 4336 } 4337 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4338 } 4339 return V; 4340 } 4341 4342 void llvm::getUnderlyingObjects(const Value *V, 4343 SmallVectorImpl<const Value *> &Objects, 4344 LoopInfo *LI, unsigned MaxLookup) { 4345 SmallPtrSet<const Value *, 4> Visited; 4346 SmallVector<const Value *, 4> Worklist; 4347 Worklist.push_back(V); 4348 do { 4349 const Value *P = Worklist.pop_back_val(); 4350 P = getUnderlyingObject(P, MaxLookup); 4351 4352 if (!Visited.insert(P).second) 4353 continue; 4354 4355 if (auto *SI = dyn_cast<SelectInst>(P)) { 4356 Worklist.push_back(SI->getTrueValue()); 4357 Worklist.push_back(SI->getFalseValue()); 4358 continue; 4359 } 4360 4361 if (auto *PN = dyn_cast<PHINode>(P)) { 4362 // If this PHI changes the underlying object in every iteration of the 4363 // loop, don't look through it. Consider: 4364 // int **A; 4365 // for (i) { 4366 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4367 // Curr = A[i]; 4368 // *Prev, *Curr; 4369 // 4370 // Prev is tracking Curr one iteration behind so they refer to different 4371 // underlying objects. 4372 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4373 isSameUnderlyingObjectInLoop(PN, LI)) 4374 append_range(Worklist, PN->incoming_values()); 4375 continue; 4376 } 4377 4378 Objects.push_back(P); 4379 } while (!Worklist.empty()); 4380 } 4381 4382 /// This is the function that does the work of looking through basic 4383 /// ptrtoint+arithmetic+inttoptr sequences. 4384 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4385 do { 4386 if (const Operator *U = dyn_cast<Operator>(V)) { 4387 // If we find a ptrtoint, we can transfer control back to the 4388 // regular getUnderlyingObjectFromInt. 4389 if (U->getOpcode() == Instruction::PtrToInt) 4390 return U->getOperand(0); 4391 // If we find an add of a constant, a multiplied value, or a phi, it's 4392 // likely that the other operand will lead us to the base 4393 // object. We don't have to worry about the case where the 4394 // object address is somehow being computed by the multiply, 4395 // because our callers only care when the result is an 4396 // identifiable object. 4397 if (U->getOpcode() != Instruction::Add || 4398 (!isa<ConstantInt>(U->getOperand(1)) && 4399 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4400 !isa<PHINode>(U->getOperand(1)))) 4401 return V; 4402 V = U->getOperand(0); 4403 } else { 4404 return V; 4405 } 4406 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4407 } while (true); 4408 } 4409 4410 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4411 /// ptrtoint+arithmetic+inttoptr sequences. 4412 /// It returns false if unidentified object is found in getUnderlyingObjects. 4413 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4414 SmallVectorImpl<Value *> &Objects) { 4415 SmallPtrSet<const Value *, 16> Visited; 4416 SmallVector<const Value *, 4> Working(1, V); 4417 do { 4418 V = Working.pop_back_val(); 4419 4420 SmallVector<const Value *, 4> Objs; 4421 getUnderlyingObjects(V, Objs); 4422 4423 for (const Value *V : Objs) { 4424 if (!Visited.insert(V).second) 4425 continue; 4426 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4427 const Value *O = 4428 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4429 if (O->getType()->isPointerTy()) { 4430 Working.push_back(O); 4431 continue; 4432 } 4433 } 4434 // If getUnderlyingObjects fails to find an identifiable object, 4435 // getUnderlyingObjectsForCodeGen also fails for safety. 4436 if (!isIdentifiedObject(V)) { 4437 Objects.clear(); 4438 return false; 4439 } 4440 Objects.push_back(const_cast<Value *>(V)); 4441 } 4442 } while (!Working.empty()); 4443 return true; 4444 } 4445 4446 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4447 AllocaInst *Result = nullptr; 4448 SmallPtrSet<Value *, 4> Visited; 4449 SmallVector<Value *, 4> Worklist; 4450 4451 auto AddWork = [&](Value *V) { 4452 if (Visited.insert(V).second) 4453 Worklist.push_back(V); 4454 }; 4455 4456 AddWork(V); 4457 do { 4458 V = Worklist.pop_back_val(); 4459 assert(Visited.count(V)); 4460 4461 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4462 if (Result && Result != AI) 4463 return nullptr; 4464 Result = AI; 4465 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4466 AddWork(CI->getOperand(0)); 4467 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4468 for (Value *IncValue : PN->incoming_values()) 4469 AddWork(IncValue); 4470 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4471 AddWork(SI->getTrueValue()); 4472 AddWork(SI->getFalseValue()); 4473 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4474 if (OffsetZero && !GEP->hasAllZeroIndices()) 4475 return nullptr; 4476 AddWork(GEP->getPointerOperand()); 4477 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4478 Value *Returned = CB->getReturnedArgOperand(); 4479 if (Returned) 4480 AddWork(Returned); 4481 else 4482 return nullptr; 4483 } else { 4484 return nullptr; 4485 } 4486 } while (!Worklist.empty()); 4487 4488 return Result; 4489 } 4490 4491 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4492 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4493 for (const User *U : V->users()) { 4494 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4495 if (!II) 4496 return false; 4497 4498 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4499 continue; 4500 4501 if (AllowDroppable && II->isDroppable()) 4502 continue; 4503 4504 return false; 4505 } 4506 return true; 4507 } 4508 4509 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4510 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4511 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4512 } 4513 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4514 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4515 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4516 } 4517 4518 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4519 if (!LI.isUnordered()) 4520 return true; 4521 const Function &F = *LI.getFunction(); 4522 // Speculative load may create a race that did not exist in the source. 4523 return F.hasFnAttribute(Attribute::SanitizeThread) || 4524 // Speculative load may load data from dirty regions. 4525 F.hasFnAttribute(Attribute::SanitizeAddress) || 4526 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4527 } 4528 4529 4530 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4531 const Instruction *CtxI, 4532 const DominatorTree *DT, 4533 const TargetLibraryInfo *TLI) { 4534 const Operator *Inst = dyn_cast<Operator>(V); 4535 if (!Inst) 4536 return false; 4537 4538 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4539 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4540 if (C->canTrap()) 4541 return false; 4542 4543 switch (Inst->getOpcode()) { 4544 default: 4545 return true; 4546 case Instruction::UDiv: 4547 case Instruction::URem: { 4548 // x / y is undefined if y == 0. 4549 const APInt *V; 4550 if (match(Inst->getOperand(1), m_APInt(V))) 4551 return *V != 0; 4552 return false; 4553 } 4554 case Instruction::SDiv: 4555 case Instruction::SRem: { 4556 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4557 const APInt *Numerator, *Denominator; 4558 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4559 return false; 4560 // We cannot hoist this division if the denominator is 0. 4561 if (*Denominator == 0) 4562 return false; 4563 // It's safe to hoist if the denominator is not 0 or -1. 4564 if (!Denominator->isAllOnes()) 4565 return true; 4566 // At this point we know that the denominator is -1. It is safe to hoist as 4567 // long we know that the numerator is not INT_MIN. 4568 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4569 return !Numerator->isMinSignedValue(); 4570 // The numerator *might* be MinSignedValue. 4571 return false; 4572 } 4573 case Instruction::Load: { 4574 const LoadInst *LI = cast<LoadInst>(Inst); 4575 if (mustSuppressSpeculation(*LI)) 4576 return false; 4577 const DataLayout &DL = LI->getModule()->getDataLayout(); 4578 return isDereferenceableAndAlignedPointer( 4579 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4580 TLI); 4581 } 4582 case Instruction::Call: { 4583 auto *CI = cast<const CallInst>(Inst); 4584 const Function *Callee = CI->getCalledFunction(); 4585 4586 // The called function could have undefined behavior or side-effects, even 4587 // if marked readnone nounwind. 4588 return Callee && Callee->isSpeculatable(); 4589 } 4590 case Instruction::VAArg: 4591 case Instruction::Alloca: 4592 case Instruction::Invoke: 4593 case Instruction::CallBr: 4594 case Instruction::PHI: 4595 case Instruction::Store: 4596 case Instruction::Ret: 4597 case Instruction::Br: 4598 case Instruction::IndirectBr: 4599 case Instruction::Switch: 4600 case Instruction::Unreachable: 4601 case Instruction::Fence: 4602 case Instruction::AtomicRMW: 4603 case Instruction::AtomicCmpXchg: 4604 case Instruction::LandingPad: 4605 case Instruction::Resume: 4606 case Instruction::CatchSwitch: 4607 case Instruction::CatchPad: 4608 case Instruction::CatchRet: 4609 case Instruction::CleanupPad: 4610 case Instruction::CleanupRet: 4611 return false; // Misc instructions which have effects 4612 } 4613 } 4614 4615 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4616 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4617 } 4618 4619 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4620 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4621 switch (OR) { 4622 case ConstantRange::OverflowResult::MayOverflow: 4623 return OverflowResult::MayOverflow; 4624 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4625 return OverflowResult::AlwaysOverflowsLow; 4626 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4627 return OverflowResult::AlwaysOverflowsHigh; 4628 case ConstantRange::OverflowResult::NeverOverflows: 4629 return OverflowResult::NeverOverflows; 4630 } 4631 llvm_unreachable("Unknown OverflowResult"); 4632 } 4633 4634 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4635 static ConstantRange computeConstantRangeIncludingKnownBits( 4636 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4637 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4638 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4639 KnownBits Known = computeKnownBits( 4640 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4641 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4642 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4643 ConstantRange::PreferredRangeType RangeType = 4644 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4645 return CR1.intersectWith(CR2, RangeType); 4646 } 4647 4648 OverflowResult llvm::computeOverflowForUnsignedMul( 4649 const Value *LHS, const Value *RHS, const DataLayout &DL, 4650 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4651 bool UseInstrInfo) { 4652 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4653 nullptr, UseInstrInfo); 4654 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4655 nullptr, UseInstrInfo); 4656 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4657 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4658 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4659 } 4660 4661 OverflowResult 4662 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4663 const DataLayout &DL, AssumptionCache *AC, 4664 const Instruction *CxtI, 4665 const DominatorTree *DT, bool UseInstrInfo) { 4666 // Multiplying n * m significant bits yields a result of n + m significant 4667 // bits. If the total number of significant bits does not exceed the 4668 // result bit width (minus 1), there is no overflow. 4669 // This means if we have enough leading sign bits in the operands 4670 // we can guarantee that the result does not overflow. 4671 // Ref: "Hacker's Delight" by Henry Warren 4672 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4673 4674 // Note that underestimating the number of sign bits gives a more 4675 // conservative answer. 4676 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4677 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4678 4679 // First handle the easy case: if we have enough sign bits there's 4680 // definitely no overflow. 