1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Statepoint.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/KnownBits.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <algorithm> 45 #include <array> 46 #include <cstring> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 const unsigned MaxDepth = 6; 51 52 // Controls the number of uses of the value searched for possible 53 // dominating comparisons. 54 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 55 cl::Hidden, cl::init(20)); 56 57 // This optimization is known to cause performance regressions is some cases, 58 // keep it under a temporary flag for now. 59 static cl::opt<bool> 60 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 61 cl::Hidden, cl::init(true)); 62 63 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 64 /// returns the element type's bitwidth. 65 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 66 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 67 return BitWidth; 68 69 return DL.getPointerTypeSizeInBits(Ty); 70 } 71 72 namespace { 73 // Simplifying using an assume can only be done in a particular control-flow 74 // context (the context instruction provides that context). If an assume and 75 // the context instruction are not in the same block then the DT helps in 76 // figuring out if we can use it. 77 struct Query { 78 const DataLayout &DL; 79 AssumptionCache *AC; 80 const Instruction *CxtI; 81 const DominatorTree *DT; 82 // Unlike the other analyses, this may be a nullptr because not all clients 83 // provide it currently. 84 OptimizationRemarkEmitter *ORE; 85 86 /// Set of assumptions that should be excluded from further queries. 87 /// This is because of the potential for mutual recursion to cause 88 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 89 /// classic case of this is assume(x = y), which will attempt to determine 90 /// bits in x from bits in y, which will attempt to determine bits in y from 91 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 92 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 93 /// (all of which can call computeKnownBits), and so on. 94 std::array<const Value *, MaxDepth> Excluded; 95 unsigned NumExcluded; 96 97 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 98 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 99 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 100 101 Query(const Query &Q, const Value *NewExcl) 102 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 103 NumExcluded(Q.NumExcluded) { 104 Excluded = Q.Excluded; 105 Excluded[NumExcluded++] = NewExcl; 106 assert(NumExcluded <= Excluded.size()); 107 } 108 109 bool isExcluded(const Value *Value) const { 110 if (NumExcluded == 0) 111 return false; 112 auto End = Excluded.begin() + NumExcluded; 113 return std::find(Excluded.begin(), End, Value) != End; 114 } 115 }; 116 } // end anonymous namespace 117 118 // Given the provided Value and, potentially, a context instruction, return 119 // the preferred context instruction (if any). 120 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 121 // If we've been provided with a context instruction, then use that (provided 122 // it has been inserted). 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 // If the value is really an already-inserted instruction, then use that. 127 CxtI = dyn_cast<Instruction>(V); 128 if (CxtI && CxtI->getParent()) 129 return CxtI; 130 131 return nullptr; 132 } 133 134 static void computeKnownBits(const Value *V, KnownBits &Known, 135 unsigned Depth, const Query &Q); 136 137 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 138 const DataLayout &DL, unsigned Depth, 139 AssumptionCache *AC, const Instruction *CxtI, 140 const DominatorTree *DT, 141 OptimizationRemarkEmitter *ORE) { 142 ::computeKnownBits(V, Known, Depth, 143 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 144 } 145 146 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 147 const Query &Q); 148 149 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 150 unsigned Depth, AssumptionCache *AC, 151 const Instruction *CxtI, 152 const DominatorTree *DT, 153 OptimizationRemarkEmitter *ORE) { 154 return ::computeKnownBits(V, Depth, 155 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 156 } 157 158 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 159 const DataLayout &DL, 160 AssumptionCache *AC, const Instruction *CxtI, 161 const DominatorTree *DT) { 162 assert(LHS->getType() == RHS->getType() && 163 "LHS and RHS should have the same type"); 164 assert(LHS->getType()->isIntOrIntVectorTy() && 165 "LHS and RHS should be integers"); 166 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 167 KnownBits LHSKnown(IT->getBitWidth()); 168 KnownBits RHSKnown(IT->getBitWidth()); 169 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 170 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 171 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 172 } 173 174 175 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 176 for (const User *U : CxtI->users()) { 177 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 178 if (IC->isEquality()) 179 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 180 if (C->isNullValue()) 181 continue; 182 return false; 183 } 184 return true; 185 } 186 187 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 188 const Query &Q); 189 190 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 191 bool OrZero, 192 unsigned Depth, AssumptionCache *AC, 193 const Instruction *CxtI, 194 const DominatorTree *DT) { 195 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 196 Query(DL, AC, safeCxtI(V, CxtI), DT)); 197 } 198 199 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 200 201 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 205 } 206 207 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 208 unsigned Depth, 209 AssumptionCache *AC, const Instruction *CxtI, 210 const DominatorTree *DT) { 211 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 212 return Known.isNonNegative(); 213 } 214 215 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 216 AssumptionCache *AC, const Instruction *CxtI, 217 const DominatorTree *DT) { 218 if (auto *CI = dyn_cast<ConstantInt>(V)) 219 return CI->getValue().isStrictlyPositive(); 220 221 // TODO: We'd doing two recursive queries here. We should factor this such 222 // that only a single query is needed. 223 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 224 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 225 } 226 227 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 228 AssumptionCache *AC, const Instruction *CxtI, 229 const DominatorTree *DT) { 230 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 231 return Known.isNegative(); 232 } 233 234 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 235 236 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 237 const DataLayout &DL, 238 AssumptionCache *AC, const Instruction *CxtI, 239 const DominatorTree *DT) { 240 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 241 safeCxtI(V1, safeCxtI(V2, CxtI)), 242 DT)); 243 } 244 245 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 246 const Query &Q); 247 248 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 249 const DataLayout &DL, 250 unsigned Depth, AssumptionCache *AC, 251 const Instruction *CxtI, const DominatorTree *DT) { 252 return ::MaskedValueIsZero(V, Mask, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT)); 254 } 255 256 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 257 const Query &Q); 258 259 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 260 unsigned Depth, AssumptionCache *AC, 261 const Instruction *CxtI, 262 const DominatorTree *DT) { 263 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 264 } 265 266 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 267 bool NSW, 268 KnownBits &KnownOut, KnownBits &Known2, 269 unsigned Depth, const Query &Q) { 270 unsigned BitWidth = KnownOut.getBitWidth(); 271 272 // If an initial sequence of bits in the result is not needed, the 273 // corresponding bits in the operands are not needed. 274 KnownBits LHSKnown(BitWidth); 275 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 276 computeKnownBits(Op1, Known2, Depth + 1, Q); 277 278 // Carry in a 1 for a subtract, rather than a 0. 279 uint64_t CarryIn = 0; 280 if (!Add) { 281 // Sum = LHS + ~RHS + 1 282 std::swap(Known2.Zero, Known2.One); 283 CarryIn = 1; 284 } 285 286 APInt PossibleSumZero = ~LHSKnown.Zero + ~Known2.Zero + CarryIn; 287 APInt PossibleSumOne = LHSKnown.One + Known2.One + CarryIn; 288 289 // Compute known bits of the carry. 290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnown.Zero ^ Known2.Zero); 291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnown.One ^ Known2.One; 292 293 // Compute set of known bits (where all three relevant bits are known). 294 APInt LHSKnownUnion = LHSKnown.Zero | LHSKnown.One; 295 APInt RHSKnownUnion = Known2.Zero | Known2.One; 296 APInt CarryKnownUnion = CarryKnownZero | CarryKnownOne; 297 APInt Known = LHSKnownUnion & RHSKnownUnion & CarryKnownUnion; 298 299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 300 "known bits of sum differ"); 301 302 // Compute known bits of the result. 303 KnownOut.Zero = ~PossibleSumOne & Known; 304 KnownOut.One = PossibleSumOne & Known; 305 306 // Are we still trying to solve for the sign bit? 307 if (!Known.isSignBitSet()) { 308 if (NSW) { 309 // Adding two non-negative numbers, or subtracting a negative number from 310 // a non-negative one, can't wrap into negative. 311 if (LHSKnown.isNonNegative() && Known2.isNonNegative()) 312 KnownOut.makeNonNegative(); 313 // Adding two negative numbers, or subtracting a non-negative number from 314 // a negative one, can't wrap into non-negative. 315 else if (LHSKnown.isNegative() && Known2.isNegative()) 316 KnownOut.makeNegative(); 317 } 318 } 319 } 320 321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 322 KnownBits &Known, KnownBits &Known2, 323 unsigned Depth, const Query &Q) { 324 unsigned BitWidth = Known.getBitWidth(); 325 computeKnownBits(Op1, Known, Depth + 1, Q); 326 computeKnownBits(Op0, Known2, Depth + 1, Q); 327 328 bool isKnownNegative = false; 329 bool isKnownNonNegative = false; 330 // If the multiplication is known not to overflow, compute the sign bit. 331 if (NSW) { 332 if (Op0 == Op1) { 333 // The product of a number with itself is non-negative. 334 isKnownNonNegative = true; 335 } else { 336 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 337 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 338 bool isKnownNegativeOp1 = Known.isNegative(); 339 bool isKnownNegativeOp0 = Known2.isNegative(); 340 // The product of two numbers with the same sign is non-negative. 341 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 342 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 343 // The product of a negative number and a non-negative number is either 344 // negative or zero. 345 if (!isKnownNonNegative) 346 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 347 isKnownNonZero(Op0, Depth, Q)) || 348 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 349 isKnownNonZero(Op1, Depth, Q)); 350 } 351 } 352 353 // If low bits are zero in either operand, output low known-0 bits. 354 // Also compute a conservative estimate for high known-0 bits. 355 // More trickiness is possible, but this is sufficient for the 356 // interesting case of alignment computation. 357 unsigned TrailZ = Known.countMinTrailingZeros() + 358 Known2.countMinTrailingZeros(); 359 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 360 Known2.countMinLeadingZeros(), 361 BitWidth) - BitWidth; 362 363 TrailZ = std::min(TrailZ, BitWidth); 364 LeadZ = std::min(LeadZ, BitWidth); 365 Known.resetAll(); 366 Known.Zero.setLowBits(TrailZ); 367 Known.Zero.setHighBits(LeadZ); 368 369 // Only make use of no-wrap flags if we failed to compute the sign bit 370 // directly. This matters if the multiplication always overflows, in 371 // which case we prefer to follow the result of the direct computation, 372 // though as the program is invoking undefined behaviour we can choose 373 // whatever we like here. 374 if (isKnownNonNegative && !Known.isNegative()) 375 Known.makeNonNegative(); 376 else if (isKnownNegative && !Known.isNonNegative()) 377 Known.makeNegative(); 378 } 379 380 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 381 KnownBits &Known) { 382 unsigned BitWidth = Known.getBitWidth(); 383 unsigned NumRanges = Ranges.getNumOperands() / 2; 384 assert(NumRanges >= 1); 385 386 Known.Zero.setAllBits(); 387 Known.One.setAllBits(); 388 389 for (unsigned i = 0; i < NumRanges; ++i) { 390 ConstantInt *Lower = 391 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 392 ConstantInt *Upper = 393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 394 ConstantRange Range(Lower->getValue(), Upper->getValue()); 395 396 // The first CommonPrefixBits of all values in Range are equal. 397 unsigned CommonPrefixBits = 398 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 399 400 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 401 Known.One &= Range.getUnsignedMax() & Mask; 402 Known.Zero &= ~Range.getUnsignedMax() & Mask; 403 } 404 } 405 406 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 407 SmallVector<const Value *, 16> WorkSet(1, I); 408 SmallPtrSet<const Value *, 32> Visited; 409 SmallPtrSet<const Value *, 16> EphValues; 410 411 // The instruction defining an assumption's condition itself is always 412 // considered ephemeral to that assumption (even if it has other 413 // non-ephemeral users). See r246696's test case for an example. 414 if (is_contained(I->operands(), E)) 415 return true; 416 417 while (!WorkSet.empty()) { 418 const Value *V = WorkSet.pop_back_val(); 419 if (!Visited.insert(V).second) 420 continue; 421 422 // If all uses of this value are ephemeral, then so is this value. 423 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 424 if (V == E) 425 return true; 426 427 EphValues.insert(V); 428 if (const User *U = dyn_cast<User>(V)) 429 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 430 J != JE; ++J) { 431 if (isSafeToSpeculativelyExecute(*J)) 432 WorkSet.push_back(*J); 433 } 434 } 435 } 436 437 return false; 438 } 439 440 // Is this an intrinsic that cannot be speculated but also cannot trap? 441 static bool isAssumeLikeIntrinsic(const Instruction *I) { 442 if (const CallInst *CI = dyn_cast<CallInst>(I)) 443 if (Function *F = CI->getCalledFunction()) 444 switch (F->getIntrinsicID()) { 445 default: break; 446 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 447 case Intrinsic::assume: 448 case Intrinsic::dbg_declare: 449 case Intrinsic::dbg_value: 450 case Intrinsic::invariant_start: 451 case Intrinsic::invariant_end: 452 case Intrinsic::lifetime_start: 453 case Intrinsic::lifetime_end: 454 case Intrinsic::objectsize: 455 case Intrinsic::ptr_annotation: 456 case Intrinsic::var_annotation: 457 return true; 458 } 459 460 return false; 461 } 462 463 bool llvm::isValidAssumeForContext(const Instruction *Inv, 464 const Instruction *CxtI, 465 const DominatorTree *DT) { 466 467 // There are two restrictions on the use of an assume: 468 // 1. The assume must dominate the context (or the control flow must 469 // reach the assume whenever it reaches the context). 470 // 2. The context must not be in the assume's set of ephemeral values 471 // (otherwise we will use the assume to prove that the condition 472 // feeding the assume is trivially true, thus causing the removal of 473 // the assume). 474 475 if (DT) { 476 if (DT->dominates(Inv, CxtI)) 477 return true; 478 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 479 // We don't have a DT, but this trivially dominates. 480 return true; 481 } 482 483 // With or without a DT, the only remaining case we will check is if the 484 // instructions are in the same BB. Give up if that is not the case. 485 if (Inv->getParent() != CxtI->getParent()) 486 return false; 487 488 // If we have a dom tree, then we now know that the assume doens't dominate 489 // the other instruction. If we don't have a dom tree then we can check if 490 // the assume is first in the BB. 491 if (!DT) { 492 // Search forward from the assume until we reach the context (or the end 493 // of the block); the common case is that the assume will come first. 494 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 495 IE = Inv->getParent()->end(); I != IE; ++I) 496 if (&*I == CxtI) 497 return true; 498 } 499 500 // The context comes first, but they're both in the same block. Make sure 501 // there is nothing in between that might interrupt the control flow. 502 for (BasicBlock::const_iterator I = 503 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 504 I != IE; ++I) 505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 506 return false; 507 508 return !isEphemeralValueOf(Inv, CxtI); 509 } 510 511 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 512 unsigned Depth, const Query &Q) { 513 // Use of assumptions is context-sensitive. If we don't have a context, we 514 // cannot use them! 515 if (!Q.AC || !Q.CxtI) 516 return; 517 518 unsigned BitWidth = Known.getBitWidth(); 519 520 // Note that the patterns below need to be kept in sync with the code 521 // in AssumptionCache::updateAffectedValues. 522 523 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 524 if (!AssumeVH) 525 continue; 526 CallInst *I = cast<CallInst>(AssumeVH); 527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 528 "Got assumption for the wrong function!"); 529 if (Q.isExcluded(I)) 530 continue; 531 532 // Warning: This loop can end up being somewhat performance sensetive. 533 // We're running this loop for once for each value queried resulting in a 534 // runtime of ~O(#assumes * #values). 535 536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 537 "must be an assume intrinsic"); 538 539 Value *Arg = I->getArgOperand(0); 540 541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 542 assert(BitWidth == 1 && "assume operand is not i1?"); 543 Known.setAllOnes(); 544 return; 545 } 546 if (match(Arg, m_Not(m_Specific(V))) && 547 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 548 assert(BitWidth == 1 && "assume operand is not i1?"); 549 Known.setAllZero(); 550 return; 551 } 552 553 // The remaining tests are all recursive, so bail out if we hit the limit. 