1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 // According to the LangRef, branching on a poison condition is absolutely 86 // immediate full UB. However, historically we haven't implemented that 87 // consistently as we have an important transformation (non-trivial unswitch) 88 // which introduces instances of branch on poison/undef to otherwise well 89 // defined programs. This flag exists to let us test optimization benefit 90 // of exploiting the specified behavior (in combination with enabling the 91 // unswitch fix.) 92 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 93 cl::Hidden, cl::init(false)); 94 95 96 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 97 /// returns the element type's bitwidth. 98 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 99 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 100 return BitWidth; 101 102 return DL.getPointerTypeSizeInBits(Ty); 103 } 104 105 namespace { 106 107 // Simplifying using an assume can only be done in a particular control-flow 108 // context (the context instruction provides that context). If an assume and 109 // the context instruction are not in the same block then the DT helps in 110 // figuring out if we can use it. 111 struct Query { 112 const DataLayout &DL; 113 AssumptionCache *AC; 114 const Instruction *CxtI; 115 const DominatorTree *DT; 116 117 // Unlike the other analyses, this may be a nullptr because not all clients 118 // provide it currently. 119 OptimizationRemarkEmitter *ORE; 120 121 /// If true, it is safe to use metadata during simplification. 122 InstrInfoQuery IIQ; 123 124 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 125 const DominatorTree *DT, bool UseInstrInfo, 126 OptimizationRemarkEmitter *ORE = nullptr) 127 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 128 }; 129 130 } // end anonymous namespace 131 132 // Given the provided Value and, potentially, a context instruction, return 133 // the preferred context instruction (if any). 134 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 135 // If we've been provided with a context instruction, then use that (provided 136 // it has been inserted). 137 if (CxtI && CxtI->getParent()) 138 return CxtI; 139 140 // If the value is really an already-inserted instruction, then use that. 141 CxtI = dyn_cast<Instruction>(V); 142 if (CxtI && CxtI->getParent()) 143 return CxtI; 144 145 return nullptr; 146 } 147 148 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 149 // If we've been provided with a context instruction, then use that (provided 150 // it has been inserted). 151 if (CxtI && CxtI->getParent()) 152 return CxtI; 153 154 // If the value is really an already-inserted instruction, then use that. 155 CxtI = dyn_cast<Instruction>(V1); 156 if (CxtI && CxtI->getParent()) 157 return CxtI; 158 159 CxtI = dyn_cast<Instruction>(V2); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 178 if (DemandedElts.isZero()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 // FIXME: We currently have no way to represent the DemandedElts of a scalable 210 // vector 211 if (isa<ScalableVectorType>(V->getType())) { 212 Known.resetAll(); 213 return; 214 } 215 216 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 217 APInt DemandedElts = 218 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 219 computeKnownBits(V, DemandedElts, Known, Depth, Q); 220 } 221 222 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 223 const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, const Instruction *CxtI, 225 const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 232 KnownBits &Known, const DataLayout &DL, 233 unsigned Depth, AssumptionCache *AC, 234 const Instruction *CxtI, const DominatorTree *DT, 235 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 236 ::computeKnownBits(V, DemandedElts, Known, Depth, 237 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 238 } 239 240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 241 unsigned Depth, const Query &Q); 242 243 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 257 const DataLayout &DL, unsigned Depth, 258 AssumptionCache *AC, const Instruction *CxtI, 259 const DominatorTree *DT, 260 OptimizationRemarkEmitter *ORE, 261 bool UseInstrInfo) { 262 return ::computeKnownBits( 263 V, DemandedElts, Depth, 264 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 265 } 266 267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 268 const DataLayout &DL, AssumptionCache *AC, 269 const Instruction *CxtI, const DominatorTree *DT, 270 bool UseInstrInfo) { 271 assert(LHS->getType() == RHS->getType() && 272 "LHS and RHS should have the same type"); 273 assert(LHS->getType()->isIntOrIntVectorTy() && 274 "LHS and RHS should be integers"); 275 // Look for an inverted mask: (X & ~M) op (Y & M). 276 { 277 Value *M; 278 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(RHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 282 match(LHS, m_c_And(m_Specific(M), m_Value()))) 283 return true; 284 } 285 286 // X op (Y & ~X) 287 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || 288 match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) 289 return true; 290 291 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern 292 // for constant Y. 293 Value *Y; 294 if (match(RHS, 295 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || 296 match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) 297 return true; 298 299 // Look for: (A & B) op ~(A | B) 300 { 301 Value *A, *B; 302 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 303 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 304 return true; 305 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 306 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 307 return true; 308 } 309 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 310 KnownBits LHSKnown(IT->getBitWidth()); 311 KnownBits RHSKnown(IT->getBitWidth()); 312 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 313 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 314 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 315 } 316 317 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 318 return !I->user_empty() && all_of(I->users(), [](const User *U) { 319 ICmpInst::Predicate P; 320 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 321 }); 322 } 323 324 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 325 const Query &Q); 326 327 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 328 bool OrZero, unsigned Depth, 329 AssumptionCache *AC, const Instruction *CxtI, 330 const DominatorTree *DT, bool UseInstrInfo) { 331 return ::isKnownToBeAPowerOfTwo( 332 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 333 } 334 335 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 336 unsigned Depth, const Query &Q); 337 338 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 339 340 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 341 AssumptionCache *AC, const Instruction *CxtI, 342 const DominatorTree *DT, bool UseInstrInfo) { 343 return ::isKnownNonZero(V, Depth, 344 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 345 } 346 347 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 348 unsigned Depth, AssumptionCache *AC, 349 const Instruction *CxtI, const DominatorTree *DT, 350 bool UseInstrInfo) { 351 KnownBits Known = 352 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 353 return Known.isNonNegative(); 354 } 355 356 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 357 AssumptionCache *AC, const Instruction *CxtI, 358 const DominatorTree *DT, bool UseInstrInfo) { 359 if (auto *CI = dyn_cast<ConstantInt>(V)) 360 return CI->getValue().isStrictlyPositive(); 361 362 // TODO: We'd doing two recursive queries here. We should factor this such 363 // that only a single query is needed. 364 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 365 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 366 } 367 368 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 KnownBits Known = 372 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 373 return Known.isNegative(); 374 } 375 376 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 377 const Query &Q); 378 379 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 380 const DataLayout &DL, AssumptionCache *AC, 381 const Instruction *CxtI, const DominatorTree *DT, 382 bool UseInstrInfo) { 383 return ::isKnownNonEqual(V1, V2, 0, 384 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 385 UseInstrInfo, /*ORE=*/nullptr)); 386 } 387 388 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 389 const Query &Q); 390 391 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 392 const DataLayout &DL, unsigned Depth, 393 AssumptionCache *AC, const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::MaskedValueIsZero( 396 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 400 unsigned Depth, const Query &Q); 401 402 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 403 const Query &Q) { 404 // FIXME: We currently have no way to represent the DemandedElts of a scalable 405 // vector 406 if (isa<ScalableVectorType>(V->getType())) 407 return 1; 408 409 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 410 APInt DemandedElts = 411 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 412 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 413 } 414 415 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 416 unsigned Depth, AssumptionCache *AC, 417 const Instruction *CxtI, 418 const DominatorTree *DT, bool UseInstrInfo) { 419 return ::ComputeNumSignBits( 420 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 421 } 422 423 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 424 unsigned Depth, AssumptionCache *AC, 425 const Instruction *CxtI, 426 const DominatorTree *DT) { 427 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 428 return V->getType()->getScalarSizeInBits() - SignBits + 1; 429 } 430 431 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 432 bool NSW, const APInt &DemandedElts, 433 KnownBits &KnownOut, KnownBits &Known2, 434 unsigned Depth, const Query &Q) { 435 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 436 437 // If one operand is unknown and we have no nowrap information, 438 // the result will be unknown independently of the second operand. 439 if (KnownOut.isUnknown() && !NSW) 440 return; 441 442 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 443 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 444 } 445 446 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 447 const APInt &DemandedElts, KnownBits &Known, 448 KnownBits &Known2, unsigned Depth, 449 const Query &Q) { 450 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 451 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 452 453 bool isKnownNegative = false; 454 bool isKnownNonNegative = false; 455 // If the multiplication is known not to overflow, compute the sign bit. 456 if (NSW) { 457 if (Op0 == Op1) { 458 // The product of a number with itself is non-negative. 459 isKnownNonNegative = true; 460 } else { 461 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 462 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 463 bool isKnownNegativeOp1 = Known.isNegative(); 464 bool isKnownNegativeOp0 = Known2.isNegative(); 465 // The product of two numbers with the same sign is non-negative. 466 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 467 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 468 // The product of a negative number and a non-negative number is either 469 // negative or zero. 470 if (!isKnownNonNegative) 471 isKnownNegative = 472 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 473 Known2.isNonZero()) || 474 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 475 } 476 } 477 478 bool SelfMultiply = Op0 == Op1; 479 // TODO: SelfMultiply can be poison, but not undef. 480 if (SelfMultiply) 481 SelfMultiply &= 482 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 483 Known = KnownBits::mul(Known, Known2, SelfMultiply); 484 485 // Only make use of no-wrap flags if we failed to compute the sign bit 486 // directly. This matters if the multiplication always overflows, in 487 // which case we prefer to follow the result of the direct computation, 488 // though as the program is invoking undefined behaviour we can choose 489 // whatever we like here. 490 if (isKnownNonNegative && !Known.isNegative()) 491 Known.makeNonNegative(); 492 else if (isKnownNegative && !Known.isNonNegative()) 493 Known.makeNegative(); 494 } 495 496 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 497 KnownBits &Known) { 498 unsigned BitWidth = Known.getBitWidth(); 499 unsigned NumRanges = Ranges.getNumOperands() / 2; 500 assert(NumRanges >= 1); 501 502 Known.Zero.setAllBits(); 503 Known.One.setAllBits(); 504 505 for (unsigned i = 0; i < NumRanges; ++i) { 506 ConstantInt *Lower = 507 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 508 ConstantInt *Upper = 509 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 510 ConstantRange Range(Lower->getValue(), Upper->getValue()); 511 512 // The first CommonPrefixBits of all values in Range are equal. 513 unsigned CommonPrefixBits = 514 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 515 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 516 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 517 Known.One &= UnsignedMax & Mask; 518 Known.Zero &= ~UnsignedMax & Mask; 519 } 520 } 521 522 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 523 SmallVector<const Value *, 16> WorkSet(1, I); 524 SmallPtrSet<const Value *, 32> Visited; 525 SmallPtrSet<const Value *, 16> EphValues; 526 527 // The instruction defining an assumption's condition itself is always 528 // considered ephemeral to that assumption (even if it has other 529 // non-ephemeral users). See r246696's test case for an example. 530 if (is_contained(I->operands(), E)) 531 return true; 532 533 while (!WorkSet.empty()) { 534 const Value *V = WorkSet.pop_back_val(); 535 if (!Visited.insert(V).second) 536 continue; 537 538 // If all uses of this value are ephemeral, then so is this value. 539 if (llvm::all_of(V->users(), [&](const User *U) { 540 return EphValues.count(U); 541 })) { 542 if (V == E) 543 return true; 544 545 if (V == I || (isa<Instruction>(V) && 546 !cast<Instruction>(V)->mayHaveSideEffects() && 547 !cast<Instruction>(V)->isTerminator())) { 548 EphValues.insert(V); 549 if (const User *U = dyn_cast<User>(V)) 550 append_range(WorkSet, U->operands()); 551 } 552 } 553 } 554 555 return false; 556 } 557 558 // Is this an intrinsic that cannot be speculated but also cannot trap? 559 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 560 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 561 return CI->isAssumeLikeIntrinsic(); 562 563 return false; 564 } 565 566 bool llvm::isValidAssumeForContext(const Instruction *Inv, 567 const Instruction *CxtI, 568 const DominatorTree *DT) { 569 // There are two restrictions on the use of an assume: 570 // 1. The assume must dominate the context (or the control flow must 571 // reach the assume whenever it reaches the context). 572 // 2. The context must not be in the assume's set of ephemeral values 573 // (otherwise we will use the assume to prove that the condition 574 // feeding the assume is trivially true, thus causing the removal of 575 // the assume). 576 577 if (Inv->getParent() == CxtI->getParent()) { 578 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 579 // in the BB. 580 if (Inv->comesBefore(CxtI)) 581 return true; 582 583 // Don't let an assume affect itself - this would cause the problems 584 // `isEphemeralValueOf` is trying to prevent, and it would also make 585 // the loop below go out of bounds. 586 if (Inv == CxtI) 587 return false; 588 589 // The context comes first, but they're both in the same block. 590 // Make sure there is nothing in between that might interrupt 591 // the control flow, not even CxtI itself. 592 // We limit the scan distance between the assume and its context instruction 593 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 594 // it can be adjusted if needed (could be turned into a cl::opt). 595 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 596 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 597 return false; 598 599 return !isEphemeralValueOf(Inv, CxtI); 600 } 601 602 // Inv and CxtI are in different blocks. 603 if (DT) { 604 if (DT->dominates(Inv, CxtI)) 605 return true; 606 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 607 // We don't have a DT, but this trivially dominates. 608 return true; 609 } 610 611 return false; 612 } 613 614 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 615 // v u> y implies v != 0. 616 if (Pred == ICmpInst::ICMP_UGT) 617 return true; 618 619 // Special-case v != 0 to also handle v != null. 620 if (Pred == ICmpInst::ICMP_NE) 621 return match(RHS, m_Zero()); 622 623 // All other predicates - rely on generic ConstantRange handling. 624 const APInt *C; 625 if (!match(RHS, m_APInt(C))) 626 return false; 627 628 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 629 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 630 } 631 632 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 633 // Use of assumptions is context-sensitive. If we don't have a context, we 634 // cannot use them! 635 if (!Q.AC || !Q.CxtI) 636 return false; 637 638 if (Q.CxtI && V->getType()->isPointerTy()) { 639 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 640 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 641 V->getType()->getPointerAddressSpace())) 642 AttrKinds.push_back(Attribute::Dereferenceable); 643 644 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 645 return true; 646 } 647 648 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 649 if (!AssumeVH) 650 continue; 651 CallInst *I = cast<CallInst>(AssumeVH); 652 assert(I->getFunction() == Q.CxtI->getFunction() && 653 "Got assumption for the wrong function!"); 654 655 // Warning: This loop can end up being somewhat performance sensitive. 656 // We're running this loop for once for each value queried resulting in a 657 // runtime of ~O(#assumes * #values). 658 659 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 660 "must be an assume intrinsic"); 661 662 Value *RHS; 663 CmpInst::Predicate Pred; 664 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 665 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 666 return false; 667 668 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 669 return true; 670 } 671 672 return false; 673 } 674 675 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 676 unsigned Depth, const Query &Q) { 677 // Use of assumptions is context-sensitive. If we don't have a context, we 678 // cannot use them! 679 if (!Q.AC || !Q.CxtI) 680 return; 681 682 unsigned BitWidth = Known.getBitWidth(); 683 684 // Refine Known set if the pointer alignment is set by assume bundles. 685 if (V->getType()->isPointerTy()) { 686 if (RetainedKnowledge RK = getKnowledgeValidInContext( 687 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 688 if (isPowerOf2_64(RK.ArgValue)) 689 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 690 } 691 } 692 693 // Note that the patterns below need to be kept in sync with the code 694 // in AssumptionCache::updateAffectedValues. 695 696 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 697 if (!AssumeVH) 698 continue; 699 CallInst *I = cast<CallInst>(AssumeVH); 700 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 701 "Got assumption for the wrong function!"); 702 703 // Warning: This loop can end up being somewhat performance sensitive. 704 // We're running this loop for once for each value queried resulting in a 705 // runtime of ~O(#assumes * #values). 706 707 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 708 "must be an assume intrinsic"); 709 710 Value *Arg = I->getArgOperand(0); 711 712 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 713 assert(BitWidth == 1 && "assume operand is not i1?"); 714 Known.setAllOnes(); 715 return; 716 } 717 if (match(Arg, m_Not(m_Specific(V))) && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 assert(BitWidth == 1 && "assume operand is not i1?"); 720 Known.setAllZero(); 721 return; 722 } 723 724 // The remaining tests are all recursive, so bail out if we hit the limit. 725 if (Depth == MaxAnalysisRecursionDepth) 726 continue; 727 728 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 729 if (!Cmp) 730 continue; 731 732 // We are attempting to compute known bits for the operands of an assume. 733 // Do not try to use other assumptions for those recursive calls because 734 // that can lead to mutual recursion and a compile-time explosion. 735 // An example of the mutual recursion: computeKnownBits can call 736 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 737 // and so on. 738 Query QueryNoAC = Q; 739 QueryNoAC.AC = nullptr; 740 741 // Note that ptrtoint may change the bitwidth. 742 Value *A, *B; 743 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 744 745 CmpInst::Predicate Pred; 746 uint64_t C; 747 switch (Cmp->getPredicate()) { 748 default: 749 break; 750 case ICmpInst::ICMP_EQ: 751 // assume(v = a) 752 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 753 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 754 KnownBits RHSKnown = 755 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 756 Known.Zero |= RHSKnown.Zero; 757 Known.One |= RHSKnown.One; 758 // assume(v & b = a) 759 } else if (match(Cmp, 760 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 KnownBits RHSKnown = 763 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 764 KnownBits MaskKnown = 765 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 766 767 // For those bits in the mask that are known to be one, we can propagate 768 // known bits from the RHS to V. 769 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 770 Known.One |= RHSKnown.One & MaskKnown.One; 771 // assume(~(v & b) = a) 772 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 773 m_Value(A))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 KnownBits RHSKnown = 776 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 777 KnownBits MaskKnown = 778 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 779 780 // For those bits in the mask that are known to be one, we can propagate 781 // inverted known bits from the RHS to V. 782 Known.Zero |= RHSKnown.One & MaskKnown.One; 783 Known.One |= RHSKnown.Zero & MaskKnown.One; 784 // assume(v | b = a) 785 } else if (match(Cmp, 786 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown = 789 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 790 KnownBits BKnown = 791 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 792 793 // For those bits in B that are known to be zero, we can propagate known 794 // bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 796 Known.One |= RHSKnown.One & BKnown.Zero; 797 // assume(~(v | b) = a) 798 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 799 m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown = 802 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 803 KnownBits BKnown = 804 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 805 806 // For those bits in B that are known to be zero, we can propagate 807 // inverted known bits from the RHS to V. 808 Known.Zero |= RHSKnown.One & BKnown.Zero; 809 Known.One |= RHSKnown.Zero & BKnown.Zero; 810 // assume(v ^ b = a) 811 } else if (match(Cmp, 812 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 813 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 814 KnownBits RHSKnown = 815 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 816 KnownBits BKnown = 817 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 818 819 // For those bits in B that are known to be zero, we can propagate known 820 // bits from the RHS to V. For those bits in B that are known to be one, 821 // we can propagate inverted known bits from the RHS to V. 822 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 823 Known.One |= RHSKnown.One & BKnown.Zero; 824 Known.Zero |= RHSKnown.One & BKnown.One; 825 Known.One |= RHSKnown.Zero & BKnown.One; 826 // assume(~(v ^ b) = a) 827 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 828 m_Value(A))) && 829 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 830 KnownBits RHSKnown = 831 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 832 KnownBits BKnown = 833 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 834 835 // For those bits in B that are known to be zero, we can propagate 836 // inverted known bits from the RHS to V. For those bits in B that are 837 // known to be one, we can propagate known bits from the RHS to V. 838 Known.Zero |= RHSKnown.One & BKnown.Zero; 839 Known.One |= RHSKnown.Zero & BKnown.Zero; 840 Known.Zero |= RHSKnown.Zero & BKnown.One; 841 Known.One |= RHSKnown.One & BKnown.One; 842 // assume(v << c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 848 849 // For those bits in RHS that are known, we can propagate them to known 850 // bits in V shifted to the right by C. 851 RHSKnown.Zero.lshrInPlace(C); 852 Known.Zero |= RHSKnown.Zero; 853 RHSKnown.One.lshrInPlace(C); 854 Known.One |= RHSKnown.One; 855 // assume(~(v << c) = a) 856 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 857 m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 861 // For those bits in RHS that are known, we can propagate them inverted 862 // to known bits in V shifted to the right by C. 863 RHSKnown.One.lshrInPlace(C); 864 Known.Zero |= RHSKnown.One; 865 RHSKnown.Zero.lshrInPlace(C); 866 Known.One |= RHSKnown.Zero; 867 // assume(v >> c = a) 868 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 869 m_Value(A))) && 870 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 871 KnownBits RHSKnown = 872 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 873 // For those bits in RHS that are known, we can propagate them to known 874 // bits in V shifted to the right by C. 875 Known.Zero |= RHSKnown.Zero << C; 876 Known.One |= RHSKnown.One << C; 877 // assume(~(v >> c) = a) 878 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 879 m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 883 // For those bits in RHS that are known, we can propagate them inverted 884 // to known bits in V shifted to the right by C. 885 Known.Zero |= RHSKnown.One << C; 886 Known.One |= RHSKnown.Zero << C; 887 } 888 break; 889 case ICmpInst::ICMP_SGE: 890 // assume(v >=_s c) where c is non-negative 891 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 895 896 if (RHSKnown.isNonNegative()) { 897 // We know that the sign bit is zero. 898 Known.makeNonNegative(); 899 } 900 } 901 break; 902 case ICmpInst::ICMP_SGT: 903 // assume(v >_s c) where c is at least -1. 904 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 908 909 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 910 // We know that the sign bit is zero. 911 Known.makeNonNegative(); 912 } 913 } 914 break; 915 case ICmpInst::ICMP_SLE: 916 // assume(v <=_s c) where c is negative 917 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 918 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 919 KnownBits RHSKnown = 920 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 921 922 if (RHSKnown.isNegative()) { 923 // We know that the sign bit is one. 924 Known.makeNegative(); 925 } 926 } 927 break; 928 case ICmpInst::ICMP_SLT: 929 // assume(v <_s c) where c is non-positive 930 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 931 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 932 KnownBits RHSKnown = 933 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 934 935 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 936 // We know that the sign bit is one. 937 Known.makeNegative(); 938 } 939 } 940 break; 941 case ICmpInst::ICMP_ULE: 942 // assume(v <=_u c) 943 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 944 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 945 KnownBits RHSKnown = 946 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 947 948 // Whatever high bits in c are zero are known to be zero. 949 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 950 } 951 break; 952 case ICmpInst::ICMP_ULT: 953 // assume(v <_u c) 954 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 955 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 956 KnownBits RHSKnown = 957 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 958 959 // If the RHS is known zero, then this assumption must be wrong (nothing 960 // is unsigned less than zero). Signal a conflict and get out of here. 961 if (RHSKnown.isZero()) { 962 Known.Zero.setAllBits(); 963 Known.One.setAllBits(); 964 break; 965 } 966 967 // Whatever high bits in c are zero are known to be zero (if c is a power 968 // of 2, then one more). 969 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 970 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 971 else 972 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 973 } 974 break; 975 } 976 } 977 978 // If assumptions conflict with each other or previous known bits, then we 979 // have a logical fallacy. It's possible that the assumption is not reachable, 980 // so this isn't a real bug. On the other hand, the program may have undefined 981 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 982 // clear out the known bits, try to warn the user, and hope for the best. 983 if (Known.Zero.intersects(Known.One)) { 984 Known.resetAll(); 985 986 if (Q.ORE) 987 Q.ORE->emit([&]() { 988 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 989 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 990 CxtI) 991 << "Detected conflicting code assumptions. Program may " 992 "have undefined behavior, or compiler may have " 993 "internal error."; 994 }); 995 } 996 } 997 998 /// Compute known bits from a shift operator, including those with a 999 /// non-constant shift amount. Known is the output of this function. Known2 is a 1000 /// pre-allocated temporary with the same bit width as Known and on return 1001 /// contains the known bit of the shift value source. KF is an 1002 /// operator-specific function that, given the known-bits and a shift amount, 1003 /// compute the implied known-bits of the shift operator's result respectively 1004 /// for that shift amount. The results from calling KF are conservatively 1005 /// combined for all permitted shift amounts. 1006 static void computeKnownBitsFromShiftOperator( 1007 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1008 KnownBits &Known2, unsigned Depth, const Query &Q, 1009 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 1010 unsigned BitWidth = Known.getBitWidth(); 1011 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1012 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1013 1014 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1015 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1016 // limit value (which implies all bits are known). 1017 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1018 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1019 bool ShiftAmtIsConstant = Known.isConstant(); 1020 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1021 1022 if (ShiftAmtIsConstant) { 1023 Known = KF(Known2, Known); 1024 1025 // If the known bits conflict, this must be an overflowing left shift, so 1026 // the shift result is poison. We can return anything we want. Choose 0 for 1027 // the best folding opportunity. 