1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 170 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 171 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 172 173 for (int i = 0; i != NumMaskElts; ++i) { 174 if (!DemandedElts[i]) 175 continue; 176 int M = Shuf->getMaskValue(i); 177 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 178 179 // For undef elements, we don't know anything about the common state of 180 // the shuffle result. 181 if (M == -1) 182 return false; 183 if (M < NumElts) 184 DemandedLHS.setBit(M % NumElts); 185 else 186 DemandedRHS.setBit(M % NumElts); 187 } 188 189 return true; 190 } 191 192 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 193 KnownBits &Known, unsigned Depth, const Query &Q); 194 195 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 196 const Query &Q) { 197 Type *Ty = V->getType(); 198 APInt DemandedElts = Ty->isVectorTy() 199 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 200 : APInt(1, 1); 201 computeKnownBits(V, DemandedElts, Known, Depth, Q); 202 } 203 204 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 205 const DataLayout &DL, unsigned Depth, 206 AssumptionCache *AC, const Instruction *CxtI, 207 const DominatorTree *DT, 208 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 209 ::computeKnownBits(V, Known, Depth, 210 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 211 } 212 213 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 214 const Query &Q); 215 216 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 217 unsigned Depth, AssumptionCache *AC, 218 const Instruction *CxtI, 219 const DominatorTree *DT, 220 OptimizationRemarkEmitter *ORE, 221 bool UseInstrInfo) { 222 return ::computeKnownBits( 223 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 224 } 225 226 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 227 const DataLayout &DL, AssumptionCache *AC, 228 const Instruction *CxtI, const DominatorTree *DT, 229 bool UseInstrInfo) { 230 assert(LHS->getType() == RHS->getType() && 231 "LHS and RHS should have the same type"); 232 assert(LHS->getType()->isIntOrIntVectorTy() && 233 "LHS and RHS should be integers"); 234 // Look for an inverted mask: (X & ~M) op (Y & M). 235 Value *M; 236 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 237 match(RHS, m_c_And(m_Specific(M), m_Value()))) 238 return true; 239 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 240 match(LHS, m_c_And(m_Specific(M), m_Value()))) 241 return true; 242 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 243 KnownBits LHSKnown(IT->getBitWidth()); 244 KnownBits RHSKnown(IT->getBitWidth()); 245 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 246 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 247 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 248 } 249 250 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 251 for (const User *U : CxtI->users()) { 252 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 253 if (IC->isEquality()) 254 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 255 if (C->isNullValue()) 256 continue; 257 return false; 258 } 259 return true; 260 } 261 262 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 263 const Query &Q); 264 265 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 266 bool OrZero, unsigned Depth, 267 AssumptionCache *AC, const Instruction *CxtI, 268 const DominatorTree *DT, bool UseInstrInfo) { 269 return ::isKnownToBeAPowerOfTwo( 270 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 271 } 272 273 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 274 275 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 276 AssumptionCache *AC, const Instruction *CxtI, 277 const DominatorTree *DT, bool UseInstrInfo) { 278 return ::isKnownNonZero(V, Depth, 279 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 280 } 281 282 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 283 unsigned Depth, AssumptionCache *AC, 284 const Instruction *CxtI, const DominatorTree *DT, 285 bool UseInstrInfo) { 286 KnownBits Known = 287 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 288 return Known.isNonNegative(); 289 } 290 291 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 292 AssumptionCache *AC, const Instruction *CxtI, 293 const DominatorTree *DT, bool UseInstrInfo) { 294 if (auto *CI = dyn_cast<ConstantInt>(V)) 295 return CI->getValue().isStrictlyPositive(); 296 297 // TODO: We'd doing two recursive queries here. We should factor this such 298 // that only a single query is needed. 299 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 300 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 301 } 302 303 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 304 AssumptionCache *AC, const Instruction *CxtI, 305 const DominatorTree *DT, bool UseInstrInfo) { 306 KnownBits Known = 307 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 308 return Known.isNegative(); 309 } 310 311 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 312 313 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 314 const DataLayout &DL, AssumptionCache *AC, 315 const Instruction *CxtI, const DominatorTree *DT, 316 bool UseInstrInfo) { 317 return ::isKnownNonEqual(V1, V2, 318 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 319 UseInstrInfo, /*ORE=*/nullptr)); 320 } 321 322 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 323 const Query &Q); 324 325 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 326 const DataLayout &DL, unsigned Depth, 327 AssumptionCache *AC, const Instruction *CxtI, 328 const DominatorTree *DT, bool UseInstrInfo) { 329 return ::MaskedValueIsZero( 330 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 331 } 332 333 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 334 unsigned Depth, const Query &Q); 335 336 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 337 const Query &Q) { 338 Type *Ty = V->getType(); 339 APInt DemandedElts = Ty->isVectorTy() 340 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 341 : APInt(1, 1); 342 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 343 } 344 345 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 346 unsigned Depth, AssumptionCache *AC, 347 const Instruction *CxtI, 348 const DominatorTree *DT, bool UseInstrInfo) { 349 return ::ComputeNumSignBits( 350 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 351 } 352 353 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 354 bool NSW, 355 KnownBits &KnownOut, KnownBits &Known2, 356 unsigned Depth, const Query &Q) { 357 unsigned BitWidth = KnownOut.getBitWidth(); 358 359 // If an initial sequence of bits in the result is not needed, the 360 // corresponding bits in the operands are not needed. 361 KnownBits LHSKnown(BitWidth); 362 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 363 computeKnownBits(Op1, Known2, Depth + 1, Q); 364 365 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 366 } 367 368 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 369 KnownBits &Known, KnownBits &Known2, 370 unsigned Depth, const Query &Q) { 371 unsigned BitWidth = Known.getBitWidth(); 372 computeKnownBits(Op1, Known, Depth + 1, Q); 373 computeKnownBits(Op0, Known2, Depth + 1, Q); 374 375 bool isKnownNegative = false; 376 bool isKnownNonNegative = false; 377 // If the multiplication is known not to overflow, compute the sign bit. 378 if (NSW) { 379 if (Op0 == Op1) { 380 // The product of a number with itself is non-negative. 381 isKnownNonNegative = true; 382 } else { 383 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 384 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 385 bool isKnownNegativeOp1 = Known.isNegative(); 386 bool isKnownNegativeOp0 = Known2.isNegative(); 387 // The product of two numbers with the same sign is non-negative. 388 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 389 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 390 // The product of a negative number and a non-negative number is either 391 // negative or zero. 392 if (!isKnownNonNegative) 393 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 394 isKnownNonZero(Op0, Depth, Q)) || 395 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 396 isKnownNonZero(Op1, Depth, Q)); 397 } 398 } 399 400 assert(!Known.hasConflict() && !Known2.hasConflict()); 401 // Compute a conservative estimate for high known-0 bits. 402 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 403 Known2.countMinLeadingZeros(), 404 BitWidth) - BitWidth; 405 LeadZ = std::min(LeadZ, BitWidth); 406 407 // The result of the bottom bits of an integer multiply can be 408 // inferred by looking at the bottom bits of both operands and 409 // multiplying them together. 410 // We can infer at least the minimum number of known trailing bits 411 // of both operands. Depending on number of trailing zeros, we can 412 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 413 // a and b are divisible by m and n respectively. 414 // We then calculate how many of those bits are inferrable and set 415 // the output. For example, the i8 mul: 416 // a = XXXX1100 (12) 417 // b = XXXX1110 (14) 418 // We know the bottom 3 bits are zero since the first can be divided by 419 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 420 // Applying the multiplication to the trimmed arguments gets: 421 // XX11 (3) 422 // X111 (7) 423 // ------- 424 // XX11 425 // XX11 426 // XX11 427 // XX11 428 // ------- 429 // XXXXX01 430 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 431 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 432 // The proof for this can be described as: 433 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 434 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 435 // umin(countTrailingZeros(C2), C6) + 436 // umin(C5 - umin(countTrailingZeros(C1), C5), 437 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 438 // %aa = shl i8 %a, C5 439 // %bb = shl i8 %b, C6 440 // %aaa = or i8 %aa, C1 441 // %bbb = or i8 %bb, C2 442 // %mul = mul i8 %aaa, %bbb 443 // %mask = and i8 %mul, C7 444 // => 445 // %mask = i8 ((C1*C2)&C7) 446 // Where C5, C6 describe the known bits of %a, %b 447 // C1, C2 describe the known bottom bits of %a, %b. 448 // C7 describes the mask of the known bits of the result. 449 APInt Bottom0 = Known.One; 450 APInt Bottom1 = Known2.One; 451 452 // How many times we'd be able to divide each argument by 2 (shr by 1). 453 // This gives us the number of trailing zeros on the multiplication result. 454 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 455 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 456 unsigned TrailZero0 = Known.countMinTrailingZeros(); 457 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 458 unsigned TrailZ = TrailZero0 + TrailZero1; 459 460 // Figure out the fewest known-bits operand. 461 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 462 TrailBitsKnown1 - TrailZero1); 463 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 464 465 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 466 Bottom1.getLoBits(TrailBitsKnown1); 467 468 Known.resetAll(); 469 Known.Zero.setHighBits(LeadZ); 470 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 471 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 472 473 // Only make use of no-wrap flags if we failed to compute the sign bit 474 // directly. This matters if the multiplication always overflows, in 475 // which case we prefer to follow the result of the direct computation, 476 // though as the program is invoking undefined behaviour we can choose 477 // whatever we like here. 478 if (isKnownNonNegative && !Known.isNegative()) 479 Known.makeNonNegative(); 480 else if (isKnownNegative && !Known.isNonNegative()) 481 Known.makeNegative(); 482 } 483 484 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 485 KnownBits &Known) { 486 unsigned BitWidth = Known.getBitWidth(); 487 unsigned NumRanges = Ranges.getNumOperands() / 2; 488 assert(NumRanges >= 1); 489 490 Known.Zero.setAllBits(); 491 Known.One.setAllBits(); 492 493 for (unsigned i = 0; i < NumRanges; ++i) { 494 ConstantInt *Lower = 495 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 496 ConstantInt *Upper = 497 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 498 ConstantRange Range(Lower->getValue(), Upper->getValue()); 499 500 // The first CommonPrefixBits of all values in Range are equal. 501 unsigned CommonPrefixBits = 502 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 503 504 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 505 Known.One &= Range.getUnsignedMax() & Mask; 506 Known.Zero &= ~Range.getUnsignedMax() & Mask; 507 } 508 } 509 510 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 511 SmallVector<const Value *, 16> WorkSet(1, I); 512 SmallPtrSet<const Value *, 32> Visited; 513 SmallPtrSet<const Value *, 16> EphValues; 514 515 // The instruction defining an assumption's condition itself is always 516 // considered ephemeral to that assumption (even if it has other 517 // non-ephemeral users). See r246696's test case for an example. 