554 if (Depth == MaxDepth) 555 continue; 556 557 Value *A, *B; 558 auto m_V = m_CombineOr(m_Specific(V), 559 m_CombineOr(m_PtrToInt(m_Specific(V)), 560 m_BitCast(m_Specific(V)))); 561 562 CmpInst::Predicate Pred; 563 ConstantInt *C; 564 // assume(v = a) 565 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 566 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 567 KnownBits RHSKnown(BitWidth); 568 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 569 Known.Zero |= RHSKnown.Zero; 570 Known.One |= RHSKnown.One; 571 // assume(v & b = a) 572 } else if (match(Arg, 573 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 574 Pred == ICmpInst::ICMP_EQ && 575 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 576 KnownBits RHSKnown(BitWidth); 577 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 578 KnownBits MaskKnown(BitWidth); 579 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 580 581 // For those bits in the mask that are known to be one, we can propagate 582 // known bits from the RHS to V. 583 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 584 Known.One |= RHSKnown.One & MaskKnown.One; 585 // assume(~(v & b) = a) 586 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 587 m_Value(A))) && 588 Pred == ICmpInst::ICMP_EQ && 589 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 590 KnownBits RHSKnown(BitWidth); 591 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 592 KnownBits MaskKnown(BitWidth); 593 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 594 595 // For those bits in the mask that are known to be one, we can propagate 596 // inverted known bits from the RHS to V. 597 Known.Zero |= RHSKnown.One & MaskKnown.One; 598 Known.One |= RHSKnown.Zero & MaskKnown.One; 599 // assume(v | b = a) 600 } else if (match(Arg, 601 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 602 Pred == ICmpInst::ICMP_EQ && 603 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 604 KnownBits RHSKnown(BitWidth); 605 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 606 KnownBits BKnown(BitWidth); 607 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 608 609 // For those bits in B that are known to be zero, we can propagate known 610 // bits from the RHS to V. 611 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 612 Known.One |= RHSKnown.One & BKnown.Zero; 613 // assume(~(v | b) = a) 614 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 615 m_Value(A))) && 616 Pred == ICmpInst::ICMP_EQ && 617 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 618 KnownBits RHSKnown(BitWidth); 619 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 620 KnownBits BKnown(BitWidth); 621 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 622 623 // For those bits in B that are known to be zero, we can propagate 624 // inverted known bits from the RHS to V. 625 Known.Zero |= RHSKnown.One & BKnown.Zero; 626 Known.One |= RHSKnown.Zero & BKnown.Zero; 627 // assume(v ^ b = a) 628 } else if (match(Arg, 629 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 630 Pred == ICmpInst::ICMP_EQ && 631 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 632 KnownBits RHSKnown(BitWidth); 633 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 634 KnownBits BKnown(BitWidth); 635 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 636 637 // For those bits in B that are known to be zero, we can propagate known 638 // bits from the RHS to V. For those bits in B that are known to be one, 639 // we can propagate inverted known bits from the RHS to V. 640 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 641 Known.One |= RHSKnown.One & BKnown.Zero; 642 Known.Zero |= RHSKnown.One & BKnown.One; 643 Known.One |= RHSKnown.Zero & BKnown.One; 644 // assume(~(v ^ b) = a) 645 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 646 m_Value(A))) && 647 Pred == ICmpInst::ICMP_EQ && 648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 649 KnownBits RHSKnown(BitWidth); 650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 651 KnownBits BKnown(BitWidth); 652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 653 654 // For those bits in B that are known to be zero, we can propagate 655 // inverted known bits from the RHS to V. For those bits in B that are 656 // known to be one, we can propagate known bits from the RHS to V. 657 Known.Zero |= RHSKnown.One & BKnown.Zero; 658 Known.One |= RHSKnown.Zero & BKnown.Zero; 659 Known.Zero |= RHSKnown.Zero & BKnown.One; 660 Known.One |= RHSKnown.One & BKnown.One; 661 // assume(v << c = a) 662 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 663 m_Value(A))) && 664 Pred == ICmpInst::ICMP_EQ && 665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 666 KnownBits RHSKnown(BitWidth); 667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 668 // For those bits in RHS that are known, we can propagate them to known 669 // bits in V shifted to the right by C. 670 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 671 Known.Zero |= RHSKnown.Zero; 672 RHSKnown.One.lshrInPlace(C->getZExtValue()); 673 Known.One |= RHSKnown.One; 674 // assume(~(v << c) = a) 675 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 676 m_Value(A))) && 677 Pred == ICmpInst::ICMP_EQ && 678 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 679 KnownBits RHSKnown(BitWidth); 680 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 681 // For those bits in RHS that are known, we can propagate them inverted 682 // to known bits in V shifted to the right by C. 683 RHSKnown.One.lshrInPlace(C->getZExtValue()); 684 Known.Zero |= RHSKnown.One; 685 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 686 Known.One |= RHSKnown.Zero; 687 // assume(v >> c = a) 688 } else if (match(Arg, 689 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 690 m_AShr(m_V, m_ConstantInt(C))), 691 m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 KnownBits RHSKnown(BitWidth); 695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 696 // For those bits in RHS that are known, we can propagate them to known 697 // bits in V shifted to the right by C. 698 Known.Zero |= RHSKnown.Zero << C->getZExtValue(); 699 Known.One |= RHSKnown.One << C->getZExtValue(); 700 // assume(~(v >> c) = a) 701 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 702 m_LShr(m_V, m_ConstantInt(C)), 703 m_AShr(m_V, m_ConstantInt(C)))), 704 m_Value(A))) && 705 Pred == ICmpInst::ICMP_EQ && 706 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 707 KnownBits RHSKnown(BitWidth); 708 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 709 // For those bits in RHS that are known, we can propagate them inverted 710 // to known bits in V shifted to the right by C. 711 Known.Zero |= RHSKnown.One << C->getZExtValue(); 712 Known.One |= RHSKnown.Zero << C->getZExtValue(); 713 // assume(v >=_s c) where c is non-negative 714 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 715 Pred == ICmpInst::ICMP_SGE && 716 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 717 KnownBits RHSKnown(BitWidth); 718 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 719 720 if (RHSKnown.isNonNegative()) { 721 // We know that the sign bit is zero. 722 Known.makeNonNegative(); 723 } 724 // assume(v >_s c) where c is at least -1. 725 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 726 Pred == ICmpInst::ICMP_SGT && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 KnownBits RHSKnown(BitWidth); 729 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 730 731 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 732 // We know that the sign bit is zero. 733 Known.makeNonNegative(); 734 } 735 // assume(v <=_s c) where c is negative 736 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 737 Pred == ICmpInst::ICMP_SLE && 738 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 739 KnownBits RHSKnown(BitWidth); 740 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 741 742 if (RHSKnown.isNegative()) { 743 // We know that the sign bit is one. 744 Known.makeNegative(); 745 } 746 // assume(v <_s c) where c is non-positive 747 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 748 Pred == ICmpInst::ICMP_SLT && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown(BitWidth); 751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 752 753 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 754 // We know that the sign bit is one. 755 Known.makeNegative(); 756 } 757 // assume(v <=_u c) 758 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 759 Pred == ICmpInst::ICMP_ULE && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown(BitWidth); 762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 763 764 // Whatever high bits in c are zero are known to be zero. 765 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 766 // assume(v <_u c) 767 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 768 Pred == ICmpInst::ICMP_ULT && 769 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 770 KnownBits RHSKnown(BitWidth); 771 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 772 773 // Whatever high bits in c are zero are known to be zero (if c is a power 774 // of 2, then one more). 775 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 776 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 777 else 778 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 779 } 780 } 781 782 // If assumptions conflict with each other or previous known bits, then we 783 // have a logical fallacy. It's possible that the assumption is not reachable, 784 // so this isn't a real bug. On the other hand, the program may have undefined 785 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 786 // clear out the known bits, try to warn the user, and hope for the best. 787 if (Known.Zero.intersects(Known.One)) { 788 Known.resetAll(); 789 790 if (Q.ORE) { 791 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 792 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 793 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 794 "have undefined behavior, or compiler may have " 795 "internal error."); 796 } 797 } 798 } 799 800 // Compute known bits from a shift operator, including those with a 801 // non-constant shift amount. Known is the outputs of this function. Known2 is a 802 // pre-allocated temporary with the/ same bit width as Known. KZF and KOF are 803 // operator-specific functors that, given the known-zero or known-one bits 804 // respectively, and a shift amount, compute the implied known-zero or known-one 805 // bits of the shift operator's result respectively for that shift amount. The 806 // results from calling KZF and KOF are conservatively combined for all 807 // permitted shift amounts. 808 static void computeKnownBitsFromShiftOperator( 809 const Operator *I, KnownBits &Known, KnownBits &Known2, 810 unsigned Depth, const Query &Q, 811 function_ref<APInt(const APInt &, unsigned)> KZF, 812 function_ref<APInt(const APInt &, unsigned)> KOF) { 813 unsigned BitWidth = Known.getBitWidth(); 814 815 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 816 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 817 818 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 819 Known.Zero = KZF(Known.Zero, ShiftAmt); 820 Known.One = KOF(Known.One, ShiftAmt); 821 // If there is conflict between Known.Zero and Known.One, this must be an 822 // overflowing left shift, so the shift result is undefined. Clear Known 823 // bits so that other code could propagate this undef. 824 if ((Known.Zero & Known.One) != 0) 825 Known.resetAll(); 826 827 return; 828 } 829 830 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 831 832 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 833 // value could be undef, so we don't know anything about it. 834 if ((~Known.Zero).uge(BitWidth)) { 835 Known.resetAll(); 836 return; 837 } 838 839 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 840 // BitWidth > 64 and any upper bits are known, we'll end up returning the 841 // limit value (which implies all bits are known). 842 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 843 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 844 845 // It would be more-clearly correct to use the two temporaries for this 846 // calculation. Reusing the APInts here to prevent unnecessary allocations. 847 Known.resetAll(); 848 849 // If we know the shifter operand is nonzero, we can sometimes infer more 850 // known bits. However this is expensive to compute, so be lazy about it and 851 // only compute it when absolutely necessary. 852 Optional<bool> ShifterOperandIsNonZero; 853 854 // Early exit if we can't constrain any well-defined shift amount. 855 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 856 ShifterOperandIsNonZero = 857 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 858 if (!*ShifterOperandIsNonZero) 859 return; 860 } 861 862 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 863 864 Known.Zero.setAllBits(); 865 Known.One.setAllBits(); 866 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 867 // Combine the shifted known input bits only for those shift amounts 868 // compatible with its known constraints. 869 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 870 continue; 871 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 872 continue; 873 // If we know the shifter is nonzero, we may be able to infer more known 874 // bits. This check is sunk down as far as possible to avoid the expensive 875 // call to isKnownNonZero if the cheaper checks above fail. 876 if (ShiftAmt == 0) { 877 if (!ShifterOperandIsNonZero.hasValue()) 878 ShifterOperandIsNonZero = 879 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 880 if (*ShifterOperandIsNonZero) 881 continue; 882 } 883 884 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 885 Known.One &= KOF(Known2.One, ShiftAmt); 886 } 887 888 // If there are no compatible shift amounts, then we've proven that the shift 889 // amount must be >= the BitWidth, and the result is undefined. We could 890 // return anything we'd like, but we need to make sure the sets of known bits 891 // stay disjoint (it should be better for some other code to actually 892 // propagate the undef than to pick a value here using known bits). 893 if (Known.Zero.intersects(Known.One)) 894 Known.resetAll(); 895 } 896 897 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 898 unsigned Depth, const Query &Q) { 899 unsigned BitWidth = Known.getBitWidth(); 900 901 KnownBits Known2(Known); 902 switch (I->getOpcode()) { 903 default: break; 904 case Instruction::Load: 905 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 906 computeKnownBitsFromRangeMetadata(*MD, Known); 907 break; 908 case Instruction::And: { 909 // If either the LHS or the RHS are Zero, the result is zero. 910 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 911 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 912 913 // Output known-1 bits are only known if set in both the LHS & RHS. 914 Known.One &= Known2.One; 915 // Output known-0 are known to be clear if zero in either the LHS | RHS. 916 Known.Zero |= Known2.Zero; 917 918 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 919 // here we handle the more general case of adding any odd number by 920 // matching the form add(x, add(x, y)) where y is odd. 921 // TODO: This could be generalized to clearing any bit set in y where the 922 // following bit is known to be unset in y. 923 Value *Y = nullptr; 924 if (!Known.Zero[0] && !Known.One[0] && 925 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 926 m_Value(Y))) || 927 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 928 m_Value(Y))))) { 929 Known2.resetAll(); 930 computeKnownBits(Y, Known2, Depth + 1, Q); 931 if (Known2.countMinTrailingOnes() > 0) 932 Known.Zero.setBit(0); 933 } 934 break; 935 } 936 case Instruction::Or: { 937 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 938 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 939 940 // Output known-0 bits are only known if clear in both the LHS & RHS. 941 Known.Zero &= Known2.Zero; 942 // Output known-1 are known to be set if set in either the LHS | RHS. 943 Known.One |= Known2.One; 944 break; 945 } 946 case Instruction::Xor: { 947 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 948 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 949 950 // Output known-0 bits are known if clear or set in both the LHS & RHS. 951 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 952 // Output known-1 are known to be set if set in only one of the LHS, RHS. 953 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 954 Known.Zero = std::move(KnownZeroOut); 955 break; 956 } 957 case Instruction::Mul: { 958 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 959 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 960 Known2, Depth, Q); 961 break; 962 } 963 case Instruction::UDiv: { 964 // For the purposes of computing leading zeros we can conservatively 965 // treat a udiv as a logical right shift by the power of 2 known to 966 // be less than the denominator. 967 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 968 unsigned LeadZ = Known2.countMinLeadingZeros(); 969 970 Known2.resetAll(); 971 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 972 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 973 if (RHSMaxLeadingZeros != BitWidth) 974 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 975 976 Known.Zero.setHighBits(LeadZ); 977 break; 978 } 979 case Instruction::Select: { 980 const Value *LHS, *RHS; 981 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 982 if (SelectPatternResult::isMinOrMax(SPF)) { 983 computeKnownBits(RHS, Known, Depth + 1, Q); 984 computeKnownBits(LHS, Known2, Depth + 1, Q); 985 } else { 986 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 988 } 989 990 unsigned MaxHighOnes = 0; 991 unsigned MaxHighZeros = 0; 992 if (SPF == SPF_SMAX) { 993 // If both sides are negative, the result is negative. 994 if (Known.isNegative() && Known2.isNegative()) 995 // We can derive a lower bound on the result by taking the max of the 996 // leading one bits. 997 MaxHighOnes = 998 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 999 // If either side is non-negative, the result is non-negative. 1000 else if (Known.isNonNegative() || Known2.isNonNegative()) 1001 MaxHighZeros = 1; 1002 } else if (SPF == SPF_SMIN) { 1003 // If both sides are non-negative, the result is non-negative. 1004 if (Known.isNonNegative() && Known2.isNonNegative()) 1005 // We can derive an upper bound on the result by taking the max of the 1006 // leading zero bits. 1007 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1008 Known2.countMinLeadingZeros()); 1009 // If either side is negative, the result is negative. 1010 else if (Known.isNegative() || Known2.isNegative()) 1011 MaxHighOnes = 1; 1012 } else if (SPF == SPF_UMAX) { 1013 // We can derive a lower bound on the result by taking the max of the 1014 // leading one bits. 1015 MaxHighOnes = 1016 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1017 } else if (SPF == SPF_UMIN) { 1018 // We can derive an upper bound on the result by taking the max of the 1019 // leading zero bits. 1020 MaxHighZeros = 1021 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1022 } 1023 1024 // Only known if known in both the LHS and RHS. 1025 Known.One &= Known2.One; 1026 Known.Zero &= Known2.Zero; 1027 if (MaxHighOnes > 0) 1028 Known.One.setHighBits(MaxHighOnes); 1029 if (MaxHighZeros > 0) 1030 Known.Zero.setHighBits(MaxHighZeros); 1031 break; 1032 } 1033 case Instruction::FPTrunc: 1034 case Instruction::FPExt: 1035 case Instruction::FPToUI: 1036 case Instruction::FPToSI: 1037 case Instruction::SIToFP: 1038 case Instruction::UIToFP: 1039 break; // Can't work with floating point. 1040 case Instruction::PtrToInt: 1041 case Instruction::IntToPtr: 1042 // Fall through and handle them the same as zext/trunc. 1043 LLVM_FALLTHROUGH; 1044 case Instruction::ZExt: 1045 case Instruction::Trunc: { 1046 Type *SrcTy = I->getOperand(0)->getType(); 1047 1048 unsigned SrcBitWidth; 1049 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1050 // which fall through here. 1051 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1052 1053 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1054 Known = Known.zextOrTrunc(SrcBitWidth); 1055 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1056 Known = Known.zextOrTrunc(BitWidth); 1057 // Any top bits are known to be zero. 1058 if (BitWidth > SrcBitWidth) 1059 Known.Zero.setBitsFrom(SrcBitWidth); 1060 break; 1061 } 1062 case Instruction::BitCast: { 1063 Type *SrcTy = I->getOperand(0)->getType(); 1064 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1065 // TODO: For now, not handling conversions like: 1066 // (bitcast i64 %x to <2 x i32>) 1067 !I->getType()->isVectorTy()) { 1068 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1069 break; 1070 } 1071 break; 1072 } 1073 case Instruction::SExt: { 1074 // Compute the bits in the result that are not present in the input. 1075 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1076 1077 Known = Known.trunc(SrcBitWidth); 1078 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1079 // If the sign bit of the input is known set or clear, then we know the 1080 // top bits of the result. 1081 Known = Known.sext(BitWidth); 1082 break; 1083 } 1084 case Instruction::Shl: { 1085 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1086 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1087 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1088 APInt KZResult = KnownZero << ShiftAmt; 1089 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1090 // If this shift has "nsw" keyword, then the result is either a poison 1091 // value or has the same sign bit as the first operand. 