1028 if (Known.hasConflict()) 1029 Known.setAllZero(); 1030 1031 return; 1032 } 1033 1034 // If the shift amount could be greater than or equal to the bit-width of the 1035 // LHS, the value could be poison, but bail out because the check below is 1036 // expensive. 1037 // TODO: Should we just carry on? 1038 if (MaxShiftAmtIsOutOfRange) { 1039 Known.resetAll(); 1040 return; 1041 } 1042 1043 // It would be more-clearly correct to use the two temporaries for this 1044 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1045 Known.resetAll(); 1046 1047 // If we know the shifter operand is nonzero, we can sometimes infer more 1048 // known bits. However this is expensive to compute, so be lazy about it and 1049 // only compute it when absolutely necessary. 1050 Optional<bool> ShifterOperandIsNonZero; 1051 1052 // Early exit if we can't constrain any well-defined shift amount. 1053 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1054 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1055 ShifterOperandIsNonZero = 1056 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1057 if (!*ShifterOperandIsNonZero) 1058 return; 1059 } 1060 1061 Known.Zero.setAllBits(); 1062 Known.One.setAllBits(); 1063 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1064 // Combine the shifted known input bits only for those shift amounts 1065 // compatible with its known constraints. 1066 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1067 continue; 1068 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1069 continue; 1070 // If we know the shifter is nonzero, we may be able to infer more known 1071 // bits. This check is sunk down as far as possible to avoid the expensive 1072 // call to isKnownNonZero if the cheaper checks above fail. 1073 if (ShiftAmt == 0) { 1074 if (!ShifterOperandIsNonZero.hasValue()) 1075 ShifterOperandIsNonZero = 1076 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1077 if (*ShifterOperandIsNonZero) 1078 continue; 1079 } 1080 1081 Known = KnownBits::commonBits( 1082 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1083 } 1084 1085 // If the known bits conflict, the result is poison. Return a 0 and hope the 1086 // caller can further optimize that. 1087 if (Known.hasConflict()) 1088 Known.setAllZero(); 1089 } 1090 1091 static void computeKnownBitsFromOperator(const Operator *I, 1092 const APInt &DemandedElts, 1093 KnownBits &Known, unsigned Depth, 1094 const Query &Q) { 1095 unsigned BitWidth = Known.getBitWidth(); 1096 1097 KnownBits Known2(BitWidth); 1098 switch (I->getOpcode()) { 1099 default: break; 1100 case Instruction::Load: 1101 if (MDNode *MD = 1102 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1103 computeKnownBitsFromRangeMetadata(*MD, Known); 1104 break; 1105 case Instruction::And: { 1106 // If either the LHS or the RHS are Zero, the result is zero. 1107 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1108 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1109 1110 Known &= Known2; 1111 1112 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1113 // here we handle the more general case of adding any odd number by 1114 // matching the form add(x, add(x, y)) where y is odd. 1115 // TODO: This could be generalized to clearing any bit set in y where the 1116 // following bit is known to be unset in y. 1117 Value *X = nullptr, *Y = nullptr; 1118 if (!Known.Zero[0] && !Known.One[0] && 1119 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1120 Known2.resetAll(); 1121 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1122 if (Known2.countMinTrailingOnes() > 0) 1123 Known.Zero.setBit(0); 1124 } 1125 break; 1126 } 1127 case Instruction::Or: 1128 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1129 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1130 1131 Known |= Known2; 1132 break; 1133 case Instruction::Xor: 1134 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1135 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1136 1137 Known ^= Known2; 1138 break; 1139 case Instruction::Mul: { 1140 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1141 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1142 Known, Known2, Depth, Q); 1143 break; 1144 } 1145 case Instruction::UDiv: { 1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1147 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1148 Known = KnownBits::udiv(Known, Known2); 1149 break; 1150 } 1151 case Instruction::Select: { 1152 const Value *LHS = nullptr, *RHS = nullptr; 1153 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1154 if (SelectPatternResult::isMinOrMax(SPF)) { 1155 computeKnownBits(RHS, Known, Depth + 1, Q); 1156 computeKnownBits(LHS, Known2, Depth + 1, Q); 1157 switch (SPF) { 1158 default: 1159 llvm_unreachable("Unhandled select pattern flavor!"); 1160 case SPF_SMAX: 1161 Known = KnownBits::smax(Known, Known2); 1162 break; 1163 case SPF_SMIN: 1164 Known = KnownBits::smin(Known, Known2); 1165 break; 1166 case SPF_UMAX: 1167 Known = KnownBits::umax(Known, Known2); 1168 break; 1169 case SPF_UMIN: 1170 Known = KnownBits::umin(Known, Known2); 1171 break; 1172 } 1173 break; 1174 } 1175 1176 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1178 1179 // Only known if known in both the LHS and RHS. 1180 Known = KnownBits::commonBits(Known, Known2); 1181 1182 if (SPF == SPF_ABS) { 1183 // RHS from matchSelectPattern returns the negation part of abs pattern. 1184 // If the negate has an NSW flag we can assume the sign bit of the result 1185 // will be 0 because that makes abs(INT_MIN) undefined. 1186 if (match(RHS, m_Neg(m_Specific(LHS))) && 1187 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1188 Known.Zero.setSignBit(); 1189 } 1190 1191 break; 1192 } 1193 case Instruction::FPTrunc: 1194 case Instruction::FPExt: 1195 case Instruction::FPToUI: 1196 case Instruction::FPToSI: 1197 case Instruction::SIToFP: 1198 case Instruction::UIToFP: 1199 break; // Can't work with floating point. 1200 case Instruction::PtrToInt: 1201 case Instruction::IntToPtr: 1202 // Fall through and handle them the same as zext/trunc. 1203 LLVM_FALLTHROUGH; 1204 case Instruction::ZExt: 1205 case Instruction::Trunc: { 1206 Type *SrcTy = I->getOperand(0)->getType(); 1207 1208 unsigned SrcBitWidth; 1209 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1210 // which fall through here. 1211 Type *ScalarTy = SrcTy->getScalarType(); 1212 SrcBitWidth = ScalarTy->isPointerTy() ? 1213 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1214 Q.DL.getTypeSizeInBits(ScalarTy); 1215 1216 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1217 Known = Known.anyextOrTrunc(SrcBitWidth); 1218 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1219 Known = Known.zextOrTrunc(BitWidth); 1220 break; 1221 } 1222 case Instruction::BitCast: { 1223 Type *SrcTy = I->getOperand(0)->getType(); 1224 if (SrcTy->isIntOrPtrTy() && 1225 // TODO: For now, not handling conversions like: 1226 // (bitcast i64 %x to <2 x i32>) 1227 !I->getType()->isVectorTy()) { 1228 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1229 break; 1230 } 1231 1232 // Handle cast from vector integer type to scalar or vector integer. 1233 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1234 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1235 !I->getType()->isIntOrIntVectorTy()) 1236 break; 1237 1238 // Look through a cast from narrow vector elements to wider type. 1239 // Examples: v4i32 -> v2i64, v3i8 -> v24 1240 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1241 if (BitWidth % SubBitWidth == 0) { 1242 // Known bits are automatically intersected across demanded elements of a 1243 // vector. So for example, if a bit is computed as known zero, it must be 1244 // zero across all demanded elements of the vector. 1245 // 1246 // For this bitcast, each demanded element of the output is sub-divided 1247 // across a set of smaller vector elements in the source vector. To get 1248 // the known bits for an entire element of the output, compute the known 1249 // bits for each sub-element sequentially. This is done by shifting the 1250 // one-set-bit demanded elements parameter across the sub-elements for 1251 // consecutive calls to computeKnownBits. We are using the demanded 1252 // elements parameter as a mask operator. 1253 // 1254 // The known bits of each sub-element are then inserted into place 1255 // (dependent on endian) to form the full result of known bits. 1256 unsigned NumElts = DemandedElts.getBitWidth(); 1257 unsigned SubScale = BitWidth / SubBitWidth; 1258 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1259 for (unsigned i = 0; i != NumElts; ++i) { 1260 if (DemandedElts[i]) 1261 SubDemandedElts.setBit(i * SubScale); 1262 } 1263 1264 KnownBits KnownSrc(SubBitWidth); 1265 for (unsigned i = 0; i != SubScale; ++i) { 1266 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1267 Depth + 1, Q); 1268 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1269 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1270 } 1271 } 1272 break; 1273 } 1274 case Instruction::SExt: { 1275 // Compute the bits in the result that are not present in the input. 1276 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1277 1278 Known = Known.trunc(SrcBitWidth); 1279 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1280 // If the sign bit of the input is known set or clear, then we know the 1281 // top bits of the result. 1282 Known = Known.sext(BitWidth); 1283 break; 1284 } 1285 case Instruction::Shl: { 1286 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1287 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1288 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1289 // If this shift has "nsw" keyword, then the result is either a poison 1290 // value or has the same sign bit as the first operand. 1291 if (NSW) { 1292 if (KnownVal.Zero.isSignBitSet()) 1293 Result.Zero.setSignBit(); 1294 if (KnownVal.One.isSignBitSet()) 1295 Result.One.setSignBit(); 1296 } 1297 return Result; 1298 }; 1299 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1300 KF); 1301 // Trailing zeros of a right-shifted constant never decrease. 1302 const APInt *C; 1303 if (match(I->getOperand(0), m_APInt(C))) 1304 Known.Zero.setLowBits(C->countTrailingZeros()); 1305 break; 1306 } 1307 case Instruction::LShr: { 1308 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1309 return KnownBits::lshr(KnownVal, KnownAmt); 1310 }; 1311 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1312 KF); 1313 // Leading zeros of a left-shifted constant never decrease. 1314 const APInt *C; 1315 if (match(I->getOperand(0), m_APInt(C))) 1316 Known.Zero.setHighBits(C->countLeadingZeros()); 1317 break; 1318 } 1319 case Instruction::AShr: { 1320 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1321 return KnownBits::ashr(KnownVal, KnownAmt); 1322 }; 1323 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1324 KF); 1325 break; 1326 } 1327 case Instruction::Sub: { 1328 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1329 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1330 DemandedElts, Known, Known2, Depth, Q); 1331 break; 1332 } 1333 case Instruction::Add: { 1334 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1335 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1336 DemandedElts, Known, Known2, Depth, Q); 1337 break; 1338 } 1339 case Instruction::SRem: 1340 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1341 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1342 Known = KnownBits::srem(Known, Known2); 1343 break; 1344 1345 case Instruction::URem: 1346 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1347 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1348 Known = KnownBits::urem(Known, Known2); 1349 break; 1350 case Instruction::Alloca: 1351 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1352 break; 1353 case Instruction::GetElementPtr: { 1354 // Analyze all of the subscripts of this getelementptr instruction 1355 // to determine if we can prove known low zero bits. 1356 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1357 // Accumulate the constant indices in a separate variable 1358 // to minimize the number of calls to computeForAddSub. 1359 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1360 1361 gep_type_iterator GTI = gep_type_begin(I); 1362 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1363 // TrailZ can only become smaller, short-circuit if we hit zero. 1364 if (Known.isUnknown()) 1365 break; 1366 1367 Value *Index = I->getOperand(i); 1368 1369 // Handle case when index is zero. 1370 Constant *CIndex = dyn_cast<Constant>(Index); 1371 if (CIndex && CIndex->isZeroValue()) 1372 continue; 1373 1374 if (StructType *STy = GTI.getStructTypeOrNull()) { 1375 // Handle struct member offset arithmetic. 1376 1377 assert(CIndex && 1378 "Access to structure field must be known at compile time"); 1379 1380 if (CIndex->getType()->isVectorTy()) 1381 Index = CIndex->getSplatValue(); 1382 1383 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1384 const StructLayout *SL = Q.DL.getStructLayout(STy); 1385 uint64_t Offset = SL->getElementOffset(Idx); 1386 AccConstIndices += Offset; 1387 continue; 1388 } 1389 1390 // Handle array index arithmetic. 1391 Type *IndexedTy = GTI.getIndexedType(); 1392 if (!IndexedTy->isSized()) { 1393 Known.resetAll(); 1394 break; 1395 } 1396 1397 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1398 KnownBits IndexBits(IndexBitWidth); 1399 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1400 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1401 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1402 KnownBits ScalingFactor(IndexBitWidth); 1403 // Multiply by current sizeof type. 1404 // &A[i] == A + i * sizeof(*A[i]). 1405 if (IndexTypeSize.isScalable()) { 1406 // For scalable types the only thing we know about sizeof is 1407 // that this is a multiple of the minimum size. 1408 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1409 } else if (IndexBits.isConstant()) { 1410 APInt IndexConst = IndexBits.getConstant(); 1411 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1412 IndexConst *= ScalingFactor; 1413 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1414 continue; 1415 } else { 1416 ScalingFactor = 1417 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1418 } 1419 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1420 1421 // If the offsets have a different width from the pointer, according 1422 // to the language reference we need to sign-extend or truncate them 1423 // to the width of the pointer. 1424 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1425 1426 // Note that inbounds does *not* guarantee nsw for the addition, as only 1427 // the offset is signed, while the base address is unsigned. 1428 Known = KnownBits::computeForAddSub( 1429 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1430 } 1431 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1432 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1433 Known = KnownBits::computeForAddSub( 1434 /*Add=*/true, /*NSW=*/false, Known, Index); 1435 } 1436 break; 1437 } 1438 case Instruction::PHI: { 1439 const PHINode *P = cast<PHINode>(I); 1440 BinaryOperator *BO = nullptr; 1441 Value *R = nullptr, *L = nullptr; 1442 if (matchSimpleRecurrence(P, BO, R, L)) { 1443 // Handle the case of a simple two-predecessor recurrence PHI. 1444 // There's a lot more that could theoretically be done here, but 1445 // this is sufficient to catch some interesting cases. 1446 unsigned Opcode = BO->getOpcode(); 1447 1448 // If this is a shift recurrence, we know the bits being shifted in. 1449 // We can combine that with information about the start value of the 1450 // recurrence to conclude facts about the result. 1451 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1452 Opcode == Instruction::Shl) && 1453 BO->getOperand(0) == I) { 1454 1455 // We have matched a recurrence of the form: 1456 // %iv = [R, %entry], [%iv.next, %backedge] 1457 // %iv.next = shift_op %iv, L 1458 1459 // Recurse with the phi context to avoid concern about whether facts 1460 // inferred hold at original context instruction. TODO: It may be 1461 // correct to use the original context. IF warranted, explore and 1462 // add sufficient tests to cover. 1463 Query RecQ = Q; 1464 RecQ.CxtI = P; 1465 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1466 switch (Opcode) { 1467 case Instruction::Shl: 1468 // A shl recurrence will only increase the tailing zeros 1469 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1470 break; 1471 case Instruction::LShr: 1472 // A lshr recurrence will preserve the leading zeros of the 1473 // start value 1474 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1475 break; 1476 case Instruction::AShr: 1477 // An ashr recurrence will extend the initial sign bit 1478 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1479 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1480 break; 1481 }; 1482 } 1483 1484 // Check for operations that have the property that if 1485 // both their operands have low zero bits, the result 1486 // will have low zero bits. 1487 if (Opcode == Instruction::Add || 1488 Opcode == Instruction::Sub || 1489 Opcode == Instruction::And || 1490 Opcode == Instruction::Or || 1491 Opcode == Instruction::Mul) { 1492 // Change the context instruction to the "edge" that flows into the 1493 // phi. This is important because that is where the value is actually 1494 // "evaluated" even though it is used later somewhere else. (see also 1495 // D69571). 1496 Query RecQ = Q; 1497 1498 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1499 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1500 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1501 1502 // Ok, we have a PHI of the form L op= R. Check for low 1503 // zero bits. 1504 RecQ.CxtI = RInst; 1505 computeKnownBits(R, Known2, Depth + 1, RecQ); 1506 1507 // We need to take the minimum number of known bits 1508 KnownBits Known3(BitWidth); 1509 RecQ.CxtI = LInst; 1510 computeKnownBits(L, Known3, Depth + 1, RecQ); 1511 1512 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1513 Known3.countMinTrailingZeros())); 1514 1515 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1516 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1517 // If initial value of recurrence is nonnegative, and we are adding 1518 // a nonnegative number with nsw, the result can only be nonnegative 1519 // or poison value regardless of the number of times we execute the 1520 // add in phi recurrence. If initial value is negative and we are 1521 // adding a negative number with nsw, the result can only be 1522 // negative or poison value. Similar arguments apply to sub and mul. 1523 // 1524 // (add non-negative, non-negative) --> non-negative 1525 // (add negative, negative) --> negative 1526 if (Opcode == Instruction::Add) { 1527 if (Known2.isNonNegative() && Known3.isNonNegative()) 1528 Known.makeNonNegative(); 1529 else if (Known2.isNegative() && Known3.isNegative()) 1530 Known.makeNegative(); 1531 } 1532 1533 // (sub nsw non-negative, negative) --> non-negative 1534 // (sub nsw negative, non-negative) --> negative 1535 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1536 if (Known2.isNonNegative() && Known3.isNegative()) 1537 Known.makeNonNegative(); 1538 else if (Known2.isNegative() && Known3.isNonNegative()) 1539 Known.makeNegative(); 1540 } 1541 1542 // (mul nsw non-negative, non-negative) --> non-negative 1543 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1544 Known3.isNonNegative()) 1545 Known.makeNonNegative(); 1546 } 1547 1548 break; 1549 } 1550 } 1551 1552 // Unreachable blocks may have zero-operand PHI nodes. 1553 if (P->getNumIncomingValues() == 0) 1554 break; 1555 1556 // Otherwise take the unions of the known bit sets of the operands, 1557 // taking conservative care to avoid excessive recursion. 1558 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1559 // Skip if every incoming value references to ourself. 1560 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1561 break; 1562 1563 Known.Zero.setAllBits(); 1564 Known.One.setAllBits(); 1565 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1566 Value *IncValue = P->getIncomingValue(u); 1567 // Skip direct self references. 1568 if (IncValue == P) continue; 1569 1570 // Change the context instruction to the "edge" that flows into the 1571 // phi. This is important because that is where the value is actually 1572 // "evaluated" even though it is used later somewhere else. (see also 1573 // D69571). 1574 Query RecQ = Q; 1575 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1576 1577 Known2 = KnownBits(BitWidth); 1578 // Recurse, but cap the recursion to one level, because we don't 1579 // want to waste time spinning around in loops. 1580 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1581 Known = KnownBits::commonBits(Known, Known2); 1582 // If all bits have been ruled out, there's no need to check 1583 // more operands. 1584 if (Known.isUnknown()) 1585 break; 1586 } 1587 } 1588 break; 1589 } 1590 case Instruction::Call: 1591 case Instruction::Invoke: 1592 // If range metadata is attached to this call, set known bits from that, 1593 // and then intersect with known bits based on other properties of the 1594 // function. 1595 if (MDNode *MD = 1596 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1597 computeKnownBitsFromRangeMetadata(*MD, Known); 1598 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1599 computeKnownBits(RV, Known2, Depth + 1, Q); 1600 Known.Zero |= Known2.Zero; 1601 Known.One |= Known2.One; 1602 } 1603 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1604 switch (II->getIntrinsicID()) { 1605 default: break; 1606 case Intrinsic::abs: { 1607 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1608 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1609 Known = Known2.abs(IntMinIsPoison); 1610 break; 1611 } 1612 case Intrinsic::bitreverse: 1613 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1614 Known.Zero |= Known2.Zero.reverseBits(); 1615 Known.One |= Known2.One.reverseBits(); 1616 break; 1617 case Intrinsic::bswap: 1618 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1619 Known.Zero |= Known2.Zero.byteSwap(); 1620 Known.One |= Known2.One.byteSwap(); 1621 break; 1622 case Intrinsic::ctlz: { 1623 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1624 // If we have a known 1, its position is our upper bound. 1625 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1626 // If this call is poison for 0 input, the result will be less than 2^n. 1627 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1628 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1629 unsigned LowBits = Log2_32(PossibleLZ)+1; 1630 Known.Zero.setBitsFrom(LowBits); 1631 break; 1632 } 1633 case Intrinsic::cttz: { 1634 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1635 // If we have a known 1, its position is our upper bound. 1636 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1637 // If this call is poison for 0 input, the result will be less than 2^n. 1638 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1639 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1640 unsigned LowBits = Log2_32(PossibleTZ)+1; 1641 Known.Zero.setBitsFrom(LowBits); 1642 break; 1643 } 1644 case Intrinsic::ctpop: { 1645 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1646 // We can bound the space the count needs. Also, bits known to be zero 1647 // can't contribute to the population. 1648 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1649 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1650 Known.Zero.setBitsFrom(LowBits); 1651 // TODO: we could bound KnownOne using the lower bound on the number 1652 // of bits which might be set provided by popcnt KnownOne2. 1653 break; 1654 } 1655 case Intrinsic::fshr: 1656 case Intrinsic::fshl: { 1657 const APInt *SA; 1658 if (!match(I->getOperand(2), m_APInt(SA))) 1659 break; 1660 1661 // Normalize to funnel shift left. 1662 uint64_t ShiftAmt = SA->urem(BitWidth); 1663 if (II->getIntrinsicID() == Intrinsic::fshr) 1664 ShiftAmt = BitWidth - ShiftAmt; 1665 1666 KnownBits Known3(BitWidth); 1667 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1668 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1669 1670 Known.Zero = 1671 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1672 Known.One = 1673 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1674 break; 1675 } 1676 case Intrinsic::uadd_sat: 1677 case Intrinsic::usub_sat: { 1678 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1679 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1680 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1681 1682 // Add: Leading ones of either operand are preserved. 1683 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1684 // as leading zeros in the result. 1685 unsigned LeadingKnown; 1686 if (IsAdd) 1687 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1688 Known2.countMinLeadingOnes()); 1689 else 1690 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1691 Known2.countMinLeadingOnes()); 1692 1693 Known = KnownBits::computeForAddSub( 1694 IsAdd, /* NSW */ false, Known, Known2); 1695 1696 // We select between the operation result and all-ones/zero 1697 // respectively, so we can preserve known ones/zeros. 1698 if (IsAdd) { 1699 Known.One.setHighBits(LeadingKnown); 1700 Known.Zero.clearAllBits(); 1701 } else { 1702 Known.Zero.setHighBits(LeadingKnown); 1703 Known.One.clearAllBits(); 1704 } 1705 break; 1706 } 1707 case Intrinsic::umin: 1708 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1709 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1710 Known = KnownBits::umin(Known, Known2); 1711 break; 1712 case Intrinsic::umax: 1713 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1714 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1715 Known = KnownBits::umax(Known, Known2); 1716 break; 1717 case Intrinsic::smin: 1718 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1719 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1720 Known = KnownBits::smin(Known, Known2); 1721 break; 1722 case Intrinsic::smax: 1723 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1724 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1725 Known = KnownBits::smax(Known, Known2); 1726 break; 1727 case Intrinsic::x86_sse42_crc32_64_64: 1728 Known.Zero.setBitsFrom(32); 1729 break; 1730 case Intrinsic::riscv_vsetvli: 1731 case Intrinsic::riscv_vsetvlimax: 1732 // Assume that VL output is positive and would fit in an int32_t. 1733 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1734 if (BitWidth >= 32) 1735 Known.Zero.setBitsFrom(31); 1736 break; 1737 case Intrinsic::vscale: { 1738 if (!II->getParent() || !II->getFunction() || 1739 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1740 break; 1741 1742 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1743 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1744 1745 if (!VScaleMax) 1746 break; 1747 1748 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1749 1750 // If vscale min = max then we know the exact value at compile time 1751 // and hence we know the exact bits. 1752 if (VScaleMin == VScaleMax) { 1753 Known.One = VScaleMin; 1754 Known.Zero = VScaleMin; 1755 Known.Zero.flipAllBits(); 1756 break; 1757 } 1758 1759 unsigned FirstZeroHighBit = 1760 32 - countLeadingZeros(VScaleMax.getValue()); 1761 if (FirstZeroHighBit < BitWidth) 1762 Known.Zero.setBitsFrom(FirstZeroHighBit); 1763 1764 break; 1765 } 1766 } 1767 } 1768 break; 1769 case Instruction::ShuffleVector: { 1770 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1771 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1772 if (!Shuf) { 1773 Known.resetAll(); 1774 return; 1775 } 1776 // For undef elements, we don't know anything about the common state of 1777 // the shuffle result. 1778 APInt DemandedLHS, DemandedRHS; 1779 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1780 Known.resetAll(); 1781 return; 1782 } 1783 Known.One.setAllBits(); 1784 Known.Zero.setAllBits(); 1785 if (!!DemandedLHS) { 1786 const Value *LHS = Shuf->getOperand(0); 1787 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1788 // If we don't know any bits, early out. 1789 if (Known.isUnknown()) 1790 break; 1791 } 1792 if (!!DemandedRHS) { 1793 const Value *RHS = Shuf->getOperand(1); 1794 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1795 Known = KnownBits::commonBits(Known, Known2); 1796 } 1797 break; 1798 } 1799 case Instruction::InsertElement: { 1800 const Value *Vec = I->getOperand(0); 1801 const Value *Elt = I->getOperand(1); 1802 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1803 // Early out if the index is non-constant or out-of-range. 1804 unsigned NumElts = DemandedElts.getBitWidth(); 1805 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1806 Known.resetAll(); 1807 return; 1808 } 1809 Known.One.setAllBits(); 1810 Known.Zero.setAllBits(); 1811 unsigned EltIdx = CIdx->getZExtValue(); 1812 // Do we demand the inserted element? 1813 if (DemandedElts[EltIdx]) { 1814 computeKnownBits(Elt, Known, Depth + 1, Q); 1815 // If we don't know any bits, early out. 1816 if (Known.isUnknown()) 1817 break; 1818 } 1819 // We don't need the base vector element that has been inserted. 1820 APInt DemandedVecElts = DemandedElts; 1821 DemandedVecElts.clearBit(EltIdx); 1822 if (!!DemandedVecElts) { 1823 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1824 Known = KnownBits::commonBits(Known, Known2); 1825 } 1826 break; 1827 } 1828 case Instruction::ExtractElement: { 1829 // Look through extract element. If the index is non-constant or 1830 // out-of-range demand all elements, otherwise just the extracted element. 1831 const Value *Vec = I->getOperand(0); 1832 const Value *Idx = I->getOperand(1); 1833 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1834 if (isa<ScalableVectorType>(Vec->getType())) { 1835 // FIXME: there's probably *something* we can do with scalable vectors 1836 Known.resetAll(); 1837 break; 1838 } 1839 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1840 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1841 if (CIdx && CIdx->getValue().ult(NumElts)) 1842 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1843 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1844 break; 1845 } 1846 case Instruction::ExtractValue: 1847 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1848 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1849 if (EVI->getNumIndices() != 1) break; 1850 if (EVI->getIndices()[0] == 0) { 1851 switch (II->getIntrinsicID()) { 1852 default: break; 1853 case Intrinsic::uadd_with_overflow: 1854 case Intrinsic::sadd_with_overflow: 1855 computeKnownBitsAddSub(true, II->getArgOperand(0), 1856 II->getArgOperand(1), false, DemandedElts, 1857 Known, Known2, Depth, Q); 1858 break; 1859 case Intrinsic::usub_with_overflow: 1860 case Intrinsic::ssub_with_overflow: 1861 computeKnownBitsAddSub(false, II->getArgOperand(0), 1862 II->getArgOperand(1), false, DemandedElts, 1863 Known, Known2, Depth, Q); 1864 break; 1865 case Intrinsic::umul_with_overflow: 1866 case Intrinsic::smul_with_overflow: 1867 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1868 DemandedElts, Known, Known2, Depth, Q); 1869 break; 1870 } 1871 } 1872 } 1873 break; 1874 case Instruction::Freeze: 1875 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1876 Depth + 1)) 1877 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1878 break; 1879 } 1880 } 1881 1882 /// Determine which bits of V are known to be either zero or one and return 1883 /// them. 1884 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1885 unsigned Depth, const Query &Q) { 1886 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1887 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1888 return Known; 1889 } 1890 1891 /// Determine which bits of V are known to be either zero or one and return 1892 /// them. 1893 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1894 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1895 computeKnownBits(V, Known, Depth, Q); 1896 return Known; 1897 } 1898 1899 /// Determine which bits of V are known to be either zero or one and return 1900 /// them in the Known bit set. 1901 /// 1902 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1903 /// we cannot optimize based on the assumption that it is zero without changing 1904 /// it to be an explicit zero. If we don't change it to zero, other code could 1905 /// optimized based on the contradictory assumption that it is non-zero. 1906 /// Because instcombine aggressively folds operations with undef args anyway, 1907 /// this won't lose us code quality. 