4681 if (SignBits > BitWidth + 1) 4682 return OverflowResult::NeverOverflows; 4683 4684 // There are two ambiguous cases where there can be no overflow: 4685 // SignBits == BitWidth + 1 and 4686 // SignBits == BitWidth 4687 // The second case is difficult to check, therefore we only handle the 4688 // first case. 4689 if (SignBits == BitWidth + 1) { 4690 // It overflows only when both arguments are negative and the true 4691 // product is exactly the minimum negative number. 4692 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4693 // For simplicity we just check if at least one side is not negative. 4694 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4695 nullptr, UseInstrInfo); 4696 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4697 nullptr, UseInstrInfo); 4698 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4699 return OverflowResult::NeverOverflows; 4700 } 4701 return OverflowResult::MayOverflow; 4702 } 4703 4704 OverflowResult llvm::computeOverflowForUnsignedAdd( 4705 const Value *LHS, const Value *RHS, const DataLayout &DL, 4706 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4707 bool UseInstrInfo) { 4708 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4709 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4710 nullptr, UseInstrInfo); 4711 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4712 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4713 nullptr, UseInstrInfo); 4714 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4715 } 4716 4717 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4718 const Value *RHS, 4719 const AddOperator *Add, 4720 const DataLayout &DL, 4721 AssumptionCache *AC, 4722 const Instruction *CxtI, 4723 const DominatorTree *DT) { 4724 if (Add && Add->hasNoSignedWrap()) { 4725 return OverflowResult::NeverOverflows; 4726 } 4727 4728 // If LHS and RHS each have at least two sign bits, the addition will look 4729 // like 4730 // 4731 // XX..... + 4732 // YY..... 4733 // 4734 // If the carry into the most significant position is 0, X and Y can't both 4735 // be 1 and therefore the carry out of the addition is also 0. 4736 // 4737 // If the carry into the most significant position is 1, X and Y can't both 4738 // be 0 and therefore the carry out of the addition is also 1. 4739 // 4740 // Since the carry into the most significant position is always equal to 4741 // the carry out of the addition, there is no signed overflow. 4742 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4743 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4744 return OverflowResult::NeverOverflows; 4745 4746 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4747 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4748 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4749 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4750 OverflowResult OR = 4751 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4752 if (OR != OverflowResult::MayOverflow) 4753 return OR; 4754 4755 // The remaining code needs Add to be available. Early returns if not so. 4756 if (!Add) 4757 return OverflowResult::MayOverflow; 4758 4759 // If the sign of Add is the same as at least one of the operands, this add 4760 // CANNOT overflow. If this can be determined from the known bits of the 4761 // operands the above signedAddMayOverflow() check will have already done so. 4762 // The only other way to improve on the known bits is from an assumption, so 4763 // call computeKnownBitsFromAssume() directly. 4764 bool LHSOrRHSKnownNonNegative = 4765 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4766 bool LHSOrRHSKnownNegative = 4767 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4768 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4769 KnownBits AddKnown(LHSRange.getBitWidth()); 4770 computeKnownBitsFromAssume( 4771 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4772 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4773 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4774 return OverflowResult::NeverOverflows; 4775 } 4776 4777 return OverflowResult::MayOverflow; 4778 } 4779 4780 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4781 const Value *RHS, 4782 const DataLayout &DL, 4783 AssumptionCache *AC, 4784 const Instruction *CxtI, 4785 const DominatorTree *DT) { 4786 // Checking for conditions implied by dominating conditions may be expensive. 4787 // Limit it to usub_with_overflow calls for now. 4788 if (match(CxtI, 4789 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4790 if (auto C = 4791 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4792 if (*C) 4793 return OverflowResult::NeverOverflows; 4794 return OverflowResult::AlwaysOverflowsLow; 4795 } 4796 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4797 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4798 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4799 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4800 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4801 } 4802 4803 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4804 const Value *RHS, 4805 const DataLayout &DL, 4806 AssumptionCache *AC, 4807 const Instruction *CxtI, 4808 const DominatorTree *DT) { 4809 // If LHS and RHS each have at least two sign bits, the subtraction 4810 // cannot overflow. 4811 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4812 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4813 return OverflowResult::NeverOverflows; 4814 4815 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4816 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4817 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4818 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4819 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4820 } 4821 4822 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4823 const DominatorTree &DT) { 4824 SmallVector<const BranchInst *, 2> GuardingBranches; 4825 SmallVector<const ExtractValueInst *, 2> Results; 4826 4827 for (const User *U : WO->users()) { 4828 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4829 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4830 4831 if (EVI->getIndices()[0] == 0) 4832 Results.push_back(EVI); 4833 else { 4834 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4835 4836 for (const auto *U : EVI->users()) 4837 if (const auto *B = dyn_cast<BranchInst>(U)) { 4838 assert(B->isConditional() && "How else is it using an i1?"); 4839 GuardingBranches.push_back(B); 4840 } 4841 } 4842 } else { 4843 // We are using the aggregate directly in a way we don't want to analyze 4844 // here (storing it to a global, say). 4845 return false; 4846 } 4847 } 4848 4849 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4850 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4851 if (!NoWrapEdge.isSingleEdge()) 4852 return false; 4853 4854 // Check if all users of the add are provably no-wrap. 4855 for (const auto *Result : Results) { 4856 // If the extractvalue itself is not executed on overflow, the we don't 4857 // need to check each use separately, since domination is transitive. 4858 if (DT.dominates(NoWrapEdge, Result->getParent())) 4859 continue; 4860 4861 for (auto &RU : Result->uses()) 4862 if (!DT.dominates(NoWrapEdge, RU)) 4863 return false; 4864 } 4865 4866 return true; 4867 }; 4868 4869 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4870 } 4871 4872 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4873 bool ConsiderFlags) { 4874 4875 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 4876 return true; 4877 4878 unsigned Opcode = Op->getOpcode(); 4879 4880 // Check whether opcode is a poison/undef-generating operation 4881 switch (Opcode) { 4882 case Instruction::Shl: 4883 case Instruction::AShr: 4884 case Instruction::LShr: { 4885 // Shifts return poison if shiftwidth is larger than the bitwidth. 4886 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4887 SmallVector<Constant *, 4> ShiftAmounts; 4888 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4889 unsigned NumElts = FVTy->getNumElements(); 4890 for (unsigned i = 0; i < NumElts; ++i) 4891 ShiftAmounts.push_back(C->getAggregateElement(i)); 4892 } else if (isa<ScalableVectorType>(C->getType())) 4893 return true; // Can't tell, just return true to be safe 4894 else 4895 ShiftAmounts.push_back(C); 4896 4897 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4898 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4899 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4900 }); 4901 return !Safe; 4902 } 4903 return true; 4904 } 4905 case Instruction::FPToSI: 4906 case Instruction::FPToUI: 4907 // fptosi/ui yields poison if the resulting value does not fit in the 4908 // destination type. 4909 return true; 4910 case Instruction::Call: 4911 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4912 switch (II->getIntrinsicID()) { 4913 // TODO: Add more intrinsics. 4914 case Intrinsic::ctpop: 4915 case Intrinsic::sadd_with_overflow: 4916 case Intrinsic::ssub_with_overflow: 4917 case Intrinsic::smul_with_overflow: 4918 case Intrinsic::uadd_with_overflow: 4919 case Intrinsic::usub_with_overflow: 4920 case Intrinsic::umul_with_overflow: 4921 return false; 4922 } 4923 } 4924 LLVM_FALLTHROUGH; 4925 case Instruction::CallBr: 4926 case Instruction::Invoke: { 4927 const auto *CB = cast<CallBase>(Op); 4928 return !CB->hasRetAttr(Attribute::NoUndef); 4929 } 4930 case Instruction::InsertElement: 4931 case Instruction::ExtractElement: { 4932 // If index exceeds the length of the vector, it returns poison 4933 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4934 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4935 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4936 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4937 return true; 4938 return false; 4939 } 4940 case Instruction::ShuffleVector: { 4941 // shufflevector may return undef. 4942 if (PoisonOnly) 4943 return false; 4944 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4945 ? cast<ConstantExpr>(Op)->getShuffleMask() 4946 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4947 return is_contained(Mask, UndefMaskElem); 4948 } 4949 case Instruction::FNeg: 4950 case Instruction::PHI: 4951 case Instruction::Select: 4952 case Instruction::URem: 4953 case Instruction::SRem: 4954 case Instruction::ExtractValue: 4955 case Instruction::InsertValue: 4956 case Instruction::Freeze: 4957 case Instruction::ICmp: 4958 case Instruction::FCmp: 4959 return false; 4960 case Instruction::GetElementPtr: 4961 // inbounds is handled above 4962 // TODO: what about inrange on constexpr? 4963 return false; 4964 default: { 4965 const auto *CE = dyn_cast<ConstantExpr>(Op); 4966 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4967 return false; 4968 else if (Instruction::isBinaryOp(Opcode)) 4969 return false; 4970 // Be conservative and return true. 4971 return true; 4972 } 4973 } 4974 } 4975 4976 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 4977 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 4978 } 4979 4980 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 4981 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 4982 } 4983 4984 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4985 const Value *V, unsigned Depth) { 4986 if (ValAssumedPoison == V) 4987 return true; 4988 4989 const unsigned MaxDepth = 2; 4990 if (Depth >= MaxDepth) 4991 return false; 4992 4993 if (const auto *I = dyn_cast<Instruction>(V)) { 4994 if (propagatesPoison(cast<Operator>(I))) 4995 return any_of(I->operands(), [=](const Value *Op) { 4996 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4997 }); 4998 4999 // 'select ValAssumedPoison, _, _' is poison. 