518 if (is_contained(I->operands(), E)) 519 return true; 520 521 while (!WorkSet.empty()) { 522 const Value *V = WorkSet.pop_back_val(); 523 if (!Visited.insert(V).second) 524 continue; 525 526 // If all uses of this value are ephemeral, then so is this value. 527 if (llvm::all_of(V->users(), [&](const User *U) { 528 return EphValues.count(U); 529 })) { 530 if (V == E) 531 return true; 532 533 if (V == I || isSafeToSpeculativelyExecute(V)) { 534 EphValues.insert(V); 535 if (const User *U = dyn_cast<User>(V)) 536 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 537 J != JE; ++J) 538 WorkSet.push_back(*J); 539 } 540 } 541 } 542 543 return false; 544 } 545 546 // Is this an intrinsic that cannot be speculated but also cannot trap? 547 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 548 if (const CallInst *CI = dyn_cast<CallInst>(I)) 549 if (Function *F = CI->getCalledFunction()) 550 switch (F->getIntrinsicID()) { 551 default: break; 552 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 553 case Intrinsic::assume: 554 case Intrinsic::sideeffect: 555 case Intrinsic::dbg_declare: 556 case Intrinsic::dbg_value: 557 case Intrinsic::dbg_label: 558 case Intrinsic::invariant_start: 559 case Intrinsic::invariant_end: 560 case Intrinsic::lifetime_start: 561 case Intrinsic::lifetime_end: 562 case Intrinsic::objectsize: 563 case Intrinsic::ptr_annotation: 564 case Intrinsic::var_annotation: 565 return true; 566 } 567 568 return false; 569 } 570 571 bool llvm::isValidAssumeForContext(const Instruction *Inv, 572 const Instruction *CxtI, 573 const DominatorTree *DT) { 574 // There are two restrictions on the use of an assume: 575 // 1. The assume must dominate the context (or the control flow must 576 // reach the assume whenever it reaches the context). 577 // 2. The context must not be in the assume's set of ephemeral values 578 // (otherwise we will use the assume to prove that the condition 579 // feeding the assume is trivially true, thus causing the removal of 580 // the assume). 581 582 if (DT) { 583 if (DT->dominates(Inv, CxtI)) 584 return true; 585 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 586 // We don't have a DT, but this trivially dominates. 587 return true; 588 } 589 590 // With or without a DT, the only remaining case we will check is if the 591 // instructions are in the same BB. Give up if that is not the case. 592 if (Inv->getParent() != CxtI->getParent()) 593 return false; 594 595 // If we have a dom tree, then we now know that the assume doesn't dominate 596 // the other instruction. If we don't have a dom tree then we can check if 597 // the assume is first in the BB. 598 if (!DT) { 599 // Search forward from the assume until we reach the context (or the end 600 // of the block); the common case is that the assume will come first. 601 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 602 IE = Inv->getParent()->end(); I != IE; ++I) 603 if (&*I == CxtI) 604 return true; 605 } 606 607 // Don't let an assume affect itself - this would cause the problems 608 // `isEphemeralValueOf` is trying to prevent, and it would also make 609 // the loop below go out of bounds. 610 if (Inv == CxtI) 611 return false; 612 613 // The context comes first, but they're both in the same block. 614 // Make sure there is nothing in between that might interrupt 615 // the control flow, not even CxtI itself. 616 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 617 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 618 return false; 619 620 return !isEphemeralValueOf(Inv, CxtI); 621 } 622 623 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 624 // Use of assumptions is context-sensitive. If we don't have a context, we 625 // cannot use them! 626 if (!Q.AC || !Q.CxtI) 627 return false; 628 629 // Note that the patterns below need to be kept in sync with the code 630 // in AssumptionCache::updateAffectedValues. 631 632 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 633 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 634 635 Value *RHS; 636 CmpInst::Predicate Pred; 637 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 638 return false; 639 // assume(v u> y) -> assume(v != 0) 640 if (Pred == ICmpInst::ICMP_UGT) 641 return true; 642 643 // assume(v != 0) 644 // We special-case this one to ensure that we handle `assume(v != null)`. 645 if (Pred == ICmpInst::ICMP_NE) 646 return match(RHS, m_Zero()); 647 648 // All other predicates - rely on generic ConstantRange handling. 649 ConstantInt *CI; 650 if (!match(RHS, m_ConstantInt(CI))) 651 return false; 652 ConstantRange RHSRange(CI->getValue()); 653 ConstantRange TrueValues = 654 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 655 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 656 }; 657 658 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 659 if (!AssumeVH) 660 continue; 661 CallInst *I = cast<CallInst>(AssumeVH); 662 assert(I->getFunction() == Q.CxtI->getFunction() && 663 "Got assumption for the wrong function!"); 664 if (Q.isExcluded(I)) 665 continue; 666 667 // Warning: This loop can end up being somewhat performance sensitive. 668 // We're running this loop for once for each value queried resulting in a 669 // runtime of ~O(#assumes * #values). 670 671 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 672 "must be an assume intrinsic"); 673 674 Value *Arg = I->getArgOperand(0); 675 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 676 if (!Cmp) 677 continue; 678 679 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 680 return true; 681 } 682 683 return false; 684 } 685 686 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 687 unsigned Depth, const Query &Q) { 688 // Use of assumptions is context-sensitive. If we don't have a context, we 689 // cannot use them! 690 if (!Q.AC || !Q.CxtI) 691 return; 692 693 unsigned BitWidth = Known.getBitWidth(); 694 695 // Note that the patterns below need to be kept in sync with the code 696 // in AssumptionCache::updateAffectedValues. 697 698 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 699 if (!AssumeVH) 700 continue; 701 CallInst *I = cast<CallInst>(AssumeVH); 702 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 703 "Got assumption for the wrong function!"); 704 if (Q.isExcluded(I)) 705 continue; 706 707 // Warning: This loop can end up being somewhat performance sensitive. 708 // We're running this loop for once for each value queried resulting in a 709 // runtime of ~O(#assumes * #values). 710 711 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 712 "must be an assume intrinsic"); 713 714 Value *Arg = I->getArgOperand(0); 715 716 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 717 assert(BitWidth == 1 && "assume operand is not i1?"); 718 Known.setAllOnes(); 719 return; 720 } 721 if (match(Arg, m_Not(m_Specific(V))) && 722 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 723 assert(BitWidth == 1 && "assume operand is not i1?"); 724 Known.setAllZero(); 725 return; 726 } 727 728 // The remaining tests are all recursive, so bail out if we hit the limit. 729 if (Depth == MaxDepth) 730 continue; 731 732 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 733 if (!Cmp) 734 continue; 735 736 Value *A, *B; 737 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 738 739 CmpInst::Predicate Pred; 740 uint64_t C; 741 switch (Cmp->getPredicate()) { 742 default: 743 break; 744 case ICmpInst::ICMP_EQ: 745 // assume(v = a) 746 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 747 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 748 KnownBits RHSKnown(BitWidth); 749 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 750 Known.Zero |= RHSKnown.Zero; 751 Known.One |= RHSKnown.One; 752 // assume(v & b = a) 753 } else if (match(Cmp, 754 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown(BitWidth); 757 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 758 KnownBits MaskKnown(BitWidth); 759 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // known bits from the RHS to V. 763 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 764 Known.One |= RHSKnown.One & MaskKnown.One; 765 // assume(~(v & b) = a) 766 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 767 m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown(BitWidth); 770 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 771 KnownBits MaskKnown(BitWidth); 772 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 773 774 // For those bits in the mask that are known to be one, we can propagate 775 // inverted known bits from the RHS to V. 776 Known.Zero |= RHSKnown.One & MaskKnown.One; 777 Known.One |= RHSKnown.Zero & MaskKnown.One; 778 // assume(v | b = a) 779 } else if (match(Cmp, 780 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown(BitWidth); 783 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 784 KnownBits BKnown(BitWidth); 785 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 786 787 // For those bits in B that are known to be zero, we can propagate known 788 // bits from the RHS to V. 789 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 790 Known.One |= RHSKnown.One & BKnown.Zero; 791 // assume(~(v | b) = a) 792 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 793 m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown(BitWidth); 796 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 797 KnownBits BKnown(BitWidth); 798 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 799 800 // For those bits in B that are known to be zero, we can propagate 801 // inverted known bits from the RHS to V. 802 Known.Zero |= RHSKnown.One & BKnown.Zero; 803 Known.One |= RHSKnown.Zero & BKnown.Zero; 804 // assume(v ^ b = a) 805 } else if (match(Cmp, 806 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 807 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 808 KnownBits RHSKnown(BitWidth); 809 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 810 KnownBits BKnown(BitWidth); 811 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 812 813 // For those bits in B that are known to be zero, we can propagate known 814 // bits from the RHS to V. For those bits in B that are known to be one, 815 // we can propagate inverted known bits from the RHS to V. 816 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 817 Known.One |= RHSKnown.One & BKnown.Zero; 818 Known.Zero |= RHSKnown.One & BKnown.One; 819 Known.One |= RHSKnown.Zero & BKnown.One; 820 // assume(~(v ^ b) = a) 821 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 822 m_Value(A))) && 823 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 824 KnownBits RHSKnown(BitWidth); 825 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 826 KnownBits BKnown(BitWidth); 827 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 828 829 // For those bits in B that are known to be zero, we can propagate 830 // inverted known bits from the RHS to V. For those bits in B that are 831 // known to be one, we can propagate known bits from the RHS to V. 832 Known.Zero |= RHSKnown.One & BKnown.Zero; 833 Known.One |= RHSKnown.Zero & BKnown.Zero; 834 Known.Zero |= RHSKnown.Zero & BKnown.One; 835 Known.One |= RHSKnown.One & BKnown.One; 836 // assume(v << c = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown(BitWidth); 841 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 842 // For those bits in RHS that are known, we can propagate them to known 843 // bits in V shifted to the right by C. 844 RHSKnown.Zero.lshrInPlace(C); 845 Known.Zero |= RHSKnown.Zero; 846 RHSKnown.One.lshrInPlace(C); 847 Known.One |= RHSKnown.One; 848 // assume(~(v << c) = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown(BitWidth); 853 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 854 // For those bits in RHS that are known, we can propagate them inverted 855 // to known bits in V shifted to the right by C. 856 RHSKnown.One.lshrInPlace(C); 857 Known.Zero |= RHSKnown.One; 858 RHSKnown.Zero.lshrInPlace(C); 859 Known.One |= RHSKnown.Zero; 860 // assume(v >> c = a) 861 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 862 m_Value(A))) && 863 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 864 KnownBits RHSKnown(BitWidth); 865 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 866 // For those bits in RHS that are known, we can propagate them to known 867 // bits in V shifted to the right by C. 868 Known.Zero |= RHSKnown.Zero << C; 869 Known.One |= RHSKnown.One << C; 870 // assume(~(v >> c) = a) 871 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 872 m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 874 KnownBits RHSKnown(BitWidth); 875 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 876 // For those bits in RHS that are known, we can propagate them inverted 877 // to known bits in V shifted to the right by C. 878 Known.Zero |= RHSKnown.One << C; 879 Known.One |= RHSKnown.Zero << C; 880 } 881 break; 882 case ICmpInst::ICMP_SGE: 883 // assume(v >=_s c) where c is non-negative 884 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 885 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 886 KnownBits RHSKnown(BitWidth); 887 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 888 889 if (RHSKnown.isNonNegative()) { 890 // We know that the sign bit is zero. 891 Known.makeNonNegative(); 892 } 893 } 894 break; 895 case ICmpInst::ICMP_SGT: 896 // assume(v >_s c) where c is at least -1. 