1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/IntrinsicsAArch64.h"
56 #include "llvm/IR/IntrinsicsRISCV.h"
57 #include "llvm/IR/IntrinsicsX86.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 // According to the LangRef, branching on a poison condition is absolutely
86 // immediate full UB.  However, historically we haven't implemented that
87 // consistently as we have an important transformation (non-trivial unswitch)
88 // which introduces instances of branch on poison/undef to otherwise well
89 // defined programs.  This flag exists to let us test optimization benefit
90 // of exploiting the specified behavior (in combination with enabling the
91 // unswitch fix.)
92 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
93                                         cl::Hidden, cl::init(false));
94 
95 
96 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
97 /// returns the element type's bitwidth.
98 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
99   if (unsigned BitWidth = Ty->getScalarSizeInBits())
100     return BitWidth;
101 
102   return DL.getPointerTypeSizeInBits(Ty);
103 }
104 
105 namespace {
106 
107 // Simplifying using an assume can only be done in a particular control-flow
108 // context (the context instruction provides that context). If an assume and
109 // the context instruction are not in the same block then the DT helps in
110 // figuring out if we can use it.
111 struct Query {
112   const DataLayout &DL;
113   AssumptionCache *AC;
114   const Instruction *CxtI;
115   const DominatorTree *DT;
116 
117   // Unlike the other analyses, this may be a nullptr because not all clients
118   // provide it currently.
119   OptimizationRemarkEmitter *ORE;
120 
121   /// If true, it is safe to use metadata during simplification.
122   InstrInfoQuery IIQ;
123 
124   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
125         const DominatorTree *DT, bool UseInstrInfo,
126         OptimizationRemarkEmitter *ORE = nullptr)
127       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
128 };
129 
130 } // end anonymous namespace
131 
132 // Given the provided Value and, potentially, a context instruction, return
133 // the preferred context instruction (if any).
134 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
135   // If we've been provided with a context instruction, then use that (provided
136   // it has been inserted).
137   if (CxtI && CxtI->getParent())
138     return CxtI;
139 
140   // If the value is really an already-inserted instruction, then use that.
141   CxtI = dyn_cast<Instruction>(V);
142   if (CxtI && CxtI->getParent())
143     return CxtI;
144 
145   return nullptr;
146 }
147 
148 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
149   // If we've been provided with a context instruction, then use that (provided
150   // it has been inserted).
151   if (CxtI && CxtI->getParent())
152     return CxtI;
153 
154   // If the value is really an already-inserted instruction, then use that.
155   CxtI = dyn_cast<Instruction>(V1);
156   if (CxtI && CxtI->getParent())
157     return CxtI;
158 
159   CxtI = dyn_cast<Instruction>(V2);
160   if (CxtI && CxtI->getParent())
161     return CxtI;
162 
163   return nullptr;
164 }
165 
166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
167                                    const APInt &DemandedElts,
168                                    APInt &DemandedLHS, APInt &DemandedRHS) {
169   // The length of scalable vectors is unknown at compile time, thus we
170   // cannot check their values
171   if (isa<ScalableVectorType>(Shuf->getType()))
172     return false;
173 
174   int NumElts =
175       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
176   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
177   DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
178   if (DemandedElts.isZero())
179     return true;
180   // Simple case of a shuffle with zeroinitializer.
181   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
182     DemandedLHS.setBit(0);
183     return true;
184   }
185   for (int i = 0; i != NumMaskElts; ++i) {
186     if (!DemandedElts[i])
187       continue;
188     int M = Shuf->getMaskValue(i);
189     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
190 
191     // For undef elements, we don't know anything about the common state of
192     // the shuffle result.
193     if (M == -1)
194       return false;
195     if (M < NumElts)
196       DemandedLHS.setBit(M % NumElts);
197     else
198       DemandedRHS.setBit(M % NumElts);
199   }
200 
201   return true;
202 }
203 
204 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
205                              KnownBits &Known, unsigned Depth, const Query &Q);
206 
207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
208                              const Query &Q) {
209   // FIXME: We currently have no way to represent the DemandedElts of a scalable
210   // vector
211   if (isa<ScalableVectorType>(V->getType())) {
212     Known.resetAll();
213     return;
214   }
215 
216   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
217   APInt DemandedElts =
218       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
219   computeKnownBits(V, DemandedElts, Known, Depth, Q);
220 }
221 
222 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
223                             const DataLayout &DL, unsigned Depth,
224                             AssumptionCache *AC, const Instruction *CxtI,
225                             const DominatorTree *DT,
226                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
227   ::computeKnownBits(V, Known, Depth,
228                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229 }
230 
231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
232                             KnownBits &Known, const DataLayout &DL,
233                             unsigned Depth, AssumptionCache *AC,
234                             const Instruction *CxtI, const DominatorTree *DT,
235                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
236   ::computeKnownBits(V, DemandedElts, Known, Depth,
237                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
238 }
239 
240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
241                                   unsigned Depth, const Query &Q);
242 
243 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
244                                   const Query &Q);
245 
246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
247                                  unsigned Depth, AssumptionCache *AC,
248                                  const Instruction *CxtI,
249                                  const DominatorTree *DT,
250                                  OptimizationRemarkEmitter *ORE,
251                                  bool UseInstrInfo) {
252   return ::computeKnownBits(
253       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
257                                  const DataLayout &DL, unsigned Depth,
258                                  AssumptionCache *AC, const Instruction *CxtI,
259                                  const DominatorTree *DT,
260                                  OptimizationRemarkEmitter *ORE,
261                                  bool UseInstrInfo) {
262   return ::computeKnownBits(
263       V, DemandedElts, Depth,
264       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
265 }
266 
267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
268                                const DataLayout &DL, AssumptionCache *AC,
269                                const Instruction *CxtI, const DominatorTree *DT,
270                                bool UseInstrInfo) {
271   assert(LHS->getType() == RHS->getType() &&
272          "LHS and RHS should have the same type");
273   assert(LHS->getType()->isIntOrIntVectorTy() &&
274          "LHS and RHS should be integers");
275   // Look for an inverted mask: (X & ~M) op (Y & M).
276   {
277     Value *M;
278     if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279         match(RHS, m_c_And(m_Specific(M), m_Value())))
280       return true;
281     if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
282         match(LHS, m_c_And(m_Specific(M), m_Value())))
283       return true;
284   }
285 
286   // X op (Y & ~X)
287   if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
288       match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
289     return true;
290 
291   // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
292   // for constant Y.
293   Value *Y;
294   if (match(RHS,
295             m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
296       match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
297     return true;
298 
299   // Look for: (A & B) op ~(A | B)
300   {
301     Value *A, *B;
302     if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
303         match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
304       return true;
305     if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
306         match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
307       return true;
308   }
309   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
310   KnownBits LHSKnown(IT->getBitWidth());
311   KnownBits RHSKnown(IT->getBitWidth());
312   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
313   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
314   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
315 }
316 
317 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
318   return !I->user_empty() && all_of(I->users(), [](const User *U) {
319     ICmpInst::Predicate P;
320     return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
321   });
322 }
323 
324 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
325                                    const Query &Q);
326 
327 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
328                                   bool OrZero, unsigned Depth,
329                                   AssumptionCache *AC, const Instruction *CxtI,
330                                   const DominatorTree *DT, bool UseInstrInfo) {
331   return ::isKnownToBeAPowerOfTwo(
332       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
333 }
334 
335 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
336                            unsigned Depth, const Query &Q);
337 
338 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
339 
340 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
341                           AssumptionCache *AC, const Instruction *CxtI,
342                           const DominatorTree *DT, bool UseInstrInfo) {
343   return ::isKnownNonZero(V, Depth,
344                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
345 }
346 
347 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
348                               unsigned Depth, AssumptionCache *AC,
349                               const Instruction *CxtI, const DominatorTree *DT,
350                               bool UseInstrInfo) {
351   KnownBits Known =
352       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
353   return Known.isNonNegative();
354 }
355 
356 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
357                            AssumptionCache *AC, const Instruction *CxtI,
358                            const DominatorTree *DT, bool UseInstrInfo) {
359   if (auto *CI = dyn_cast<ConstantInt>(V))
360     return CI->getValue().isStrictlyPositive();
361 
362   // TODO: We'd doing two recursive queries here.  We should factor this such
363   // that only a single query is needed.
364   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
365          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
366 }
367 
368 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
369                            AssumptionCache *AC, const Instruction *CxtI,
370                            const DominatorTree *DT, bool UseInstrInfo) {
371   KnownBits Known =
372       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
373   return Known.isNegative();
374 }
375 
376 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
377                             const Query &Q);
378 
379 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
380                            const DataLayout &DL, AssumptionCache *AC,
381                            const Instruction *CxtI, const DominatorTree *DT,
382                            bool UseInstrInfo) {
383   return ::isKnownNonEqual(V1, V2, 0,
384                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
385                                  UseInstrInfo, /*ORE=*/nullptr));
386 }
387 
388 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
389                               const Query &Q);
390 
391 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
392                              const DataLayout &DL, unsigned Depth,
393                              AssumptionCache *AC, const Instruction *CxtI,
394                              const DominatorTree *DT, bool UseInstrInfo) {
395   return ::MaskedValueIsZero(
396       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
400                                    unsigned Depth, const Query &Q);
401 
402 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
403                                    const Query &Q) {
404   // FIXME: We currently have no way to represent the DemandedElts of a scalable
405   // vector
406   if (isa<ScalableVectorType>(V->getType()))
407     return 1;
408 
409   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
410   APInt DemandedElts =
411       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
412   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
413 }
414 
415 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
416                                   unsigned Depth, AssumptionCache *AC,
417                                   const Instruction *CxtI,
418                                   const DominatorTree *DT, bool UseInstrInfo) {
419   return ::ComputeNumSignBits(
420       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
421 }
422 
423 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
424                                          unsigned Depth, AssumptionCache *AC,
425                                          const Instruction *CxtI,
426                                          const DominatorTree *DT) {
427   unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
428   return V->getType()->getScalarSizeInBits() - SignBits + 1;
429 }
430 
431 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
432                                    bool NSW, const APInt &DemandedElts,
433                                    KnownBits &KnownOut, KnownBits &Known2,
434                                    unsigned Depth, const Query &Q) {
435   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
436 
437   // If one operand is unknown and we have no nowrap information,
438   // the result will be unknown independently of the second operand.
439   if (KnownOut.isUnknown() && !NSW)
440     return;
441 
442   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
443   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
444 }
445 
446 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
447                                 const APInt &DemandedElts, KnownBits &Known,
448                                 KnownBits &Known2, unsigned Depth,
449                                 const Query &Q) {
450   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
451   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
452 
453   bool isKnownNegative = false;
454   bool isKnownNonNegative = false;
455   // If the multiplication is known not to overflow, compute the sign bit.
456   if (NSW) {
457     if (Op0 == Op1) {
458       // The product of a number with itself is non-negative.
459       isKnownNonNegative = true;
460     } else {
461       bool isKnownNonNegativeOp1 = Known.isNonNegative();
462       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
463       bool isKnownNegativeOp1 = Known.isNegative();
464       bool isKnownNegativeOp0 = Known2.isNegative();
465       // The product of two numbers with the same sign is non-negative.
466       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
467                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
468       // The product of a negative number and a non-negative number is either
469       // negative or zero.
470       if (!isKnownNonNegative)
471         isKnownNegative =
472             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
473              Known2.isNonZero()) ||
474             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
475     }
476   }
477 
478   bool SelfMultiply = Op0 == Op1;
479   // TODO: SelfMultiply can be poison, but not undef.
480   if (SelfMultiply)
481     SelfMultiply &=
482         isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
483   Known = KnownBits::mul(Known, Known2, SelfMultiply);
484 
485   // Only make use of no-wrap flags if we failed to compute the sign bit
486   // directly.  This matters if the multiplication always overflows, in
487   // which case we prefer to follow the result of the direct computation,
488   // though as the program is invoking undefined behaviour we can choose
489   // whatever we like here.
490   if (isKnownNonNegative && !Known.isNegative())
491     Known.makeNonNegative();
492   else if (isKnownNegative && !Known.isNonNegative())
493     Known.makeNegative();
494 }
495 
496 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
497                                              KnownBits &Known) {
498   unsigned BitWidth = Known.getBitWidth();
499   unsigned NumRanges = Ranges.getNumOperands() / 2;
500   assert(NumRanges >= 1);
501 
502   Known.Zero.setAllBits();
503   Known.One.setAllBits();
504 
505   for (unsigned i = 0; i < NumRanges; ++i) {
506     ConstantInt *Lower =
507         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
508     ConstantInt *Upper =
509         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
510     ConstantRange Range(Lower->getValue(), Upper->getValue());
511 
512     // The first CommonPrefixBits of all values in Range are equal.
513     unsigned CommonPrefixBits =
514         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
515     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
516     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
517     Known.One &= UnsignedMax & Mask;
518     Known.Zero &= ~UnsignedMax & Mask;
519   }
520 }
521 
522 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
523   SmallVector<const Value *, 16> WorkSet(1, I);
524   SmallPtrSet<const Value *, 32> Visited;
525   SmallPtrSet<const Value *, 16> EphValues;
526 
527   // The instruction defining an assumption's condition itself is always
528   // considered ephemeral to that assumption (even if it has other
529   // non-ephemeral users). See r246696's test case for an example.
530   if (is_contained(I->operands(), E))
531     return true;
532 
533   while (!WorkSet.empty()) {
534     const Value *V = WorkSet.pop_back_val();
535     if (!Visited.insert(V).second)
536       continue;
537 
538     // If all uses of this value are ephemeral, then so is this value.
539     if (llvm::all_of(V->users(), [&](const User *U) {
540                                    return EphValues.count(U);
541                                  })) {
542       if (V == E)
543         return true;
544 
545       if (V == I || (isa<Instruction>(V) &&
546                      !cast<Instruction>(V)->mayHaveSideEffects() &&
547                      !cast<Instruction>(V)->isTerminator())) {
548        EphValues.insert(V);
549        if (const User *U = dyn_cast<User>(V))
550          append_range(WorkSet, U->operands());
551       }
552     }
553   }
554 
555   return false;
556 }
557 
558 // Is this an intrinsic that cannot be speculated but also cannot trap?
559 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
560   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
561     return CI->isAssumeLikeIntrinsic();
562 
563   return false;
564 }
565 
566 bool llvm::isValidAssumeForContext(const Instruction *Inv,
567                                    const Instruction *CxtI,
568                                    const DominatorTree *DT) {
569   // There are two restrictions on the use of an assume:
570   //  1. The assume must dominate the context (or the control flow must
571   //     reach the assume whenever it reaches the context).
572   //  2. The context must not be in the assume's set of ephemeral values
573   //     (otherwise we will use the assume to prove that the condition
574   //     feeding the assume is trivially true, thus causing the removal of
575   //     the assume).
576 
577   if (Inv->getParent() == CxtI->getParent()) {
578     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
579     // in the BB.
580     if (Inv->comesBefore(CxtI))
581       return true;
582 
583     // Don't let an assume affect itself - this would cause the problems
584     // `isEphemeralValueOf` is trying to prevent, and it would also make
585     // the loop below go out of bounds.
586     if (Inv == CxtI)
587       return false;
588 
589     // The context comes first, but they're both in the same block.
590     // Make sure there is nothing in between that might interrupt
591     // the control flow, not even CxtI itself.
592     // We limit the scan distance between the assume and its context instruction
593     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
594     // it can be adjusted if needed (could be turned into a cl::opt).
595     auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
596     if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
597       return false;
598 
599     return !isEphemeralValueOf(Inv, CxtI);
600   }
601 
602   // Inv and CxtI are in different blocks.
603   if (DT) {
604     if (DT->dominates(Inv, CxtI))
605       return true;
606   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
607     // We don't have a DT, but this trivially dominates.
608     return true;
609   }
610 
611   return false;
612 }
613 
614 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
615   // v u> y implies v != 0.
616   if (Pred == ICmpInst::ICMP_UGT)
617     return true;
618 
619   // Special-case v != 0 to also handle v != null.
620   if (Pred == ICmpInst::ICMP_NE)
621     return match(RHS, m_Zero());
622 
623   // All other predicates - rely on generic ConstantRange handling.
624   const APInt *C;
625   if (!match(RHS, m_APInt(C)))
626     return false;
627 
628   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
629   return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
630 }
631 
632 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
633   // Use of assumptions is context-sensitive. If we don't have a context, we
634   // cannot use them!
635   if (!Q.AC || !Q.CxtI)
636     return false;
637 
638   if (Q.CxtI && V->getType()->isPointerTy()) {
639     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
640     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
641                               V->getType()->getPointerAddressSpace()))
642       AttrKinds.push_back(Attribute::Dereferenceable);
643 
644     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
645       return true;
646   }
647 
648   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
649     if (!AssumeVH)
650       continue;
651     CallInst *I = cast<CallInst>(AssumeVH);
652     assert(I->getFunction() == Q.CxtI->getFunction() &&
653            "Got assumption for the wrong function!");
654 
655     // Warning: This loop can end up being somewhat performance sensitive.
656     // We're running this loop for once for each value queried resulting in a
657     // runtime of ~O(#assumes * #values).
658 
659     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
660            "must be an assume intrinsic");
661 
662     Value *RHS;
663     CmpInst::Predicate Pred;
664     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
665     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
666       return false;
667 
668     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
669       return true;
670   }
671 
672   return false;
673 }
674 
675 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
676                                        unsigned Depth, const Query &Q) {
677   // Use of assumptions is context-sensitive. If we don't have a context, we
678   // cannot use them!
679   if (!Q.AC || !Q.CxtI)
680     return;
681 
682   unsigned BitWidth = Known.getBitWidth();
683 
684   // Refine Known set if the pointer alignment is set by assume bundles.
685   if (V->getType()->isPointerTy()) {
686     if (RetainedKnowledge RK = getKnowledgeValidInContext(
687             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
688       if (isPowerOf2_64(RK.ArgValue))
689         Known.Zero.setLowBits(Log2_64(RK.ArgValue));
690     }
691   }
692 
693   // Note that the patterns below need to be kept in sync with the code
694   // in AssumptionCache::updateAffectedValues.
695 
696   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
697     if (!AssumeVH)
698       continue;
699     CallInst *I = cast<CallInst>(AssumeVH);
700     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
701            "Got assumption for the wrong function!");
702 
703     // Warning: This loop can end up being somewhat performance sensitive.
704     // We're running this loop for once for each value queried resulting in a
705     // runtime of ~O(#assumes * #values).
706 
707     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
708            "must be an assume intrinsic");
709 
710     Value *Arg = I->getArgOperand(0);
711 
712     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
713       assert(BitWidth == 1 && "assume operand is not i1?");
714       Known.setAllOnes();
715       return;
716     }
717     if (match(Arg, m_Not(m_Specific(V))) &&
718         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
719       assert(BitWidth == 1 && "assume operand is not i1?");
720       Known.setAllZero();
721       return;
722     }
723 
724     // The remaining tests are all recursive, so bail out if we hit the limit.
725     if (Depth == MaxAnalysisRecursionDepth)
726       continue;
727 
728     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
729     if (!Cmp)
730       continue;
731 
732     // We are attempting to compute known bits for the operands of an assume.
733     // Do not try to use other assumptions for those recursive calls because
734     // that can lead to mutual recursion and a compile-time explosion.
735     // An example of the mutual recursion: computeKnownBits can call
736     // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
737     // and so on.
738     Query QueryNoAC = Q;
739     QueryNoAC.AC = nullptr;
740 
741     // Note that ptrtoint may change the bitwidth.
742     Value *A, *B;
743     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
744 
745     CmpInst::Predicate Pred;
746     uint64_t C;
747     switch (Cmp->getPredicate()) {
748     default:
749       break;
750     case ICmpInst::ICMP_EQ:
751       // assume(v = a)
752       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
753           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
754         KnownBits RHSKnown =
755             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
756         Known.Zero |= RHSKnown.Zero;
757         Known.One  |= RHSKnown.One;
758       // assume(v & b = a)
759       } else if (match(Cmp,
760                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
761                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
762         KnownBits RHSKnown =
763             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
764         KnownBits MaskKnown =
765             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
766 
767         // For those bits in the mask that are known to be one, we can propagate
768         // known bits from the RHS to V.
769         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
770         Known.One  |= RHSKnown.One  & MaskKnown.One;
771       // assume(~(v & b) = a)
772       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
773                                      m_Value(A))) &&
774                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
775         KnownBits RHSKnown =
776             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
777         KnownBits MaskKnown =
778             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
779 
780         // For those bits in the mask that are known to be one, we can propagate
781         // inverted known bits from the RHS to V.
782         Known.Zero |= RHSKnown.One  & MaskKnown.One;
783         Known.One  |= RHSKnown.Zero & MaskKnown.One;
784       // assume(v | b = a)
785       } else if (match(Cmp,
786                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
787                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
788         KnownBits RHSKnown =
789             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
790         KnownBits BKnown =
791             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
792 
793         // For those bits in B that are known to be zero, we can propagate known
794         // bits from the RHS to V.
795         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
796         Known.One  |= RHSKnown.One  & BKnown.Zero;
797       // assume(~(v | b) = a)
798       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
799                                      m_Value(A))) &&
800                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
801         KnownBits RHSKnown =
802             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
803         KnownBits BKnown =
804             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
805 
806         // For those bits in B that are known to be zero, we can propagate
807         // inverted known bits from the RHS to V.
808         Known.Zero |= RHSKnown.One  & BKnown.Zero;
809         Known.One  |= RHSKnown.Zero & BKnown.Zero;
810       // assume(v ^ b = a)
811       } else if (match(Cmp,
812                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
813                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
814         KnownBits RHSKnown =
815             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
816         KnownBits BKnown =
817             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
818 
819         // For those bits in B that are known to be zero, we can propagate known
820         // bits from the RHS to V. For those bits in B that are known to be one,
821         // we can propagate inverted known bits from the RHS to V.
822         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
823         Known.One  |= RHSKnown.One  & BKnown.Zero;
824         Known.Zero |= RHSKnown.One  & BKnown.One;
825         Known.One  |= RHSKnown.Zero & BKnown.One;
826       // assume(~(v ^ b) = a)
827       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
828                                      m_Value(A))) &&
829                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
830         KnownBits RHSKnown =
831             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
832         KnownBits BKnown =
833             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
834 
835         // For those bits in B that are known to be zero, we can propagate
836         // inverted known bits from the RHS to V. For those bits in B that are
837         // known to be one, we can propagate known bits from the RHS to V.
838         Known.Zero |= RHSKnown.One  & BKnown.Zero;
839         Known.One  |= RHSKnown.Zero & BKnown.Zero;
840         Known.Zero |= RHSKnown.Zero & BKnown.One;
841         Known.One  |= RHSKnown.One  & BKnown.One;
842       // assume(v << c = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
848 
849         // For those bits in RHS that are known, we can propagate them to known
850         // bits in V shifted to the right by C.
851         RHSKnown.Zero.lshrInPlace(C);
852         Known.Zero |= RHSKnown.Zero;
853         RHSKnown.One.lshrInPlace(C);
854         Known.One  |= RHSKnown.One;
855       // assume(~(v << c) = a)
856       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
857                                      m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
861         // For those bits in RHS that are known, we can propagate them inverted
862         // to known bits in V shifted to the right by C.
863         RHSKnown.One.lshrInPlace(C);
864         Known.Zero |= RHSKnown.One;
865         RHSKnown.Zero.lshrInPlace(C);
866         Known.One  |= RHSKnown.Zero;
867       // assume(v >> c = a)
868       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
869                                      m_Value(A))) &&
870                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
871         KnownBits RHSKnown =
872             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
873         // For those bits in RHS that are known, we can propagate them to known
874         // bits in V shifted to the right by C.
875         Known.Zero |= RHSKnown.Zero << C;
876         Known.One  |= RHSKnown.One  << C;
877       // assume(~(v >> c) = a)
878       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
879                                      m_Value(A))) &&
880                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
881         KnownBits RHSKnown =
882             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
883         // For those bits in RHS that are known, we can propagate them inverted
884         // to known bits in V shifted to the right by C.
885         Known.Zero |= RHSKnown.One  << C;
886         Known.One  |= RHSKnown.Zero << C;
887       }
888       break;
889     case ICmpInst::ICMP_SGE:
890       // assume(v >=_s c) where c is non-negative
891       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
892           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
893         KnownBits RHSKnown =
894             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
895 
896         if (RHSKnown.isNonNegative()) {
897           // We know that the sign bit is zero.
898           Known.makeNonNegative();
899         }
900       }
901       break;
902     case ICmpInst::ICMP_SGT:
903       // assume(v >_s c) where c is at least -1.
904       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
905           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
906         KnownBits RHSKnown =
907             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
908 
909         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
910           // We know that the sign bit is zero.
911           Known.makeNonNegative();
912         }
913       }
914       break;
915     case ICmpInst::ICMP_SLE:
916       // assume(v <=_s c) where c is negative
917       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
918           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
919         KnownBits RHSKnown =
920             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
921 
922         if (RHSKnown.isNegative()) {
923           // We know that the sign bit is one.
924           Known.makeNegative();
925         }
926       }
927       break;
928     case ICmpInst::ICMP_SLT:
929       // assume(v <_s c) where c is non-positive
930       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
931           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
932         KnownBits RHSKnown =
933             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
934 
935         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
936           // We know that the sign bit is one.
937           Known.makeNegative();
938         }
939       }
940       break;
941     case ICmpInst::ICMP_ULE:
942       // assume(v <=_u c)
943       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
944           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
945         KnownBits RHSKnown =
946             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
947 
948         // Whatever high bits in c are zero are known to be zero.
949         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
950       }
951       break;
952     case ICmpInst::ICMP_ULT:
953       // assume(v <_u c)
954       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
955           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
956         KnownBits RHSKnown =
957             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
958 
959         // If the RHS is known zero, then this assumption must be wrong (nothing
960         // is unsigned less than zero). Signal a conflict and get out of here.
961         if (RHSKnown.isZero()) {
962           Known.Zero.setAllBits();
963           Known.One.setAllBits();
964           break;
965         }
966 
967         // Whatever high bits in c are zero are known to be zero (if c is a power
968         // of 2, then one more).
969         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
970           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
971         else
972           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
973       }
974       break;
975     }
976   }
977 
978   // If assumptions conflict with each other or previous known bits, then we
979   // have a logical fallacy. It's possible that the assumption is not reachable,
980   // so this isn't a real bug. On the other hand, the program may have undefined
981   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
982   // clear out the known bits, try to warn the user, and hope for the best.
983   if (Known.Zero.intersects(Known.One)) {
984     Known.resetAll();
985 
986     if (Q.ORE)
987       Q.ORE->emit([&]() {
988         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
989         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
990                                           CxtI)
991                << "Detected conflicting code assumptions. Program may "
992                   "have undefined behavior, or compiler may have "
993                   "internal error.";
994       });
995   }
996 }
997 
998 /// Compute known bits from a shift operator, including those with a
999 /// non-constant shift amount. Known is the output of this function. Known2 is a
1000 /// pre-allocated temporary with the same bit width as Known and on return
1001 /// contains the known bit of the shift value source. KF is an
1002 /// operator-specific function that, given the known-bits and a shift amount,
1003 /// compute the implied known-bits of the shift operator's result respectively
1004 /// for that shift amount. The results from calling KF are conservatively
1005 /// combined for all permitted shift amounts.