5000 if (const auto *SI = dyn_cast<SelectInst>(I)) 5001 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5002 Depth + 1); 5003 // V = extractvalue V0, idx 5004 // V2 = extractvalue V0, idx2 5005 // V0's elements are all poison or not. (e.g., add_with_overflow) 5006 const WithOverflowInst *II; 5007 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5008 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5009 llvm::is_contained(II->args(), ValAssumedPoison))) 5010 return true; 5011 } 5012 return false; 5013 } 5014 5015 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5016 unsigned Depth) { 5017 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5018 return true; 5019 5020 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5021 return true; 5022 5023 const unsigned MaxDepth = 2; 5024 if (Depth >= MaxDepth) 5025 return false; 5026 5027 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5028 if (I && !canCreatePoison(cast<Operator>(I))) { 5029 return all_of(I->operands(), [=](const Value *Op) { 5030 return impliesPoison(Op, V, Depth + 1); 5031 }); 5032 } 5033 return false; 5034 } 5035 5036 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5037 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5038 } 5039 5040 static bool programUndefinedIfUndefOrPoison(const Value *V, 5041 bool PoisonOnly); 5042 5043 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5044 AssumptionCache *AC, 5045 const Instruction *CtxI, 5046 const DominatorTree *DT, 5047 unsigned Depth, bool PoisonOnly) { 5048 if (Depth >= MaxAnalysisRecursionDepth) 5049 return false; 5050 5051 if (isa<MetadataAsValue>(V)) 5052 return false; 5053 5054 if (const auto *A = dyn_cast<Argument>(V)) { 5055 if (A->hasAttribute(Attribute::NoUndef)) 5056 return true; 5057 } 5058 5059 if (auto *C = dyn_cast<Constant>(V)) { 5060 if (isa<UndefValue>(C)) 5061 return PoisonOnly && !isa<PoisonValue>(C); 5062 5063 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5064 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5065 return true; 5066 5067 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5068 return (PoisonOnly ? !C->containsPoisonElement() 5069 : !C->containsUndefOrPoisonElement()) && 5070 !C->containsConstantExpression(); 5071 } 5072 5073 // Strip cast operations from a pointer value. 5074 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5075 // inbounds with zero offset. To guarantee that the result isn't poison, the 5076 // stripped pointer is checked as it has to be pointing into an allocated 5077 // object or be null `null` to ensure `inbounds` getelement pointers with a 5078 // zero offset could not produce poison. 5079 // It can strip off addrspacecast that do not change bit representation as 5080 // well. We believe that such addrspacecast is equivalent to no-op. 5081 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5082 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5083 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5084 return true; 5085 5086 auto OpCheck = [&](const Value *V) { 5087 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5088 PoisonOnly); 5089 }; 5090 5091 if (auto *Opr = dyn_cast<Operator>(V)) { 5092 // If the value is a freeze instruction, then it can never 5093 // be undef or poison. 5094 if (isa<FreezeInst>(V)) 5095 return true; 5096 5097 if (const auto *CB = dyn_cast<CallBase>(V)) { 5098 if (CB->hasRetAttr(Attribute::NoUndef)) 5099 return true; 5100 } 5101 5102 if (const auto *PN = dyn_cast<PHINode>(V)) { 5103 unsigned Num = PN->getNumIncomingValues(); 5104 bool IsWellDefined = true; 5105 for (unsigned i = 0; i < Num; ++i) { 5106 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5107 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5108 DT, Depth + 1, PoisonOnly)) { 5109 IsWellDefined = false; 5110 break; 5111 } 5112 } 5113 if (IsWellDefined) 5114 return true; 5115 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5116 return true; 5117 } 5118 5119 if (auto *I = dyn_cast<LoadInst>(V)) 5120 if (I->getMetadata(LLVMContext::MD_noundef)) 5121 return true; 5122 5123 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5124 return true; 5125 5126 // CxtI may be null or a cloned instruction. 5127 if (!CtxI || !CtxI->getParent() || !DT) 5128 return false; 5129 5130 auto *DNode = DT->getNode(CtxI->getParent()); 5131 if (!DNode) 5132 // Unreachable block 5133 return false; 5134 5135 // If V is used as a branch condition before reaching CtxI, V cannot be 5136 // undef or poison. 5137 // br V, BB1, BB2 5138 // BB1: 5139 // CtxI ; V cannot be undef or poison here 5140 auto *Dominator = DNode->getIDom(); 5141 while (Dominator) { 5142 auto *TI = Dominator->getBlock()->getTerminator(); 5143 5144 Value *Cond = nullptr; 5145 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5146 if (BI->isConditional()) 5147 Cond = BI->getCondition(); 5148 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5149 Cond = SI->getCondition(); 5150 } 5151 5152 if (Cond) { 5153 if (Cond == V) 5154 return true; 5155 else if (PoisonOnly && isa<Operator>(Cond)) { 5156 // For poison, we can analyze further 5157 auto *Opr = cast<Operator>(Cond); 5158 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5159 return true; 5160 } 5161 } 5162 5163 Dominator = Dominator->getIDom(); 5164 } 5165 5166 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5167 return true; 5168 5169 return false; 5170 } 5171 5172 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5173 const Instruction *CtxI, 5174 const DominatorTree *DT, 5175 unsigned Depth) { 5176 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5177 } 5178 5179 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5180 const Instruction *CtxI, 5181 const DominatorTree *DT, unsigned Depth) { 5182 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5183 } 5184 5185 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5186 const DataLayout &DL, 5187 AssumptionCache *AC, 5188 const Instruction *CxtI, 5189 const DominatorTree *DT) { 5190 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5191 Add, DL, AC, CxtI, DT); 5192 } 5193 5194 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5195 const Value *RHS, 5196 const DataLayout &DL, 5197 AssumptionCache *AC, 5198 const Instruction *CxtI, 5199 const DominatorTree *DT) { 5200 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5201 } 5202 5203 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5204 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5205 // of time because it's possible for another thread to interfere with it for an 5206 // arbitrary length of time, but programs aren't allowed to rely on that. 5207 5208 // If there is no successor, then execution can't transfer to it. 5209 if (isa<ReturnInst>(I)) 5210 return false; 5211 if (isa<UnreachableInst>(I)) 5212 return false; 5213 5214 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5215 // Instruction::willReturn. 5216 // 5217 // FIXME: Move this check into Instruction::willReturn. 5218 if (isa<CatchPadInst>(I)) { 5219 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5220 default: 5221 // A catchpad may invoke exception object constructors and such, which 5222 // in some languages can be arbitrary code, so be conservative by default. 5223 return false; 5224 case EHPersonality::CoreCLR: 5225 // For CoreCLR, it just involves a type test. 5226 return true; 5227 } 5228 } 5229 5230 // An instruction that returns without throwing must transfer control flow 5231 // to a successor. 5232 return !I->mayThrow() && I->willReturn(); 5233 } 5234 5235 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5236 // TODO: This is slightly conservative for invoke instruction since exiting 5237 // via an exception *is* normal control for them. 5238 for (const Instruction &I : *BB) 5239 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5240 return false; 5241 return true; 5242 } 5243 5244 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5245 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5246 unsigned ScanLimit) { 5247 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5248 ScanLimit); 5249 } 5250 5251 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5252 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5253 assert(ScanLimit && "scan limit must be non-zero"); 5254 for (const Instruction &I : Range) { 5255 if (isa<DbgInfoIntrinsic>(I)) 5256 continue; 5257 if (--ScanLimit == 0) 5258 return false; 5259 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5260 return false; 5261 } 5262 return true; 5263 } 5264 5265 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5266 const Loop *L) { 5267 // The loop header is guaranteed to be executed for every iteration. 5268 // 5269 // FIXME: Relax this constraint to cover all basic blocks that are 5270 // guaranteed to be executed at every iteration. 5271 if (I->getParent() != L->getHeader()) return false; 5272 5273 for (const Instruction &LI : *L->getHeader()) { 5274 if (&LI == I) return true; 5275 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5276 } 5277 llvm_unreachable("Instruction not contained in its own parent basic block."); 5278 } 5279 5280 bool llvm::propagatesPoison(const Operator *I) { 5281 switch (I->getOpcode()) { 5282 case Instruction::Freeze: 5283 case Instruction::Select: 5284 case Instruction::PHI: 5285 case Instruction::Invoke: 5286 return false; 5287 case Instruction::Call: 5288 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5289 switch (II->getIntrinsicID()) { 5290 // TODO: Add more intrinsics. 5291 case Intrinsic::sadd_with_overflow: 5292 case Intrinsic::ssub_with_overflow: 5293 case Intrinsic::smul_with_overflow: 5294 case Intrinsic::uadd_with_overflow: 5295 case Intrinsic::usub_with_overflow: 5296 case Intrinsic::umul_with_overflow: 5297 // If an input is a vector containing a poison element, the 5298 // two output vectors (calculated results, overflow bits)' 5299 // corresponding lanes are poison. 5300 return true; 5301 case Intrinsic::ctpop: 5302 return true; 5303 } 5304 } 5305 return false; 5306 case Instruction::ICmp: 5307 case Instruction::FCmp: 5308 case Instruction::GetElementPtr: 5309 return true; 5310 default: 5311 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5312 return true; 5313 5314 // Be conservative and return false. 5315 return false; 5316 } 5317 } 5318 5319 void llvm::getGuaranteedWellDefinedOps( 5320 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5321 switch (I->getOpcode()) { 5322 case Instruction::Store: 5323 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5324 break; 5325 5326 case Instruction::Load: 5327 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5328 break; 5329 5330 // Since dereferenceable attribute imply noundef, atomic operations 5331 // also implicitly have noundef pointers too 5332 case Instruction::AtomicCmpXchg: 5333 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5334 break; 5335 5336 case Instruction::AtomicRMW: 5337 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5338 break; 5339 5340 case Instruction::Call: 5341 case Instruction::Invoke: { 5342 const CallBase *CB = cast<CallBase>(I); 5343 if (CB->isIndirectCall()) 5344 Operands.insert(CB->getCalledOperand()); 5345 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5346 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5347 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5348 Operands.insert(CB->getArgOperand(i)); 5349 } 5350 break; 5351 } 5352 case Instruction::Ret: 5353 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5354 Operands.insert(I->getOperand(0)); 5355 break; 5356 default: 5357 break; 5358 } 5359 } 5360 5361 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5362 SmallPtrSetImpl<const Value *> &Operands) { 5363 getGuaranteedWellDefinedOps(I, Operands); 5364 switch (I->getOpcode()) { 5365 // Divisors of these operations are allowed to be partially undef. 5366 case Instruction::UDiv: 5367 case Instruction::SDiv: 5368 case Instruction::URem: 5369 case Instruction::SRem: 5370 Operands.insert(I->getOperand(1)); 5371 break; 5372 case Instruction::Switch: 5373 if (BranchOnPoisonAsUB) 5374 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5375 break; 5376 case Instruction::Br: { 5377 auto *BR = cast<BranchInst>(I); 5378 if (BranchOnPoisonAsUB && BR->isConditional()) 5379 Operands.insert(BR->getCondition()); 5380 break; 5381 } 5382 default: 5383 break; 5384 } 5385 } 5386 5387 bool llvm::mustTriggerUB(const Instruction *I, 5388 const SmallSet<const Value *, 16>& KnownPoison) { 5389 SmallPtrSet<const Value *, 4> NonPoisonOps; 5390 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5391 5392 for (const auto *V : NonPoisonOps) 5393 if (KnownPoison.count(V)) 5394 return true; 5395 5396 return false; 5397 } 5398 5399 static bool programUndefinedIfUndefOrPoison(const Value *V, 5400 bool PoisonOnly) { 5401 // We currently only look for uses of values within the same basic 5402 // block, as that makes it easier to guarantee that the uses will be 5403 // executed given that Inst is executed. 