897 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 898 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 899 KnownBits RHSKnown(BitWidth); 900 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 901 902 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 903 // We know that the sign bit is zero. 904 Known.makeNonNegative(); 905 } 906 } 907 break; 908 case ICmpInst::ICMP_SLE: 909 // assume(v <=_s c) where c is negative 910 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 911 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 912 KnownBits RHSKnown(BitWidth); 913 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 914 915 if (RHSKnown.isNegative()) { 916 // We know that the sign bit is one. 917 Known.makeNegative(); 918 } 919 } 920 break; 921 case ICmpInst::ICMP_SLT: 922 // assume(v <_s c) where c is non-positive 923 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 924 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 925 KnownBits RHSKnown(BitWidth); 926 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 927 928 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 929 // We know that the sign bit is one. 930 Known.makeNegative(); 931 } 932 } 933 break; 934 case ICmpInst::ICMP_ULE: 935 // assume(v <=_u c) 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown(BitWidth); 939 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 940 941 // Whatever high bits in c are zero are known to be zero. 942 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 943 } 944 break; 945 case ICmpInst::ICMP_ULT: 946 // assume(v <_u c) 947 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 948 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 949 KnownBits RHSKnown(BitWidth); 950 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 951 952 // If the RHS is known zero, then this assumption must be wrong (nothing 953 // is unsigned less than zero). Signal a conflict and get out of here. 954 if (RHSKnown.isZero()) { 955 Known.Zero.setAllBits(); 956 Known.One.setAllBits(); 957 break; 958 } 959 960 // Whatever high bits in c are zero are known to be zero (if c is a power 961 // of 2, then one more). 962 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 963 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 964 else 965 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 966 } 967 break; 968 } 969 } 970 971 // If assumptions conflict with each other or previous known bits, then we 972 // have a logical fallacy. It's possible that the assumption is not reachable, 973 // so this isn't a real bug. On the other hand, the program may have undefined 974 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 975 // clear out the known bits, try to warn the user, and hope for the best. 976 if (Known.Zero.intersects(Known.One)) { 977 Known.resetAll(); 978 979 if (Q.ORE) 980 Q.ORE->emit([&]() { 981 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 982 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 983 CxtI) 984 << "Detected conflicting code assumptions. Program may " 985 "have undefined behavior, or compiler may have " 986 "internal error."; 987 }); 988 } 989 } 990 991 /// Compute known bits from a shift operator, including those with a 992 /// non-constant shift amount. Known is the output of this function. Known2 is a 993 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 994 /// operator-specific functions that, given the known-zero or known-one bits 995 /// respectively, and a shift amount, compute the implied known-zero or 996 /// known-one bits of the shift operator's result respectively for that shift 997 /// amount. The results from calling KZF and KOF are conservatively combined for 998 /// all permitted shift amounts. 999 static void computeKnownBitsFromShiftOperator( 1000 const Operator *I, KnownBits &Known, KnownBits &Known2, 1001 unsigned Depth, const Query &Q, 1002 function_ref<APInt(const APInt &, unsigned)> KZF, 1003 function_ref<APInt(const APInt &, unsigned)> KOF) { 1004 unsigned BitWidth = Known.getBitWidth(); 1005 1006 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1007 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 1008 1009 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1010 Known.Zero = KZF(Known.Zero, ShiftAmt); 1011 Known.One = KOF(Known.One, ShiftAmt); 1012 // If the known bits conflict, this must be an overflowing left shift, so 1013 // the shift result is poison. We can return anything we want. Choose 0 for 1014 // the best folding opportunity. 1015 if (Known.hasConflict()) 1016 Known.setAllZero(); 1017 1018 return; 1019 } 1020 1021 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1022 1023 // If the shift amount could be greater than or equal to the bit-width of the 1024 // LHS, the value could be poison, but bail out because the check below is 1025 // expensive. TODO: Should we just carry on? 1026 if (Known.getMaxValue().uge(BitWidth)) { 1027 Known.resetAll(); 1028 return; 1029 } 1030 1031 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1032 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1033 // limit value (which implies all bits are known). 1034 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1035 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1036 1037 // It would be more-clearly correct to use the two temporaries for this 1038 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1039 Known.resetAll(); 1040 1041 // If we know the shifter operand is nonzero, we can sometimes infer more 1042 // known bits. However this is expensive to compute, so be lazy about it and 1043 // only compute it when absolutely necessary. 1044 Optional<bool> ShifterOperandIsNonZero; 1045 1046 // Early exit if we can't constrain any well-defined shift amount. 1047 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1048 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1049 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1050 if (!*ShifterOperandIsNonZero) 1051 return; 1052 } 1053 1054 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1055 1056 Known.Zero.setAllBits(); 1057 Known.One.setAllBits(); 1058 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1059 // Combine the shifted known input bits only for those shift amounts 1060 // compatible with its known constraints. 1061 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1062 continue; 1063 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1064 continue; 1065 // If we know the shifter is nonzero, we may be able to infer more known 1066 // bits. This check is sunk down as far as possible to avoid the expensive 1067 // call to isKnownNonZero if the cheaper checks above fail. 1068 if (ShiftAmt == 0) { 1069 if (!ShifterOperandIsNonZero.hasValue()) 1070 ShifterOperandIsNonZero = 1071 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1072 if (*ShifterOperandIsNonZero) 1073 continue; 1074 } 1075 1076 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1077 Known.One &= KOF(Known2.One, ShiftAmt); 1078 } 1079 1080 // If the known bits conflict, the result is poison. Return a 0 and hope the 1081 // caller can further optimize that. 1082 if (Known.hasConflict()) 1083 Known.setAllZero(); 1084 } 1085 1086 static void computeKnownBitsFromOperator(const Operator *I, 1087 const APInt &DemandedElts, 1088 KnownBits &Known, unsigned Depth, 1089 const Query &Q) { 1090 unsigned BitWidth = Known.getBitWidth(); 1091 1092 KnownBits Known2(Known); 1093 switch (I->getOpcode()) { 1094 default: break; 1095 case Instruction::Load: 1096 if (MDNode *MD = 1097 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1098 computeKnownBitsFromRangeMetadata(*MD, Known); 1099 break; 1100 case Instruction::And: { 1101 // If either the LHS or the RHS are Zero, the result is zero. 1102 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1103 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1104 1105 // Output known-1 bits are only known if set in both the LHS & RHS. 1106 Known.One &= Known2.One; 1107 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1108 Known.Zero |= Known2.Zero; 1109 1110 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1111 // here we handle the more general case of adding any odd number by 1112 // matching the form add(x, add(x, y)) where y is odd. 1113 // TODO: This could be generalized to clearing any bit set in y where the 1114 // following bit is known to be unset in y. 1115 Value *X = nullptr, *Y = nullptr; 1116 if (!Known.Zero[0] && !Known.One[0] && 1117 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1118 Known2.resetAll(); 1119 computeKnownBits(Y, Known2, Depth + 1, Q); 1120 if (Known2.countMinTrailingOnes() > 0) 1121 Known.Zero.setBit(0); 1122 } 1123 break; 1124 } 1125 case Instruction::Or: 1126 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1127 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1128 1129 // Output known-0 bits are only known if clear in both the LHS & RHS. 1130 Known.Zero &= Known2.Zero; 1131 // Output known-1 are known to be set if set in either the LHS | RHS. 1132 Known.One |= Known2.One; 1133 break; 1134 case Instruction::Xor: { 1135 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1136 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1137 1138 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1139 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1140 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1141 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1142 Known.Zero = std::move(KnownZeroOut); 1143 break; 1144 } 1145 case Instruction::Mul: { 1146 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1147 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1148 Known2, Depth, Q); 1149 break; 1150 } 1151 case Instruction::UDiv: { 1152 // For the purposes of computing leading zeros we can conservatively 1153 // treat a udiv as a logical right shift by the power of 2 known to 1154 // be less than the denominator. 1155 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1156 unsigned LeadZ = Known2.countMinLeadingZeros(); 1157 1158 Known2.resetAll(); 1159 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1160 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1161 if (RHSMaxLeadingZeros != BitWidth) 1162 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1163 1164 Known.Zero.setHighBits(LeadZ); 1165 break; 1166 } 1167 case Instruction::Select: { 1168 const Value *LHS = nullptr, *RHS = nullptr; 1169 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1170 if (SelectPatternResult::isMinOrMax(SPF)) { 1171 computeKnownBits(RHS, Known, Depth + 1, Q); 1172 computeKnownBits(LHS, Known2, Depth + 1, Q); 1173 } else { 1174 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1175 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1176 } 1177 1178 unsigned MaxHighOnes = 0; 1179 unsigned MaxHighZeros = 0; 1180 if (SPF == SPF_SMAX) { 1181 // If both sides are negative, the result is negative. 1182 if (Known.isNegative() && Known2.isNegative()) 1183 // We can derive a lower bound on the result by taking the max of the 1184 // leading one bits. 1185 MaxHighOnes = 1186 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1187 // If either side is non-negative, the result is non-negative. 1188 else if (Known.isNonNegative() || Known2.isNonNegative()) 1189 MaxHighZeros = 1; 1190 } else if (SPF == SPF_SMIN) { 1191 // If both sides are non-negative, the result is non-negative. 1192 if (Known.isNonNegative() && Known2.isNonNegative()) 1193 // We can derive an upper bound on the result by taking the max of the 1194 // leading zero bits. 1195 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1196 Known2.countMinLeadingZeros()); 1197 // If either side is negative, the result is negative. 1198 else if (Known.isNegative() || Known2.isNegative()) 1199 MaxHighOnes = 1; 1200 } else if (SPF == SPF_UMAX) { 1201 // We can derive a lower bound on the result by taking the max of the 1202 // leading one bits. 1203 MaxHighOnes = 1204 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1205 } else if (SPF == SPF_UMIN) { 1206 // We can derive an upper bound on the result by taking the max of the 1207 // leading zero bits. 1208 MaxHighZeros = 1209 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1210 } else if (SPF == SPF_ABS) { 1211 // RHS from matchSelectPattern returns the negation part of abs pattern. 1212 // If the negate has an NSW flag we can assume the sign bit of the result 1213 // will be 0 because that makes abs(INT_MIN) undefined. 