1908 /// 1909 /// This function is defined on values with integer type, values with pointer 1910 /// type, and vectors of integers. In the case 1911 /// where V is a vector, known zero, and known one values are the 1912 /// same width as the vector element, and the bit is set only if it is true 1913 /// for all of the demanded elements in the vector specified by DemandedElts. 1914 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1915 KnownBits &Known, unsigned Depth, const Query &Q) { 1916 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1917 // No demanded elts or V is a scalable vector, better to assume we don't 1918 // know anything. 1919 Known.resetAll(); 1920 return; 1921 } 1922 1923 assert(V && "No Value?"); 1924 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1925 1926 #ifndef NDEBUG 1927 Type *Ty = V->getType(); 1928 unsigned BitWidth = Known.getBitWidth(); 1929 1930 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1931 "Not integer or pointer type!"); 1932 1933 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1934 assert( 1935 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1936 "DemandedElt width should equal the fixed vector number of elements"); 1937 } else { 1938 assert(DemandedElts == APInt(1, 1) && 1939 "DemandedElt width should be 1 for scalars"); 1940 } 1941 1942 Type *ScalarTy = Ty->getScalarType(); 1943 if (ScalarTy->isPointerTy()) { 1944 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1945 "V and Known should have same BitWidth"); 1946 } else { 1947 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1948 "V and Known should have same BitWidth"); 1949 } 1950 #endif 1951 1952 const APInt *C; 1953 if (match(V, m_APInt(C))) { 1954 // We know all of the bits for a scalar constant or a splat vector constant! 1955 Known = KnownBits::makeConstant(*C); 1956 return; 1957 } 1958 // Null and aggregate-zero are all-zeros. 1959 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1960 Known.setAllZero(); 1961 return; 1962 } 1963 // Handle a constant vector by taking the intersection of the known bits of 1964 // each element. 1965 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1966 // We know that CDV must be a vector of integers. Take the intersection of 1967 // each element. 1968 Known.Zero.setAllBits(); Known.One.setAllBits(); 1969 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1970 if (!DemandedElts[i]) 1971 continue; 1972 APInt Elt = CDV->getElementAsAPInt(i); 1973 Known.Zero &= ~Elt; 1974 Known.One &= Elt; 1975 } 1976 return; 1977 } 1978 1979 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1980 // We know that CV must be a vector of integers. Take the intersection of 1981 // each element. 1982 Known.Zero.setAllBits(); Known.One.setAllBits(); 1983 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1984 if (!DemandedElts[i]) 1985 continue; 1986 Constant *Element = CV->getAggregateElement(i); 1987 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1988 if (!ElementCI) { 1989 Known.resetAll(); 1990 return; 1991 } 1992 const APInt &Elt = ElementCI->getValue(); 1993 Known.Zero &= ~Elt; 1994 Known.One &= Elt; 1995 } 1996 return; 1997 } 1998 1999 // Start out not knowing anything. 2000 Known.resetAll(); 2001 2002 // We can't imply anything about undefs. 2003 if (isa<UndefValue>(V)) 2004 return; 2005 2006 // There's no point in looking through other users of ConstantData for 2007 // assumptions. Confirm that we've handled them all. 2008 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2009 2010 // All recursive calls that increase depth must come after this. 2011 if (Depth == MaxAnalysisRecursionDepth) 2012 return; 2013 2014 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2015 // the bits of its aliasee. 2016 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2017 if (!GA->isInterposable()) 2018 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2019 return; 2020 } 2021 2022 if (const Operator *I = dyn_cast<Operator>(V)) 2023 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2024 2025 // Aligned pointers have trailing zeros - refine Known.Zero set 2026 if (isa<PointerType>(V->getType())) { 2027 Align Alignment = V->getPointerAlignment(Q.DL); 2028 Known.Zero.setLowBits(Log2(Alignment)); 2029 } 2030 2031 // computeKnownBitsFromAssume strictly refines Known. 2032 // Therefore, we run them after computeKnownBitsFromOperator. 2033 2034 // Check whether a nearby assume intrinsic can determine some known bits. 2035 computeKnownBitsFromAssume(V, Known, Depth, Q); 2036 2037 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2038 } 2039 2040 /// Return true if the given value is known to have exactly one 2041 /// bit set when defined. For vectors return true if every element is known to 2042 /// be a power of two when defined. Supports values with integer or pointer 2043 /// types and vectors of integers. 2044 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2045 const Query &Q) { 2046 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2047 2048 // Attempt to match against constants. 2049 if (OrZero && match(V, m_Power2OrZero())) 2050 return true; 2051 if (match(V, m_Power2())) 2052 return true; 2053 2054 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2055 // it is shifted off the end then the result is undefined. 2056 if (match(V, m_Shl(m_One(), m_Value()))) 2057 return true; 2058 2059 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2060 // the bottom. If it is shifted off the bottom then the result is undefined. 2061 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2062 return true; 2063 2064 // The remaining tests are all recursive, so bail out if we hit the limit. 2065 if (Depth++ == MaxAnalysisRecursionDepth) 2066 return false; 2067 2068 Value *X = nullptr, *Y = nullptr; 2069 // A shift left or a logical shift right of a power of two is a power of two 2070 // or zero. 2071 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2072 match(V, m_LShr(m_Value(X), m_Value())))) 2073 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2074 2075 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2076 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2077 2078 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2079 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2080 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2081 2082 // Peek through min/max. 2083 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2084 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2085 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2086 } 2087 2088 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2089 // A power of two and'd with anything is a power of two or zero. 2090 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2091 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2092 return true; 2093 // X & (-X) is always a power of two or zero. 2094 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2095 return true; 2096 return false; 2097 } 2098 2099 // Adding a power-of-two or zero to the same power-of-two or zero yields 2100 // either the original power-of-two, a larger power-of-two or zero. 2101 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2102 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2103 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2104 Q.IIQ.hasNoSignedWrap(VOBO)) { 2105 if (match(X, m_And(m_Specific(Y), m_Value())) || 2106 match(X, m_And(m_Value(), m_Specific(Y)))) 2107 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2108 return true; 2109 if (match(Y, m_And(m_Specific(X), m_Value())) || 2110 match(Y, m_And(m_Value(), m_Specific(X)))) 2111 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2112 return true; 2113 2114 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2115 KnownBits LHSBits(BitWidth); 2116 computeKnownBits(X, LHSBits, Depth, Q); 2117 2118 KnownBits RHSBits(BitWidth); 2119 computeKnownBits(Y, RHSBits, Depth, Q); 2120 // If i8 V is a power of two or zero: 2121 // ZeroBits: 1 1 1 0 1 1 1 1 2122 // ~ZeroBits: 0 0 0 1 0 0 0 0 2123 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2124 // If OrZero isn't set, we cannot give back a zero result. 2125 // Make sure either the LHS or RHS has a bit set. 2126 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2127 return true; 2128 } 2129 } 2130 2131 // An exact divide or right shift can only shift off zero bits, so the result 2132 // is a power of two only if the first operand is a power of two and not 2133 // copying a sign bit (sdiv int_min, 2). 2134 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2135 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2136 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2137 Depth, Q); 2138 } 2139 2140 return false; 2141 } 2142 2143 /// Test whether a GEP's result is known to be non-null. 2144 /// 2145 /// Uses properties inherent in a GEP to try to determine whether it is known 2146 /// to be non-null. 2147 /// 2148 /// Currently this routine does not support vector GEPs. 2149 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2150 const Query &Q) { 2151 const Function *F = nullptr; 2152 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2153 F = I->getFunction(); 2154 2155 if (!GEP->isInBounds() || 2156 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2157 return false; 2158 2159 // FIXME: Support vector-GEPs. 2160 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2161 2162 // If the base pointer is non-null, we cannot walk to a null address with an 2163 // inbounds GEP in address space zero. 2164 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2165 return true; 2166 2167 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2168 // If so, then the GEP cannot produce a null pointer, as doing so would 2169 // inherently violate the inbounds contract within address space zero. 2170 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2171 GTI != GTE; ++GTI) { 2172 // Struct types are easy -- they must always be indexed by a constant. 2173 if (StructType *STy = GTI.getStructTypeOrNull()) { 2174 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2175 unsigned ElementIdx = OpC->getZExtValue(); 2176 const StructLayout *SL = Q.DL.getStructLayout(STy); 2177 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2178 if (ElementOffset > 0) 2179 return true; 2180 continue; 2181 } 2182 2183 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2184 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2185 continue; 2186 2187 // Fast path the constant operand case both for efficiency and so we don't 2188 // increment Depth when just zipping down an all-constant GEP. 2189 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2190 if (!OpC->isZero()) 2191 return true; 2192 continue; 2193 } 2194 2195 // We post-increment Depth here because while isKnownNonZero increments it 2196 // as well, when we pop back up that increment won't persist. We don't want 2197 // to recurse 10k times just because we have 10k GEP operands. We don't 2198 // bail completely out because we want to handle constant GEPs regardless 2199 // of depth. 2200 if (Depth++ >= MaxAnalysisRecursionDepth) 2201 continue; 2202 2203 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2204 return true; 2205 } 2206 2207 return false; 2208 } 2209 2210 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2211 const Instruction *CtxI, 2212 const DominatorTree *DT) { 2213 if (isa<Constant>(V)) 2214 return false; 2215 2216 if (!CtxI || !DT) 2217 return false; 2218 2219 unsigned NumUsesExplored = 0; 2220 for (auto *U : V->users()) { 2221 // Avoid massive lists 2222 if (NumUsesExplored >= DomConditionsMaxUses) 2223 break; 2224 NumUsesExplored++; 2225 2226 // If the value is used as an argument to a call or invoke, then argument 2227 // attributes may provide an answer about null-ness. 2228 if (const auto *CB = dyn_cast<CallBase>(U)) 2229 if (auto *CalledFunc = CB->getCalledFunction()) 2230 for (const Argument &Arg : CalledFunc->args()) 2231 if (CB->getArgOperand(Arg.getArgNo()) == V && 2232 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2233 DT->dominates(CB, CtxI)) 2234 return true; 2235 2236 // If the value is used as a load/store, then the pointer must be non null. 2237 if (V == getLoadStorePointerOperand(U)) { 2238 const Instruction *I = cast<Instruction>(U); 2239 if (!NullPointerIsDefined(I->getFunction(), 2240 V->getType()->getPointerAddressSpace()) && 2241 DT->dominates(I, CtxI)) 2242 return true; 2243 } 2244 2245 // Consider only compare instructions uniquely controlling a branch 2246 Value *RHS; 2247 CmpInst::Predicate Pred; 2248 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2249 continue; 2250 2251 bool NonNullIfTrue; 2252 if (cmpExcludesZero(Pred, RHS)) 2253 NonNullIfTrue = true; 2254 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2255 NonNullIfTrue = false; 2256 else 2257 continue; 2258 2259 SmallVector<const User *, 4> WorkList; 2260 SmallPtrSet<const User *, 4> Visited; 2261 for (auto *CmpU : U->users()) { 2262 assert(WorkList.empty() && "Should be!"); 2263 if (Visited.insert(CmpU).second) 2264 WorkList.push_back(CmpU); 2265 2266 while (!WorkList.empty()) { 2267 auto *Curr = WorkList.pop_back_val(); 2268 2269 // If a user is an AND, add all its users to the work list. We only 2270 // propagate "pred != null" condition through AND because it is only 2271 // correct to assume that all conditions of AND are met in true branch. 2272 // TODO: Support similar logic of OR and EQ predicate? 2273 if (NonNullIfTrue) 2274 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2275 for (auto *CurrU : Curr->users()) 2276 if (Visited.insert(CurrU).second) 2277 WorkList.push_back(CurrU); 2278 continue; 2279 } 2280 2281 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2282 assert(BI->isConditional() && "uses a comparison!"); 2283 2284 BasicBlock *NonNullSuccessor = 2285 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2286 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2287 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2288 return true; 2289 } else if (NonNullIfTrue && isGuard(Curr) && 2290 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2291 return true; 2292 } 2293 } 2294 } 2295 } 2296 2297 return false; 2298 } 2299 2300 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2301 /// ensure that the value it's attached to is never Value? 'RangeType' is 2302 /// is the type of the value described by the range. 2303 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2304 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2305 assert(NumRanges >= 1); 2306 for (unsigned i = 0; i < NumRanges; ++i) { 2307 ConstantInt *Lower = 2308 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2309 ConstantInt *Upper = 2310 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2311 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2312 if (Range.contains(Value)) 2313 return false; 2314 } 2315 return true; 2316 } 2317 2318 /// Try to detect a recurrence that monotonically increases/decreases from a 2319 /// non-zero starting value. These are common as induction variables. 2320 static bool isNonZeroRecurrence(const PHINode *PN) { 2321 BinaryOperator *BO = nullptr; 2322 Value *Start = nullptr, *Step = nullptr; 2323 const APInt *StartC, *StepC; 2324 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2325 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2326 return false; 2327 2328 switch (BO->getOpcode()) { 2329 case Instruction::Add: 2330 // Starting from non-zero and stepping away from zero can never wrap back 2331 // to zero. 2332 return BO->hasNoUnsignedWrap() || 2333 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2334 StartC->isNegative() == StepC->isNegative()); 2335 case Instruction::Mul: 2336 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2337 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2338 case Instruction::Shl: 2339 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2340 case Instruction::AShr: 2341 case Instruction::LShr: 2342 return BO->isExact(); 2343 default: 2344 return false; 2345 } 2346 } 2347 2348 /// Return true if the given value is known to be non-zero when defined. For 2349 /// vectors, return true if every demanded element is known to be non-zero when 2350 /// defined. For pointers, if the context instruction and dominator tree are 2351 /// specified, perform context-sensitive analysis and return true if the 2352 /// pointer couldn't possibly be null at the specified instruction. 2353 /// Supports values with integer or pointer type and vectors of integers. 2354 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2355 const Query &Q) { 2356 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2357 // vector 2358 if (isa<ScalableVectorType>(V->getType())) 2359 return false; 2360 2361 if (auto *C = dyn_cast<Constant>(V)) { 2362 if (C->isNullValue()) 2363 return false; 2364 if (isa<ConstantInt>(C)) 2365 // Must be non-zero due to null test above. 2366 return true; 2367 2368 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2369 // See the comment for IntToPtr/PtrToInt instructions below. 2370 if (CE->getOpcode() == Instruction::IntToPtr || 2371 CE->getOpcode() == Instruction::PtrToInt) 2372 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2373 .getFixedSize() <= 2374 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2375 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2376 } 2377 2378 // For constant vectors, check that all elements are undefined or known 2379 // non-zero to determine that the whole vector is known non-zero. 2380 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2381 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2382 if (!DemandedElts[i]) 2383 continue; 2384 Constant *Elt = C->getAggregateElement(i); 2385 if (!Elt || Elt->isNullValue()) 2386 return false; 2387 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2388 return false; 2389 } 2390 return true; 2391 } 2392 2393 // A global variable in address space 0 is non null unless extern weak 2394 // or an absolute symbol reference. Other address spaces may have null as a 2395 // valid address for a global, so we can't assume anything. 2396 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2397 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2398 GV->getType()->getAddressSpace() == 0) 2399 return true; 2400 } else 2401 return false; 2402 } 2403 2404 if (auto *I = dyn_cast<Instruction>(V)) { 2405 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2406 // If the possible ranges don't contain zero, then the value is 2407 // definitely non-zero. 2408 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2409 const APInt ZeroValue(Ty->getBitWidth(), 0); 2410 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2411 return true; 2412 } 2413 } 2414 } 2415 2416 if (isKnownNonZeroFromAssume(V, Q)) 2417 return true; 2418 2419 // Some of the tests below are recursive, so bail out if we hit the limit. 2420 if (Depth++ >= MaxAnalysisRecursionDepth) 2421 return false; 2422 2423 // Check for pointer simplifications. 2424 2425 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2426 // Alloca never returns null, malloc might. 2427 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2428 return true; 2429 2430 // A byval, inalloca may not be null in a non-default addres space. A 2431 // nonnull argument is assumed never 0. 2432 if (const Argument *A = dyn_cast<Argument>(V)) { 2433 if (((A->hasPassPointeeByValueCopyAttr() && 2434 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2435 A->hasNonNullAttr())) 2436 return true; 2437 } 2438 2439 // A Load tagged with nonnull metadata is never null. 2440 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2441 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2442 return true; 2443 2444 if (const auto *Call = dyn_cast<CallBase>(V)) { 2445 if (Call->isReturnNonNull()) 2446 return true; 2447 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2448 return isKnownNonZero(RP, Depth, Q); 2449 } 2450 } 2451 2452 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2453 return true; 2454 2455 // Check for recursive pointer simplifications. 2456 if (V->getType()->isPointerTy()) { 2457 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2458 // do not alter the value, or at least not the nullness property of the 2459 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2460 // 2461 // Note that we have to take special care to avoid looking through 2462 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2463 // as casts that can alter the value, e.g., AddrSpaceCasts. 2464 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2465 return isGEPKnownNonNull(GEP, Depth, Q); 2466 2467 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2468 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2469 2470 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2471 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2472 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2473 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2474 } 2475 2476 // Similar to int2ptr above, we can look through ptr2int here if the cast 2477 // is a no-op or an extend and not a truncate. 2478 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2479 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2480 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2481 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2482 2483 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2484 2485 // X | Y != 0 if X != 0 or Y != 0. 2486 Value *X = nullptr, *Y = nullptr; 2487 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2488 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2489 isKnownNonZero(Y, DemandedElts, Depth, Q); 2490 2491 // ext X != 0 if X != 0. 2492 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2493 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2494 2495 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2496 // if the lowest bit is shifted off the end. 2497 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2498 // shl nuw can't remove any non-zero bits. 2499 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2500 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2501 return isKnownNonZero(X, Depth, Q); 2502 2503 KnownBits Known(BitWidth); 2504 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2505 if (Known.One[0]) 2506 return true; 2507 } 2508 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2509 // defined if the sign bit is shifted off the end. 2510 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2511 // shr exact can only shift out zero bits. 2512 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2513 if (BO->isExact()) 2514 return isKnownNonZero(X, Depth, Q); 2515 2516 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2517 if (Known.isNegative()) 2518 return true; 2519 2520 // If the shifter operand is a constant, and all of the bits shifted 2521 // out are known to be zero, and X is known non-zero then at least one 2522 // non-zero bit must remain. 2523 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2524 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2525 // Is there a known one in the portion not shifted out? 2526 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2527 return true; 2528 // Are all the bits to be shifted out known zero? 2529 if (Known.countMinTrailingZeros() >= ShiftVal) 2530 return isKnownNonZero(X, DemandedElts, Depth, Q); 2531 } 2532 } 2533 // div exact can only produce a zero if the dividend is zero. 2534 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2535 return isKnownNonZero(X, DemandedElts, Depth, Q); 2536 } 2537 // X + Y. 2538 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2539 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2540 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2541 2542 // If X and Y are both non-negative (as signed values) then their sum is not 2543 // zero unless both X and Y are zero. 2544 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2545 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2546 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2547 return true; 2548 2549 // If X and Y are both negative (as signed values) then their sum is not 2550 // zero unless both X and Y equal INT_MIN. 2551 if (XKnown.isNegative() && YKnown.isNegative()) { 2552 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2553 // The sign bit of X is set. If some other bit is set then X is not equal 2554 // to INT_MIN. 2555 if (XKnown.One.intersects(Mask)) 2556 return true; 2557 // The sign bit of Y is set. If some other bit is set then Y is not equal 2558 // to INT_MIN. 2559 if (YKnown.One.intersects(Mask)) 2560 return true; 2561 } 2562 2563 // The sum of a non-negative number and a power of two is not zero. 2564 if (XKnown.isNonNegative() && 2565 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2566 return true; 2567 if (YKnown.isNonNegative() && 2568 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2569 return true; 2570 } 2571 // X * Y. 2572 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2573 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2574 // If X and Y are non-zero then so is X * Y as long as the multiplication 2575 // does not overflow. 2576 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2577 isKnownNonZero(X, DemandedElts, Depth, Q) && 2578 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2579 return true; 2580 } 2581 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2582 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2583 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2584 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2585 return true; 2586 } 2587 // PHI 2588 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2589 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2590 return true; 2591 2592 // Check if all incoming values are non-zero using recursion. 2593 Query RecQ = Q; 2594 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2595 return llvm::all_of(PN->operands(), [&](const Use &U) { 2596 if (U.get() == PN) 2597 return true; 2598 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2599 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2600 }); 2601 } 2602 // ExtractElement 2603 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2604 const Value *Vec = EEI->getVectorOperand(); 2605 const Value *Idx = EEI->getIndexOperand(); 2606 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2607 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2608 unsigned NumElts = VecTy->getNumElements(); 2609 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2610 if (CIdx && CIdx->getValue().ult(NumElts)) 2611 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2612 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2613 } 2614 } 2615 // Freeze 2616 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2617 auto *Op = FI->getOperand(0); 2618 if (isKnownNonZero(Op, Depth, Q) && 2619 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2620 return true; 2621 } 2622 2623 KnownBits Known(BitWidth); 2624 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2625 return Known.One != 0; 2626 } 2627 2628 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2629 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2630 // vector 2631 if (isa<ScalableVectorType>(V->getType())) 2632 return false; 2633 2634 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2635 APInt DemandedElts = 2636 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2637 return isKnownNonZero(V, DemandedElts, Depth, Q); 2638 } 2639 2640 /// If the pair of operators are the same invertible function, return the 2641 /// the operands of the function corresponding to each input. Otherwise, 2642 /// return None. An invertible function is one that is 1-to-1 and maps 2643 /// every input value to exactly one output value. This is equivalent to 2644 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2645 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2646 static Optional<std::pair<Value*, Value*>> 2647 getInvertibleOperands(const Operator *Op1, 2648 const Operator *Op2) { 2649 if (Op1->getOpcode() != Op2->getOpcode()) 2650 return None; 2651 2652 auto getOperands = [&](unsigned OpNum) -> auto { 2653 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2654 }; 2655 2656 switch (Op1->getOpcode()) { 2657 default: 2658 break; 2659 case Instruction::Add: 2660 case Instruction::Sub: 2661 if (Op1->getOperand(0) == Op2->getOperand(0)) 2662 return getOperands(1); 2663 if (Op1->getOperand(1) == Op2->getOperand(1)) 2664 return getOperands(0); 2665 break; 2666 case Instruction::Mul: { 2667 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2668 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2669 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2670 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2671 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2672 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2673 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2674 break; 2675 2676 // Assume operand order has been canonicalized 2677 if (Op1->getOperand(1) == Op2->getOperand(1) && 2678 isa<ConstantInt>(Op1->getOperand(1)) && 2679 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2680 return getOperands(0); 2681 break; 2682 } 2683 case Instruction::Shl: { 2684 // Same as multiplies, with the difference that we don't need to check 2685 // for a non-zero multiply. Shifts always multiply by non-zero. 2686 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2687 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2688 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2689 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2690 break; 2691 2692 if (Op1->getOperand(1) == Op2->getOperand(1)) 2693 return getOperands(0); 2694 break; 2695 } 2696 case Instruction::AShr: 2697 case Instruction::LShr: { 2698 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2699 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2700 if (!PEO1->isExact() || !PEO2->isExact()) 2701 break; 2702 2703 if (Op1->getOperand(1) == Op2->getOperand(1)) 2704 return getOperands(0); 2705 break; 2706 } 2707 case Instruction::SExt: 2708 case Instruction::ZExt: 2709 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2710 return getOperands(0); 2711 break; 2712 case Instruction::PHI: { 2713 const PHINode *PN1 = cast<PHINode>(Op1); 2714 const PHINode *PN2 = cast<PHINode>(Op2); 2715 2716 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2717 // are a single invertible function of the start values? Note that repeated 2718 // application of an invertible function is also invertible 2719 BinaryOperator *BO1 = nullptr; 2720 Value *Start1 = nullptr, *Step1 = nullptr; 2721 BinaryOperator *BO2 = nullptr; 2722 Value *Start2 = nullptr, *Step2 = nullptr; 2723 if (PN1->getParent() != PN2->getParent() || 2724 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2725 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2726 break; 2727 2728 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2729 cast<Operator>(BO2)); 2730 if (!Values) 2731 break; 2732 2733 // We have to be careful of mutually defined recurrences here. Ex: 2734 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2735 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2736 // The invertibility of these is complicated, and not worth reasoning 2737 // about (yet?). 