1092 if (NSW && KnownZero.isSignBitSet()) 1093 KZResult.setSignBit(); 1094 return KZResult; 1095 }; 1096 1097 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1098 APInt KOResult = KnownOne << ShiftAmt; 1099 if (NSW && KnownOne.isSignBitSet()) 1100 KOResult.setSignBit(); 1101 return KOResult; 1102 }; 1103 1104 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1105 break; 1106 } 1107 case Instruction::LShr: { 1108 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1109 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1110 APInt KZResult = KnownZero.lshr(ShiftAmt); 1111 // High bits known zero. 1112 KZResult.setHighBits(ShiftAmt); 1113 return KZResult; 1114 }; 1115 1116 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1117 return KnownOne.lshr(ShiftAmt); 1118 }; 1119 1120 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1121 break; 1122 } 1123 case Instruction::AShr: { 1124 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1125 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1126 return KnownZero.ashr(ShiftAmt); 1127 }; 1128 1129 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1130 return KnownOne.ashr(ShiftAmt); 1131 }; 1132 1133 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1134 break; 1135 } 1136 case Instruction::Sub: { 1137 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1138 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1139 Known, Known2, Depth, Q); 1140 break; 1141 } 1142 case Instruction::Add: { 1143 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1144 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1145 Known, Known2, Depth, Q); 1146 break; 1147 } 1148 case Instruction::SRem: 1149 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1150 APInt RA = Rem->getValue().abs(); 1151 if (RA.isPowerOf2()) { 1152 APInt LowBits = RA - 1; 1153 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1154 1155 // The low bits of the first operand are unchanged by the srem. 1156 Known.Zero = Known2.Zero & LowBits; 1157 Known.One = Known2.One & LowBits; 1158 1159 // If the first operand is non-negative or has all low bits zero, then 1160 // the upper bits are all zero. 1161 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1162 Known.Zero |= ~LowBits; 1163 1164 // If the first operand is negative and not all low bits are zero, then 1165 // the upper bits are all one. 1166 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1167 Known.One |= ~LowBits; 1168 1169 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1170 break; 1171 } 1172 } 1173 1174 // The sign bit is the LHS's sign bit, except when the result of the 1175 // remainder is zero. 1176 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1177 // If it's known zero, our sign bit is also zero. 1178 if (Known2.isNonNegative()) 1179 Known.makeNonNegative(); 1180 1181 break; 1182 case Instruction::URem: { 1183 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1184 const APInt &RA = Rem->getValue(); 1185 if (RA.isPowerOf2()) { 1186 APInt LowBits = (RA - 1); 1187 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1188 Known.Zero |= ~LowBits; 1189 Known.One &= LowBits; 1190 break; 1191 } 1192 } 1193 1194 // Since the result is less than or equal to either operand, any leading 1195 // zero bits in either operand must also exist in the result. 1196 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1197 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1198 1199 unsigned Leaders = 1200 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1201 Known.resetAll(); 1202 Known.Zero.setHighBits(Leaders); 1203 break; 1204 } 1205 1206 case Instruction::Alloca: { 1207 const AllocaInst *AI = cast<AllocaInst>(I); 1208 unsigned Align = AI->getAlignment(); 1209 if (Align == 0) 1210 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1211 1212 if (Align > 0) 1213 Known.Zero.setLowBits(countTrailingZeros(Align)); 1214 break; 1215 } 1216 case Instruction::GetElementPtr: { 1217 // Analyze all of the subscripts of this getelementptr instruction 1218 // to determine if we can prove known low zero bits. 1219 KnownBits LocalKnown(BitWidth); 1220 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1221 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1222 1223 gep_type_iterator GTI = gep_type_begin(I); 1224 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1225 Value *Index = I->getOperand(i); 1226 if (StructType *STy = GTI.getStructTypeOrNull()) { 1227 // Handle struct member offset arithmetic. 1228 1229 // Handle case when index is vector zeroinitializer 1230 Constant *CIndex = cast<Constant>(Index); 1231 if (CIndex->isZeroValue()) 1232 continue; 1233 1234 if (CIndex->getType()->isVectorTy()) 1235 Index = CIndex->getSplatValue(); 1236 1237 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1238 const StructLayout *SL = Q.DL.getStructLayout(STy); 1239 uint64_t Offset = SL->getElementOffset(Idx); 1240 TrailZ = std::min<unsigned>(TrailZ, 1241 countTrailingZeros(Offset)); 1242 } else { 1243 // Handle array index arithmetic. 1244 Type *IndexedTy = GTI.getIndexedType(); 1245 if (!IndexedTy->isSized()) { 1246 TrailZ = 0; 1247 break; 1248 } 1249 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1250 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1251 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1252 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1253 TrailZ = std::min(TrailZ, 1254 unsigned(countTrailingZeros(TypeSize) + 1255 LocalKnown.countMinTrailingZeros())); 1256 } 1257 } 1258 1259 Known.Zero.setLowBits(TrailZ); 1260 break; 1261 } 1262 case Instruction::PHI: { 1263 const PHINode *P = cast<PHINode>(I); 1264 // Handle the case of a simple two-predecessor recurrence PHI. 1265 // There's a lot more that could theoretically be done here, but 1266 // this is sufficient to catch some interesting cases. 1267 if (P->getNumIncomingValues() == 2) { 1268 for (unsigned i = 0; i != 2; ++i) { 1269 Value *L = P->getIncomingValue(i); 1270 Value *R = P->getIncomingValue(!i); 1271 Operator *LU = dyn_cast<Operator>(L); 1272 if (!LU) 1273 continue; 1274 unsigned Opcode = LU->getOpcode(); 1275 // Check for operations that have the property that if 1276 // both their operands have low zero bits, the result 1277 // will have low zero bits. 1278 if (Opcode == Instruction::Add || 1279 Opcode == Instruction::Sub || 1280 Opcode == Instruction::And || 1281 Opcode == Instruction::Or || 1282 Opcode == Instruction::Mul) { 1283 Value *LL = LU->getOperand(0); 1284 Value *LR = LU->getOperand(1); 1285 // Find a recurrence. 1286 if (LL == I) 1287 L = LR; 1288 else if (LR == I) 1289 L = LL; 1290 else 1291 break; 1292 // Ok, we have a PHI of the form L op= R. Check for low 1293 // zero bits. 1294 computeKnownBits(R, Known2, Depth + 1, Q); 1295 1296 // We need to take the minimum number of known bits 1297 KnownBits Known3(Known); 1298 computeKnownBits(L, Known3, Depth + 1, Q); 1299 1300 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1301 Known3.countMinTrailingZeros())); 1302 1303 if (DontImproveNonNegativePhiBits) 1304 break; 1305 1306 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1307 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1308 // If initial value of recurrence is nonnegative, and we are adding 1309 // a nonnegative number with nsw, the result can only be nonnegative 1310 // or poison value regardless of the number of times we execute the 1311 // add in phi recurrence. If initial value is negative and we are 1312 // adding a negative number with nsw, the result can only be 1313 // negative or poison value. Similar arguments apply to sub and mul. 1314 // 1315 // (add non-negative, non-negative) --> non-negative 1316 // (add negative, negative) --> negative 1317 if (Opcode == Instruction::Add) { 1318 if (Known2.isNonNegative() && Known3.isNonNegative()) 1319 Known.makeNonNegative(); 1320 else if (Known2.isNegative() && Known3.isNegative()) 1321 Known.makeNegative(); 1322 } 1323 1324 // (sub nsw non-negative, negative) --> non-negative 1325 // (sub nsw negative, non-negative) --> negative 1326 else if (Opcode == Instruction::Sub && LL == I) { 1327 if (Known2.isNonNegative() && Known3.isNegative()) 1328 Known.makeNonNegative(); 1329 else if (Known2.isNegative() && Known3.isNonNegative()) 1330 Known.makeNegative(); 1331 } 1332 1333 // (mul nsw non-negative, non-negative) --> non-negative 1334 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1335 Known3.isNonNegative()) 1336 Known.makeNonNegative(); 1337 } 1338 1339 break; 1340 } 1341 } 1342 } 1343 1344 // Unreachable blocks may have zero-operand PHI nodes. 1345 if (P->getNumIncomingValues() == 0) 1346 break; 1347 1348 // Otherwise take the unions of the known bit sets of the operands, 1349 // taking conservative care to avoid excessive recursion. 1350 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1351 // Skip if every incoming value references to ourself. 1352 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1353 break; 1354 1355 Known.Zero.setAllBits(); 1356 Known.One.setAllBits(); 1357 for (Value *IncValue : P->incoming_values()) { 1358 // Skip direct self references. 1359 if (IncValue == P) continue; 1360 1361 Known2 = KnownBits(BitWidth); 1362 // Recurse, but cap the recursion to one level, because we don't 1363 // want to waste time spinning around in loops. 1364 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1365 Known.Zero &= Known2.Zero; 1366 Known.One &= Known2.One; 1367 // If all bits have been ruled out, there's no need to check 1368 // more operands. 1369 if (!Known.Zero && !Known.One) 1370 break; 1371 } 1372 } 1373 break; 1374 } 1375 case Instruction::Call: 1376 case Instruction::Invoke: 1377 // If range metadata is attached to this call, set known bits from that, 1378 // and then intersect with known bits based on other properties of the 1379 // function. 1380 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1381 computeKnownBitsFromRangeMetadata(*MD, Known); 1382 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1383 computeKnownBits(RV, Known2, Depth + 1, Q); 1384 Known.Zero |= Known2.Zero; 1385 Known.One |= Known2.One; 1386 } 1387 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1388 switch (II->getIntrinsicID()) { 1389 default: break; 1390 case Intrinsic::bitreverse: 1391 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1392 Known.Zero |= Known2.Zero.reverseBits(); 1393 Known.One |= Known2.One.reverseBits(); 1394 break; 1395 case Intrinsic::bswap: 1396 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1397 Known.Zero |= Known2.Zero.byteSwap(); 1398 Known.One |= Known2.One.byteSwap(); 1399 break; 1400 case Intrinsic::ctlz: { 1401 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1402 // If we have a known 1, its position is our upper bound. 1403 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1404 // If this call is undefined for 0, the result will be less than 2^n. 1405 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1406 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1407 unsigned LowBits = Log2_32(PossibleLZ)+1; 1408 Known.Zero.setBitsFrom(LowBits); 1409 break; 1410 } 1411 case Intrinsic::cttz: { 1412 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1413 // If we have a known 1, its position is our upper bound. 1414 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1415 // If this call is undefined for 0, the result will be less than 2^n. 1416 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1417 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1418 unsigned LowBits = Log2_32(PossibleTZ)+1; 1419 Known.Zero.setBitsFrom(LowBits); 1420 break; 1421 } 1422 case Intrinsic::ctpop: { 1423 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1424 // We can bound the space the count needs. Also, bits known to be zero 1425 // can't contribute to the population. 1426 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1427 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1428 Known.Zero.setBitsFrom(LowBits); 1429 // TODO: we could bound KnownOne using the lower bound on the number 1430 // of bits which might be set provided by popcnt KnownOne2. 1431 break; 1432 } 1433 case Intrinsic::x86_sse42_crc32_64_64: 1434 Known.Zero.setBitsFrom(32); 1435 break; 1436 } 1437 } 1438 break; 1439 case Instruction::ExtractElement: 1440 // Look through extract element. At the moment we keep this simple and skip 1441 // tracking the specific element. But at least we might find information 1442 // valid for all elements of the vector (for example if vector is sign 1443 // extended, shifted, etc). 1444 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1445 break; 1446 case Instruction::ExtractValue: 1447 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1448 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1449 if (EVI->getNumIndices() != 1) break; 1450 if (EVI->getIndices()[0] == 0) { 1451 switch (II->getIntrinsicID()) { 1452 default: break; 1453 case Intrinsic::uadd_with_overflow: 1454 case Intrinsic::sadd_with_overflow: 1455 computeKnownBitsAddSub(true, II->getArgOperand(0), 1456 II->getArgOperand(1), false, Known, Known2, 1457 Depth, Q); 1458 break; 1459 case Intrinsic::usub_with_overflow: 1460 case Intrinsic::ssub_with_overflow: 1461 computeKnownBitsAddSub(false, II->getArgOperand(0), 1462 II->getArgOperand(1), false, Known, Known2, 1463 Depth, Q); 1464 break; 1465 case Intrinsic::umul_with_overflow: 1466 case Intrinsic::smul_with_overflow: 1467 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1468 Known, Known2, Depth, Q); 1469 break; 1470 } 1471 } 1472 } 1473 } 1474 } 1475 1476 /// Determine which bits of V are known to be either zero or one and return 1477 /// them. 1478 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1479 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1480 computeKnownBits(V, Known, Depth, Q); 1481 return Known; 1482 } 1483 1484 /// Determine which bits of V are known to be either zero or one and return 1485 /// them in the Known bit set. 1486 /// 1487 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1488 /// we cannot optimize based on the assumption that it is zero without changing 1489 /// it to be an explicit zero. If we don't change it to zero, other code could 1490 /// optimized based on the contradictory assumption that it is non-zero. 1491 /// Because instcombine aggressively folds operations with undef args anyway, 1492 /// this won't lose us code quality. 1493 /// 1494 /// This function is defined on values with integer type, values with pointer 1495 /// type, and vectors of integers. In the case 1496 /// where V is a vector, known zero, and known one values are the 1497 /// same width as the vector element, and the bit is set only if it is true 1498 /// for all of the elements in the vector. 1499 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1500 const Query &Q) { 1501 assert(V && "No Value?"); 1502 assert(Depth <= MaxDepth && "Limit Search Depth"); 1503 unsigned BitWidth = Known.getBitWidth(); 1504 1505 assert((V->getType()->isIntOrIntVectorTy() || 1506 V->getType()->getScalarType()->isPointerTy()) && 1507 "Not integer or pointer type!"); 1508 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1509 (!V->getType()->isIntOrIntVectorTy() || 1510 V->getType()->getScalarSizeInBits() == BitWidth) && 1511 "V and Known should have same BitWidth"); 1512 (void)BitWidth; 1513 1514 const APInt *C; 1515 if (match(V, m_APInt(C))) { 1516 // We know all of the bits for a scalar constant or a splat vector constant! 1517 Known.One = *C; 1518 Known.Zero = ~Known.One; 1519 return; 1520 } 1521 // Null and aggregate-zero are all-zeros. 1522 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1523 Known.setAllZero(); 1524 return; 1525 } 1526 // Handle a constant vector by taking the intersection of the known bits of 1527 // each element. 1528 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1529 // We know that CDS must be a vector of integers. Take the intersection of 1530 // each element. 1531 Known.Zero.setAllBits(); Known.One.setAllBits(); 1532 APInt Elt(BitWidth, 0); 1533 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1534 Elt = CDS->getElementAsInteger(i); 1535 Known.Zero &= ~Elt; 1536 Known.One &= Elt; 1537 } 1538 return; 1539 } 1540 1541 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1542 // We know that CV must be a vector of integers. Take the intersection of 1543 // each element. 1544 Known.Zero.setAllBits(); Known.One.setAllBits(); 1545 APInt Elt(BitWidth, 0); 1546 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1547 Constant *Element = CV->getAggregateElement(i); 1548 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1549 if (!ElementCI) { 1550 Known.resetAll(); 1551 return; 1552 } 1553 Elt = ElementCI->getValue(); 1554 Known.Zero &= ~Elt; 1555 Known.One &= Elt; 1556 } 1557 return; 1558 } 1559 1560 // Start out not knowing anything. 1561 Known.resetAll(); 1562 1563 // We can't imply anything about undefs. 1564 if (isa<UndefValue>(V)) 1565 return; 1566 1567 // There's no point in looking through other users of ConstantData for 1568 // assumptions. Confirm that we've handled them all. 1569 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1570 1571 // Limit search depth. 1572 // All recursive calls that increase depth must come after this. 1573 if (Depth == MaxDepth) 1574 return; 1575 1576 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1577 // the bits of its aliasee. 1578 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1579 if (!GA->isInterposable()) 1580 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1581 return; 1582 } 1583 1584 if (const Operator *I = dyn_cast<Operator>(V)) 1585 computeKnownBitsFromOperator(I, Known, Depth, Q); 1586 1587 // Aligned pointers have trailing zeros - refine Known.Zero set 1588 if (V->getType()->isPointerTy()) { 1589 unsigned Align = V->getPointerAlignment(Q.DL); 1590 if (Align) 1591 Known.Zero.setLowBits(countTrailingZeros(Align)); 1592 } 1593 1594 // computeKnownBitsFromAssume strictly refines Known. 1595 // Therefore, we run them after computeKnownBitsFromOperator. 1596 1597 // Check whether a nearby assume intrinsic can determine some known bits. 1598 computeKnownBitsFromAssume(V, Known, Depth, Q); 1599 1600 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1601 } 1602 1603 /// Return true if the given value is known to have exactly one 1604 /// bit set when defined. For vectors return true if every element is known to 1605 /// be a power of two when defined. Supports values with integer or pointer 1606 /// types and vectors of integers. 1607 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1608 const Query &Q) { 1609 if (const Constant *C = dyn_cast<Constant>(V)) { 1610 if (C->isNullValue()) 1611 return OrZero; 1612 1613 const APInt *ConstIntOrConstSplatInt; 1614 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1615 return ConstIntOrConstSplatInt->isPowerOf2(); 1616 } 1617 1618 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1619 // it is shifted off the end then the result is undefined. 1620 if (match(V, m_Shl(m_One(), m_Value()))) 1621 return true; 1622 1623 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1624 // the bottom. If it is shifted off the bottom then the result is undefined. 1625 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1626 return true; 1627 1628 // The remaining tests are all recursive, so bail out if we hit the limit. 