1214 if (match(RHS, m_Neg(m_Specific(LHS))) && 1215 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1216 MaxHighZeros = 1; 1217 } 1218 1219 // Only known if known in both the LHS and RHS. 1220 Known.One &= Known2.One; 1221 Known.Zero &= Known2.Zero; 1222 if (MaxHighOnes > 0) 1223 Known.One.setHighBits(MaxHighOnes); 1224 if (MaxHighZeros > 0) 1225 Known.Zero.setHighBits(MaxHighZeros); 1226 break; 1227 } 1228 case Instruction::FPTrunc: 1229 case Instruction::FPExt: 1230 case Instruction::FPToUI: 1231 case Instruction::FPToSI: 1232 case Instruction::SIToFP: 1233 case Instruction::UIToFP: 1234 break; // Can't work with floating point. 1235 case Instruction::PtrToInt: 1236 case Instruction::IntToPtr: 1237 // Fall through and handle them the same as zext/trunc. 1238 LLVM_FALLTHROUGH; 1239 case Instruction::ZExt: 1240 case Instruction::Trunc: { 1241 Type *SrcTy = I->getOperand(0)->getType(); 1242 1243 unsigned SrcBitWidth; 1244 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1245 // which fall through here. 1246 Type *ScalarTy = SrcTy->getScalarType(); 1247 SrcBitWidth = ScalarTy->isPointerTy() ? 1248 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1249 Q.DL.getTypeSizeInBits(ScalarTy); 1250 1251 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1252 Known = Known.zextOrTrunc(SrcBitWidth, false); 1253 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1254 Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); 1255 break; 1256 } 1257 case Instruction::BitCast: { 1258 Type *SrcTy = I->getOperand(0)->getType(); 1259 if (SrcTy->isIntOrPtrTy() && 1260 // TODO: For now, not handling conversions like: 1261 // (bitcast i64 %x to <2 x i32>) 1262 !I->getType()->isVectorTy()) { 1263 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1264 break; 1265 } 1266 break; 1267 } 1268 case Instruction::SExt: { 1269 // Compute the bits in the result that are not present in the input. 1270 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1271 1272 Known = Known.trunc(SrcBitWidth); 1273 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1274 // If the sign bit of the input is known set or clear, then we know the 1275 // top bits of the result. 1276 Known = Known.sext(BitWidth); 1277 break; 1278 } 1279 case Instruction::Shl: { 1280 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1281 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1282 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1283 APInt KZResult = KnownZero << ShiftAmt; 1284 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1285 // If this shift has "nsw" keyword, then the result is either a poison 1286 // value or has the same sign bit as the first operand. 1287 if (NSW && KnownZero.isSignBitSet()) 1288 KZResult.setSignBit(); 1289 return KZResult; 1290 }; 1291 1292 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1293 APInt KOResult = KnownOne << ShiftAmt; 1294 if (NSW && KnownOne.isSignBitSet()) 1295 KOResult.setSignBit(); 1296 return KOResult; 1297 }; 1298 1299 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1300 break; 1301 } 1302 case Instruction::LShr: { 1303 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1304 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1305 APInt KZResult = KnownZero.lshr(ShiftAmt); 1306 // High bits known zero. 1307 KZResult.setHighBits(ShiftAmt); 1308 return KZResult; 1309 }; 1310 1311 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1312 return KnownOne.lshr(ShiftAmt); 1313 }; 1314 1315 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1316 break; 1317 } 1318 case Instruction::AShr: { 1319 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1320 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1321 return KnownZero.ashr(ShiftAmt); 1322 }; 1323 1324 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1325 return KnownOne.ashr(ShiftAmt); 1326 }; 1327 1328 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1329 break; 1330 } 1331 case Instruction::Sub: { 1332 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1333 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1334 Known, Known2, Depth, Q); 1335 break; 1336 } 1337 case Instruction::Add: { 1338 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1339 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1340 Known, Known2, Depth, Q); 1341 break; 1342 } 1343 case Instruction::SRem: 1344 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1345 APInt RA = Rem->getValue().abs(); 1346 if (RA.isPowerOf2()) { 1347 APInt LowBits = RA - 1; 1348 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1349 1350 // The low bits of the first operand are unchanged by the srem. 1351 Known.Zero = Known2.Zero & LowBits; 1352 Known.One = Known2.One & LowBits; 1353 1354 // If the first operand is non-negative or has all low bits zero, then 1355 // the upper bits are all zero. 1356 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1357 Known.Zero |= ~LowBits; 1358 1359 // If the first operand is negative and not all low bits are zero, then 1360 // the upper bits are all one. 1361 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1362 Known.One |= ~LowBits; 1363 1364 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1365 break; 1366 } 1367 } 1368 1369 // The sign bit is the LHS's sign bit, except when the result of the 1370 // remainder is zero. 1371 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1372 // If it's known zero, our sign bit is also zero. 1373 if (Known2.isNonNegative()) 1374 Known.makeNonNegative(); 1375 1376 break; 1377 case Instruction::URem: { 1378 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1379 const APInt &RA = Rem->getValue(); 1380 if (RA.isPowerOf2()) { 1381 APInt LowBits = (RA - 1); 1382 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1383 Known.Zero |= ~LowBits; 1384 Known.One &= LowBits; 1385 break; 1386 } 1387 } 1388 1389 // Since the result is less than or equal to either operand, any leading 1390 // zero bits in either operand must also exist in the result. 1391 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1392 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1393 1394 unsigned Leaders = 1395 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1396 Known.resetAll(); 1397 Known.Zero.setHighBits(Leaders); 1398 break; 1399 } 1400 1401 case Instruction::Alloca: { 1402 const AllocaInst *AI = cast<AllocaInst>(I); 1403 unsigned Align = AI->getAlignment(); 1404 if (Align == 0) 1405 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1406 1407 if (Align > 0) 1408 Known.Zero.setLowBits(countTrailingZeros(Align)); 1409 break; 1410 } 1411 case Instruction::GetElementPtr: { 1412 // Analyze all of the subscripts of this getelementptr instruction 1413 // to determine if we can prove known low zero bits. 1414 KnownBits LocalKnown(BitWidth); 1415 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1416 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1417 1418 gep_type_iterator GTI = gep_type_begin(I); 1419 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1420 Value *Index = I->getOperand(i); 1421 if (StructType *STy = GTI.getStructTypeOrNull()) { 1422 // Handle struct member offset arithmetic. 1423 1424 // Handle case when index is vector zeroinitializer 1425 Constant *CIndex = cast<Constant>(Index); 1426 if (CIndex->isZeroValue()) 1427 continue; 1428 1429 if (CIndex->getType()->isVectorTy()) 1430 Index = CIndex->getSplatValue(); 1431 1432 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1433 const StructLayout *SL = Q.DL.getStructLayout(STy); 1434 uint64_t Offset = SL->getElementOffset(Idx); 1435 TrailZ = std::min<unsigned>(TrailZ, 1436 countTrailingZeros(Offset)); 1437 } else { 1438 // Handle array index arithmetic. 1439 Type *IndexedTy = GTI.getIndexedType(); 1440 if (!IndexedTy->isSized()) { 1441 TrailZ = 0; 1442 break; 1443 } 1444 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1445 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1446 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1447 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1448 TrailZ = std::min(TrailZ, 1449 unsigned(countTrailingZeros(TypeSize) + 1450 LocalKnown.countMinTrailingZeros())); 1451 } 1452 } 1453 1454 Known.Zero.setLowBits(TrailZ); 1455 break; 1456 } 1457 case Instruction::PHI: { 1458 const PHINode *P = cast<PHINode>(I); 1459 // Handle the case of a simple two-predecessor recurrence PHI. 1460 // There's a lot more that could theoretically be done here, but 1461 // this is sufficient to catch some interesting cases. 1462 if (P->getNumIncomingValues() == 2) { 1463 for (unsigned i = 0; i != 2; ++i) { 1464 Value *L = P->getIncomingValue(i); 1465 Value *R = P->getIncomingValue(!i); 1466 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1467 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1468 Operator *LU = dyn_cast<Operator>(L); 1469 if (!LU) 1470 continue; 1471 unsigned Opcode = LU->getOpcode(); 1472 // Check for operations that have the property that if 1473 // both their operands have low zero bits, the result 1474 // will have low zero bits. 1475 if (Opcode == Instruction::Add || 1476 Opcode == Instruction::Sub || 1477 Opcode == Instruction::And || 1478 Opcode == Instruction::Or || 1479 Opcode == Instruction::Mul) { 1480 Value *LL = LU->getOperand(0); 1481 Value *LR = LU->getOperand(1); 1482 // Find a recurrence. 1483 if (LL == I) 1484 L = LR; 1485 else if (LR == I) 1486 L = LL; 1487 else 1488 continue; // Check for recurrence with L and R flipped. 1489 1490 // Change the context instruction to the "edge" that flows into the 1491 // phi. This is important because that is where the value is actually 1492 // "evaluated" even though it is used later somewhere else. (see also 1493 // D69571). 1494 Query RecQ = Q; 1495 1496 // Ok, we have a PHI of the form L op= R. Check for low 1497 // zero bits. 1498 RecQ.CxtI = RInst; 1499 computeKnownBits(R, Known2, Depth + 1, RecQ); 1500 1501 // We need to take the minimum number of known bits 1502 KnownBits Known3(Known); 1503 RecQ.CxtI = LInst; 1504 computeKnownBits(L, Known3, Depth + 1, RecQ); 1505 1506 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1507 Known3.countMinTrailingZeros())); 1508 1509 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1510 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1511 // If initial value of recurrence is nonnegative, and we are adding 1512 // a nonnegative number with nsw, the result can only be nonnegative 1513 // or poison value regardless of the number of times we execute the 1514 // add in phi recurrence. If initial value is negative and we are 1515 // adding a negative number with nsw, the result can only be 1516 // negative or poison value. Similar arguments apply to sub and mul. 1517 // 1518 // (add non-negative, non-negative) --> non-negative 1519 // (add negative, negative) --> negative 1520 if (Opcode == Instruction::Add) { 1521 if (Known2.isNonNegative() && Known3.isNonNegative()) 1522 Known.makeNonNegative(); 1523 else if (Known2.isNegative() && Known3.isNegative()) 1524 Known.makeNegative(); 1525 } 1526 1527 // (sub nsw non-negative, negative) --> non-negative 1528 // (sub nsw negative, non-negative) --> negative 1529 else if (Opcode == Instruction::Sub && LL == I) { 1530 if (Known2.isNonNegative() && Known3.isNegative()) 1531 Known.makeNonNegative(); 1532 else if (Known2.isNegative() && Known3.isNonNegative()) 1533 Known.makeNegative(); 1534 } 1535 1536 // (mul nsw non-negative, non-negative) --> non-negative 1537 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1538 Known3.isNonNegative()) 1539 Known.makeNonNegative(); 1540 } 1541 1542 break; 1543 } 1544 } 1545 } 1546 1547 // Unreachable blocks may have zero-operand PHI nodes. 1548 if (P->getNumIncomingValues() == 0) 1549 break; 1550 1551 // Otherwise take the unions of the known bit sets of the operands, 1552 // taking conservative care to avoid excessive recursion. 1553 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1554 // Skip if every incoming value references to ourself. 1555 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1556 break; 1557 1558 Known.Zero.setAllBits(); 1559 Known.One.setAllBits(); 1560 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1561 Value *IncValue = P->getIncomingValue(u); 1562 // Skip direct self references. 1563 if (IncValue == P) continue; 1564 1565 // Change the context instruction to the "edge" that flows into the 1566 // phi. This is important because that is where the value is actually 1567 // "evaluated" even though it is used later somewhere else. (see also 1568 // D69571). 1569 Query RecQ = Q; 1570 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1571 1572 Known2 = KnownBits(BitWidth); 1573 // Recurse, but cap the recursion to one level, because we don't 1574 // want to waste time spinning around in loops. 1575 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1576 Known.Zero &= Known2.Zero; 1577 Known.One &= Known2.One; 1578 // If all bits have been ruled out, there's no need to check 1579 // more operands. 1580 if (!Known.Zero && !Known.One) 1581 break; 1582 } 1583 } 1584 break; 1585 } 1586 case Instruction::Call: 1587 case Instruction::Invoke: 1588 // If range metadata is attached to this call, set known bits from that, 1589 // and then intersect with known bits based on other properties of the 1590 // function. 