5404 // 5405 // FIXME: Expand this to consider uses beyond the same basic block. To do 5406 // this, look out for the distinction between post-dominance and strong 5407 // post-dominance. 5408 const BasicBlock *BB = nullptr; 5409 BasicBlock::const_iterator Begin; 5410 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5411 BB = Inst->getParent(); 5412 Begin = Inst->getIterator(); 5413 Begin++; 5414 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5415 BB = &Arg->getParent()->getEntryBlock(); 5416 Begin = BB->begin(); 5417 } else { 5418 return false; 5419 } 5420 5421 // Limit number of instructions we look at, to avoid scanning through large 5422 // blocks. The current limit is chosen arbitrarily. 5423 unsigned ScanLimit = 32; 5424 BasicBlock::const_iterator End = BB->end(); 5425 5426 if (!PoisonOnly) { 5427 // Since undef does not propagate eagerly, be conservative & just check 5428 // whether a value is directly passed to an instruction that must take 5429 // well-defined operands. 5430 5431 for (auto &I : make_range(Begin, End)) { 5432 if (isa<DbgInfoIntrinsic>(I)) 5433 continue; 5434 if (--ScanLimit == 0) 5435 break; 5436 5437 SmallPtrSet<const Value *, 4> WellDefinedOps; 5438 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5439 if (WellDefinedOps.contains(V)) 5440 return true; 5441 5442 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5443 break; 5444 } 5445 return false; 5446 } 5447 5448 // Set of instructions that we have proved will yield poison if Inst 5449 // does. 5450 SmallSet<const Value *, 16> YieldsPoison; 5451 SmallSet<const BasicBlock *, 4> Visited; 5452 5453 YieldsPoison.insert(V); 5454 auto Propagate = [&](const User *User) { 5455 if (propagatesPoison(cast<Operator>(User))) 5456 YieldsPoison.insert(User); 5457 }; 5458 for_each(V->users(), Propagate); 5459 Visited.insert(BB); 5460 5461 while (true) { 5462 for (auto &I : make_range(Begin, End)) { 5463 if (isa<DbgInfoIntrinsic>(I)) 5464 continue; 5465 if (--ScanLimit == 0) 5466 return false; 5467 if (mustTriggerUB(&I, YieldsPoison)) 5468 return true; 5469 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5470 return false; 5471 5472 // Mark poison that propagates from I through uses of I. 5473 if (YieldsPoison.count(&I)) 5474 for_each(I.users(), Propagate); 5475 } 5476 5477 BB = BB->getSingleSuccessor(); 5478 if (!BB || !Visited.insert(BB).second) 5479 break; 5480 5481 Begin = BB->getFirstNonPHI()->getIterator(); 5482 End = BB->end(); 5483 } 5484 return false; 5485 } 5486 5487 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5488 return ::programUndefinedIfUndefOrPoison(Inst, false); 5489 } 5490 5491 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5492 return ::programUndefinedIfUndefOrPoison(Inst, true); 5493 } 5494 5495 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5496 if (FMF.noNaNs()) 5497 return true; 5498 5499 if (auto *C = dyn_cast<ConstantFP>(V)) 5500 return !C->isNaN(); 5501 5502 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5503 if (!C->getElementType()->isFloatingPointTy()) 5504 return false; 5505 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5506 if (C->getElementAsAPFloat(I).isNaN()) 5507 return false; 5508 } 5509 return true; 5510 } 5511 5512 if (isa<ConstantAggregateZero>(V)) 5513 return true; 5514 5515 return false; 5516 } 5517 5518 static bool isKnownNonZero(const Value *V) { 5519 if (auto *C = dyn_cast<ConstantFP>(V)) 5520 return !C->isZero(); 5521 5522 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5523 if (!C->getElementType()->isFloatingPointTy()) 5524 return false; 5525 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5526 if (C->getElementAsAPFloat(I).isZero()) 5527 return false; 5528 } 5529 return true; 5530 } 5531 5532 return false; 5533 } 5534 5535 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5536 /// Given non-min/max outer cmp/select from the clamp pattern this 5537 /// function recognizes if it can be substitued by a "canonical" min/max 5538 /// pattern. 5539 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5540 Value *CmpLHS, Value *CmpRHS, 5541 Value *TrueVal, Value *FalseVal, 5542 Value *&LHS, Value *&RHS) { 5543 // Try to match 5544 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5545 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5546 // and return description of the outer Max/Min. 5547 5548 // First, check if select has inverse order: 5549 if (CmpRHS == FalseVal) { 5550 std::swap(TrueVal, FalseVal); 5551 Pred = CmpInst::getInversePredicate(Pred); 5552 } 5553 5554 // Assume success now. If there's no match, callers should not use these anyway. 5555 LHS = TrueVal; 5556 RHS = FalseVal; 5557 5558 const APFloat *FC1; 5559 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5560 return {SPF_UNKNOWN, SPNB_NA, false}; 5561 5562 const APFloat *FC2; 5563 switch (Pred) { 5564 case CmpInst::FCMP_OLT: 5565 case CmpInst::FCMP_OLE: 5566 case CmpInst::FCMP_ULT: 5567 case CmpInst::FCMP_ULE: 5568 if (match(FalseVal, 5569 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5570 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5571 *FC1 < *FC2) 5572 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5573 break; 5574 case CmpInst::FCMP_OGT: 5575 case CmpInst::FCMP_OGE: 5576 case CmpInst::FCMP_UGT: 5577 case CmpInst::FCMP_UGE: 5578 if (match(FalseVal, 5579 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5580 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5581 *FC1 > *FC2) 5582 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5583 break; 5584 default: 5585 break; 5586 } 5587 5588 return {SPF_UNKNOWN, SPNB_NA, false}; 5589 } 5590 5591 /// Recognize variations of: 5592 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5593 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5594 Value *CmpLHS, Value *CmpRHS, 5595 Value *TrueVal, Value *FalseVal) { 5596 // Swap the select operands and predicate to match the patterns below. 5597 if (CmpRHS != TrueVal) { 5598 Pred = ICmpInst::getSwappedPredicate(Pred); 5599 std::swap(TrueVal, FalseVal); 5600 } 5601 const APInt *C1; 5602 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5603 const APInt *C2; 5604 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5605 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5606 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5607 return {SPF_SMAX, SPNB_NA, false}; 5608 5609 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5610 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5611 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5612 return {SPF_SMIN, SPNB_NA, false}; 5613 5614 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5615 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5616 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5617 return {SPF_UMAX, SPNB_NA, false}; 5618 5619 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5620 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5621 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5622 return {SPF_UMIN, SPNB_NA, false}; 5623 } 5624 return {SPF_UNKNOWN, SPNB_NA, false}; 5625 } 5626 5627 /// Recognize variations of: 5628 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5629 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5630 Value *CmpLHS, Value *CmpRHS, 5631 Value *TVal, Value *FVal, 5632 unsigned Depth) { 5633 // TODO: Allow FP min/max with nnan/nsz. 5634 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5635 5636 Value *A = nullptr, *B = nullptr; 5637 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5638 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5639 return {SPF_UNKNOWN, SPNB_NA, false}; 5640 5641 Value *C = nullptr, *D = nullptr; 5642 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5643 if (L.Flavor != R.Flavor) 5644 return {SPF_UNKNOWN, SPNB_NA, false}; 5645 5646 // We have something like: x Pred y ? min(a, b) : min(c, d). 5647 // Try to match the compare to the min/max operations of the select operands. 5648 // First, make sure we have the right compare predicate. 5649 switch (L.Flavor) { 5650 case SPF_SMIN: 5651 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5652 Pred = ICmpInst::getSwappedPredicate(Pred); 5653 std::swap(CmpLHS, CmpRHS); 5654 } 5655 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5656 break; 5657 return {SPF_UNKNOWN, SPNB_NA, false}; 5658 case SPF_SMAX: 5659 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5660 Pred = ICmpInst::getSwappedPredicate(Pred); 5661 std::swap(CmpLHS, CmpRHS); 5662 } 5663 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5664 break; 5665 return {SPF_UNKNOWN, SPNB_NA, false}; 5666 case SPF_UMIN: 5667 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5668 Pred = ICmpInst::getSwappedPredicate(Pred); 5669 std::swap(CmpLHS, CmpRHS); 5670 } 5671 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5672 break; 5673 return {SPF_UNKNOWN, SPNB_NA, false}; 5674 case SPF_UMAX: 5675 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5676 Pred = ICmpInst::getSwappedPredicate(Pred); 5677 std::swap(CmpLHS, CmpRHS); 5678 } 5679 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5680 break; 5681 return {SPF_UNKNOWN, SPNB_NA, false}; 5682 default: 5683 return {SPF_UNKNOWN, SPNB_NA, false}; 5684 } 5685 5686 // If there is a common operand in the already matched min/max and the other 5687 // min/max operands match the compare operands (either directly or inverted), 5688 // then this is min/max of the same flavor. 5689 5690 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5691 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5692 if (D == B) { 5693 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5694 match(A, m_Not(m_Specific(CmpRHS))))) 5695 return {L.Flavor, SPNB_NA, false}; 5696 } 5697 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5698 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5699 if (C == B) { 5700 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5701 match(A, m_Not(m_Specific(CmpRHS))))) 5702 return {L.Flavor, SPNB_NA, false}; 5703 } 5704 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5705 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5706 if (D == A) { 5707 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5708 match(B, m_Not(m_Specific(CmpRHS))))) 5709 return {L.Flavor, SPNB_NA, false}; 5710 } 5711 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5712 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5713 if (C == A) { 5714 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5715 match(B, m_Not(m_Specific(CmpRHS))))) 5716 return {L.Flavor, SPNB_NA, false}; 5717 } 5718 5719 return {SPF_UNKNOWN, SPNB_NA, false}; 5720 } 5721 5722 /// If the input value is the result of a 'not' op, constant integer, or vector 5723 /// splat of a constant integer, return the bitwise-not source value. 5724 /// TODO: This could be extended to handle non-splat vector integer constants. 5725 static Value *getNotValue(Value *V) { 5726 Value *NotV; 5727 if (match(V, m_Not(m_Value(NotV)))) 5728 return NotV; 5729 5730 const APInt *C; 5731 if (match(V, m_APInt(C))) 5732 return ConstantInt::get(V->getType(), ~(*C)); 5733 5734 return nullptr; 5735 } 5736 5737 /// Match non-obvious integer minimum and maximum sequences. 5738 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5739 Value *CmpLHS, Value *CmpRHS, 5740 Value *TrueVal, Value *FalseVal, 5741 Value *&LHS, Value *&RHS, 5742 unsigned Depth) { 5743 // Assume success. If there's no match, callers should not use these anyway. 