1629 if (Depth++ == MaxDepth) 1630 return false; 1631 1632 Value *X = nullptr, *Y = nullptr; 1633 // A shift left or a logical shift right of a power of two is a power of two 1634 // or zero. 1635 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1636 match(V, m_LShr(m_Value(X), m_Value())))) 1637 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1638 1639 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1640 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1641 1642 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1643 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1644 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1645 1646 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1647 // A power of two and'd with anything is a power of two or zero. 1648 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1649 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1650 return true; 1651 // X & (-X) is always a power of two or zero. 1652 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1653 return true; 1654 return false; 1655 } 1656 1657 // Adding a power-of-two or zero to the same power-of-two or zero yields 1658 // either the original power-of-two, a larger power-of-two or zero. 1659 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1660 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1661 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1662 if (match(X, m_And(m_Specific(Y), m_Value())) || 1663 match(X, m_And(m_Value(), m_Specific(Y)))) 1664 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1665 return true; 1666 if (match(Y, m_And(m_Specific(X), m_Value())) || 1667 match(Y, m_And(m_Value(), m_Specific(X)))) 1668 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1669 return true; 1670 1671 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1672 KnownBits LHSBits(BitWidth); 1673 computeKnownBits(X, LHSBits, Depth, Q); 1674 1675 KnownBits RHSBits(BitWidth); 1676 computeKnownBits(Y, RHSBits, Depth, Q); 1677 // If i8 V is a power of two or zero: 1678 // ZeroBits: 1 1 1 0 1 1 1 1 1679 // ~ZeroBits: 0 0 0 1 0 0 0 0 1680 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1681 // If OrZero isn't set, we cannot give back a zero result. 1682 // Make sure either the LHS or RHS has a bit set. 1683 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1684 return true; 1685 } 1686 } 1687 1688 // An exact divide or right shift can only shift off zero bits, so the result 1689 // is a power of two only if the first operand is a power of two and not 1690 // copying a sign bit (sdiv int_min, 2). 1691 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1692 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1693 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1694 Depth, Q); 1695 } 1696 1697 return false; 1698 } 1699 1700 /// \brief Test whether a GEP's result is known to be non-null. 1701 /// 1702 /// Uses properties inherent in a GEP to try to determine whether it is known 1703 /// to be non-null. 1704 /// 1705 /// Currently this routine does not support vector GEPs. 1706 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1707 const Query &Q) { 1708 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1709 return false; 1710 1711 // FIXME: Support vector-GEPs. 1712 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1713 1714 // If the base pointer is non-null, we cannot walk to a null address with an 1715 // inbounds GEP in address space zero. 1716 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1717 return true; 1718 1719 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1720 // If so, then the GEP cannot produce a null pointer, as doing so would 1721 // inherently violate the inbounds contract within address space zero. 1722 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1723 GTI != GTE; ++GTI) { 1724 // Struct types are easy -- they must always be indexed by a constant. 1725 if (StructType *STy = GTI.getStructTypeOrNull()) { 1726 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1727 unsigned ElementIdx = OpC->getZExtValue(); 1728 const StructLayout *SL = Q.DL.getStructLayout(STy); 1729 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1730 if (ElementOffset > 0) 1731 return true; 1732 continue; 1733 } 1734 1735 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1736 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1737 continue; 1738 1739 // Fast path the constant operand case both for efficiency and so we don't 1740 // increment Depth when just zipping down an all-constant GEP. 1741 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1742 if (!OpC->isZero()) 1743 return true; 1744 continue; 1745 } 1746 1747 // We post-increment Depth here because while isKnownNonZero increments it 1748 // as well, when we pop back up that increment won't persist. We don't want 1749 // to recurse 10k times just because we have 10k GEP operands. We don't 1750 // bail completely out because we want to handle constant GEPs regardless 1751 // of depth. 1752 if (Depth++ >= MaxDepth) 1753 continue; 1754 1755 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1756 return true; 1757 } 1758 1759 return false; 1760 } 1761 1762 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1763 /// ensure that the value it's attached to is never Value? 'RangeType' is 1764 /// is the type of the value described by the range. 1765 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1766 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1767 assert(NumRanges >= 1); 1768 for (unsigned i = 0; i < NumRanges; ++i) { 1769 ConstantInt *Lower = 1770 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1771 ConstantInt *Upper = 1772 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1773 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1774 if (Range.contains(Value)) 1775 return false; 1776 } 1777 return true; 1778 } 1779 1780 /// Return true if the given value is known to be non-zero when defined. For 1781 /// vectors, return true if every element is known to be non-zero when 1782 /// defined. For pointers, if the context instruction and dominator tree are 1783 /// specified, perform context-sensitive analysis and return true if the 1784 /// pointer couldn't possibly be null at the specified instruction. 1785 /// Supports values with integer or pointer type and vectors of integers. 1786 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1787 if (auto *C = dyn_cast<Constant>(V)) { 1788 if (C->isNullValue()) 1789 return false; 1790 if (isa<ConstantInt>(C)) 1791 // Must be non-zero due to null test above. 1792 return true; 1793 1794 // For constant vectors, check that all elements are undefined or known 1795 // non-zero to determine that the whole vector is known non-zero. 1796 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1797 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1798 Constant *Elt = C->getAggregateElement(i); 1799 if (!Elt || Elt->isNullValue()) 1800 return false; 1801 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1802 return false; 1803 } 1804 return true; 1805 } 1806 1807 return false; 1808 } 1809 1810 if (auto *I = dyn_cast<Instruction>(V)) { 1811 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1812 // If the possible ranges don't contain zero, then the value is 1813 // definitely non-zero. 1814 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1815 const APInt ZeroValue(Ty->getBitWidth(), 0); 1816 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1817 return true; 1818 } 1819 } 1820 } 1821 1822 // The remaining tests are all recursive, so bail out if we hit the limit. 1823 if (Depth++ >= MaxDepth) 1824 return false; 1825 1826 // Check for pointer simplifications. 1827 if (V->getType()->isPointerTy()) { 1828 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1829 return true; 1830 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1831 if (isGEPKnownNonNull(GEP, Depth, Q)) 1832 return true; 1833 } 1834 1835 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1836 1837 // X | Y != 0 if X != 0 or Y != 0. 1838 Value *X = nullptr, *Y = nullptr; 1839 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1840 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1841 1842 // ext X != 0 if X != 0. 1843 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1844 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1845 1846 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1847 // if the lowest bit is shifted off the end. 1848 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1849 // shl nuw can't remove any non-zero bits. 1850 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1851 if (BO->hasNoUnsignedWrap()) 1852 return isKnownNonZero(X, Depth, Q); 1853 1854 KnownBits Known(BitWidth); 1855 computeKnownBits(X, Known, Depth, Q); 1856 if (Known.One[0]) 1857 return true; 1858 } 1859 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1860 // defined if the sign bit is shifted off the end. 1861 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1862 // shr exact can only shift out zero bits. 1863 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1864 if (BO->isExact()) 1865 return isKnownNonZero(X, Depth, Q); 1866 1867 KnownBits Known = computeKnownBits(X, Depth, Q); 1868 if (Known.isNegative()) 1869 return true; 1870 1871 // If the shifter operand is a constant, and all of the bits shifted 1872 // out are known to be zero, and X is known non-zero then at least one 1873 // non-zero bit must remain. 1874 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1875 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1876 // Is there a known one in the portion not shifted out? 1877 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 1878 return true; 1879 // Are all the bits to be shifted out known zero? 1880 if (Known.countMinTrailingZeros() >= ShiftVal) 1881 return isKnownNonZero(X, Depth, Q); 1882 } 1883 } 1884 // div exact can only produce a zero if the dividend is zero. 1885 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1886 return isKnownNonZero(X, Depth, Q); 1887 } 1888 // X + Y. 1889 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1890 KnownBits XKnown = computeKnownBits(X, Depth, Q); 1891 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 1892 1893 // If X and Y are both non-negative (as signed values) then their sum is not 1894 // zero unless both X and Y are zero. 1895 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 1896 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1897 return true; 1898 1899 // If X and Y are both negative (as signed values) then their sum is not 1900 // zero unless both X and Y equal INT_MIN. 1901 if (XKnown.isNegative() && YKnown.isNegative()) { 1902 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1903 // The sign bit of X is set. If some other bit is set then X is not equal 1904 // to INT_MIN. 1905 if (XKnown.One.intersects(Mask)) 1906 return true; 1907 // The sign bit of Y is set. If some other bit is set then Y is not equal 1908 // to INT_MIN. 1909 if (YKnown.One.intersects(Mask)) 1910 return true; 1911 } 1912 1913 // The sum of a non-negative number and a power of two is not zero. 1914 if (XKnown.isNonNegative() && 1915 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1916 return true; 1917 if (YKnown.isNonNegative() && 1918 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1919 return true; 1920 } 1921 // X * Y. 1922 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1923 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1924 // If X and Y are non-zero then so is X * Y as long as the multiplication 1925 // does not overflow. 1926 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1927 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1928 return true; 1929 } 1930 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1931 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1932 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1933 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1934 return true; 1935 } 1936 // PHI 1937 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1938 // Try and detect a recurrence that monotonically increases from a 1939 // starting value, as these are common as induction variables. 1940 if (PN->getNumIncomingValues() == 2) { 1941 Value *Start = PN->getIncomingValue(0); 1942 Value *Induction = PN->getIncomingValue(1); 1943 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1944 std::swap(Start, Induction); 1945 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1946 if (!C->isZero() && !C->isNegative()) { 1947 ConstantInt *X; 1948 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1949 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1950 !X->isNegative()) 1951 return true; 1952 } 1953 } 1954 } 1955 // Check if all incoming values are non-zero constant. 1956 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1957 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1958 }); 1959 if (AllNonZeroConstants) 1960 return true; 1961 } 1962 1963 KnownBits Known(BitWidth); 1964 computeKnownBits(V, Known, Depth, Q); 1965 return Known.One != 0; 1966 } 1967 1968 /// Return true if V2 == V1 + X, where X is known non-zero. 1969 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1970 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1971 if (!BO || BO->getOpcode() != Instruction::Add) 1972 return false; 1973 Value *Op = nullptr; 1974 if (V2 == BO->getOperand(0)) 1975 Op = BO->getOperand(1); 1976 else if (V2 == BO->getOperand(1)) 1977 Op = BO->getOperand(0); 1978 else 1979 return false; 1980 return isKnownNonZero(Op, 0, Q); 1981 } 1982 1983 /// Return true if it is known that V1 != V2. 1984 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1985 if (V1 == V2) 1986 return false; 1987 if (V1->getType() != V2->getType()) 1988 // We can't look through casts yet. 1989 return false; 1990 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1991 return true; 1992 1993 if (V1->getType()->isIntOrIntVectorTy()) { 1994 // Are any known bits in V1 contradictory to known bits in V2? If V1 1995 // has a known zero where V2 has a known one, they must not be equal. 1996 KnownBits Known1 = computeKnownBits(V1, 0, Q); 1997 KnownBits Known2 = computeKnownBits(V2, 0, Q); 1998 1999 if (Known1.Zero.intersects(Known2.One) || 2000 Known2.Zero.intersects(Known1.One)) 2001 return true; 2002 } 2003 return false; 2004 } 2005 2006 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2007 /// simplify operations downstream. Mask is known to be zero for bits that V 2008 /// cannot have. 2009 /// 2010 /// This function is defined on values with integer type, values with pointer 2011 /// type, and vectors of integers. In the case 2012 /// where V is a vector, the mask, known zero, and known one values are the 2013 /// same width as the vector element, and the bit is set only if it is true 2014 /// for all of the elements in the vector. 2015 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2016 const Query &Q) { 2017 KnownBits Known(Mask.getBitWidth()); 2018 computeKnownBits(V, Known, Depth, Q); 2019 return Mask.isSubsetOf(Known.Zero); 2020 } 2021 2022 /// For vector constants, loop over the elements and find the constant with the 2023 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2024 /// or if any element was not analyzed; otherwise, return the count for the 2025 /// element with the minimum number of sign bits. 2026 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2027 unsigned TyBits) { 2028 const auto *CV = dyn_cast<Constant>(V); 2029 if (!CV || !CV->getType()->isVectorTy()) 2030 return 0; 2031 2032 unsigned MinSignBits = TyBits; 2033 unsigned NumElts = CV->getType()->getVectorNumElements(); 2034 for (unsigned i = 0; i != NumElts; ++i) { 2035 // If we find a non-ConstantInt, bail out. 2036 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2037 if (!Elt) 2038 return 0; 2039 2040 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2041 APInt EltVal = Elt->getValue(); 2042 if (EltVal.isNegative()) 2043 EltVal = ~EltVal; 2044 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2045 } 2046 2047 return MinSignBits; 2048 } 2049 2050 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2051 const Query &Q); 2052 2053 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2054 const Query &Q) { 2055 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2056 assert(Result > 0 && "At least one sign bit needs to be present!"); 2057 return Result; 2058 } 2059 2060 /// Return the number of times the sign bit of the register is replicated into 2061 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2062 /// (itself), but other cases can give us information. For example, immediately 2063 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2064 /// other, so we return 3. For vectors, return the number of sign bits for the 2065 /// vector element with the mininum number of known sign bits. 2066 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2067 const Query &Q) { 2068 2069 // We return the minimum number of sign bits that are guaranteed to be present 2070 // in V, so for undef we have to conservatively return 1. We don't have the 2071 // same behavior for poison though -- that's a FIXME today. 2072 2073 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2074 unsigned Tmp, Tmp2; 2075 unsigned FirstAnswer = 1; 2076 2077 // Note that ConstantInt is handled by the general computeKnownBits case 2078 // below. 2079 2080 if (Depth == MaxDepth) 2081 return 1; // Limit search depth. 2082 2083 const Operator *U = dyn_cast<Operator>(V); 2084 switch (Operator::getOpcode(V)) { 2085 default: break; 2086 case Instruction::SExt: 2087 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2088 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2089 2090 case Instruction::SDiv: { 2091 const APInt *Denominator; 2092 // sdiv X, C -> adds log(C) sign bits. 2093 if (match(U->getOperand(1), m_APInt(Denominator))) { 2094 2095 // Ignore non-positive denominator. 2096 if (!Denominator->isStrictlyPositive()) 2097 break; 2098 2099 // Calculate the incoming numerator bits. 2100 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2101 2102 // Add floor(log(C)) bits to the numerator bits. 2103 return std::min(TyBits, NumBits + Denominator->logBase2()); 2104 } 2105 break; 2106 } 2107 2108 case Instruction::SRem: { 2109 const APInt *Denominator; 2110 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2111 // positive constant. This let us put a lower bound on the number of sign 2112 // bits. 2113 if (match(U->getOperand(1), m_APInt(Denominator))) { 2114 2115 // Ignore non-positive denominator. 2116 if (!Denominator->isStrictlyPositive()) 2117 break; 2118 2119 // Calculate the incoming numerator bits. SRem by a positive constant 2120 // can't lower the number of sign bits. 2121 unsigned NumrBits = 2122 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2123 2124 // Calculate the leading sign bit constraints by examining the 2125 // denominator. Given that the denominator is positive, there are two 2126 // cases: 2127 // 2128 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2129 // (1 << ceilLogBase2(C)). 2130 // 2131 // 2. the numerator is negative. Then the result range is (-C,0] and 2132 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2133 // 2134 // Thus a lower bound on the number of sign bits is `TyBits - 2135 // ceilLogBase2(C)`. 2136 2137 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2138 return std::max(NumrBits, ResBits); 2139 } 2140 break; 2141 } 2142 2143 case Instruction::AShr: { 2144 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2145 // ashr X, C -> adds C sign bits. Vectors too. 2146 const APInt *ShAmt; 2147 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2148 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2149 if (ShAmtLimited >= TyBits) 2150 break; // Bad shift. 2151 Tmp += ShAmtLimited; 2152 if (Tmp > TyBits) Tmp = TyBits; 2153 } 2154 return Tmp; 2155 } 2156 case Instruction::Shl: { 2157 const APInt *ShAmt; 2158 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2159 // shl destroys sign bits. 2160 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2161 Tmp2 = ShAmt->getZExtValue(); 2162 if (Tmp2 >= TyBits || // Bad shift. 2163 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2164 return Tmp - Tmp2; 2165 } 2166 break; 2167 } 2168 case Instruction::And: 2169 case Instruction::Or: 2170 case Instruction::Xor: // NOT is handled here. 2171 // Logical binary ops preserve the number of sign bits at the worst. 