1006 static void computeKnownBitsFromShiftOperator(
1007     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1008     KnownBits &Known2, unsigned Depth, const Query &Q,
1009     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
1010   unsigned BitWidth = Known.getBitWidth();
1011   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1012   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1013 
1014   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1015   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1016   // limit value (which implies all bits are known).
1017   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1018   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1019   bool ShiftAmtIsConstant = Known.isConstant();
1020   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
1021 
1022   if (ShiftAmtIsConstant) {
1023     Known = KF(Known2, Known);
1024 
1025     // If the known bits conflict, this must be an overflowing left shift, so
1026     // the shift result is poison. We can return anything we want. Choose 0 for
1027     // the best folding opportunity.
1028     if (Known.hasConflict())
1029       Known.setAllZero();
1030 
1031     return;
1032   }
1033 
1034   // If the shift amount could be greater than or equal to the bit-width of the
1035   // LHS, the value could be poison, but bail out because the check below is
1036   // expensive.
1037   // TODO: Should we just carry on?
1038   if (MaxShiftAmtIsOutOfRange) {
1039     Known.resetAll();
1040     return;
1041   }
1042 
1043   // It would be more-clearly correct to use the two temporaries for this
1044   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1045   Known.resetAll();
1046 
1047   // If we know the shifter operand is nonzero, we can sometimes infer more
1048   // known bits. However this is expensive to compute, so be lazy about it and
1049   // only compute it when absolutely necessary.
1050   Optional<bool> ShifterOperandIsNonZero;
1051 
1052   // Early exit if we can't constrain any well-defined shift amount.
1053   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1054       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1055     ShifterOperandIsNonZero =
1056         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1057     if (!*ShifterOperandIsNonZero)
1058       return;
1059   }
1060 
1061   Known.Zero.setAllBits();
1062   Known.One.setAllBits();
1063   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1064     // Combine the shifted known input bits only for those shift amounts
1065     // compatible with its known constraints.
1066     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1067       continue;
1068     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1069       continue;
1070     // If we know the shifter is nonzero, we may be able to infer more known
1071     // bits. This check is sunk down as far as possible to avoid the expensive
1072     // call to isKnownNonZero if the cheaper checks above fail.
1073     if (ShiftAmt == 0) {
1074       if (!ShifterOperandIsNonZero.hasValue())
1075         ShifterOperandIsNonZero =
1076             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1077       if (*ShifterOperandIsNonZero)
1078         continue;
1079     }
1080 
1081     Known = KnownBits::commonBits(
1082         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1083   }
1084 
1085   // If the known bits conflict, the result is poison. Return a 0 and hope the
1086   // caller can further optimize that.
1087   if (Known.hasConflict())
1088     Known.setAllZero();
1089 }
1090 
1091 static void computeKnownBitsFromOperator(const Operator *I,
1092                                          const APInt &DemandedElts,
1093                                          KnownBits &Known, unsigned Depth,
1094                                          const Query &Q) {
1095   unsigned BitWidth = Known.getBitWidth();
1096 
1097   KnownBits Known2(BitWidth);
1098   switch (I->getOpcode()) {
1099   default: break;
1100   case Instruction::Load:
1101     if (MDNode *MD =
1102             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1103       computeKnownBitsFromRangeMetadata(*MD, Known);
1104     break;
1105   case Instruction::And: {
1106     // If either the LHS or the RHS are Zero, the result is zero.
1107     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1108     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1109 
1110     Known &= Known2;
1111 
1112     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1113     // here we handle the more general case of adding any odd number by
1114     // matching the form add(x, add(x, y)) where y is odd.
1115     // TODO: This could be generalized to clearing any bit set in y where the
1116     // following bit is known to be unset in y.
1117     Value *X = nullptr, *Y = nullptr;
1118     if (!Known.Zero[0] && !Known.One[0] &&
1119         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1120       Known2.resetAll();
1121       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1122       if (Known2.countMinTrailingOnes() > 0)
1123         Known.Zero.setBit(0);
1124     }
1125     break;
1126   }
1127   case Instruction::Or:
1128     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1129     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1130 
1131     Known |= Known2;
1132     break;
1133   case Instruction::Xor:
1134     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1135     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1136 
1137     Known ^= Known2;
1138     break;
1139   case Instruction::Mul: {
1140     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1141     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1142                         Known, Known2, Depth, Q);
1143     break;
1144   }
1145   case Instruction::UDiv: {
1146     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1148     Known = KnownBits::udiv(Known, Known2);
1149     break;
1150   }
1151   case Instruction::Select: {
1152     const Value *LHS = nullptr, *RHS = nullptr;
1153     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1154     if (SelectPatternResult::isMinOrMax(SPF)) {
1155       computeKnownBits(RHS, Known, Depth + 1, Q);
1156       computeKnownBits(LHS, Known2, Depth + 1, Q);
1157       switch (SPF) {
1158       default:
1159         llvm_unreachable("Unhandled select pattern flavor!");
1160       case SPF_SMAX:
1161         Known = KnownBits::smax(Known, Known2);
1162         break;
1163       case SPF_SMIN:
1164         Known = KnownBits::smin(Known, Known2);
1165         break;
1166       case SPF_UMAX:
1167         Known = KnownBits::umax(Known, Known2);
1168         break;
1169       case SPF_UMIN:
1170         Known = KnownBits::umin(Known, Known2);
1171         break;
1172       }
1173       break;
1174     }
1175 
1176     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1178 
1179     // Only known if known in both the LHS and RHS.
1180     Known = KnownBits::commonBits(Known, Known2);
1181 
1182     if (SPF == SPF_ABS) {
1183       // RHS from matchSelectPattern returns the negation part of abs pattern.
1184       // If the negate has an NSW flag we can assume the sign bit of the result
1185       // will be 0 because that makes abs(INT_MIN) undefined.
1186       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1187           Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1188         Known.Zero.setSignBit();
1189     }
1190 
1191     break;
1192   }
1193   case Instruction::FPTrunc:
1194   case Instruction::FPExt:
1195   case Instruction::FPToUI:
1196   case Instruction::FPToSI:
1197   case Instruction::SIToFP:
1198   case Instruction::UIToFP:
1199     break; // Can't work with floating point.
1200   case Instruction::PtrToInt:
1201   case Instruction::IntToPtr:
1202     // Fall through and handle them the same as zext/trunc.
1203     LLVM_FALLTHROUGH;
1204   case Instruction::ZExt:
1205   case Instruction::Trunc: {
1206     Type *SrcTy = I->getOperand(0)->getType();
1207 
1208     unsigned SrcBitWidth;
1209     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1210     // which fall through here.
1211     Type *ScalarTy = SrcTy->getScalarType();
1212     SrcBitWidth = ScalarTy->isPointerTy() ?
1213       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1214       Q.DL.getTypeSizeInBits(ScalarTy);
1215 
1216     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1217     Known = Known.anyextOrTrunc(SrcBitWidth);
1218     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1219     Known = Known.zextOrTrunc(BitWidth);
1220     break;
1221   }
1222   case Instruction::BitCast: {
1223     Type *SrcTy = I->getOperand(0)->getType();
1224     if (SrcTy->isIntOrPtrTy() &&
1225         // TODO: For now, not handling conversions like:
1226         // (bitcast i64 %x to <2 x i32>)
1227         !I->getType()->isVectorTy()) {
1228       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1229       break;
1230     }
1231 
1232     // Handle cast from vector integer type to scalar or vector integer.
1233     auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1234     if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1235         !I->getType()->isIntOrIntVectorTy())
1236       break;
1237 
1238     // Look through a cast from narrow vector elements to wider type.
1239     // Examples: v4i32 -> v2i64, v3i8 -> v24
1240     unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1241     if (BitWidth % SubBitWidth == 0) {
1242       // Known bits are automatically intersected across demanded elements of a
1243       // vector. So for example, if a bit is computed as known zero, it must be
1244       // zero across all demanded elements of the vector.
1245       //
1246       // For this bitcast, each demanded element of the output is sub-divided
1247       // across a set of smaller vector elements in the source vector. To get
1248       // the known bits for an entire element of the output, compute the known
1249       // bits for each sub-element sequentially. This is done by shifting the
1250       // one-set-bit demanded elements parameter across the sub-elements for
1251       // consecutive calls to computeKnownBits. We are using the demanded
1252       // elements parameter as a mask operator.
1253       //
1254       // The known bits of each sub-element are then inserted into place
1255       // (dependent on endian) to form the full result of known bits.
1256       unsigned NumElts = DemandedElts.getBitWidth();
1257       unsigned SubScale = BitWidth / SubBitWidth;
1258       APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1259       for (unsigned i = 0; i != NumElts; ++i) {
1260         if (DemandedElts[i])
1261           SubDemandedElts.setBit(i * SubScale);
1262       }
1263 
1264       KnownBits KnownSrc(SubBitWidth);
1265       for (unsigned i = 0; i != SubScale; ++i) {
1266         computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1267                          Depth + 1, Q);
1268         unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1269         Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1270       }
1271     }
1272     break;
1273   }
1274   case Instruction::SExt: {
1275     // Compute the bits in the result that are not present in the input.
1276     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1277 
1278     Known = Known.trunc(SrcBitWidth);
1279     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1280     // If the sign bit of the input is known set or clear, then we know the
1281     // top bits of the result.
1282     Known = Known.sext(BitWidth);
1283     break;
1284   }
1285   case Instruction::Shl: {
1286     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1287     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1288       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1289       // If this shift has "nsw" keyword, then the result is either a poison
1290       // value or has the same sign bit as the first operand.
1291       if (NSW) {
1292         if (KnownVal.Zero.isSignBitSet())
1293           Result.Zero.setSignBit();
1294         if (KnownVal.One.isSignBitSet())
1295           Result.One.setSignBit();
1296       }
1297       return Result;
1298     };
1299     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1300                                       KF);
1301     // Trailing zeros of a right-shifted constant never decrease.
1302     const APInt *C;
1303     if (match(I->getOperand(0), m_APInt(C)))
1304       Known.Zero.setLowBits(C->countTrailingZeros());
1305     break;
1306   }
1307   case Instruction::LShr: {
1308     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1309       return KnownBits::lshr(KnownVal, KnownAmt);
1310     };
1311     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1312                                       KF);
1313     // Leading zeros of a left-shifted constant never decrease.
1314     const APInt *C;
1315     if (match(I->getOperand(0), m_APInt(C)))
1316       Known.Zero.setHighBits(C->countLeadingZeros());
1317     break;
1318   }
1319   case Instruction::AShr: {
1320     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1321       return KnownBits::ashr(KnownVal, KnownAmt);
1322     };
1323     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1324                                       KF);
1325     break;
1326   }
1327   case Instruction::Sub: {
1328     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1329     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1330                            DemandedElts, Known, Known2, Depth, Q);
1331     break;
1332   }
1333   case Instruction::Add: {
1334     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1335     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1336                            DemandedElts, Known, Known2, Depth, Q);
1337     break;
1338   }
1339   case Instruction::SRem:
1340     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1341     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1342     Known = KnownBits::srem(Known, Known2);
1343     break;
1344 
1345   case Instruction::URem:
1346     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1347     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1348     Known = KnownBits::urem(Known, Known2);
1349     break;
1350   case Instruction::Alloca:
1351     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1352     break;
1353   case Instruction::GetElementPtr: {
1354     // Analyze all of the subscripts of this getelementptr instruction
1355     // to determine if we can prove known low zero bits.
1356     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1357     // Accumulate the constant indices in a separate variable
1358     // to minimize the number of calls to computeForAddSub.
1359     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1360 
1361     gep_type_iterator GTI = gep_type_begin(I);
1362     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1363       // TrailZ can only become smaller, short-circuit if we hit zero.
1364       if (Known.isUnknown())
1365         break;
1366 
1367       Value *Index = I->getOperand(i);
1368 
1369       // Handle case when index is zero.
1370       Constant *CIndex = dyn_cast<Constant>(Index);
1371       if (CIndex && CIndex->isZeroValue())
1372         continue;
1373 
1374       if (StructType *STy = GTI.getStructTypeOrNull()) {
1375         // Handle struct member offset arithmetic.
1376 
1377         assert(CIndex &&
1378                "Access to structure field must be known at compile time");
1379 
1380         if (CIndex->getType()->isVectorTy())
1381           Index = CIndex->getSplatValue();
1382 
1383         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1384         const StructLayout *SL = Q.DL.getStructLayout(STy);
1385         uint64_t Offset = SL->getElementOffset(Idx);
1386         AccConstIndices += Offset;
1387         continue;
1388       }
1389 
1390       // Handle array index arithmetic.
1391       Type *IndexedTy = GTI.getIndexedType();
1392       if (!IndexedTy->isSized()) {
1393         Known.resetAll();
1394         break;
1395       }
1396 
1397       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1398       KnownBits IndexBits(IndexBitWidth);
1399       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1400       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1401       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1402       KnownBits ScalingFactor(IndexBitWidth);
1403       // Multiply by current sizeof type.
1404       // &A[i] == A + i * sizeof(*A[i]).
1405       if (IndexTypeSize.isScalable()) {
1406         // For scalable types the only thing we know about sizeof is
1407         // that this is a multiple of the minimum size.
1408         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1409       } else if (IndexBits.isConstant()) {
1410         APInt IndexConst = IndexBits.getConstant();
1411         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1412         IndexConst *= ScalingFactor;
1413         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1414         continue;
1415       } else {
1416         ScalingFactor =
1417             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1418       }
1419       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1420 
1421       // If the offsets have a different width from the pointer, according
1422       // to the language reference we need to sign-extend or truncate them
1423       // to the width of the pointer.
1424       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1425 
1426       // Note that inbounds does *not* guarantee nsw for the addition, as only
1427       // the offset is signed, while the base address is unsigned.
1428       Known = KnownBits::computeForAddSub(
1429           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1430     }
1431     if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1432       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1433       Known = KnownBits::computeForAddSub(
1434           /*Add=*/true, /*NSW=*/false, Known, Index);
1435     }
1436     break;
1437   }
1438   case Instruction::PHI: {
1439     const PHINode *P = cast<PHINode>(I);
1440     BinaryOperator *BO = nullptr;
1441     Value *R = nullptr, *L = nullptr;
1442     if (matchSimpleRecurrence(P, BO, R, L)) {
1443       // Handle the case of a simple two-predecessor recurrence PHI.
1444       // There's a lot more that could theoretically be done here, but
1445       // this is sufficient to catch some interesting cases.
1446       unsigned Opcode = BO->getOpcode();
1447 
1448       // If this is a shift recurrence, we know the bits being shifted in.
1449       // We can combine that with information about the start value of the
1450       // recurrence to conclude facts about the result.
1451       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1452            Opcode == Instruction::Shl) &&
1453           BO->getOperand(0) == I) {
1454 
1455         // We have matched a recurrence of the form:
1456         // %iv = [R, %entry], [%iv.next, %backedge]
1457         // %iv.next = shift_op %iv, L
1458 
1459         // Recurse with the phi context to avoid concern about whether facts
1460         // inferred hold at original context instruction.  TODO: It may be
1461         // correct to use the original context.  IF warranted, explore and
1462         // add sufficient tests to cover.
1463         Query RecQ = Q;
1464         RecQ.CxtI = P;
1465         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1466         switch (Opcode) {
1467         case Instruction::Shl:
1468           // A shl recurrence will only increase the tailing zeros
1469           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1470           break;
1471         case Instruction::LShr:
1472           // A lshr recurrence will preserve the leading zeros of the
1473           // start value
1474           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1475           break;
1476         case Instruction::AShr:
1477           // An ashr recurrence will extend the initial sign bit
1478           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1479           Known.One.setHighBits(Known2.countMinLeadingOnes());
1480           break;
1481         };
1482       }
1483 
1484       // Check for operations that have the property that if
1485       // both their operands have low zero bits, the result
1486       // will have low zero bits.
1487       if (Opcode == Instruction::Add ||
1488           Opcode == Instruction::Sub ||
1489           Opcode == Instruction::And ||
1490           Opcode == Instruction::Or ||
1491           Opcode == Instruction::Mul) {
1492         // Change the context instruction to the "edge" that flows into the
1493         // phi. This is important because that is where the value is actually
1494         // "evaluated" even though it is used later somewhere else. (see also
1495         // D69571).
1496         Query RecQ = Q;
1497 
1498         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1499         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1500         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1501 
1502         // Ok, we have a PHI of the form L op= R. Check for low
1503         // zero bits.
1504         RecQ.CxtI = RInst;
1505         computeKnownBits(R, Known2, Depth + 1, RecQ);
1506 
1507         // We need to take the minimum number of known bits
1508         KnownBits Known3(BitWidth);
1509         RecQ.CxtI = LInst;
1510         computeKnownBits(L, Known3, Depth + 1, RecQ);
1511 
1512         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1513                                        Known3.countMinTrailingZeros()));
1514 
1515         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1516         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1517           // If initial value of recurrence is nonnegative, and we are adding
1518           // a nonnegative number with nsw, the result can only be nonnegative
1519           // or poison value regardless of the number of times we execute the
1520           // add in phi recurrence. If initial value is negative and we are
1521           // adding a negative number with nsw, the result can only be
1522           // negative or poison value. Similar arguments apply to sub and mul.
1523           //
1524           // (add non-negative, non-negative) --> non-negative
1525           // (add negative, negative) --> negative
1526           if (Opcode == Instruction::Add) {
1527             if (Known2.isNonNegative() && Known3.isNonNegative())
1528               Known.makeNonNegative();
1529             else if (Known2.isNegative() && Known3.isNegative())
1530               Known.makeNegative();
1531           }
1532 
1533           // (sub nsw non-negative, negative) --> non-negative
1534           // (sub nsw negative, non-negative) --> negative
1535           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1536             if (Known2.isNonNegative() && Known3.isNegative())
1537               Known.makeNonNegative();
1538             else if (Known2.isNegative() && Known3.isNonNegative())
1539               Known.makeNegative();
1540           }
1541 
1542           // (mul nsw non-negative, non-negative) --> non-negative
1543           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1544                    Known3.isNonNegative())
1545             Known.makeNonNegative();
1546         }
1547 
1548         break;
1549       }
1550     }
1551 
1552     // Unreachable blocks may have zero-operand PHI nodes.
1553     if (P->getNumIncomingValues() == 0)
1554       break;
1555 
1556     // Otherwise take the unions of the known bit sets of the operands,
1557     // taking conservative care to avoid excessive recursion.
1558     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1559       // Skip if every incoming value references to ourself.
1560       if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1561         break;
1562 
1563       Known.Zero.setAllBits();
1564       Known.One.setAllBits();
1565       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1566         Value *IncValue = P->getIncomingValue(u);
1567         // Skip direct self references.
1568         if (IncValue == P) continue;
1569 
1570         // Change the context instruction to the "edge" that flows into the
1571         // phi. This is important because that is where the value is actually
1572         // "evaluated" even though it is used later somewhere else. (see also
1573         // D69571).
1574         Query RecQ = Q;
1575         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1576 
1577         Known2 = KnownBits(BitWidth);
1578         // Recurse, but cap the recursion to one level, because we don't
1579         // want to waste time spinning around in loops.
1580         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1581         Known = KnownBits::commonBits(Known, Known2);
1582         // If all bits have been ruled out, there's no need to check
1583         // more operands.
1584         if (Known.isUnknown())
1585           break;
1586       }
1587     }
1588     break;
1589   }
1590   case Instruction::Call:
1591   case Instruction::Invoke:
1592     // If range metadata is attached to this call, set known bits from that,
1593     // and then intersect with known bits based on other properties of the
1594     // function.
1595     if (MDNode *MD =
1596             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1597       computeKnownBitsFromRangeMetadata(*MD, Known);
1598     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1599       computeKnownBits(RV, Known2, Depth + 1, Q);
1600       Known.Zero |= Known2.Zero;
1601       Known.One |= Known2.One;
1602     }
1603     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1604       switch (II->getIntrinsicID()) {
1605       default: break;
1606       case Intrinsic::abs: {
1607         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1608         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1609         Known = Known2.abs(IntMinIsPoison);
1610         break;
1611       }
1612       case Intrinsic::bitreverse:
1613         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1614         Known.Zero |= Known2.Zero.reverseBits();
1615         Known.One |= Known2.One.reverseBits();
1616         break;
1617       case Intrinsic::bswap:
1618         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1619         Known.Zero |= Known2.Zero.byteSwap();
1620         Known.One |= Known2.One.byteSwap();
1621         break;
1622       case Intrinsic::ctlz: {
1623         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1624         // If we have a known 1, its position is our upper bound.
1625         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1626         // If this call is poison for 0 input, the result will be less than 2^n.
1627         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1628           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1629         unsigned LowBits = Log2_32(PossibleLZ)+1;
1630         Known.Zero.setBitsFrom(LowBits);
1631         break;
1632       }
1633       case Intrinsic::cttz: {
1634         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1635         // If we have a known 1, its position is our upper bound.
1636         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1637         // If this call is poison for 0 input, the result will be less than 2^n.
1638         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1639           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1640         unsigned LowBits = Log2_32(PossibleTZ)+1;
1641         Known.Zero.setBitsFrom(LowBits);
1642         break;
1643       }
1644       case Intrinsic::ctpop: {
1645         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1646         // We can bound the space the count needs.  Also, bits known to be zero
1647         // can't contribute to the population.
1648         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1649         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1650         Known.Zero.setBitsFrom(LowBits);
1651         // TODO: we could bound KnownOne using the lower bound on the number
1652         // of bits which might be set provided by popcnt KnownOne2.
1653         break;
1654       }
1655       case Intrinsic::fshr:
1656       case Intrinsic::fshl: {
1657         const APInt *SA;
1658         if (!match(I->getOperand(2), m_APInt(SA)))
1659           break;
1660 
1661         // Normalize to funnel shift left.
1662         uint64_t ShiftAmt = SA->urem(BitWidth);
1663         if (II->getIntrinsicID() == Intrinsic::fshr)
1664           ShiftAmt = BitWidth - ShiftAmt;
1665 
1666         KnownBits Known3(BitWidth);
1667         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1668         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1669 
1670         Known.Zero =
1671             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1672         Known.One =
1673             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1674         break;
1675       }
1676       case Intrinsic::uadd_sat:
1677       case Intrinsic::usub_sat: {
1678         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1679         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1680         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1681 
1682         // Add: Leading ones of either operand are preserved.
1683         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1684         // as leading zeros in the result.
1685         unsigned LeadingKnown;
1686         if (IsAdd)
1687           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1688                                   Known2.countMinLeadingOnes());
1689         else
1690           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1691                                   Known2.countMinLeadingOnes());
1692 
1693         Known = KnownBits::computeForAddSub(
1694             IsAdd, /* NSW */ false, Known, Known2);
1695 
1696         // We select between the operation result and all-ones/zero
1697         // respectively, so we can preserve known ones/zeros.
1698         if (IsAdd) {
1699           Known.One.setHighBits(LeadingKnown);
1700           Known.Zero.clearAllBits();
1701         } else {
1702           Known.Zero.setHighBits(LeadingKnown);
1703           Known.One.clearAllBits();
1704         }
1705         break;
1706       }
1707       case Intrinsic::umin:
1708         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1709         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1710         Known = KnownBits::umin(Known, Known2);
1711         break;
1712       case Intrinsic::umax:
1713         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1714         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1715         Known = KnownBits::umax(Known, Known2);
1716         break;
1717       case Intrinsic::smin:
1718         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1719         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1720         Known = KnownBits::smin(Known, Known2);
1721         break;
1722       case Intrinsic::smax:
1723         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1724         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1725         Known = KnownBits::smax(Known, Known2);
1726         break;
1727       case Intrinsic::x86_sse42_crc32_64_64:
1728         Known.Zero.setBitsFrom(32);
1729         break;
1730       case Intrinsic::riscv_vsetvli:
1731       case Intrinsic::riscv_vsetvlimax:
1732         // Assume that VL output is positive and would fit in an int32_t.
1733         // TODO: VLEN might be capped at 16 bits in a future V spec update.
1734         if (BitWidth >= 32)
1735           Known.Zero.setBitsFrom(31);
1736         break;
1737       case Intrinsic::vscale: {
1738         if (!II->getParent() || !II->getFunction() ||
1739             !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1740           break;
1741 
1742         auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1743         Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1744 
1745         if (!VScaleMax)
1746           break;
1747 
1748         unsigned VScaleMin = Attr.getVScaleRangeMin();
1749 
1750         // If vscale min = max then we know the exact value at compile time
1751         // and hence we know the exact bits.
1752         if (VScaleMin == VScaleMax) {
1753           Known.One = VScaleMin;
1754           Known.Zero = VScaleMin;
1755           Known.Zero.flipAllBits();
1756           break;
1757         }
1758 
1759         unsigned FirstZeroHighBit =
1760             32 - countLeadingZeros(VScaleMax.getValue());
1761         if (FirstZeroHighBit < BitWidth)
1762           Known.Zero.setBitsFrom(FirstZeroHighBit);
1763 
1764         break;
1765       }
1766       }
1767     }
1768     break;
1769   case Instruction::ShuffleVector: {
1770     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1771     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1772     if (!Shuf) {
1773       Known.resetAll();
1774       return;
1775     }
1776     // For undef elements, we don't know anything about the common state of
1777     // the shuffle result.
1778     APInt DemandedLHS, DemandedRHS;
1779     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1780       Known.resetAll();
1781       return;
1782     }
1783     Known.One.setAllBits();
1784     Known.Zero.setAllBits();
1785     if (!!DemandedLHS) {
1786       const Value *LHS = Shuf->getOperand(0);
1787       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1788       // If we don't know any bits, early out.
1789       if (Known.isUnknown())
1790         break;
1791     }
1792     if (!!DemandedRHS) {
1793       const Value *RHS = Shuf->getOperand(1);
1794       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1795       Known = KnownBits::commonBits(Known, Known2);
1796     }
1797     break;
1798   }
1799   case Instruction::InsertElement: {
1800     const Value *Vec = I->getOperand(0);
1801     const Value *Elt = I->getOperand(1);
1802     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1803     // Early out if the index is non-constant or out-of-range.
1804     unsigned NumElts = DemandedElts.getBitWidth();
1805     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1806       Known.resetAll();
1807       return;
1808     }
1809     Known.One.setAllBits();
1810     Known.Zero.setAllBits();
1811     unsigned EltIdx = CIdx->getZExtValue();
1812     // Do we demand the inserted element?
1813     if (DemandedElts[EltIdx]) {
1814       computeKnownBits(Elt, Known, Depth + 1, Q);
1815       // If we don't know any bits, early out.
1816       if (Known.isUnknown())
1817         break;
1818     }
1819     // We don't need the base vector element that has been inserted.
1820     APInt DemandedVecElts = DemandedElts;
1821     DemandedVecElts.clearBit(EltIdx);
1822     if (!!DemandedVecElts) {
1823       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1824       Known = KnownBits::commonBits(Known, Known2);
1825     }
1826     break;
1827   }
1828   case Instruction::ExtractElement: {
1829     // Look through extract element. If the index is non-constant or
1830     // out-of-range demand all elements, otherwise just the extracted element.