1591 if (MDNode *MD = 1592 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1593 computeKnownBitsFromRangeMetadata(*MD, Known); 1594 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1595 computeKnownBits(RV, Known2, Depth + 1, Q); 1596 Known.Zero |= Known2.Zero; 1597 Known.One |= Known2.One; 1598 } 1599 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1600 switch (II->getIntrinsicID()) { 1601 default: break; 1602 case Intrinsic::bitreverse: 1603 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1604 Known.Zero |= Known2.Zero.reverseBits(); 1605 Known.One |= Known2.One.reverseBits(); 1606 break; 1607 case Intrinsic::bswap: 1608 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1609 Known.Zero |= Known2.Zero.byteSwap(); 1610 Known.One |= Known2.One.byteSwap(); 1611 break; 1612 case Intrinsic::ctlz: { 1613 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1614 // If we have a known 1, its position is our upper bound. 1615 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1616 // If this call is undefined for 0, the result will be less than 2^n. 1617 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1618 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1619 unsigned LowBits = Log2_32(PossibleLZ)+1; 1620 Known.Zero.setBitsFrom(LowBits); 1621 break; 1622 } 1623 case Intrinsic::cttz: { 1624 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1625 // If we have a known 1, its position is our upper bound. 1626 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1627 // If this call is undefined for 0, the result will be less than 2^n. 1628 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1629 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1630 unsigned LowBits = Log2_32(PossibleTZ)+1; 1631 Known.Zero.setBitsFrom(LowBits); 1632 break; 1633 } 1634 case Intrinsic::ctpop: { 1635 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1636 // We can bound the space the count needs. Also, bits known to be zero 1637 // can't contribute to the population. 1638 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1639 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1640 Known.Zero.setBitsFrom(LowBits); 1641 // TODO: we could bound KnownOne using the lower bound on the number 1642 // of bits which might be set provided by popcnt KnownOne2. 1643 break; 1644 } 1645 case Intrinsic::fshr: 1646 case Intrinsic::fshl: { 1647 const APInt *SA; 1648 if (!match(I->getOperand(2), m_APInt(SA))) 1649 break; 1650 1651 // Normalize to funnel shift left. 1652 uint64_t ShiftAmt = SA->urem(BitWidth); 1653 if (II->getIntrinsicID() == Intrinsic::fshr) 1654 ShiftAmt = BitWidth - ShiftAmt; 1655 1656 KnownBits Known3(Known); 1657 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1658 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1659 1660 Known.Zero = 1661 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1662 Known.One = 1663 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1664 break; 1665 } 1666 case Intrinsic::uadd_sat: 1667 case Intrinsic::usub_sat: { 1668 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1669 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1670 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1671 1672 // Add: Leading ones of either operand are preserved. 1673 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1674 // as leading zeros in the result. 1675 unsigned LeadingKnown; 1676 if (IsAdd) 1677 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1678 Known2.countMinLeadingOnes()); 1679 else 1680 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1681 Known2.countMinLeadingOnes()); 1682 1683 Known = KnownBits::computeForAddSub( 1684 IsAdd, /* NSW */ false, Known, Known2); 1685 1686 // We select between the operation result and all-ones/zero 1687 // respectively, so we can preserve known ones/zeros. 1688 if (IsAdd) { 1689 Known.One.setHighBits(LeadingKnown); 1690 Known.Zero.clearAllBits(); 1691 } else { 1692 Known.Zero.setHighBits(LeadingKnown); 1693 Known.One.clearAllBits(); 1694 } 1695 break; 1696 } 1697 case Intrinsic::x86_sse42_crc32_64_64: 1698 Known.Zero.setBitsFrom(32); 1699 break; 1700 } 1701 } 1702 break; 1703 case Instruction::ShuffleVector: { 1704 auto *Shuf = cast<ShuffleVectorInst>(I); 1705 // For undef elements, we don't know anything about the common state of 1706 // the shuffle result. 1707 APInt DemandedLHS, DemandedRHS; 1708 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1709 Known.resetAll(); 1710 return; 1711 } 1712 Known.One.setAllBits(); 1713 Known.Zero.setAllBits(); 1714 if (!!DemandedLHS) { 1715 const Value *LHS = Shuf->getOperand(0); 1716 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1717 // If we don't know any bits, early out. 1718 if (Known.isUnknown()) 1719 break; 1720 } 1721 if (!!DemandedRHS) { 1722 const Value *RHS = Shuf->getOperand(1); 1723 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1724 Known.One &= Known2.One; 1725 Known.Zero &= Known2.Zero; 1726 } 1727 break; 1728 } 1729 case Instruction::InsertElement: { 1730 auto *IEI = cast<InsertElementInst>(I); 1731 Value *Vec = IEI->getOperand(0); 1732 Value *Elt = IEI->getOperand(1); 1733 auto *CIdx = dyn_cast<ConstantInt>(IEI->getOperand(2)); 1734 // Early out if the index is non-constant or out-of-range. 1735 unsigned NumElts = DemandedElts.getBitWidth(); 1736 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1737 Known.resetAll(); 1738 return; 1739 } 1740 Known.One.setAllBits(); 1741 Known.Zero.setAllBits(); 1742 unsigned EltIdx = CIdx->getZExtValue(); 1743 // Do we demand the inserted element? 1744 if (DemandedElts[EltIdx]) { 1745 computeKnownBits(Elt, Known, Depth + 1, Q); 1746 // If we don't know any bits, early out. 1747 if (Known.isUnknown()) 1748 break; 1749 } 1750 // We don't need the base vector element that has been inserted. 1751 APInt DemandedVecElts = DemandedElts; 1752 DemandedVecElts.clearBit(EltIdx); 1753 if (!!DemandedVecElts) { 1754 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1755 Known.One &= Known2.One; 1756 Known.Zero &= Known2.Zero; 1757 } 1758 break; 1759 } 1760 case Instruction::ExtractElement: 1761 // Look through extract element. At the moment we keep this simple and skip 1762 // tracking the specific element. But at least we might find information 1763 // valid for all elements of the vector (for example if vector is sign 1764 // extended, shifted, etc). 1765 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1766 break; 1767 case Instruction::ExtractValue: 1768 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1769 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1770 if (EVI->getNumIndices() != 1) break; 1771 if (EVI->getIndices()[0] == 0) { 1772 switch (II->getIntrinsicID()) { 1773 default: break; 1774 case Intrinsic::uadd_with_overflow: 1775 case Intrinsic::sadd_with_overflow: 1776 computeKnownBitsAddSub(true, II->getArgOperand(0), 1777 II->getArgOperand(1), false, Known, Known2, 1778 Depth, Q); 1779 break; 1780 case Intrinsic::usub_with_overflow: 1781 case Intrinsic::ssub_with_overflow: 1782 computeKnownBitsAddSub(false, II->getArgOperand(0), 1783 II->getArgOperand(1), false, Known, Known2, 1784 Depth, Q); 1785 break; 1786 case Intrinsic::umul_with_overflow: 1787 case Intrinsic::smul_with_overflow: 1788 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1789 Known, Known2, Depth, Q); 1790 break; 1791 } 1792 } 1793 } 1794 break; 1795 } 1796 } 1797 1798 /// Determine which bits of V are known to be either zero or one and return 1799 /// them. 1800 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1801 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1802 computeKnownBits(V, Known, Depth, Q); 1803 return Known; 1804 } 1805 1806 /// Determine which bits of V are known to be either zero or one and return 1807 /// them in the Known bit set. 1808 /// 1809 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1810 /// we cannot optimize based on the assumption that it is zero without changing 1811 /// it to be an explicit zero. If we don't change it to zero, other code could 1812 /// optimized based on the contradictory assumption that it is non-zero. 1813 /// Because instcombine aggressively folds operations with undef args anyway, 1814 /// this won't lose us code quality. 1815 /// 1816 /// This function is defined on values with integer type, values with pointer 1817 /// type, and vectors of integers. In the case 1818 /// where V is a vector, known zero, and known one values are the 1819 /// same width as the vector element, and the bit is set only if it is true 1820 /// for all of the demanded elements in the vector specified by DemandedElts. 1821 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1822 KnownBits &Known, unsigned Depth, const Query &Q) { 1823 assert(V && "No Value?"); 1824 assert(Depth <= MaxDepth && "Limit Search Depth"); 1825 unsigned BitWidth = Known.getBitWidth(); 1826 1827 Type *Ty = V->getType(); 1828 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1829 "Not integer or pointer type!"); 1830 assert(((Ty->isVectorTy() && 1831 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 1832 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1833 "Unexpected vector size"); 1834 1835 Type *ScalarTy = Ty->getScalarType(); 1836 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1837 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1838 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1839 (void)BitWidth; 1840 (void)ExpectedWidth; 1841 1842 if (!DemandedElts) { 1843 // No demanded elts, better to assume we don't know anything. 1844 Known.resetAll(); 1845 return; 1846 } 1847 1848 const APInt *C; 1849 if (match(V, m_APInt(C))) { 1850 // We know all of the bits for a scalar constant or a splat vector constant! 1851 Known.One = *C; 1852 Known.Zero = ~Known.One; 1853 return; 1854 } 1855 // Null and aggregate-zero are all-zeros. 1856 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1857 Known.setAllZero(); 1858 return; 1859 } 1860 // Handle a constant vector by taking the intersection of the known bits of 1861 // each element. 1862 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1863 assert((!Ty->isVectorTy() || 1864 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1865 "Unexpected vector size"); 1866 // We know that CDS must be a vector of integers. Take the intersection of 1867 // each element. 1868 Known.Zero.setAllBits(); Known.One.setAllBits(); 1869 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1870 if (Ty->isVectorTy() && !DemandedElts[i]) 1871 continue; 1872 APInt Elt = CDS->getElementAsAPInt(i); 1873 Known.Zero &= ~Elt; 1874 Known.One &= Elt; 1875 } 1876 return; 1877 } 1878 1879 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1880 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1881 "Unexpected vector size"); 1882 // We know that CV must be a vector of integers. Take the intersection of 1883 // each element. 1884 Known.Zero.setAllBits(); Known.One.setAllBits(); 1885 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1886 if (!DemandedElts[i]) 1887 continue; 1888 Constant *Element = CV->getAggregateElement(i); 1889 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1890 if (!ElementCI) { 1891 Known.resetAll(); 1892 return; 1893 } 1894 const APInt &Elt = ElementCI->getValue(); 1895 Known.Zero &= ~Elt; 1896 Known.One &= Elt; 1897 } 1898 return; 1899 } 1900 1901 // Start out not knowing anything. 1902 Known.resetAll(); 1903 1904 // We can't imply anything about undefs. 1905 if (isa<UndefValue>(V)) 1906 return; 1907 1908 // There's no point in looking through other users of ConstantData for 1909 // assumptions. Confirm that we've handled them all. 1910 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1911 1912 // Limit search depth. 1913 // All recursive calls that increase depth must come after this. 1914 if (Depth == MaxDepth) 1915 return; 1916 1917 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1918 // the bits of its aliasee. 1919 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1920 if (!GA->isInterposable()) 1921 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1922 return; 1923 } 1924 1925 if (const Operator *I = dyn_cast<Operator>(V)) 1926 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1927 1928 // Aligned pointers have trailing zeros - refine Known.Zero set 1929 if (Ty->isPointerTy()) { 1930 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1931 if (Align) 1932 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1933 } 1934 1935 // computeKnownBitsFromAssume strictly refines Known. 1936 // Therefore, we run them after computeKnownBitsFromOperator. 1937 1938 // Check whether a nearby assume intrinsic can determine some known bits. 1939 computeKnownBitsFromAssume(V, Known, Depth, Q); 1940 1941 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1942 } 1943 1944 /// Return true if the given value is known to have exactly one 1945 /// bit set when defined. For vectors return true if every element is known to 1946 /// be a power of two when defined. Supports values with integer or pointer 1947 /// types and vectors of integers. 