2172 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2173 if (Tmp != 1) { 2174 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2175 FirstAnswer = std::min(Tmp, Tmp2); 2176 // We computed what we know about the sign bits as our first 2177 // answer. Now proceed to the generic code that uses 2178 // computeKnownBits, and pick whichever answer is better. 2179 } 2180 break; 2181 2182 case Instruction::Select: 2183 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2184 if (Tmp == 1) return 1; // Early out. 2185 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2186 return std::min(Tmp, Tmp2); 2187 2188 case Instruction::Add: 2189 // Add can have at most one carry bit. Thus we know that the output 2190 // is, at worst, one more bit than the inputs. 2191 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2192 if (Tmp == 1) return 1; // Early out. 2193 2194 // Special case decrementing a value (ADD X, -1): 2195 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2196 if (CRHS->isAllOnesValue()) { 2197 KnownBits Known(TyBits); 2198 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2199 2200 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2201 // sign bits set. 2202 if ((Known.Zero | 1).isAllOnesValue()) 2203 return TyBits; 2204 2205 // If we are subtracting one from a positive number, there is no carry 2206 // out of the result. 2207 if (Known.isNonNegative()) 2208 return Tmp; 2209 } 2210 2211 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2212 if (Tmp2 == 1) return 1; 2213 return std::min(Tmp, Tmp2)-1; 2214 2215 case Instruction::Sub: 2216 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2217 if (Tmp2 == 1) return 1; 2218 2219 // Handle NEG. 2220 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2221 if (CLHS->isNullValue()) { 2222 KnownBits Known(TyBits); 2223 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2224 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2225 // sign bits set. 2226 if ((Known.Zero | 1).isAllOnesValue()) 2227 return TyBits; 2228 2229 // If the input is known to be positive (the sign bit is known clear), 2230 // the output of the NEG has the same number of sign bits as the input. 2231 if (Known.isNonNegative()) 2232 return Tmp2; 2233 2234 // Otherwise, we treat this like a SUB. 2235 } 2236 2237 // Sub can have at most one carry bit. Thus we know that the output 2238 // is, at worst, one more bit than the inputs. 2239 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2240 if (Tmp == 1) return 1; // Early out. 2241 return std::min(Tmp, Tmp2)-1; 2242 2243 case Instruction::PHI: { 2244 const PHINode *PN = cast<PHINode>(U); 2245 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2246 // Don't analyze large in-degree PHIs. 2247 if (NumIncomingValues > 4) break; 2248 // Unreachable blocks may have zero-operand PHI nodes. 2249 if (NumIncomingValues == 0) break; 2250 2251 // Take the minimum of all incoming values. This can't infinitely loop 2252 // because of our depth threshold. 2253 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2254 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2255 if (Tmp == 1) return Tmp; 2256 Tmp = std::min( 2257 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2258 } 2259 return Tmp; 2260 } 2261 2262 case Instruction::Trunc: 2263 // FIXME: it's tricky to do anything useful for this, but it is an important 2264 // case for targets like X86. 2265 break; 2266 2267 case Instruction::ExtractElement: 2268 // Look through extract element. At the moment we keep this simple and skip 2269 // tracking the specific element. But at least we might find information 2270 // valid for all elements of the vector (for example if vector is sign 2271 // extended, shifted, etc). 2272 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2273 } 2274 2275 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2276 // use this information. 2277 2278 // If we can examine all elements of a vector constant successfully, we're 2279 // done (we can't do any better than that). If not, keep trying. 2280 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2281 return VecSignBits; 2282 2283 KnownBits Known(TyBits); 2284 computeKnownBits(V, Known, Depth, Q); 2285 2286 // If we know that the sign bit is either zero or one, determine the number of 2287 // identical bits in the top of the input value. 2288 return std::max(FirstAnswer, Known.countMinSignBits()); 2289 } 2290 2291 /// This function computes the integer multiple of Base that equals V. 2292 /// If successful, it returns true and returns the multiple in 2293 /// Multiple. If unsuccessful, it returns false. It looks 2294 /// through SExt instructions only if LookThroughSExt is true. 2295 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2296 bool LookThroughSExt, unsigned Depth) { 2297 const unsigned MaxDepth = 6; 2298 2299 assert(V && "No Value?"); 2300 assert(Depth <= MaxDepth && "Limit Search Depth"); 2301 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2302 2303 Type *T = V->getType(); 2304 2305 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2306 2307 if (Base == 0) 2308 return false; 2309 2310 if (Base == 1) { 2311 Multiple = V; 2312 return true; 2313 } 2314 2315 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2316 Constant *BaseVal = ConstantInt::get(T, Base); 2317 if (CO && CO == BaseVal) { 2318 // Multiple is 1. 2319 Multiple = ConstantInt::get(T, 1); 2320 return true; 2321 } 2322 2323 if (CI && CI->getZExtValue() % Base == 0) { 2324 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2325 return true; 2326 } 2327 2328 if (Depth == MaxDepth) return false; // Limit search depth. 2329 2330 Operator *I = dyn_cast<Operator>(V); 2331 if (!I) return false; 2332 2333 switch (I->getOpcode()) { 2334 default: break; 2335 case Instruction::SExt: 2336 if (!LookThroughSExt) return false; 2337 // otherwise fall through to ZExt 2338 LLVM_FALLTHROUGH; 2339 case Instruction::ZExt: 2340 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2341 LookThroughSExt, Depth+1); 2342 case Instruction::Shl: 2343 case Instruction::Mul: { 2344 Value *Op0 = I->getOperand(0); 2345 Value *Op1 = I->getOperand(1); 2346 2347 if (I->getOpcode() == Instruction::Shl) { 2348 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2349 if (!Op1CI) return false; 2350 // Turn Op0 << Op1 into Op0 * 2^Op1 2351 APInt Op1Int = Op1CI->getValue(); 2352 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2353 APInt API(Op1Int.getBitWidth(), 0); 2354 API.setBit(BitToSet); 2355 Op1 = ConstantInt::get(V->getContext(), API); 2356 } 2357 2358 Value *Mul0 = nullptr; 2359 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2360 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2361 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2362 if (Op1C->getType()->getPrimitiveSizeInBits() < 2363 MulC->getType()->getPrimitiveSizeInBits()) 2364 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2365 if (Op1C->getType()->getPrimitiveSizeInBits() > 2366 MulC->getType()->getPrimitiveSizeInBits()) 2367 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2368 2369 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2370 Multiple = ConstantExpr::getMul(MulC, Op1C); 2371 return true; 2372 } 2373 2374 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2375 if (Mul0CI->getValue() == 1) { 2376 // V == Base * Op1, so return Op1 2377 Multiple = Op1; 2378 return true; 2379 } 2380 } 2381 2382 Value *Mul1 = nullptr; 2383 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2384 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2385 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2386 if (Op0C->getType()->getPrimitiveSizeInBits() < 2387 MulC->getType()->getPrimitiveSizeInBits()) 2388 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2389 if (Op0C->getType()->getPrimitiveSizeInBits() > 2390 MulC->getType()->getPrimitiveSizeInBits()) 2391 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2392 2393 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2394 Multiple = ConstantExpr::getMul(MulC, Op0C); 2395 return true; 2396 } 2397 2398 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2399 if (Mul1CI->getValue() == 1) { 2400 // V == Base * Op0, so return Op0 2401 Multiple = Op0; 2402 return true; 2403 } 2404 } 2405 } 2406 } 2407 2408 // We could not determine if V is a multiple of Base. 2409 return false; 2410 } 2411 2412 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2413 const TargetLibraryInfo *TLI) { 2414 const Function *F = ICS.getCalledFunction(); 2415 if (!F) 2416 return Intrinsic::not_intrinsic; 2417 2418 if (F->isIntrinsic()) 2419 return F->getIntrinsicID(); 2420 2421 if (!TLI) 2422 return Intrinsic::not_intrinsic; 2423 2424 LibFunc Func; 2425 // We're going to make assumptions on the semantics of the functions, check 2426 // that the target knows that it's available in this environment and it does 2427 // not have local linkage. 2428 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2429 return Intrinsic::not_intrinsic; 2430 2431 if (!ICS.onlyReadsMemory()) 2432 return Intrinsic::not_intrinsic; 2433 2434 // Otherwise check if we have a call to a function that can be turned into a 2435 // vector intrinsic. 2436 switch (Func) { 2437 default: 2438 break; 2439 case LibFunc_sin: 2440 case LibFunc_sinf: 2441 case LibFunc_sinl: 2442 return Intrinsic::sin; 2443 case LibFunc_cos: 2444 case LibFunc_cosf: 2445 case LibFunc_cosl: 2446 return Intrinsic::cos; 2447 case LibFunc_exp: 2448 case LibFunc_expf: 2449 case LibFunc_expl: 2450 return Intrinsic::exp; 2451 case LibFunc_exp2: 2452 case LibFunc_exp2f: 2453 case LibFunc_exp2l: 2454 return Intrinsic::exp2; 2455 case LibFunc_log: 2456 case LibFunc_logf: 2457 case LibFunc_logl: 2458 return Intrinsic::log; 2459 case LibFunc_log10: 2460 case LibFunc_log10f: 2461 case LibFunc_log10l: 2462 return Intrinsic::log10; 2463 case LibFunc_log2: 2464 case LibFunc_log2f: 2465 case LibFunc_log2l: 2466 return Intrinsic::log2; 2467 case LibFunc_fabs: 2468 case LibFunc_fabsf: 2469 case LibFunc_fabsl: 2470 return Intrinsic::fabs; 2471 case LibFunc_fmin: 2472 case LibFunc_fminf: 2473 case LibFunc_fminl: 2474 return Intrinsic::minnum; 2475 case LibFunc_fmax: 2476 case LibFunc_fmaxf: 2477 case LibFunc_fmaxl: 2478 return Intrinsic::maxnum; 2479 case LibFunc_copysign: 2480 case LibFunc_copysignf: 2481 case LibFunc_copysignl: 2482 return Intrinsic::copysign; 2483 case LibFunc_floor: 2484 case LibFunc_floorf: 2485 case LibFunc_floorl: 2486 return Intrinsic::floor; 2487 case LibFunc_ceil: 2488 case LibFunc_ceilf: 2489 case LibFunc_ceill: 2490 return Intrinsic::ceil; 2491 case LibFunc_trunc: 2492 case LibFunc_truncf: 2493 case LibFunc_truncl: 2494 return Intrinsic::trunc; 2495 case LibFunc_rint: 2496 case LibFunc_rintf: 2497 case LibFunc_rintl: 2498 return Intrinsic::rint; 2499 case LibFunc_nearbyint: 2500 case LibFunc_nearbyintf: 2501 case LibFunc_nearbyintl: 2502 return Intrinsic::nearbyint; 2503 case LibFunc_round: 2504 case LibFunc_roundf: 2505 case LibFunc_roundl: 2506 return Intrinsic::round; 2507 case LibFunc_pow: 2508 case LibFunc_powf: 2509 case LibFunc_powl: 2510 return Intrinsic::pow; 2511 case LibFunc_sqrt: 2512 case LibFunc_sqrtf: 2513 case LibFunc_sqrtl: 2514 if (ICS->hasNoNaNs()) 2515 return Intrinsic::sqrt; 2516 return Intrinsic::not_intrinsic; 2517 } 2518 2519 return Intrinsic::not_intrinsic; 2520 } 2521 2522 /// Return true if we can prove that the specified FP value is never equal to 2523 /// -0.0. 2524 /// 2525 /// NOTE: this function will need to be revisited when we support non-default 2526 /// rounding modes! 2527 /// 2528 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2529 unsigned Depth) { 2530 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2531 return !CFP->getValueAPF().isNegZero(); 2532 2533 if (Depth == MaxDepth) 2534 return false; // Limit search depth. 2535 2536 const Operator *I = dyn_cast<Operator>(V); 2537 if (!I) return false; 2538 2539 // Check if the nsz fast-math flag is set 2540 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2541 if (FPO->hasNoSignedZeros()) 2542 return true; 2543 2544 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2545 if (I->getOpcode() == Instruction::FAdd) 2546 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2547 if (CFP->isNullValue()) 2548 return true; 2549 2550 // sitofp and uitofp turn into +0.0 for zero. 2551 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2552 return true; 2553 2554 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2555 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2556 switch (IID) { 2557 default: 2558 break; 2559 // sqrt(-0.0) = -0.0, no other negative results are possible. 2560 case Intrinsic::sqrt: 2561 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2562 // fabs(x) != -0.0 2563 case Intrinsic::fabs: 2564 return true; 2565 } 2566 } 2567 2568 return false; 2569 } 2570 2571 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2572 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2573 /// bit despite comparing equal. 2574 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2575 const TargetLibraryInfo *TLI, 2576 bool SignBitOnly, 2577 unsigned Depth) { 2578 // TODO: This function does not do the right thing when SignBitOnly is true 2579 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2580 // which flips the sign bits of NaNs. See 2581 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2582 2583 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2584 return !CFP->getValueAPF().isNegative() || 2585 (!SignBitOnly && CFP->getValueAPF().isZero()); 2586 } 2587 2588 if (Depth == MaxDepth) 2589 return false; // Limit search depth. 2590 2591 const Operator *I = dyn_cast<Operator>(V); 2592 if (!I) 2593 return false; 2594 2595 switch (I->getOpcode()) { 2596 default: 2597 break; 2598 // Unsigned integers are always nonnegative. 2599 case Instruction::UIToFP: 2600 return true; 2601 case Instruction::FMul: 2602 // x*x is always non-negative or a NaN. 2603 if (I->getOperand(0) == I->getOperand(1) && 2604 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2605 return true; 2606 2607 LLVM_FALLTHROUGH; 2608 case Instruction::FAdd: 2609 case Instruction::FDiv: 2610 case Instruction::FRem: 2611 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2612 Depth + 1) && 2613 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2614 Depth + 1); 2615 case Instruction::Select: 2616 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2617 Depth + 1) && 2618 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2619 Depth + 1); 2620 case Instruction::FPExt: 2621 case Instruction::FPTrunc: 2622 // Widening/narrowing never change sign. 2623 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2624 Depth + 1); 2625 case Instruction::Call: 2626 const auto *CI = cast<CallInst>(I); 2627 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2628 switch (IID) { 2629 default: 2630 break; 2631 case Intrinsic::maxnum: 2632 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2633 Depth + 1) || 2634 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2635 Depth + 1); 2636 case Intrinsic::minnum: 2637 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2638 Depth + 1) && 2639 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2640 Depth + 1); 2641 case Intrinsic::exp: 2642 case Intrinsic::exp2: 2643 case Intrinsic::fabs: 2644 return true; 2645 2646 case Intrinsic::sqrt: 2647 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2648 if (!SignBitOnly) 2649 return true; 2650 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2651 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2652 2653 case Intrinsic::powi: 2654 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2655 // powi(x,n) is non-negative if n is even. 2656 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2657 return true; 2658 } 2659 // TODO: This is not correct. Given that exp is an integer, here are the 2660 // ways that pow can return a negative value: 2661 // 2662 // pow(x, exp) --> negative if exp is odd and x is negative. 2663 // pow(-0, exp) --> -inf if exp is negative odd. 2664 // pow(-0, exp) --> -0 if exp is positive odd. 2665 // pow(-inf, exp) --> -0 if exp is negative odd. 2666 // pow(-inf, exp) --> -inf if exp is positive odd. 2667 // 2668 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2669 // but we must return false if x == -0. Unfortunately we do not currently 2670 // have a way of expressing this constraint. See details in 2671 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2672 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2673 Depth + 1); 2674 2675 case Intrinsic::fma: 2676 case Intrinsic::fmuladd: 2677 // x*x+y is non-negative if y is non-negative. 2678 return I->getOperand(0) == I->getOperand(1) && 2679 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2680 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2681 Depth + 1); 2682 } 2683 break; 2684 } 2685 return false; 2686 } 2687 2688 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2689 const TargetLibraryInfo *TLI) { 2690 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2691 } 2692 2693 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2694 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2695 } 2696 2697 /// If the specified value can be set by repeating the same byte in memory, 2698 /// return the i8 value that it is represented with. This is 2699 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2700 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2701 /// byte store (e.g. i16 0x1234), return null. 2702 Value *llvm::isBytewiseValue(Value *V) { 2703 // All byte-wide stores are splatable, even of arbitrary variables. 2704 if (V->getType()->isIntegerTy(8)) return V; 2705 2706 // Handle 'null' ConstantArrayZero etc. 2707 if (Constant *C = dyn_cast<Constant>(V)) 2708 if (C->isNullValue()) 2709 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2710 2711 // Constant float and double values can be handled as integer values if the 2712 // corresponding integer value is "byteable". An important case is 0.0. 2713 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2714 if (CFP->getType()->isFloatTy()) 2715 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2716 if (CFP->getType()->isDoubleTy()) 2717 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2718 // Don't handle long double formats, which have strange constraints. 2719 } 2720 2721 // We can handle constant integers that are multiple of 8 bits. 2722 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2723 if (CI->getBitWidth() % 8 == 0) { 2724 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2725 2726 if (!CI->getValue().isSplat(8)) 2727 return nullptr; 2728 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2729 } 2730 } 2731 2732 // A ConstantDataArray/Vector is splatable if all its members are equal and 2733 // also splatable. 2734 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2735 Value *Elt = CA->getElementAsConstant(0); 2736 Value *Val = isBytewiseValue(Elt); 2737 if (!Val) 2738 return nullptr; 2739 2740 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2741 if (CA->getElementAsConstant(I) != Elt) 2742 return nullptr; 2743 2744 return Val; 2745 } 2746 2747 // Conceptually, we could handle things like: 2748 // %a = zext i8 %X to i16 2749 // %b = shl i16 %a, 8 2750 // %c = or i16 %a, %b 2751 // but until there is an example that actually needs this, it doesn't seem 2752 // worth worrying about. 