5744 LHS = TrueVal; 5745 RHS = FalseVal; 5746 5747 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5748 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5749 return SPR; 5750 5751 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5752 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5753 return SPR; 5754 5755 // Look through 'not' ops to find disguised min/max. 5756 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5757 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5758 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5759 switch (Pred) { 5760 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5761 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5762 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5763 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5764 default: break; 5765 } 5766 } 5767 5768 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5769 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5770 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5771 switch (Pred) { 5772 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5773 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5774 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5775 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5776 default: break; 5777 } 5778 } 5779 5780 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5781 return {SPF_UNKNOWN, SPNB_NA, false}; 5782 5783 // Z = X -nsw Y 5784 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5785 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5786 if (match(TrueVal, m_Zero()) && 5787 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5788 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5789 5790 // Z = X -nsw Y 5791 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5792 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5793 if (match(FalseVal, m_Zero()) && 5794 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5795 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5796 5797 const APInt *C1; 5798 if (!match(CmpRHS, m_APInt(C1))) 5799 return {SPF_UNKNOWN, SPNB_NA, false}; 5800 5801 // An unsigned min/max can be written with a signed compare. 5802 const APInt *C2; 5803 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5804 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5805 // Is the sign bit set? 5806 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5807 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5808 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5809 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5810 5811 // Is the sign bit clear? 5812 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5813 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5814 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5815 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5816 } 5817 5818 return {SPF_UNKNOWN, SPNB_NA, false}; 5819 } 5820 5821 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5822 assert(X && Y && "Invalid operand"); 5823 5824 // X = sub (0, Y) || X = sub nsw (0, Y) 5825 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5826 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5827 return true; 5828 5829 // Y = sub (0, X) || Y = sub nsw (0, X) 5830 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5831 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5832 return true; 5833 5834 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5835 Value *A, *B; 5836 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5837 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5838 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5839 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5840 } 5841 5842 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5843 FastMathFlags FMF, 5844 Value *CmpLHS, Value *CmpRHS, 5845 Value *TrueVal, Value *FalseVal, 5846 Value *&LHS, Value *&RHS, 5847 unsigned Depth) { 5848 if (CmpInst::isFPPredicate(Pred)) { 5849 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5850 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5851 // purpose of identifying min/max. Disregard vector constants with undefined 5852 // elements because those can not be back-propagated for analysis. 5853 Value *OutputZeroVal = nullptr; 5854 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5855 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5856 OutputZeroVal = TrueVal; 5857 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5858 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5859 OutputZeroVal = FalseVal; 5860 5861 if (OutputZeroVal) { 5862 if (match(CmpLHS, m_AnyZeroFP())) 5863 CmpLHS = OutputZeroVal; 5864 if (match(CmpRHS, m_AnyZeroFP())) 5865 CmpRHS = OutputZeroVal; 5866 } 5867 } 5868 5869 LHS = CmpLHS; 5870 RHS = CmpRHS; 5871 5872 // Signed zero may return inconsistent results between implementations. 5873 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5874 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5875 // Therefore, we behave conservatively and only proceed if at least one of the 5876 // operands is known to not be zero or if we don't care about signed zero. 5877 switch (Pred) { 5878 default: break; 5879 // FIXME: Include OGT/OLT/UGT/ULT. 5880 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5881 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5882 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5883 !isKnownNonZero(CmpRHS)) 5884 return {SPF_UNKNOWN, SPNB_NA, false}; 5885 } 5886 5887 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5888 bool Ordered = false; 5889 5890 // When given one NaN and one non-NaN input: 5891 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5892 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5893 // ordered comparison fails), which could be NaN or non-NaN. 5894 // so here we discover exactly what NaN behavior is required/accepted. 5895 if (CmpInst::isFPPredicate(Pred)) { 5896 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5897 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5898 5899 if (LHSSafe && RHSSafe) { 5900 // Both operands are known non-NaN. 5901 NaNBehavior = SPNB_RETURNS_ANY; 5902 } else if (CmpInst::isOrdered(Pred)) { 5903 // An ordered comparison will return false when given a NaN, so it 5904 // returns the RHS. 5905 Ordered = true; 5906 if (LHSSafe) 5907 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5908 NaNBehavior = SPNB_RETURNS_NAN; 5909 else if (RHSSafe) 5910 NaNBehavior = SPNB_RETURNS_OTHER; 5911 else 5912 // Completely unsafe. 5913 return {SPF_UNKNOWN, SPNB_NA, false}; 5914 } else { 5915 Ordered = false; 5916 // An unordered comparison will return true when given a NaN, so it 5917 // returns the LHS. 5918 if (LHSSafe) 5919 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5920 NaNBehavior = SPNB_RETURNS_OTHER; 5921 else if (RHSSafe) 5922 NaNBehavior = SPNB_RETURNS_NAN; 5923 else 5924 // Completely unsafe. 5925 return {SPF_UNKNOWN, SPNB_NA, false}; 5926 } 5927 } 5928 5929 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5930 std::swap(CmpLHS, CmpRHS); 5931 Pred = CmpInst::getSwappedPredicate(Pred); 5932 if (NaNBehavior == SPNB_RETURNS_NAN) 5933 NaNBehavior = SPNB_RETURNS_OTHER; 5934 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5935 NaNBehavior = SPNB_RETURNS_NAN; 5936 Ordered = !Ordered; 5937 } 5938 5939 // ([if]cmp X, Y) ? X : Y 5940 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5941 switch (Pred) { 5942 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5943 case ICmpInst::ICMP_UGT: 5944 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5945 case ICmpInst::ICMP_SGT: 5946 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5947 case ICmpInst::ICMP_ULT: 5948 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5949 case ICmpInst::ICMP_SLT: 5950 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5951 case FCmpInst::FCMP_UGT: 5952 case FCmpInst::FCMP_UGE: 5953 case FCmpInst::FCMP_OGT: 5954 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5955 case FCmpInst::FCMP_ULT: 5956 case FCmpInst::FCMP_ULE: 5957 case FCmpInst::FCMP_OLT: 5958 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5959 } 5960 } 5961 5962 if (isKnownNegation(TrueVal, FalseVal)) { 5963 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5964 // match against either LHS or sext(LHS). 5965 auto MaybeSExtCmpLHS = 5966 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5967 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5968 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5969 if (match(TrueVal, MaybeSExtCmpLHS)) { 5970 // Set the return values. If the compare uses the negated value (-X >s 0), 5971 // swap the return values because the negated value is always 'RHS'. 5972 LHS = TrueVal; 5973 RHS = FalseVal; 5974 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5975 std::swap(LHS, RHS); 5976 5977 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5978 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5979 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5980 return {SPF_ABS, SPNB_NA, false}; 5981 5982 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5983 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5984 return {SPF_ABS, SPNB_NA, false}; 5985 5986 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5987 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5988 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5989 return {SPF_NABS, SPNB_NA, false}; 5990 } 5991 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5992 // Set the return values. If the compare uses the negated value (-X >s 0), 5993 // swap the return values because the negated value is always 'RHS'. 5994 LHS = FalseVal; 5995 RHS = TrueVal; 5996 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5997 std::swap(LHS, RHS); 5998 5999 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6000 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6001 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6002 return {SPF_NABS, SPNB_NA, false}; 6003 6004 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6005 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6006 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6007 return {SPF_ABS, SPNB_NA, false}; 6008 } 6009 } 6010 6011 if (CmpInst::isIntPredicate(Pred)) 6012 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6013 6014 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6015 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6016 // semantics than minNum. Be conservative in such case. 6017 if (NaNBehavior != SPNB_RETURNS_ANY || 6018 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6019 !isKnownNonZero(CmpRHS))) 6020 return {SPF_UNKNOWN, SPNB_NA, false}; 6021 6022 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6023 } 6024 6025 /// Helps to match a select pattern in case of a type mismatch. 6026 /// 6027 /// The function processes the case when type of true and false values of a 6028 /// select instruction differs from type of the cmp instruction operands because 6029 /// of a cast instruction. The function checks if it is legal to move the cast 6030 /// operation after "select". If yes, it returns the new second value of 6031 /// "select" (with the assumption that cast is moved): 6032 /// 1. As operand of cast instruction when both values of "select" are same cast 6033 /// instructions. 6034 /// 2. As restored constant (by applying reverse cast operation) when the first 6035 /// value of the "select" is a cast operation and the second value is a 6036 /// constant. 6037 /// NOTE: We return only the new second value because the first value could be 6038 /// accessed as operand of cast instruction. 6039 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6040 Instruction::CastOps *CastOp) { 6041 auto *Cast1 = dyn_cast<CastInst>(V1); 6042 if (!Cast1) 6043 return nullptr; 6044 6045 *CastOp = Cast1->getOpcode(); 6046 Type *SrcTy = Cast1->getSrcTy(); 6047 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6048 // If V1 and V2 are both the same cast from the same type, look through V1. 6049 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6050 return Cast2->getOperand(0); 6051 return nullptr; 6052 } 6053 6054 auto *C = dyn_cast<Constant>(V2); 6055 if (!C) 6056 return nullptr; 6057 6058 Constant *CastedTo = nullptr; 6059 switch (*CastOp) { 6060 case Instruction::ZExt: 6061 if (CmpI->isUnsigned()) 6062 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6063 break; 6064 case Instruction::SExt: 6065 if (CmpI->isSigned()) 6066 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6067 break; 6068 case Instruction::Trunc: 6069 Constant *CmpConst; 6070 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6071 CmpConst->getType() == SrcTy) { 6072 // Here we have the following case: 6073 // 6074 // %cond = cmp iN %x, CmpConst 6075 // %tr = trunc iN %x to iK 6076 // %narrowsel = select i1 %cond, iK %t, iK C 6077 // 6078 // We can always move trunc after select operation: 6079 // 6080 // %cond = cmp iN %x, CmpConst 6081 // %widesel = select i1 %cond, iN %x, iN CmpConst 6082 // %tr = trunc iN %widesel to iK 6083 // 6084 // Note that C could be extended in any way because we don't care about 6085 // upper bits after truncation. It can't be abs pattern, because it would 6086 // look like: 6087 // 6088 // select i1 %cond, x, -x. 6089 // 6090 // So only min/max pattern could be matched. Such match requires widened C 6091 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6092 // CmpConst == C is checked below. 