2738 if (Values->first != PN1 || Values->second != PN2) 2739 break; 2740 2741 return std::make_pair(Start1, Start2); 2742 } 2743 } 2744 return None; 2745 } 2746 2747 /// Return true if V2 == V1 + X, where X is known non-zero. 2748 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2749 const Query &Q) { 2750 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2751 if (!BO || BO->getOpcode() != Instruction::Add) 2752 return false; 2753 Value *Op = nullptr; 2754 if (V2 == BO->getOperand(0)) 2755 Op = BO->getOperand(1); 2756 else if (V2 == BO->getOperand(1)) 2757 Op = BO->getOperand(0); 2758 else 2759 return false; 2760 return isKnownNonZero(Op, Depth + 1, Q); 2761 } 2762 2763 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2764 /// the multiplication is nuw or nsw. 2765 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2766 const Query &Q) { 2767 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2768 const APInt *C; 2769 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2770 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2771 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2772 } 2773 return false; 2774 } 2775 2776 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2777 /// the shift is nuw or nsw. 2778 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2779 const Query &Q) { 2780 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2781 const APInt *C; 2782 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2783 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2784 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2785 } 2786 return false; 2787 } 2788 2789 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2790 unsigned Depth, const Query &Q) { 2791 // Check two PHIs are in same block. 2792 if (PN1->getParent() != PN2->getParent()) 2793 return false; 2794 2795 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2796 bool UsedFullRecursion = false; 2797 for (const BasicBlock *IncomBB : PN1->blocks()) { 2798 if (!VisitedBBs.insert(IncomBB).second) 2799 continue; // Don't reprocess blocks that we have dealt with already. 2800 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2801 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2802 const APInt *C1, *C2; 2803 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2804 continue; 2805 2806 // Only one pair of phi operands is allowed for full recursion. 2807 if (UsedFullRecursion) 2808 return false; 2809 2810 Query RecQ = Q; 2811 RecQ.CxtI = IncomBB->getTerminator(); 2812 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2813 return false; 2814 UsedFullRecursion = true; 2815 } 2816 return true; 2817 } 2818 2819 /// Return true if it is known that V1 != V2. 2820 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2821 const Query &Q) { 2822 if (V1 == V2) 2823 return false; 2824 if (V1->getType() != V2->getType()) 2825 // We can't look through casts yet. 2826 return false; 2827 2828 if (Depth >= MaxAnalysisRecursionDepth) 2829 return false; 2830 2831 // See if we can recurse through (exactly one of) our operands. This 2832 // requires our operation be 1-to-1 and map every input value to exactly 2833 // one output value. Such an operation is invertible. 2834 auto *O1 = dyn_cast<Operator>(V1); 2835 auto *O2 = dyn_cast<Operator>(V2); 2836 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2837 if (auto Values = getInvertibleOperands(O1, O2)) 2838 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2839 2840 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2841 const PHINode *PN2 = cast<PHINode>(V2); 2842 // FIXME: This is missing a generalization to handle the case where one is 2843 // a PHI and another one isn't. 2844 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2845 return true; 2846 }; 2847 } 2848 2849 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2850 return true; 2851 2852 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2853 return true; 2854 2855 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2856 return true; 2857 2858 if (V1->getType()->isIntOrIntVectorTy()) { 2859 // Are any known bits in V1 contradictory to known bits in V2? If V1 2860 // has a known zero where V2 has a known one, they must not be equal. 2861 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2862 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2863 2864 if (Known1.Zero.intersects(Known2.One) || 2865 Known2.Zero.intersects(Known1.One)) 2866 return true; 2867 } 2868 return false; 2869 } 2870 2871 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2872 /// simplify operations downstream. Mask is known to be zero for bits that V 2873 /// cannot have. 2874 /// 2875 /// This function is defined on values with integer type, values with pointer 2876 /// type, and vectors of integers. In the case 2877 /// where V is a vector, the mask, known zero, and known one values are the 2878 /// same width as the vector element, and the bit is set only if it is true 2879 /// for all of the elements in the vector. 2880 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2881 const Query &Q) { 2882 KnownBits Known(Mask.getBitWidth()); 2883 computeKnownBits(V, Known, Depth, Q); 2884 return Mask.isSubsetOf(Known.Zero); 2885 } 2886 2887 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2888 // Returns the input and lower/upper bounds. 2889 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2890 const APInt *&CLow, const APInt *&CHigh) { 2891 assert(isa<Operator>(Select) && 2892 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2893 "Input should be a Select!"); 2894 2895 const Value *LHS = nullptr, *RHS = nullptr; 2896 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2897 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2898 return false; 2899 2900 if (!match(RHS, m_APInt(CLow))) 2901 return false; 2902 2903 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2904 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2905 if (getInverseMinMaxFlavor(SPF) != SPF2) 2906 return false; 2907 2908 if (!match(RHS2, m_APInt(CHigh))) 2909 return false; 2910 2911 if (SPF == SPF_SMIN) 2912 std::swap(CLow, CHigh); 2913 2914 In = LHS2; 2915 return CLow->sle(*CHigh); 2916 } 2917 2918 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 2919 const APInt *&CLow, 2920 const APInt *&CHigh) { 2921 assert((II->getIntrinsicID() == Intrinsic::smin || 2922 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); 2923 2924 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 2925 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 2926 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 2927 !match(II->getArgOperand(1), m_APInt(CLow)) || 2928 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 2929 return false; 2930 2931 if (II->getIntrinsicID() == Intrinsic::smin) 2932 std::swap(CLow, CHigh); 2933 return CLow->sle(*CHigh); 2934 } 2935 2936 /// For vector constants, loop over the elements and find the constant with the 2937 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2938 /// or if any element was not analyzed; otherwise, return the count for the 2939 /// element with the minimum number of sign bits. 2940 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2941 const APInt &DemandedElts, 2942 unsigned TyBits) { 2943 const auto *CV = dyn_cast<Constant>(V); 2944 if (!CV || !isa<FixedVectorType>(CV->getType())) 2945 return 0; 2946 2947 unsigned MinSignBits = TyBits; 2948 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2949 for (unsigned i = 0; i != NumElts; ++i) { 2950 if (!DemandedElts[i]) 2951 continue; 2952 // If we find a non-ConstantInt, bail out. 2953 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2954 if (!Elt) 2955 return 0; 2956 2957 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2958 } 2959 2960 return MinSignBits; 2961 } 2962 2963 static unsigned ComputeNumSignBitsImpl(const Value *V, 2964 const APInt &DemandedElts, 2965 unsigned Depth, const Query &Q); 2966 2967 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2968 unsigned Depth, const Query &Q) { 2969 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2970 assert(Result > 0 && "At least one sign bit needs to be present!"); 2971 return Result; 2972 } 2973 2974 /// Return the number of times the sign bit of the register is replicated into 2975 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2976 /// (itself), but other cases can give us information. For example, immediately 2977 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2978 /// other, so we return 3. For vectors, return the number of sign bits for the 2979 /// vector element with the minimum number of known sign bits of the demanded 2980 /// elements in the vector specified by DemandedElts. 2981 static unsigned ComputeNumSignBitsImpl(const Value *V, 2982 const APInt &DemandedElts, 2983 unsigned Depth, const Query &Q) { 2984 Type *Ty = V->getType(); 2985 2986 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2987 // vector 2988 if (isa<ScalableVectorType>(Ty)) 2989 return 1; 2990 2991 #ifndef NDEBUG 2992 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2993 2994 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2995 assert( 2996 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2997 "DemandedElt width should equal the fixed vector number of elements"); 2998 } else { 2999 assert(DemandedElts == APInt(1, 1) && 3000 "DemandedElt width should be 1 for scalars"); 3001 } 3002 #endif 3003 3004 // We return the minimum number of sign bits that are guaranteed to be present 3005 // in V, so for undef we have to conservatively return 1. We don't have the 3006 // same behavior for poison though -- that's a FIXME today. 3007 3008 Type *ScalarTy = Ty->getScalarType(); 3009 unsigned TyBits = ScalarTy->isPointerTy() ? 3010 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 3011 Q.DL.getTypeSizeInBits(ScalarTy); 3012 3013 unsigned Tmp, Tmp2; 3014 unsigned FirstAnswer = 1; 3015 3016 // Note that ConstantInt is handled by the general computeKnownBits case 3017 // below. 3018 3019 if (Depth == MaxAnalysisRecursionDepth) 3020 return 1; 3021 3022 if (auto *U = dyn_cast<Operator>(V)) { 3023 switch (Operator::getOpcode(V)) { 3024 default: break; 3025 case Instruction::SExt: 3026 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3027 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 3028 3029 case Instruction::SDiv: { 3030 const APInt *Denominator; 3031 // sdiv X, C -> adds log(C) sign bits. 3032 if (match(U->getOperand(1), m_APInt(Denominator))) { 3033 3034 // Ignore non-positive denominator. 3035 if (!Denominator->isStrictlyPositive()) 3036 break; 3037 3038 // Calculate the incoming numerator bits. 3039 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3040 3041 // Add floor(log(C)) bits to the numerator bits. 3042 return std::min(TyBits, NumBits + Denominator->logBase2()); 3043 } 3044 break; 3045 } 3046 3047 case Instruction::SRem: { 3048 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3049 3050 const APInt *Denominator; 3051 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3052 // positive constant. This let us put a lower bound on the number of sign 3053 // bits. 3054 if (match(U->getOperand(1), m_APInt(Denominator))) { 3055 3056 // Ignore non-positive denominator. 3057 if (Denominator->isStrictlyPositive()) { 3058 // Calculate the leading sign bit constraints by examining the 3059 // denominator. Given that the denominator is positive, there are two 3060 // cases: 3061 // 3062 // 1. The numerator is positive. The result range is [0,C) and 3063 // [0,C) u< (1 << ceilLogBase2(C)). 3064 // 3065 // 2. The numerator is negative. Then the result range is (-C,0] and 3066 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3067 // 3068 // Thus a lower bound on the number of sign bits is `TyBits - 3069 // ceilLogBase2(C)`. 3070 3071 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3072 Tmp = std::max(Tmp, ResBits); 3073 } 3074 } 3075 return Tmp; 3076 } 3077 3078 case Instruction::AShr: { 3079 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3080 // ashr X, C -> adds C sign bits. Vectors too. 3081 const APInt *ShAmt; 3082 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3083 if (ShAmt->uge(TyBits)) 3084 break; // Bad shift. 3085 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3086 Tmp += ShAmtLimited; 3087 if (Tmp > TyBits) Tmp = TyBits; 3088 } 3089 return Tmp; 3090 } 3091 case Instruction::Shl: { 3092 const APInt *ShAmt; 3093 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3094 // shl destroys sign bits. 3095 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3096 if (ShAmt->uge(TyBits) || // Bad shift. 3097 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3098 Tmp2 = ShAmt->getZExtValue(); 3099 return Tmp - Tmp2; 3100 } 3101 break; 3102 } 3103 case Instruction::And: 3104 case Instruction::Or: 3105 case Instruction::Xor: // NOT is handled here. 3106 // Logical binary ops preserve the number of sign bits at the worst. 3107 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3108 if (Tmp != 1) { 3109 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3110 FirstAnswer = std::min(Tmp, Tmp2); 3111 // We computed what we know about the sign bits as our first 3112 // answer. Now proceed to the generic code that uses 3113 // computeKnownBits, and pick whichever answer is better. 3114 } 3115 break; 3116 3117 case Instruction::Select: { 3118 // If we have a clamp pattern, we know that the number of sign bits will 3119 // be the minimum of the clamp min/max range. 3120 const Value *X; 3121 const APInt *CLow, *CHigh; 3122 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3123 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3124 3125 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3126 if (Tmp == 1) break; 3127 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3128 return std::min(Tmp, Tmp2); 3129 } 3130 3131 case Instruction::Add: 3132 // Add can have at most one carry bit. Thus we know that the output 3133 // is, at worst, one more bit than the inputs. 3134 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3135 if (Tmp == 1) break; 3136 3137 // Special case decrementing a value (ADD X, -1): 3138 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3139 if (CRHS->isAllOnesValue()) { 3140 KnownBits Known(TyBits); 3141 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3142 3143 // If the input is known to be 0 or 1, the output is 0/-1, which is 3144 // all sign bits set. 3145 if ((Known.Zero | 1).isAllOnes()) 3146 return TyBits; 3147 3148 // If we are subtracting one from a positive number, there is no carry 3149 // out of the result. 3150 if (Known.isNonNegative()) 3151 return Tmp; 3152 } 3153 3154 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3155 if (Tmp2 == 1) break; 3156 return std::min(Tmp, Tmp2) - 1; 3157 3158 case Instruction::Sub: 3159 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3160 if (Tmp2 == 1) break; 3161 3162 // Handle NEG. 3163 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3164 if (CLHS->isNullValue()) { 3165 KnownBits Known(TyBits); 3166 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3167 // If the input is known to be 0 or 1, the output is 0/-1, which is 3168 // all sign bits set. 3169 if ((Known.Zero | 1).isAllOnes()) 3170 return TyBits; 3171 3172 // If the input is known to be positive (the sign bit is known clear), 3173 // the output of the NEG has the same number of sign bits as the 3174 // input. 3175 if (Known.isNonNegative()) 3176 return Tmp2; 3177 3178 // Otherwise, we treat this like a SUB. 3179 } 3180 3181 // Sub can have at most one carry bit. Thus we know that the output 3182 // is, at worst, one more bit than the inputs. 3183 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3184 if (Tmp == 1) break; 3185 return std::min(Tmp, Tmp2) - 1; 3186 3187 case Instruction::Mul: { 3188 // The output of the Mul can be at most twice the valid bits in the 3189 // inputs. 3190 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3191 if (SignBitsOp0 == 1) break; 3192 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3193 if (SignBitsOp1 == 1) break; 3194 unsigned OutValidBits = 3195 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3196 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3197 } 3198 3199 case Instruction::PHI: { 3200 const PHINode *PN = cast<PHINode>(U); 3201 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3202 // Don't analyze large in-degree PHIs. 3203 if (NumIncomingValues > 4) break; 3204 // Unreachable blocks may have zero-operand PHI nodes. 3205 if (NumIncomingValues == 0) break; 3206 3207 // Take the minimum of all incoming values. This can't infinitely loop 3208 // because of our depth threshold. 3209 Query RecQ = Q; 3210 Tmp = TyBits; 3211 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3212 if (Tmp == 1) return Tmp; 3213 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3214 Tmp = std::min( 3215 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3216 } 3217 return Tmp; 3218 } 3219 3220 case Instruction::Trunc: 3221 // FIXME: it's tricky to do anything useful for this, but it is an 3222 // important case for targets like X86. 3223 break; 3224 3225 case Instruction::ExtractElement: 3226 // Look through extract element. At the moment we keep this simple and 3227 // skip tracking the specific element. But at least we might find 3228 // information valid for all elements of the vector (for example if vector 3229 // is sign extended, shifted, etc). 3230 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3231 3232 case Instruction::ShuffleVector: { 3233 // Collect the minimum number of sign bits that are shared by every vector 3234 // element referenced by the shuffle. 3235 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3236 if (!Shuf) { 3237 // FIXME: Add support for shufflevector constant expressions. 3238 return 1; 3239 } 3240 APInt DemandedLHS, DemandedRHS; 3241 // For undef elements, we don't know anything about the common state of 3242 // the shuffle result. 3243 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3244 return 1; 3245 Tmp = std::numeric_limits<unsigned>::max(); 3246 if (!!DemandedLHS) { 3247 const Value *LHS = Shuf->getOperand(0); 3248 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3249 } 3250 // If we don't know anything, early out and try computeKnownBits 3251 // fall-back. 3252 if (Tmp == 1) 3253 break; 3254 if (!!DemandedRHS) { 3255 const Value *RHS = Shuf->getOperand(1); 3256 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3257 Tmp = std::min(Tmp, Tmp2); 3258 } 3259 // If we don't know anything, early out and try computeKnownBits 3260 // fall-back. 3261 if (Tmp == 1) 3262 break; 3263 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3264 return Tmp; 3265 } 3266 case Instruction::Call: { 3267 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3268 switch (II->getIntrinsicID()) { 3269 default: break; 3270 case Intrinsic::abs: 3271 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3272 if (Tmp == 1) break; 3273 3274 // Absolute value reduces number of sign bits by at most 1. 3275 return Tmp - 1; 3276 case Intrinsic::smin: 3277 case Intrinsic::smax: { 3278 const APInt *CLow, *CHigh; 3279 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 3280 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3281 } 3282 } 3283 } 3284 } 3285 } 3286 } 3287 3288 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3289 // use this information. 3290 3291 // If we can examine all elements of a vector constant successfully, we're 3292 // done (we can't do any better than that). If not, keep trying. 3293 if (unsigned VecSignBits = 3294 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3295 return VecSignBits; 3296 3297 KnownBits Known(TyBits); 3298 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3299 3300 // If we know that the sign bit is either zero or one, determine the number of 3301 // identical bits in the top of the input value. 3302 return std::max(FirstAnswer, Known.countMinSignBits()); 3303 } 3304 3305 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3306 const TargetLibraryInfo *TLI) { 3307 const Function *F = CB.getCalledFunction(); 3308 if (!F) 3309 return Intrinsic::not_intrinsic; 3310 3311 if (F->isIntrinsic()) 3312 return F->getIntrinsicID(); 3313 3314 // We are going to infer semantics of a library function based on mapping it 3315 // to an LLVM intrinsic. Check that the library function is available from 3316 // this callbase and in this environment. 3317 LibFunc Func; 3318 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3319 !CB.onlyReadsMemory()) 3320 return Intrinsic::not_intrinsic; 3321 3322 switch (Func) { 3323 default: 3324 break; 3325 case LibFunc_sin: 3326 case LibFunc_sinf: 3327 case LibFunc_sinl: 3328 return Intrinsic::sin; 3329 case LibFunc_cos: 3330 case LibFunc_cosf: 3331 case LibFunc_cosl: 3332 return Intrinsic::cos; 3333 case LibFunc_exp: 3334 case LibFunc_expf: 3335 case LibFunc_expl: 3336 return Intrinsic::exp; 3337 case LibFunc_exp2: 3338 case LibFunc_exp2f: 3339 case LibFunc_exp2l: 3340 return Intrinsic::exp2; 3341 case LibFunc_log: 3342 case LibFunc_logf: 3343 case LibFunc_logl: 3344 return Intrinsic::log; 3345 case LibFunc_log10: 3346 case LibFunc_log10f: 3347 case LibFunc_log10l: 3348 return Intrinsic::log10; 3349 case LibFunc_log2: 3350 case LibFunc_log2f: 3351 case LibFunc_log2l: 3352 return Intrinsic::log2; 3353 case LibFunc_fabs: 3354 case LibFunc_fabsf: 3355 case LibFunc_fabsl: 3356 return Intrinsic::fabs; 3357 case LibFunc_fmin: 3358 case LibFunc_fminf: 3359 case LibFunc_fminl: 3360 return Intrinsic::minnum; 3361 case LibFunc_fmax: 3362 case LibFunc_fmaxf: 3363 case LibFunc_fmaxl: 3364 return Intrinsic::maxnum; 3365 case LibFunc_copysign: 3366 case LibFunc_copysignf: 3367 case LibFunc_copysignl: 3368 return Intrinsic::copysign; 3369 case LibFunc_floor: 3370 case LibFunc_floorf: 3371 case LibFunc_floorl: 3372 return Intrinsic::floor; 3373 case LibFunc_ceil: 3374 case LibFunc_ceilf: 3375 case LibFunc_ceill: 3376 return Intrinsic::ceil; 3377 case LibFunc_trunc: 3378 case LibFunc_truncf: 3379 case LibFunc_truncl: 3380 return Intrinsic::trunc; 3381 case LibFunc_rint: 3382 case LibFunc_rintf: 3383 case LibFunc_rintl: 3384 return Intrinsic::rint; 3385 case LibFunc_nearbyint: 3386 case LibFunc_nearbyintf: 3387 case LibFunc_nearbyintl: 3388 return Intrinsic::nearbyint; 3389 case LibFunc_round: 3390 case LibFunc_roundf: 3391 case LibFunc_roundl: 3392 return Intrinsic::round; 3393 case LibFunc_roundeven: 3394 case LibFunc_roundevenf: 3395 case LibFunc_roundevenl: 3396 return Intrinsic::roundeven; 3397 case LibFunc_pow: 3398 case LibFunc_powf: 3399 case LibFunc_powl: 3400 return Intrinsic::pow; 3401 case LibFunc_sqrt: 3402 case LibFunc_sqrtf: 3403 case LibFunc_sqrtl: 3404 return Intrinsic::sqrt; 3405 } 3406 3407 return Intrinsic::not_intrinsic; 3408 } 3409 3410 /// Return true if we can prove that the specified FP value is never equal to 3411 /// -0.0. 3412 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3413 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3414 /// the same as +0.0 in floating-point ops. 3415 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3416 unsigned Depth) { 3417 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3418 return !CFP->getValueAPF().isNegZero(); 3419 3420 if (Depth == MaxAnalysisRecursionDepth) 3421 return false; 3422 3423 auto *Op = dyn_cast<Operator>(V); 3424 if (!Op) 3425 return false; 3426 3427 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3428 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3429 return true; 3430 3431 // sitofp and uitofp turn into +0.0 for zero. 3432 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3433 return true; 3434 3435 if (auto *Call = dyn_cast<CallInst>(Op)) { 3436 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3437 switch (IID) { 3438 default: 3439 break; 3440 // sqrt(-0.0) = -0.0, no other negative results are possible. 3441 case Intrinsic::sqrt: 3442 case Intrinsic::canonicalize: 3443 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3444 case Intrinsic::experimental_constrained_sqrt: { 3445 // NOTE: This rounding mode restriction may be too strict. 3446 const auto *CI = cast<ConstrainedFPIntrinsic>(Call); 3447 if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) 3448 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3449 else 3450 return false; 3451 } 3452 // fabs(x) != -0.0 3453 case Intrinsic::fabs: 3454 return true; 3455 // sitofp and uitofp turn into +0.0 for zero. 3456 case Intrinsic::experimental_constrained_sitofp: 3457 case Intrinsic::experimental_constrained_uitofp: 3458 return true; 3459 } 3460 } 3461 3462 return false; 3463 } 3464 3465 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3466 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3467 /// bit despite comparing equal. 3468 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3469 const TargetLibraryInfo *TLI, 3470 bool SignBitOnly, 3471 unsigned Depth) { 3472 // TODO: This function does not do the right thing when SignBitOnly is true 3473 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3474 // which flips the sign bits of NaNs. See 3475 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3476 3477 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3478 return !CFP->getValueAPF().isNegative() || 3479 (!SignBitOnly && CFP->getValueAPF().isZero()); 3480 } 3481 3482 // Handle vector of constants. 3483 if (auto *CV = dyn_cast<Constant>(V)) { 3484 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3485 unsigned NumElts = CVFVTy->getNumElements(); 3486 for (unsigned i = 0; i != NumElts; ++i) { 3487 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3488 if (!CFP) 3489 return false; 3490 if (CFP->getValueAPF().isNegative() && 3491 (SignBitOnly || !CFP->getValueAPF().isZero())) 3492 return false; 3493 } 3494 3495 // All non-negative ConstantFPs. 3496 return true; 3497 } 3498 } 3499 3500 if (Depth == MaxAnalysisRecursionDepth) 3501 return false; 3502 3503 const Operator *I = dyn_cast<Operator>(V); 3504 if (!I) 3505 return false; 3506 3507 switch (I->getOpcode()) { 3508 default: 3509 break; 3510 // Unsigned integers are always nonnegative. 3511 case Instruction::UIToFP: 3512 return true; 3513 case Instruction::FMul: 3514 case Instruction::FDiv: 3515 // X * X is always non-negative or a NaN. 3516 // X / X is always exactly 1.0 or a NaN. 3517 if (I->getOperand(0) == I->getOperand(1) && 3518 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3519 return true; 3520 3521 LLVM_FALLTHROUGH; 3522 case Instruction::FAdd: 3523 case Instruction::FRem: 3524 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3525 Depth + 1) && 3526 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3527 Depth + 1); 3528 case Instruction::Select: 3529 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3530 Depth + 1) && 3531 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3532 Depth + 1); 3533 case Instruction::FPExt: 3534 case Instruction::FPTrunc: 3535 // Widening/narrowing never change sign. 3536 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3537 Depth + 1); 3538 case Instruction::ExtractElement: 3539 // Look through extract element. At the moment we keep this simple and skip 3540 // tracking the specific element. But at least we might find information 3541 // valid for all elements of the vector. 3542 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3543 Depth + 1); 3544 case Instruction::Call: 3545 const auto *CI = cast<CallInst>(I); 3546 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3547 switch (IID) { 3548 default: 3549 break; 3550 case Intrinsic::maxnum: { 3551 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3552 auto isPositiveNum = [&](Value *V) { 3553 if (SignBitOnly) { 3554 // With SignBitOnly, this is tricky because the result of 3555 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3556 // a constant strictly greater than 0.0. 3557 const APFloat *C; 3558 return match(V, m_APFloat(C)) && 3559 *C > APFloat::getZero(C->getSemantics()); 3560 } 3561 3562 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3563 // maxnum can't be ordered-less-than-zero. 3564 return isKnownNeverNaN(V, TLI) && 3565 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3566 }; 3567 3568 // TODO: This could be improved. We could also check that neither operand 3569 // has its sign bit set (and at least 1 is not-NAN?). 3570 return isPositiveNum(V0) || isPositiveNum(V1); 3571 } 3572 3573 case Intrinsic::maximum: 3574 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3575 Depth + 1) || 3576 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3577 Depth + 1); 3578 case Intrinsic::minnum: 3579 case Intrinsic::minimum: 3580 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3581 Depth + 1) && 3582 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3583 Depth + 1); 3584 case Intrinsic::exp: 3585 case Intrinsic::exp2: 3586 case Intrinsic::fabs: 3587 return true; 3588 3589 case Intrinsic::sqrt: 3590 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3591 if (!SignBitOnly) 3592 return true; 3593 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3594 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3595 3596 case Intrinsic::powi: 3597 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3598 // powi(x,n) is non-negative if n is even. 3599 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3600 return true; 3601 } 3602 // TODO: This is not correct. Given that exp is an integer, here are the 3603 // ways that pow can return a negative value: 3604 // 3605 // pow(x, exp) --> negative if exp is odd and x is negative. 3606 // pow(-0, exp) --> -inf if exp is negative odd. 3607 // pow(-0, exp) --> -0 if exp is positive odd. 3608 // pow(-inf, exp) --> -0 if exp is negative odd. 3609 // pow(-inf, exp) --> -inf if exp is positive odd. 3610 // 3611 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3612 // but we must return false if x == -0. Unfortunately we do not currently 3613 // have a way of expressing this constraint. See details in 3614 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3615 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3616 Depth + 1); 3617 3618 case Intrinsic::fma: 3619 case Intrinsic::fmuladd: 3620 // x*x+y is non-negative if y is non-negative. 