1831     const Value *Vec = I->getOperand(0);
1832     const Value *Idx = I->getOperand(1);
1833     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1834     if (isa<ScalableVectorType>(Vec->getType())) {
1835       // FIXME: there's probably *something* we can do with scalable vectors
1836       Known.resetAll();
1837       break;
1838     }
1839     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1840     APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1841     if (CIdx && CIdx->getValue().ult(NumElts))
1842       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1843     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1844     break;
1845   }
1846   case Instruction::ExtractValue:
1847     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1848       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1849       if (EVI->getNumIndices() != 1) break;
1850       if (EVI->getIndices()[0] == 0) {
1851         switch (II->getIntrinsicID()) {
1852         default: break;
1853         case Intrinsic::uadd_with_overflow:
1854         case Intrinsic::sadd_with_overflow:
1855           computeKnownBitsAddSub(true, II->getArgOperand(0),
1856                                  II->getArgOperand(1), false, DemandedElts,
1857                                  Known, Known2, Depth, Q);
1858           break;
1859         case Intrinsic::usub_with_overflow:
1860         case Intrinsic::ssub_with_overflow:
1861           computeKnownBitsAddSub(false, II->getArgOperand(0),
1862                                  II->getArgOperand(1), false, DemandedElts,
1863                                  Known, Known2, Depth, Q);
1864           break;
1865         case Intrinsic::umul_with_overflow:
1866         case Intrinsic::smul_with_overflow:
1867           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1868                               DemandedElts, Known, Known2, Depth, Q);
1869           break;
1870         }
1871       }
1872     }
1873     break;
1874   case Instruction::Freeze:
1875     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1876                                   Depth + 1))
1877       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1878     break;
1879   }
1880 }
1881 
1882 /// Determine which bits of V are known to be either zero or one and return
1883 /// them.
1884 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1885                            unsigned Depth, const Query &Q) {
1886   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1887   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1888   return Known;
1889 }
1890 
1891 /// Determine which bits of V are known to be either zero or one and return
1892 /// them.
1893 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1894   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1895   computeKnownBits(V, Known, Depth, Q);
1896   return Known;
1897 }
1898 
1899 /// Determine which bits of V are known to be either zero or one and return
1900 /// them in the Known bit set.
1901 ///
1902 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1903 /// we cannot optimize based on the assumption that it is zero without changing
1904 /// it to be an explicit zero.  If we don't change it to zero, other code could
1905 /// optimized based on the contradictory assumption that it is non-zero.
1906 /// Because instcombine aggressively folds operations with undef args anyway,
1907 /// this won't lose us code quality.
1908 ///
1909 /// This function is defined on values with integer type, values with pointer
1910 /// type, and vectors of integers.  In the case
1911 /// where V is a vector, known zero, and known one values are the
1912 /// same width as the vector element, and the bit is set only if it is true
1913 /// for all of the demanded elements in the vector specified by DemandedElts.
1914 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1915                       KnownBits &Known, unsigned Depth, const Query &Q) {
1916   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1917     // No demanded elts or V is a scalable vector, better to assume we don't
1918     // know anything.
1919     Known.resetAll();
1920     return;
1921   }
1922 
1923   assert(V && "No Value?");
1924   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1925 
1926 #ifndef NDEBUG
1927   Type *Ty = V->getType();
1928   unsigned BitWidth = Known.getBitWidth();
1929 
1930   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1931          "Not integer or pointer type!");
1932 
1933   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1934     assert(
1935         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1936         "DemandedElt width should equal the fixed vector number of elements");
1937   } else {
1938     assert(DemandedElts == APInt(1, 1) &&
1939            "DemandedElt width should be 1 for scalars");
1940   }
1941 
1942   Type *ScalarTy = Ty->getScalarType();
1943   if (ScalarTy->isPointerTy()) {
1944     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1945            "V and Known should have same BitWidth");
1946   } else {
1947     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1948            "V and Known should have same BitWidth");
1949   }
1950 #endif
1951 
1952   const APInt *C;
1953   if (match(V, m_APInt(C))) {
1954     // We know all of the bits for a scalar constant or a splat vector constant!
1955     Known = KnownBits::makeConstant(*C);
1956     return;
1957   }
1958   // Null and aggregate-zero are all-zeros.
1959   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1960     Known.setAllZero();
1961     return;
1962   }
1963   // Handle a constant vector by taking the intersection of the known bits of
1964   // each element.
1965   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1966     // We know that CDV must be a vector of integers. Take the intersection of
1967     // each element.
1968     Known.Zero.setAllBits(); Known.One.setAllBits();
1969     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1970       if (!DemandedElts[i])
1971         continue;
1972       APInt Elt = CDV->getElementAsAPInt(i);
1973       Known.Zero &= ~Elt;
1974       Known.One &= Elt;
1975     }
1976     return;
1977   }
1978 
1979   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1980     // We know that CV must be a vector of integers. Take the intersection of
1981     // each element.
1982     Known.Zero.setAllBits(); Known.One.setAllBits();
1983     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1984       if (!DemandedElts[i])
1985         continue;
1986       Constant *Element = CV->getAggregateElement(i);
1987       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1988       if (!ElementCI) {
1989         Known.resetAll();
1990         return;
1991       }
1992       const APInt &Elt = ElementCI->getValue();
1993       Known.Zero &= ~Elt;
1994       Known.One &= Elt;
1995     }
1996     return;
1997   }
1998 
1999   // Start out not knowing anything.
2000   Known.resetAll();
2001 
2002   // We can't imply anything about undefs.
2003   if (isa<UndefValue>(V))
2004     return;
2005 
2006   // There's no point in looking through other users of ConstantData for
2007   // assumptions.  Confirm that we've handled them all.
2008   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2009 
2010   // All recursive calls that increase depth must come after this.
2011   if (Depth == MaxAnalysisRecursionDepth)
2012     return;
2013 
2014   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2015   // the bits of its aliasee.
2016   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2017     if (!GA->isInterposable())
2018       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2019     return;
2020   }
2021 
2022   if (const Operator *I = dyn_cast<Operator>(V))
2023     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2024 
2025   // Aligned pointers have trailing zeros - refine Known.Zero set
2026   if (isa<PointerType>(V->getType())) {
2027     Align Alignment = V->getPointerAlignment(Q.DL);
2028     Known.Zero.setLowBits(Log2(Alignment));
2029   }
2030 
2031   // computeKnownBitsFromAssume strictly refines Known.
2032   // Therefore, we run them after computeKnownBitsFromOperator.
2033 
2034   // Check whether a nearby assume intrinsic can determine some known bits.
2035   computeKnownBitsFromAssume(V, Known, Depth, Q);
2036 
2037   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2038 }
2039 
2040 /// Return true if the given value is known to have exactly one
2041 /// bit set when defined. For vectors return true if every element is known to
2042 /// be a power of two when defined. Supports values with integer or pointer
2043 /// types and vectors of integers.
2044 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2045                             const Query &Q) {
2046   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2047 
2048   // Attempt to match against constants.
2049   if (OrZero && match(V, m_Power2OrZero()))
2050       return true;
2051   if (match(V, m_Power2()))
2052       return true;
2053 
2054   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2055   // it is shifted off the end then the result is undefined.
2056   if (match(V, m_Shl(m_One(), m_Value())))
2057     return true;
2058 
2059   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2060   // the bottom.  If it is shifted off the bottom then the result is undefined.
2061   if (match(V, m_LShr(m_SignMask(), m_Value())))
2062     return true;
2063 
2064   // The remaining tests are all recursive, so bail out if we hit the limit.
2065   if (Depth++ == MaxAnalysisRecursionDepth)
2066     return false;
2067 
2068   Value *X = nullptr, *Y = nullptr;
2069   // A shift left or a logical shift right of a power of two is a power of two
2070   // or zero.
2071   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2072                  match(V, m_LShr(m_Value(X), m_Value()))))
2073     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2074 
2075   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2076     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2077 
2078   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2079     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2080            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2081 
2082   // Peek through min/max.
2083   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2084     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2085            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2086   }
2087 
2088   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2089     // A power of two and'd with anything is a power of two or zero.
2090     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2091         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2092       return true;
2093     // X & (-X) is always a power of two or zero.
2094     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2095       return true;
2096     return false;
2097   }
2098 
2099   // Adding a power-of-two or zero to the same power-of-two or zero yields
2100   // either the original power-of-two, a larger power-of-two or zero.
2101   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2102     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2103     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2104         Q.IIQ.hasNoSignedWrap(VOBO)) {
2105       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2106           match(X, m_And(m_Value(), m_Specific(Y))))
2107         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2108           return true;
2109       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2110           match(Y, m_And(m_Value(), m_Specific(X))))
2111         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2112           return true;
2113 
2114       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2115       KnownBits LHSBits(BitWidth);
2116       computeKnownBits(X, LHSBits, Depth, Q);
2117 
2118       KnownBits RHSBits(BitWidth);
2119       computeKnownBits(Y, RHSBits, Depth, Q);
2120       // If i8 V is a power of two or zero:
2121       //  ZeroBits: 1 1 1 0 1 1 1 1
2122       // ~ZeroBits: 0 0 0 1 0 0 0 0
2123       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2124         // If OrZero isn't set, we cannot give back a zero result.
2125         // Make sure either the LHS or RHS has a bit set.
2126         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2127           return true;
2128     }
2129   }
2130 
2131   // An exact divide or right shift can only shift off zero bits, so the result
2132   // is a power of two only if the first operand is a power of two and not
2133   // copying a sign bit (sdiv int_min, 2).
2134   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2135       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2136     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2137                                   Depth, Q);
2138   }
2139 
2140   return false;
2141 }
2142 
2143 /// Test whether a GEP's result is known to be non-null.
2144 ///
2145 /// Uses properties inherent in a GEP to try to determine whether it is known
2146 /// to be non-null.
2147 ///
2148 /// Currently this routine does not support vector GEPs.
2149 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2150                               const Query &Q) {
2151   const Function *F = nullptr;
2152   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2153     F = I->getFunction();
2154 
2155   if (!GEP->isInBounds() ||
2156       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2157     return false;
2158 
2159   // FIXME: Support vector-GEPs.
2160   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2161 
2162   // If the base pointer is non-null, we cannot walk to a null address with an
2163   // inbounds GEP in address space zero.
2164   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2165     return true;
2166 
2167   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2168   // If so, then the GEP cannot produce a null pointer, as doing so would
2169   // inherently violate the inbounds contract within address space zero.
2170   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2171        GTI != GTE; ++GTI) {
2172     // Struct types are easy -- they must always be indexed by a constant.
2173     if (StructType *STy = GTI.getStructTypeOrNull()) {
2174       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2175       unsigned ElementIdx = OpC->getZExtValue();
2176       const StructLayout *SL = Q.DL.getStructLayout(STy);
2177       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2178       if (ElementOffset > 0)
2179         return true;
2180       continue;
2181     }
2182 
2183     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2184     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2185       continue;
2186 
2187     // Fast path the constant operand case both for efficiency and so we don't
2188     // increment Depth when just zipping down an all-constant GEP.
2189     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2190       if (!OpC->isZero())
2191         return true;
2192       continue;
2193     }
2194 
2195     // We post-increment Depth here because while isKnownNonZero increments it
2196     // as well, when we pop back up that increment won't persist. We don't want
2197     // to recurse 10k times just because we have 10k GEP operands. We don't
2198     // bail completely out because we want to handle constant GEPs regardless
2199     // of depth.
2200     if (Depth++ >= MaxAnalysisRecursionDepth)
2201       continue;
2202 
2203     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2204       return true;
2205   }
2206 
2207   return false;
2208 }
2209 
2210 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2211                                                   const Instruction *CtxI,
2212                                                   const DominatorTree *DT) {
2213   if (isa<Constant>(V))
2214     return false;
2215 
2216   if (!CtxI || !DT)
2217     return false;
2218 
2219   unsigned NumUsesExplored = 0;
2220   for (auto *U : V->users()) {
2221     // Avoid massive lists
2222     if (NumUsesExplored >= DomConditionsMaxUses)
2223       break;
2224     NumUsesExplored++;
2225 
2226     // If the value is used as an argument to a call or invoke, then argument
2227     // attributes may provide an answer about null-ness.
2228     if (const auto *CB = dyn_cast<CallBase>(U))
2229       if (auto *CalledFunc = CB->getCalledFunction())
2230         for (const Argument &Arg : CalledFunc->args())
2231           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2232               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2233               DT->dominates(CB, CtxI))
2234             return true;
2235 
2236     // If the value is used as a load/store, then the pointer must be non null.
2237     if (V == getLoadStorePointerOperand(U)) {
2238       const Instruction *I = cast<Instruction>(U);
2239       if (!NullPointerIsDefined(I->getFunction(),
2240                                 V->getType()->getPointerAddressSpace()) &&
2241           DT->dominates(I, CtxI))
2242         return true;
2243     }
2244 
2245     // Consider only compare instructions uniquely controlling a branch
2246     Value *RHS;
2247     CmpInst::Predicate Pred;
2248     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2249       continue;
2250 
2251     bool NonNullIfTrue;
2252     if (cmpExcludesZero(Pred, RHS))
2253       NonNullIfTrue = true;
2254     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2255       NonNullIfTrue = false;
2256     else
2257       continue;
2258 
2259     SmallVector<const User *, 4> WorkList;
2260     SmallPtrSet<const User *, 4> Visited;
2261     for (auto *CmpU : U->users()) {
2262       assert(WorkList.empty() && "Should be!");
2263       if (Visited.insert(CmpU).second)
2264         WorkList.push_back(CmpU);
2265 
2266       while (!WorkList.empty()) {
2267         auto *Curr = WorkList.pop_back_val();
2268 
2269         // If a user is an AND, add all its users to the work list. We only
2270         // propagate "pred != null" condition through AND because it is only
2271         // correct to assume that all conditions of AND are met in true branch.
2272         // TODO: Support similar logic of OR and EQ predicate?
2273         if (NonNullIfTrue)
2274           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2275             for (auto *CurrU : Curr->users())
2276               if (Visited.insert(CurrU).second)
2277                 WorkList.push_back(CurrU);
2278             continue;
2279           }
2280 
2281         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2282           assert(BI->isConditional() && "uses a comparison!");
2283 
2284           BasicBlock *NonNullSuccessor =
2285               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2286           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2287           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2288             return true;
2289         } else if (NonNullIfTrue && isGuard(Curr) &&
2290                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2291           return true;
2292         }
2293       }
2294     }
2295   }
2296 
2297   return false;
2298 }
2299 
2300 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2301 /// ensure that the value it's attached to is never Value?  'RangeType' is
2302 /// is the type of the value described by the range.
2303 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2304   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2305   assert(NumRanges >= 1);
2306   for (unsigned i = 0; i < NumRanges; ++i) {
2307     ConstantInt *Lower =
2308         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2309     ConstantInt *Upper =
2310         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2311     ConstantRange Range(Lower->getValue(), Upper->getValue());
2312     if (Range.contains(Value))
2313       return false;
2314   }
2315   return true;
2316 }
2317 
2318 /// Try to detect a recurrence that monotonically increases/decreases from a
2319 /// non-zero starting value. These are common as induction variables.
2320 static bool isNonZeroRecurrence(const PHINode *PN) {
2321   BinaryOperator *BO = nullptr;
2322   Value *Start = nullptr, *Step = nullptr;
2323   const APInt *StartC, *StepC;
2324   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2325       !match(Start, m_APInt(StartC)) || StartC->isZero())
2326     return false;
2327 
2328   switch (BO->getOpcode()) {
2329   case Instruction::Add:
2330     // Starting from non-zero and stepping away from zero can never wrap back
2331     // to zero.
2332     return BO->hasNoUnsignedWrap() ||
2333            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2334             StartC->isNegative() == StepC->isNegative());
2335   case Instruction::Mul:
2336     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2337            match(Step, m_APInt(StepC)) && !StepC->isZero();
2338   case Instruction::Shl:
2339     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2340   case Instruction::AShr:
2341   case Instruction::LShr:
2342     return BO->isExact();
2343   default:
2344     return false;
2345   }
2346 }
2347 
2348 /// Return true if the given value is known to be non-zero when defined. For
2349 /// vectors, return true if every demanded element is known to be non-zero when
2350 /// defined. For pointers, if the context instruction and dominator tree are
2351 /// specified, perform context-sensitive analysis and return true if the
2352 /// pointer couldn't possibly be null at the specified instruction.
2353 /// Supports values with integer or pointer type and vectors of integers.
2354 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2355                     const Query &Q) {
2356   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2357   // vector
2358   if (isa<ScalableVectorType>(V->getType()))
2359     return false;
2360 
2361   if (auto *C = dyn_cast<Constant>(V)) {
2362     if (C->isNullValue())
2363       return false;
2364     if (isa<ConstantInt>(C))
2365       // Must be non-zero due to null test above.
2366       return true;
2367 
2368     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2369       // See the comment for IntToPtr/PtrToInt instructions below.
2370       if (CE->getOpcode() == Instruction::IntToPtr ||
2371           CE->getOpcode() == Instruction::PtrToInt)
2372         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2373                 .getFixedSize() <=
2374             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2375           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2376     }
2377 
2378     // For constant vectors, check that all elements are undefined or known
2379     // non-zero to determine that the whole vector is known non-zero.
2380     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2381       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2382         if (!DemandedElts[i])
2383           continue;
2384         Constant *Elt = C->getAggregateElement(i);
2385         if (!Elt || Elt->isNullValue())
2386           return false;
2387         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2388           return false;
2389       }
2390       return true;
2391     }
2392 
2393     // A global variable in address space 0 is non null unless extern weak
2394     // or an absolute symbol reference. Other address spaces may have null as a
2395     // valid address for a global, so we can't assume anything.
2396     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2397       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2398           GV->getType()->getAddressSpace() == 0)
2399         return true;
2400     } else
2401       return false;
2402   }
2403 
2404   if (auto *I = dyn_cast<Instruction>(V)) {
2405     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2406       // If the possible ranges don't contain zero, then the value is
2407       // definitely non-zero.
2408       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2409         const APInt ZeroValue(Ty->getBitWidth(), 0);
2410         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2411           return true;
2412       }
2413     }
2414   }
2415 
2416   if (isKnownNonZeroFromAssume(V, Q))
2417     return true;
2418 
2419   // Some of the tests below are recursive, so bail out if we hit the limit.
2420   if (Depth++ >= MaxAnalysisRecursionDepth)
2421     return false;
2422 
2423   // Check for pointer simplifications.
2424 
2425   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2426     // Alloca never returns null, malloc might.
2427     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2428       return true;
2429 
2430     // A byval, inalloca may not be null in a non-default addres space. A
2431     // nonnull argument is assumed never 0.
2432     if (const Argument *A = dyn_cast<Argument>(V)) {
2433       if (((A->hasPassPointeeByValueCopyAttr() &&
2434             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2435            A->hasNonNullAttr()))
2436         return true;
2437     }
2438 
2439     // A Load tagged with nonnull metadata is never null.
2440     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2441       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2442         return true;
2443 
2444     if (const auto *Call = dyn_cast<CallBase>(V)) {
2445       if (Call->isReturnNonNull())
2446         return true;
2447       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2448         return isKnownNonZero(RP, Depth, Q);
2449     }
2450   }
2451 
2452   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2453     return true;
2454 
2455   // Check for recursive pointer simplifications.
2456   if (V->getType()->isPointerTy()) {
2457     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2458     // do not alter the value, or at least not the nullness property of the
2459     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2460     //
2461     // Note that we have to take special care to avoid looking through
2462     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2463     // as casts that can alter the value, e.g., AddrSpaceCasts.
2464     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2465       return isGEPKnownNonNull(GEP, Depth, Q);
2466 
2467     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2468       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2469 
2470     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2471       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2472           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2473         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2474   }
2475 
2476   // Similar to int2ptr above, we can look through ptr2int here if the cast
2477   // is a no-op or an extend and not a truncate.
2478   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2479     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2480         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2481       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2482 
2483   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2484 
2485   // X | Y != 0 if X != 0 or Y != 0.
2486   Value *X = nullptr, *Y = nullptr;
2487   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2488     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2489            isKnownNonZero(Y, DemandedElts, Depth, Q);
2490 
2491   // ext X != 0 if X != 0.
2492   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2493     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2494 
2495   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2496   // if the lowest bit is shifted off the end.
2497   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2498     // shl nuw can't remove any non-zero bits.
2499     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2500     if (Q.IIQ.hasNoUnsignedWrap(BO))
2501       return isKnownNonZero(X, Depth, Q);
2502 
2503     KnownBits Known(BitWidth);
2504     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2505     if (Known.One[0])
2506       return true;
2507   }
2508   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2509   // defined if the sign bit is shifted off the end.
2510   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2511     // shr exact can only shift out zero bits.
2512     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2513     if (BO->isExact())
2514       return isKnownNonZero(X, Depth, Q);
2515 
2516     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2517     if (Known.isNegative())
2518       return true;
2519 
2520     // If the shifter operand is a constant, and all of the bits shifted
2521     // out are known to be zero, and X is known non-zero then at least one
2522     // non-zero bit must remain.
2523     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2524       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2525       // Is there a known one in the portion not shifted out?
2526       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2527         return true;
2528       // Are all the bits to be shifted out known zero?
2529       if (Known.countMinTrailingZeros() >= ShiftVal)
2530         return isKnownNonZero(X, DemandedElts, Depth, Q);
2531     }
2532   }
2533   // div exact can only produce a zero if the dividend is zero.
2534   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2535     return isKnownNonZero(X, DemandedElts, Depth, Q);
2536   }
2537   // X + Y.
2538   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2539     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2540     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2541 
2542     // If X and Y are both non-negative (as signed values) then their sum is not
2543     // zero unless both X and Y are zero.
2544     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2545       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2546           isKnownNonZero(Y, DemandedElts, Depth, Q))
2547         return true;
2548 
2549     // If X and Y are both negative (as signed values) then their sum is not
2550     // zero unless both X and Y equal INT_MIN.
2551     if (XKnown.isNegative() && YKnown.isNegative()) {
2552       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2553       // The sign bit of X is set.  If some other bit is set then X is not equal
2554       // to INT_MIN.
2555       if (XKnown.One.intersects(Mask))
2556         return true;
2557       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2558       // to INT_MIN.
2559       if (YKnown.One.intersects(Mask))
2560         return true;
2561     }
2562 
2563     // The sum of a non-negative number and a power of two is not zero.
2564     if (XKnown.isNonNegative() &&
2565         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2566       return true;
2567     if (YKnown.isNonNegative() &&
2568         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2569       return true;
2570   }
2571   // X * Y.
2572   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2573     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2574     // If X and Y are non-zero then so is X * Y as long as the multiplication
2575     // does not overflow.
2576     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2577         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2578         isKnownNonZero(Y, DemandedElts, Depth, Q))
2579       return true;
2580   }
2581   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2582   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2583     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2584         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2585       return true;
2586   }
2587   // PHI
2588   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2589     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2590       return true;
2591 
2592     // Check if all incoming values are non-zero using recursion.
2593     Query RecQ = Q;
2594     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2595     return llvm::all_of(PN->operands(), [&](const Use &U) {
2596       if (U.get() == PN)
2597         return true;
2598       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2599       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2600     });
2601   }
2602   // ExtractElement
2603   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2604     const Value *Vec = EEI->getVectorOperand();
2605     const Value *Idx = EEI->getIndexOperand();
2606     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2607     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2608       unsigned NumElts = VecTy->getNumElements();
2609       APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2610       if (CIdx && CIdx->getValue().ult(NumElts))
2611         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2612       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2613     }
2614   }
2615   // Freeze
2616   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2617     auto *Op = FI->getOperand(0);
2618     if (isKnownNonZero(Op, Depth, Q) &&
2619         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2620       return true;
2621   }
2622 
2623   KnownBits Known(BitWidth);
2624   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2625   return Known.One != 0;
2626 }
2627 
2628 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2629   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2630   // vector
2631   if (isa<ScalableVectorType>(V->getType()))
2632     return false;
2633 
2634   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2635   APInt DemandedElts =
2636       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2637   return isKnownNonZero(V, DemandedElts, Depth, Q);
2638 }
2639 
2640 /// If the pair of operators are the same invertible function, return the
2641 /// the operands of the function corresponding to each input. Otherwise,
2642 /// return None.  An invertible function is one that is 1-to-1 and maps
2643 /// every input value to exactly one output value.  This is equivalent to
2644 /// saying that Op1 and Op2 are equal exactly when the specified pair of
2645 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2646 static Optional<std::pair<Value*, Value*>>
2647 getInvertibleOperands(const Operator *Op1,
2648                       const Operator *Op2) {
2649   if (Op1->getOpcode() != Op2->getOpcode())
2650     return None;
2651 
2652   auto getOperands = [&](unsigned OpNum) -> auto {
2653     return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2654   };
2655 
2656   switch (Op1->getOpcode()) {
2657   default:
2658     break;
2659   case Instruction::Add:
2660   case Instruction::Sub:
2661     if (Op1->getOperand(0) == Op2->getOperand(0))
2662       return getOperands(1);
2663     if (Op1->getOperand(1) == Op2->getOperand(1))
2664       return getOperands(0);
2665     break;
2666   case Instruction::Mul: {
2667     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2668     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2669     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2670     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2671     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2672     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2673         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2674       break;
2675 
2676     // Assume operand order has been canonicalized
2677     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2678         isa<ConstantInt>(Op1->getOperand(1)) &&
2679         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2680       return getOperands(0);
2681     break;
2682   }
2683   case Instruction::Shl: {
2684     // Same as multiplies, with the difference that we don't need to check
2685     // for a non-zero multiply. Shifts always multiply by non-zero.
2686     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2687     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2688     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2689         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2690       break;
2691 
2692     if (Op1->getOperand(1) == Op2->getOperand(1))
2693       return getOperands(0);
2694     break;
2695   }
2696   case Instruction::AShr:
2697   case Instruction::LShr: {
2698     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2699     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2700     if (!PEO1->isExact() || !PEO2->isExact())
2701       break;
2702 
2703     if (Op1->getOperand(1) == Op2->getOperand(1))
2704       return getOperands(0);
2705     break;
2706   }
2707   case Instruction::SExt:
2708   case Instruction::ZExt:
2709     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2710       return getOperands(0);
2711     break;
2712   case Instruction::PHI: {
2713     const PHINode *PN1 = cast<PHINode>(Op1);
2714     const PHINode *PN2 = cast<PHINode>(Op2);
2715 
2716     // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2717     // are a single invertible function of the start values? Note that repeated
2718     // application of an invertible function is also invertible
2719     BinaryOperator *BO1 = nullptr;
2720     Value *Start1 = nullptr, *Step1 = nullptr;
2721     BinaryOperator *BO2 = nullptr;
2722     Value *Start2 = nullptr, *Step2 = nullptr;
2723     if (PN1->getParent() != PN2->getParent() ||
2724         !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2725         !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2726       break;
2727 
2728     auto Values = getInvertibleOperands(cast<Operator>(BO1),
2729                                         cast<Operator>(BO2));
2730     if (!Values)
2731        break;
2732 
2733     // We have to be careful of mutually defined recurrences here.  Ex:
2734     // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2735     // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2736     // The invertibility of these is complicated, and not worth reasoning
2737     // about (yet?).
2738     if (Values->first != PN1 || Values->second != PN2)
2739       break;
2740 
2741     return std::make_pair(Start1, Start2);
2742   }
2743   }
2744   return None;
2745 }
2746 
2747 /// Return true if V2 == V1 + X, where X is known non-zero.