1948 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1949 const Query &Q) { 1950 assert(Depth <= MaxDepth && "Limit Search Depth"); 1951 1952 // Attempt to match against constants. 1953 if (OrZero && match(V, m_Power2OrZero())) 1954 return true; 1955 if (match(V, m_Power2())) 1956 return true; 1957 1958 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1959 // it is shifted off the end then the result is undefined. 1960 if (match(V, m_Shl(m_One(), m_Value()))) 1961 return true; 1962 1963 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1964 // the bottom. If it is shifted off the bottom then the result is undefined. 1965 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1966 return true; 1967 1968 // The remaining tests are all recursive, so bail out if we hit the limit. 1969 if (Depth++ == MaxDepth) 1970 return false; 1971 1972 Value *X = nullptr, *Y = nullptr; 1973 // A shift left or a logical shift right of a power of two is a power of two 1974 // or zero. 1975 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1976 match(V, m_LShr(m_Value(X), m_Value())))) 1977 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1978 1979 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1980 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1981 1982 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1983 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1984 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1985 1986 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1987 // A power of two and'd with anything is a power of two or zero. 1988 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1989 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1990 return true; 1991 // X & (-X) is always a power of two or zero. 1992 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1993 return true; 1994 return false; 1995 } 1996 1997 // Adding a power-of-two or zero to the same power-of-two or zero yields 1998 // either the original power-of-two, a larger power-of-two or zero. 1999 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2000 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2001 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2002 Q.IIQ.hasNoSignedWrap(VOBO)) { 2003 if (match(X, m_And(m_Specific(Y), m_Value())) || 2004 match(X, m_And(m_Value(), m_Specific(Y)))) 2005 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2006 return true; 2007 if (match(Y, m_And(m_Specific(X), m_Value())) || 2008 match(Y, m_And(m_Value(), m_Specific(X)))) 2009 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2010 return true; 2011 2012 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2013 KnownBits LHSBits(BitWidth); 2014 computeKnownBits(X, LHSBits, Depth, Q); 2015 2016 KnownBits RHSBits(BitWidth); 2017 computeKnownBits(Y, RHSBits, Depth, Q); 2018 // If i8 V is a power of two or zero: 2019 // ZeroBits: 1 1 1 0 1 1 1 1 2020 // ~ZeroBits: 0 0 0 1 0 0 0 0 2021 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2022 // If OrZero isn't set, we cannot give back a zero result. 2023 // Make sure either the LHS or RHS has a bit set. 2024 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2025 return true; 2026 } 2027 } 2028 2029 // An exact divide or right shift can only shift off zero bits, so the result 2030 // is a power of two only if the first operand is a power of two and not 2031 // copying a sign bit (sdiv int_min, 2). 2032 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2033 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2034 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2035 Depth, Q); 2036 } 2037 2038 return false; 2039 } 2040 2041 /// Test whether a GEP's result is known to be non-null. 2042 /// 2043 /// Uses properties inherent in a GEP to try to determine whether it is known 2044 /// to be non-null. 2045 /// 2046 /// Currently this routine does not support vector GEPs. 2047 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2048 const Query &Q) { 2049 const Function *F = nullptr; 2050 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2051 F = I->getFunction(); 2052 2053 if (!GEP->isInBounds() || 2054 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2055 return false; 2056 2057 // FIXME: Support vector-GEPs. 2058 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2059 2060 // If the base pointer is non-null, we cannot walk to a null address with an 2061 // inbounds GEP in address space zero. 2062 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2063 return true; 2064 2065 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2066 // If so, then the GEP cannot produce a null pointer, as doing so would 2067 // inherently violate the inbounds contract within address space zero. 2068 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2069 GTI != GTE; ++GTI) { 2070 // Struct types are easy -- they must always be indexed by a constant. 2071 if (StructType *STy = GTI.getStructTypeOrNull()) { 2072 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2073 unsigned ElementIdx = OpC->getZExtValue(); 2074 const StructLayout *SL = Q.DL.getStructLayout(STy); 2075 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2076 if (ElementOffset > 0) 2077 return true; 2078 continue; 2079 } 2080 2081 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2082 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 2083 continue; 2084 2085 // Fast path the constant operand case both for efficiency and so we don't 2086 // increment Depth when just zipping down an all-constant GEP. 2087 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2088 if (!OpC->isZero()) 2089 return true; 2090 continue; 2091 } 2092 2093 // We post-increment Depth here because while isKnownNonZero increments it 2094 // as well, when we pop back up that increment won't persist. We don't want 2095 // to recurse 10k times just because we have 10k GEP operands. We don't 2096 // bail completely out because we want to handle constant GEPs regardless 2097 // of depth. 2098 if (Depth++ >= MaxDepth) 2099 continue; 2100 2101 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2102 return true; 2103 } 2104 2105 return false; 2106 } 2107 2108 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2109 const Instruction *CtxI, 2110 const DominatorTree *DT) { 2111 if (isa<Constant>(V)) 2112 return false; 2113 2114 if (!CtxI || !DT) 2115 return false; 2116 2117 unsigned NumUsesExplored = 0; 2118 for (auto *U : V->users()) { 2119 // Avoid massive lists 2120 if (NumUsesExplored >= DomConditionsMaxUses) 2121 break; 2122 NumUsesExplored++; 2123 2124 // If the value is used as an argument to a call or invoke, then argument 2125 // attributes may provide an answer about null-ness. 2126 if (auto CS = ImmutableCallSite(U)) 2127 if (auto *CalledFunc = CS.getCalledFunction()) 2128 for (const Argument &Arg : CalledFunc->args()) 2129 if (CS.getArgOperand(Arg.getArgNo()) == V && 2130 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2131 return true; 2132 2133 // If the value is used as a load/store, then the pointer must be non null. 2134 if (V == getLoadStorePointerOperand(U)) { 2135 const Instruction *I = cast<Instruction>(U); 2136 if (!NullPointerIsDefined(I->getFunction(), 2137 V->getType()->getPointerAddressSpace()) && 2138 DT->dominates(I, CtxI)) 2139 return true; 2140 } 2141 2142 // Consider only compare instructions uniquely controlling a branch 2143 CmpInst::Predicate Pred; 2144 if (!match(const_cast<User *>(U), 2145 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2146 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2147 continue; 2148 2149 SmallVector<const User *, 4> WorkList; 2150 SmallPtrSet<const User *, 4> Visited; 2151 for (auto *CmpU : U->users()) { 2152 assert(WorkList.empty() && "Should be!"); 2153 if (Visited.insert(CmpU).second) 2154 WorkList.push_back(CmpU); 2155 2156 while (!WorkList.empty()) { 2157 auto *Curr = WorkList.pop_back_val(); 2158 2159 // If a user is an AND, add all its users to the work list. We only 2160 // propagate "pred != null" condition through AND because it is only 2161 // correct to assume that all conditions of AND are met in true branch. 2162 // TODO: Support similar logic of OR and EQ predicate? 2163 if (Pred == ICmpInst::ICMP_NE) 2164 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2165 if (BO->getOpcode() == Instruction::And) { 2166 for (auto *BOU : BO->users()) 2167 if (Visited.insert(BOU).second) 2168 WorkList.push_back(BOU); 2169 continue; 2170 } 2171 2172 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2173 assert(BI->isConditional() && "uses a comparison!"); 2174 2175 BasicBlock *NonNullSuccessor = 2176 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2177 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2178 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2179 return true; 2180 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2181 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2182 return true; 2183 } 2184 } 2185 } 2186 } 2187 2188 return false; 2189 } 2190 2191 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2192 /// ensure that the value it's attached to is never Value? 'RangeType' is 2193 /// is the type of the value described by the range. 2194 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2195 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2196 assert(NumRanges >= 1); 2197 for (unsigned i = 0; i < NumRanges; ++i) { 2198 ConstantInt *Lower = 2199 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2200 ConstantInt *Upper = 2201 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2202 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2203 if (Range.contains(Value)) 2204 return false; 2205 } 2206 return true; 2207 } 2208 2209 /// Return true if the given value is known to be non-zero when defined. For 2210 /// vectors, return true if every element is known to be non-zero when 2211 /// defined. For pointers, if the context instruction and dominator tree are 2212 /// specified, perform context-sensitive analysis and return true if the 2213 /// pointer couldn't possibly be null at the specified instruction. 2214 /// Supports values with integer or pointer type and vectors of integers. 2215 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2216 if (auto *C = dyn_cast<Constant>(V)) { 2217 if (C->isNullValue()) 2218 return false; 2219 if (isa<ConstantInt>(C)) 2220 // Must be non-zero due to null test above. 2221 return true; 2222 2223 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2224 // See the comment for IntToPtr/PtrToInt instructions below. 2225 if (CE->getOpcode() == Instruction::IntToPtr || 2226 CE->getOpcode() == Instruction::PtrToInt) 2227 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2228 Q.DL.getTypeSizeInBits(CE->getType())) 2229 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2230 } 2231 2232 // For constant vectors, check that all elements are undefined or known 2233 // non-zero to determine that the whole vector is known non-zero. 2234 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2235 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2236 Constant *Elt = C->getAggregateElement(i); 2237 if (!Elt || Elt->isNullValue()) 2238 return false; 2239 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2240 return false; 2241 } 2242 return true; 2243 } 2244 2245 // A global variable in address space 0 is non null unless extern weak 2246 // or an absolute symbol reference. Other address spaces may have null as a 2247 // valid address for a global, so we can't assume anything. 2248 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2249 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2250 GV->getType()->getAddressSpace() == 0) 2251 return true; 2252 } else 2253 return false; 2254 } 2255 2256 if (auto *I = dyn_cast<Instruction>(V)) { 2257 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2258 // If the possible ranges don't contain zero, then the value is 2259 // definitely non-zero. 2260 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2261 const APInt ZeroValue(Ty->getBitWidth(), 0); 2262 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2263 return true; 2264 } 2265 } 2266 } 2267 2268 if (isKnownNonZeroFromAssume(V, Q)) 2269 return true; 2270 2271 // Some of the tests below are recursive, so bail out if we hit the limit. 2272 if (Depth++ >= MaxDepth) 2273 return false; 2274 2275 // Check for pointer simplifications. 2276 if (V->getType()->isPointerTy()) { 2277 // Alloca never returns null, malloc might. 