3621 return I->getOperand(0) == I->getOperand(1) && 3622 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3623 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3624 Depth + 1); 3625 } 3626 break; 3627 } 3628 return false; 3629 } 3630 3631 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3632 const TargetLibraryInfo *TLI) { 3633 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3634 } 3635 3636 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3637 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3638 } 3639 3640 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3641 unsigned Depth) { 3642 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3643 3644 // If we're told that infinities won't happen, assume they won't. 3645 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3646 if (FPMathOp->hasNoInfs()) 3647 return true; 3648 3649 // Handle scalar constants. 3650 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3651 return !CFP->isInfinity(); 3652 3653 if (Depth == MaxAnalysisRecursionDepth) 3654 return false; 3655 3656 if (auto *Inst = dyn_cast<Instruction>(V)) { 3657 switch (Inst->getOpcode()) { 3658 case Instruction::Select: { 3659 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3660 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3661 } 3662 case Instruction::SIToFP: 3663 case Instruction::UIToFP: { 3664 // Get width of largest magnitude integer (remove a bit if signed). 3665 // This still works for a signed minimum value because the largest FP 3666 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3667 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3668 if (Inst->getOpcode() == Instruction::SIToFP) 3669 --IntSize; 3670 3671 // If the exponent of the largest finite FP value can hold the largest 3672 // integer, the result of the cast must be finite. 3673 Type *FPTy = Inst->getType()->getScalarType(); 3674 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3675 } 3676 default: 3677 break; 3678 } 3679 } 3680 3681 // try to handle fixed width vector constants 3682 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3683 if (VFVTy && isa<Constant>(V)) { 3684 // For vectors, verify that each element is not infinity. 3685 unsigned NumElts = VFVTy->getNumElements(); 3686 for (unsigned i = 0; i != NumElts; ++i) { 3687 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3688 if (!Elt) 3689 return false; 3690 if (isa<UndefValue>(Elt)) 3691 continue; 3692 auto *CElt = dyn_cast<ConstantFP>(Elt); 3693 if (!CElt || CElt->isInfinity()) 3694 return false; 3695 } 3696 // All elements were confirmed non-infinity or undefined. 3697 return true; 3698 } 3699 3700 // was not able to prove that V never contains infinity 3701 return false; 3702 } 3703 3704 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3705 unsigned Depth) { 3706 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3707 3708 // If we're told that NaNs won't happen, assume they won't. 3709 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3710 if (FPMathOp->hasNoNaNs()) 3711 return true; 3712 3713 // Handle scalar constants. 3714 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3715 return !CFP->isNaN(); 3716 3717 if (Depth == MaxAnalysisRecursionDepth) 3718 return false; 3719 3720 if (auto *Inst = dyn_cast<Instruction>(V)) { 3721 switch (Inst->getOpcode()) { 3722 case Instruction::FAdd: 3723 case Instruction::FSub: 3724 // Adding positive and negative infinity produces NaN. 3725 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3726 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3727 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3728 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3729 3730 case Instruction::FMul: 3731 // Zero multiplied with infinity produces NaN. 3732 // FIXME: If neither side can be zero fmul never produces NaN. 3733 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3734 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3735 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3736 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3737 3738 case Instruction::FDiv: 3739 case Instruction::FRem: 3740 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3741 return false; 3742 3743 case Instruction::Select: { 3744 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3745 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3746 } 3747 case Instruction::SIToFP: 3748 case Instruction::UIToFP: 3749 return true; 3750 case Instruction::FPTrunc: 3751 case Instruction::FPExt: 3752 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3753 default: 3754 break; 3755 } 3756 } 3757 3758 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3759 switch (II->getIntrinsicID()) { 3760 case Intrinsic::canonicalize: 3761 case Intrinsic::fabs: 3762 case Intrinsic::copysign: 3763 case Intrinsic::exp: 3764 case Intrinsic::exp2: 3765 case Intrinsic::floor: 3766 case Intrinsic::ceil: 3767 case Intrinsic::trunc: 3768 case Intrinsic::rint: 3769 case Intrinsic::nearbyint: 3770 case Intrinsic::round: 3771 case Intrinsic::roundeven: 3772 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3773 case Intrinsic::sqrt: 3774 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3775 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3776 case Intrinsic::minnum: 3777 case Intrinsic::maxnum: 3778 // If either operand is not NaN, the result is not NaN. 3779 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3780 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3781 default: 3782 return false; 3783 } 3784 } 3785 3786 // Try to handle fixed width vector constants 3787 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3788 if (VFVTy && isa<Constant>(V)) { 3789 // For vectors, verify that each element is not NaN. 3790 unsigned NumElts = VFVTy->getNumElements(); 3791 for (unsigned i = 0; i != NumElts; ++i) { 3792 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3793 if (!Elt) 3794 return false; 3795 if (isa<UndefValue>(Elt)) 3796 continue; 3797 auto *CElt = dyn_cast<ConstantFP>(Elt); 3798 if (!CElt || CElt->isNaN()) 3799 return false; 3800 } 3801 // All elements were confirmed not-NaN or undefined. 3802 return true; 3803 } 3804 3805 // Was not able to prove that V never contains NaN 3806 return false; 3807 } 3808 3809 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3810 3811 // All byte-wide stores are splatable, even of arbitrary variables. 3812 if (V->getType()->isIntegerTy(8)) 3813 return V; 3814 3815 LLVMContext &Ctx = V->getContext(); 3816 3817 // Undef don't care. 3818 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3819 if (isa<UndefValue>(V)) 3820 return UndefInt8; 3821 3822 // Return Undef for zero-sized type. 3823 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3824 return UndefInt8; 3825 3826 Constant *C = dyn_cast<Constant>(V); 3827 if (!C) { 3828 // Conceptually, we could handle things like: 3829 // %a = zext i8 %X to i16 3830 // %b = shl i16 %a, 8 3831 // %c = or i16 %a, %b 3832 // but until there is an example that actually needs this, it doesn't seem 3833 // worth worrying about. 3834 return nullptr; 3835 } 3836 3837 // Handle 'null' ConstantArrayZero etc. 3838 if (C->isNullValue()) 3839 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3840 3841 // Constant floating-point values can be handled as integer values if the 3842 // corresponding integer value is "byteable". An important case is 0.0. 3843 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3844 Type *Ty = nullptr; 3845 if (CFP->getType()->isHalfTy()) 3846 Ty = Type::getInt16Ty(Ctx); 3847 else if (CFP->getType()->isFloatTy()) 3848 Ty = Type::getInt32Ty(Ctx); 3849 else if (CFP->getType()->isDoubleTy()) 3850 Ty = Type::getInt64Ty(Ctx); 3851 // Don't handle long double formats, which have strange constraints. 3852 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3853 : nullptr; 3854 } 3855 3856 // We can handle constant integers that are multiple of 8 bits. 3857 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3858 if (CI->getBitWidth() % 8 == 0) { 3859 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3860 if (!CI->getValue().isSplat(8)) 3861 return nullptr; 3862 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3863 } 3864 } 3865 3866 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3867 if (CE->getOpcode() == Instruction::IntToPtr) { 3868 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3869 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3870 return isBytewiseValue( 3871 ConstantExpr::getIntegerCast(CE->getOperand(0), 3872 Type::getIntNTy(Ctx, BitWidth), false), 3873 DL); 3874 } 3875 } 3876 } 3877 3878 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3879 if (LHS == RHS) 3880 return LHS; 3881 if (!LHS || !RHS) 3882 return nullptr; 3883 if (LHS == UndefInt8) 3884 return RHS; 3885 if (RHS == UndefInt8) 3886 return LHS; 3887 return nullptr; 3888 }; 3889 3890 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3891 Value *Val = UndefInt8; 3892 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3893 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3894 return nullptr; 3895 return Val; 3896 } 3897 3898 if (isa<ConstantAggregate>(C)) { 3899 Value *Val = UndefInt8; 3900 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3901 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3902 return nullptr; 3903 return Val; 3904 } 3905 3906 // Don't try to handle the handful of other constants. 3907 return nullptr; 3908 } 3909 3910 // This is the recursive version of BuildSubAggregate. It takes a few different 3911 // arguments. Idxs is the index within the nested struct From that we are 3912 // looking at now (which is of type IndexedType). IdxSkip is the number of 3913 // indices from Idxs that should be left out when inserting into the resulting 3914 // struct. To is the result struct built so far, new insertvalue instructions 3915 // build on that. 3916 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3917 SmallVectorImpl<unsigned> &Idxs, 3918 unsigned IdxSkip, 3919 Instruction *InsertBefore) { 3920 StructType *STy = dyn_cast<StructType>(IndexedType); 3921 if (STy) { 3922 // Save the original To argument so we can modify it 3923 Value *OrigTo = To; 3924 // General case, the type indexed by Idxs is a struct 3925 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3926 // Process each struct element recursively 3927 Idxs.push_back(i); 3928 Value *PrevTo = To; 3929 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3930 InsertBefore); 3931 Idxs.pop_back(); 3932 if (!To) { 3933 // Couldn't find any inserted value for this index? Cleanup 3934 while (PrevTo != OrigTo) { 3935 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3936 PrevTo = Del->getAggregateOperand(); 3937 Del->eraseFromParent(); 3938 } 3939 // Stop processing elements 3940 break; 3941 } 3942 } 3943 // If we successfully found a value for each of our subaggregates 3944 if (To) 3945 return To; 3946 } 3947 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3948 // the struct's elements had a value that was inserted directly. In the latter 3949 // case, perhaps we can't determine each of the subelements individually, but 3950 // we might be able to find the complete struct somewhere. 3951 3952 // Find the value that is at that particular spot 3953 Value *V = FindInsertedValue(From, Idxs); 3954 3955 if (!V) 3956 return nullptr; 3957 3958 // Insert the value in the new (sub) aggregate 3959 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3960 "tmp", InsertBefore); 3961 } 3962 3963 // This helper takes a nested struct and extracts a part of it (which is again a 3964 // struct) into a new value. For example, given the struct: 3965 // { a, { b, { c, d }, e } } 3966 // and the indices "1, 1" this returns 3967 // { c, d }. 3968 // 3969 // It does this by inserting an insertvalue for each element in the resulting 3970 // struct, as opposed to just inserting a single struct. This will only work if 3971 // each of the elements of the substruct are known (ie, inserted into From by an 3972 // insertvalue instruction somewhere). 3973 // 3974 // All inserted insertvalue instructions are inserted before InsertBefore 3975 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3976 Instruction *InsertBefore) { 3977 assert(InsertBefore && "Must have someplace to insert!"); 3978 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3979 idx_range); 3980 Value *To = UndefValue::get(IndexedType); 3981 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3982 unsigned IdxSkip = Idxs.size(); 3983 3984 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3985 } 3986 3987 /// Given an aggregate and a sequence of indices, see if the scalar value 3988 /// indexed is already around as a register, for example if it was inserted 3989 /// directly into the aggregate. 3990 /// 3991 /// If InsertBefore is not null, this function will duplicate (modified) 3992 /// insertvalues when a part of a nested struct is extracted. 3993 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3994 Instruction *InsertBefore) { 3995 // Nothing to index? Just return V then (this is useful at the end of our 3996 // recursion). 3997 if (idx_range.empty()) 3998 return V; 3999 // We have indices, so V should have an indexable type. 4000 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4001 "Not looking at a struct or array?"); 4002 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4003 "Invalid indices for type?"); 4004 4005 if (Constant *C = dyn_cast<Constant>(V)) { 4006 C = C->getAggregateElement(idx_range[0]); 4007 if (!C) return nullptr; 4008 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4009 } 4010 4011 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4012 // Loop the indices for the insertvalue instruction in parallel with the 4013 // requested indices 4014 const unsigned *req_idx = idx_range.begin(); 4015 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4016 i != e; ++i, ++req_idx) { 4017 if (req_idx == idx_range.end()) { 4018 // We can't handle this without inserting insertvalues 4019 if (!InsertBefore) 4020 return nullptr; 4021 4022 // The requested index identifies a part of a nested aggregate. Handle 4023 // this specially. For example, 4024 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4025 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4026 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4027 // This can be changed into 4028 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4029 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4030 // which allows the unused 0,0 element from the nested struct to be 4031 // removed. 4032 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4033 InsertBefore); 4034 } 4035 4036 // This insert value inserts something else than what we are looking for. 4037 // See if the (aggregate) value inserted into has the value we are 4038 // looking for, then. 4039 if (*req_idx != *i) 4040 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4041 InsertBefore); 4042 } 4043 // If we end up here, the indices of the insertvalue match with those 4044 // requested (though possibly only partially). Now we recursively look at 4045 // the inserted value, passing any remaining indices. 4046 return FindInsertedValue(I->getInsertedValueOperand(), 4047 makeArrayRef(req_idx, idx_range.end()), 4048 InsertBefore); 4049 } 4050 4051 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4052 // If we're extracting a value from an aggregate that was extracted from 4053 // something else, we can extract from that something else directly instead. 4054 // However, we will need to chain I's indices with the requested indices. 4055 4056 // Calculate the number of indices required 4057 unsigned size = I->getNumIndices() + idx_range.size(); 4058 // Allocate some space to put the new indices in 4059 SmallVector<unsigned, 5> Idxs; 4060 Idxs.reserve(size); 4061 // Add indices from the extract value instruction 4062 Idxs.append(I->idx_begin(), I->idx_end()); 4063 4064 // Add requested indices 4065 Idxs.append(idx_range.begin(), idx_range.end()); 4066 4067 assert(Idxs.size() == size 4068 && "Number of indices added not correct?"); 4069 4070 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4071 } 4072 // Otherwise, we don't know (such as, extracting from a function return value 4073 // or load instruction) 4074 return nullptr; 4075 } 4076 4077 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4078 unsigned CharSize) { 4079 // Make sure the GEP has exactly three arguments. 4080 if (GEP->getNumOperands() != 3) 4081 return false; 4082 4083 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4084 // CharSize. 4085 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4086 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4087 return false; 4088 4089 // Check to make sure that the first operand of the GEP is an integer and 4090 // has value 0 so that we are sure we're indexing into the initializer. 4091 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4092 if (!FirstIdx || !FirstIdx->isZero()) 4093 return false; 4094 4095 return true; 4096 } 4097 4098 bool llvm::getConstantDataArrayInfo(const Value *V, 4099 ConstantDataArraySlice &Slice, 4100 unsigned ElementSize, uint64_t Offset) { 4101 assert(V); 4102 4103 // Look through bitcast instructions and geps. 4104 V = V->stripPointerCasts(); 4105 4106 // If the value is a GEP instruction or constant expression, treat it as an 4107 // offset. 4108 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4109 // The GEP operator should be based on a pointer to string constant, and is 4110 // indexing into the string constant. 4111 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4112 return false; 4113 4114 // If the second index isn't a ConstantInt, then this is a variable index 4115 // into the array. If this occurs, we can't say anything meaningful about 4116 // the string. 4117 uint64_t StartIdx = 0; 4118 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4119 StartIdx = CI->getZExtValue(); 4120 else 4121 return false; 4122 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4123 StartIdx + Offset); 4124 } 4125 4126 // The GEP instruction, constant or instruction, must reference a global 4127 // variable that is a constant and is initialized. The referenced constant 4128 // initializer is the array that we'll use for optimization. 4129 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4130 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4131 return false; 4132 4133 const ConstantDataArray *Array; 4134 ArrayType *ArrayTy; 4135 if (GV->getInitializer()->isNullValue()) { 4136 Type *GVTy = GV->getValueType(); 4137 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4138 // A zeroinitializer for the array; there is no ConstantDataArray. 4139 Array = nullptr; 4140 } else { 4141 const DataLayout &DL = GV->getParent()->getDataLayout(); 4142 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4143 uint64_t Length = SizeInBytes / (ElementSize / 8); 4144 if (Length <= Offset) 4145 return false; 4146 4147 Slice.Array = nullptr; 4148 Slice.Offset = 0; 4149 Slice.Length = Length - Offset; 4150 return true; 4151 } 4152 } else { 4153 // This must be a ConstantDataArray. 4154 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4155 if (!Array) 4156 return false; 4157 ArrayTy = Array->getType(); 4158 } 4159 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4160 return false; 4161 4162 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4163 if (Offset > NumElts) 4164 return false; 4165 4166 Slice.Array = Array; 4167 Slice.Offset = Offset; 4168 Slice.Length = NumElts - Offset; 4169 return true; 4170 } 4171 4172 /// This function computes the length of a null-terminated C string pointed to 4173 /// by V. If successful, it returns true and returns the string in Str. 4174 /// If unsuccessful, it returns false. 4175 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4176 uint64_t Offset, bool TrimAtNul) { 4177 ConstantDataArraySlice Slice; 4178 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4179 return false; 4180 4181 if (Slice.Array == nullptr) { 4182 if (TrimAtNul) { 4183 Str = StringRef(); 4184 return true; 4185 } 4186 if (Slice.Length == 1) { 4187 Str = StringRef("", 1); 4188 return true; 4189 } 4190 // We cannot instantiate a StringRef as we do not have an appropriate string 4191 // of 0s at hand. 4192 return false; 4193 } 4194 4195 // Start out with the entire array in the StringRef. 4196 Str = Slice.Array->getAsString(); 4197 // Skip over 'offset' bytes. 4198 Str = Str.substr(Slice.Offset); 4199 4200 if (TrimAtNul) { 4201 // Trim off the \0 and anything after it. If the array is not nul 4202 // terminated, we just return the whole end of string. The client may know 4203 // some other way that the string is length-bound. 4204 Str = Str.substr(0, Str.find('\0')); 4205 } 4206 return true; 4207 } 4208 4209 // These next two are very similar to the above, but also look through PHI 4210 // nodes. 4211 // TODO: See if we can integrate these two together. 4212 4213 /// If we can compute the length of the string pointed to by 4214 /// the specified pointer, return 'len+1'. If we can't, return 0. 4215 static uint64_t GetStringLengthH(const Value *V, 4216 SmallPtrSetImpl<const PHINode*> &PHIs, 4217 unsigned CharSize) { 4218 // Look through noop bitcast instructions. 4219 V = V->stripPointerCasts(); 4220 4221 // If this is a PHI node, there are two cases: either we have already seen it 4222 // or we haven't. 4223 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4224 if (!PHIs.insert(PN).second) 4225 return ~0ULL; // already in the set. 4226 4227 // If it was new, see if all the input strings are the same length. 4228 uint64_t LenSoFar = ~0ULL; 4229 for (Value *IncValue : PN->incoming_values()) { 4230 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4231 if (Len == 0) return 0; // Unknown length -> unknown. 4232 4233 if (Len == ~0ULL) continue; 4234 4235 if (Len != LenSoFar && LenSoFar != ~0ULL) 4236 return 0; // Disagree -> unknown. 4237 LenSoFar = Len; 4238 } 4239 4240 // Success, all agree. 4241 return LenSoFar; 4242 } 4243 4244 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4245 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4246 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4247 if (Len1 == 0) return 0; 4248 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4249 if (Len2 == 0) return 0; 4250 if (Len1 == ~0ULL) return Len2; 4251 if (Len2 == ~0ULL) return Len1; 4252 if (Len1 != Len2) return 0; 4253 return Len1; 4254 } 4255 4256 // Otherwise, see if we can read the string. 4257 ConstantDataArraySlice Slice; 4258 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4259 return 0; 4260 4261 if (Slice.Array == nullptr) 4262 return 1; 4263 4264 // Search for nul characters 4265 unsigned NullIndex = 0; 4266 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4267 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4268 break; 4269 } 4270 4271 return NullIndex + 1; 4272 } 4273 4274 /// If we can compute the length of the string pointed to by 4275 /// the specified pointer, return 'len+1'. If we can't, return 0. 4276 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4277 if (!V->getType()->isPointerTy()) 4278 return 0; 4279 4280 SmallPtrSet<const PHINode*, 32> PHIs; 4281 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4282 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4283 // an empty string as a length. 4284 return Len == ~0ULL ? 1 : Len; 4285 } 4286 4287 const Value * 4288 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4289 bool MustPreserveNullness) { 4290 assert(Call && 4291 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4292 if (const Value *RV = Call->getReturnedArgOperand()) 4293 return RV; 4294 // This can be used only as a aliasing property. 4295 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4296 Call, MustPreserveNullness)) 4297 return Call->getArgOperand(0); 4298 return nullptr; 4299 } 4300 4301 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4302 const CallBase *Call, bool MustPreserveNullness) { 4303 switch (Call->getIntrinsicID()) { 4304 case Intrinsic::launder_invariant_group: 4305 case Intrinsic::strip_invariant_group: 4306 case Intrinsic::aarch64_irg: 4307 case Intrinsic::aarch64_tagp: 4308 return true; 4309 case Intrinsic::ptrmask: 4310 return !MustPreserveNullness; 4311 default: 4312 return false; 4313 } 4314 } 4315 4316 /// \p PN defines a loop-variant pointer to an object. Check if the 4317 /// previous iteration of the loop was referring to the same object as \p PN. 4318 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4319 const LoopInfo *LI) { 4320 // Find the loop-defined value. 4321 Loop *L = LI->getLoopFor(PN->getParent()); 4322 if (PN->getNumIncomingValues() != 2) 4323 return true; 4324 4325 // Find the value from previous iteration. 4326 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4327 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4328 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4329 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4330 return true; 4331 4332 // If a new pointer is loaded in the loop, the pointer references a different 4333 // object in every iteration. E.g.: 4334 // for (i) 4335 // int *p = a[i]; 4336 // ... 4337 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4338 if (!L->isLoopInvariant(Load->getPointerOperand())) 4339 return false; 4340 return true; 4341 } 4342 4343 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4344 if (!V->getType()->isPointerTy()) 4345 return V; 4346 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4347 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4348 V = GEP->getPointerOperand(); 4349 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4350 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4351 V = cast<Operator>(V)->getOperand(0); 4352 if (!V->getType()->isPointerTy()) 4353 return V; 4354 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4355 if (GA->isInterposable()) 4356 return V; 4357 V = GA->getAliasee(); 4358 } else { 4359 if (auto *PHI = dyn_cast<PHINode>(V)) { 4360 // Look through single-arg phi nodes created by LCSSA. 4361 if (PHI->getNumIncomingValues() == 1) { 4362 V = PHI->getIncomingValue(0); 4363 continue; 4364 } 4365 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4366 // CaptureTracking can know about special capturing properties of some 4367 // intrinsics like launder.invariant.group, that can't be expressed with 4368 // the attributes, but have properties like returning aliasing pointer. 4369 // Because some analysis may assume that nocaptured pointer is not 4370 // returned from some special intrinsic (because function would have to 4371 // be marked with returns attribute), it is crucial to use this function 4372 // because it should be in sync with CaptureTracking. Not using it may 4373 // cause weird miscompilations where 2 aliasing pointers are assumed to 4374 // noalias. 4375 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4376 V = RP; 4377 continue; 4378 } 4379 } 4380 4381 return V; 4382 } 4383 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4384 } 4385 return V; 4386 } 4387 4388 void llvm::getUnderlyingObjects(const Value *V, 4389 SmallVectorImpl<const Value *> &Objects, 4390 LoopInfo *LI, unsigned MaxLookup) { 4391 SmallPtrSet<const Value *, 4> Visited; 4392 SmallVector<const Value *, 4> Worklist; 4393 Worklist.push_back(V); 4394 do { 4395 const Value *P = Worklist.pop_back_val(); 4396 P = getUnderlyingObject(P, MaxLookup); 4397 4398 if (!Visited.insert(P).second) 4399 continue; 4400 4401 if (auto *SI = dyn_cast<SelectInst>(P)) { 4402 Worklist.push_back(SI->getTrueValue()); 4403 Worklist.push_back(SI->getFalseValue()); 4404 continue; 4405 } 4406 4407 if (auto *PN = dyn_cast<PHINode>(P)) { 4408 // If this PHI changes the underlying object in every iteration of the 4409 // loop, don't look through it. Consider: 4410 // int **A; 4411 // for (i) { 4412 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4413 // Curr = A[i]; 4414 // *Prev, *Curr; 4415 // 4416 // Prev is tracking Curr one iteration behind so they refer to different 4417 // underlying objects. 4418 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4419 isSameUnderlyingObjectInLoop(PN, LI)) 4420 append_range(Worklist, PN->incoming_values()); 4421 continue; 4422 } 4423 4424 Objects.push_back(P); 4425 } while (!Worklist.empty()); 4426 } 4427 4428 /// This is the function that does the work of looking through basic 4429 /// ptrtoint+arithmetic+inttoptr sequences. 4430 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4431 do { 4432 if (const Operator *U = dyn_cast<Operator>(V)) { 4433 // If we find a ptrtoint, we can transfer control back to the 4434 // regular getUnderlyingObjectFromInt. 4435 if (U->getOpcode() == Instruction::PtrToInt) 4436 return U->getOperand(0); 4437 // If we find an add of a constant, a multiplied value, or a phi, it's 4438 // likely that the other operand will lead us to the base 4439 // object. We don't have to worry about the case where the 4440 // object address is somehow being computed by the multiply, 4441 // because our callers only care when the result is an 4442 // identifiable object. 4443 if (U->getOpcode() != Instruction::Add || 4444 (!isa<ConstantInt>(U->getOperand(1)) && 4445 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4446 !isa<PHINode>(U->getOperand(1)))) 4447 return V; 4448 V = U->getOperand(0); 4449 } else { 4450 return V; 4451 } 4452 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4453 } while (true); 4454 } 4455 4456 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4457 /// ptrtoint+arithmetic+inttoptr sequences. 4458 /// It returns false if unidentified object is found in getUnderlyingObjects. 4459 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4460 SmallVectorImpl<Value *> &Objects) { 4461 SmallPtrSet<const Value *, 16> Visited; 4462 SmallVector<const Value *, 4> Working(1, V); 4463 do { 4464 V = Working.pop_back_val(); 4465 4466 SmallVector<const Value *, 4> Objs; 4467 getUnderlyingObjects(V, Objs); 4468 4469 for (const Value *V : Objs) { 4470 if (!Visited.insert(V).second) 4471 continue; 4472 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4473 const Value *O = 4474 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4475 if (O->getType()->isPointerTy()) { 4476 Working.push_back(O); 4477 continue; 4478 } 4479 } 4480 // If getUnderlyingObjects fails to find an identifiable object, 4481 // getUnderlyingObjectsForCodeGen also fails for safety. 