2748 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2749                            const Query &Q) {
2750   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2751   if (!BO || BO->getOpcode() != Instruction::Add)
2752     return false;
2753   Value *Op = nullptr;
2754   if (V2 == BO->getOperand(0))
2755     Op = BO->getOperand(1);
2756   else if (V2 == BO->getOperand(1))
2757     Op = BO->getOperand(0);
2758   else
2759     return false;
2760   return isKnownNonZero(Op, Depth + 1, Q);
2761 }
2762 
2763 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2764 /// the multiplication is nuw or nsw.
2765 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2766                           const Query &Q) {
2767   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2768     const APInt *C;
2769     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2770            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2771            !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2772   }
2773   return false;
2774 }
2775 
2776 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2777 /// the shift is nuw or nsw.
2778 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2779                           const Query &Q) {
2780   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2781     const APInt *C;
2782     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2783            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2784            !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2785   }
2786   return false;
2787 }
2788 
2789 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2790                            unsigned Depth, const Query &Q) {
2791   // Check two PHIs are in same block.
2792   if (PN1->getParent() != PN2->getParent())
2793     return false;
2794 
2795   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2796   bool UsedFullRecursion = false;
2797   for (const BasicBlock *IncomBB : PN1->blocks()) {
2798     if (!VisitedBBs.insert(IncomBB).second)
2799       continue; // Don't reprocess blocks that we have dealt with already.
2800     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2801     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2802     const APInt *C1, *C2;
2803     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2804       continue;
2805 
2806     // Only one pair of phi operands is allowed for full recursion.
2807     if (UsedFullRecursion)
2808       return false;
2809 
2810     Query RecQ = Q;
2811     RecQ.CxtI = IncomBB->getTerminator();
2812     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2813       return false;
2814     UsedFullRecursion = true;
2815   }
2816   return true;
2817 }
2818 
2819 /// Return true if it is known that V1 != V2.
2820 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2821                             const Query &Q) {
2822   if (V1 == V2)
2823     return false;
2824   if (V1->getType() != V2->getType())
2825     // We can't look through casts yet.
2826     return false;
2827 
2828   if (Depth >= MaxAnalysisRecursionDepth)
2829     return false;
2830 
2831   // See if we can recurse through (exactly one of) our operands.  This
2832   // requires our operation be 1-to-1 and map every input value to exactly
2833   // one output value.  Such an operation is invertible.
2834   auto *O1 = dyn_cast<Operator>(V1);
2835   auto *O2 = dyn_cast<Operator>(V2);
2836   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2837     if (auto Values = getInvertibleOperands(O1, O2))
2838       return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2839 
2840     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2841       const PHINode *PN2 = cast<PHINode>(V2);
2842       // FIXME: This is missing a generalization to handle the case where one is
2843       // a PHI and another one isn't.
2844       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2845         return true;
2846     };
2847   }
2848 
2849   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2850     return true;
2851 
2852   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2853     return true;
2854 
2855   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2856     return true;
2857 
2858   if (V1->getType()->isIntOrIntVectorTy()) {
2859     // Are any known bits in V1 contradictory to known bits in V2? If V1
2860     // has a known zero where V2 has a known one, they must not be equal.
2861     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2862     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2863 
2864     if (Known1.Zero.intersects(Known2.One) ||
2865         Known2.Zero.intersects(Known1.One))
2866       return true;
2867   }
2868   return false;
2869 }
2870 
2871 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2872 /// simplify operations downstream. Mask is known to be zero for bits that V
2873 /// cannot have.
2874 ///
2875 /// This function is defined on values with integer type, values with pointer
2876 /// type, and vectors of integers.  In the case
2877 /// where V is a vector, the mask, known zero, and known one values are the
2878 /// same width as the vector element, and the bit is set only if it is true
2879 /// for all of the elements in the vector.
2880 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2881                        const Query &Q) {
2882   KnownBits Known(Mask.getBitWidth());
2883   computeKnownBits(V, Known, Depth, Q);
2884   return Mask.isSubsetOf(Known.Zero);
2885 }
2886 
2887 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2888 // Returns the input and lower/upper bounds.
2889 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2890                                 const APInt *&CLow, const APInt *&CHigh) {
2891   assert(isa<Operator>(Select) &&
2892          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2893          "Input should be a Select!");
2894 
2895   const Value *LHS = nullptr, *RHS = nullptr;
2896   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2897   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2898     return false;
2899 
2900   if (!match(RHS, m_APInt(CLow)))
2901     return false;
2902 
2903   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2904   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2905   if (getInverseMinMaxFlavor(SPF) != SPF2)
2906     return false;
2907 
2908   if (!match(RHS2, m_APInt(CHigh)))
2909     return false;
2910 
2911   if (SPF == SPF_SMIN)
2912     std::swap(CLow, CHigh);
2913 
2914   In = LHS2;
2915   return CLow->sle(*CHigh);
2916 }
2917 
2918 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
2919                                          const APInt *&CLow,
2920                                          const APInt *&CHigh) {
2921   assert((II->getIntrinsicID() == Intrinsic::smin ||
2922           II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
2923 
2924   Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
2925   auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
2926   if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
2927       !match(II->getArgOperand(1), m_APInt(CLow)) ||
2928       !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
2929     return false;
2930 
2931   if (II->getIntrinsicID() == Intrinsic::smin)
2932     std::swap(CLow, CHigh);
2933   return CLow->sle(*CHigh);
2934 }
2935 
2936 /// For vector constants, loop over the elements and find the constant with the
2937 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2938 /// or if any element was not analyzed; otherwise, return the count for the
2939 /// element with the minimum number of sign bits.
2940 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2941                                                  const APInt &DemandedElts,
2942                                                  unsigned TyBits) {
2943   const auto *CV = dyn_cast<Constant>(V);
2944   if (!CV || !isa<FixedVectorType>(CV->getType()))
2945     return 0;
2946 
2947   unsigned MinSignBits = TyBits;
2948   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2949   for (unsigned i = 0; i != NumElts; ++i) {
2950     if (!DemandedElts[i])
2951       continue;
2952     // If we find a non-ConstantInt, bail out.
2953     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2954     if (!Elt)
2955       return 0;
2956 
2957     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2958   }
2959 
2960   return MinSignBits;
2961 }
2962 
2963 static unsigned ComputeNumSignBitsImpl(const Value *V,
2964                                        const APInt &DemandedElts,
2965                                        unsigned Depth, const Query &Q);
2966 
2967 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2968                                    unsigned Depth, const Query &Q) {
2969   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2970   assert(Result > 0 && "At least one sign bit needs to be present!");
2971   return Result;
2972 }
2973 
2974 /// Return the number of times the sign bit of the register is replicated into
2975 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2976 /// (itself), but other cases can give us information. For example, immediately
2977 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2978 /// other, so we return 3. For vectors, return the number of sign bits for the
2979 /// vector element with the minimum number of known sign bits of the demanded
2980 /// elements in the vector specified by DemandedElts.
2981 static unsigned ComputeNumSignBitsImpl(const Value *V,
2982                                        const APInt &DemandedElts,
2983                                        unsigned Depth, const Query &Q) {
2984   Type *Ty = V->getType();
2985 
2986   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2987   // vector
2988   if (isa<ScalableVectorType>(Ty))
2989     return 1;
2990 
2991 #ifndef NDEBUG
2992   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2993 
2994   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2995     assert(
2996         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2997         "DemandedElt width should equal the fixed vector number of elements");
2998   } else {
2999     assert(DemandedElts == APInt(1, 1) &&
3000            "DemandedElt width should be 1 for scalars");
3001   }
3002 #endif
3003 
3004   // We return the minimum number of sign bits that are guaranteed to be present
3005   // in V, so for undef we have to conservatively return 1.  We don't have the
3006   // same behavior for poison though -- that's a FIXME today.
3007 
3008   Type *ScalarTy = Ty->getScalarType();
3009   unsigned TyBits = ScalarTy->isPointerTy() ?
3010     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3011     Q.DL.getTypeSizeInBits(ScalarTy);
3012 
3013   unsigned Tmp, Tmp2;
3014   unsigned FirstAnswer = 1;
3015 
3016   // Note that ConstantInt is handled by the general computeKnownBits case
3017   // below.
3018 
3019   if (Depth == MaxAnalysisRecursionDepth)
3020     return 1;
3021 
3022   if (auto *U = dyn_cast<Operator>(V)) {
3023     switch (Operator::getOpcode(V)) {
3024     default: break;
3025     case Instruction::SExt:
3026       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3027       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3028 
3029     case Instruction::SDiv: {
3030       const APInt *Denominator;
3031       // sdiv X, C -> adds log(C) sign bits.
3032       if (match(U->getOperand(1), m_APInt(Denominator))) {
3033 
3034         // Ignore non-positive denominator.
3035         if (!Denominator->isStrictlyPositive())
3036           break;
3037 
3038         // Calculate the incoming numerator bits.
3039         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3040 
3041         // Add floor(log(C)) bits to the numerator bits.
3042         return std::min(TyBits, NumBits + Denominator->logBase2());
3043       }
3044       break;
3045     }
3046 
3047     case Instruction::SRem: {
3048       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3049 
3050       const APInt *Denominator;
3051       // srem X, C -> we know that the result is within [-C+1,C) when C is a
3052       // positive constant.  This let us put a lower bound on the number of sign
3053       // bits.
3054       if (match(U->getOperand(1), m_APInt(Denominator))) {
3055 
3056         // Ignore non-positive denominator.
3057         if (Denominator->isStrictlyPositive()) {
3058           // Calculate the leading sign bit constraints by examining the
3059           // denominator.  Given that the denominator is positive, there are two
3060           // cases:
3061           //
3062           //  1. The numerator is positive. The result range is [0,C) and
3063           //     [0,C) u< (1 << ceilLogBase2(C)).
3064           //
3065           //  2. The numerator is negative. Then the result range is (-C,0] and
3066           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3067           //
3068           // Thus a lower bound on the number of sign bits is `TyBits -
3069           // ceilLogBase2(C)`.
3070 
3071           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3072           Tmp = std::max(Tmp, ResBits);
3073         }
3074       }
3075       return Tmp;
3076     }
3077 
3078     case Instruction::AShr: {
3079       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3080       // ashr X, C   -> adds C sign bits.  Vectors too.
3081       const APInt *ShAmt;
3082       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3083         if (ShAmt->uge(TyBits))
3084           break; // Bad shift.
3085         unsigned ShAmtLimited = ShAmt->getZExtValue();
3086         Tmp += ShAmtLimited;
3087         if (Tmp > TyBits) Tmp = TyBits;
3088       }
3089       return Tmp;
3090     }
3091     case Instruction::Shl: {
3092       const APInt *ShAmt;
3093       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3094         // shl destroys sign bits.
3095         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3096         if (ShAmt->uge(TyBits) ||   // Bad shift.
3097             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3098         Tmp2 = ShAmt->getZExtValue();
3099         return Tmp - Tmp2;
3100       }
3101       break;
3102     }
3103     case Instruction::And:
3104     case Instruction::Or:
3105     case Instruction::Xor: // NOT is handled here.
3106       // Logical binary ops preserve the number of sign bits at the worst.
3107       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3108       if (Tmp != 1) {
3109         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3110         FirstAnswer = std::min(Tmp, Tmp2);
3111         // We computed what we know about the sign bits as our first
3112         // answer. Now proceed to the generic code that uses
3113         // computeKnownBits, and pick whichever answer is better.
3114       }
3115       break;
3116 
3117     case Instruction::Select: {
3118       // If we have a clamp pattern, we know that the number of sign bits will
3119       // be the minimum of the clamp min/max range.
3120       const Value *X;
3121       const APInt *CLow, *CHigh;
3122       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3123         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3124 
3125       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3126       if (Tmp == 1) break;
3127       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3128       return std::min(Tmp, Tmp2);
3129     }
3130 
3131     case Instruction::Add:
3132       // Add can have at most one carry bit.  Thus we know that the output
3133       // is, at worst, one more bit than the inputs.
3134       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3135       if (Tmp == 1) break;
3136 
3137       // Special case decrementing a value (ADD X, -1):
3138       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3139         if (CRHS->isAllOnesValue()) {
3140           KnownBits Known(TyBits);
3141           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3142 
3143           // If the input is known to be 0 or 1, the output is 0/-1, which is
3144           // all sign bits set.
3145           if ((Known.Zero | 1).isAllOnes())
3146             return TyBits;
3147 
3148           // If we are subtracting one from a positive number, there is no carry
3149           // out of the result.
3150           if (Known.isNonNegative())
3151             return Tmp;
3152         }
3153 
3154       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3155       if (Tmp2 == 1) break;
3156       return std::min(Tmp, Tmp2) - 1;
3157 
3158     case Instruction::Sub:
3159       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3160       if (Tmp2 == 1) break;
3161 
3162       // Handle NEG.
3163       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3164         if (CLHS->isNullValue()) {
3165           KnownBits Known(TyBits);
3166           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3167           // If the input is known to be 0 or 1, the output is 0/-1, which is
3168           // all sign bits set.
3169           if ((Known.Zero | 1).isAllOnes())
3170             return TyBits;
3171 
3172           // If the input is known to be positive (the sign bit is known clear),
3173           // the output of the NEG has the same number of sign bits as the
3174           // input.
3175           if (Known.isNonNegative())
3176             return Tmp2;
3177 
3178           // Otherwise, we treat this like a SUB.
3179         }
3180 
3181       // Sub can have at most one carry bit.  Thus we know that the output
3182       // is, at worst, one more bit than the inputs.
3183       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3184       if (Tmp == 1) break;
3185       return std::min(Tmp, Tmp2) - 1;
3186 
3187     case Instruction::Mul: {
3188       // The output of the Mul can be at most twice the valid bits in the
3189       // inputs.
3190       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3191       if (SignBitsOp0 == 1) break;
3192       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3193       if (SignBitsOp1 == 1) break;
3194       unsigned OutValidBits =
3195           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3196       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3197     }
3198 
3199     case Instruction::PHI: {
3200       const PHINode *PN = cast<PHINode>(U);
3201       unsigned NumIncomingValues = PN->getNumIncomingValues();
3202       // Don't analyze large in-degree PHIs.
3203       if (NumIncomingValues > 4) break;
3204       // Unreachable blocks may have zero-operand PHI nodes.
3205       if (NumIncomingValues == 0) break;
3206 
3207       // Take the minimum of all incoming values.  This can't infinitely loop
3208       // because of our depth threshold.
3209       Query RecQ = Q;
3210       Tmp = TyBits;
3211       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3212         if (Tmp == 1) return Tmp;
3213         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3214         Tmp = std::min(
3215             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3216       }
3217       return Tmp;
3218     }
3219 
3220     case Instruction::Trunc:
3221       // FIXME: it's tricky to do anything useful for this, but it is an
3222       // important case for targets like X86.
3223       break;
3224 
3225     case Instruction::ExtractElement:
3226       // Look through extract element. At the moment we keep this simple and
3227       // skip tracking the specific element. But at least we might find
3228       // information valid for all elements of the vector (for example if vector
3229       // is sign extended, shifted, etc).
3230       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3231 
3232     case Instruction::ShuffleVector: {
3233       // Collect the minimum number of sign bits that are shared by every vector
3234       // element referenced by the shuffle.
3235       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3236       if (!Shuf) {
3237         // FIXME: Add support for shufflevector constant expressions.
3238         return 1;
3239       }
3240       APInt DemandedLHS, DemandedRHS;
3241       // For undef elements, we don't know anything about the common state of
3242       // the shuffle result.
3243       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3244         return 1;
3245       Tmp = std::numeric_limits<unsigned>::max();
3246       if (!!DemandedLHS) {
3247         const Value *LHS = Shuf->getOperand(0);
3248         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3249       }
3250       // If we don't know anything, early out and try computeKnownBits
3251       // fall-back.
3252       if (Tmp == 1)
3253         break;
3254       if (!!DemandedRHS) {
3255         const Value *RHS = Shuf->getOperand(1);
3256         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3257         Tmp = std::min(Tmp, Tmp2);
3258       }
3259       // If we don't know anything, early out and try computeKnownBits
3260       // fall-back.
3261       if (Tmp == 1)
3262         break;
3263       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3264       return Tmp;
3265     }
3266     case Instruction::Call: {
3267       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3268         switch (II->getIntrinsicID()) {
3269         default: break;
3270         case Intrinsic::abs:
3271           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3272           if (Tmp == 1) break;
3273 
3274           // Absolute value reduces number of sign bits by at most 1.
3275           return Tmp - 1;
3276         case Intrinsic::smin:
3277         case Intrinsic::smax: {
3278           const APInt *CLow, *CHigh;
3279           if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3280             return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3281         }
3282         }
3283       }
3284     }
3285     }
3286   }
3287 
3288   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3289   // use this information.
3290 
3291   // If we can examine all elements of a vector constant successfully, we're
3292   // done (we can't do any better than that). If not, keep trying.
3293   if (unsigned VecSignBits =
3294           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3295     return VecSignBits;
3296 
3297   KnownBits Known(TyBits);
3298   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3299 
3300   // If we know that the sign bit is either zero or one, determine the number of
3301   // identical bits in the top of the input value.
3302   return std::max(FirstAnswer, Known.countMinSignBits());
3303 }
3304 
3305 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3306                                             const TargetLibraryInfo *TLI) {
3307   const Function *F = CB.getCalledFunction();
3308   if (!F)
3309     return Intrinsic::not_intrinsic;
3310 
3311   if (F->isIntrinsic())
3312     return F->getIntrinsicID();
3313 
3314   // We are going to infer semantics of a library function based on mapping it
3315   // to an LLVM intrinsic. Check that the library function is available from
3316   // this callbase and in this environment.
3317   LibFunc Func;
3318   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3319       !CB.onlyReadsMemory())
3320     return Intrinsic::not_intrinsic;
3321 
3322   switch (Func) {
3323   default:
3324     break;
3325   case LibFunc_sin:
3326   case LibFunc_sinf:
3327   case LibFunc_sinl:
3328     return Intrinsic::sin;
3329   case LibFunc_cos:
3330   case LibFunc_cosf:
3331   case LibFunc_cosl:
3332     return Intrinsic::cos;
3333   case LibFunc_exp:
3334   case LibFunc_expf:
3335   case LibFunc_expl:
3336     return Intrinsic::exp;
3337   case LibFunc_exp2:
3338   case LibFunc_exp2f:
3339   case LibFunc_exp2l:
3340     return Intrinsic::exp2;
3341   case LibFunc_log:
3342   case LibFunc_logf:
3343   case LibFunc_logl:
3344     return Intrinsic::log;
3345   case LibFunc_log10:
3346   case LibFunc_log10f:
3347   case LibFunc_log10l:
3348     return Intrinsic::log10;
3349   case LibFunc_log2:
3350   case LibFunc_log2f:
3351   case LibFunc_log2l:
3352     return Intrinsic::log2;
3353   case LibFunc_fabs:
3354   case LibFunc_fabsf:
3355   case LibFunc_fabsl:
3356     return Intrinsic::fabs;
3357   case LibFunc_fmin:
3358   case LibFunc_fminf:
3359   case LibFunc_fminl:
3360     return Intrinsic::minnum;
3361   case LibFunc_fmax:
3362   case LibFunc_fmaxf:
3363   case LibFunc_fmaxl:
3364     return Intrinsic::maxnum;
3365   case LibFunc_copysign:
3366   case LibFunc_copysignf:
3367   case LibFunc_copysignl:
3368     return Intrinsic::copysign;
3369   case LibFunc_floor:
3370   case LibFunc_floorf:
3371   case LibFunc_floorl:
3372     return Intrinsic::floor;
3373   case LibFunc_ceil:
3374   case LibFunc_ceilf:
3375   case LibFunc_ceill:
3376     return Intrinsic::ceil;
3377   case LibFunc_trunc:
3378   case LibFunc_truncf:
3379   case LibFunc_truncl:
3380     return Intrinsic::trunc;
3381   case LibFunc_rint:
3382   case LibFunc_rintf:
3383   case LibFunc_rintl:
3384     return Intrinsic::rint;
3385   case LibFunc_nearbyint:
3386   case LibFunc_nearbyintf:
3387   case LibFunc_nearbyintl:
3388     return Intrinsic::nearbyint;
3389   case LibFunc_round:
3390   case LibFunc_roundf:
3391   case LibFunc_roundl:
3392     return Intrinsic::round;
3393   case LibFunc_roundeven:
3394   case LibFunc_roundevenf:
3395   case LibFunc_roundevenl:
3396     return Intrinsic::roundeven;
3397   case LibFunc_pow:
3398   case LibFunc_powf:
3399   case LibFunc_powl:
3400     return Intrinsic::pow;
3401   case LibFunc_sqrt:
3402   case LibFunc_sqrtf:
3403   case LibFunc_sqrtl:
3404     return Intrinsic::sqrt;
3405   }
3406 
3407   return Intrinsic::not_intrinsic;
3408 }
3409 
3410 /// Return true if we can prove that the specified FP value is never equal to
3411 /// -0.0.
3412 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3413 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3414 ///       the same as +0.0 in floating-point ops.
3415 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3416                                 unsigned Depth) {
3417   if (auto *CFP = dyn_cast<ConstantFP>(V))
3418     return !CFP->getValueAPF().isNegZero();
3419 
3420   if (Depth == MaxAnalysisRecursionDepth)
3421     return false;
3422 
3423   auto *Op = dyn_cast<Operator>(V);
3424   if (!Op)
3425     return false;
3426 
3427   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3428   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3429     return true;
3430 
3431   // sitofp and uitofp turn into +0.0 for zero.
3432   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3433     return true;
3434 
3435   if (auto *Call = dyn_cast<CallInst>(Op)) {
3436     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3437     switch (IID) {
3438     default:
3439       break;
3440     // sqrt(-0.0) = -0.0, no other negative results are possible.
3441     case Intrinsic::sqrt:
3442     case Intrinsic::canonicalize:
3443       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3444     case Intrinsic::experimental_constrained_sqrt: {
3445       // NOTE: This rounding mode restriction may be too strict.
3446       const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
3447       if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
3448         return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3449       else
3450         return false;
3451     }
3452     // fabs(x) != -0.0
3453     case Intrinsic::fabs:
3454       return true;
3455     // sitofp and uitofp turn into +0.0 for zero.
3456     case Intrinsic::experimental_constrained_sitofp:
3457     case Intrinsic::experimental_constrained_uitofp:
3458       return true;
3459     }
3460   }
3461 
3462   return false;
3463 }
3464 
3465 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3466 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3467 /// bit despite comparing equal.
3468 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3469                                             const TargetLibraryInfo *TLI,
3470                                             bool SignBitOnly,
3471                                             unsigned Depth) {
3472   // TODO: This function does not do the right thing when SignBitOnly is true
3473   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3474   // which flips the sign bits of NaNs.  See
3475   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3476 
3477   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3478     return !CFP->getValueAPF().isNegative() ||
3479            (!SignBitOnly && CFP->getValueAPF().isZero());
3480   }
3481 
3482   // Handle vector of constants.
3483   if (auto *CV = dyn_cast<Constant>(V)) {
3484     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3485       unsigned NumElts = CVFVTy->getNumElements();
3486       for (unsigned i = 0; i != NumElts; ++i) {
3487         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3488         if (!CFP)
3489           return false;
3490         if (CFP->getValueAPF().isNegative() &&
3491             (SignBitOnly || !CFP->getValueAPF().isZero()))
3492           return false;
3493       }
3494 
3495       // All non-negative ConstantFPs.
3496       return true;
3497     }
3498   }
3499 
3500   if (Depth == MaxAnalysisRecursionDepth)
3501     return false;
3502 
3503   const Operator *I = dyn_cast<Operator>(V);
3504   if (!I)
3505     return false;
3506 
3507   switch (I->getOpcode()) {
3508   default:
3509     break;
3510   // Unsigned integers are always nonnegative.
3511   case Instruction::UIToFP:
3512     return true;
3513   case Instruction::FMul:
3514   case Instruction::FDiv:
3515     // X * X is always non-negative or a NaN.
3516     // X / X is always exactly 1.0 or a NaN.
3517     if (I->getOperand(0) == I->getOperand(1) &&
3518         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3519       return true;
3520 
3521     LLVM_FALLTHROUGH;
3522   case Instruction::FAdd:
3523   case Instruction::FRem:
3524     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3525                                            Depth + 1) &&
3526            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3527                                            Depth + 1);
3528   case Instruction::Select:
3529     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3530                                            Depth + 1) &&
3531            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3532                                            Depth + 1);
3533   case Instruction::FPExt:
3534   case Instruction::FPTrunc:
3535     // Widening/narrowing never change sign.
3536     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3537                                            Depth + 1);
3538   case Instruction::ExtractElement:
3539     // Look through extract element. At the moment we keep this simple and skip
3540     // tracking the specific element. But at least we might find information
3541     // valid for all elements of the vector.
3542     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3543                                            Depth + 1);
3544   case Instruction::Call:
3545     const auto *CI = cast<CallInst>(I);
3546     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3547     switch (IID) {
3548     default:
3549       break;
3550     case Intrinsic::maxnum: {
3551       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3552       auto isPositiveNum = [&](Value *V) {
3553         if (SignBitOnly) {
3554           // With SignBitOnly, this is tricky because the result of
3555           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3556           // a constant strictly greater than 0.0.
3557           const APFloat *C;
3558           return match(V, m_APFloat(C)) &&
3559                  *C > APFloat::getZero(C->getSemantics());
3560         }
3561 
3562         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3563         // maxnum can't be ordered-less-than-zero.
3564         return isKnownNeverNaN(V, TLI) &&
3565                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3566       };
3567 
3568       // TODO: This could be improved. We could also check that neither operand
3569       //       has its sign bit set (and at least 1 is not-NAN?).
3570       return isPositiveNum(V0) || isPositiveNum(V1);
3571     }
3572 
3573     case Intrinsic::maximum:
3574       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3575                                              Depth + 1) ||
3576              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3577                                              Depth + 1);
3578     case Intrinsic::minnum:
3579     case Intrinsic::minimum:
3580       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3581                                              Depth + 1) &&
3582              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3583                                              Depth + 1);
3584     case Intrinsic::exp:
3585     case Intrinsic::exp2:
3586     case Intrinsic::fabs:
3587       return true;
3588 
3589     case Intrinsic::sqrt:
3590       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3591       if (!SignBitOnly)
3592         return true;
3593       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3594                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3595 
3596     case Intrinsic::powi:
3597       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3598         // powi(x,n) is non-negative if n is even.
3599         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3600           return true;
3601       }
3602       // TODO: This is not correct.  Given that exp is an integer, here are the
3603       // ways that pow can return a negative value:
3604       //
3605       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3606       //   pow(-0, exp)   --> -inf if exp is negative odd.
3607       //   pow(-0, exp)   --> -0 if exp is positive odd.
3608       //   pow(-inf, exp) --> -0 if exp is negative odd.
3609       //   pow(-inf, exp) --> -inf if exp is positive odd.
3610       //
3611       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3612       // but we must return false if x == -0.  Unfortunately we do not currently
3613       // have a way of expressing this constraint.  See details in
3614       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3615       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3616                                              Depth + 1);
3617 
3618     case Intrinsic::fma:
3619     case Intrinsic::fmuladd:
3620       // x*x+y is non-negative if y is non-negative.
3621       return I->getOperand(0) == I->getOperand(1) &&
3622              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3623              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3624                                              Depth + 1);
3625     }
3626     break;
3627   }
3628   return false;
3629 }
3630 
3631 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3632                                        const TargetLibraryInfo *TLI) {
3633   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3634 }
3635 
3636 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3637   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3638 }
3639 
3640 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3641                                 unsigned Depth) {
3642   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3643 
3644   // If we're told that infinities won't happen, assume they won't.