6093 CastedTo = CmpConst; 6094 } else { 6095 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6096 } 6097 break; 6098 case Instruction::FPTrunc: 6099 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6100 break; 6101 case Instruction::FPExt: 6102 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6103 break; 6104 case Instruction::FPToUI: 6105 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6106 break; 6107 case Instruction::FPToSI: 6108 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6109 break; 6110 case Instruction::UIToFP: 6111 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6112 break; 6113 case Instruction::SIToFP: 6114 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6115 break; 6116 default: 6117 break; 6118 } 6119 6120 if (!CastedTo) 6121 return nullptr; 6122 6123 // Make sure the cast doesn't lose any information. 6124 Constant *CastedBack = 6125 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6126 if (CastedBack != C) 6127 return nullptr; 6128 6129 return CastedTo; 6130 } 6131 6132 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6133 Instruction::CastOps *CastOp, 6134 unsigned Depth) { 6135 if (Depth >= MaxAnalysisRecursionDepth) 6136 return {SPF_UNKNOWN, SPNB_NA, false}; 6137 6138 SelectInst *SI = dyn_cast<SelectInst>(V); 6139 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6140 6141 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6142 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6143 6144 Value *TrueVal = SI->getTrueValue(); 6145 Value *FalseVal = SI->getFalseValue(); 6146 6147 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6148 CastOp, Depth); 6149 } 6150 6151 SelectPatternResult llvm::matchDecomposedSelectPattern( 6152 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6153 Instruction::CastOps *CastOp, unsigned Depth) { 6154 CmpInst::Predicate Pred = CmpI->getPredicate(); 6155 Value *CmpLHS = CmpI->getOperand(0); 6156 Value *CmpRHS = CmpI->getOperand(1); 6157 FastMathFlags FMF; 6158 if (isa<FPMathOperator>(CmpI)) 6159 FMF = CmpI->getFastMathFlags(); 6160 6161 // Bail out early. 6162 if (CmpI->isEquality()) 6163 return {SPF_UNKNOWN, SPNB_NA, false}; 6164 6165 // Deal with type mismatches. 6166 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6167 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6168 // If this is a potential fmin/fmax with a cast to integer, then ignore 6169 // -0.0 because there is no corresponding integer value. 6170 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6171 FMF.setNoSignedZeros(); 6172 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6173 cast<CastInst>(TrueVal)->getOperand(0), C, 6174 LHS, RHS, Depth); 6175 } 6176 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6177 // If this is a potential fmin/fmax with a cast to integer, then ignore 6178 // -0.0 because there is no corresponding integer value. 6179 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6180 FMF.setNoSignedZeros(); 6181 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6182 C, cast<CastInst>(FalseVal)->getOperand(0), 6183 LHS, RHS, Depth); 6184 } 6185 } 6186 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6187 LHS, RHS, Depth); 6188 } 6189 6190 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6191 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6192 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6193 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6194 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6195 if (SPF == SPF_FMINNUM) 6196 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6197 if (SPF == SPF_FMAXNUM) 6198 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6199 llvm_unreachable("unhandled!"); 6200 } 6201 6202 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6203 if (SPF == SPF_SMIN) return SPF_SMAX; 6204 if (SPF == SPF_UMIN) return SPF_UMAX; 6205 if (SPF == SPF_SMAX) return SPF_SMIN; 6206 if (SPF == SPF_UMAX) return SPF_UMIN; 6207 llvm_unreachable("unhandled!"); 6208 } 6209 6210 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6211 switch (MinMaxID) { 6212 case Intrinsic::smax: return Intrinsic::smin; 6213 case Intrinsic::smin: return Intrinsic::smax; 6214 case Intrinsic::umax: return Intrinsic::umin; 6215 case Intrinsic::umin: return Intrinsic::umax; 6216 default: llvm_unreachable("Unexpected intrinsic"); 6217 } 6218 } 6219 6220 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6221 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6222 } 6223 6224 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6225 switch (SPF) { 6226 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6227 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6228 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6229 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6230 default: llvm_unreachable("Unexpected flavor"); 6231 } 6232 } 6233 6234 std::pair<Intrinsic::ID, bool> 6235 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6236 // Check if VL contains select instructions that can be folded into a min/max 6237 // vector intrinsic and return the intrinsic if it is possible. 6238 // TODO: Support floating point min/max. 6239 bool AllCmpSingleUse = true; 6240 SelectPatternResult SelectPattern; 6241 SelectPattern.Flavor = SPF_UNKNOWN; 6242 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6243 Value *LHS, *RHS; 6244 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6245 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6246 CurrentPattern.Flavor == SPF_FMINNUM || 6247 CurrentPattern.Flavor == SPF_FMAXNUM || 6248 !I->getType()->isIntOrIntVectorTy()) 6249 return false; 6250 if (SelectPattern.Flavor != SPF_UNKNOWN && 6251 SelectPattern.Flavor != CurrentPattern.Flavor) 6252 return false; 6253 SelectPattern = CurrentPattern; 6254 AllCmpSingleUse &= 6255 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6256 return true; 6257 })) { 6258 switch (SelectPattern.Flavor) { 6259 case SPF_SMIN: 6260 return {Intrinsic::smin, AllCmpSingleUse}; 6261 case SPF_UMIN: 6262 return {Intrinsic::umin, AllCmpSingleUse}; 6263 case SPF_SMAX: 6264 return {Intrinsic::smax, AllCmpSingleUse}; 6265 case SPF_UMAX: 6266 return {Intrinsic::umax, AllCmpSingleUse}; 6267 default: 6268 llvm_unreachable("unexpected select pattern flavor"); 6269 } 6270 } 6271 return {Intrinsic::not_intrinsic, false}; 6272 } 6273 6274 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6275 Value *&Start, Value *&Step) { 6276 // Handle the case of a simple two-predecessor recurrence PHI. 6277 // There's a lot more that could theoretically be done here, but 6278 // this is sufficient to catch some interesting cases. 6279 if (P->getNumIncomingValues() != 2) 6280 return false; 6281 6282 for (unsigned i = 0; i != 2; ++i) { 6283 Value *L = P->getIncomingValue(i); 6284 Value *R = P->getIncomingValue(!i); 6285 Operator *LU = dyn_cast<Operator>(L); 6286 if (!LU) 6287 continue; 6288 unsigned Opcode = LU->getOpcode(); 6289 6290 switch (Opcode) { 6291 default: 6292 continue; 6293 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6294 case Instruction::LShr: 6295 case Instruction::AShr: 6296 case Instruction::Shl: 6297 case Instruction::Add: 6298 case Instruction::Sub: 6299 case Instruction::And: 6300 case Instruction::Or: 6301 case Instruction::Mul: { 6302 Value *LL = LU->getOperand(0); 6303 Value *LR = LU->getOperand(1); 6304 // Find a recurrence. 6305 if (LL == P) 6306 L = LR; 6307 else if (LR == P) 6308 L = LL; 6309 else 6310 continue; // Check for recurrence with L and R flipped. 6311 6312 break; // Match! 6313 } 6314 }; 6315 6316 // We have matched a recurrence of the form: 6317 // %iv = [R, %entry], [%iv.next, %backedge] 6318 // %iv.next = binop %iv, L 6319 // OR 6320 // %iv = [R, %entry], [%iv.next, %backedge] 6321 // %iv.next = binop L, %iv 6322 BO = cast<BinaryOperator>(LU); 6323 Start = R; 6324 Step = L; 6325 return true; 6326 } 6327 return false; 6328 } 6329 6330 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6331 Value *&Start, Value *&Step) { 6332 BinaryOperator *BO = nullptr; 6333 P = dyn_cast<PHINode>(I->getOperand(0)); 6334 if (!P) 6335 P = dyn_cast<PHINode>(I->getOperand(1)); 6336 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6337 } 6338 6339 /// Return true if "icmp Pred LHS RHS" is always true. 6340 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6341 const Value *RHS, const DataLayout &DL, 6342 unsigned Depth) { 6343 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6344 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6345 return true; 6346 6347 switch (Pred) { 6348 default: 6349 return false; 6350 6351 case CmpInst::ICMP_SLE: { 6352 const APInt *C; 6353 6354 // LHS s<= LHS +_{nsw} C if C >= 0 6355 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6356 return !C->isNegative(); 6357 return false; 6358 } 6359 6360 case CmpInst::ICMP_ULE: { 6361 const APInt *C; 6362 6363 // LHS u<= LHS +_{nuw} C for any C 6364 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6365 return true; 6366 6367 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6368 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6369 const Value *&X, 6370 const APInt *&CA, const APInt *&CB) { 6371 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6372 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6373 return true; 6374 6375 // If X & C == 0 then (X | C) == X +_{nuw} C 6376 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6377 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6378 KnownBits Known(CA->getBitWidth()); 6379 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6380 /*CxtI*/ nullptr, /*DT*/ nullptr); 6381 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6382 return true; 6383 } 6384 6385 return false; 6386 }; 6387 6388 const Value *X; 6389 const APInt *CLHS, *CRHS; 6390 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6391 return CLHS->ule(*CRHS); 6392 6393 return false; 6394 } 6395 } 6396 } 6397 6398 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6399 /// ALHS ARHS" is true. Otherwise, return None. 6400 static Optional<bool> 6401 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6402 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6403 const DataLayout &DL, unsigned Depth) { 6404 switch (Pred) { 6405 default: 6406 return None; 6407 6408 case CmpInst::ICMP_SLT: 6409 case CmpInst::ICMP_SLE: 6410 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6411 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6412 return true; 6413 return None; 6414 6415 case CmpInst::ICMP_ULT: 6416 case CmpInst::ICMP_ULE: 6417 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6418 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6419 return true; 6420 return None; 6421 } 6422 } 6423 6424 /// Return true if the operands of the two compares match. IsSwappedOps is true 6425 /// when the operands match, but are swapped. 6426 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6427 const Value *BLHS, const Value *BRHS, 6428 bool &IsSwappedOps) { 6429 6430 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6431 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6432 return IsMatchingOps || IsSwappedOps; 6433 } 6434 6435 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6436 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6437 /// Otherwise, return None if we can't infer anything. 6438 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6439 CmpInst::Predicate BPred, 6440 bool AreSwappedOps) { 6441 // Canonicalize the predicate as if the operands were not commuted. 