4482 if (!isIdentifiedObject(V)) { 4483 Objects.clear(); 4484 return false; 4485 } 4486 Objects.push_back(const_cast<Value *>(V)); 4487 } 4488 } while (!Working.empty()); 4489 return true; 4490 } 4491 4492 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4493 AllocaInst *Result = nullptr; 4494 SmallPtrSet<Value *, 4> Visited; 4495 SmallVector<Value *, 4> Worklist; 4496 4497 auto AddWork = [&](Value *V) { 4498 if (Visited.insert(V).second) 4499 Worklist.push_back(V); 4500 }; 4501 4502 AddWork(V); 4503 do { 4504 V = Worklist.pop_back_val(); 4505 assert(Visited.count(V)); 4506 4507 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4508 if (Result && Result != AI) 4509 return nullptr; 4510 Result = AI; 4511 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4512 AddWork(CI->getOperand(0)); 4513 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4514 for (Value *IncValue : PN->incoming_values()) 4515 AddWork(IncValue); 4516 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4517 AddWork(SI->getTrueValue()); 4518 AddWork(SI->getFalseValue()); 4519 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4520 if (OffsetZero && !GEP->hasAllZeroIndices()) 4521 return nullptr; 4522 AddWork(GEP->getPointerOperand()); 4523 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4524 Value *Returned = CB->getReturnedArgOperand(); 4525 if (Returned) 4526 AddWork(Returned); 4527 else 4528 return nullptr; 4529 } else { 4530 return nullptr; 4531 } 4532 } while (!Worklist.empty()); 4533 4534 return Result; 4535 } 4536 4537 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4538 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4539 for (const User *U : V->users()) { 4540 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4541 if (!II) 4542 return false; 4543 4544 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4545 continue; 4546 4547 if (AllowDroppable && II->isDroppable()) 4548 continue; 4549 4550 return false; 4551 } 4552 return true; 4553 } 4554 4555 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4556 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4557 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4558 } 4559 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4560 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4561 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4562 } 4563 4564 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4565 if (!LI.isUnordered()) 4566 return true; 4567 const Function &F = *LI.getFunction(); 4568 // Speculative load may create a race that did not exist in the source. 4569 return F.hasFnAttribute(Attribute::SanitizeThread) || 4570 // Speculative load may load data from dirty regions. 4571 F.hasFnAttribute(Attribute::SanitizeAddress) || 4572 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4573 } 4574 4575 4576 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4577 const Instruction *CtxI, 4578 const DominatorTree *DT, 4579 const TargetLibraryInfo *TLI) { 4580 const Operator *Inst = dyn_cast<Operator>(V); 4581 if (!Inst) 4582 return false; 4583 4584 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4585 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4586 if (C->canTrap()) 4587 return false; 4588 4589 switch (Inst->getOpcode()) { 4590 default: 4591 return true; 4592 case Instruction::UDiv: 4593 case Instruction::URem: { 4594 // x / y is undefined if y == 0. 4595 const APInt *V; 4596 if (match(Inst->getOperand(1), m_APInt(V))) 4597 return *V != 0; 4598 return false; 4599 } 4600 case Instruction::SDiv: 4601 case Instruction::SRem: { 4602 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4603 const APInt *Numerator, *Denominator; 4604 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4605 return false; 4606 // We cannot hoist this division if the denominator is 0. 4607 if (*Denominator == 0) 4608 return false; 4609 // It's safe to hoist if the denominator is not 0 or -1. 4610 if (!Denominator->isAllOnes()) 4611 return true; 4612 // At this point we know that the denominator is -1. It is safe to hoist as 4613 // long we know that the numerator is not INT_MIN. 4614 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4615 return !Numerator->isMinSignedValue(); 4616 // The numerator *might* be MinSignedValue. 4617 return false; 4618 } 4619 case Instruction::Load: { 4620 const LoadInst *LI = cast<LoadInst>(Inst); 4621 if (mustSuppressSpeculation(*LI)) 4622 return false; 4623 const DataLayout &DL = LI->getModule()->getDataLayout(); 4624 return isDereferenceableAndAlignedPointer( 4625 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4626 TLI); 4627 } 4628 case Instruction::Call: { 4629 auto *CI = cast<const CallInst>(Inst); 4630 const Function *Callee = CI->getCalledFunction(); 4631 4632 // The called function could have undefined behavior or side-effects, even 4633 // if marked readnone nounwind. 4634 return Callee && Callee->isSpeculatable(); 4635 } 4636 case Instruction::VAArg: 4637 case Instruction::Alloca: 4638 case Instruction::Invoke: 4639 case Instruction::CallBr: 4640 case Instruction::PHI: 4641 case Instruction::Store: 4642 case Instruction::Ret: 4643 case Instruction::Br: 4644 case Instruction::IndirectBr: 4645 case Instruction::Switch: 4646 case Instruction::Unreachable: 4647 case Instruction::Fence: 4648 case Instruction::AtomicRMW: 4649 case Instruction::AtomicCmpXchg: 4650 case Instruction::LandingPad: 4651 case Instruction::Resume: 4652 case Instruction::CatchSwitch: 4653 case Instruction::CatchPad: 4654 case Instruction::CatchRet: 4655 case Instruction::CleanupPad: 4656 case Instruction::CleanupRet: 4657 return false; // Misc instructions which have effects 4658 } 4659 } 4660 4661 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { 4662 if (I.mayReadOrWriteMemory()) 4663 // Memory dependency possible 4664 return true; 4665 if (!isSafeToSpeculativelyExecute(&I)) 4666 // Can't move above a maythrow call or infinite loop. Or if an 4667 // inalloca alloca, above a stacksave call. 4668 return true; 4669 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4670 // 1) Can't reorder two inf-loop calls, even if readonly 4671 // 2) Also can't reorder an inf-loop call below a instruction which isn't 4672 // safe to speculative execute. (Inverse of above) 4673 return true; 4674 return false; 4675 } 4676 4677 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4678 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4679 switch (OR) { 4680 case ConstantRange::OverflowResult::MayOverflow: 4681 return OverflowResult::MayOverflow; 4682 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4683 return OverflowResult::AlwaysOverflowsLow; 4684 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4685 return OverflowResult::AlwaysOverflowsHigh; 4686 case ConstantRange::OverflowResult::NeverOverflows: 4687 return OverflowResult::NeverOverflows; 4688 } 4689 llvm_unreachable("Unknown OverflowResult"); 4690 } 4691 4692 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4693 static ConstantRange computeConstantRangeIncludingKnownBits( 4694 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4695 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4696 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4697 KnownBits Known = computeKnownBits( 4698 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4699 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4700 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4701 ConstantRange::PreferredRangeType RangeType = 4702 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4703 return CR1.intersectWith(CR2, RangeType); 4704 } 4705 4706 OverflowResult llvm::computeOverflowForUnsignedMul( 4707 const Value *LHS, const Value *RHS, const DataLayout &DL, 4708 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4709 bool UseInstrInfo) { 4710 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4711 nullptr, UseInstrInfo); 4712 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4713 nullptr, UseInstrInfo); 4714 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4715 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4716 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4717 } 4718 4719 OverflowResult 4720 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4721 const DataLayout &DL, AssumptionCache *AC, 4722 const Instruction *CxtI, 4723 const DominatorTree *DT, bool UseInstrInfo) { 4724 // Multiplying n * m significant bits yields a result of n + m significant 4725 // bits. If the total number of significant bits does not exceed the 4726 // result bit width (minus 1), there is no overflow. 4727 // This means if we have enough leading sign bits in the operands 4728 // we can guarantee that the result does not overflow. 4729 // Ref: "Hacker's Delight" by Henry Warren 4730 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4731 4732 // Note that underestimating the number of sign bits gives a more 4733 // conservative answer. 4734 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4735 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4736 4737 // First handle the easy case: if we have enough sign bits there's 4738 // definitely no overflow. 4739 if (SignBits > BitWidth + 1) 4740 return OverflowResult::NeverOverflows; 4741 4742 // There are two ambiguous cases where there can be no overflow: 4743 // SignBits == BitWidth + 1 and 4744 // SignBits == BitWidth 4745 // The second case is difficult to check, therefore we only handle the 4746 // first case. 4747 if (SignBits == BitWidth + 1) { 4748 // It overflows only when both arguments are negative and the true 4749 // product is exactly the minimum negative number. 4750 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4751 // For simplicity we just check if at least one side is not negative. 4752 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4753 nullptr, UseInstrInfo); 4754 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4755 nullptr, UseInstrInfo); 4756 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4757 return OverflowResult::NeverOverflows; 4758 } 4759 return OverflowResult::MayOverflow; 4760 } 4761 4762 OverflowResult llvm::computeOverflowForUnsignedAdd( 4763 const Value *LHS, const Value *RHS, const DataLayout &DL, 4764 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4765 bool UseInstrInfo) { 4766 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4767 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4768 nullptr, UseInstrInfo); 4769 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4770 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4771 nullptr, UseInstrInfo); 4772 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4773 } 4774 4775 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4776 const Value *RHS, 4777 const AddOperator *Add, 4778 const DataLayout &DL, 4779 AssumptionCache *AC, 4780 const Instruction *CxtI, 4781 const DominatorTree *DT) { 4782 if (Add && Add->hasNoSignedWrap()) { 4783 return OverflowResult::NeverOverflows; 4784 } 4785 4786 // If LHS and RHS each have at least two sign bits, the addition will look 4787 // like 4788 // 4789 // XX..... + 4790 // YY..... 4791 // 4792 // If the carry into the most significant position is 0, X and Y can't both 4793 // be 1 and therefore the carry out of the addition is also 0. 4794 // 4795 // If the carry into the most significant position is 1, X and Y can't both 4796 // be 0 and therefore the carry out of the addition is also 1. 4797 // 4798 // Since the carry into the most significant position is always equal to 4799 // the carry out of the addition, there is no signed overflow. 4800 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4801 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4802 return OverflowResult::NeverOverflows; 4803 4804 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4805 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4806 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4807 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4808 OverflowResult OR = 4809 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4810 if (OR != OverflowResult::MayOverflow) 4811 return OR; 4812 4813 // The remaining code needs Add to be available. Early returns if not so. 4814 if (!Add) 4815 return OverflowResult::MayOverflow; 4816 4817 // If the sign of Add is the same as at least one of the operands, this add 4818 // CANNOT overflow. If this can be determined from the known bits of the 4819 // operands the above signedAddMayOverflow() check will have already done so. 4820 // The only other way to improve on the known bits is from an assumption, so 4821 // call computeKnownBitsFromAssume() directly. 4822 bool LHSOrRHSKnownNonNegative = 4823 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4824 bool LHSOrRHSKnownNegative = 4825 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4826 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4827 KnownBits AddKnown(LHSRange.getBitWidth()); 4828 computeKnownBitsFromAssume( 4829 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4830 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4831 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4832 return OverflowResult::NeverOverflows; 4833 } 4834 4835 return OverflowResult::MayOverflow; 4836 } 4837 4838 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4839 const Value *RHS, 4840 const DataLayout &DL, 4841 AssumptionCache *AC, 4842 const Instruction *CxtI, 4843 const DominatorTree *DT) { 4844 // X - (X % ?) 4845 // The remainder of a value can't have greater magnitude than itself, 4846 // so the subtraction can't overflow. 4847 // TODO: There are other patterns like this. 4848 // See simplifyICmpWithBinOpOnLHS() for candidates. 4849 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) && 4850 isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4851 return OverflowResult::NeverOverflows; 4852 4853 // Checking for conditions implied by dominating conditions may be expensive. 4854 // Limit it to usub_with_overflow calls for now. 4855 if (match(CxtI, 4856 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4857 if (auto C = 4858 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4859 if (*C) 4860 return OverflowResult::NeverOverflows; 4861 return OverflowResult::AlwaysOverflowsLow; 4862 } 4863 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4864 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4865 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4866 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4867 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4868 } 4869 4870 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4871 const Value *RHS, 4872 const DataLayout &DL, 4873 AssumptionCache *AC, 4874 const Instruction *CxtI, 4875 const DominatorTree *DT) { 4876 // X - (X % ?) 4877 // The remainder of a value can't have greater magnitude than itself, 4878 // so the subtraction can't overflow. 4879 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) && 4880 isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4881 return OverflowResult::NeverOverflows; 4882 4883 // If LHS and RHS each have at least two sign bits, the subtraction 4884 // cannot overflow. 4885 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4886 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4887 return OverflowResult::NeverOverflows; 4888 4889 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4890 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4891 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4892 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4893 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4894 } 4895 4896 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4897 const DominatorTree &DT) { 4898 SmallVector<const BranchInst *, 2> GuardingBranches; 4899 SmallVector<const ExtractValueInst *, 2> Results; 4900 4901 for (const User *U : WO->users()) { 4902 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4903 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4904 4905 if (EVI->getIndices()[0] == 0) 4906 Results.push_back(EVI); 4907 else { 4908 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4909 4910 for (const auto *U : EVI->users()) 4911 if (const auto *B = dyn_cast<BranchInst>(U)) { 4912 assert(B->isConditional() && "How else is it using an i1?"); 4913 GuardingBranches.push_back(B); 4914 } 4915 } 4916 } else { 4917 // We are using the aggregate directly in a way we don't want to analyze 4918 // here (storing it to a global, say). 4919 return false; 4920 } 4921 } 4922 4923 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4924 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4925 if (!NoWrapEdge.isSingleEdge()) 4926 return false; 4927 4928 // Check if all users of the add are provably no-wrap. 4929 for (const auto *Result : Results) { 4930 // If the extractvalue itself is not executed on overflow, the we don't 4931 // need to check each use separately, since domination is transitive. 4932 if (DT.dominates(NoWrapEdge, Result->getParent())) 4933 continue; 4934 4935 for (auto &RU : Result->uses()) 4936 if (!DT.dominates(NoWrapEdge, RU)) 4937 return false; 4938 } 4939 4940 return true; 4941 }; 4942 4943 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4944 } 4945 4946 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4947 bool ConsiderFlags) { 4948 4949 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 4950 return true; 4951 4952 unsigned Opcode = Op->getOpcode(); 4953 4954 // Check whether opcode is a poison/undef-generating operation 4955 switch (Opcode) { 4956 case Instruction::Shl: 4957 case Instruction::AShr: 4958 case Instruction::LShr: { 4959 // Shifts return poison if shiftwidth is larger than the bitwidth. 4960 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4961 SmallVector<Constant *, 4> ShiftAmounts; 4962 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4963 unsigned NumElts = FVTy->getNumElements(); 4964 for (unsigned i = 0; i < NumElts; ++i) 4965 ShiftAmounts.push_back(C->getAggregateElement(i)); 4966 } else if (isa<ScalableVectorType>(C->getType())) 4967 return true; // Can't tell, just return true to be safe 4968 else 4969 ShiftAmounts.push_back(C); 4970 4971 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4972 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4973 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4974 }); 4975 return !Safe; 4976 } 4977 return true; 4978 } 4979 case Instruction::FPToSI: 4980 case Instruction::FPToUI: 4981 // fptosi/ui yields poison if the resulting value does not fit in the 4982 // destination type. 4983 return true; 4984 case Instruction::Call: 4985 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4986 switch (II->getIntrinsicID()) { 4987 // TODO: Add more intrinsics. 4988 case Intrinsic::ctpop: 4989 case Intrinsic::sadd_with_overflow: 4990 case Intrinsic::ssub_with_overflow: 4991 case Intrinsic::smul_with_overflow: 4992 case Intrinsic::uadd_with_overflow: 4993 case Intrinsic::usub_with_overflow: 4994 case Intrinsic::umul_with_overflow: 4995 return false; 4996 } 4997 } 4998 LLVM_FALLTHROUGH; 4999 case Instruction::CallBr: 5000 case Instruction::Invoke: { 5001 const auto *CB = cast<CallBase>(Op); 5002 return !CB->hasRetAttr(Attribute::NoUndef); 5003 } 5004 case Instruction::InsertElement: 5005 case Instruction::ExtractElement: { 5006 // If index exceeds the length of the vector, it returns poison 5007 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5008 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5009 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5010 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5011 return true; 5012 return false; 5013 } 5014 case Instruction::ShuffleVector: { 5015 // shufflevector may return undef. 5016 if (PoisonOnly) 5017 return false; 5018 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5019 ? cast<ConstantExpr>(Op)->getShuffleMask() 5020 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5021 return is_contained(Mask, UndefMaskElem); 5022 } 5023 case Instruction::FNeg: 5024 case Instruction::PHI: 5025 case Instruction::Select: 5026 case Instruction::URem: 5027 case Instruction::SRem: 5028 case Instruction::ExtractValue: 5029 case Instruction::InsertValue: 5030 case Instruction::Freeze: 5031 case Instruction::ICmp: 5032 case Instruction::FCmp: 5033 return false; 5034 case Instruction::GetElementPtr: 5035 // inbounds is handled above 5036 // TODO: what about inrange on constexpr? 5037 return false; 5038 default: { 5039 const auto *CE = dyn_cast<ConstantExpr>(Op); 5040 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5041 return false; 5042 else if (Instruction::isBinaryOp(Opcode)) 5043 return false; 5044 // Be conservative and return true. 5045 return true; 5046 } 5047 } 5048 } 5049 5050 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5051 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5052 } 5053 5054 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5055 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5056 } 5057 5058 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5059 const Value *V, unsigned Depth) { 5060 if (ValAssumedPoison == V) 5061 return true; 5062 5063 const unsigned MaxDepth = 2; 5064 if (Depth >= MaxDepth) 5065 return false; 5066 5067 if (const auto *I = dyn_cast<Instruction>(V)) { 5068 if (propagatesPoison(cast<Operator>(I))) 5069 return any_of(I->operands(), [=](const Value *Op) { 5070 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5071 }); 5072 5073 // 'select ValAssumedPoison, _, _' is poison. 5074 if (const auto *SI = dyn_cast<SelectInst>(I)) 5075 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5076 Depth + 1); 5077 // V = extractvalue V0, idx 5078 // V2 = extractvalue V0, idx2 5079 // V0's elements are all poison or not. (e.g., add_with_overflow) 5080 const WithOverflowInst *II; 5081 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5082 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5083 llvm::is_contained(II->args(), ValAssumedPoison))) 5084 return true; 5085 } 5086 return false; 5087 } 5088 5089 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5090 unsigned Depth) { 5091 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5092 return true; 5093 5094 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5095 return true; 5096 5097 const unsigned MaxDepth = 2; 5098 if (Depth >= MaxDepth) 5099 return false; 5100 5101 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5102 if (I && !canCreatePoison(cast<Operator>(I))) { 5103 return all_of(I->operands(), [=](const Value *Op) { 5104 return impliesPoison(Op, V, Depth + 1); 5105 }); 5106 } 5107 return false; 5108 } 5109 5110 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5111 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5112 } 5113 5114 static bool programUndefinedIfUndefOrPoison(const Value *V, 5115 bool PoisonOnly); 5116 5117 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5118 AssumptionCache *AC, 5119 const Instruction *CtxI, 5120 const DominatorTree *DT, 5121 unsigned Depth, bool PoisonOnly) { 5122 if (Depth >= MaxAnalysisRecursionDepth) 5123 return false; 5124 5125 if (isa<MetadataAsValue>(V)) 5126 return false; 5127 5128 if (const auto *A = dyn_cast<Argument>(V)) { 5129 if (A->hasAttribute(Attribute::NoUndef)) 5130 return true; 5131 } 5132 5133 if (auto *C = dyn_cast<Constant>(V)) { 5134 if (isa<UndefValue>(C)) 5135 return PoisonOnly && !isa<PoisonValue>(C); 5136 5137 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5138 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5139 return true; 5140 5141 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5142 return (PoisonOnly ? !C->containsPoisonElement() 5143 : !C->containsUndefOrPoisonElement()) && 5144 !C->containsConstantExpression(); 5145 } 5146 5147 // Strip cast operations from a pointer value. 5148 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5149 // inbounds with zero offset. To guarantee that the result isn't poison, the 5150 // stripped pointer is checked as it has to be pointing into an allocated 5151 // object or be null `null` to ensure `inbounds` getelement pointers with a 5152 // zero offset could not produce poison. 5153 // It can strip off addrspacecast that do not change bit representation as 5154 // well. We believe that such addrspacecast is equivalent to no-op. 5155 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5156 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5157 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5158 return true; 5159 5160 auto OpCheck = [&](const Value *V) { 5161 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5162 PoisonOnly); 5163 }; 5164 5165 if (auto *Opr = dyn_cast<Operator>(V)) { 5166 // If the value is a freeze instruction, then it can never 5167 // be undef or poison. 5168 if (isa<FreezeInst>(V)) 5169 return true; 5170 5171 if (const auto *CB = dyn_cast<CallBase>(V)) { 5172 if (CB->hasRetAttr(Attribute::NoUndef)) 5173 return true; 5174 } 5175 5176 if (const auto *PN = dyn_cast<PHINode>(V)) { 5177 unsigned Num = PN->getNumIncomingValues(); 5178 bool IsWellDefined = true; 5179 for (unsigned i = 0; i < Num; ++i) { 5180 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5181 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5182 DT, Depth + 1, PoisonOnly)) { 5183 IsWellDefined = false; 5184 break; 5185 } 5186 } 5187 if (IsWellDefined) 5188 return true; 5189 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5190 return true; 5191 } 5192 5193 if (auto *I = dyn_cast<LoadInst>(V)) 5194 if (I->getMetadata(LLVMContext::MD_noundef)) 5195 return true; 5196 5197 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5198 return true; 5199 5200 // CxtI may be null or a cloned instruction. 5201 if (!CtxI || !CtxI->getParent() || !DT) 5202 return false; 5203 5204 auto *DNode = DT->getNode(CtxI->getParent()); 5205 if (!DNode) 5206 // Unreachable block 5207 return false; 5208 5209 // If V is used as a branch condition before reaching CtxI, V cannot be 5210 // undef or poison. 5211 // br V, BB1, BB2 5212 // BB1: 5213 // CtxI ; V cannot be undef or poison here 5214 auto *Dominator = DNode->getIDom(); 5215 while (Dominator) { 5216 auto *TI = Dominator->getBlock()->getTerminator(); 5217 5218 Value *Cond = nullptr; 5219 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5220 if (BI->isConditional()) 5221 Cond = BI->getCondition(); 5222 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5223 Cond = SI->getCondition(); 5224 } 5225 5226 if (Cond) { 5227 if (Cond == V) 5228 return true; 5229 else if (PoisonOnly && isa<Operator>(Cond)) { 5230 // For poison, we can analyze further 5231 auto *Opr = cast<Operator>(Cond); 5232 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5233 return true; 5234 } 5235 } 5236 5237 Dominator = Dominator->getIDom(); 5238 } 5239 5240 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5241 return true; 5242 5243 return false; 5244 } 5245 5246 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5247 const Instruction *CtxI, 5248 const DominatorTree *DT, 5249 unsigned Depth) { 5250 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5251 } 5252 5253 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5254 const Instruction *CtxI, 5255 const DominatorTree *DT, unsigned Depth) { 5256 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5257 } 5258 5259 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5260 const DataLayout &DL, 5261 AssumptionCache *AC, 5262 const Instruction *CxtI, 5263 const DominatorTree *DT) { 5264 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5265 Add, DL, AC, CxtI, DT); 5266 } 5267 5268 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5269 const Value *RHS, 5270 const DataLayout &DL, 5271 AssumptionCache *AC, 5272 const Instruction *CxtI, 5273 const DominatorTree *DT) { 5274 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5275 } 5276 5277 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5278 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5279 // of time because it's possible for another thread to interfere with it for an 5280 // arbitrary length of time, but programs aren't allowed to rely on that. 5281 5282 // If there is no successor, then execution can't transfer to it. 5283 if (isa<ReturnInst>(I)) 5284 return false; 5285 if (isa<UnreachableInst>(I)) 5286 return false; 5287 5288 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5289 // Instruction::willReturn. 5290 // 5291 // FIXME: Move this check into Instruction::willReturn. 5292 if (isa<CatchPadInst>(I)) { 5293 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5294 default: 5295 // A catchpad may invoke exception object constructors and such, which 5296 // in some languages can be arbitrary code, so be conservative by default. 5297 return false; 5298 case EHPersonality::CoreCLR: 5299 // For CoreCLR, it just involves a type test. 5300 return true; 5301 } 5302 } 5303 5304 // An instruction that returns without throwing must transfer control flow 5305 // to a successor. 5306 return !I->mayThrow() && I->willReturn(); 5307 } 5308 5309 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5310 // TODO: This is slightly conservative for invoke instruction since exiting 5311 // via an exception *is* normal control for them. 5312 for (const Instruction &I : *BB) 5313 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5314 return false; 5315 return true; 5316 } 5317 5318 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5319 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5320 unsigned ScanLimit) { 5321 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5322 ScanLimit); 5323 } 5324 5325 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5326 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5327 assert(ScanLimit && "scan limit must be non-zero"); 5328 for (const Instruction &I : Range) { 5329 if (isa<DbgInfoIntrinsic>(I)) 5330 continue; 5331 if (--ScanLimit == 0) 5332 return false; 5333 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5334 return false; 5335 } 5336 return true; 5337 } 5338 5339 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5340 const Loop *L) { 5341 // The loop header is guaranteed to be executed for every iteration. 5342 // 5343 // FIXME: Relax this constraint to cover all basic blocks that are 5344 // guaranteed to be executed at every iteration. 5345 if (I->getParent() != L->getHeader()) return false; 5346 5347 for (const Instruction &LI : *L->getHeader()) { 5348 if (&LI == I) return true; 5349 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5350 } 5351 llvm_unreachable("Instruction not contained in its own parent basic block."); 5352 } 5353 5354 bool llvm::propagatesPoison(const Operator *I) { 5355 switch (I->getOpcode()) { 5356 case Instruction::Freeze: 5357 case Instruction::Select: 5358 case Instruction::PHI: 5359 case Instruction::Invoke: 5360 return false; 5361 case Instruction::Call: 5362 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5363 switch (II->getIntrinsicID()) { 5364 // TODO: Add more intrinsics. 5365 case Intrinsic::sadd_with_overflow: 5366 case Intrinsic::ssub_with_overflow: 5367 case Intrinsic::smul_with_overflow: 5368 case Intrinsic::uadd_with_overflow: 5369 case Intrinsic::usub_with_overflow: 5370 case Intrinsic::umul_with_overflow: 5371 // If an input is a vector containing a poison element, the 5372 // two output vectors (calculated results, overflow bits)' 5373 // corresponding lanes are poison. 5374 return true; 5375 case Intrinsic::ctpop: 5376 return true; 5377 } 5378 } 5379 return false; 5380 case Instruction::ICmp: 5381 case Instruction::FCmp: 5382 case Instruction::GetElementPtr: 5383 return true; 5384 default: 5385 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5386 return true; 5387 5388 // Be conservative and return false. 