3645   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3646     if (FPMathOp->hasNoInfs())
3647       return true;
3648 
3649   // Handle scalar constants.
3650   if (auto *CFP = dyn_cast<ConstantFP>(V))
3651     return !CFP->isInfinity();
3652 
3653   if (Depth == MaxAnalysisRecursionDepth)
3654     return false;
3655 
3656   if (auto *Inst = dyn_cast<Instruction>(V)) {
3657     switch (Inst->getOpcode()) {
3658     case Instruction::Select: {
3659       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3660              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3661     }
3662     case Instruction::SIToFP:
3663     case Instruction::UIToFP: {
3664       // Get width of largest magnitude integer (remove a bit if signed).
3665       // This still works for a signed minimum value because the largest FP
3666       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3667       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3668       if (Inst->getOpcode() == Instruction::SIToFP)
3669         --IntSize;
3670 
3671       // If the exponent of the largest finite FP value can hold the largest
3672       // integer, the result of the cast must be finite.
3673       Type *FPTy = Inst->getType()->getScalarType();
3674       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3675     }
3676     default:
3677       break;
3678     }
3679   }
3680 
3681   // try to handle fixed width vector constants
3682   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3683   if (VFVTy && isa<Constant>(V)) {
3684     // For vectors, verify that each element is not infinity.
3685     unsigned NumElts = VFVTy->getNumElements();
3686     for (unsigned i = 0; i != NumElts; ++i) {
3687       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3688       if (!Elt)
3689         return false;
3690       if (isa<UndefValue>(Elt))
3691         continue;
3692       auto *CElt = dyn_cast<ConstantFP>(Elt);
3693       if (!CElt || CElt->isInfinity())
3694         return false;
3695     }
3696     // All elements were confirmed non-infinity or undefined.
3697     return true;
3698   }
3699 
3700   // was not able to prove that V never contains infinity
3701   return false;
3702 }
3703 
3704 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3705                            unsigned Depth) {
3706   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3707 
3708   // If we're told that NaNs won't happen, assume they won't.
3709   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3710     if (FPMathOp->hasNoNaNs())
3711       return true;
3712 
3713   // Handle scalar constants.
3714   if (auto *CFP = dyn_cast<ConstantFP>(V))
3715     return !CFP->isNaN();
3716 
3717   if (Depth == MaxAnalysisRecursionDepth)
3718     return false;
3719 
3720   if (auto *Inst = dyn_cast<Instruction>(V)) {
3721     switch (Inst->getOpcode()) {
3722     case Instruction::FAdd:
3723     case Instruction::FSub:
3724       // Adding positive and negative infinity produces NaN.
3725       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3726              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3727              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3728               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3729 
3730     case Instruction::FMul:
3731       // Zero multiplied with infinity produces NaN.
3732       // FIXME: If neither side can be zero fmul never produces NaN.
3733       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3734              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3735              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3736              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3737 
3738     case Instruction::FDiv:
3739     case Instruction::FRem:
3740       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3741       return false;
3742 
3743     case Instruction::Select: {
3744       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3745              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3746     }
3747     case Instruction::SIToFP:
3748     case Instruction::UIToFP:
3749       return true;
3750     case Instruction::FPTrunc:
3751     case Instruction::FPExt:
3752       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3753     default:
3754       break;
3755     }
3756   }
3757 
3758   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3759     switch (II->getIntrinsicID()) {
3760     case Intrinsic::canonicalize:
3761     case Intrinsic::fabs:
3762     case Intrinsic::copysign:
3763     case Intrinsic::exp:
3764     case Intrinsic::exp2:
3765     case Intrinsic::floor:
3766     case Intrinsic::ceil:
3767     case Intrinsic::trunc:
3768     case Intrinsic::rint:
3769     case Intrinsic::nearbyint:
3770     case Intrinsic::round:
3771     case Intrinsic::roundeven:
3772       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3773     case Intrinsic::sqrt:
3774       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3775              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3776     case Intrinsic::minnum:
3777     case Intrinsic::maxnum:
3778       // If either operand is not NaN, the result is not NaN.
3779       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3780              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3781     default:
3782       return false;
3783     }
3784   }
3785 
3786   // Try to handle fixed width vector constants
3787   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3788   if (VFVTy && isa<Constant>(V)) {
3789     // For vectors, verify that each element is not NaN.
3790     unsigned NumElts = VFVTy->getNumElements();
3791     for (unsigned i = 0; i != NumElts; ++i) {
3792       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3793       if (!Elt)
3794         return false;
3795       if (isa<UndefValue>(Elt))
3796         continue;
3797       auto *CElt = dyn_cast<ConstantFP>(Elt);
3798       if (!CElt || CElt->isNaN())
3799         return false;
3800     }
3801     // All elements were confirmed not-NaN or undefined.
3802     return true;
3803   }
3804 
3805   // Was not able to prove that V never contains NaN
3806   return false;
3807 }
3808 
3809 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3810 
3811   // All byte-wide stores are splatable, even of arbitrary variables.
3812   if (V->getType()->isIntegerTy(8))
3813     return V;
3814 
3815   LLVMContext &Ctx = V->getContext();
3816 
3817   // Undef don't care.
3818   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3819   if (isa<UndefValue>(V))
3820     return UndefInt8;
3821 
3822   // Return Undef for zero-sized type.
3823   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3824     return UndefInt8;
3825 
3826   Constant *C = dyn_cast<Constant>(V);
3827   if (!C) {
3828     // Conceptually, we could handle things like:
3829     //   %a = zext i8 %X to i16
3830     //   %b = shl i16 %a, 8
3831     //   %c = or i16 %a, %b
3832     // but until there is an example that actually needs this, it doesn't seem
3833     // worth worrying about.
3834     return nullptr;
3835   }
3836 
3837   // Handle 'null' ConstantArrayZero etc.
3838   if (C->isNullValue())
3839     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3840 
3841   // Constant floating-point values can be handled as integer values if the
3842   // corresponding integer value is "byteable".  An important case is 0.0.
3843   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3844     Type *Ty = nullptr;
3845     if (CFP->getType()->isHalfTy())
3846       Ty = Type::getInt16Ty(Ctx);
3847     else if (CFP->getType()->isFloatTy())
3848       Ty = Type::getInt32Ty(Ctx);
3849     else if (CFP->getType()->isDoubleTy())
3850       Ty = Type::getInt64Ty(Ctx);
3851     // Don't handle long double formats, which have strange constraints.
3852     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3853               : nullptr;
3854   }
3855 
3856   // We can handle constant integers that are multiple of 8 bits.
3857   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3858     if (CI->getBitWidth() % 8 == 0) {
3859       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3860       if (!CI->getValue().isSplat(8))
3861         return nullptr;
3862       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3863     }
3864   }
3865 
3866   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3867     if (CE->getOpcode() == Instruction::IntToPtr) {
3868       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3869         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3870         return isBytewiseValue(
3871             ConstantExpr::getIntegerCast(CE->getOperand(0),
3872                                          Type::getIntNTy(Ctx, BitWidth), false),
3873             DL);
3874       }
3875     }
3876   }
3877 
3878   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3879     if (LHS == RHS)
3880       return LHS;
3881     if (!LHS || !RHS)
3882       return nullptr;
3883     if (LHS == UndefInt8)
3884       return RHS;
3885     if (RHS == UndefInt8)
3886       return LHS;
3887     return nullptr;
3888   };
3889 
3890   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3891     Value *Val = UndefInt8;
3892     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3893       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3894         return nullptr;
3895     return Val;
3896   }
3897 
3898   if (isa<ConstantAggregate>(C)) {
3899     Value *Val = UndefInt8;
3900     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3901       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3902         return nullptr;
3903     return Val;
3904   }
3905 
3906   // Don't try to handle the handful of other constants.
3907   return nullptr;
3908 }
3909 
3910 // This is the recursive version of BuildSubAggregate. It takes a few different
3911 // arguments. Idxs is the index within the nested struct From that we are
3912 // looking at now (which is of type IndexedType). IdxSkip is the number of
3913 // indices from Idxs that should be left out when inserting into the resulting
3914 // struct. To is the result struct built so far, new insertvalue instructions
3915 // build on that.
3916 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3917                                 SmallVectorImpl<unsigned> &Idxs,
3918                                 unsigned IdxSkip,
3919                                 Instruction *InsertBefore) {
3920   StructType *STy = dyn_cast<StructType>(IndexedType);
3921   if (STy) {
3922     // Save the original To argument so we can modify it
3923     Value *OrigTo = To;
3924     // General case, the type indexed by Idxs is a struct
3925     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3926       // Process each struct element recursively
3927       Idxs.push_back(i);
3928       Value *PrevTo = To;
3929       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3930                              InsertBefore);
3931       Idxs.pop_back();
3932       if (!To) {
3933         // Couldn't find any inserted value for this index? Cleanup
3934         while (PrevTo != OrigTo) {
3935           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3936           PrevTo = Del->getAggregateOperand();
3937           Del->eraseFromParent();
3938         }
3939         // Stop processing elements
3940         break;
3941       }
3942     }
3943     // If we successfully found a value for each of our subaggregates
3944     if (To)
3945       return To;
3946   }
3947   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3948   // the struct's elements had a value that was inserted directly. In the latter
3949   // case, perhaps we can't determine each of the subelements individually, but
3950   // we might be able to find the complete struct somewhere.
3951 
3952   // Find the value that is at that particular spot
3953   Value *V = FindInsertedValue(From, Idxs);
3954 
3955   if (!V)
3956     return nullptr;
3957 
3958   // Insert the value in the new (sub) aggregate
3959   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3960                                  "tmp", InsertBefore);
3961 }
3962 
3963 // This helper takes a nested struct and extracts a part of it (which is again a
3964 // struct) into a new value. For example, given the struct:
3965 // { a, { b, { c, d }, e } }
3966 // and the indices "1, 1" this returns
3967 // { c, d }.
3968 //
3969 // It does this by inserting an insertvalue for each element in the resulting
3970 // struct, as opposed to just inserting a single struct. This will only work if
3971 // each of the elements of the substruct are known (ie, inserted into From by an
3972 // insertvalue instruction somewhere).
3973 //
3974 // All inserted insertvalue instructions are inserted before InsertBefore
3975 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3976                                 Instruction *InsertBefore) {
3977   assert(InsertBefore && "Must have someplace to insert!");
3978   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3979                                                              idx_range);
3980   Value *To = UndefValue::get(IndexedType);
3981   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3982   unsigned IdxSkip = Idxs.size();
3983 
3984   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3985 }
3986 
3987 /// Given an aggregate and a sequence of indices, see if the scalar value
3988 /// indexed is already around as a register, for example if it was inserted
3989 /// directly into the aggregate.
3990 ///
3991 /// If InsertBefore is not null, this function will duplicate (modified)
3992 /// insertvalues when a part of a nested struct is extracted.
3993 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3994                                Instruction *InsertBefore) {
3995   // Nothing to index? Just return V then (this is useful at the end of our
3996   // recursion).
3997   if (idx_range.empty())
3998     return V;
3999   // We have indices, so V should have an indexable type.
4000   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
4001          "Not looking at a struct or array?");
4002   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
4003          "Invalid indices for type?");
4004 
4005   if (Constant *C = dyn_cast<Constant>(V)) {
4006     C = C->getAggregateElement(idx_range[0]);
4007     if (!C) return nullptr;
4008     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
4009   }
4010 
4011   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
4012     // Loop the indices for the insertvalue instruction in parallel with the
4013     // requested indices
4014     const unsigned *req_idx = idx_range.begin();
4015     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4016          i != e; ++i, ++req_idx) {
4017       if (req_idx == idx_range.end()) {
4018         // We can't handle this without inserting insertvalues
4019         if (!InsertBefore)
4020           return nullptr;
4021 
4022         // The requested index identifies a part of a nested aggregate. Handle
4023         // this specially. For example,
4024         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4025         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4026         // %C = extractvalue {i32, { i32, i32 } } %B, 1
4027         // This can be changed into
4028         // %A = insertvalue {i32, i32 } undef, i32 10, 0
4029         // %C = insertvalue {i32, i32 } %A, i32 11, 1
4030         // which allows the unused 0,0 element from the nested struct to be
4031         // removed.
4032         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
4033                                  InsertBefore);
4034       }
4035 
4036       // This insert value inserts something else than what we are looking for.
4037       // See if the (aggregate) value inserted into has the value we are
4038       // looking for, then.
4039       if (*req_idx != *i)
4040         return FindInsertedValue(I->getAggregateOperand(), idx_range,
4041                                  InsertBefore);
4042     }
4043     // If we end up here, the indices of the insertvalue match with those
4044     // requested (though possibly only partially). Now we recursively look at
4045     // the inserted value, passing any remaining indices.
4046     return FindInsertedValue(I->getInsertedValueOperand(),
4047                              makeArrayRef(req_idx, idx_range.end()),
4048                              InsertBefore);
4049   }
4050 
4051   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4052     // If we're extracting a value from an aggregate that was extracted from
4053     // something else, we can extract from that something else directly instead.
4054     // However, we will need to chain I's indices with the requested indices.
4055 
4056     // Calculate the number of indices required
4057     unsigned size = I->getNumIndices() + idx_range.size();
4058     // Allocate some space to put the new indices in
4059     SmallVector<unsigned, 5> Idxs;
4060     Idxs.reserve(size);
4061     // Add indices from the extract value instruction
4062     Idxs.append(I->idx_begin(), I->idx_end());
4063 
4064     // Add requested indices
4065     Idxs.append(idx_range.begin(), idx_range.end());
4066 
4067     assert(Idxs.size() == size
4068            && "Number of indices added not correct?");
4069 
4070     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4071   }
4072   // Otherwise, we don't know (such as, extracting from a function return value
4073   // or load instruction)
4074   return nullptr;
4075 }
4076 
4077 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4078                                        unsigned CharSize) {
4079   // Make sure the GEP has exactly three arguments.
4080   if (GEP->getNumOperands() != 3)
4081     return false;
4082 
4083   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4084   // CharSize.
4085   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4086   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4087     return false;
4088 
4089   // Check to make sure that the first operand of the GEP is an integer and
4090   // has value 0 so that we are sure we're indexing into the initializer.
4091   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4092   if (!FirstIdx || !FirstIdx->isZero())
4093     return false;
4094 
4095   return true;
4096 }
4097 
4098 bool llvm::getConstantDataArrayInfo(const Value *V,
4099                                     ConstantDataArraySlice &Slice,
4100                                     unsigned ElementSize, uint64_t Offset) {
4101   assert(V);
4102 
4103   // Look through bitcast instructions and geps.
4104   V = V->stripPointerCasts();
4105 
4106   // If the value is a GEP instruction or constant expression, treat it as an
4107   // offset.
4108   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4109     // The GEP operator should be based on a pointer to string constant, and is
4110     // indexing into the string constant.
4111     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4112       return false;
4113 
4114     // If the second index isn't a ConstantInt, then this is a variable index
4115     // into the array.  If this occurs, we can't say anything meaningful about
4116     // the string.
4117     uint64_t StartIdx = 0;
4118     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4119       StartIdx = CI->getZExtValue();
4120     else
4121       return false;
4122     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4123                                     StartIdx + Offset);
4124   }
4125 
4126   // The GEP instruction, constant or instruction, must reference a global
4127   // variable that is a constant and is initialized. The referenced constant
4128   // initializer is the array that we'll use for optimization.
4129   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4130   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4131     return false;
4132 
4133   const ConstantDataArray *Array;
4134   ArrayType *ArrayTy;
4135   if (GV->getInitializer()->isNullValue()) {
4136     Type *GVTy = GV->getValueType();
4137     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4138       // A zeroinitializer for the array; there is no ConstantDataArray.
4139       Array = nullptr;
4140     } else {
4141       const DataLayout &DL = GV->getParent()->getDataLayout();
4142       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4143       uint64_t Length = SizeInBytes / (ElementSize / 8);
4144       if (Length <= Offset)
4145         return false;
4146 
4147       Slice.Array = nullptr;
4148       Slice.Offset = 0;
4149       Slice.Length = Length - Offset;
4150       return true;
4151     }
4152   } else {
4153     // This must be a ConstantDataArray.
4154     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4155     if (!Array)
4156       return false;
4157     ArrayTy = Array->getType();
4158   }
4159   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4160     return false;
4161 
4162   uint64_t NumElts = ArrayTy->getArrayNumElements();
4163   if (Offset > NumElts)
4164     return false;
4165 
4166   Slice.Array = Array;
4167   Slice.Offset = Offset;
4168   Slice.Length = NumElts - Offset;
4169   return true;
4170 }
4171 
4172 /// This function computes the length of a null-terminated C string pointed to
4173 /// by V. If successful, it returns true and returns the string in Str.
4174 /// If unsuccessful, it returns false.
4175 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4176                                  uint64_t Offset, bool TrimAtNul) {
4177   ConstantDataArraySlice Slice;
4178   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4179     return false;
4180 
4181   if (Slice.Array == nullptr) {
4182     if (TrimAtNul) {
4183       Str = StringRef();
4184       return true;
4185     }
4186     if (Slice.Length == 1) {
4187       Str = StringRef("", 1);
4188       return true;
4189     }
4190     // We cannot instantiate a StringRef as we do not have an appropriate string
4191     // of 0s at hand.
4192     return false;
4193   }
4194 
4195   // Start out with the entire array in the StringRef.
4196   Str = Slice.Array->getAsString();
4197   // Skip over 'offset' bytes.
4198   Str = Str.substr(Slice.Offset);
4199 
4200   if (TrimAtNul) {
4201     // Trim off the \0 and anything after it.  If the array is not nul
4202     // terminated, we just return the whole end of string.  The client may know
4203     // some other way that the string is length-bound.
4204     Str = Str.substr(0, Str.find('\0'));
4205   }
4206   return true;
4207 }
4208 
4209 // These next two are very similar to the above, but also look through PHI
4210 // nodes.
4211 // TODO: See if we can integrate these two together.
4212 
4213 /// If we can compute the length of the string pointed to by
4214 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4215 static uint64_t GetStringLengthH(const Value *V,
4216                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4217                                  unsigned CharSize) {
4218   // Look through noop bitcast instructions.
4219   V = V->stripPointerCasts();
4220 
4221   // If this is a PHI node, there are two cases: either we have already seen it
4222   // or we haven't.
4223   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4224     if (!PHIs.insert(PN).second)
4225       return ~0ULL;  // already in the set.
4226 
4227     // If it was new, see if all the input strings are the same length.
4228     uint64_t LenSoFar = ~0ULL;
4229     for (Value *IncValue : PN->incoming_values()) {
4230       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4231       if (Len == 0) return 0; // Unknown length -> unknown.
4232 
4233       if (Len == ~0ULL) continue;
4234 
4235       if (Len != LenSoFar && LenSoFar != ~0ULL)
4236         return 0;    // Disagree -> unknown.
4237       LenSoFar = Len;
4238     }
4239 
4240     // Success, all agree.
4241     return LenSoFar;
4242   }
4243 
4244   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4245   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4246     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4247     if (Len1 == 0) return 0;
4248     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4249     if (Len2 == 0) return 0;
4250     if (Len1 == ~0ULL) return Len2;
4251     if (Len2 == ~0ULL) return Len1;
4252     if (Len1 != Len2) return 0;
4253     return Len1;
4254   }
4255 
4256   // Otherwise, see if we can read the string.
4257   ConstantDataArraySlice Slice;
4258   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4259     return 0;
4260 
4261   if (Slice.Array == nullptr)
4262     return 1;
4263 
4264   // Search for nul characters
4265   unsigned NullIndex = 0;
4266   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4267     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4268       break;
4269   }
4270 
4271   return NullIndex + 1;
4272 }
4273 
4274 /// If we can compute the length of the string pointed to by
4275 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4276 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4277   if (!V->getType()->isPointerTy())
4278     return 0;
4279 
4280   SmallPtrSet<const PHINode*, 32> PHIs;
4281   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4282   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4283   // an empty string as a length.
4284   return Len == ~0ULL ? 1 : Len;
4285 }
4286 
4287 const Value *
4288 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4289                                            bool MustPreserveNullness) {
4290   assert(Call &&
4291          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4292   if (const Value *RV = Call->getReturnedArgOperand())
4293     return RV;
4294   // This can be used only as a aliasing property.
4295   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4296           Call, MustPreserveNullness))
4297     return Call->getArgOperand(0);
4298   return nullptr;
4299 }
4300 
4301 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4302     const CallBase *Call, bool MustPreserveNullness) {
4303   switch (Call->getIntrinsicID()) {
4304   case Intrinsic::launder_invariant_group:
4305   case Intrinsic::strip_invariant_group:
4306   case Intrinsic::aarch64_irg:
4307   case Intrinsic::aarch64_tagp:
4308     return true;
4309   case Intrinsic::ptrmask:
4310     return !MustPreserveNullness;
4311   default:
4312     return false;
4313   }
4314 }
4315 
4316 /// \p PN defines a loop-variant pointer to an object.  Check if the
4317 /// previous iteration of the loop was referring to the same object as \p PN.
4318 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4319                                          const LoopInfo *LI) {
4320   // Find the loop-defined value.
4321   Loop *L = LI->getLoopFor(PN->getParent());
4322   if (PN->getNumIncomingValues() != 2)
4323     return true;
4324 
4325   // Find the value from previous iteration.
4326   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4327   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4328     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4329   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4330     return true;
4331 
4332   // If a new pointer is loaded in the loop, the pointer references a different
4333   // object in every iteration.  E.g.:
4334   //    for (i)
4335   //       int *p = a[i];
4336   //       ...
4337   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4338     if (!L->isLoopInvariant(Load->getPointerOperand()))
4339       return false;
4340   return true;
4341 }
4342 
4343 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4344   if (!V->getType()->isPointerTy())
4345     return V;
4346   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4347     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4348       V = GEP->getPointerOperand();
4349     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4350                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4351       V = cast<Operator>(V)->getOperand(0);
4352       if (!V->getType()->isPointerTy())
4353         return V;
4354     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4355       if (GA->isInterposable())
4356         return V;
4357       V = GA->getAliasee();
4358     } else {
4359       if (auto *PHI = dyn_cast<PHINode>(V)) {
4360         // Look through single-arg phi nodes created by LCSSA.
4361         if (PHI->getNumIncomingValues() == 1) {
4362           V = PHI->getIncomingValue(0);
4363           continue;
4364         }
4365       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4366         // CaptureTracking can know about special capturing properties of some
4367         // intrinsics like launder.invariant.group, that can't be expressed with
4368         // the attributes, but have properties like returning aliasing pointer.
4369         // Because some analysis may assume that nocaptured pointer is not
4370         // returned from some special intrinsic (because function would have to
4371         // be marked with returns attribute), it is crucial to use this function
4372         // because it should be in sync with CaptureTracking. Not using it may
4373         // cause weird miscompilations where 2 aliasing pointers are assumed to
4374         // noalias.
4375         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4376           V = RP;
4377           continue;
4378         }
4379       }
4380 
4381       return V;
4382     }
4383     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4384   }
4385   return V;
4386 }
4387 
4388 void llvm::getUnderlyingObjects(const Value *V,
4389                                 SmallVectorImpl<const Value *> &Objects,
4390                                 LoopInfo *LI, unsigned MaxLookup) {
4391   SmallPtrSet<const Value *, 4> Visited;
4392   SmallVector<const Value *, 4> Worklist;
4393   Worklist.push_back(V);
4394   do {
4395     const Value *P = Worklist.pop_back_val();
4396     P = getUnderlyingObject(P, MaxLookup);
4397 
4398     if (!Visited.insert(P).second)
4399       continue;
4400 
4401     if (auto *SI = dyn_cast<SelectInst>(P)) {
4402       Worklist.push_back(SI->getTrueValue());
4403       Worklist.push_back(SI->getFalseValue());
4404       continue;
4405     }
4406 
4407     if (auto *PN = dyn_cast<PHINode>(P)) {
4408       // If this PHI changes the underlying object in every iteration of the
4409       // loop, don't look through it.  Consider:
4410       //   int **A;
4411       //   for (i) {
4412       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4413       //     Curr = A[i];
4414       //     *Prev, *Curr;
4415       //
4416       // Prev is tracking Curr one iteration behind so they refer to different
4417       // underlying objects.
4418       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4419           isSameUnderlyingObjectInLoop(PN, LI))
4420         append_range(Worklist, PN->incoming_values());
4421       continue;
4422     }
4423 
4424     Objects.push_back(P);
4425   } while (!Worklist.empty());
4426 }
4427 
4428 /// This is the function that does the work of looking through basic
4429 /// ptrtoint+arithmetic+inttoptr sequences.
4430 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4431   do {
4432     if (const Operator *U = dyn_cast<Operator>(V)) {
4433       // If we find a ptrtoint, we can transfer control back to the
4434       // regular getUnderlyingObjectFromInt.
4435       if (U->getOpcode() == Instruction::PtrToInt)
4436         return U->getOperand(0);
4437       // If we find an add of a constant, a multiplied value, or a phi, it's
4438       // likely that the other operand will lead us to the base
4439       // object. We don't have to worry about the case where the
4440       // object address is somehow being computed by the multiply,
4441       // because our callers only care when the result is an
4442       // identifiable object.
4443       if (U->getOpcode() != Instruction::Add ||
4444           (!isa<ConstantInt>(U->getOperand(1)) &&
4445            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4446            !isa<PHINode>(U->getOperand(1))))
4447         return V;
4448       V = U->getOperand(0);
4449     } else {
4450       return V;
4451     }
4452     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4453   } while (true);
4454 }
4455 
4456 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4457 /// ptrtoint+arithmetic+inttoptr sequences.
4458 /// It returns false if unidentified object is found in getUnderlyingObjects.
4459 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4460                                           SmallVectorImpl<Value *> &Objects) {
4461   SmallPtrSet<const Value *, 16> Visited;
4462   SmallVector<const Value *, 4> Working(1, V);
4463   do {
4464     V = Working.pop_back_val();
4465 
4466     SmallVector<const Value *, 4> Objs;
4467     getUnderlyingObjects(V, Objs);
4468 
4469     for (const Value *V : Objs) {
4470       if (!Visited.insert(V).second)
4471         continue;
4472       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4473         const Value *O =
4474           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4475         if (O->getType()->isPointerTy()) {
4476           Working.push_back(O);
4477           continue;
4478         }
4479       }
4480       // If getUnderlyingObjects fails to find an identifiable object,
4481       // getUnderlyingObjectsForCodeGen also fails for safety.