6442 if (AreSwappedOps) 6443 BPred = ICmpInst::getSwappedPredicate(BPred); 6444 6445 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6446 return true; 6447 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6448 return false; 6449 6450 return None; 6451 } 6452 6453 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6454 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6455 /// Otherwise, return None if we can't infer anything. 6456 static Optional<bool> 6457 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6458 const ConstantInt *C1, 6459 CmpInst::Predicate BPred, 6460 const ConstantInt *C2) { 6461 ConstantRange DomCR = 6462 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6463 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6464 ConstantRange Intersection = DomCR.intersectWith(CR); 6465 ConstantRange Difference = DomCR.difference(CR); 6466 if (Intersection.isEmptySet()) 6467 return false; 6468 if (Difference.isEmptySet()) 6469 return true; 6470 return None; 6471 } 6472 6473 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6474 /// false. Otherwise, return None if we can't infer anything. 6475 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6476 CmpInst::Predicate BPred, 6477 const Value *BLHS, const Value *BRHS, 6478 const DataLayout &DL, bool LHSIsTrue, 6479 unsigned Depth) { 6480 Value *ALHS = LHS->getOperand(0); 6481 Value *ARHS = LHS->getOperand(1); 6482 6483 // The rest of the logic assumes the LHS condition is true. If that's not the 6484 // case, invert the predicate to make it so. 6485 CmpInst::Predicate APred = 6486 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6487 6488 // Can we infer anything when the two compares have matching operands? 6489 bool AreSwappedOps; 6490 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6491 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6492 APred, BPred, AreSwappedOps)) 6493 return Implication; 6494 // No amount of additional analysis will infer the second condition, so 6495 // early exit. 6496 return None; 6497 } 6498 6499 // Can we infer anything when the LHS operands match and the RHS operands are 6500 // constants (not necessarily matching)? 6501 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6502 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6503 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6504 return Implication; 6505 // No amount of additional analysis will infer the second condition, so 6506 // early exit. 6507 return None; 6508 } 6509 6510 if (APred == BPred) 6511 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6512 return None; 6513 } 6514 6515 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6516 /// false. Otherwise, return None if we can't infer anything. We expect the 6517 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6518 static Optional<bool> 6519 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6520 const Value *RHSOp0, const Value *RHSOp1, 6521 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6522 // The LHS must be an 'or', 'and', or a 'select' instruction. 6523 assert((LHS->getOpcode() == Instruction::And || 6524 LHS->getOpcode() == Instruction::Or || 6525 LHS->getOpcode() == Instruction::Select) && 6526 "Expected LHS to be 'and', 'or', or 'select'."); 6527 6528 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6529 6530 // If the result of an 'or' is false, then we know both legs of the 'or' are 6531 // false. Similarly, if the result of an 'and' is true, then we know both 6532 // legs of the 'and' are true. 6533 const Value *ALHS, *ARHS; 6534 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6535 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6536 // FIXME: Make this non-recursion. 6537 if (Optional<bool> Implication = isImpliedCondition( 6538 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6539 return Implication; 6540 if (Optional<bool> Implication = isImpliedCondition( 6541 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6542 return Implication; 6543 return None; 6544 } 6545 return None; 6546 } 6547 6548 Optional<bool> 6549 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6550 const Value *RHSOp0, const Value *RHSOp1, 6551 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6552 // Bail out when we hit the limit. 6553 if (Depth == MaxAnalysisRecursionDepth) 6554 return None; 6555 6556 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6557 // example. 6558 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6559 return None; 6560 6561 Type *OpTy = LHS->getType(); 6562 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6563 6564 // FIXME: Extending the code below to handle vectors. 6565 if (OpTy->isVectorTy()) 6566 return None; 6567 6568 assert(OpTy->isIntegerTy(1) && "implied by above"); 6569 6570 // Both LHS and RHS are icmps. 6571 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6572 if (LHSCmp) 6573 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6574 Depth); 6575 6576 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6577 /// the RHS to be an icmp. 6578 /// FIXME: Add support for and/or/select on the RHS. 6579 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6580 if ((LHSI->getOpcode() == Instruction::And || 6581 LHSI->getOpcode() == Instruction::Or || 6582 LHSI->getOpcode() == Instruction::Select)) 6583 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6584 Depth); 6585 } 6586 return None; 6587 } 6588 6589 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6590 const DataLayout &DL, bool LHSIsTrue, 6591 unsigned Depth) { 6592 // LHS ==> RHS by definition 6593 if (LHS == RHS) 6594 return LHSIsTrue; 6595 6596 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6597 if (RHSCmp) 6598 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6599 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6600 LHSIsTrue, Depth); 6601 return None; 6602 } 6603 6604 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6605 // condition dominating ContextI or nullptr, if no condition is found. 6606 static std::pair<Value *, bool> 6607 getDomPredecessorCondition(const Instruction *ContextI) { 6608 if (!ContextI || !ContextI->getParent()) 6609 return {nullptr, false}; 6610 6611 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6612 // dominator tree (eg, from a SimplifyQuery) instead? 6613 const BasicBlock *ContextBB = ContextI->getParent(); 6614 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6615 if (!PredBB) 6616 return {nullptr, false}; 6617 6618 // We need a conditional branch in the predecessor. 6619 Value *PredCond; 6620 BasicBlock *TrueBB, *FalseBB; 6621 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6622 return {nullptr, false}; 6623 6624 // The branch should get simplified. Don't bother simplifying this condition. 6625 if (TrueBB == FalseBB) 6626 return {nullptr, false}; 6627 6628 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6629 "Predecessor block does not point to successor?"); 6630 6631 // Is this condition implied by the predecessor condition? 6632 return {PredCond, TrueBB == ContextBB}; 6633 } 6634 6635 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6636 const Instruction *ContextI, 6637 const DataLayout &DL) { 6638 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6639 auto PredCond = getDomPredecessorCondition(ContextI); 6640 if (PredCond.first) 6641 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6642 return None; 6643 } 6644 6645 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6646 const Value *LHS, const Value *RHS, 6647 const Instruction *ContextI, 6648 const DataLayout &DL) { 6649 auto PredCond = getDomPredecessorCondition(ContextI); 6650 if (PredCond.first) 6651 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6652 PredCond.second); 6653 return None; 6654 } 6655 6656 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6657 APInt &Upper, const InstrInfoQuery &IIQ, 6658 bool PreferSignedRange) { 6659 unsigned Width = Lower.getBitWidth(); 6660 const APInt *C; 6661 switch (BO.getOpcode()) { 6662 case Instruction::Add: 6663 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6664 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6665 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6666 6667 // If the caller expects a signed compare, then try to use a signed range. 6668 // Otherwise if both no-wraps are set, use the unsigned range because it 6669 // is never larger than the signed range. Example: 6670 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6671 if (PreferSignedRange && HasNSW && HasNUW) 6672 HasNUW = false; 6673 6674 if (HasNUW) { 6675 // 'add nuw x, C' produces [C, UINT_MAX]. 6676 Lower = *C; 6677 } else if (HasNSW) { 6678 if (C->isNegative()) { 6679 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6680 Lower = APInt::getSignedMinValue(Width); 6681 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6682 } else { 6683 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6684 Lower = APInt::getSignedMinValue(Width) + *C; 6685 Upper = APInt::getSignedMaxValue(Width) + 1; 6686 } 6687 } 6688 } 6689 break; 6690 6691 case Instruction::And: 6692 if (match(BO.getOperand(1), m_APInt(C))) 6693 // 'and x, C' produces [0, C]. 6694 Upper = *C + 1; 6695 break; 6696 6697 case Instruction::Or: 6698 if (match(BO.getOperand(1), m_APInt(C))) 6699 // 'or x, C' produces [C, UINT_MAX]. 6700 Lower = *C; 6701 break; 6702 6703 case Instruction::AShr: 6704 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6705 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6706 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6707 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6708 } else if (match(BO.getOperand(0), m_APInt(C))) { 6709 unsigned ShiftAmount = Width - 1; 6710 if (!C->isZero() && IIQ.isExact(&BO)) 6711 ShiftAmount = C->countTrailingZeros(); 6712 if (C->isNegative()) { 6713 // 'ashr C, x' produces [C, C >> (Width-1)] 6714 Lower = *C; 6715 Upper = C->ashr(ShiftAmount) + 1; 6716 } else { 6717 // 'ashr C, x' produces [C >> (Width-1), C] 6718 Lower = C->ashr(ShiftAmount); 6719 Upper = *C + 1; 6720 } 6721 } 6722 break; 6723 6724 case Instruction::LShr: 6725 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6726 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6727 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6728 } else if (match(BO.getOperand(0), m_APInt(C))) { 6729 // 'lshr C, x' produces [C >> (Width-1), C]. 6730 unsigned ShiftAmount = Width - 1; 6731 if (!C->isZero() && IIQ.isExact(&BO)) 6732 ShiftAmount = C->countTrailingZeros(); 6733 Lower = C->lshr(ShiftAmount); 6734 Upper = *C + 1; 6735 } 6736 break; 6737 6738 case Instruction::Shl: 6739 if (match(BO.getOperand(0), m_APInt(C))) { 6740 if (IIQ.hasNoUnsignedWrap(&BO)) { 6741 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6742 Lower = *C; 6743 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6744 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6745 if (C->isNegative()) { 6746 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6747 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6748 Lower = C->shl(ShiftAmount); 6749 Upper = *C + 1; 6750 } else { 6751 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6752 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6753 Lower = *C; 6754 Upper = C->shl(ShiftAmount) + 1; 6755 } 6756 } 6757 } 6758 break; 6759 6760 case Instruction::SDiv: 6761 if (match(BO.getOperand(1), m_APInt(C))) { 6762 APInt IntMin = APInt::getSignedMinValue(Width); 6763 APInt IntMax = APInt::getSignedMaxValue(Width); 6764 if (C->isAllOnes()) { 6765 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6766 // where C != -1 and C != 0 and C != 1 6767 Lower = IntMin + 1; 6768 Upper = IntMax + 1; 6769 } else if (C->countLeadingZeros() < Width - 1) { 6770 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6771 // where C != -1 and C != 0 and C != 1 6772 Lower = IntMin.sdiv(*C); 6773 Upper = IntMax.sdiv(*C); 6774 if (Lower.sgt(Upper)) 6775 std::swap(Lower, Upper); 6776 Upper = Upper + 1; 6777 assert(Upper != Lower && "Upper part of range has wrapped!"); 6778 } 6779 } else if (match(BO.getOperand(0), m_APInt(C))) { 6780 if (C->isMinSignedValue()) { 6781 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6782 Lower = *C; 6783 Upper = Lower.lshr(1) + 1; 6784 } else { 6785 // 'sdiv C, x' produces [-|C|, |C|]. 