5389 return false; 5390 } 5391 } 5392 5393 void llvm::getGuaranteedWellDefinedOps( 5394 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5395 switch (I->getOpcode()) { 5396 case Instruction::Store: 5397 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5398 break; 5399 5400 case Instruction::Load: 5401 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5402 break; 5403 5404 // Since dereferenceable attribute imply noundef, atomic operations 5405 // also implicitly have noundef pointers too 5406 case Instruction::AtomicCmpXchg: 5407 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5408 break; 5409 5410 case Instruction::AtomicRMW: 5411 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5412 break; 5413 5414 case Instruction::Call: 5415 case Instruction::Invoke: { 5416 const CallBase *CB = cast<CallBase>(I); 5417 if (CB->isIndirectCall()) 5418 Operands.insert(CB->getCalledOperand()); 5419 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5420 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5421 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5422 Operands.insert(CB->getArgOperand(i)); 5423 } 5424 break; 5425 } 5426 case Instruction::Ret: 5427 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5428 Operands.insert(I->getOperand(0)); 5429 break; 5430 default: 5431 break; 5432 } 5433 } 5434 5435 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5436 SmallPtrSetImpl<const Value *> &Operands) { 5437 getGuaranteedWellDefinedOps(I, Operands); 5438 switch (I->getOpcode()) { 5439 // Divisors of these operations are allowed to be partially undef. 5440 case Instruction::UDiv: 5441 case Instruction::SDiv: 5442 case Instruction::URem: 5443 case Instruction::SRem: 5444 Operands.insert(I->getOperand(1)); 5445 break; 5446 case Instruction::Switch: 5447 if (BranchOnPoisonAsUB) 5448 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5449 break; 5450 case Instruction::Br: { 5451 auto *BR = cast<BranchInst>(I); 5452 if (BranchOnPoisonAsUB && BR->isConditional()) 5453 Operands.insert(BR->getCondition()); 5454 break; 5455 } 5456 default: 5457 break; 5458 } 5459 } 5460 5461 bool llvm::mustTriggerUB(const Instruction *I, 5462 const SmallSet<const Value *, 16>& KnownPoison) { 5463 SmallPtrSet<const Value *, 4> NonPoisonOps; 5464 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5465 5466 for (const auto *V : NonPoisonOps) 5467 if (KnownPoison.count(V)) 5468 return true; 5469 5470 return false; 5471 } 5472 5473 static bool programUndefinedIfUndefOrPoison(const Value *V, 5474 bool PoisonOnly) { 5475 // We currently only look for uses of values within the same basic 5476 // block, as that makes it easier to guarantee that the uses will be 5477 // executed given that Inst is executed. 5478 // 5479 // FIXME: Expand this to consider uses beyond the same basic block. To do 5480 // this, look out for the distinction between post-dominance and strong 5481 // post-dominance. 5482 const BasicBlock *BB = nullptr; 5483 BasicBlock::const_iterator Begin; 5484 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5485 BB = Inst->getParent(); 5486 Begin = Inst->getIterator(); 5487 Begin++; 5488 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5489 BB = &Arg->getParent()->getEntryBlock(); 5490 Begin = BB->begin(); 5491 } else { 5492 return false; 5493 } 5494 5495 // Limit number of instructions we look at, to avoid scanning through large 5496 // blocks. The current limit is chosen arbitrarily. 5497 unsigned ScanLimit = 32; 5498 BasicBlock::const_iterator End = BB->end(); 5499 5500 if (!PoisonOnly) { 5501 // Since undef does not propagate eagerly, be conservative & just check 5502 // whether a value is directly passed to an instruction that must take 5503 // well-defined operands. 5504 5505 for (auto &I : make_range(Begin, End)) { 5506 if (isa<DbgInfoIntrinsic>(I)) 5507 continue; 5508 if (--ScanLimit == 0) 5509 break; 5510 5511 SmallPtrSet<const Value *, 4> WellDefinedOps; 5512 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5513 if (WellDefinedOps.contains(V)) 5514 return true; 5515 5516 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5517 break; 5518 } 5519 return false; 5520 } 5521 5522 // Set of instructions that we have proved will yield poison if Inst 5523 // does. 5524 SmallSet<const Value *, 16> YieldsPoison; 5525 SmallSet<const BasicBlock *, 4> Visited; 5526 5527 YieldsPoison.insert(V); 5528 auto Propagate = [&](const User *User) { 5529 if (propagatesPoison(cast<Operator>(User))) 5530 YieldsPoison.insert(User); 5531 }; 5532 for_each(V->users(), Propagate); 5533 Visited.insert(BB); 5534 5535 while (true) { 5536 for (auto &I : make_range(Begin, End)) { 5537 if (isa<DbgInfoIntrinsic>(I)) 5538 continue; 5539 if (--ScanLimit == 0) 5540 return false; 5541 if (mustTriggerUB(&I, YieldsPoison)) 5542 return true; 5543 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5544 return false; 5545 5546 // Mark poison that propagates from I through uses of I. 5547 if (YieldsPoison.count(&I)) 5548 for_each(I.users(), Propagate); 5549 } 5550 5551 BB = BB->getSingleSuccessor(); 5552 if (!BB || !Visited.insert(BB).second) 5553 break; 5554 5555 Begin = BB->getFirstNonPHI()->getIterator(); 5556 End = BB->end(); 5557 } 5558 return false; 5559 } 5560 5561 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5562 return ::programUndefinedIfUndefOrPoison(Inst, false); 5563 } 5564 5565 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5566 return ::programUndefinedIfUndefOrPoison(Inst, true); 5567 } 5568 5569 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5570 if (FMF.noNaNs()) 5571 return true; 5572 5573 if (auto *C = dyn_cast<ConstantFP>(V)) 5574 return !C->isNaN(); 5575 5576 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5577 if (!C->getElementType()->isFloatingPointTy()) 5578 return false; 5579 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5580 if (C->getElementAsAPFloat(I).isNaN()) 5581 return false; 5582 } 5583 return true; 5584 } 5585 5586 if (isa<ConstantAggregateZero>(V)) 5587 return true; 5588 5589 return false; 5590 } 5591 5592 static bool isKnownNonZero(const Value *V) { 5593 if (auto *C = dyn_cast<ConstantFP>(V)) 5594 return !C->isZero(); 5595 5596 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5597 if (!C->getElementType()->isFloatingPointTy()) 5598 return false; 5599 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5600 if (C->getElementAsAPFloat(I).isZero()) 5601 return false; 5602 } 5603 return true; 5604 } 5605 5606 return false; 5607 } 5608 5609 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5610 /// Given non-min/max outer cmp/select from the clamp pattern this 5611 /// function recognizes if it can be substitued by a "canonical" min/max 5612 /// pattern. 5613 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5614 Value *CmpLHS, Value *CmpRHS, 5615 Value *TrueVal, Value *FalseVal, 5616 Value *&LHS, Value *&RHS) { 5617 // Try to match 5618 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5619 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5620 // and return description of the outer Max/Min. 5621 5622 // First, check if select has inverse order: 5623 if (CmpRHS == FalseVal) { 5624 std::swap(TrueVal, FalseVal); 5625 Pred = CmpInst::getInversePredicate(Pred); 5626 } 5627 5628 // Assume success now. If there's no match, callers should not use these anyway. 5629 LHS = TrueVal; 5630 RHS = FalseVal; 5631 5632 const APFloat *FC1; 5633 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5634 return {SPF_UNKNOWN, SPNB_NA, false}; 5635 5636 const APFloat *FC2; 5637 switch (Pred) { 5638 case CmpInst::FCMP_OLT: 5639 case CmpInst::FCMP_OLE: 5640 case CmpInst::FCMP_ULT: 5641 case CmpInst::FCMP_ULE: 5642 if (match(FalseVal, 5643 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5644 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5645 *FC1 < *FC2) 5646 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5647 break; 5648 case CmpInst::FCMP_OGT: 5649 case CmpInst::FCMP_OGE: 5650 case CmpInst::FCMP_UGT: 5651 case CmpInst::FCMP_UGE: 5652 if (match(FalseVal, 5653 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5654 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5655 *FC1 > *FC2) 5656 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5657 break; 5658 default: 5659 break; 5660 } 5661 5662 return {SPF_UNKNOWN, SPNB_NA, false}; 5663 } 5664 5665 /// Recognize variations of: 5666 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5667 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5668 Value *CmpLHS, Value *CmpRHS, 5669 Value *TrueVal, Value *FalseVal) { 5670 // Swap the select operands and predicate to match the patterns below. 5671 if (CmpRHS != TrueVal) { 5672 Pred = ICmpInst::getSwappedPredicate(Pred); 5673 std::swap(TrueVal, FalseVal); 5674 } 5675 const APInt *C1; 5676 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5677 const APInt *C2; 5678 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5679 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5680 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5681 return {SPF_SMAX, SPNB_NA, false}; 5682 5683 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5684 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5685 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5686 return {SPF_SMIN, SPNB_NA, false}; 5687 5688 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5689 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5690 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5691 return {SPF_UMAX, SPNB_NA, false}; 5692 5693 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5694 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5695 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5696 return {SPF_UMIN, SPNB_NA, false}; 5697 } 5698 return {SPF_UNKNOWN, SPNB_NA, false}; 5699 } 5700 5701 /// Recognize variations of: 5702 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5703 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5704 Value *CmpLHS, Value *CmpRHS, 5705 Value *TVal, Value *FVal, 5706 unsigned Depth) { 5707 // TODO: Allow FP min/max with nnan/nsz. 5708 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5709 5710 Value *A = nullptr, *B = nullptr; 5711 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5712 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5713 return {SPF_UNKNOWN, SPNB_NA, false}; 5714 5715 Value *C = nullptr, *D = nullptr; 5716 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5717 if (L.Flavor != R.Flavor) 5718 return {SPF_UNKNOWN, SPNB_NA, false}; 5719 5720 // We have something like: x Pred y ? min(a, b) : min(c, d). 5721 // Try to match the compare to the min/max operations of the select operands. 5722 // First, make sure we have the right compare predicate. 5723 switch (L.Flavor) { 5724 case SPF_SMIN: 5725 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5726 Pred = ICmpInst::getSwappedPredicate(Pred); 5727 std::swap(CmpLHS, CmpRHS); 5728 } 5729 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5730 break; 5731 return {SPF_UNKNOWN, SPNB_NA, false}; 5732 case SPF_SMAX: 5733 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5734 Pred = ICmpInst::getSwappedPredicate(Pred); 5735 std::swap(CmpLHS, CmpRHS); 5736 } 5737 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5738 break; 5739 return {SPF_UNKNOWN, SPNB_NA, false}; 5740 case SPF_UMIN: 5741 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5742 Pred = ICmpInst::getSwappedPredicate(Pred); 5743 std::swap(CmpLHS, CmpRHS); 5744 } 5745 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5746 break; 5747 return {SPF_UNKNOWN, SPNB_NA, false}; 5748 case SPF_UMAX: 5749 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5750 Pred = ICmpInst::getSwappedPredicate(Pred); 5751 std::swap(CmpLHS, CmpRHS); 5752 } 5753 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5754 break; 5755 return {SPF_UNKNOWN, SPNB_NA, false}; 5756 default: 5757 return {SPF_UNKNOWN, SPNB_NA, false}; 5758 } 5759 5760 // If there is a common operand in the already matched min/max and the other 5761 // min/max operands match the compare operands (either directly or inverted), 5762 // then this is min/max of the same flavor. 5763 5764 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5765 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5766 if (D == B) { 5767 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5768 match(A, m_Not(m_Specific(CmpRHS))))) 5769 return {L.Flavor, SPNB_NA, false}; 5770 } 5771 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5772 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5773 if (C == B) { 5774 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5775 match(A, m_Not(m_Specific(CmpRHS))))) 5776 return {L.Flavor, SPNB_NA, false}; 5777 } 5778 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5779 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5780 if (D == A) { 5781 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5782 match(B, m_Not(m_Specific(CmpRHS))))) 5783 return {L.Flavor, SPNB_NA, false}; 5784 } 5785 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5786 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5787 if (C == A) { 5788 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5789 match(B, m_Not(m_Specific(CmpRHS))))) 5790 return {L.Flavor, SPNB_NA, false}; 5791 } 5792 5793 return {SPF_UNKNOWN, SPNB_NA, false}; 5794 } 5795 5796 /// If the input value is the result of a 'not' op, constant integer, or vector 5797 /// splat of a constant integer, return the bitwise-not source value. 5798 /// TODO: This could be extended to handle non-splat vector integer constants. 5799 static Value *getNotValue(Value *V) { 5800 Value *NotV; 5801 if (match(V, m_Not(m_Value(NotV)))) 5802 return NotV; 5803 5804 const APInt *C; 5805 if (match(V, m_APInt(C))) 5806 return ConstantInt::get(V->getType(), ~(*C)); 5807 5808 return nullptr; 5809 } 5810 5811 /// Match non-obvious integer minimum and maximum sequences. 5812 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5813 Value *CmpLHS, Value *CmpRHS, 5814 Value *TrueVal, Value *FalseVal, 5815 Value *&LHS, Value *&RHS, 5816 unsigned Depth) { 5817 // Assume success. If there's no match, callers should not use these anyway. 5818 LHS = TrueVal; 5819 RHS = FalseVal; 5820 5821 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5822 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5823 return SPR; 5824 5825 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5826 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5827 return SPR; 5828 5829 // Look through 'not' ops to find disguised min/max. 5830 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5831 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5832 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5833 switch (Pred) { 5834 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5835 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5836 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5837 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5838 default: break; 5839 } 5840 } 5841 5842 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5843 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5844 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5845 switch (Pred) { 5846 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5847 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5848 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5849 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5850 default: break; 5851 } 5852 } 5853 5854 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5855 return {SPF_UNKNOWN, SPNB_NA, false}; 5856 5857 const APInt *C1; 5858 if (!match(CmpRHS, m_APInt(C1))) 5859 return {SPF_UNKNOWN, SPNB_NA, false}; 5860 5861 // An unsigned min/max can be written with a signed compare. 5862 const APInt *C2; 5863 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5864 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5865 // Is the sign bit set? 5866 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5867 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5868 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5869 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5870 5871 // Is the sign bit clear? 5872 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5873 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5874 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5875 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5876 } 5877 5878 return {SPF_UNKNOWN, SPNB_NA, false}; 5879 } 5880 5881 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5882 assert(X && Y && "Invalid operand"); 5883 5884 // X = sub (0, Y) || X = sub nsw (0, Y) 5885 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5886 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5887 return true; 5888 5889 // Y = sub (0, X) || Y = sub nsw (0, X) 5890 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5891 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5892 return true; 5893 5894 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5895 Value *A, *B; 5896 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5897 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5898 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5899 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5900 } 5901 5902 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5903 FastMathFlags FMF, 5904 Value *CmpLHS, Value *CmpRHS, 5905 Value *TrueVal, Value *FalseVal, 5906 Value *&LHS, Value *&RHS, 5907 unsigned Depth) { 5908 if (CmpInst::isFPPredicate(Pred)) { 5909 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5910 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5911 // purpose of identifying min/max. Disregard vector constants with undefined 5912 // elements because those can not be back-propagated for analysis. 5913 Value *OutputZeroVal = nullptr; 5914 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5915 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5916 OutputZeroVal = TrueVal; 5917 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5918 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5919 OutputZeroVal = FalseVal; 5920 5921 if (OutputZeroVal) { 5922 if (match(CmpLHS, m_AnyZeroFP())) 5923 CmpLHS = OutputZeroVal; 5924 if (match(CmpRHS, m_AnyZeroFP())) 5925 CmpRHS = OutputZeroVal; 5926 } 5927 } 5928 5929 LHS = CmpLHS; 5930 RHS = CmpRHS; 5931 5932 // Signed zero may return inconsistent results between implementations. 5933 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5934 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5935 // Therefore, we behave conservatively and only proceed if at least one of the 5936 // operands is known to not be zero or if we don't care about signed zero. 5937 switch (Pred) { 5938 default: break; 5939 // FIXME: Include OGT/OLT/UGT/ULT. 5940 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5941 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5942 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5943 !isKnownNonZero(CmpRHS)) 5944 return {SPF_UNKNOWN, SPNB_NA, false}; 5945 } 5946 5947 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5948 bool Ordered = false; 5949 5950 // When given one NaN and one non-NaN input: 5951 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5952 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5953 // ordered comparison fails), which could be NaN or non-NaN. 5954 // so here we discover exactly what NaN behavior is required/accepted. 5955 if (CmpInst::isFPPredicate(Pred)) { 5956 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5957 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5958 5959 if (LHSSafe && RHSSafe) { 5960 // Both operands are known non-NaN. 5961 NaNBehavior = SPNB_RETURNS_ANY; 5962 } else if (CmpInst::isOrdered(Pred)) { 5963 // An ordered comparison will return false when given a NaN, so it 5964 // returns the RHS. 5965 Ordered = true; 5966 if (LHSSafe) 5967 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5968 NaNBehavior = SPNB_RETURNS_NAN; 5969 else if (RHSSafe) 5970 NaNBehavior = SPNB_RETURNS_OTHER; 5971 else 5972 // Completely unsafe. 5973 return {SPF_UNKNOWN, SPNB_NA, false}; 5974 } else { 5975 Ordered = false; 5976 // An unordered comparison will return true when given a NaN, so it 5977 // returns the LHS. 5978 if (LHSSafe) 5979 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5980 NaNBehavior = SPNB_RETURNS_OTHER; 5981 else if (RHSSafe) 5982 NaNBehavior = SPNB_RETURNS_NAN; 5983 else 5984 // Completely unsafe. 5985 return {SPF_UNKNOWN, SPNB_NA, false}; 5986 } 5987 } 5988 5989 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5990 std::swap(CmpLHS, CmpRHS); 5991 Pred = CmpInst::getSwappedPredicate(Pred); 5992 if (NaNBehavior == SPNB_RETURNS_NAN) 5993 NaNBehavior = SPNB_RETURNS_OTHER; 5994 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5995 NaNBehavior = SPNB_RETURNS_NAN; 5996 Ordered = !Ordered; 5997 } 5998 5999 // ([if]cmp X, Y) ? X : Y 6000 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6001 switch (Pred) { 6002 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6003 case ICmpInst::ICMP_UGT: 6004 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6005 case ICmpInst::ICMP_SGT: 6006 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6007 case ICmpInst::ICMP_ULT: 6008 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6009 case ICmpInst::ICMP_SLT: 6010 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6011 case FCmpInst::FCMP_UGT: 6012 case FCmpInst::FCMP_UGE: 6013 case FCmpInst::FCMP_OGT: 6014 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6015 case FCmpInst::FCMP_ULT: 6016 case FCmpInst::FCMP_ULE: 6017 case FCmpInst::FCMP_OLT: 6018 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6019 } 6020 } 6021 6022 if (isKnownNegation(TrueVal, FalseVal)) { 6023 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6024 // match against either LHS or sext(LHS). 6025 auto MaybeSExtCmpLHS = 6026 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6027 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6028 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6029 if (match(TrueVal, MaybeSExtCmpLHS)) { 6030 // Set the return values. If the compare uses the negated value (-X >s 0), 6031 // swap the return values because the negated value is always 'RHS'. 6032 LHS = TrueVal; 6033 RHS = FalseVal; 6034 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6035 std::swap(LHS, RHS); 6036 6037 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6038 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6039 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6040 return {SPF_ABS, SPNB_NA, false}; 6041 6042 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6043 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6044 return {SPF_ABS, SPNB_NA, false}; 6045 6046 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6047 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6048 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6049 return {SPF_NABS, SPNB_NA, false}; 6050 } 6051 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6052 // Set the return values. If the compare uses the negated value (-X >s 0), 6053 // swap the return values because the negated value is always 'RHS'. 6054 LHS = FalseVal; 6055 RHS = TrueVal; 6056 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6057 std::swap(LHS, RHS); 6058 6059 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6060 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6061 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6062 return {SPF_NABS, SPNB_NA, false}; 6063 6064 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6065 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6066 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6067 return {SPF_ABS, SPNB_NA, false}; 6068 } 6069 } 6070 6071 if (CmpInst::isIntPredicate(Pred)) 6072 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6073 6074 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6075 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6076 // semantics than minNum. Be conservative in such case. 6077 if (NaNBehavior != SPNB_RETURNS_ANY || 6078 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6079 !isKnownNonZero(CmpRHS))) 6080 return {SPF_UNKNOWN, SPNB_NA, false}; 6081 6082 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6083 } 6084 6085 /// Helps to match a select pattern in case of a type mismatch. 6086 /// 6087 /// The function processes the case when type of true and false values of a 6088 /// select instruction differs from type of the cmp instruction operands because 6089 /// of a cast instruction. The function checks if it is legal to move the cast 6090 /// operation after "select". If yes, it returns the new second value of 6091 /// "select" (with the assumption that cast is moved): 6092 /// 1. As operand of cast instruction when both values of "select" are same cast 6093 /// instructions. 6094 /// 2. As restored constant (by applying reverse cast operation) when the first 6095 /// value of the "select" is a cast operation and the second value is a 6096 /// constant. 6097 /// NOTE: We return only the new second value because the first value could be 6098 /// accessed as operand of cast instruction. 6099 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6100 Instruction::CastOps *CastOp) { 6101 auto *Cast1 = dyn_cast<CastInst>(V1); 6102 if (!Cast1) 6103 return nullptr; 6104 6105 *CastOp = Cast1->getOpcode(); 6106 Type *SrcTy = Cast1->getSrcTy(); 6107 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6108 // If V1 and V2 are both the same cast from the same type, look through V1. 6109 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6110 return Cast2->getOperand(0); 6111 return nullptr; 6112 } 6113 6114 auto *C = dyn_cast<Constant>(V2); 6115 if (!C) 6116 return nullptr; 6117 6118 Constant *CastedTo = nullptr; 6119 switch (*CastOp) { 6120 case Instruction::ZExt: 6121 if (CmpI->isUnsigned()) 6122 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6123 break; 6124 case Instruction::SExt: 6125 if (CmpI->isSigned()) 6126 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6127 break; 6128 case Instruction::Trunc: 6129 Constant *CmpConst; 6130 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6131 CmpConst->getType() == SrcTy) { 6132 // Here we have the following case: 6133 // 6134 // %cond = cmp iN %x, CmpConst 6135 // %tr = trunc iN %x to iK 6136 // %narrowsel = select i1 %cond, iK %t, iK C 6137 // 6138 // We can always move trunc after select operation: 6139 // 6140 // %cond = cmp iN %x, CmpConst 6141 // %widesel = select i1 %cond, iN %x, iN CmpConst 6142 // %tr = trunc iN %widesel to iK 6143 // 6144 // Note that C could be extended in any way because we don't care about 6145 // upper bits after truncation. It can't be abs pattern, because it would 6146 // look like: 6147 // 6148 // select i1 %cond, x, -x. 6149 // 6150 // So only min/max pattern could be matched. Such match requires widened C 6151 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6152 // CmpConst == C is checked below. 6153 CastedTo = CmpConst; 6154 } else { 6155 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6156 } 6157 break; 6158 case Instruction::FPTrunc: 6159 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6160 break; 6161 case Instruction::FPExt: 6162 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6163 break; 6164 case Instruction::FPToUI: 6165 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6166 break; 6167 case Instruction::FPToSI: 6168 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6169 break; 6170 case Instruction::UIToFP: 6171 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6172 break; 6173 case Instruction::SIToFP: 6174 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6175 break; 6176 default: 6177 break; 6178 } 6179 6180 if (!CastedTo) 6181 return nullptr; 6182 6183 // Make sure the cast doesn't lose any information. 6184 Constant *CastedBack = 6185 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6186 if (CastedBack != C) 6187 return nullptr; 6188 6189 return CastedTo; 6190 } 6191 6192 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6193 Instruction::CastOps *CastOp, 6194 unsigned Depth) { 6195 if (Depth >= MaxAnalysisRecursionDepth) 6196 return {SPF_UNKNOWN, SPNB_NA, false}; 6197 6198 SelectInst *SI = dyn_cast<SelectInst>(V); 6199 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6200 6201 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6202 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6203 6204 Value *TrueVal = SI->getTrueValue(); 6205 Value *FalseVal = SI->getFalseValue(); 6206 6207 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6208 CastOp, Depth); 6209 } 6210 6211 SelectPatternResult llvm::matchDecomposedSelectPattern( 6212 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6213 Instruction::CastOps *CastOp, unsigned Depth) { 6214 CmpInst::Predicate Pred = CmpI->getPredicate(); 6215 Value *CmpLHS = CmpI->getOperand(0); 6216 Value *CmpRHS = CmpI->getOperand(1); 6217 FastMathFlags FMF; 6218 if (isa<FPMathOperator>(CmpI)) 6219 FMF = CmpI->getFastMathFlags(); 6220 6221 // Bail out early. 6222 if (CmpI->isEquality()) 6223 return {SPF_UNKNOWN, SPNB_NA, false}; 6224 6225 // Deal with type mismatches. 6226 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6227 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6228 // If this is a potential fmin/fmax with a cast to integer, then ignore 6229 // -0.0 because there is no corresponding integer value. 6230 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6231 FMF.setNoSignedZeros(); 6232 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6233 cast<CastInst>(TrueVal)->getOperand(0), C, 6234 LHS, RHS, Depth); 6235 } 6236 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6237 // If this is a potential fmin/fmax with a cast to integer, then ignore 6238 // -0.0 because there is no corresponding integer value. 6239 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6240 FMF.setNoSignedZeros(); 6241 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6242 C, cast<CastInst>(FalseVal)->getOperand(0), 6243 LHS, RHS, Depth); 6244 } 6245 } 6246 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6247 LHS, RHS, Depth); 6248 } 6249 6250 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6251 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6252 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6253 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6254 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6255 if (SPF == SPF_FMINNUM) 6256 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6257 if (SPF == SPF_FMAXNUM) 6258 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6259 llvm_unreachable("unhandled!"); 6260 } 6261 6262 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6263 if (SPF == SPF_SMIN) return SPF_SMAX; 6264 if (SPF == SPF_UMIN) return SPF_UMAX; 6265 if (SPF == SPF_SMAX) return SPF_SMIN; 6266 if (SPF == SPF_UMAX) return SPF_UMIN; 6267 llvm_unreachable("unhandled!"); 6268 } 6269 6270 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6271 switch (MinMaxID) { 6272 case Intrinsic::smax: return Intrinsic::smin; 6273 case Intrinsic::smin: return Intrinsic::smax; 6274 case Intrinsic::umax: return Intrinsic::umin; 6275 case Intrinsic::umin: return Intrinsic::umax; 6276 default: llvm_unreachable("Unexpected intrinsic"); 6277 } 6278 } 6279 6280 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6281 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6282 } 6283 6284 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6285 switch (SPF) { 6286 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6287 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6288 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6289 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6290 default: llvm_unreachable("Unexpected flavor"); 6291 } 6292 } 6293 6294 std::pair<Intrinsic::ID, bool> 6295 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6296 // Check if VL contains select instructions that can be folded into a min/max 6297 // vector intrinsic and return the intrinsic if it is possible. 