2753 return nullptr; 2754 } 2755 2756 2757 // This is the recursive version of BuildSubAggregate. It takes a few different 2758 // arguments. Idxs is the index within the nested struct From that we are 2759 // looking at now (which is of type IndexedType). IdxSkip is the number of 2760 // indices from Idxs that should be left out when inserting into the resulting 2761 // struct. To is the result struct built so far, new insertvalue instructions 2762 // build on that. 2763 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2764 SmallVectorImpl<unsigned> &Idxs, 2765 unsigned IdxSkip, 2766 Instruction *InsertBefore) { 2767 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2768 if (STy) { 2769 // Save the original To argument so we can modify it 2770 Value *OrigTo = To; 2771 // General case, the type indexed by Idxs is a struct 2772 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2773 // Process each struct element recursively 2774 Idxs.push_back(i); 2775 Value *PrevTo = To; 2776 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2777 InsertBefore); 2778 Idxs.pop_back(); 2779 if (!To) { 2780 // Couldn't find any inserted value for this index? Cleanup 2781 while (PrevTo != OrigTo) { 2782 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2783 PrevTo = Del->getAggregateOperand(); 2784 Del->eraseFromParent(); 2785 } 2786 // Stop processing elements 2787 break; 2788 } 2789 } 2790 // If we successfully found a value for each of our subaggregates 2791 if (To) 2792 return To; 2793 } 2794 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2795 // the struct's elements had a value that was inserted directly. In the latter 2796 // case, perhaps we can't determine each of the subelements individually, but 2797 // we might be able to find the complete struct somewhere. 2798 2799 // Find the value that is at that particular spot 2800 Value *V = FindInsertedValue(From, Idxs); 2801 2802 if (!V) 2803 return nullptr; 2804 2805 // Insert the value in the new (sub) aggregrate 2806 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2807 "tmp", InsertBefore); 2808 } 2809 2810 // This helper takes a nested struct and extracts a part of it (which is again a 2811 // struct) into a new value. For example, given the struct: 2812 // { a, { b, { c, d }, e } } 2813 // and the indices "1, 1" this returns 2814 // { c, d }. 2815 // 2816 // It does this by inserting an insertvalue for each element in the resulting 2817 // struct, as opposed to just inserting a single struct. This will only work if 2818 // each of the elements of the substruct are known (ie, inserted into From by an 2819 // insertvalue instruction somewhere). 2820 // 2821 // All inserted insertvalue instructions are inserted before InsertBefore 2822 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2823 Instruction *InsertBefore) { 2824 assert(InsertBefore && "Must have someplace to insert!"); 2825 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2826 idx_range); 2827 Value *To = UndefValue::get(IndexedType); 2828 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2829 unsigned IdxSkip = Idxs.size(); 2830 2831 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2832 } 2833 2834 /// Given an aggregrate and an sequence of indices, see if 2835 /// the scalar value indexed is already around as a register, for example if it 2836 /// were inserted directly into the aggregrate. 2837 /// 2838 /// If InsertBefore is not null, this function will duplicate (modified) 2839 /// insertvalues when a part of a nested struct is extracted. 2840 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2841 Instruction *InsertBefore) { 2842 // Nothing to index? Just return V then (this is useful at the end of our 2843 // recursion). 2844 if (idx_range.empty()) 2845 return V; 2846 // We have indices, so V should have an indexable type. 2847 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2848 "Not looking at a struct or array?"); 2849 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2850 "Invalid indices for type?"); 2851 2852 if (Constant *C = dyn_cast<Constant>(V)) { 2853 C = C->getAggregateElement(idx_range[0]); 2854 if (!C) return nullptr; 2855 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2856 } 2857 2858 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2859 // Loop the indices for the insertvalue instruction in parallel with the 2860 // requested indices 2861 const unsigned *req_idx = idx_range.begin(); 2862 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2863 i != e; ++i, ++req_idx) { 2864 if (req_idx == idx_range.end()) { 2865 // We can't handle this without inserting insertvalues 2866 if (!InsertBefore) 2867 return nullptr; 2868 2869 // The requested index identifies a part of a nested aggregate. Handle 2870 // this specially. For example, 2871 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2872 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2873 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2874 // This can be changed into 2875 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2876 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2877 // which allows the unused 0,0 element from the nested struct to be 2878 // removed. 2879 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2880 InsertBefore); 2881 } 2882 2883 // This insert value inserts something else than what we are looking for. 2884 // See if the (aggregate) value inserted into has the value we are 2885 // looking for, then. 2886 if (*req_idx != *i) 2887 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2888 InsertBefore); 2889 } 2890 // If we end up here, the indices of the insertvalue match with those 2891 // requested (though possibly only partially). Now we recursively look at 2892 // the inserted value, passing any remaining indices. 2893 return FindInsertedValue(I->getInsertedValueOperand(), 2894 makeArrayRef(req_idx, idx_range.end()), 2895 InsertBefore); 2896 } 2897 2898 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2899 // If we're extracting a value from an aggregate that was extracted from 2900 // something else, we can extract from that something else directly instead. 2901 // However, we will need to chain I's indices with the requested indices. 2902 2903 // Calculate the number of indices required 2904 unsigned size = I->getNumIndices() + idx_range.size(); 2905 // Allocate some space to put the new indices in 2906 SmallVector<unsigned, 5> Idxs; 2907 Idxs.reserve(size); 2908 // Add indices from the extract value instruction 2909 Idxs.append(I->idx_begin(), I->idx_end()); 2910 2911 // Add requested indices 2912 Idxs.append(idx_range.begin(), idx_range.end()); 2913 2914 assert(Idxs.size() == size 2915 && "Number of indices added not correct?"); 2916 2917 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2918 } 2919 // Otherwise, we don't know (such as, extracting from a function return value 2920 // or load instruction) 2921 return nullptr; 2922 } 2923 2924 /// Analyze the specified pointer to see if it can be expressed as a base 2925 /// pointer plus a constant offset. Return the base and offset to the caller. 2926 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2927 const DataLayout &DL) { 2928 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2929 APInt ByteOffset(BitWidth, 0); 2930 2931 // We walk up the defs but use a visited set to handle unreachable code. In 2932 // that case, we stop after accumulating the cycle once (not that it 2933 // matters). 2934 SmallPtrSet<Value *, 16> Visited; 2935 while (Visited.insert(Ptr).second) { 2936 if (Ptr->getType()->isVectorTy()) 2937 break; 2938 2939 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2940 // If one of the values we have visited is an addrspacecast, then 2941 // the pointer type of this GEP may be different from the type 2942 // of the Ptr parameter which was passed to this function. This 2943 // means when we construct GEPOffset, we need to use the size 2944 // of GEP's pointer type rather than the size of the original 2945 // pointer type. 2946 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2947 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2948 break; 2949 2950 ByteOffset += GEPOffset.getSExtValue(); 2951 2952 Ptr = GEP->getPointerOperand(); 2953 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2954 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2955 Ptr = cast<Operator>(Ptr)->getOperand(0); 2956 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2957 if (GA->isInterposable()) 2958 break; 2959 Ptr = GA->getAliasee(); 2960 } else { 2961 break; 2962 } 2963 } 2964 Offset = ByteOffset.getSExtValue(); 2965 return Ptr; 2966 } 2967 2968 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 2969 unsigned CharSize) { 2970 // Make sure the GEP has exactly three arguments. 2971 if (GEP->getNumOperands() != 3) 2972 return false; 2973 2974 // Make sure the index-ee is a pointer to array of \p CharSize integers. 2975 // CharSize. 2976 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2977 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 2978 return false; 2979 2980 // Check to make sure that the first operand of the GEP is an integer and 2981 // has value 0 so that we are sure we're indexing into the initializer. 2982 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2983 if (!FirstIdx || !FirstIdx->isZero()) 2984 return false; 2985 2986 return true; 2987 } 2988 2989 bool llvm::getConstantDataArrayInfo(const Value *V, 2990 ConstantDataArraySlice &Slice, 2991 unsigned ElementSize, uint64_t Offset) { 2992 assert(V); 2993 2994 // Look through bitcast instructions and geps. 2995 V = V->stripPointerCasts(); 2996 2997 // If the value is a GEP instruction or constant expression, treat it as an 2998 // offset. 2999 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3000 // The GEP operator should be based on a pointer to string constant, and is 3001 // indexing into the string constant. 3002 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3003 return false; 3004 3005 // If the second index isn't a ConstantInt, then this is a variable index 3006 // into the array. If this occurs, we can't say anything meaningful about 3007 // the string. 3008 uint64_t StartIdx = 0; 3009 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3010 StartIdx = CI->getZExtValue(); 3011 else 3012 return false; 3013 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3014 StartIdx + Offset); 3015 } 3016 3017 // The GEP instruction, constant or instruction, must reference a global 3018 // variable that is a constant and is initialized. The referenced constant 3019 // initializer is the array that we'll use for optimization. 3020 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3021 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3022 return false; 3023 3024 const ConstantDataArray *Array; 3025 ArrayType *ArrayTy; 3026 if (GV->getInitializer()->isNullValue()) { 3027 Type *GVTy = GV->getValueType(); 3028 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3029 // A zeroinitializer for the array; There is no ConstantDataArray. 3030 Array = nullptr; 3031 } else { 3032 const DataLayout &DL = GV->getParent()->getDataLayout(); 3033 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3034 uint64_t Length = SizeInBytes / (ElementSize / 8); 3035 if (Length <= Offset) 3036 return false; 3037 3038 Slice.Array = nullptr; 3039 Slice.Offset = 0; 3040 Slice.Length = Length - Offset; 3041 return true; 3042 } 3043 } else { 3044 // This must be a ConstantDataArray. 3045 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3046 if (!Array) 3047 return false; 3048 ArrayTy = Array->getType(); 3049 } 3050 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3051 return false; 3052 3053 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3054 if (Offset > NumElts) 3055 return false; 3056 3057 Slice.Array = Array; 3058 Slice.Offset = Offset; 3059 Slice.Length = NumElts - Offset; 3060 return true; 3061 } 3062 3063 /// This function computes the length of a null-terminated C string pointed to 3064 /// by V. If successful, it returns true and returns the string in Str. 3065 /// If unsuccessful, it returns false. 3066 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3067 uint64_t Offset, bool TrimAtNul) { 3068 ConstantDataArraySlice Slice; 3069 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3070 return false; 3071 3072 if (Slice.Array == nullptr) { 3073 if (TrimAtNul) { 3074 Str = StringRef(); 3075 return true; 3076 } 3077 if (Slice.Length == 1) { 3078 Str = StringRef("", 1); 3079 return true; 3080 } 3081 // We cannot instantiate a StringRef as we do not have an apropriate string 3082 // of 0s at hand. 3083 return false; 3084 } 3085 3086 // Start out with the entire array in the StringRef. 3087 Str = Slice.Array->getAsString(); 3088 // Skip over 'offset' bytes. 3089 Str = Str.substr(Slice.Offset); 3090 3091 if (TrimAtNul) { 3092 // Trim off the \0 and anything after it. If the array is not nul 3093 // terminated, we just return the whole end of string. The client may know 3094 // some other way that the string is length-bound. 3095 Str = Str.substr(0, Str.find('\0')); 3096 } 3097 return true; 3098 } 3099 3100 // These next two are very similar to the above, but also look through PHI 3101 // nodes. 3102 // TODO: See if we can integrate these two together. 3103 3104 /// If we can compute the length of the string pointed to by 3105 /// the specified pointer, return 'len+1'. If we can't, return 0. 3106 static uint64_t GetStringLengthH(const Value *V, 3107 SmallPtrSetImpl<const PHINode*> &PHIs, 3108 unsigned CharSize) { 3109 // Look through noop bitcast instructions. 3110 V = V->stripPointerCasts(); 3111 3112 // If this is a PHI node, there are two cases: either we have already seen it 3113 // or we haven't. 3114 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3115 if (!PHIs.insert(PN).second) 3116 return ~0ULL; // already in the set. 3117 3118 // If it was new, see if all the input strings are the same length. 3119 uint64_t LenSoFar = ~0ULL; 3120 for (Value *IncValue : PN->incoming_values()) { 3121 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3122 if (Len == 0) return 0; // Unknown length -> unknown. 3123 3124 if (Len == ~0ULL) continue; 3125 3126 if (Len != LenSoFar && LenSoFar != ~0ULL) 3127 return 0; // Disagree -> unknown. 3128 LenSoFar = Len; 3129 } 3130 3131 // Success, all agree. 3132 return LenSoFar; 3133 } 3134 3135 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3136 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3137 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3138 if (Len1 == 0) return 0; 3139 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3140 if (Len2 == 0) return 0; 3141 if (Len1 == ~0ULL) return Len2; 3142 if (Len2 == ~0ULL) return Len1; 3143 if (Len1 != Len2) return 0; 3144 return Len1; 3145 } 3146 3147 // Otherwise, see if we can read the string. 3148 ConstantDataArraySlice Slice; 3149 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3150 return 0; 3151 3152 if (Slice.Array == nullptr) 3153 return 1; 3154 3155 // Search for nul characters 3156 unsigned NullIndex = 0; 3157 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3158 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3159 break; 3160 } 3161 3162 return NullIndex + 1; 3163 } 3164 3165 /// If we can compute the length of the string pointed to by 3166 /// the specified pointer, return 'len+1'. If we can't, return 0. 3167 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3168 if (!V->getType()->isPointerTy()) return 0; 3169 3170 SmallPtrSet<const PHINode*, 32> PHIs; 3171 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3172 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3173 // an empty string as a length. 3174 return Len == ~0ULL ? 1 : Len; 3175 } 3176 3177 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3178 /// previous iteration of the loop was referring to the same object as \p PN. 3179 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3180 const LoopInfo *LI) { 3181 // Find the loop-defined value. 3182 Loop *L = LI->getLoopFor(PN->getParent()); 3183 if (PN->getNumIncomingValues() != 2) 3184 return true; 3185 3186 // Find the value from previous iteration. 3187 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3188 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3189 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3190 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3191 return true; 3192 3193 // If a new pointer is loaded in the loop, the pointer references a different 3194 // object in every iteration. E.g.: 3195 // for (i) 3196 // int *p = a[i]; 3197 // ... 3198 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3199 if (!L->isLoopInvariant(Load->getPointerOperand())) 3200 return false; 3201 return true; 3202 } 3203 3204 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3205 unsigned MaxLookup) { 3206 if (!V->getType()->isPointerTy()) 3207 return V; 3208 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3209 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3210 V = GEP->getPointerOperand(); 3211 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3212 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3213 V = cast<Operator>(V)->getOperand(0); 3214 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3215 if (GA->isInterposable()) 3216 return V; 3217 V = GA->getAliasee(); 3218 } else if (isa<AllocaInst>(V)) { 3219 // An alloca can't be further simplified. 3220 return V; 3221 } else { 3222 if (auto CS = CallSite(V)) 3223 if (Value *RV = CS.getReturnedArgOperand()) { 3224 V = RV; 3225 continue; 3226 } 3227 3228 // See if InstructionSimplify knows any relevant tricks. 3229 if (Instruction *I = dyn_cast<Instruction>(V)) 3230 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3231 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3232 V = Simplified; 3233 continue; 3234 } 3235 3236 return V; 3237 } 3238 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3239 } 3240 return V; 3241 } 3242 3243 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3244 const DataLayout &DL, LoopInfo *LI, 3245 unsigned MaxLookup) { 3246 SmallPtrSet<Value *, 4> Visited; 3247 SmallVector<Value *, 4> Worklist; 3248 Worklist.push_back(V); 3249 do { 3250 Value *P = Worklist.pop_back_val(); 3251 P = GetUnderlyingObject(P, DL, MaxLookup); 3252 3253 if (!Visited.insert(P).second) 3254 continue; 3255 3256 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3257 Worklist.push_back(SI->getTrueValue()); 3258 Worklist.push_back(SI->getFalseValue()); 3259 continue; 3260 } 3261 3262 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3263 // If this PHI changes the underlying object in every iteration of the 3264 // loop, don't look through it. Consider: 3265 // int **A; 3266 // for (i) { 3267 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3268 // Curr = A[i]; 3269 // *Prev, *Curr; 3270 // 3271 // Prev is tracking Curr one iteration behind so they refer to different 3272 // underlying objects. 3273 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3274 isSameUnderlyingObjectInLoop(PN, LI)) 3275 for (Value *IncValue : PN->incoming_values()) 3276 Worklist.push_back(IncValue); 3277 continue; 3278 } 3279 3280 Objects.push_back(P); 3281 } while (!Worklist.empty()); 3282 } 3283 3284 /// Return true if the only users of this pointer are lifetime markers. 3285 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3286 for (const User *U : V->users()) { 3287 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3288 if (!II) return false; 3289 3290 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3291 II->getIntrinsicID() != Intrinsic::lifetime_end) 3292 return false; 3293 } 3294 return true; 3295 } 3296 3297 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3298 const Instruction *CtxI, 3299 const DominatorTree *DT) { 3300 const Operator *Inst = dyn_cast<Operator>(V); 3301 if (!Inst) 3302 return false; 3303 3304 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3305 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3306 if (C->canTrap()) 3307 return false; 3308 3309 switch (Inst->getOpcode()) { 3310 default: 3311 return true; 3312 case Instruction::UDiv: 3313 case Instruction::URem: { 3314 // x / y is undefined if y == 0. 3315 const APInt *V; 3316 if (match(Inst->getOperand(1), m_APInt(V))) 3317 return *V != 0; 3318 return false; 3319 } 3320 case Instruction::SDiv: 3321 case Instruction::SRem: { 3322 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3323 const APInt *Numerator, *Denominator; 3324 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3325 return false; 3326 // We cannot hoist this division if the denominator is 0. 3327 if (*Denominator == 0) 3328 return false; 3329 // It's safe to hoist if the denominator is not 0 or -1. 