2278 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2279 return true; 2280 2281 // A byval, inalloca, or nonnull argument is never null. 2282 if (const Argument *A = dyn_cast<Argument>(V)) 2283 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2284 return true; 2285 2286 // A Load tagged with nonnull metadata is never null. 2287 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2288 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2289 return true; 2290 2291 if (const auto *Call = dyn_cast<CallBase>(V)) { 2292 if (Call->isReturnNonNull()) 2293 return true; 2294 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2295 return isKnownNonZero(RP, Depth, Q); 2296 } 2297 } 2298 2299 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2300 return true; 2301 2302 // Check for recursive pointer simplifications. 2303 if (V->getType()->isPointerTy()) { 2304 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2305 // do not alter the value, or at least not the nullness property of the 2306 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2307 // 2308 // Note that we have to take special care to avoid looking through 2309 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2310 // as casts that can alter the value, e.g., AddrSpaceCasts. 2311 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2312 if (isGEPKnownNonNull(GEP, Depth, Q)) 2313 return true; 2314 2315 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2316 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2317 2318 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2319 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2320 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2321 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2322 } 2323 2324 // Similar to int2ptr above, we can look through ptr2int here if the cast 2325 // is a no-op or an extend and not a truncate. 2326 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2327 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2328 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2329 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2330 2331 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2332 2333 // X | Y != 0 if X != 0 or Y != 0. 2334 Value *X = nullptr, *Y = nullptr; 2335 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2336 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2337 2338 // ext X != 0 if X != 0. 2339 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2340 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2341 2342 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2343 // if the lowest bit is shifted off the end. 2344 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2345 // shl nuw can't remove any non-zero bits. 2346 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2347 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2348 return isKnownNonZero(X, Depth, Q); 2349 2350 KnownBits Known(BitWidth); 2351 computeKnownBits(X, Known, Depth, Q); 2352 if (Known.One[0]) 2353 return true; 2354 } 2355 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2356 // defined if the sign bit is shifted off the end. 2357 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2358 // shr exact can only shift out zero bits. 2359 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2360 if (BO->isExact()) 2361 return isKnownNonZero(X, Depth, Q); 2362 2363 KnownBits Known = computeKnownBits(X, Depth, Q); 2364 if (Known.isNegative()) 2365 return true; 2366 2367 // If the shifter operand is a constant, and all of the bits shifted 2368 // out are known to be zero, and X is known non-zero then at least one 2369 // non-zero bit must remain. 2370 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2371 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2372 // Is there a known one in the portion not shifted out? 2373 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2374 return true; 2375 // Are all the bits to be shifted out known zero? 2376 if (Known.countMinTrailingZeros() >= ShiftVal) 2377 return isKnownNonZero(X, Depth, Q); 2378 } 2379 } 2380 // div exact can only produce a zero if the dividend is zero. 2381 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2382 return isKnownNonZero(X, Depth, Q); 2383 } 2384 // X + Y. 2385 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2386 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2387 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2388 2389 // If X and Y are both non-negative (as signed values) then their sum is not 2390 // zero unless both X and Y are zero. 2391 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2392 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2393 return true; 2394 2395 // If X and Y are both negative (as signed values) then their sum is not 2396 // zero unless both X and Y equal INT_MIN. 2397 if (XKnown.isNegative() && YKnown.isNegative()) { 2398 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2399 // The sign bit of X is set. If some other bit is set then X is not equal 2400 // to INT_MIN. 2401 if (XKnown.One.intersects(Mask)) 2402 return true; 2403 // The sign bit of Y is set. If some other bit is set then Y is not equal 2404 // to INT_MIN. 2405 if (YKnown.One.intersects(Mask)) 2406 return true; 2407 } 2408 2409 // The sum of a non-negative number and a power of two is not zero. 2410 if (XKnown.isNonNegative() && 2411 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2412 return true; 2413 if (YKnown.isNonNegative() && 2414 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2415 return true; 2416 } 2417 // X * Y. 2418 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2419 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2420 // If X and Y are non-zero then so is X * Y as long as the multiplication 2421 // does not overflow. 2422 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2423 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2424 return true; 2425 } 2426 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2427 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2428 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2429 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2430 return true; 2431 } 2432 // PHI 2433 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2434 // Try and detect a recurrence that monotonically increases from a 2435 // starting value, as these are common as induction variables. 2436 if (PN->getNumIncomingValues() == 2) { 2437 Value *Start = PN->getIncomingValue(0); 2438 Value *Induction = PN->getIncomingValue(1); 2439 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2440 std::swap(Start, Induction); 2441 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2442 if (!C->isZero() && !C->isNegative()) { 2443 ConstantInt *X; 2444 if (Q.IIQ.UseInstrInfo && 2445 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2446 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2447 !X->isNegative()) 2448 return true; 2449 } 2450 } 2451 } 2452 // Check if all incoming values are non-zero constant. 2453 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2454 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2455 }); 2456 if (AllNonZeroConstants) 2457 return true; 2458 } 2459 2460 KnownBits Known(BitWidth); 2461 computeKnownBits(V, Known, Depth, Q); 2462 return Known.One != 0; 2463 } 2464 2465 /// Return true if V2 == V1 + X, where X is known non-zero. 2466 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2467 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2468 if (!BO || BO->getOpcode() != Instruction::Add) 2469 return false; 2470 Value *Op = nullptr; 2471 if (V2 == BO->getOperand(0)) 2472 Op = BO->getOperand(1); 2473 else if (V2 == BO->getOperand(1)) 2474 Op = BO->getOperand(0); 2475 else 2476 return false; 2477 return isKnownNonZero(Op, 0, Q); 2478 } 2479 2480 /// Return true if it is known that V1 != V2. 2481 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2482 if (V1 == V2) 2483 return false; 2484 if (V1->getType() != V2->getType()) 2485 // We can't look through casts yet. 2486 return false; 2487 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2488 return true; 2489 2490 if (V1->getType()->isIntOrIntVectorTy()) { 2491 // Are any known bits in V1 contradictory to known bits in V2? If V1 2492 // has a known zero where V2 has a known one, they must not be equal. 2493 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2494 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2495 2496 if (Known1.Zero.intersects(Known2.One) || 2497 Known2.Zero.intersects(Known1.One)) 2498 return true; 2499 } 2500 return false; 2501 } 2502 2503 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2504 /// simplify operations downstream. Mask is known to be zero for bits that V 2505 /// cannot have. 2506 /// 2507 /// This function is defined on values with integer type, values with pointer 2508 /// type, and vectors of integers. In the case 2509 /// where V is a vector, the mask, known zero, and known one values are the 2510 /// same width as the vector element, and the bit is set only if it is true 2511 /// for all of the elements in the vector. 2512 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2513 const Query &Q) { 2514 KnownBits Known(Mask.getBitWidth()); 2515 computeKnownBits(V, Known, Depth, Q); 2516 return Mask.isSubsetOf(Known.Zero); 2517 } 2518 2519 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2520 // Returns the input and lower/upper bounds. 2521 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2522 const APInt *&CLow, const APInt *&CHigh) { 2523 assert(isa<Operator>(Select) && 2524 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2525 "Input should be a Select!"); 2526 2527 const Value *LHS = nullptr, *RHS = nullptr; 2528 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2529 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2530 return false; 2531 2532 if (!match(RHS, m_APInt(CLow))) 2533 return false; 2534 2535 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2536 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2537 if (getInverseMinMaxFlavor(SPF) != SPF2) 2538 return false; 2539 2540 if (!match(RHS2, m_APInt(CHigh))) 2541 return false; 2542 2543 if (SPF == SPF_SMIN) 2544 std::swap(CLow, CHigh); 2545 2546 In = LHS2; 2547 return CLow->sle(*CHigh); 2548 } 2549 2550 /// For vector constants, loop over the elements and find the constant with the 2551 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2552 /// or if any element was not analyzed; otherwise, return the count for the 2553 /// element with the minimum number of sign bits. 2554 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2555 const APInt &DemandedElts, 2556 unsigned TyBits) { 2557 const auto *CV = dyn_cast<Constant>(V); 2558 if (!CV || !CV->getType()->isVectorTy()) 2559 return 0; 2560 2561 unsigned MinSignBits = TyBits; 2562 unsigned NumElts = CV->getType()->getVectorNumElements(); 2563 for (unsigned i = 0; i != NumElts; ++i) { 2564 if (!DemandedElts[i]) 2565 continue; 2566 // If we find a non-ConstantInt, bail out. 2567 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2568 if (!Elt) 2569 return 0; 2570 2571 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2572 } 2573 2574 return MinSignBits; 2575 } 2576 2577 static unsigned ComputeNumSignBitsImpl(const Value *V, 2578 const APInt &DemandedElts, 2579 unsigned Depth, const Query &Q); 2580 2581 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2582 unsigned Depth, const Query &Q) { 2583 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2584 assert(Result > 0 && "At least one sign bit needs to be present!"); 2585 return Result; 2586 } 2587 2588 /// Return the number of times the sign bit of the register is replicated into 2589 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2590 /// (itself), but other cases can give us information. For example, immediately 2591 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2592 /// other, so we return 3. For vectors, return the number of sign bits for the 2593 /// vector element with the minimum number of known sign bits of the demanded 2594 /// elements in the vector specified by DemandedElts. 2595 static unsigned ComputeNumSignBitsImpl(const Value *V, 2596 const APInt &DemandedElts, 2597 unsigned Depth, const Query &Q) { 2598 assert(Depth <= MaxDepth && "Limit Search Depth"); 2599 2600 // We return the minimum number of sign bits that are guaranteed to be present 2601 // in V, so for undef we have to conservatively return 1. We don't have the 2602 // same behavior for poison though -- that's a FIXME today. 2603 2604 Type *Ty = V->getType(); 2605 assert(((Ty->isVectorTy() && 2606 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 2607 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2608 "Unexpected vector size"); 2609 2610 Type *ScalarTy = Ty->getScalarType(); 2611 unsigned TyBits = ScalarTy->isPointerTy() ? 2612 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2613 Q.DL.getTypeSizeInBits(ScalarTy); 2614 2615 unsigned Tmp, Tmp2; 2616 unsigned FirstAnswer = 1; 2617 2618 // Note that ConstantInt is handled by the general computeKnownBits case 2619 // below. 2620 2621 if (Depth == MaxDepth) 2622 return 1; // Limit search depth. 