6298 // TODO: Support floating point min/max. 6299 bool AllCmpSingleUse = true; 6300 SelectPatternResult SelectPattern; 6301 SelectPattern.Flavor = SPF_UNKNOWN; 6302 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6303 Value *LHS, *RHS; 6304 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6305 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6306 CurrentPattern.Flavor == SPF_FMINNUM || 6307 CurrentPattern.Flavor == SPF_FMAXNUM || 6308 !I->getType()->isIntOrIntVectorTy()) 6309 return false; 6310 if (SelectPattern.Flavor != SPF_UNKNOWN && 6311 SelectPattern.Flavor != CurrentPattern.Flavor) 6312 return false; 6313 SelectPattern = CurrentPattern; 6314 AllCmpSingleUse &= 6315 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6316 return true; 6317 })) { 6318 switch (SelectPattern.Flavor) { 6319 case SPF_SMIN: 6320 return {Intrinsic::smin, AllCmpSingleUse}; 6321 case SPF_UMIN: 6322 return {Intrinsic::umin, AllCmpSingleUse}; 6323 case SPF_SMAX: 6324 return {Intrinsic::smax, AllCmpSingleUse}; 6325 case SPF_UMAX: 6326 return {Intrinsic::umax, AllCmpSingleUse}; 6327 default: 6328 llvm_unreachable("unexpected select pattern flavor"); 6329 } 6330 } 6331 return {Intrinsic::not_intrinsic, false}; 6332 } 6333 6334 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6335 Value *&Start, Value *&Step) { 6336 // Handle the case of a simple two-predecessor recurrence PHI. 6337 // There's a lot more that could theoretically be done here, but 6338 // this is sufficient to catch some interesting cases. 6339 if (P->getNumIncomingValues() != 2) 6340 return false; 6341 6342 for (unsigned i = 0; i != 2; ++i) { 6343 Value *L = P->getIncomingValue(i); 6344 Value *R = P->getIncomingValue(!i); 6345 Operator *LU = dyn_cast<Operator>(L); 6346 if (!LU) 6347 continue; 6348 unsigned Opcode = LU->getOpcode(); 6349 6350 switch (Opcode) { 6351 default: 6352 continue; 6353 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6354 case Instruction::LShr: 6355 case Instruction::AShr: 6356 case Instruction::Shl: 6357 case Instruction::Add: 6358 case Instruction::Sub: 6359 case Instruction::And: 6360 case Instruction::Or: 6361 case Instruction::Mul: { 6362 Value *LL = LU->getOperand(0); 6363 Value *LR = LU->getOperand(1); 6364 // Find a recurrence. 6365 if (LL == P) 6366 L = LR; 6367 else if (LR == P) 6368 L = LL; 6369 else 6370 continue; // Check for recurrence with L and R flipped. 6371 6372 break; // Match! 6373 } 6374 }; 6375 6376 // We have matched a recurrence of the form: 6377 // %iv = [R, %entry], [%iv.next, %backedge] 6378 // %iv.next = binop %iv, L 6379 // OR 6380 // %iv = [R, %entry], [%iv.next, %backedge] 6381 // %iv.next = binop L, %iv 6382 BO = cast<BinaryOperator>(LU); 6383 Start = R; 6384 Step = L; 6385 return true; 6386 } 6387 return false; 6388 } 6389 6390 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6391 Value *&Start, Value *&Step) { 6392 BinaryOperator *BO = nullptr; 6393 P = dyn_cast<PHINode>(I->getOperand(0)); 6394 if (!P) 6395 P = dyn_cast<PHINode>(I->getOperand(1)); 6396 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6397 } 6398 6399 /// Return true if "icmp Pred LHS RHS" is always true. 6400 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6401 const Value *RHS, const DataLayout &DL, 6402 unsigned Depth) { 6403 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6404 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6405 return true; 6406 6407 switch (Pred) { 6408 default: 6409 return false; 6410 6411 case CmpInst::ICMP_SLE: { 6412 const APInt *C; 6413 6414 // LHS s<= LHS +_{nsw} C if C >= 0 6415 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6416 return !C->isNegative(); 6417 return false; 6418 } 6419 6420 case CmpInst::ICMP_ULE: { 6421 const APInt *C; 6422 6423 // LHS u<= LHS +_{nuw} C for any C 6424 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6425 return true; 6426 6427 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6428 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6429 const Value *&X, 6430 const APInt *&CA, const APInt *&CB) { 6431 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6432 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6433 return true; 6434 6435 // If X & C == 0 then (X | C) == X +_{nuw} C 6436 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6437 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6438 KnownBits Known(CA->getBitWidth()); 6439 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6440 /*CxtI*/ nullptr, /*DT*/ nullptr); 6441 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6442 return true; 6443 } 6444 6445 return false; 6446 }; 6447 6448 const Value *X; 6449 const APInt *CLHS, *CRHS; 6450 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6451 return CLHS->ule(*CRHS); 6452 6453 return false; 6454 } 6455 } 6456 } 6457 6458 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6459 /// ALHS ARHS" is true. Otherwise, return None. 6460 static Optional<bool> 6461 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6462 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6463 const DataLayout &DL, unsigned Depth) { 6464 switch (Pred) { 6465 default: 6466 return None; 6467 6468 case CmpInst::ICMP_SLT: 6469 case CmpInst::ICMP_SLE: 6470 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6471 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6472 return true; 6473 return None; 6474 6475 case CmpInst::ICMP_ULT: 6476 case CmpInst::ICMP_ULE: 6477 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6478 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6479 return true; 6480 return None; 6481 } 6482 } 6483 6484 /// Return true if the operands of the two compares match. IsSwappedOps is true 6485 /// when the operands match, but are swapped. 6486 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6487 const Value *BLHS, const Value *BRHS, 6488 bool &IsSwappedOps) { 6489 6490 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6491 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6492 return IsMatchingOps || IsSwappedOps; 6493 } 6494 6495 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6496 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6497 /// Otherwise, return None if we can't infer anything. 6498 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6499 CmpInst::Predicate BPred, 6500 bool AreSwappedOps) { 6501 // Canonicalize the predicate as if the operands were not commuted. 6502 if (AreSwappedOps) 6503 BPred = ICmpInst::getSwappedPredicate(BPred); 6504 6505 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6506 return true; 6507 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6508 return false; 6509 6510 return None; 6511 } 6512 6513 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6514 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6515 /// Otherwise, return None if we can't infer anything. 6516 static Optional<bool> 6517 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6518 const ConstantInt *C1, 6519 CmpInst::Predicate BPred, 6520 const ConstantInt *C2) { 6521 ConstantRange DomCR = 6522 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6523 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6524 ConstantRange Intersection = DomCR.intersectWith(CR); 6525 ConstantRange Difference = DomCR.difference(CR); 6526 if (Intersection.isEmptySet()) 6527 return false; 6528 if (Difference.isEmptySet()) 6529 return true; 6530 return None; 6531 } 6532 6533 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6534 /// false. Otherwise, return None if we can't infer anything. 6535 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6536 CmpInst::Predicate BPred, 6537 const Value *BLHS, const Value *BRHS, 6538 const DataLayout &DL, bool LHSIsTrue, 6539 unsigned Depth) { 6540 Value *ALHS = LHS->getOperand(0); 6541 Value *ARHS = LHS->getOperand(1); 6542 6543 // The rest of the logic assumes the LHS condition is true. If that's not the 6544 // case, invert the predicate to make it so. 6545 CmpInst::Predicate APred = 6546 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6547 6548 // Can we infer anything when the two compares have matching operands? 6549 bool AreSwappedOps; 6550 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6551 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6552 APred, BPred, AreSwappedOps)) 6553 return Implication; 6554 // No amount of additional analysis will infer the second condition, so 6555 // early exit. 6556 return None; 6557 } 6558 6559 // Can we infer anything when the LHS operands match and the RHS operands are 6560 // constants (not necessarily matching)? 6561 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6562 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6563 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6564 return Implication; 6565 // No amount of additional analysis will infer the second condition, so 6566 // early exit. 6567 return None; 6568 } 6569 6570 if (APred == BPred) 6571 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6572 return None; 6573 } 6574 6575 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6576 /// false. Otherwise, return None if we can't infer anything. We expect the 6577 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6578 static Optional<bool> 6579 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6580 const Value *RHSOp0, const Value *RHSOp1, 6581 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6582 // The LHS must be an 'or', 'and', or a 'select' instruction. 6583 assert((LHS->getOpcode() == Instruction::And || 6584 LHS->getOpcode() == Instruction::Or || 6585 LHS->getOpcode() == Instruction::Select) && 6586 "Expected LHS to be 'and', 'or', or 'select'."); 6587 6588 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6589 6590 // If the result of an 'or' is false, then we know both legs of the 'or' are 6591 // false. Similarly, if the result of an 'and' is true, then we know both 6592 // legs of the 'and' are true. 6593 const Value *ALHS, *ARHS; 6594 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6595 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6596 // FIXME: Make this non-recursion. 6597 if (Optional<bool> Implication = isImpliedCondition( 6598 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6599 return Implication; 6600 if (Optional<bool> Implication = isImpliedCondition( 6601 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6602 return Implication; 6603 return None; 6604 } 6605 return None; 6606 } 6607 6608 Optional<bool> 6609 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6610 const Value *RHSOp0, const Value *RHSOp1, 6611 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6612 // Bail out when we hit the limit. 6613 if (Depth == MaxAnalysisRecursionDepth) 6614 return None; 6615 6616 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6617 // example. 6618 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6619 return None; 6620 6621 Type *OpTy = LHS->getType(); 6622 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6623 6624 // FIXME: Extending the code below to handle vectors. 6625 if (OpTy->isVectorTy()) 6626 return None; 6627 6628 assert(OpTy->isIntegerTy(1) && "implied by above"); 6629 6630 // Both LHS and RHS are icmps. 6631 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6632 if (LHSCmp) 6633 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6634 Depth); 6635 6636 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6637 /// the RHS to be an icmp. 6638 /// FIXME: Add support for and/or/select on the RHS. 6639 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6640 if ((LHSI->getOpcode() == Instruction::And || 6641 LHSI->getOpcode() == Instruction::Or || 6642 LHSI->getOpcode() == Instruction::Select)) 6643 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6644 Depth); 6645 } 6646 return None; 6647 } 6648 6649 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6650 const DataLayout &DL, bool LHSIsTrue, 6651 unsigned Depth) { 6652 // LHS ==> RHS by definition 6653 if (LHS == RHS) 6654 return LHSIsTrue; 6655 6656 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) 6657 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6658 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6659 LHSIsTrue, Depth); 6660 6661 if (Depth == MaxAnalysisRecursionDepth) 6662 return None; 6663 6664 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 6665 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 6666 const Value *RHS1, *RHS2; 6667 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { 6668 if (Optional<bool> Imp = 6669 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6670 if (*Imp == true) 6671 return true; 6672 if (Optional<bool> Imp = 6673 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6674 if (*Imp == true) 6675 return true; 6676 } 6677 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { 6678 if (Optional<bool> Imp = 6679 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6680 if (*Imp == false) 6681 return false; 6682 if (Optional<bool> Imp = 6683 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6684 if (*Imp == false) 6685 return false; 6686 } 6687 6688 return None; 6689 } 6690 6691 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6692 // condition dominating ContextI or nullptr, if no condition is found. 6693 static std::pair<Value *, bool> 6694 getDomPredecessorCondition(const Instruction *ContextI) { 6695 if (!ContextI || !ContextI->getParent()) 6696 return {nullptr, false}; 6697 6698 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6699 // dominator tree (eg, from a SimplifyQuery) instead? 6700 const BasicBlock *ContextBB = ContextI->getParent(); 6701 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6702 if (!PredBB) 6703 return {nullptr, false}; 6704 6705 // We need a conditional branch in the predecessor. 6706 Value *PredCond; 6707 BasicBlock *TrueBB, *FalseBB; 6708 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6709 return {nullptr, false}; 6710 6711 // The branch should get simplified. Don't bother simplifying this condition. 6712 if (TrueBB == FalseBB) 6713 return {nullptr, false}; 6714 6715 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6716 "Predecessor block does not point to successor?"); 6717 6718 // Is this condition implied by the predecessor condition? 6719 return {PredCond, TrueBB == ContextBB}; 6720 } 6721 6722 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6723 const Instruction *ContextI, 6724 const DataLayout &DL) { 6725 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6726 auto PredCond = getDomPredecessorCondition(ContextI); 6727 if (PredCond.first) 6728 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6729 return None; 6730 } 6731 6732 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6733 const Value *LHS, const Value *RHS, 6734 const Instruction *ContextI, 6735 const DataLayout &DL) { 6736 auto PredCond = getDomPredecessorCondition(ContextI); 6737 if (PredCond.first) 6738 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6739 PredCond.second); 6740 return None; 6741 } 6742 6743 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6744 APInt &Upper, const InstrInfoQuery &IIQ, 6745 bool PreferSignedRange) { 6746 unsigned Width = Lower.getBitWidth(); 6747 const APInt *C; 6748 switch (BO.getOpcode()) { 6749 case Instruction::Add: 6750 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6751 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6752 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6753 6754 // If the caller expects a signed compare, then try to use a signed range. 6755 // Otherwise if both no-wraps are set, use the unsigned range because it 6756 // is never larger than the signed range. Example: 6757 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6758 if (PreferSignedRange && HasNSW && HasNUW) 6759 HasNUW = false; 6760 6761 if (HasNUW) { 6762 // 'add nuw x, C' produces [C, UINT_MAX]. 6763 Lower = *C; 6764 } else if (HasNSW) { 6765 if (C->isNegative()) { 6766 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6767 Lower = APInt::getSignedMinValue(Width); 6768 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6769 } else { 6770 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6771 Lower = APInt::getSignedMinValue(Width) + *C; 6772 Upper = APInt::getSignedMaxValue(Width) + 1; 6773 } 6774 } 6775 } 6776 break; 6777 6778 case Instruction::And: 6779 if (match(BO.getOperand(1), m_APInt(C))) 6780 // 'and x, C' produces [0, C]. 6781 Upper = *C + 1; 6782 break; 6783 6784 case Instruction::Or: 6785 if (match(BO.getOperand(1), m_APInt(C))) 6786 // 'or x, C' produces [C, UINT_MAX]. 6787 Lower = *C; 6788 break; 6789 6790 case Instruction::AShr: 6791 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6792 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6793 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6794 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6795 } else if (match(BO.getOperand(0), m_APInt(C))) { 6796 unsigned ShiftAmount = Width - 1; 6797 if (!C->isZero() && IIQ.isExact(&BO)) 6798 ShiftAmount = C->countTrailingZeros(); 6799 if (C->isNegative()) { 6800 // 'ashr C, x' produces [C, C >> (Width-1)] 6801 Lower = *C; 6802 Upper = C->ashr(ShiftAmount) + 1; 6803 } else { 6804 // 'ashr C, x' produces [C >> (Width-1), C] 6805 Lower = C->ashr(ShiftAmount); 6806 Upper = *C + 1; 6807 } 6808 } 6809 break; 6810 6811 case Instruction::LShr: 6812 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6813 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6814 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6815 } else if (match(BO.getOperand(0), m_APInt(C))) { 6816 // 'lshr C, x' produces [C >> (Width-1), C]. 6817 unsigned ShiftAmount = Width - 1; 6818 if (!C->isZero() && IIQ.isExact(&BO)) 6819 ShiftAmount = C->countTrailingZeros(); 6820 Lower = C->lshr(ShiftAmount); 6821 Upper = *C + 1; 6822 } 6823 break; 6824 6825 case Instruction::Shl: 6826 if (match(BO.getOperand(0), m_APInt(C))) { 6827 if (IIQ.hasNoUnsignedWrap(&BO)) { 6828 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6829 Lower = *C; 6830 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6831 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6832 if (C->isNegative()) { 6833 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6834 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6835 Lower = C->shl(ShiftAmount); 6836 Upper = *C + 1; 6837 } else { 6838 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6839 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6840 Lower = *C; 6841 Upper = C->shl(ShiftAmount) + 1; 6842 } 6843 } 6844 } 6845 break; 6846 6847 case Instruction::SDiv: 6848 if (match(BO.getOperand(1), m_APInt(C))) { 6849 APInt IntMin = APInt::getSignedMinValue(Width); 6850 APInt IntMax = APInt::getSignedMaxValue(Width); 6851 if (C->isAllOnes()) { 6852 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6853 // where C != -1 and C != 0 and C != 1 6854 Lower = IntMin + 1; 6855 Upper = IntMax + 1; 6856 } else if (C->countLeadingZeros() < Width - 1) { 6857 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6858 // where C != -1 and C != 0 and C != 1 6859 Lower = IntMin.sdiv(*C); 6860 Upper = IntMax.sdiv(*C); 6861 if (Lower.sgt(Upper)) 6862 std::swap(Lower, Upper); 6863 Upper = Upper + 1; 6864 assert(Upper != Lower && "Upper part of range has wrapped!"); 6865 } 6866 } else if (match(BO.getOperand(0), m_APInt(C))) { 6867 if (C->isMinSignedValue()) { 6868 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6869 Lower = *C; 6870 Upper = Lower.lshr(1) + 1; 6871 } else { 6872 // 'sdiv C, x' produces [-|C|, |C|]. 6873 Upper = C->abs() + 1; 6874 Lower = (-Upper) + 1; 6875 } 6876 } 6877 break; 6878 6879 case Instruction::UDiv: 6880 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6881 // 'udiv x, C' produces [0, UINT_MAX / C]. 6882 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6883 } else if (match(BO.getOperand(0), m_APInt(C))) { 6884 // 'udiv C, x' produces [0, C]. 6885 Upper = *C + 1; 6886 } 6887 break; 6888 6889 case Instruction::SRem: 6890 if (match(BO.getOperand(1), m_APInt(C))) { 6891 // 'srem x, C' produces (-|C|, |C|). 6892 Upper = C->abs(); 6893 Lower = (-Upper) + 1; 6894 } 6895 break; 6896 6897 case Instruction::URem: 6898 if (match(BO.getOperand(1), m_APInt(C))) 6899 // 'urem x, C' produces [0, C). 6900 Upper = *C; 6901 break; 6902 6903 default: 6904 break; 6905 } 6906 } 6907 6908 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6909 APInt &Upper) { 6910 unsigned Width = Lower.getBitWidth(); 6911 const APInt *C; 6912 switch (II.getIntrinsicID()) { 6913 case Intrinsic::ctpop: 6914 case Intrinsic::ctlz: 6915 case Intrinsic::cttz: 6916 // Maximum of set/clear bits is the bit width. 6917 assert(Lower == 0 && "Expected lower bound to be zero"); 6918 Upper = Width + 1; 6919 break; 6920 case Intrinsic::uadd_sat: 6921 // uadd.sat(x, C) produces [C, UINT_MAX]. 6922 if (match(II.getOperand(0), m_APInt(C)) || 6923 match(II.getOperand(1), m_APInt(C))) 6924 Lower = *C; 6925 break; 6926 case Intrinsic::sadd_sat: 6927 if (match(II.getOperand(0), m_APInt(C)) || 6928 match(II.getOperand(1), m_APInt(C))) { 6929 if (C->isNegative()) { 6930 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6931 Lower = APInt::getSignedMinValue(Width); 6932 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6933 } else { 6934 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6935 Lower = APInt::getSignedMinValue(Width) + *C; 6936 Upper = APInt::getSignedMaxValue(Width) + 1; 6937 } 6938 } 6939 break; 6940 case Intrinsic::usub_sat: 6941 // usub.sat(C, x) produces [0, C]. 6942 if (match(II.getOperand(0), m_APInt(C))) 6943 Upper = *C + 1; 6944 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6945 else if (match(II.getOperand(1), m_APInt(C))) 6946 Upper = APInt::getMaxValue(Width) - *C + 1; 6947 break; 6948 case Intrinsic::ssub_sat: 6949 if (match(II.getOperand(0), m_APInt(C))) { 6950 if (C->isNegative()) { 6951 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6952 Lower = APInt::getSignedMinValue(Width); 6953 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6954 } else { 6955 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6956 Lower = *C - APInt::getSignedMaxValue(Width); 6957 Upper = APInt::getSignedMaxValue(Width) + 1; 6958 } 6959 } else if (match(II.getOperand(1), m_APInt(C))) { 6960 if (C->isNegative()) { 6961 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6962 Lower = APInt::getSignedMinValue(Width) - *C; 6963 Upper = APInt::getSignedMaxValue(Width) + 1; 6964 } else { 6965 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6966 Lower = APInt::getSignedMinValue(Width); 6967 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6968 } 6969 } 6970 break; 6971 case Intrinsic::umin: 6972 case Intrinsic::umax: 6973 case Intrinsic::smin: 6974 case Intrinsic::smax: 6975 if (!match(II.getOperand(0), m_APInt(C)) && 6976 !match(II.getOperand(1), m_APInt(C))) 6977 break; 6978 6979 switch (II.getIntrinsicID()) { 6980 case Intrinsic::umin: 6981 Upper = *C + 1; 6982 break; 6983 case Intrinsic::umax: 6984 Lower = *C; 6985 break; 6986 case Intrinsic::smin: 6987 Lower = APInt::getSignedMinValue(Width); 6988 Upper = *C + 1; 6989 break; 6990 case Intrinsic::smax: 6991 Lower = *C; 6992 Upper = APInt::getSignedMaxValue(Width) + 1; 6993 break; 6994 default: 6995 llvm_unreachable("Must be min/max intrinsic"); 6996 } 6997 break; 6998 case Intrinsic::abs: 6999 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 7000 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7001 if (match(II.getOperand(1), m_One())) 7002 Upper = APInt::getSignedMaxValue(Width) + 1; 7003 else 7004 Upper = APInt::getSignedMinValue(Width) + 1; 7005 break; 7006 default: 7007 break; 7008 } 7009 } 7010 7011 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 7012 APInt &Upper, const InstrInfoQuery &IIQ) { 7013 const Value *LHS = nullptr, *RHS = nullptr; 7014 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 7015 if (R.Flavor == SPF_UNKNOWN) 7016 return; 7017 7018 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 7019 7020 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 7021 // If the negation part of the abs (in RHS) has the NSW flag, 7022 // then the result of abs(X) is [0..SIGNED_MAX], 7023 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7024 Lower = APInt::getZero(BitWidth); 7025 if (match(RHS, m_Neg(m_Specific(LHS))) && 7026 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 7027 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7028 else 7029 Upper = APInt::getSignedMinValue(BitWidth) + 1; 7030 return; 7031 } 7032 7033 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7034 // The result of -abs(X) is <= 0. 7035 Lower = APInt::getSignedMinValue(BitWidth); 7036 Upper = APInt(BitWidth, 1); 7037 return; 7038 } 7039 7040 const APInt *C; 7041 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7042 return; 7043 7044 switch (R.Flavor) { 7045 case SPF_UMIN: 7046 Upper = *C + 1; 7047 break; 7048 case SPF_UMAX: 7049 Lower = *C; 7050 break; 7051 case SPF_SMIN: 7052 Lower = APInt::getSignedMinValue(BitWidth); 7053 Upper = *C + 1; 7054 break; 7055 case SPF_SMAX: 7056 Lower = *C; 7057 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7058 break; 7059 default: 7060 break; 7061 } 7062 } 7063 7064 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 7065 // The maximum representable value of a half is 65504. For floats the maximum 7066 // value is 3.4e38 which requires roughly 129 bits. 7067 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 7068 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 7069 return; 7070 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 7071 Lower = APInt(BitWidth, -65504); 7072 Upper = APInt(BitWidth, 65505); 7073 } 7074 7075 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 7076 // For a fptoui the lower limit is left as 0. 7077 Upper = APInt(BitWidth, 65505); 7078 } 7079 } 7080 7081 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 7082 bool UseInstrInfo, AssumptionCache *AC, 7083 const Instruction *CtxI, 7084 const DominatorTree *DT, 7085 unsigned Depth) { 7086 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7087 7088 if (Depth == MaxAnalysisRecursionDepth) 7089 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7090 7091 const APInt *C; 7092 if (match(V, m_APInt(C))) 7093 return ConstantRange(*C); 7094 7095 InstrInfoQuery IIQ(UseInstrInfo); 7096 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7097 APInt Lower = APInt(BitWidth, 0); 7098 APInt Upper = APInt(BitWidth, 0); 7099 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7100 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7101 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7102 setLimitsForIntrinsic(*II, Lower, Upper); 7103 else if (auto *SI = dyn_cast<SelectInst>(V)) 7104 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7105 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7106 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7107 7108 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7109 7110 if (auto *I = dyn_cast<Instruction>(V)) 7111 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7112 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7113 7114 if (CtxI && AC) { 7115 // Try to restrict the range based on information from assumptions. 7116 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7117 if (!AssumeVH) 7118 continue; 7119 CallInst *I = cast<CallInst>(AssumeVH); 7120 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7121 "Got assumption for the wrong function!"); 7122 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7123 "must be an assume intrinsic"); 7124 7125 if (!isValidAssumeForContext(I, CtxI, DT)) 7126 continue; 7127 Value *Arg = I->getArgOperand(0); 7128 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7129 // Currently we just use information from comparisons. 7130 if (!Cmp || Cmp->getOperand(0) != V) 7131 continue; 7132 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7133 ConstantRange RHS = 7134 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7135 UseInstrInfo, AC, I, DT, Depth + 1); 7136 CR = CR.intersectWith( 7137 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7138 } 7139 } 7140 7141 return CR; 7142 } 7143 7144 static Optional<int64_t> 7145 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7146 // Skip over the first indices. 7147 gep_type_iterator GTI = gep_type_begin(GEP); 7148 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7149 /*skip along*/; 7150 7151 // Compute the offset implied by the rest of the indices. 7152 int64_t Offset = 0; 7153 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7154 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7155 if (!OpC) 7156 return None; 7157 if (OpC->isZero()) 7158 continue; // No offset. 7159 7160 // Handle struct indices, which add their field offset to the pointer. 7161 if (StructType *STy = GTI.getStructTypeOrNull()) { 7162 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7163 continue; 7164 } 7165 7166 // Otherwise, we have a sequential type like an array or fixed-length 7167 // vector. Multiply the index by the ElementSize. 7168 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7169 if (Size.isScalable()) 7170 return None; 7171 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7172 } 7173 7174 return Offset; 7175 } 7176 7177 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7178 const DataLayout &DL) { 7179 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 7180 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 7181 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 7182 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 7183 7184 // Handle the trivial case first. 7185 if (Ptr1 == Ptr2) 7186 return Offset2.getSExtValue() - Offset1.getSExtValue(); 7187 7188 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7189 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7190 7191 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7192 // base. After that base, they may have some number of common (and 7193 // potentially variable) indices. After that they handle some constant 7194 // offset, which determines their offset from each other. At this point, we 7195 // handle no other case. 7196 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7197 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7198 return None; 7199 7200 // Skip any common indices and track the GEP types. 7201 unsigned Idx = 1; 7202 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7203 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7204 break; 7205 7206 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 7207 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 7208 if (!IOffset1 || !IOffset2) 7209 return None; 7210 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 7211 Offset1.getSExtValue(); 7212 } 7213