3330 if (*Denominator != -1) 3331 return true; 3332 // At this point we know that the denominator is -1. It is safe to hoist as 3333 // long we know that the numerator is not INT_MIN. 3334 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3335 return !Numerator->isMinSignedValue(); 3336 // The numerator *might* be MinSignedValue. 3337 return false; 3338 } 3339 case Instruction::Load: { 3340 const LoadInst *LI = cast<LoadInst>(Inst); 3341 if (!LI->isUnordered() || 3342 // Speculative load may create a race that did not exist in the source. 3343 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3344 // Speculative load may load data from dirty regions. 3345 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3346 return false; 3347 const DataLayout &DL = LI->getModule()->getDataLayout(); 3348 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3349 LI->getAlignment(), DL, CtxI, DT); 3350 } 3351 case Instruction::Call: { 3352 auto *CI = cast<const CallInst>(Inst); 3353 const Function *Callee = CI->getCalledFunction(); 3354 3355 // The called function could have undefined behavior or side-effects, even 3356 // if marked readnone nounwind. 3357 return Callee && Callee->isSpeculatable(); 3358 } 3359 case Instruction::VAArg: 3360 case Instruction::Alloca: 3361 case Instruction::Invoke: 3362 case Instruction::PHI: 3363 case Instruction::Store: 3364 case Instruction::Ret: 3365 case Instruction::Br: 3366 case Instruction::IndirectBr: 3367 case Instruction::Switch: 3368 case Instruction::Unreachable: 3369 case Instruction::Fence: 3370 case Instruction::AtomicRMW: 3371 case Instruction::AtomicCmpXchg: 3372 case Instruction::LandingPad: 3373 case Instruction::Resume: 3374 case Instruction::CatchSwitch: 3375 case Instruction::CatchPad: 3376 case Instruction::CatchRet: 3377 case Instruction::CleanupPad: 3378 case Instruction::CleanupRet: 3379 return false; // Misc instructions which have effects 3380 } 3381 } 3382 3383 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3384 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3385 } 3386 3387 /// Return true if we know that the specified value is never null. 3388 bool llvm::isKnownNonNull(const Value *V) { 3389 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3390 3391 // Alloca never returns null, malloc might. 3392 if (isa<AllocaInst>(V)) return true; 3393 3394 // A byval, inalloca, or nonnull argument is never null. 3395 if (const Argument *A = dyn_cast<Argument>(V)) 3396 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3397 3398 // A global variable in address space 0 is non null unless extern weak 3399 // or an absolute symbol reference. Other address spaces may have null as a 3400 // valid address for a global, so we can't assume anything. 3401 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3402 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3403 GV->getType()->getAddressSpace() == 0; 3404 3405 // A Load tagged with nonnull metadata is never null. 3406 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3407 return LI->getMetadata(LLVMContext::MD_nonnull); 3408 3409 if (auto CS = ImmutableCallSite(V)) 3410 if (CS.isReturnNonNull()) 3411 return true; 3412 3413 return false; 3414 } 3415 3416 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3417 const Instruction *CtxI, 3418 const DominatorTree *DT) { 3419 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3420 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3421 assert(CtxI && "Context instruction required for analysis"); 3422 assert(DT && "Dominator tree required for analysis"); 3423 3424 unsigned NumUsesExplored = 0; 3425 for (auto *U : V->users()) { 3426 // Avoid massive lists 3427 if (NumUsesExplored >= DomConditionsMaxUses) 3428 break; 3429 NumUsesExplored++; 3430 3431 // If the value is used as an argument to a call or invoke, then argument 3432 // attributes may provide an answer about null-ness. 3433 if (auto CS = ImmutableCallSite(U)) 3434 if (auto *CalledFunc = CS.getCalledFunction()) 3435 for (const Argument &Arg : CalledFunc->args()) 3436 if (CS.getArgOperand(Arg.getArgNo()) == V && 3437 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3438 return true; 3439 3440 // Consider only compare instructions uniquely controlling a branch 3441 CmpInst::Predicate Pred; 3442 if (!match(const_cast<User *>(U), 3443 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3444 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3445 continue; 3446 3447 for (auto *CmpU : U->users()) { 3448 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3449 assert(BI->isConditional() && "uses a comparison!"); 3450 3451 BasicBlock *NonNullSuccessor = 3452 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3453 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3454 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3455 return true; 3456 } else if (Pred == ICmpInst::ICMP_NE && 3457 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3458 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3459 return true; 3460 } 3461 } 3462 } 3463 3464 return false; 3465 } 3466 3467 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3468 const DominatorTree *DT) { 3469 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3470 return false; 3471 3472 if (isKnownNonNull(V)) 3473 return true; 3474 3475 if (!CtxI || !DT) 3476 return false; 3477 3478 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3479 } 3480 3481 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3482 const Value *RHS, 3483 const DataLayout &DL, 3484 AssumptionCache *AC, 3485 const Instruction *CxtI, 3486 const DominatorTree *DT) { 3487 // Multiplying n * m significant bits yields a result of n + m significant 3488 // bits. If the total number of significant bits does not exceed the 3489 // result bit width (minus 1), there is no overflow. 3490 // This means if we have enough leading zero bits in the operands 3491 // we can guarantee that the result does not overflow. 3492 // Ref: "Hacker's Delight" by Henry Warren 3493 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3494 KnownBits LHSKnown(BitWidth); 3495 KnownBits RHSKnown(BitWidth); 3496 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3497 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3498 // Note that underestimating the number of zero bits gives a more 3499 // conservative answer. 3500 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3501 RHSKnown.countMinLeadingZeros(); 3502 // First handle the easy case: if we have enough zero bits there's 3503 // definitely no overflow. 3504 if (ZeroBits >= BitWidth) 3505 return OverflowResult::NeverOverflows; 3506 3507 // Get the largest possible values for each operand. 3508 APInt LHSMax = ~LHSKnown.Zero; 3509 APInt RHSMax = ~RHSKnown.Zero; 3510 3511 // We know the multiply operation doesn't overflow if the maximum values for 3512 // each operand will not overflow after we multiply them together. 3513 bool MaxOverflow; 3514 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3515 if (!MaxOverflow) 3516 return OverflowResult::NeverOverflows; 3517 3518 // We know it always overflows if multiplying the smallest possible values for 3519 // the operands also results in overflow. 3520 bool MinOverflow; 3521 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3522 if (MinOverflow) 3523 return OverflowResult::AlwaysOverflows; 3524 3525 return OverflowResult::MayOverflow; 3526 } 3527 3528 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3529 const Value *RHS, 3530 const DataLayout &DL, 3531 AssumptionCache *AC, 3532 const Instruction *CxtI, 3533 const DominatorTree *DT) { 3534 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3535 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3536 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3537 3538 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3539 // The sign bit is set in both cases: this MUST overflow. 3540 // Create a simple add instruction, and insert it into the struct. 3541 return OverflowResult::AlwaysOverflows; 3542 } 3543 3544 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3545 // The sign bit is clear in both cases: this CANNOT overflow. 3546 // Create a simple add instruction, and insert it into the struct. 3547 return OverflowResult::NeverOverflows; 3548 } 3549 } 3550 3551 return OverflowResult::MayOverflow; 3552 } 3553 3554 /// \brief Return true if we can prove that adding the two values of the 3555 /// knownbits will not overflow. 3556 /// Otherwise return false. 3557 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3558 const KnownBits &RHSKnown) { 3559 // Addition of two 2's complement numbers having opposite signs will never 3560 // overflow. 3561 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3562 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3563 return true; 3564 3565 // If either of the values is known to be non-negative, adding them can only 3566 // overflow if the second is also non-negative, so we can assume that. 3567 // Two non-negative numbers will only overflow if there is a carry to the 3568 // sign bit, so we can check if even when the values are as big as possible 3569 // there is no overflow to the sign bit. 3570 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3571 APInt MaxLHS = ~LHSKnown.Zero; 3572 MaxLHS.clearSignBit(); 3573 APInt MaxRHS = ~RHSKnown.Zero; 3574 MaxRHS.clearSignBit(); 3575 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3576 return Result.isSignBitClear(); 3577 } 3578 3579 // If either of the values is known to be negative, adding them can only 3580 // overflow if the second is also negative, so we can assume that. 3581 // Two negative number will only overflow if there is no carry to the sign 3582 // bit, so we can check if even when the values are as small as possible 3583 // there is overflow to the sign bit. 3584 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3585 APInt MinLHS = LHSKnown.One; 3586 MinLHS.clearSignBit(); 3587 APInt MinRHS = RHSKnown.One; 3588 MinRHS.clearSignBit(); 3589 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3590 return Result.isSignBitSet(); 3591 } 3592 3593 // If we reached here it means that we know nothing about the sign bits. 3594 // In this case we can't know if there will be an overflow, since by 3595 // changing the sign bits any two values can be made to overflow. 3596 return false; 3597 } 3598 3599 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3600 const Value *RHS, 3601 const AddOperator *Add, 3602 const DataLayout &DL, 3603 AssumptionCache *AC, 3604 const Instruction *CxtI, 3605 const DominatorTree *DT) { 3606 if (Add && Add->hasNoSignedWrap()) { 3607 return OverflowResult::NeverOverflows; 3608 } 3609 3610 // If LHS and RHS each have at least two sign bits, the addition will look 3611 // like 3612 // 3613 // XX..... + 3614 // YY..... 3615 // 3616 // If the carry into the most significant position is 0, X and Y can't both 3617 // be 1 and therefore the carry out of the addition is also 0. 3618 // 3619 // If the carry into the most significant position is 1, X and Y can't both 3620 // be 0 and therefore the carry out of the addition is also 1. 3621 // 3622 // Since the carry into the most significant position is always equal to 3623 // the carry out of the addition, there is no signed overflow. 3624 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3625 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3626 return OverflowResult::NeverOverflows; 3627 3628 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3629 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3630 3631 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3632 return OverflowResult::NeverOverflows; 3633 3634 // The remaining code needs Add to be available. Early returns if not so. 3635 if (!Add) 3636 return OverflowResult::MayOverflow; 3637 3638 // If the sign of Add is the same as at least one of the operands, this add 3639 // CANNOT overflow. This is particularly useful when the sum is 3640 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3641 // operands. 3642 bool LHSOrRHSKnownNonNegative = 3643 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3644 bool LHSOrRHSKnownNegative = 3645 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3646 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3647 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3648 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3649 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3650 return OverflowResult::NeverOverflows; 3651 } 3652 } 3653 3654 return OverflowResult::MayOverflow; 3655 } 3656 3657 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3658 const DominatorTree &DT) { 3659 #ifndef NDEBUG 3660 auto IID = II->getIntrinsicID(); 3661 assert((IID == Intrinsic::sadd_with_overflow || 3662 IID == Intrinsic::uadd_with_overflow || 3663 IID == Intrinsic::ssub_with_overflow || 3664 IID == Intrinsic::usub_with_overflow || 3665 IID == Intrinsic::smul_with_overflow || 3666 IID == Intrinsic::umul_with_overflow) && 3667 "Not an overflow intrinsic!"); 3668 #endif 3669 3670 SmallVector<const BranchInst *, 2> GuardingBranches; 3671 SmallVector<const ExtractValueInst *, 2> Results; 3672 3673 for (const User *U : II->users()) { 3674 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3675 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3676 3677 if (EVI->getIndices()[0] == 0) 3678 Results.push_back(EVI); 3679 else { 3680 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3681 3682 for (const auto *U : EVI->users()) 3683 if (const auto *B = dyn_cast<BranchInst>(U)) { 3684 assert(B->isConditional() && "How else is it using an i1?"); 3685 GuardingBranches.push_back(B); 3686 } 3687 } 3688 } else { 3689 // We are using the aggregate directly in a way we don't want to analyze 3690 // here (storing it to a global, say). 3691 return false; 3692 } 3693 } 3694 3695 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3696 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3697 if (!NoWrapEdge.isSingleEdge()) 3698 return false; 3699 3700 // Check if all users of the add are provably no-wrap. 3701 for (const auto *Result : Results) { 3702 // If the extractvalue itself is not executed on overflow, the we don't 3703 // need to check each use separately, since domination is transitive. 3704 if (DT.dominates(NoWrapEdge, Result->getParent())) 3705 continue; 3706 3707 for (auto &RU : Result->uses()) 3708 if (!DT.dominates(NoWrapEdge, RU)) 3709 return false; 3710 } 3711 3712 return true; 3713 }; 3714 3715 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3716 } 3717 3718 3719 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3720 const DataLayout &DL, 3721 AssumptionCache *AC, 3722 const Instruction *CxtI, 3723 const DominatorTree *DT) { 3724 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3725 Add, DL, AC, CxtI, DT); 3726 } 3727 3728 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3729 const Value *RHS, 3730 const DataLayout &DL, 3731 AssumptionCache *AC, 3732 const Instruction *CxtI, 3733 const DominatorTree *DT) { 3734 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3735 } 3736 3737 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3738 // A memory operation returns normally if it isn't volatile. A volatile 3739 // operation is allowed to trap. 3740 // 3741 // An atomic operation isn't guaranteed to return in a reasonable amount of 3742 // time because it's possible for another thread to interfere with it for an 3743 // arbitrary length of time, but programs aren't allowed to rely on that. 3744 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3745 return !LI->isVolatile(); 3746 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3747 return !SI->isVolatile(); 3748 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3749 return !CXI->isVolatile(); 3750 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3751 return !RMWI->isVolatile(); 3752 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3753 return !MII->isVolatile(); 3754 3755 // If there is no successor, then execution can't transfer to it. 3756 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3757 return !CRI->unwindsToCaller(); 3758 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3759 return !CatchSwitch->unwindsToCaller(); 3760 if (isa<ResumeInst>(I)) 3761 return false; 3762 if (isa<ReturnInst>(I)) 3763 return false; 3764 if (isa<UnreachableInst>(I)) 3765 return false; 3766 3767 // Calls can throw, or contain an infinite loop, or kill the process. 3768 if (auto CS = ImmutableCallSite(I)) { 3769 // Call sites that throw have implicit non-local control flow. 3770 if (!CS.doesNotThrow()) 3771 return false; 3772 3773 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3774 // etc. and thus not return. However, LLVM already assumes that 3775 // 3776 // - Thread exiting actions are modeled as writes to memory invisible to 3777 // the program. 3778 // 3779 // - Loops that don't have side effects (side effects are volatile/atomic 3780 // stores and IO) always terminate (see http://llvm.org/PR965). 3781 // Furthermore IO itself is also modeled as writes to memory invisible to 3782 // the program. 3783 // 3784 // We rely on those assumptions here, and use the memory effects of the call 3785 // target as a proxy for checking that it always returns. 3786 3787 // FIXME: This isn't aggressive enough; a call which only writes to a global 3788 // is guaranteed to return. 3789 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3790 match(I, m_Intrinsic<Intrinsic::assume>()); 3791 } 3792 3793 // Other instructions return normally. 3794 return true; 3795 } 3796 3797 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3798 const Loop *L) { 3799 // The loop header is guaranteed to be executed for every iteration. 3800 // 3801 // FIXME: Relax this constraint to cover all basic blocks that are 3802 // guaranteed to be executed at every iteration. 3803 if (I->getParent() != L->getHeader()) return false; 3804 3805 for (const Instruction &LI : *L->getHeader()) { 3806 if (&LI == I) return true; 3807 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3808 } 3809 llvm_unreachable("Instruction not contained in its own parent basic block."); 3810 } 3811 3812 bool llvm::propagatesFullPoison(const Instruction *I) { 3813 switch (I->getOpcode()) { 3814 case Instruction::Add: 3815 case Instruction::Sub: 3816 case Instruction::Xor: 3817 case Instruction::Trunc: 3818 case Instruction::BitCast: 3819 case Instruction::AddrSpaceCast: 3820 case Instruction::Mul: 3821 case Instruction::Shl: 3822 case Instruction::GetElementPtr: 3823 // These operations all propagate poison unconditionally. Note that poison 3824 // is not any particular value, so xor or subtraction of poison with 3825 // itself still yields poison, not zero. 3826 return true; 3827 3828 case Instruction::AShr: 3829 case Instruction::SExt: 3830 // For these operations, one bit of the input is replicated across 3831 // multiple output bits. A replicated poison bit is still poison. 3832 return true; 3833 3834 case Instruction::ICmp: 3835 // Comparing poison with any value yields poison. This is why, for 3836 // instance, x s< (x +nsw 1) can be folded to true. 3837 return true; 3838 3839 default: 3840 return false; 3841 } 3842 } 3843 3844 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3845 switch (I->getOpcode()) { 3846 case Instruction::Store: 3847 return cast<StoreInst>(I)->getPointerOperand(); 3848 3849 case Instruction::Load: 3850 return cast<LoadInst>(I)->getPointerOperand(); 3851 3852 case Instruction::AtomicCmpXchg: 3853 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3854 3855 case Instruction::AtomicRMW: 3856 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3857 3858 case Instruction::UDiv: 3859 case Instruction::SDiv: 3860 case Instruction::URem: 3861 case Instruction::SRem: 3862 return I->getOperand(1); 3863 3864 default: 3865 return nullptr; 3866 } 3867 } 3868 3869 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 3870 // We currently only look for uses of poison values within the same basic 3871 // block, as that makes it easier to guarantee that the uses will be 3872 // executed given that PoisonI is executed. 