6786 Upper = C->abs() + 1; 6787 Lower = (-Upper) + 1; 6788 } 6789 } 6790 break; 6791 6792 case Instruction::UDiv: 6793 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6794 // 'udiv x, C' produces [0, UINT_MAX / C]. 6795 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6796 } else if (match(BO.getOperand(0), m_APInt(C))) { 6797 // 'udiv C, x' produces [0, C]. 6798 Upper = *C + 1; 6799 } 6800 break; 6801 6802 case Instruction::SRem: 6803 if (match(BO.getOperand(1), m_APInt(C))) { 6804 // 'srem x, C' produces (-|C|, |C|). 6805 Upper = C->abs(); 6806 Lower = (-Upper) + 1; 6807 } 6808 break; 6809 6810 case Instruction::URem: 6811 if (match(BO.getOperand(1), m_APInt(C))) 6812 // 'urem x, C' produces [0, C). 6813 Upper = *C; 6814 break; 6815 6816 default: 6817 break; 6818 } 6819 } 6820 6821 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6822 APInt &Upper) { 6823 unsigned Width = Lower.getBitWidth(); 6824 const APInt *C; 6825 switch (II.getIntrinsicID()) { 6826 case Intrinsic::ctpop: 6827 case Intrinsic::ctlz: 6828 case Intrinsic::cttz: 6829 // Maximum of set/clear bits is the bit width. 6830 assert(Lower == 0 && "Expected lower bound to be zero"); 6831 Upper = Width + 1; 6832 break; 6833 case Intrinsic::uadd_sat: 6834 // uadd.sat(x, C) produces [C, UINT_MAX]. 6835 if (match(II.getOperand(0), m_APInt(C)) || 6836 match(II.getOperand(1), m_APInt(C))) 6837 Lower = *C; 6838 break; 6839 case Intrinsic::sadd_sat: 6840 if (match(II.getOperand(0), m_APInt(C)) || 6841 match(II.getOperand(1), m_APInt(C))) { 6842 if (C->isNegative()) { 6843 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6844 Lower = APInt::getSignedMinValue(Width); 6845 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6846 } else { 6847 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6848 Lower = APInt::getSignedMinValue(Width) + *C; 6849 Upper = APInt::getSignedMaxValue(Width) + 1; 6850 } 6851 } 6852 break; 6853 case Intrinsic::usub_sat: 6854 // usub.sat(C, x) produces [0, C]. 6855 if (match(II.getOperand(0), m_APInt(C))) 6856 Upper = *C + 1; 6857 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6858 else if (match(II.getOperand(1), m_APInt(C))) 6859 Upper = APInt::getMaxValue(Width) - *C + 1; 6860 break; 6861 case Intrinsic::ssub_sat: 6862 if (match(II.getOperand(0), m_APInt(C))) { 6863 if (C->isNegative()) { 6864 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6865 Lower = APInt::getSignedMinValue(Width); 6866 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6867 } else { 6868 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6869 Lower = *C - APInt::getSignedMaxValue(Width); 6870 Upper = APInt::getSignedMaxValue(Width) + 1; 6871 } 6872 } else if (match(II.getOperand(1), m_APInt(C))) { 6873 if (C->isNegative()) { 6874 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6875 Lower = APInt::getSignedMinValue(Width) - *C; 6876 Upper = APInt::getSignedMaxValue(Width) + 1; 6877 } else { 6878 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6879 Lower = APInt::getSignedMinValue(Width); 6880 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6881 } 6882 } 6883 break; 6884 case Intrinsic::umin: 6885 case Intrinsic::umax: 6886 case Intrinsic::smin: 6887 case Intrinsic::smax: 6888 if (!match(II.getOperand(0), m_APInt(C)) && 6889 !match(II.getOperand(1), m_APInt(C))) 6890 break; 6891 6892 switch (II.getIntrinsicID()) { 6893 case Intrinsic::umin: 6894 Upper = *C + 1; 6895 break; 6896 case Intrinsic::umax: 6897 Lower = *C; 6898 break; 6899 case Intrinsic::smin: 6900 Lower = APInt::getSignedMinValue(Width); 6901 Upper = *C + 1; 6902 break; 6903 case Intrinsic::smax: 6904 Lower = *C; 6905 Upper = APInt::getSignedMaxValue(Width) + 1; 6906 break; 6907 default: 6908 llvm_unreachable("Must be min/max intrinsic"); 6909 } 6910 break; 6911 case Intrinsic::abs: 6912 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6913 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6914 if (match(II.getOperand(1), m_One())) 6915 Upper = APInt::getSignedMaxValue(Width) + 1; 6916 else 6917 Upper = APInt::getSignedMinValue(Width) + 1; 6918 break; 6919 default: 6920 break; 6921 } 6922 } 6923 6924 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6925 APInt &Upper, const InstrInfoQuery &IIQ) { 6926 const Value *LHS = nullptr, *RHS = nullptr; 6927 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6928 if (R.Flavor == SPF_UNKNOWN) 6929 return; 6930 6931 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6932 6933 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6934 // If the negation part of the abs (in RHS) has the NSW flag, 6935 // then the result of abs(X) is [0..SIGNED_MAX], 6936 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6937 Lower = APInt::getZero(BitWidth); 6938 if (match(RHS, m_Neg(m_Specific(LHS))) && 6939 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6940 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6941 else 6942 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6943 return; 6944 } 6945 6946 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6947 // The result of -abs(X) is <= 0. 6948 Lower = APInt::getSignedMinValue(BitWidth); 6949 Upper = APInt(BitWidth, 1); 6950 return; 6951 } 6952 6953 const APInt *C; 6954 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6955 return; 6956 6957 switch (R.Flavor) { 6958 case SPF_UMIN: 6959 Upper = *C + 1; 6960 break; 6961 case SPF_UMAX: 6962 Lower = *C; 6963 break; 6964 case SPF_SMIN: 6965 Lower = APInt::getSignedMinValue(BitWidth); 6966 Upper = *C + 1; 6967 break; 6968 case SPF_SMAX: 6969 Lower = *C; 6970 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6971 break; 6972 default: 6973 break; 6974 } 6975 } 6976 6977 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 6978 // The maximum representable value of a half is 65504. For floats the maximum 6979 // value is 3.4e38 which requires roughly 129 bits. 6980 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 6981 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 6982 return; 6983 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 6984 Lower = APInt(BitWidth, -65504); 6985 Upper = APInt(BitWidth, 65505); 6986 } 6987 6988 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 6989 // For a fptoui the lower limit is left as 0. 6990 Upper = APInt(BitWidth, 65505); 6991 } 6992 } 6993 6994 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 6995 bool UseInstrInfo, AssumptionCache *AC, 6996 const Instruction *CtxI, 6997 const DominatorTree *DT, 6998 unsigned Depth) { 6999 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7000 7001 if (Depth == MaxAnalysisRecursionDepth) 7002 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7003 7004 const APInt *C; 7005 if (match(V, m_APInt(C))) 7006 return ConstantRange(*C); 7007 7008 InstrInfoQuery IIQ(UseInstrInfo); 7009 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7010 APInt Lower = APInt(BitWidth, 0); 7011 APInt Upper = APInt(BitWidth, 0); 7012 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7013 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7014 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7015 setLimitsForIntrinsic(*II, Lower, Upper); 7016 else if (auto *SI = dyn_cast<SelectInst>(V)) 7017 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7018 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7019 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7020 7021 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7022 7023 if (auto *I = dyn_cast<Instruction>(V)) 7024 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7025 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7026 7027 if (CtxI && AC) { 7028 // Try to restrict the range based on information from assumptions. 7029 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7030 if (!AssumeVH) 7031 continue; 7032 CallInst *I = cast<CallInst>(AssumeVH); 7033 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7034 "Got assumption for the wrong function!"); 7035 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7036 "must be an assume intrinsic"); 7037 7038 if (!isValidAssumeForContext(I, CtxI, DT)) 7039 continue; 7040 Value *Arg = I->getArgOperand(0); 7041 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7042 // Currently we just use information from comparisons. 7043 if (!Cmp || Cmp->getOperand(0) != V) 7044 continue; 7045 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7046 ConstantRange RHS = 7047 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7048 UseInstrInfo, AC, I, DT, Depth + 1); 7049 CR = CR.intersectWith( 7050 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7051 } 7052 } 7053 7054 return CR; 7055 } 7056 7057 static Optional<int64_t> 7058 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7059 // Skip over the first indices. 7060 gep_type_iterator GTI = gep_type_begin(GEP); 7061 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7062 /*skip along*/; 7063 7064 // Compute the offset implied by the rest of the indices. 7065 int64_t Offset = 0; 7066 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7067 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7068 if (!OpC) 7069 return None; 7070 if (OpC->isZero()) 7071 continue; // No offset. 7072 7073 // Handle struct indices, which add their field offset to the pointer. 7074 if (StructType *STy = GTI.getStructTypeOrNull()) { 7075 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7076 continue; 7077 } 7078 7079 // Otherwise, we have a sequential type like an array or fixed-length 7080 // vector. Multiply the index by the ElementSize. 7081 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7082 if (Size.isScalable()) 7083 return None; 7084 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7085 } 7086 7087 return Offset; 7088 } 7089 7090 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7091 const DataLayout &DL) { 7092 Ptr1 = Ptr1->stripPointerCasts(); 7093 Ptr2 = Ptr2->stripPointerCasts(); 7094 7095 // Handle the trivial case first. 7096 if (Ptr1 == Ptr2) { 7097 return 0; 7098 } 7099 7100 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7101 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7102 7103 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7104 // as in "P" and "gep P, 1". 7105 // Also do this iteratively to handle the the following case: 7106 // Ptr_t1 = GEP Ptr1, c1 7107 // Ptr_t2 = GEP Ptr_t1, c2 7108 // Ptr2 = GEP Ptr_t2, c3 7109 // where we will return c1+c2+c3. 7110 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7111 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7112 // are the same, and return the difference between offsets. 7113 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7114 const Value *Ptr) -> Optional<int64_t> { 7115 const GEPOperator *GEP_T = GEP; 7116 int64_t OffsetVal = 0; 7117 bool HasSameBase = false; 7118 while (GEP_T) { 7119 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7120 if (!Offset) 7121 return None; 7122 OffsetVal += *Offset; 7123 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7124 if (Op0 == Ptr) { 7125 HasSameBase = true; 7126 break; 7127 } 7128 GEP_T = dyn_cast<GEPOperator>(Op0); 7129 } 7130 if (!HasSameBase) 7131 return None; 7132 return OffsetVal; 7133 }; 7134 7135 if (GEP1) { 7136 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7137 if (Offset) 7138 return -*Offset; 7139 } 7140 if (GEP2) { 7141 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7142 if (Offset) 7143 return Offset; 7144 } 7145 7146 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7147 // base. After that base, they may have some number of common (and 7148 // potentially variable) indices. After that they handle some constant 7149 // offset, which determines their offset from each other. At this point, we 7150 // handle no other case. 7151 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7152 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7153 return None; 7154 7155 // Skip any common indices and track the GEP types. 7156 unsigned Idx = 1; 7157 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7158 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7159 break; 7160 7161 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7162 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7163 if (!Offset1 || !Offset2) 7164 return None; 7165 return *Offset2 - *Offset1; 7166 } 7167