4482       if (!isIdentifiedObject(V)) {
4483         Objects.clear();
4484         return false;
4485       }
4486       Objects.push_back(const_cast<Value *>(V));
4487     }
4488   } while (!Working.empty());
4489   return true;
4490 }
4491 
4492 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4493   AllocaInst *Result = nullptr;
4494   SmallPtrSet<Value *, 4> Visited;
4495   SmallVector<Value *, 4> Worklist;
4496 
4497   auto AddWork = [&](Value *V) {
4498     if (Visited.insert(V).second)
4499       Worklist.push_back(V);
4500   };
4501 
4502   AddWork(V);
4503   do {
4504     V = Worklist.pop_back_val();
4505     assert(Visited.count(V));
4506 
4507     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4508       if (Result && Result != AI)
4509         return nullptr;
4510       Result = AI;
4511     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4512       AddWork(CI->getOperand(0));
4513     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4514       for (Value *IncValue : PN->incoming_values())
4515         AddWork(IncValue);
4516     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4517       AddWork(SI->getTrueValue());
4518       AddWork(SI->getFalseValue());
4519     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4520       if (OffsetZero && !GEP->hasAllZeroIndices())
4521         return nullptr;
4522       AddWork(GEP->getPointerOperand());
4523     } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4524       Value *Returned = CB->getReturnedArgOperand();
4525       if (Returned)
4526         AddWork(Returned);
4527       else
4528         return nullptr;
4529     } else {
4530       return nullptr;
4531     }
4532   } while (!Worklist.empty());
4533 
4534   return Result;
4535 }
4536 
4537 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4538     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4539   for (const User *U : V->users()) {
4540     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4541     if (!II)
4542       return false;
4543 
4544     if (AllowLifetime && II->isLifetimeStartOrEnd())
4545       continue;
4546 
4547     if (AllowDroppable && II->isDroppable())
4548       continue;
4549 
4550     return false;
4551   }
4552   return true;
4553 }
4554 
4555 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4556   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4557       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4558 }
4559 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4560   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4561       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4562 }
4563 
4564 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4565   if (!LI.isUnordered())
4566     return true;
4567   const Function &F = *LI.getFunction();
4568   // Speculative load may create a race that did not exist in the source.
4569   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4570     // Speculative load may load data from dirty regions.
4571     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4572     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4573 }
4574 
4575 
4576 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4577                                         const Instruction *CtxI,
4578                                         const DominatorTree *DT,
4579                                         const TargetLibraryInfo *TLI) {
4580   const Operator *Inst = dyn_cast<Operator>(V);
4581   if (!Inst)
4582     return false;
4583 
4584   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4585     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4586       if (C->canTrap())
4587         return false;
4588 
4589   switch (Inst->getOpcode()) {
4590   default:
4591     return true;
4592   case Instruction::UDiv:
4593   case Instruction::URem: {
4594     // x / y is undefined if y == 0.
4595     const APInt *V;
4596     if (match(Inst->getOperand(1), m_APInt(V)))
4597       return *V != 0;
4598     return false;
4599   }
4600   case Instruction::SDiv:
4601   case Instruction::SRem: {
4602     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4603     const APInt *Numerator, *Denominator;
4604     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4605       return false;
4606     // We cannot hoist this division if the denominator is 0.
4607     if (*Denominator == 0)
4608       return false;
4609     // It's safe to hoist if the denominator is not 0 or -1.
4610     if (!Denominator->isAllOnes())
4611       return true;
4612     // At this point we know that the denominator is -1.  It is safe to hoist as
4613     // long we know that the numerator is not INT_MIN.
4614     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4615       return !Numerator->isMinSignedValue();
4616     // The numerator *might* be MinSignedValue.
4617     return false;
4618   }
4619   case Instruction::Load: {
4620     const LoadInst *LI = cast<LoadInst>(Inst);
4621     if (mustSuppressSpeculation(*LI))
4622       return false;
4623     const DataLayout &DL = LI->getModule()->getDataLayout();
4624     return isDereferenceableAndAlignedPointer(
4625         LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT,
4626         TLI);
4627   }
4628   case Instruction::Call: {
4629     auto *CI = cast<const CallInst>(Inst);
4630     const Function *Callee = CI->getCalledFunction();
4631 
4632     // The called function could have undefined behavior or side-effects, even
4633     // if marked readnone nounwind.
4634     return Callee && Callee->isSpeculatable();
4635   }
4636   case Instruction::VAArg:
4637   case Instruction::Alloca:
4638   case Instruction::Invoke:
4639   case Instruction::CallBr:
4640   case Instruction::PHI:
4641   case Instruction::Store:
4642   case Instruction::Ret:
4643   case Instruction::Br:
4644   case Instruction::IndirectBr:
4645   case Instruction::Switch:
4646   case Instruction::Unreachable:
4647   case Instruction::Fence:
4648   case Instruction::AtomicRMW:
4649   case Instruction::AtomicCmpXchg:
4650   case Instruction::LandingPad:
4651   case Instruction::Resume:
4652   case Instruction::CatchSwitch:
4653   case Instruction::CatchPad:
4654   case Instruction::CatchRet:
4655   case Instruction::CleanupPad:
4656   case Instruction::CleanupRet:
4657     return false; // Misc instructions which have effects
4658   }
4659 }
4660 
4661 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
4662   if (I.mayReadOrWriteMemory())
4663     // Memory dependency possible
4664     return true;
4665   if (!isSafeToSpeculativelyExecute(&I))
4666     // Can't move above a maythrow call or infinite loop.  Or if an
4667     // inalloca alloca, above a stacksave call.
4668     return true;
4669   if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4670     // 1) Can't reorder two inf-loop calls, even if readonly
4671     // 2) Also can't reorder an inf-loop call below a instruction which isn't
4672     //    safe to speculative execute.  (Inverse of above)
4673     return true;
4674   return false;
4675 }
4676 
4677 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4678 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4679   switch (OR) {
4680     case ConstantRange::OverflowResult::MayOverflow:
4681       return OverflowResult::MayOverflow;
4682     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4683       return OverflowResult::AlwaysOverflowsLow;
4684     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4685       return OverflowResult::AlwaysOverflowsHigh;
4686     case ConstantRange::OverflowResult::NeverOverflows:
4687       return OverflowResult::NeverOverflows;
4688   }
4689   llvm_unreachable("Unknown OverflowResult");
4690 }
4691 
4692 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4693 static ConstantRange computeConstantRangeIncludingKnownBits(
4694     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4695     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4696     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4697   KnownBits Known = computeKnownBits(
4698       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4699   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4700   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4701   ConstantRange::PreferredRangeType RangeType =
4702       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4703   return CR1.intersectWith(CR2, RangeType);
4704 }
4705 
4706 OverflowResult llvm::computeOverflowForUnsignedMul(
4707     const Value *LHS, const Value *RHS, const DataLayout &DL,
4708     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4709     bool UseInstrInfo) {
4710   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4711                                         nullptr, UseInstrInfo);
4712   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4713                                         nullptr, UseInstrInfo);
4714   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4715   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4716   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4717 }
4718 
4719 OverflowResult
4720 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4721                                   const DataLayout &DL, AssumptionCache *AC,
4722                                   const Instruction *CxtI,
4723                                   const DominatorTree *DT, bool UseInstrInfo) {
4724   // Multiplying n * m significant bits yields a result of n + m significant
4725   // bits. If the total number of significant bits does not exceed the
4726   // result bit width (minus 1), there is no overflow.
4727   // This means if we have enough leading sign bits in the operands
4728   // we can guarantee that the result does not overflow.
4729   // Ref: "Hacker's Delight" by Henry Warren
4730   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4731 
4732   // Note that underestimating the number of sign bits gives a more
4733   // conservative answer.
4734   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4735                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4736 
4737   // First handle the easy case: if we have enough sign bits there's
4738   // definitely no overflow.
4739   if (SignBits > BitWidth + 1)
4740     return OverflowResult::NeverOverflows;
4741 
4742   // There are two ambiguous cases where there can be no overflow:
4743   //   SignBits == BitWidth + 1    and
4744   //   SignBits == BitWidth
4745   // The second case is difficult to check, therefore we only handle the
4746   // first case.
4747   if (SignBits == BitWidth + 1) {
4748     // It overflows only when both arguments are negative and the true
4749     // product is exactly the minimum negative number.
4750     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4751     // For simplicity we just check if at least one side is not negative.
4752     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4753                                           nullptr, UseInstrInfo);
4754     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4755                                           nullptr, UseInstrInfo);
4756     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4757       return OverflowResult::NeverOverflows;
4758   }
4759   return OverflowResult::MayOverflow;
4760 }
4761 
4762 OverflowResult llvm::computeOverflowForUnsignedAdd(
4763     const Value *LHS, const Value *RHS, const DataLayout &DL,
4764     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4765     bool UseInstrInfo) {
4766   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4767       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4768       nullptr, UseInstrInfo);
4769   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4770       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4771       nullptr, UseInstrInfo);
4772   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4773 }
4774 
4775 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4776                                                   const Value *RHS,
4777                                                   const AddOperator *Add,
4778                                                   const DataLayout &DL,
4779                                                   AssumptionCache *AC,
4780                                                   const Instruction *CxtI,
4781                                                   const DominatorTree *DT) {
4782   if (Add && Add->hasNoSignedWrap()) {
4783     return OverflowResult::NeverOverflows;
4784   }
4785 
4786   // If LHS and RHS each have at least two sign bits, the addition will look
4787   // like
4788   //
4789   // XX..... +
4790   // YY.....
4791   //
4792   // If the carry into the most significant position is 0, X and Y can't both
4793   // be 1 and therefore the carry out of the addition is also 0.
4794   //
4795   // If the carry into the most significant position is 1, X and Y can't both
4796   // be 0 and therefore the carry out of the addition is also 1.
4797   //
4798   // Since the carry into the most significant position is always equal to
4799   // the carry out of the addition, there is no signed overflow.
4800   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4801       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4802     return OverflowResult::NeverOverflows;
4803 
4804   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4805       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4806   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4807       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4808   OverflowResult OR =
4809       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4810   if (OR != OverflowResult::MayOverflow)
4811     return OR;
4812 
4813   // The remaining code needs Add to be available. Early returns if not so.
4814   if (!Add)
4815     return OverflowResult::MayOverflow;
4816 
4817   // If the sign of Add is the same as at least one of the operands, this add
4818   // CANNOT overflow. If this can be determined from the known bits of the
4819   // operands the above signedAddMayOverflow() check will have already done so.
4820   // The only other way to improve on the known bits is from an assumption, so
4821   // call computeKnownBitsFromAssume() directly.
4822   bool LHSOrRHSKnownNonNegative =
4823       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4824   bool LHSOrRHSKnownNegative =
4825       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4826   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4827     KnownBits AddKnown(LHSRange.getBitWidth());
4828     computeKnownBitsFromAssume(
4829         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4830     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4831         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4832       return OverflowResult::NeverOverflows;
4833   }
4834 
4835   return OverflowResult::MayOverflow;
4836 }
4837 
4838 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4839                                                    const Value *RHS,
4840                                                    const DataLayout &DL,
4841                                                    AssumptionCache *AC,
4842                                                    const Instruction *CxtI,
4843                                                    const DominatorTree *DT) {
4844   // X - (X % ?)
4845   // The remainder of a value can't have greater magnitude than itself,
4846   // so the subtraction can't overflow.
4847   // TODO: There are other patterns like this.
4848   //       See simplifyICmpWithBinOpOnLHS() for candidates.
4849   if (match(RHS, m_URem(m_Specific(LHS), m_Value())) &&
4850       isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
4851     return OverflowResult::NeverOverflows;
4852 
4853   // Checking for conditions implied by dominating conditions may be expensive.
4854   // Limit it to usub_with_overflow calls for now.
4855   if (match(CxtI,
4856             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4857     if (auto C =
4858             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4859       if (*C)
4860         return OverflowResult::NeverOverflows;
4861       return OverflowResult::AlwaysOverflowsLow;
4862     }
4863   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4864       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4865   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4866       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4867   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4868 }
4869 
4870 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4871                                                  const Value *RHS,
4872                                                  const DataLayout &DL,
4873                                                  AssumptionCache *AC,
4874                                                  const Instruction *CxtI,
4875                                                  const DominatorTree *DT) {
4876   // X - (X % ?)
4877   // The remainder of a value can't have greater magnitude than itself,
4878   // so the subtraction can't overflow.
4879   if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) &&
4880       isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
4881     return OverflowResult::NeverOverflows;
4882 
4883   // If LHS and RHS each have at least two sign bits, the subtraction
4884   // cannot overflow.
4885   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4886       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4887     return OverflowResult::NeverOverflows;
4888 
4889   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4890       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4891   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4892       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4893   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4894 }
4895 
4896 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4897                                      const DominatorTree &DT) {
4898   SmallVector<const BranchInst *, 2> GuardingBranches;
4899   SmallVector<const ExtractValueInst *, 2> Results;
4900 
4901   for (const User *U : WO->users()) {
4902     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4903       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4904 
4905       if (EVI->getIndices()[0] == 0)
4906         Results.push_back(EVI);
4907       else {
4908         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4909 
4910         for (const auto *U : EVI->users())
4911           if (const auto *B = dyn_cast<BranchInst>(U)) {
4912             assert(B->isConditional() && "How else is it using an i1?");
4913             GuardingBranches.push_back(B);
4914           }
4915       }
4916     } else {
4917       // We are using the aggregate directly in a way we don't want to analyze
4918       // here (storing it to a global, say).
4919       return false;
4920     }
4921   }
4922 
4923   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4924     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4925     if (!NoWrapEdge.isSingleEdge())
4926       return false;
4927 
4928     // Check if all users of the add are provably no-wrap.
4929     for (const auto *Result : Results) {
4930       // If the extractvalue itself is not executed on overflow, the we don't
4931       // need to check each use separately, since domination is transitive.
4932       if (DT.dominates(NoWrapEdge, Result->getParent()))
4933         continue;
4934 
4935       for (auto &RU : Result->uses())
4936         if (!DT.dominates(NoWrapEdge, RU))
4937           return false;
4938     }
4939 
4940     return true;
4941   };
4942 
4943   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4944 }
4945 
4946 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
4947                                    bool ConsiderFlags) {
4948 
4949   if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
4950     return true;
4951 
4952   unsigned Opcode = Op->getOpcode();
4953 
4954   // Check whether opcode is a poison/undef-generating operation
4955   switch (Opcode) {
4956   case Instruction::Shl:
4957   case Instruction::AShr:
4958   case Instruction::LShr: {
4959     // Shifts return poison if shiftwidth is larger than the bitwidth.
4960     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4961       SmallVector<Constant *, 4> ShiftAmounts;
4962       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4963         unsigned NumElts = FVTy->getNumElements();
4964         for (unsigned i = 0; i < NumElts; ++i)
4965           ShiftAmounts.push_back(C->getAggregateElement(i));
4966       } else if (isa<ScalableVectorType>(C->getType()))
4967         return true; // Can't tell, just return true to be safe
4968       else
4969         ShiftAmounts.push_back(C);
4970 
4971       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4972         auto *CI = dyn_cast_or_null<ConstantInt>(C);
4973         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4974       });
4975       return !Safe;
4976     }
4977     return true;
4978   }
4979   case Instruction::FPToSI:
4980   case Instruction::FPToUI:
4981     // fptosi/ui yields poison if the resulting value does not fit in the
4982     // destination type.
4983     return true;
4984   case Instruction::Call:
4985     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
4986       switch (II->getIntrinsicID()) {
4987       // TODO: Add more intrinsics.
4988       case Intrinsic::ctpop:
4989       case Intrinsic::sadd_with_overflow:
4990       case Intrinsic::ssub_with_overflow:
4991       case Intrinsic::smul_with_overflow:
4992       case Intrinsic::uadd_with_overflow:
4993       case Intrinsic::usub_with_overflow:
4994       case Intrinsic::umul_with_overflow:
4995         return false;
4996       }
4997     }
4998     LLVM_FALLTHROUGH;
4999   case Instruction::CallBr:
5000   case Instruction::Invoke: {
5001     const auto *CB = cast<CallBase>(Op);
5002     return !CB->hasRetAttr(Attribute::NoUndef);
5003   }
5004   case Instruction::InsertElement:
5005   case Instruction::ExtractElement: {
5006     // If index exceeds the length of the vector, it returns poison
5007     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
5008     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
5009     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
5010     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
5011       return true;
5012     return false;
5013   }
5014   case Instruction::ShuffleVector: {
5015     // shufflevector may return undef.
5016     if (PoisonOnly)
5017       return false;
5018     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
5019                              ? cast<ConstantExpr>(Op)->getShuffleMask()
5020                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
5021     return is_contained(Mask, UndefMaskElem);
5022   }
5023   case Instruction::FNeg:
5024   case Instruction::PHI:
5025   case Instruction::Select:
5026   case Instruction::URem:
5027   case Instruction::SRem:
5028   case Instruction::ExtractValue:
5029   case Instruction::InsertValue:
5030   case Instruction::Freeze:
5031   case Instruction::ICmp:
5032   case Instruction::FCmp:
5033     return false;
5034   case Instruction::GetElementPtr:
5035     // inbounds is handled above
5036     // TODO: what about inrange on constexpr?
5037     return false;
5038   default: {
5039     const auto *CE = dyn_cast<ConstantExpr>(Op);
5040     if (isa<CastInst>(Op) || (CE && CE->isCast()))
5041       return false;
5042     else if (Instruction::isBinaryOp(Opcode))
5043       return false;
5044     // Be conservative and return true.
5045     return true;
5046   }
5047   }
5048 }
5049 
5050 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) {
5051   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags);
5052 }
5053 
5054 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) {
5055   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags);
5056 }
5057 
5058 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5059                                   const Value *V, unsigned Depth) {
5060   if (ValAssumedPoison == V)
5061     return true;
5062 
5063   const unsigned MaxDepth = 2;
5064   if (Depth >= MaxDepth)
5065     return false;
5066 
5067   if (const auto *I = dyn_cast<Instruction>(V)) {
5068     if (propagatesPoison(cast<Operator>(I)))
5069       return any_of(I->operands(), [=](const Value *Op) {
5070         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5071       });
5072 
5073     // 'select ValAssumedPoison, _, _' is poison.
5074     if (const auto *SI = dyn_cast<SelectInst>(I))
5075       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5076                                    Depth + 1);
5077     // V  = extractvalue V0, idx
5078     // V2 = extractvalue V0, idx2
5079     // V0's elements are all poison or not. (e.g., add_with_overflow)
5080     const WithOverflowInst *II;
5081     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5082         (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5083          llvm::is_contained(II->args(), ValAssumedPoison)))
5084       return true;
5085   }
5086   return false;
5087 }
5088 
5089 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5090                           unsigned Depth) {
5091   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5092     return true;
5093 
5094   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5095     return true;
5096 
5097   const unsigned MaxDepth = 2;
5098   if (Depth >= MaxDepth)
5099     return false;
5100 
5101   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5102   if (I && !canCreatePoison(cast<Operator>(I))) {
5103     return all_of(I->operands(), [=](const Value *Op) {
5104       return impliesPoison(Op, V, Depth + 1);
5105     });
5106   }
5107   return false;
5108 }
5109 
5110 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5111   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5112 }
5113 
5114 static bool programUndefinedIfUndefOrPoison(const Value *V,
5115                                             bool PoisonOnly);
5116 
5117 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5118                                              AssumptionCache *AC,
5119                                              const Instruction *CtxI,
5120                                              const DominatorTree *DT,
5121                                              unsigned Depth, bool PoisonOnly) {
5122   if (Depth >= MaxAnalysisRecursionDepth)
5123     return false;
5124 
5125   if (isa<MetadataAsValue>(V))
5126     return false;
5127 
5128   if (const auto *A = dyn_cast<Argument>(V)) {
5129     if (A->hasAttribute(Attribute::NoUndef))
5130       return true;
5131   }
5132 
5133   if (auto *C = dyn_cast<Constant>(V)) {
5134     if (isa<UndefValue>(C))
5135       return PoisonOnly && !isa<PoisonValue>(C);
5136 
5137     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5138         isa<ConstantPointerNull>(C) || isa<Function>(C))
5139       return true;
5140 
5141     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5142       return (PoisonOnly ? !C->containsPoisonElement()
5143                          : !C->containsUndefOrPoisonElement()) &&
5144              !C->containsConstantExpression();
5145   }
5146 
5147   // Strip cast operations from a pointer value.
5148   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5149   // inbounds with zero offset. To guarantee that the result isn't poison, the
5150   // stripped pointer is checked as it has to be pointing into an allocated
5151   // object or be null `null` to ensure `inbounds` getelement pointers with a
5152   // zero offset could not produce poison.
5153   // It can strip off addrspacecast that do not change bit representation as
5154   // well. We believe that such addrspacecast is equivalent to no-op.
5155   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5156   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5157       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5158     return true;
5159 
5160   auto OpCheck = [&](const Value *V) {
5161     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5162                                             PoisonOnly);
5163   };
5164 
5165   if (auto *Opr = dyn_cast<Operator>(V)) {
5166     // If the value is a freeze instruction, then it can never
5167     // be undef or poison.
5168     if (isa<FreezeInst>(V))
5169       return true;
5170 
5171     if (const auto *CB = dyn_cast<CallBase>(V)) {
5172       if (CB->hasRetAttr(Attribute::NoUndef))
5173         return true;
5174     }
5175 
5176     if (const auto *PN = dyn_cast<PHINode>(V)) {
5177       unsigned Num = PN->getNumIncomingValues();
5178       bool IsWellDefined = true;
5179       for (unsigned i = 0; i < Num; ++i) {
5180         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5181         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5182                                               DT, Depth + 1, PoisonOnly)) {
5183           IsWellDefined = false;
5184           break;
5185         }
5186       }
5187       if (IsWellDefined)
5188         return true;
5189     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5190       return true;
5191   }
5192 
5193   if (auto *I = dyn_cast<LoadInst>(V))
5194     if (I->getMetadata(LLVMContext::MD_noundef))
5195       return true;
5196 
5197   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5198     return true;
5199 
5200   // CxtI may be null or a cloned instruction.
5201   if (!CtxI || !CtxI->getParent() || !DT)
5202     return false;
5203 
5204   auto *DNode = DT->getNode(CtxI->getParent());
5205   if (!DNode)
5206     // Unreachable block
5207     return false;
5208 
5209   // If V is used as a branch condition before reaching CtxI, V cannot be
5210   // undef or poison.
5211   //   br V, BB1, BB2
5212   // BB1:
5213   //   CtxI ; V cannot be undef or poison here
5214   auto *Dominator = DNode->getIDom();
5215   while (Dominator) {
5216     auto *TI = Dominator->getBlock()->getTerminator();
5217 
5218     Value *Cond = nullptr;
5219     if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
5220       if (BI->isConditional())
5221         Cond = BI->getCondition();
5222     } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
5223       Cond = SI->getCondition();
5224     }
5225 
5226     if (Cond) {
5227       if (Cond == V)
5228         return true;
5229       else if (PoisonOnly && isa<Operator>(Cond)) {
5230         // For poison, we can analyze further
5231         auto *Opr = cast<Operator>(Cond);
5232         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5233           return true;
5234       }
5235     }
5236 
5237     Dominator = Dominator->getIDom();
5238   }
5239 
5240   if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5241     return true;
5242 
5243   return false;
5244 }
5245 
5246 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5247                                             const Instruction *CtxI,
5248                                             const DominatorTree *DT,
5249                                             unsigned Depth) {
5250   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5251 }
5252 
5253 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5254                                      const Instruction *CtxI,
5255                                      const DominatorTree *DT, unsigned Depth) {
5256   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5257 }
5258 
5259 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5260                                                  const DataLayout &DL,
5261                                                  AssumptionCache *AC,
5262                                                  const Instruction *CxtI,
5263                                                  const DominatorTree *DT) {
5264   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5265                                        Add, DL, AC, CxtI, DT);
5266 }
5267 
5268 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5269                                                  const Value *RHS,
5270                                                  const DataLayout &DL,
5271                                                  AssumptionCache *AC,
5272                                                  const Instruction *CxtI,
5273                                                  const DominatorTree *DT) {
5274   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5275 }
5276 
5277 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5278   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5279   // of time because it's possible for another thread to interfere with it for an
5280   // arbitrary length of time, but programs aren't allowed to rely on that.
5281 
5282   // If there is no successor, then execution can't transfer to it.
5283   if (isa<ReturnInst>(I))
5284     return false;
5285   if (isa<UnreachableInst>(I))
5286     return false;
5287 
5288   // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5289   // Instruction::willReturn.
5290   //
5291   // FIXME: Move this check into Instruction::willReturn.
5292   if (isa<CatchPadInst>(I)) {
5293     switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5294     default:
5295       // A catchpad may invoke exception object constructors and such, which
5296       // in some languages can be arbitrary code, so be conservative by default.
5297       return false;
5298     case EHPersonality::CoreCLR:
5299       // For CoreCLR, it just involves a type test.
5300       return true;
5301     }
5302   }
5303 
5304   // An instruction that returns without throwing must transfer control flow
5305   // to a successor.
5306   return !I->mayThrow() && I->willReturn();
5307 }
5308 
5309 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5310   // TODO: This is slightly conservative for invoke instruction since exiting
5311   // via an exception *is* normal control for them.
5312   for (const Instruction &I : *BB)
5313     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5314       return false;
5315   return true;
5316 }
5317 
5318 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5319    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5320    unsigned ScanLimit) {
5321   return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5322                                                     ScanLimit);
5323 }
5324 
5325 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5326    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5327   assert(ScanLimit && "scan limit must be non-zero");
5328   for (const Instruction &I : Range) {
5329     if (isa<DbgInfoIntrinsic>(I))
5330         continue;
5331     if (--ScanLimit == 0)
5332       return false;
5333     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5334       return false;
5335   }
5336   return true;
5337 }
5338 
5339 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5340                                                   const Loop *L) {
5341   // The loop header is guaranteed to be executed for every iteration.
5342   //
5343   // FIXME: Relax this constraint to cover all basic blocks that are
5344   // guaranteed to be executed at every iteration.
5345   if (I->getParent() != L->getHeader()) return false;
5346 
5347   for (const Instruction &LI : *L->getHeader()) {
5348     if (&LI == I) return true;
5349     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5350   }
5351   llvm_unreachable("Instruction not contained in its own parent basic block.");
5352 }
5353 
5354 bool llvm::propagatesPoison(const Operator *I) {
5355   switch (I->getOpcode()) {
5356   case Instruction::Freeze:
5357   case Instruction::Select:
5358   case Instruction::PHI:
5359   case Instruction::Invoke:
5360     return false;
5361   case Instruction::Call:
5362     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5363       switch (II->getIntrinsicID()) {
5364       // TODO: Add more intrinsics.
5365       case Intrinsic::sadd_with_overflow:
5366       case Intrinsic::ssub_with_overflow:
5367       case Intrinsic::smul_with_overflow:
5368       case Intrinsic::uadd_with_overflow:
5369       case Intrinsic::usub_with_overflow:
5370       case Intrinsic::umul_with_overflow:
5371         // If an input is a vector containing a poison element, the
5372         // two output vectors (calculated results, overflow bits)'
5373         // corresponding lanes are poison.
5374         return true;
5375       case Intrinsic::ctpop:
5376         return true;
5377       }
5378     }
5379     return false;
5380   case Instruction::ICmp:
5381   case Instruction::FCmp:
5382   case Instruction::GetElementPtr:
5383     return true;
5384   default:
5385     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5386       return true;
5387 
5388     // Be conservative and return false.
5389     return false;
5390   }
5391 }
5392 
5393 void llvm::getGuaranteedWellDefinedOps(
5394     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5395   switch (I->getOpcode()) {
5396     case Instruction::Store:
5397       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5398       break;
5399 
5400     case Instruction::Load:
5401       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5402       break;
5403 
5404     // Since dereferenceable attribute imply noundef, atomic operations
5405     // also implicitly have noundef pointers too
5406     case Instruction::AtomicCmpXchg:
5407       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5408       break;
5409 
5410     case Instruction::AtomicRMW:
5411       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5412       break;
5413 
5414     case Instruction::Call:
5415     case Instruction::Invoke: {
5416       const CallBase *CB = cast<CallBase>(I);
5417       if (CB->isIndirectCall())
5418         Operands.insert(CB->getCalledOperand());
5419       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5420         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5421             CB->paramHasAttr(i, Attribute::Dereferenceable))
5422           Operands.insert(CB->getArgOperand(i));
5423       }
5424       break;
5425     }
5426     case Instruction::Ret:
5427       if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5428         Operands.insert(I->getOperand(0));
5429       break;
5430     default:
5431       break;
5432   }
5433 }
5434 
5435 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5436                                      SmallPtrSetImpl<const Value *> &Operands) {
5437   getGuaranteedWellDefinedOps(I, Operands);
5438   switch (I->getOpcode()) {
5439   // Divisors of these operations are allowed to be partially undef.