3873 // 3874 // FIXME: Expand this to consider uses beyond the same basic block. To do 3875 // this, look out for the distinction between post-dominance and strong 3876 // post-dominance. 3877 const BasicBlock *BB = PoisonI->getParent(); 3878 3879 // Set of instructions that we have proved will yield poison if PoisonI 3880 // does. 3881 SmallSet<const Value *, 16> YieldsPoison; 3882 SmallSet<const BasicBlock *, 4> Visited; 3883 YieldsPoison.insert(PoisonI); 3884 Visited.insert(PoisonI->getParent()); 3885 3886 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3887 3888 unsigned Iter = 0; 3889 while (Iter++ < MaxDepth) { 3890 for (auto &I : make_range(Begin, End)) { 3891 if (&I != PoisonI) { 3892 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3893 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3894 return true; 3895 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3896 return false; 3897 } 3898 3899 // Mark poison that propagates from I through uses of I. 3900 if (YieldsPoison.count(&I)) { 3901 for (const User *User : I.users()) { 3902 const Instruction *UserI = cast<Instruction>(User); 3903 if (propagatesFullPoison(UserI)) 3904 YieldsPoison.insert(User); 3905 } 3906 } 3907 } 3908 3909 if (auto *NextBB = BB->getSingleSuccessor()) { 3910 if (Visited.insert(NextBB).second) { 3911 BB = NextBB; 3912 Begin = BB->getFirstNonPHI()->getIterator(); 3913 End = BB->end(); 3914 continue; 3915 } 3916 } 3917 3918 break; 3919 }; 3920 return false; 3921 } 3922 3923 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3924 if (FMF.noNaNs()) 3925 return true; 3926 3927 if (auto *C = dyn_cast<ConstantFP>(V)) 3928 return !C->isNaN(); 3929 return false; 3930 } 3931 3932 static bool isKnownNonZero(const Value *V) { 3933 if (auto *C = dyn_cast<ConstantFP>(V)) 3934 return !C->isZero(); 3935 return false; 3936 } 3937 3938 /// Match non-obvious integer minimum and maximum sequences. 3939 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3940 Value *CmpLHS, Value *CmpRHS, 3941 Value *TrueVal, Value *FalseVal, 3942 Value *&LHS, Value *&RHS) { 3943 // Assume success. If there's no match, callers should not use these anyway. 3944 LHS = TrueVal; 3945 RHS = FalseVal; 3946 3947 // Recognize variations of: 3948 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3949 const APInt *C1; 3950 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3951 const APInt *C2; 3952 3953 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3954 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3955 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3956 return {SPF_SMAX, SPNB_NA, false}; 3957 3958 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3959 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3960 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3961 return {SPF_SMIN, SPNB_NA, false}; 3962 3963 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3964 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3965 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3966 return {SPF_UMAX, SPNB_NA, false}; 3967 3968 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3969 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3970 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3971 return {SPF_UMIN, SPNB_NA, false}; 3972 } 3973 3974 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3975 return {SPF_UNKNOWN, SPNB_NA, false}; 3976 3977 // Z = X -nsw Y 3978 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3979 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3980 if (match(TrueVal, m_Zero()) && 3981 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3982 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3983 3984 // Z = X -nsw Y 3985 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3986 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3987 if (match(FalseVal, m_Zero()) && 3988 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3989 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3990 3991 if (!match(CmpRHS, m_APInt(C1))) 3992 return {SPF_UNKNOWN, SPNB_NA, false}; 3993 3994 // An unsigned min/max can be written with a signed compare. 3995 const APInt *C2; 3996 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 3997 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 3998 // Is the sign bit set? 3999 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4000 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4001 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4002 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4003 4004 // Is the sign bit clear? 4005 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4006 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4007 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4008 C2->isMinSignedValue()) 4009 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4010 } 4011 4012 // Look through 'not' ops to find disguised signed min/max. 4013 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4014 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4015 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4016 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4017 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4018 4019 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4020 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4021 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4022 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4023 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4024 4025 return {SPF_UNKNOWN, SPNB_NA, false}; 4026 } 4027 4028 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4029 FastMathFlags FMF, 4030 Value *CmpLHS, Value *CmpRHS, 4031 Value *TrueVal, Value *FalseVal, 4032 Value *&LHS, Value *&RHS) { 4033 LHS = CmpLHS; 4034 RHS = CmpRHS; 4035 4036 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4037 // return inconsistent results between implementations. 4038 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4039 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4040 // Therefore we behave conservatively and only proceed if at least one of the 4041 // operands is known to not be zero, or if we don't care about signed zeroes. 4042 switch (Pred) { 4043 default: break; 4044 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4045 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4046 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4047 !isKnownNonZero(CmpRHS)) 4048 return {SPF_UNKNOWN, SPNB_NA, false}; 4049 } 4050 4051 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4052 bool Ordered = false; 4053 4054 // When given one NaN and one non-NaN input: 4055 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4056 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4057 // ordered comparison fails), which could be NaN or non-NaN. 4058 // so here we discover exactly what NaN behavior is required/accepted. 4059 if (CmpInst::isFPPredicate(Pred)) { 4060 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4061 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4062 4063 if (LHSSafe && RHSSafe) { 4064 // Both operands are known non-NaN. 4065 NaNBehavior = SPNB_RETURNS_ANY; 4066 } else if (CmpInst::isOrdered(Pred)) { 4067 // An ordered comparison will return false when given a NaN, so it 4068 // returns the RHS. 4069 Ordered = true; 4070 if (LHSSafe) 4071 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4072 NaNBehavior = SPNB_RETURNS_NAN; 4073 else if (RHSSafe) 4074 NaNBehavior = SPNB_RETURNS_OTHER; 4075 else 4076 // Completely unsafe. 4077 return {SPF_UNKNOWN, SPNB_NA, false}; 4078 } else { 4079 Ordered = false; 4080 // An unordered comparison will return true when given a NaN, so it 4081 // returns the LHS. 4082 if (LHSSafe) 4083 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4084 NaNBehavior = SPNB_RETURNS_OTHER; 4085 else if (RHSSafe) 4086 NaNBehavior = SPNB_RETURNS_NAN; 4087 else 4088 // Completely unsafe. 4089 return {SPF_UNKNOWN, SPNB_NA, false}; 4090 } 4091 } 4092 4093 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4094 std::swap(CmpLHS, CmpRHS); 4095 Pred = CmpInst::getSwappedPredicate(Pred); 4096 if (NaNBehavior == SPNB_RETURNS_NAN) 4097 NaNBehavior = SPNB_RETURNS_OTHER; 4098 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4099 NaNBehavior = SPNB_RETURNS_NAN; 4100 Ordered = !Ordered; 4101 } 4102 4103 // ([if]cmp X, Y) ? X : Y 4104 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4105 switch (Pred) { 4106 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4107 case ICmpInst::ICMP_UGT: 4108 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4109 case ICmpInst::ICMP_SGT: 4110 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4111 case ICmpInst::ICMP_ULT: 4112 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4113 case ICmpInst::ICMP_SLT: 4114 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4115 case FCmpInst::FCMP_UGT: 4116 case FCmpInst::FCMP_UGE: 4117 case FCmpInst::FCMP_OGT: 4118 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4119 case FCmpInst::FCMP_ULT: 4120 case FCmpInst::FCMP_ULE: 4121 case FCmpInst::FCMP_OLT: 4122 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4123 } 4124 } 4125 4126 const APInt *C1; 4127 if (match(CmpRHS, m_APInt(C1))) { 4128 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4129 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4130 4131 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4132 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4133 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4134 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4135 } 4136 4137 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4138 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4139 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4140 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4141 } 4142 } 4143 } 4144 4145 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4146 } 4147 4148 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4149 Instruction::CastOps *CastOp) { 4150 auto *Cast1 = dyn_cast<CastInst>(V1); 4151 if (!Cast1) 4152 return nullptr; 4153 4154 *CastOp = Cast1->getOpcode(); 4155 Type *SrcTy = Cast1->getSrcTy(); 4156 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4157 // If V1 and V2 are both the same cast from the same type, look through V1. 4158 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4159 return Cast2->getOperand(0); 4160 return nullptr; 4161 } 4162 4163 auto *C = dyn_cast<Constant>(V2); 4164 if (!C) 4165 return nullptr; 4166 4167 Constant *CastedTo = nullptr; 4168 switch (*CastOp) { 4169 case Instruction::ZExt: 4170 if (CmpI->isUnsigned()) 4171 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4172 break; 4173 case Instruction::SExt: 4174 if (CmpI->isSigned()) 4175 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4176 break; 4177 case Instruction::Trunc: 4178 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4179 break; 4180 case Instruction::FPTrunc: 4181 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4182 break; 4183 case Instruction::FPExt: 4184 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4185 break; 4186 case Instruction::FPToUI: 4187 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4188 break; 4189 case Instruction::FPToSI: 4190 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4191 break; 4192 case Instruction::UIToFP: 4193 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4194 break; 4195 case Instruction::SIToFP: 4196 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4197 break; 4198 default: 4199 break; 4200 } 4201 4202 if (!CastedTo) 4203 return nullptr; 4204 4205 // Make sure the cast doesn't lose any information. 4206 Constant *CastedBack = 4207 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4208 if (CastedBack != C) 4209 return nullptr; 4210 4211 return CastedTo; 4212 } 4213 4214 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4215 Instruction::CastOps *CastOp) { 4216 SelectInst *SI = dyn_cast<SelectInst>(V); 4217 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4218 4219 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4220 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4221 4222 CmpInst::Predicate Pred = CmpI->getPredicate(); 4223 Value *CmpLHS = CmpI->getOperand(0); 4224 Value *CmpRHS = CmpI->getOperand(1); 4225 Value *TrueVal = SI->getTrueValue(); 4226 Value *FalseVal = SI->getFalseValue(); 4227 FastMathFlags FMF; 4228 if (isa<FPMathOperator>(CmpI)) 4229 FMF = CmpI->getFastMathFlags(); 4230 4231 // Bail out early. 4232 if (CmpI->isEquality()) 4233 return {SPF_UNKNOWN, SPNB_NA, false}; 4234 4235 // Deal with type mismatches. 4236 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4237 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4238 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4239 cast<CastInst>(TrueVal)->getOperand(0), C, 4240 LHS, RHS); 4241 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4242 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4243 C, cast<CastInst>(FalseVal)->getOperand(0), 4244 LHS, RHS); 4245 } 4246 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4247 LHS, RHS); 4248 } 4249 4250 /// Return true if "icmp Pred LHS RHS" is always true. 4251 static bool isTruePredicate(CmpInst::Predicate Pred, 4252 const Value *LHS, const Value *RHS, 4253 const DataLayout &DL, unsigned Depth, 4254 AssumptionCache *AC, const Instruction *CxtI, 4255 const DominatorTree *DT) { 4256 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4257 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4258 return true; 4259 4260 switch (Pred) { 4261 default: 4262 return false; 4263 4264 case CmpInst::ICMP_SLE: { 4265 const APInt *C; 4266 4267 // LHS s<= LHS +_{nsw} C if C >= 0 4268 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4269 return !C->isNegative(); 4270 return false; 4271 } 4272 4273 case CmpInst::ICMP_ULE: { 4274 const APInt *C; 4275 4276 // LHS u<= LHS +_{nuw} C for any C 4277 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4278 return true; 4279 4280 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4281 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4282 const Value *&X, 4283 const APInt *&CA, const APInt *&CB) { 4284 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4285 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4286 return true; 4287 4288 // If X & C == 0 then (X | C) == X +_{nuw} C 4289 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4290 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4291 KnownBits Known(CA->getBitWidth()); 4292 computeKnownBits(X, Known, DL, Depth + 1, AC, CxtI, DT); 4293 4294 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4295 return true; 4296 } 4297 4298 return false; 4299 }; 4300 4301 const Value *X; 4302 const APInt *CLHS, *CRHS; 4303 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4304 return CLHS->ule(*CRHS); 4305 4306 return false; 4307 } 4308 } 4309 } 4310 4311 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4312 /// ALHS ARHS" is true. Otherwise, return None. 4313 static Optional<bool> 4314 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4315 const Value *ARHS, const Value *BLHS, 4316 const Value *BRHS, const DataLayout &DL, 4317 unsigned Depth, AssumptionCache *AC, 4318 const Instruction *CxtI, const DominatorTree *DT) { 4319 switch (Pred) { 4320 default: 4321 return None; 4322 4323 case CmpInst::ICMP_SLT: 4324 case CmpInst::ICMP_SLE: 4325 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4326 DT) && 4327 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4328 return true; 4329 return None; 4330 4331 case CmpInst::ICMP_ULT: 4332 case CmpInst::ICMP_ULE: 4333 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4334 DT) && 4335 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4336 return true; 4337 return None; 4338 } 4339 } 4340 4341 /// Return true if the operands of the two compares match. IsSwappedOps is true 4342 /// when the operands match, but are swapped. 4343 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4344 const Value *BLHS, const Value *BRHS, 4345 bool &IsSwappedOps) { 4346 4347 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4348 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4349 return IsMatchingOps || IsSwappedOps; 4350 } 4351 4352 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4353 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4354 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4355 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4356 const Value *ALHS, 4357 const Value *ARHS, 4358 CmpInst::Predicate BPred, 4359 const Value *BLHS, 4360 const Value *BRHS, 4361 bool IsSwappedOps) { 4362 // Canonicalize the operands so they're matching. 4363 if (IsSwappedOps) { 4364 std::swap(BLHS, BRHS); 4365 BPred = ICmpInst::getSwappedPredicate(BPred); 4366 } 4367 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4368 return true; 4369 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4370 return false; 4371 4372 return None; 4373 } 4374 4375 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4376 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4377 /// C2" is false. Otherwise, return None if we can't infer anything. 4378 static Optional<bool> 4379 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4380 const ConstantInt *C1, 4381 CmpInst::Predicate BPred, 4382 const Value *BLHS, const ConstantInt *C2) { 4383 assert(ALHS == BLHS && "LHS operands must match."); 4384 ConstantRange DomCR = 4385 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4386 ConstantRange CR = 4387 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4388 ConstantRange Intersection = DomCR.intersectWith(CR); 4389 ConstantRange Difference = DomCR.difference(CR); 4390 if (Intersection.isEmptySet()) 4391 return false; 4392 if (Difference.isEmptySet()) 4393 return true; 4394 return None; 4395 } 4396 4397 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4398 const DataLayout &DL, bool InvertAPred, 4399 unsigned Depth, AssumptionCache *AC, 4400 const Instruction *CxtI, 4401 const DominatorTree *DT) { 4402 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4403 if (LHS->getType() != RHS->getType()) 4404 return None; 4405 4406 Type *OpTy = LHS->getType(); 4407 assert(OpTy->getScalarType()->isIntegerTy(1)); 4408 4409 // LHS ==> RHS by definition 4410 if (!InvertAPred && LHS == RHS) 4411 return true; 4412 4413 if (OpTy->isVectorTy()) 4414 // TODO: extending the code below to handle vectors 4415 return None; 4416 assert(OpTy->isIntegerTy(1) && "implied by above"); 4417 4418 ICmpInst::Predicate APred, BPred; 4419 Value *ALHS, *ARHS; 4420 Value *BLHS, *BRHS; 4421 4422 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4423 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4424 return None; 4425 4426 if (InvertAPred) 4427 APred = CmpInst::getInversePredicate(APred); 4428 4429 // Can we infer anything when the two compares have matching operands? 4430 bool IsSwappedOps; 4431 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4432 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4433 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4434 return Implication; 4435 // No amount of additional analysis will infer the second condition, so 4436 // early exit. 4437 return None; 4438 } 4439 4440 // Can we infer anything when the LHS operands match and the RHS operands are 4441 // constants (not necessarily matching)? 4442 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4443 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4444 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4445 cast<ConstantInt>(BRHS))) 4446 return Implication; 4447 // No amount of additional analysis will infer the second condition, so 4448 // early exit. 4449 return None; 4450 } 4451 4452 if (APred == BPred) 4453 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4454 CxtI, DT); 4455 4456 return None; 4457 } 4458