5440   case Instruction::UDiv:
5441   case Instruction::SDiv:
5442   case Instruction::URem:
5443   case Instruction::SRem:
5444     Operands.insert(I->getOperand(1));
5445     break;
5446   case Instruction::Switch:
5447     if (BranchOnPoisonAsUB)
5448       Operands.insert(cast<SwitchInst>(I)->getCondition());
5449     break;
5450   case Instruction::Br: {
5451     auto *BR = cast<BranchInst>(I);
5452     if (BranchOnPoisonAsUB && BR->isConditional())
5453       Operands.insert(BR->getCondition());
5454     break;
5455   }
5456   default:
5457     break;
5458   }
5459 }
5460 
5461 bool llvm::mustTriggerUB(const Instruction *I,
5462                          const SmallSet<const Value *, 16>& KnownPoison) {
5463   SmallPtrSet<const Value *, 4> NonPoisonOps;
5464   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5465 
5466   for (const auto *V : NonPoisonOps)
5467     if (KnownPoison.count(V))
5468       return true;
5469 
5470   return false;
5471 }
5472 
5473 static bool programUndefinedIfUndefOrPoison(const Value *V,
5474                                             bool PoisonOnly) {
5475   // We currently only look for uses of values within the same basic
5476   // block, as that makes it easier to guarantee that the uses will be
5477   // executed given that Inst is executed.
5478   //
5479   // FIXME: Expand this to consider uses beyond the same basic block. To do
5480   // this, look out for the distinction between post-dominance and strong
5481   // post-dominance.
5482   const BasicBlock *BB = nullptr;
5483   BasicBlock::const_iterator Begin;
5484   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5485     BB = Inst->getParent();
5486     Begin = Inst->getIterator();
5487     Begin++;
5488   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5489     BB = &Arg->getParent()->getEntryBlock();
5490     Begin = BB->begin();
5491   } else {
5492     return false;
5493   }
5494 
5495   // Limit number of instructions we look at, to avoid scanning through large
5496   // blocks. The current limit is chosen arbitrarily.
5497   unsigned ScanLimit = 32;
5498   BasicBlock::const_iterator End = BB->end();
5499 
5500   if (!PoisonOnly) {
5501     // Since undef does not propagate eagerly, be conservative & just check
5502     // whether a value is directly passed to an instruction that must take
5503     // well-defined operands.
5504 
5505     for (auto &I : make_range(Begin, End)) {
5506       if (isa<DbgInfoIntrinsic>(I))
5507         continue;
5508       if (--ScanLimit == 0)
5509         break;
5510 
5511       SmallPtrSet<const Value *, 4> WellDefinedOps;
5512       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5513       if (WellDefinedOps.contains(V))
5514         return true;
5515 
5516       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5517         break;
5518     }
5519     return false;
5520   }
5521 
5522   // Set of instructions that we have proved will yield poison if Inst
5523   // does.
5524   SmallSet<const Value *, 16> YieldsPoison;
5525   SmallSet<const BasicBlock *, 4> Visited;
5526 
5527   YieldsPoison.insert(V);
5528   auto Propagate = [&](const User *User) {
5529     if (propagatesPoison(cast<Operator>(User)))
5530       YieldsPoison.insert(User);
5531   };
5532   for_each(V->users(), Propagate);
5533   Visited.insert(BB);
5534 
5535   while (true) {
5536     for (auto &I : make_range(Begin, End)) {
5537       if (isa<DbgInfoIntrinsic>(I))
5538         continue;
5539       if (--ScanLimit == 0)
5540         return false;
5541       if (mustTriggerUB(&I, YieldsPoison))
5542         return true;
5543       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5544         return false;
5545 
5546       // Mark poison that propagates from I through uses of I.
5547       if (YieldsPoison.count(&I))
5548         for_each(I.users(), Propagate);
5549     }
5550 
5551     BB = BB->getSingleSuccessor();
5552     if (!BB || !Visited.insert(BB).second)
5553       break;
5554 
5555     Begin = BB->getFirstNonPHI()->getIterator();
5556     End = BB->end();
5557   }
5558   return false;
5559 }
5560 
5561 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5562   return ::programUndefinedIfUndefOrPoison(Inst, false);
5563 }
5564 
5565 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5566   return ::programUndefinedIfUndefOrPoison(Inst, true);
5567 }
5568 
5569 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5570   if (FMF.noNaNs())
5571     return true;
5572 
5573   if (auto *C = dyn_cast<ConstantFP>(V))
5574     return !C->isNaN();
5575 
5576   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5577     if (!C->getElementType()->isFloatingPointTy())
5578       return false;
5579     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5580       if (C->getElementAsAPFloat(I).isNaN())
5581         return false;
5582     }
5583     return true;
5584   }
5585 
5586   if (isa<ConstantAggregateZero>(V))
5587     return true;
5588 
5589   return false;
5590 }
5591 
5592 static bool isKnownNonZero(const Value *V) {
5593   if (auto *C = dyn_cast<ConstantFP>(V))
5594     return !C->isZero();
5595 
5596   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5597     if (!C->getElementType()->isFloatingPointTy())
5598       return false;
5599     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5600       if (C->getElementAsAPFloat(I).isZero())
5601         return false;
5602     }
5603     return true;
5604   }
5605 
5606   return false;
5607 }
5608 
5609 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5610 /// Given non-min/max outer cmp/select from the clamp pattern this
5611 /// function recognizes if it can be substitued by a "canonical" min/max
5612 /// pattern.
5613 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5614                                                Value *CmpLHS, Value *CmpRHS,
5615                                                Value *TrueVal, Value *FalseVal,
5616                                                Value *&LHS, Value *&RHS) {
5617   // Try to match
5618   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5619   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5620   // and return description of the outer Max/Min.
5621 
5622   // First, check if select has inverse order:
5623   if (CmpRHS == FalseVal) {
5624     std::swap(TrueVal, FalseVal);
5625     Pred = CmpInst::getInversePredicate(Pred);
5626   }
5627 
5628   // Assume success now. If there's no match, callers should not use these anyway.
5629   LHS = TrueVal;
5630   RHS = FalseVal;
5631 
5632   const APFloat *FC1;
5633   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5634     return {SPF_UNKNOWN, SPNB_NA, false};
5635 
5636   const APFloat *FC2;
5637   switch (Pred) {
5638   case CmpInst::FCMP_OLT:
5639   case CmpInst::FCMP_OLE:
5640   case CmpInst::FCMP_ULT:
5641   case CmpInst::FCMP_ULE:
5642     if (match(FalseVal,
5643               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5644                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5645         *FC1 < *FC2)
5646       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5647     break;
5648   case CmpInst::FCMP_OGT:
5649   case CmpInst::FCMP_OGE:
5650   case CmpInst::FCMP_UGT:
5651   case CmpInst::FCMP_UGE:
5652     if (match(FalseVal,
5653               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5654                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5655         *FC1 > *FC2)
5656       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5657     break;
5658   default:
5659     break;
5660   }
5661 
5662   return {SPF_UNKNOWN, SPNB_NA, false};
5663 }
5664 
5665 /// Recognize variations of:
5666 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5667 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5668                                       Value *CmpLHS, Value *CmpRHS,
5669                                       Value *TrueVal, Value *FalseVal) {
5670   // Swap the select operands and predicate to match the patterns below.
5671   if (CmpRHS != TrueVal) {
5672     Pred = ICmpInst::getSwappedPredicate(Pred);
5673     std::swap(TrueVal, FalseVal);
5674   }
5675   const APInt *C1;
5676   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5677     const APInt *C2;
5678     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5679     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5680         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5681       return {SPF_SMAX, SPNB_NA, false};
5682 
5683     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5684     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5685         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5686       return {SPF_SMIN, SPNB_NA, false};
5687 
5688     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5689     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5690         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5691       return {SPF_UMAX, SPNB_NA, false};
5692 
5693     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5694     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5695         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5696       return {SPF_UMIN, SPNB_NA, false};
5697   }
5698   return {SPF_UNKNOWN, SPNB_NA, false};
5699 }
5700 
5701 /// Recognize variations of:
5702 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5703 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5704                                                Value *CmpLHS, Value *CmpRHS,
5705                                                Value *TVal, Value *FVal,
5706                                                unsigned Depth) {
5707   // TODO: Allow FP min/max with nnan/nsz.
5708   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5709 
5710   Value *A = nullptr, *B = nullptr;
5711   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5712   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5713     return {SPF_UNKNOWN, SPNB_NA, false};
5714 
5715   Value *C = nullptr, *D = nullptr;
5716   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5717   if (L.Flavor != R.Flavor)
5718     return {SPF_UNKNOWN, SPNB_NA, false};
5719 
5720   // We have something like: x Pred y ? min(a, b) : min(c, d).
5721   // Try to match the compare to the min/max operations of the select operands.
5722   // First, make sure we have the right compare predicate.
5723   switch (L.Flavor) {
5724   case SPF_SMIN:
5725     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5726       Pred = ICmpInst::getSwappedPredicate(Pred);
5727       std::swap(CmpLHS, CmpRHS);
5728     }
5729     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5730       break;
5731     return {SPF_UNKNOWN, SPNB_NA, false};
5732   case SPF_SMAX:
5733     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5734       Pred = ICmpInst::getSwappedPredicate(Pred);
5735       std::swap(CmpLHS, CmpRHS);
5736     }
5737     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5738       break;
5739     return {SPF_UNKNOWN, SPNB_NA, false};
5740   case SPF_UMIN:
5741     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5742       Pred = ICmpInst::getSwappedPredicate(Pred);
5743       std::swap(CmpLHS, CmpRHS);
5744     }
5745     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5746       break;
5747     return {SPF_UNKNOWN, SPNB_NA, false};
5748   case SPF_UMAX:
5749     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5750       Pred = ICmpInst::getSwappedPredicate(Pred);
5751       std::swap(CmpLHS, CmpRHS);
5752     }
5753     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5754       break;
5755     return {SPF_UNKNOWN, SPNB_NA, false};
5756   default:
5757     return {SPF_UNKNOWN, SPNB_NA, false};
5758   }
5759 
5760   // If there is a common operand in the already matched min/max and the other
5761   // min/max operands match the compare operands (either directly or inverted),
5762   // then this is min/max of the same flavor.
5763 
5764   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5765   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5766   if (D == B) {
5767     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5768                                          match(A, m_Not(m_Specific(CmpRHS)))))
5769       return {L.Flavor, SPNB_NA, false};
5770   }
5771   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5772   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5773   if (C == B) {
5774     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5775                                          match(A, m_Not(m_Specific(CmpRHS)))))
5776       return {L.Flavor, SPNB_NA, false};
5777   }
5778   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5779   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5780   if (D == A) {
5781     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5782                                          match(B, m_Not(m_Specific(CmpRHS)))))
5783       return {L.Flavor, SPNB_NA, false};
5784   }
5785   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5786   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5787   if (C == A) {
5788     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5789                                          match(B, m_Not(m_Specific(CmpRHS)))))
5790       return {L.Flavor, SPNB_NA, false};
5791   }
5792 
5793   return {SPF_UNKNOWN, SPNB_NA, false};
5794 }
5795 
5796 /// If the input value is the result of a 'not' op, constant integer, or vector
5797 /// splat of a constant integer, return the bitwise-not source value.
5798 /// TODO: This could be extended to handle non-splat vector integer constants.
5799 static Value *getNotValue(Value *V) {
5800   Value *NotV;
5801   if (match(V, m_Not(m_Value(NotV))))
5802     return NotV;
5803 
5804   const APInt *C;
5805   if (match(V, m_APInt(C)))
5806     return ConstantInt::get(V->getType(), ~(*C));
5807 
5808   return nullptr;
5809 }
5810 
5811 /// Match non-obvious integer minimum and maximum sequences.
5812 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5813                                        Value *CmpLHS, Value *CmpRHS,
5814                                        Value *TrueVal, Value *FalseVal,
5815                                        Value *&LHS, Value *&RHS,
5816                                        unsigned Depth) {
5817   // Assume success. If there's no match, callers should not use these anyway.
5818   LHS = TrueVal;
5819   RHS = FalseVal;
5820 
5821   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5822   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5823     return SPR;
5824 
5825   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5826   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5827     return SPR;
5828 
5829   // Look through 'not' ops to find disguised min/max.
5830   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5831   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5832   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5833     switch (Pred) {
5834     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5835     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5836     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5837     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5838     default: break;
5839     }
5840   }
5841 
5842   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5843   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5844   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5845     switch (Pred) {
5846     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5847     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5848     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5849     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5850     default: break;
5851     }
5852   }
5853 
5854   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5855     return {SPF_UNKNOWN, SPNB_NA, false};
5856 
5857   const APInt *C1;
5858   if (!match(CmpRHS, m_APInt(C1)))
5859     return {SPF_UNKNOWN, SPNB_NA, false};
5860 
5861   // An unsigned min/max can be written with a signed compare.
5862   const APInt *C2;
5863   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5864       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5865     // Is the sign bit set?
5866     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5867     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5868     if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
5869       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5870 
5871     // Is the sign bit clear?
5872     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5873     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5874     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
5875       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5876   }
5877 
5878   return {SPF_UNKNOWN, SPNB_NA, false};
5879 }
5880 
5881 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5882   assert(X && Y && "Invalid operand");
5883 
5884   // X = sub (0, Y) || X = sub nsw (0, Y)
5885   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5886       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5887     return true;
5888 
5889   // Y = sub (0, X) || Y = sub nsw (0, X)
5890   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5891       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5892     return true;
5893 
5894   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5895   Value *A, *B;
5896   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5897                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5898          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5899                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5900 }
5901 
5902 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5903                                               FastMathFlags FMF,
5904                                               Value *CmpLHS, Value *CmpRHS,
5905                                               Value *TrueVal, Value *FalseVal,
5906                                               Value *&LHS, Value *&RHS,
5907                                               unsigned Depth) {
5908   if (CmpInst::isFPPredicate(Pred)) {
5909     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5910     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5911     // purpose of identifying min/max. Disregard vector constants with undefined
5912     // elements because those can not be back-propagated for analysis.
5913     Value *OutputZeroVal = nullptr;
5914     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5915         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5916       OutputZeroVal = TrueVal;
5917     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5918              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5919       OutputZeroVal = FalseVal;
5920 
5921     if (OutputZeroVal) {
5922       if (match(CmpLHS, m_AnyZeroFP()))
5923         CmpLHS = OutputZeroVal;
5924       if (match(CmpRHS, m_AnyZeroFP()))
5925         CmpRHS = OutputZeroVal;
5926     }
5927   }
5928 
5929   LHS = CmpLHS;
5930   RHS = CmpRHS;
5931 
5932   // Signed zero may return inconsistent results between implementations.
5933   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5934   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5935   // Therefore, we behave conservatively and only proceed if at least one of the
5936   // operands is known to not be zero or if we don't care about signed zero.
5937   switch (Pred) {
5938   default: break;
5939   // FIXME: Include OGT/OLT/UGT/ULT.
5940   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5941   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5942     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5943         !isKnownNonZero(CmpRHS))
5944       return {SPF_UNKNOWN, SPNB_NA, false};
5945   }
5946 
5947   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5948   bool Ordered = false;
5949 
5950   // When given one NaN and one non-NaN input:
5951   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5952   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5953   //     ordered comparison fails), which could be NaN or non-NaN.
5954   // so here we discover exactly what NaN behavior is required/accepted.
5955   if (CmpInst::isFPPredicate(Pred)) {
5956     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5957     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5958 
5959     if (LHSSafe && RHSSafe) {
5960       // Both operands are known non-NaN.
5961       NaNBehavior = SPNB_RETURNS_ANY;
5962     } else if (CmpInst::isOrdered(Pred)) {
5963       // An ordered comparison will return false when given a NaN, so it
5964       // returns the RHS.
5965       Ordered = true;
5966       if (LHSSafe)
5967         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5968         NaNBehavior = SPNB_RETURNS_NAN;
5969       else if (RHSSafe)
5970         NaNBehavior = SPNB_RETURNS_OTHER;
5971       else
5972         // Completely unsafe.
5973         return {SPF_UNKNOWN, SPNB_NA, false};
5974     } else {
5975       Ordered = false;
5976       // An unordered comparison will return true when given a NaN, so it
5977       // returns the LHS.
5978       if (LHSSafe)
5979         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5980         NaNBehavior = SPNB_RETURNS_OTHER;
5981       else if (RHSSafe)
5982         NaNBehavior = SPNB_RETURNS_NAN;
5983       else
5984         // Completely unsafe.
5985         return {SPF_UNKNOWN, SPNB_NA, false};
5986     }
5987   }
5988 
5989   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5990     std::swap(CmpLHS, CmpRHS);
5991     Pred = CmpInst::getSwappedPredicate(Pred);
5992     if (NaNBehavior == SPNB_RETURNS_NAN)
5993       NaNBehavior = SPNB_RETURNS_OTHER;
5994     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5995       NaNBehavior = SPNB_RETURNS_NAN;
5996     Ordered = !Ordered;
5997   }
5998 
5999   // ([if]cmp X, Y) ? X : Y
6000   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
6001     switch (Pred) {
6002     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
6003     case ICmpInst::ICMP_UGT:
6004     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
6005     case ICmpInst::ICMP_SGT:
6006     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
6007     case ICmpInst::ICMP_ULT:
6008     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
6009     case ICmpInst::ICMP_SLT:
6010     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
6011     case FCmpInst::FCMP_UGT:
6012     case FCmpInst::FCMP_UGE:
6013     case FCmpInst::FCMP_OGT:
6014     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
6015     case FCmpInst::FCMP_ULT:
6016     case FCmpInst::FCMP_ULE:
6017     case FCmpInst::FCMP_OLT:
6018     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
6019     }
6020   }
6021 
6022   if (isKnownNegation(TrueVal, FalseVal)) {
6023     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
6024     // match against either LHS or sext(LHS).
6025     auto MaybeSExtCmpLHS =
6026         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
6027     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
6028     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
6029     if (match(TrueVal, MaybeSExtCmpLHS)) {
6030       // Set the return values. If the compare uses the negated value (-X >s 0),
6031       // swap the return values because the negated value is always 'RHS'.
6032       LHS = TrueVal;
6033       RHS = FalseVal;
6034       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6035         std::swap(LHS, RHS);
6036 
6037       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6038       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6039       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6040         return {SPF_ABS, SPNB_NA, false};
6041 
6042       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6043       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6044         return {SPF_ABS, SPNB_NA, false};
6045 
6046       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6047       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6048       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6049         return {SPF_NABS, SPNB_NA, false};
6050     }
6051     else if (match(FalseVal, MaybeSExtCmpLHS)) {
6052       // Set the return values. If the compare uses the negated value (-X >s 0),
6053       // swap the return values because the negated value is always 'RHS'.
6054       LHS = FalseVal;
6055       RHS = TrueVal;
6056       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6057         std::swap(LHS, RHS);
6058 
6059       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6060       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6061       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6062         return {SPF_NABS, SPNB_NA, false};
6063 
6064       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6065       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6066       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6067         return {SPF_ABS, SPNB_NA, false};
6068     }
6069   }
6070 
6071   if (CmpInst::isIntPredicate(Pred))
6072     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6073 
6074   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6075   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6076   // semantics than minNum. Be conservative in such case.
6077   if (NaNBehavior != SPNB_RETURNS_ANY ||
6078       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6079        !isKnownNonZero(CmpRHS)))
6080     return {SPF_UNKNOWN, SPNB_NA, false};
6081 
6082   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6083 }
6084 
6085 /// Helps to match a select pattern in case of a type mismatch.
6086 ///
6087 /// The function processes the case when type of true and false values of a
6088 /// select instruction differs from type of the cmp instruction operands because
6089 /// of a cast instruction. The function checks if it is legal to move the cast
6090 /// operation after "select". If yes, it returns the new second value of
6091 /// "select" (with the assumption that cast is moved):
6092 /// 1. As operand of cast instruction when both values of "select" are same cast
6093 /// instructions.
6094 /// 2. As restored constant (by applying reverse cast operation) when the first
6095 /// value of the "select" is a cast operation and the second value is a
6096 /// constant.
6097 /// NOTE: We return only the new second value because the first value could be
6098 /// accessed as operand of cast instruction.
6099 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6100                               Instruction::CastOps *CastOp) {
6101   auto *Cast1 = dyn_cast<CastInst>(V1);
6102   if (!Cast1)
6103     return nullptr;
6104 
6105   *CastOp = Cast1->getOpcode();
6106   Type *SrcTy = Cast1->getSrcTy();
6107   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6108     // If V1 and V2 are both the same cast from the same type, look through V1.
6109     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6110       return Cast2->getOperand(0);
6111     return nullptr;
6112   }
6113 
6114   auto *C = dyn_cast<Constant>(V2);
6115   if (!C)
6116     return nullptr;
6117 
6118   Constant *CastedTo = nullptr;
6119   switch (*CastOp) {
6120   case Instruction::ZExt:
6121     if (CmpI->isUnsigned())
6122       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6123     break;
6124   case Instruction::SExt:
6125     if (CmpI->isSigned())
6126       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6127     break;
6128   case Instruction::Trunc:
6129     Constant *CmpConst;
6130     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6131         CmpConst->getType() == SrcTy) {
6132       // Here we have the following case:
6133       //
6134       //   %cond = cmp iN %x, CmpConst
6135       //   %tr = trunc iN %x to iK
6136       //   %narrowsel = select i1 %cond, iK %t, iK C
6137       //
6138       // We can always move trunc after select operation:
6139       //
6140       //   %cond = cmp iN %x, CmpConst
6141       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6142       //   %tr = trunc iN %widesel to iK
6143       //
6144       // Note that C could be extended in any way because we don't care about
6145       // upper bits after truncation. It can't be abs pattern, because it would
6146       // look like:
6147       //
6148       //   select i1 %cond, x, -x.
6149       //
6150       // So only min/max pattern could be matched. Such match requires widened C
6151       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6152       // CmpConst == C is checked below.
6153       CastedTo = CmpConst;
6154     } else {
6155       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6156     }
6157     break;
6158   case Instruction::FPTrunc:
6159     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6160     break;
6161   case Instruction::FPExt:
6162     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6163     break;
6164   case Instruction::FPToUI:
6165     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6166     break;
6167   case Instruction::FPToSI:
6168     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6169     break;
6170   case Instruction::UIToFP:
6171     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6172     break;
6173   case Instruction::SIToFP:
6174     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6175     break;
6176   default:
6177     break;
6178   }
6179 
6180   if (!CastedTo)
6181     return nullptr;
6182 
6183   // Make sure the cast doesn't lose any information.
6184   Constant *CastedBack =
6185       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6186   if (CastedBack != C)
6187     return nullptr;
6188 
6189   return CastedTo;
6190 }
6191 
6192 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6193                                              Instruction::CastOps *CastOp,
6194                                              unsigned Depth) {
6195   if (Depth >= MaxAnalysisRecursionDepth)
6196     return {SPF_UNKNOWN, SPNB_NA, false};
6197 
6198   SelectInst *SI = dyn_cast<SelectInst>(V);
6199   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6200 
6201   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6202   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6203 
6204   Value *TrueVal = SI->getTrueValue();
6205   Value *FalseVal = SI->getFalseValue();
6206 
6207   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6208                                             CastOp, Depth);
6209 }
6210 
6211 SelectPatternResult llvm::matchDecomposedSelectPattern(
6212     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6213     Instruction::CastOps *CastOp, unsigned Depth) {
6214   CmpInst::Predicate Pred = CmpI->getPredicate();
6215   Value *CmpLHS = CmpI->getOperand(0);
6216   Value *CmpRHS = CmpI->getOperand(1);
6217   FastMathFlags FMF;
6218   if (isa<FPMathOperator>(CmpI))
6219     FMF = CmpI->getFastMathFlags();
6220 
6221   // Bail out early.
6222   if (CmpI->isEquality())
6223     return {SPF_UNKNOWN, SPNB_NA, false};
6224 
6225   // Deal with type mismatches.
6226   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6227     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6228       // If this is a potential fmin/fmax with a cast to integer, then ignore
6229       // -0.0 because there is no corresponding integer value.
6230       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6231         FMF.setNoSignedZeros();
6232       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6233                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6234                                   LHS, RHS, Depth);
6235     }
6236     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6237       // If this is a potential fmin/fmax with a cast to integer, then ignore
6238       // -0.0 because there is no corresponding integer value.
6239       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6240         FMF.setNoSignedZeros();
6241       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6242                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6243                                   LHS, RHS, Depth);
6244     }
6245   }
6246   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6247                               LHS, RHS, Depth);
6248 }
6249 
6250 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6251   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6252   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6253   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6254   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6255   if (SPF == SPF_FMINNUM)
6256     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6257   if (SPF == SPF_FMAXNUM)
6258     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6259   llvm_unreachable("unhandled!");
6260 }
6261 
6262 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6263   if (SPF == SPF_SMIN) return SPF_SMAX;
6264   if (SPF == SPF_UMIN) return SPF_UMAX;
6265   if (SPF == SPF_SMAX) return SPF_SMIN;
6266   if (SPF == SPF_UMAX) return SPF_UMIN;
6267   llvm_unreachable("unhandled!");
6268 }
6269 
6270 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6271   switch (MinMaxID) {
6272   case Intrinsic::smax: return Intrinsic::smin;
6273   case Intrinsic::smin: return Intrinsic::smax;
6274   case Intrinsic::umax: return Intrinsic::umin;
6275   case Intrinsic::umin: return Intrinsic::umax;
6276   default: llvm_unreachable("Unexpected intrinsic");
6277   }
6278 }
6279 
6280 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6281   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6282 }
6283 
6284 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6285   switch (SPF) {
6286   case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6287   case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6288   case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6289   case SPF_UMIN: return APInt::getMinValue(BitWidth);
6290   default: llvm_unreachable("Unexpected flavor");
6291   }
6292 }
6293 
6294 std::pair<Intrinsic::ID, bool>
6295 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6296   // Check if VL contains select instructions that can be folded into a min/max
6297   // vector intrinsic and return the intrinsic if it is possible.
6298   // TODO: Support floating point min/max.
6299   bool AllCmpSingleUse = true;
6300   SelectPatternResult SelectPattern;
6301   SelectPattern.Flavor = SPF_UNKNOWN;
6302   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6303         Value *LHS, *RHS;
6304         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6305         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6306             CurrentPattern.Flavor == SPF_FMINNUM ||
6307             CurrentPattern.Flavor == SPF_FMAXNUM ||
6308             !I->getType()->isIntOrIntVectorTy())
6309           return false;
6310         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6311             SelectPattern.Flavor != CurrentPattern.Flavor)
6312           return false;
6313         SelectPattern = CurrentPattern;
6314         AllCmpSingleUse &=
6315             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6316         return true;
6317       })) {
6318     switch (SelectPattern.Flavor) {
6319     case SPF_SMIN:
6320       return {Intrinsic::smin, AllCmpSingleUse};
6321     case SPF_UMIN:
6322       return {Intrinsic::umin, AllCmpSingleUse};
6323     case SPF_SMAX:
6324       return {Intrinsic::smax, AllCmpSingleUse};
6325     case SPF_UMAX:
6326       return {Intrinsic::umax, AllCmpSingleUse};
6327     default:
6328       llvm_unreachable("unexpected select pattern flavor");
6329     }
6330   }
6331   return {Intrinsic::not_intrinsic, false};
6332 }
6333 
6334 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6335                                  Value *&Start, Value *&Step) {
6336   // Handle the case of a simple two-predecessor recurrence PHI.
6337   // There's a lot more that could theoretically be done here, but
6338   // this is sufficient to catch some interesting cases.
6339   if (P->getNumIncomingValues() != 2)
6340     return false;
6341 
6342   for (unsigned i = 0; i != 2; ++i) {
6343     Value *L = P->getIncomingValue(i);
6344     Value *R = P->getIncomingValue(!i);
6345     Operator *LU = dyn_cast<Operator>(L);
6346     if (!LU)
6347       continue;
6348     unsigned Opcode = LU->getOpcode();
6349 
6350     switch (Opcode) {
6351     default:
6352       continue;
6353     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6354     case Instruction::LShr:
6355     case Instruction::AShr:
6356     case Instruction::Shl:
6357     case Instruction::Add:
6358     case Instruction::Sub:
6359     case Instruction::And:
6360     case Instruction::Or:
6361     case Instruction::Mul: {
6362       Value *LL = LU->getOperand(0);
6363       Value *LR = LU->getOperand(1);
6364       // Find a recurrence.
6365       if (LL == P)
6366         L = LR;
6367       else if (LR == P)
6368         L = LL;
6369       else
6370         continue; // Check for recurrence with L and R flipped.
6371 
6372       break; // Match!
6373     }
6374     };
6375 
6376     // We have matched a recurrence of the form:
6377     //   %iv = [R, %entry], [%iv.next, %backedge]
6378     //   %iv.next = binop %iv, L
6379     // OR
6380     //   %iv = [R, %entry], [%iv.next, %backedge]
6381     //   %iv.next = binop L, %iv
6382     BO = cast<BinaryOperator>(LU);
6383     Start = R;
6384     Step = L;
6385     return true;
6386   }
6387   return false;
6388 }
6389 
6390 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6391                                  Value *&Start, Value *&Step) {
6392   BinaryOperator *BO = nullptr;
6393   P = dyn_cast<PHINode>(I->getOperand(0));
6394   if (!P)
6395     P = dyn_cast<PHINode>(I->getOperand(1));
6396   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6397 }
6398 
6399 /// Return true if "icmp Pred LHS RHS" is always true.
6400 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6401                             const Value *RHS, const DataLayout &DL,
6402                             unsigned Depth) {
6403   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6404   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6405     return true;
6406 
6407   switch (Pred) {
6408   default:
6409     return false;
6410 
6411   case CmpInst::ICMP_SLE: {
6412     const APInt *C;
6413 
6414     // LHS s<= LHS +_{nsw} C   if C >= 0
6415     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6416       return !C->isNegative();
6417     return false;
6418   }
6419 
6420   case CmpInst::ICMP_ULE: {
6421     const APInt *C;
6422 
6423     // LHS u<= LHS +_{nuw} C   for any C
6424     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6425       return true;
6426 
6427     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6428     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6429                                        const Value *&X,
6430                                        const APInt *&CA, const APInt *&CB) {
6431       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6432           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6433         return true;
6434 
6435       // If X & C == 0 then (X | C) == X +_{nuw} C
6436       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6437           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6438         KnownBits Known(CA->getBitWidth());
6439         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6440                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6441         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6442           return true;
6443       }
6444 
6445       return false;
6446     };
6447 
6448     const Value *X;
6449     const APInt *CLHS, *CRHS;
6450     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6451       return CLHS->ule(*CRHS);
6452 
6453     return false;
6454   }
6455   }
6456 }
6457 
6458 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6459 /// ALHS ARHS" is true.  Otherwise, return None.
6460 static Optional<bool>
6461 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6462                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6463                       const DataLayout &DL, unsigned Depth) {
6464   switch (Pred) {
6465   default:
6466     return None;
6467 
6468   case CmpInst::ICMP_SLT:
6469   case CmpInst::ICMP_SLE:
6470     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6471         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6472       return true;
6473     return None;
6474 
6475   case CmpInst::ICMP_ULT:
6476   case CmpInst::ICMP_ULE:
6477     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6478         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6479       return true;
6480     return None;
6481   }
6482 }
6483 
6484 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6485 /// when the operands match, but are swapped.
6486 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6487                           const Value *BLHS, const Value *BRHS,
6488                           bool &IsSwappedOps) {
6489 
6490   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6491   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6492   return IsMatchingOps || IsSwappedOps;
6493 }
6494 
6495 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6496 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6497 /// Otherwise, return None if we can't infer anything.
6498 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6499                                                     CmpInst::Predicate BPred,
6500                                                     bool AreSwappedOps) {
6501   // Canonicalize the predicate as if the operands were not commuted.
6502   if (AreSwappedOps)
6503     BPred = ICmpInst::getSwappedPredicate(BPred);
6504 
6505   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6506     return true;
6507   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6508     return false;
6509 
6510   return None;
6511 }
6512 
6513 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6514 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6515 /// Otherwise, return None if we can't infer anything.
6516 static Optional<bool>
6517 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6518                                  const ConstantInt *C1,
6519                                  CmpInst::Predicate BPred,
6520                                  const ConstantInt *C2) {
6521   ConstantRange DomCR =
6522       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6523   ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue());
6524   ConstantRange Intersection = DomCR.intersectWith(CR);
6525   ConstantRange Difference = DomCR.difference(CR);
6526   if (Intersection.isEmptySet())
6527     return false;
6528   if (Difference.isEmptySet())
6529     return true;
6530   return None;
6531 }
6532 
6533 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6534 /// false.  Otherwise, return None if we can't infer anything.
6535 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6536                                          CmpInst::Predicate BPred,
6537                                          const Value *BLHS, const Value *BRHS,
6538                                          const DataLayout &DL, bool LHSIsTrue,
6539                                          unsigned Depth) {
6540   Value *ALHS = LHS->getOperand(0);
6541   Value *ARHS = LHS->getOperand(1);
6542 
6543   // The rest of the logic assumes the LHS condition is true.  If that's not the
6544   // case, invert the predicate to make it so.
6545   CmpInst::Predicate APred =
6546       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6547 
6548   // Can we infer anything when the two compares have matching operands?
6549   bool AreSwappedOps;
6550   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6551     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6552             APred, BPred, AreSwappedOps))
6553       return Implication;
6554     // No amount of additional analysis will infer the second condition, so
6555     // early exit.
6556     return None;
6557   }
6558 
6559   // Can we infer anything when the LHS operands match and the RHS operands are
6560   // constants (not necessarily matching)?
6561   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6562     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6563             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6564       return Implication;
6565     // No amount of additional analysis will infer the second condition, so
6566     // early exit.
6567     return None;
6568   }
6569 
6570   if (APred == BPred)
6571     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6572   return None;
6573 }
6574 
6575 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6576 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6577 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6578 static Optional<bool>
6579 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6580                    const Value *RHSOp0, const Value *RHSOp1,
6581                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6582   // The LHS must be an 'or', 'and', or a 'select' instruction.
6583   assert((LHS->getOpcode() == Instruction::And ||
6584           LHS->getOpcode() == Instruction::Or ||
6585           LHS->getOpcode() == Instruction::Select) &&
6586          "Expected LHS to be 'and', 'or', or 'select'.");
6587 
6588   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6589 
6590   // If the result of an 'or' is false, then we know both legs of the 'or' are
6591   // false.  Similarly, if the result of an 'and' is true, then we know both
6592   // legs of the 'and' are true.
6593   const Value *ALHS, *ARHS;
6594   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6595       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6596     // FIXME: Make this non-recursion.
6597     if (Optional<bool> Implication = isImpliedCondition(
6598             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6599       return Implication;
6600     if (Optional<bool> Implication = isImpliedCondition(
6601             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6602       return Implication;
6603     return None;
6604   }
6605   return None;
6606 }
6607 
6608 Optional<bool>
6609 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6610                          const Value *RHSOp0, const Value *RHSOp1,
6611                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6612   // Bail out when we hit the limit.
6613   if (Depth == MaxAnalysisRecursionDepth)
6614     return None;
6615 
6616   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6617   // example.
6618   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6619     return None;
6620 
6621   Type *OpTy = LHS->getType();
6622   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6623 
6624   // FIXME: Extending the code below to handle vectors.
6625   if (OpTy->isVectorTy())
6626     return None;
6627 
6628   assert(OpTy->isIntegerTy(1) && "implied by above");
6629 
6630   // Both LHS and RHS are icmps.
6631   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6632   if (LHSCmp)
6633     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6634                               Depth);
6635 
6636   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6637   /// the RHS to be an icmp.
6638   /// FIXME: Add support for and/or/select on the RHS.
6639   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6640     if ((LHSI->getOpcode() == Instruction::And ||
6641          LHSI->getOpcode() == Instruction::Or ||
6642          LHSI->getOpcode() == Instruction::Select))
6643       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6644                                 Depth);
6645   }
6646   return None;
6647 }
6648 
6649 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6650                                         const DataLayout &DL, bool LHSIsTrue,
6651                                         unsigned Depth) {
6652   // LHS ==> RHS by definition
6653   if (LHS == RHS)
6654     return LHSIsTrue;
6655 
6656   if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
6657     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6658                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6659                               LHSIsTrue, Depth);
6660 
6661   if (Depth == MaxAnalysisRecursionDepth)
6662     return None;
6663 
6664   // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
6665   // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
6666   const Value *RHS1, *RHS2;
6667   if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
6668     if (Optional<bool> Imp =
6669             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6670       if (*Imp == true)
6671         return true;
6672     if (Optional<bool> Imp =
6673             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6674       if (*Imp == true)
6675         return true;
6676   }
6677   if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
6678     if (Optional<bool> Imp =
6679             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6680       if (*Imp == false)
6681         return false;
6682     if (Optional<bool> Imp =
6683             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6684       if (*Imp == false)
6685         return false;
6686   }
6687 
6688   return None;
6689 }
6690 
6691 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6692 // condition dominating ContextI or nullptr, if no condition is found.
6693 static std::pair<Value *, bool>
6694 getDomPredecessorCondition(const Instruction *ContextI) {
6695   if (!ContextI || !ContextI->getParent())
6696     return {nullptr, false};
6697 
6698   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6699   // dominator tree (eg, from a SimplifyQuery) instead?
6700   const BasicBlock *ContextBB = ContextI->getParent();
6701   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6702   if (!PredBB)
6703     return {nullptr, false};
6704 
6705   // We need a conditional branch in the predecessor.
6706   Value *PredCond;
6707   BasicBlock *TrueBB, *FalseBB;
6708   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6709     return {nullptr, false};
6710 
6711   // The branch should get simplified. Don't bother simplifying this condition.
6712   if (TrueBB == FalseBB)
6713     return {nullptr, false};
6714 
6715   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6716          "Predecessor block does not point to successor?");
6717 
6718   // Is this condition implied by the predecessor condition?
6719   return {PredCond, TrueBB == ContextBB};
6720 }
6721 
6722 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6723                                              const Instruction *ContextI,
6724                                              const DataLayout &DL) {
6725   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6726   auto PredCond = getDomPredecessorCondition(ContextI);
6727   if (PredCond.first)
6728     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6729   return None;
6730 }
6731 
6732 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6733                                              const Value *LHS, const Value *RHS,
6734                                              const Instruction *ContextI,
6735                                              const DataLayout &DL) {
6736   auto PredCond = getDomPredecessorCondition(ContextI);
6737   if (PredCond.first)
6738     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6739                               PredCond.second);
6740   return None;
6741 }
6742 
6743 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6744                               APInt &Upper, const InstrInfoQuery &IIQ,
6745                               bool PreferSignedRange) {
6746   unsigned Width = Lower.getBitWidth();
6747   const APInt *C;
6748   switch (BO.getOpcode()) {
6749   case Instruction::Add:
6750     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6751       bool HasNSW = IIQ.hasNoSignedWrap(&BO);
6752       bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
6753 
6754       // If the caller expects a signed compare, then try to use a signed range.
6755       // Otherwise if both no-wraps are set, use the unsigned range because it
6756       // is never larger than the signed range. Example:
6757       // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
6758       if (PreferSignedRange && HasNSW && HasNUW)
6759         HasNUW = false;
6760 
6761       if (HasNUW) {
6762         // 'add nuw x, C' produces [C, UINT_MAX].
6763         Lower = *C;
6764       } else if (HasNSW) {
6765         if (C->isNegative()) {
6766           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6767           Lower = APInt::getSignedMinValue(Width);
6768           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6769         } else {
6770           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6771           Lower = APInt::getSignedMinValue(Width) + *C;
6772           Upper = APInt::getSignedMaxValue(Width) + 1;
6773         }
6774       }
6775     }
6776     break;
6777 
6778   case Instruction::And:
6779     if (match(BO.getOperand(1), m_APInt(C)))
6780       // 'and x, C' produces [0, C].
6781       Upper = *C + 1;
6782     break;
6783 
6784   case Instruction::Or:
6785     if (match(BO.getOperand(1), m_APInt(C)))
6786       // 'or x, C' produces [C, UINT_MAX].
6787       Lower = *C;
6788     break;
6789 
6790   case Instruction::AShr:
6791     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6792       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6793       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6794       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6795     } else if (match(BO.getOperand(0), m_APInt(C))) {
6796       unsigned ShiftAmount = Width - 1;
6797       if (!C->isZero() && IIQ.isExact(&BO))
6798         ShiftAmount = C->countTrailingZeros();
6799       if (C->isNegative()) {
6800         // 'ashr C, x' produces [C, C >> (Width-1)]
6801         Lower = *C;
6802         Upper = C->ashr(ShiftAmount) + 1;
6803       } else {
6804         // 'ashr C, x' produces [C >> (Width-1), C]
6805         Lower = C->ashr(ShiftAmount);
6806         Upper = *C + 1;
6807       }
6808     }
6809     break;
6810 
6811   case Instruction::LShr:
6812     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6813       // 'lshr x, C' produces [0, UINT_MAX >> C].
6814       Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
6815     } else if (match(BO.getOperand(0), m_APInt(C))) {
6816       // 'lshr C, x' produces [C >> (Width-1), C].
6817       unsigned ShiftAmount = Width - 1;
6818       if (!C->isZero() && IIQ.isExact(&BO))
6819         ShiftAmount = C->countTrailingZeros();
6820       Lower = C->lshr(ShiftAmount);
6821       Upper = *C + 1;
6822     }
6823     break;
6824 
6825   case Instruction::Shl:
6826     if (match(BO.getOperand(0), m_APInt(C))) {
6827       if (IIQ.hasNoUnsignedWrap(&BO)) {
6828         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6829         Lower = *C;
6830         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6831       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6832         if (C->isNegative()) {
6833           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6834           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6835           Lower = C->shl(ShiftAmount);
6836           Upper = *C + 1;
6837         } else {
6838           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6839           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6840           Lower = *C;
6841           Upper = C->shl(ShiftAmount) + 1;
6842         }
6843       }
6844     }
6845     break;
6846 
6847   case Instruction::SDiv:
6848     if (match(BO.getOperand(1), m_APInt(C))) {
6849       APInt IntMin = APInt::getSignedMinValue(Width);
6850       APInt IntMax = APInt::getSignedMaxValue(Width);
6851       if (C->isAllOnes()) {
6852         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6853         //    where C != -1 and C != 0 and C != 1
6854         Lower = IntMin + 1;
6855         Upper = IntMax + 1;
6856       } else if (C->countLeadingZeros() < Width - 1) {
6857         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6858         //    where C != -1 and C != 0 and C != 1
6859         Lower = IntMin.sdiv(*C);
6860         Upper = IntMax.sdiv(*C);
6861         if (Lower.sgt(Upper))
6862           std::swap(Lower, Upper);
6863         Upper = Upper + 1;
6864         assert(Upper != Lower && "Upper part of range has wrapped!");
6865       }
6866     } else if (match(BO.getOperand(0), m_APInt(C))) {
6867       if (C->isMinSignedValue()) {
6868         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6869         Lower = *C;
6870         Upper = Lower.lshr(1) + 1;
6871       } else {
6872         // 'sdiv C, x' produces [-|C|, |C|].
6873         Upper = C->abs() + 1;
6874         Lower = (-Upper) + 1;
6875       }
6876     }
6877     break;
6878 
6879   case Instruction::UDiv:
6880     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6881       // 'udiv x, C' produces [0, UINT_MAX / C].
6882       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6883     } else if (match(BO.getOperand(0), m_APInt(C))) {
6884       // 'udiv C, x' produces [0, C].
6885       Upper = *C + 1;
6886     }
6887     break;
6888 
6889   case Instruction::SRem:
6890     if (match(BO.getOperand(1), m_APInt(C))) {
6891       // 'srem x, C' produces (-|C|, |C|).
6892       Upper = C->abs();
6893       Lower = (-Upper) + 1;
6894     }
6895     break;
6896 
6897   case Instruction::URem:
6898     if (match(BO.getOperand(1), m_APInt(C)))
6899       // 'urem x, C' produces [0, C).
6900       Upper = *C;
6901     break;
6902 
6903   default:
6904     break;
6905   }
6906 }
6907 
6908 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6909                                   APInt &Upper) {
6910   unsigned Width = Lower.getBitWidth();
6911   const APInt *C;
6912   switch (II.getIntrinsicID()) {
6913   case Intrinsic::ctpop:
6914   case Intrinsic::ctlz:
6915   case Intrinsic::cttz:
6916     // Maximum of set/clear bits is the bit width.
6917     assert(Lower == 0 && "Expected lower bound to be zero");
6918     Upper = Width + 1;
6919     break;
6920   case Intrinsic::uadd_sat:
6921     // uadd.sat(x, C) produces [C, UINT_MAX].
6922     if (match(II.getOperand(0), m_APInt(C)) ||
6923         match(II.getOperand(1), m_APInt(C)))
6924       Lower = *C;
6925     break;
6926   case Intrinsic::sadd_sat:
6927     if (match(II.getOperand(0), m_APInt(C)) ||
6928         match(II.getOperand(1), m_APInt(C))) {
6929       if (C->isNegative()) {
6930         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6931         Lower = APInt::getSignedMinValue(Width);
6932         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6933       } else {
6934         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6935         Lower = APInt::getSignedMinValue(Width) + *C;
6936         Upper = APInt::getSignedMaxValue(Width) + 1;
6937       }
6938     }
6939     break;
6940   case Intrinsic::usub_sat:
6941     // usub.sat(C, x) produces [0, C].
6942     if (match(II.getOperand(0), m_APInt(C)))
6943       Upper = *C + 1;
6944     // usub.sat(x, C) produces [0, UINT_MAX - C].
6945     else if (match(II.getOperand(1), m_APInt(C)))
6946       Upper = APInt::getMaxValue(Width) - *C + 1;
6947     break;
6948   case Intrinsic::ssub_sat:
6949     if (match(II.getOperand(0), m_APInt(C))) {
6950       if (C->isNegative()) {
6951         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6952         Lower = APInt::getSignedMinValue(Width);
6953         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6954       } else {
6955         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6956         Lower = *C - APInt::getSignedMaxValue(Width);
6957         Upper = APInt::getSignedMaxValue(Width) + 1;
6958       }
6959     } else if (match(II.getOperand(1), m_APInt(C))) {
6960       if (C->isNegative()) {
6961         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6962         Lower = APInt::getSignedMinValue(Width) - *C;
6963         Upper = APInt::getSignedMaxValue(Width) + 1;
6964       } else {
6965         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6966         Lower = APInt::getSignedMinValue(Width);
6967         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6968       }
6969     }
6970     break;
6971   case Intrinsic::umin:
6972   case Intrinsic::umax:
6973   case Intrinsic::smin:
6974   case Intrinsic::smax:
6975     if (!match(II.getOperand(0), m_APInt(C)) &&
6976         !match(II.getOperand(1), m_APInt(C)))
6977       break;
6978 
6979     switch (II.getIntrinsicID()) {
6980     case Intrinsic::umin:
6981       Upper = *C + 1;
6982       break;
6983     case Intrinsic::umax:
6984       Lower = *C;
6985       break;
6986     case Intrinsic::smin:
6987       Lower = APInt::getSignedMinValue(Width);
6988       Upper = *C + 1;
6989       break;
6990     case Intrinsic::smax:
6991       Lower = *C;
6992       Upper = APInt::getSignedMaxValue(Width) + 1;
6993       break;
6994     default:
6995       llvm_unreachable("Must be min/max intrinsic");
6996     }
6997     break;
6998   case Intrinsic::abs:
6999     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
7000     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7001     if (match(II.getOperand(1), m_One()))
7002       Upper = APInt::getSignedMaxValue(Width) + 1;
7003     else
7004       Upper = APInt::getSignedMinValue(Width) + 1;
7005     break;
7006   default:
7007     break;
7008   }
7009 }
7010 
7011 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
7012                                       APInt &Upper, const InstrInfoQuery &IIQ) {
7013   const Value *LHS = nullptr, *RHS = nullptr;
7014   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
7015   if (R.Flavor == SPF_UNKNOWN)
7016     return;
7017 
7018   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
7019 
7020   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
7021     // If the negation part of the abs (in RHS) has the NSW flag,
7022     // then the result of abs(X) is [0..SIGNED_MAX],
7023     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7024     Lower = APInt::getZero(BitWidth);
7025     if (match(RHS, m_Neg(m_Specific(LHS))) &&
7026         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
7027       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7028     else
7029       Upper = APInt::getSignedMinValue(BitWidth) + 1;
7030     return;
7031   }
7032 
7033   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
7034     // The result of -abs(X) is <= 0.
7035     Lower = APInt::getSignedMinValue(BitWidth);
7036     Upper = APInt(BitWidth, 1);
7037     return;
7038   }
7039 
7040   const APInt *C;
7041   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
7042     return;
7043 
7044   switch (R.Flavor) {
7045     case SPF_UMIN:
7046       Upper = *C + 1;
7047       break;
7048     case SPF_UMAX:
7049       Lower = *C;
7050       break;
7051     case SPF_SMIN:
7052       Lower = APInt::getSignedMinValue(BitWidth);
7053       Upper = *C + 1;
7054       break;
7055     case SPF_SMAX:
7056       Lower = *C;
7057       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7058       break;
7059     default:
7060       break;
7061   }
7062 }
7063 
7064 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
7065   // The maximum representable value of a half is 65504. For floats the maximum
7066   // value is 3.4e38 which requires roughly 129 bits.
7067   unsigned BitWidth = I->getType()->getScalarSizeInBits();
7068   if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
7069     return;
7070   if (isa<FPToSIInst>(I) && BitWidth >= 17) {
7071     Lower = APInt(BitWidth, -65504);
7072     Upper = APInt(BitWidth, 65505);
7073   }
7074 
7075   if (isa<FPToUIInst>(I) && BitWidth >= 16) {
7076     // For a fptoui the lower limit is left as 0.
7077     Upper = APInt(BitWidth, 65505);
7078   }
7079 }
7080 
7081 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
7082                                          bool UseInstrInfo, AssumptionCache *AC,
7083                                          const Instruction *CtxI,
7084                                          const DominatorTree *DT,
7085                                          unsigned Depth) {
7086   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
7087 
7088   if (Depth == MaxAnalysisRecursionDepth)
7089     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7090 
7091   const APInt *C;
7092   if (match(V, m_APInt(C)))
7093     return ConstantRange(*C);
7094 
7095   InstrInfoQuery IIQ(UseInstrInfo);
7096   unsigned BitWidth = V->getType()->getScalarSizeInBits();
7097   APInt Lower = APInt(BitWidth, 0);
7098   APInt Upper = APInt(BitWidth, 0);
7099   if (auto *BO = dyn_cast<BinaryOperator>(V))
7100     setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
7101   else if (auto *II = dyn_cast<IntrinsicInst>(V))
7102     setLimitsForIntrinsic(*II, Lower, Upper);
7103   else if (auto *SI = dyn_cast<SelectInst>(V))
7104     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7105   else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7106     setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7107 
7108   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7109 
7110   if (auto *I = dyn_cast<Instruction>(V))
7111     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7112       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7113 
7114   if (CtxI && AC) {
7115     // Try to restrict the range based on information from assumptions.
7116     for (auto &AssumeVH : AC->assumptionsFor(V)) {
7117       if (!AssumeVH)
7118         continue;
7119       CallInst *I = cast<CallInst>(AssumeVH);
7120       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7121              "Got assumption for the wrong function!");
7122       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
7123              "must be an assume intrinsic");
7124 
7125       if (!isValidAssumeForContext(I, CtxI, DT))
7126         continue;
7127       Value *Arg = I->getArgOperand(0);
7128       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7129       // Currently we just use information from comparisons.
7130       if (!Cmp || Cmp->getOperand(0) != V)
7131         continue;
7132       // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7133       ConstantRange RHS =
7134           computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7135                                UseInstrInfo, AC, I, DT, Depth + 1);
7136       CR = CR.intersectWith(
7137           ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7138     }
7139   }
7140 
7141   return CR;
7142 }
7143 
7144 static Optional<int64_t>
7145 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7146   // Skip over the first indices.
7147   gep_type_iterator GTI = gep_type_begin(GEP);
7148   for (unsigned i = 1; i != Idx; ++i, ++GTI)
7149     /*skip along*/;
7150 
7151   // Compute the offset implied by the rest of the indices.
7152   int64_t Offset = 0;
7153   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7154     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7155     if (!OpC)
7156       return None;
7157     if (OpC->isZero())
7158       continue; // No offset.
7159 
7160     // Handle struct indices, which add their field offset to the pointer.
7161     if (StructType *STy = GTI.getStructTypeOrNull()) {
7162       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7163       continue;
7164     }
7165 
7166     // Otherwise, we have a sequential type like an array or fixed-length
7167     // vector. Multiply the index by the ElementSize.
7168     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7169     if (Size.isScalable())
7170       return None;
7171     Offset += Size.getFixedSize() * OpC->getSExtValue();
7172   }
7173 
7174   return Offset;
7175 }
7176 
7177 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7178                                         const DataLayout &DL) {
7179   APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
7180   APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
7181   Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
7182   Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
7183 
7184   // Handle the trivial case first.
7185   if (Ptr1 == Ptr2)
7186     return Offset2.getSExtValue() - Offset1.getSExtValue();
7187 
7188   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7189   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7190 
7191   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7192   // base.  After that base, they may have some number of common (and
7193   // potentially variable) indices.  After that they handle some constant
7194   // offset, which determines their offset from each other.  At this point, we
7195   // handle no other case.
7196   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
7197       GEP1->getSourceElementType() != GEP2->getSourceElementType())
7198     return None;
7199 
7200   // Skip any common indices and track the GEP types.
7201   unsigned Idx = 1;
7202   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7203     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7204       break;
7205 
7206   auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
7207   auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
7208   if (!IOffset1 || !IOffset2)
7209     return None;
7210   return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
7211          Offset1.getSExtValue();
7212 }
7213