2623 2624 if (auto *U = dyn_cast<Operator>(V)) { 2625 switch (Operator::getOpcode(V)) { 2626 default: break; 2627 case Instruction::SExt: 2628 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2629 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2630 2631 case Instruction::SDiv: { 2632 const APInt *Denominator; 2633 // sdiv X, C -> adds log(C) sign bits. 2634 if (match(U->getOperand(1), m_APInt(Denominator))) { 2635 2636 // Ignore non-positive denominator. 2637 if (!Denominator->isStrictlyPositive()) 2638 break; 2639 2640 // Calculate the incoming numerator bits. 2641 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2642 2643 // Add floor(log(C)) bits to the numerator bits. 2644 return std::min(TyBits, NumBits + Denominator->logBase2()); 2645 } 2646 break; 2647 } 2648 2649 case Instruction::SRem: { 2650 const APInt *Denominator; 2651 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2652 // positive constant. This let us put a lower bound on the number of sign 2653 // bits. 2654 if (match(U->getOperand(1), m_APInt(Denominator))) { 2655 2656 // Ignore non-positive denominator. 2657 if (!Denominator->isStrictlyPositive()) 2658 break; 2659 2660 // Calculate the incoming numerator bits. SRem by a positive constant 2661 // can't lower the number of sign bits. 2662 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2663 2664 // Calculate the leading sign bit constraints by examining the 2665 // denominator. Given that the denominator is positive, there are two 2666 // cases: 2667 // 2668 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2669 // (1 << ceilLogBase2(C)). 2670 // 2671 // 2. the numerator is negative. Then the result range is (-C,0] and 2672 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2673 // 2674 // Thus a lower bound on the number of sign bits is `TyBits - 2675 // ceilLogBase2(C)`. 2676 2677 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2678 return std::max(NumrBits, ResBits); 2679 } 2680 break; 2681 } 2682 2683 case Instruction::AShr: { 2684 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2685 // ashr X, C -> adds C sign bits. Vectors too. 2686 const APInt *ShAmt; 2687 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2688 if (ShAmt->uge(TyBits)) 2689 break; // Bad shift. 2690 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2691 Tmp += ShAmtLimited; 2692 if (Tmp > TyBits) Tmp = TyBits; 2693 } 2694 return Tmp; 2695 } 2696 case Instruction::Shl: { 2697 const APInt *ShAmt; 2698 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2699 // shl destroys sign bits. 2700 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2701 if (ShAmt->uge(TyBits) || // Bad shift. 2702 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2703 Tmp2 = ShAmt->getZExtValue(); 2704 return Tmp - Tmp2; 2705 } 2706 break; 2707 } 2708 case Instruction::And: 2709 case Instruction::Or: 2710 case Instruction::Xor: // NOT is handled here. 2711 // Logical binary ops preserve the number of sign bits at the worst. 2712 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2713 if (Tmp != 1) { 2714 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2715 FirstAnswer = std::min(Tmp, Tmp2); 2716 // We computed what we know about the sign bits as our first 2717 // answer. Now proceed to the generic code that uses 2718 // computeKnownBits, and pick whichever answer is better. 2719 } 2720 break; 2721 2722 case Instruction::Select: { 2723 // If we have a clamp pattern, we know that the number of sign bits will 2724 // be the minimum of the clamp min/max range. 2725 const Value *X; 2726 const APInt *CLow, *CHigh; 2727 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2728 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2729 2730 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2731 if (Tmp == 1) break; 2732 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2733 return std::min(Tmp, Tmp2); 2734 } 2735 2736 case Instruction::Add: 2737 // Add can have at most one carry bit. Thus we know that the output 2738 // is, at worst, one more bit than the inputs. 2739 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2740 if (Tmp == 1) break; 2741 2742 // Special case decrementing a value (ADD X, -1): 2743 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2744 if (CRHS->isAllOnesValue()) { 2745 KnownBits Known(TyBits); 2746 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2747 2748 // If the input is known to be 0 or 1, the output is 0/-1, which is 2749 // all sign bits set. 2750 if ((Known.Zero | 1).isAllOnesValue()) 2751 return TyBits; 2752 2753 // If we are subtracting one from a positive number, there is no carry 2754 // out of the result. 2755 if (Known.isNonNegative()) 2756 return Tmp; 2757 } 2758 2759 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2760 if (Tmp2 == 1) break; 2761 return std::min(Tmp, Tmp2) - 1; 2762 2763 case Instruction::Sub: 2764 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2765 if (Tmp2 == 1) break; 2766 2767 // Handle NEG. 2768 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2769 if (CLHS->isNullValue()) { 2770 KnownBits Known(TyBits); 2771 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2772 // If the input is known to be 0 or 1, the output is 0/-1, which is 2773 // all sign bits set. 2774 if ((Known.Zero | 1).isAllOnesValue()) 2775 return TyBits; 2776 2777 // If the input is known to be positive (the sign bit is known clear), 2778 // the output of the NEG has the same number of sign bits as the 2779 // input. 2780 if (Known.isNonNegative()) 2781 return Tmp2; 2782 2783 // Otherwise, we treat this like a SUB. 2784 } 2785 2786 // Sub can have at most one carry bit. Thus we know that the output 2787 // is, at worst, one more bit than the inputs. 2788 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2789 if (Tmp == 1) break; 2790 return std::min(Tmp, Tmp2) - 1; 2791 2792 case Instruction::Mul: { 2793 // The output of the Mul can be at most twice the valid bits in the 2794 // inputs. 2795 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2796 if (SignBitsOp0 == 1) break; 2797 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2798 if (SignBitsOp1 == 1) break; 2799 unsigned OutValidBits = 2800 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2801 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2802 } 2803 2804 case Instruction::PHI: { 2805 const PHINode *PN = cast<PHINode>(U); 2806 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2807 // Don't analyze large in-degree PHIs. 2808 if (NumIncomingValues > 4) break; 2809 // Unreachable blocks may have zero-operand PHI nodes. 2810 if (NumIncomingValues == 0) break; 2811 2812 // Take the minimum of all incoming values. This can't infinitely loop 2813 // because of our depth threshold. 2814 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2815 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2816 if (Tmp == 1) return Tmp; 2817 Tmp = std::min( 2818 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2819 } 2820 return Tmp; 2821 } 2822 2823 case Instruction::Trunc: 2824 // FIXME: it's tricky to do anything useful for this, but it is an 2825 // important case for targets like X86. 2826 break; 2827 2828 case Instruction::ExtractElement: 2829 // Look through extract element. At the moment we keep this simple and 2830 // skip tracking the specific element. But at least we might find 2831 // information valid for all elements of the vector (for example if vector 2832 // is sign extended, shifted, etc). 2833 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2834 2835 case Instruction::ShuffleVector: { 2836 // Collect the minimum number of sign bits that are shared by every vector 2837 // element referenced by the shuffle. 2838 auto *Shuf = cast<ShuffleVectorInst>(U); 2839 APInt DemandedLHS, DemandedRHS; 2840 // For undef elements, we don't know anything about the common state of 2841 // the shuffle result. 2842 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2843 return 1; 2844 Tmp = std::numeric_limits<unsigned>::max(); 2845 if (!!DemandedLHS) { 2846 const Value *LHS = Shuf->getOperand(0); 2847 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2848 } 2849 // If we don't know anything, early out and try computeKnownBits 2850 // fall-back. 2851 if (Tmp == 1) 2852 break; 2853 if (!!DemandedRHS) { 2854 const Value *RHS = Shuf->getOperand(1); 2855 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2856 Tmp = std::min(Tmp, Tmp2); 2857 } 2858 // If we don't know anything, early out and try computeKnownBits 2859 // fall-back. 2860 if (Tmp == 1) 2861 break; 2862 assert(Tmp <= Ty->getScalarSizeInBits() && 2863 "Failed to determine minimum sign bits"); 2864 return Tmp; 2865 } 2866 } 2867 } 2868 2869 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2870 // use this information. 2871 2872 // If we can examine all elements of a vector constant successfully, we're 2873 // done (we can't do any better than that). If not, keep trying. 2874 if (unsigned VecSignBits = 2875 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2876 return VecSignBits; 2877 2878 KnownBits Known(TyBits); 2879 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2880 2881 // If we know that the sign bit is either zero or one, determine the number of 2882 // identical bits in the top of the input value. 2883 return std::max(FirstAnswer, Known.countMinSignBits()); 2884 } 2885 2886 /// This function computes the integer multiple of Base that equals V. 2887 /// If successful, it returns true and returns the multiple in 2888 /// Multiple. If unsuccessful, it returns false. It looks 2889 /// through SExt instructions only if LookThroughSExt is true. 2890 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2891 bool LookThroughSExt, unsigned Depth) { 2892 assert(V && "No Value?"); 2893 assert(Depth <= MaxDepth && "Limit Search Depth"); 2894 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2895 2896 Type *T = V->getType(); 2897 2898 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2899 2900 if (Base == 0) 2901 return false; 2902 2903 if (Base == 1) { 2904 Multiple = V; 2905 return true; 2906 } 2907 2908 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2909 Constant *BaseVal = ConstantInt::get(T, Base); 2910 if (CO && CO == BaseVal) { 2911 // Multiple is 1. 2912 Multiple = ConstantInt::get(T, 1); 2913 return true; 2914 } 2915 2916 if (CI && CI->getZExtValue() % Base == 0) { 2917 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2918 return true; 2919 } 2920 2921 if (Depth == MaxDepth) return false; // Limit search depth. 2922 2923 Operator *I = dyn_cast<Operator>(V); 2924 if (!I) return false; 2925 2926 switch (I->getOpcode()) { 2927 default: break; 2928 case Instruction::SExt: 2929 if (!LookThroughSExt) return false; 2930 // otherwise fall through to ZExt 2931 LLVM_FALLTHROUGH; 2932 case Instruction::ZExt: 2933 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2934 LookThroughSExt, Depth+1); 2935 case Instruction::Shl: 2936 case Instruction::Mul: { 2937 Value *Op0 = I->getOperand(0); 2938 Value *Op1 = I->getOperand(1); 2939 2940 if (I->getOpcode() == Instruction::Shl) { 2941 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2942 if (!Op1CI) return false; 2943 // Turn Op0 << Op1 into Op0 * 2^Op1 2944 APInt Op1Int = Op1CI->getValue(); 2945 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2946 APInt API(Op1Int.getBitWidth(), 0); 2947 API.setBit(BitToSet); 2948 Op1 = ConstantInt::get(V->getContext(), API); 2949 } 2950 2951 Value *Mul0 = nullptr; 2952 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2953 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2954 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2955 if (Op1C->getType()->getPrimitiveSizeInBits() < 2956 MulC->getType()->getPrimitiveSizeInBits()) 2957 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2958 if (Op1C->getType()->getPrimitiveSizeInBits() > 2959 MulC->getType()->getPrimitiveSizeInBits()) 2960 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2961 2962 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2963 Multiple = ConstantExpr::getMul(MulC, Op1C); 2964 return true; 2965 } 2966 2967 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2968 if (Mul0CI->getValue() == 1) { 2969 // V == Base * Op1, so return Op1 2970 Multiple = Op1; 2971 return true; 2972 } 2973 } 2974 2975 Value *Mul1 = nullptr; 2976 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2977 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2978 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2979 if (Op0C->getType()->getPrimitiveSizeInBits() < 2980 MulC->getType()->getPrimitiveSizeInBits()) 2981 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2982 if (Op0C->getType()->getPrimitiveSizeInBits() > 2983 MulC->getType()->getPrimitiveSizeInBits()) 2984 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2985 2986 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2987 Multiple = ConstantExpr::getMul(MulC, Op0C); 2988 return true; 2989 } 2990 2991 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2992 if (Mul1CI->getValue() == 1) { 2993 // V == Base * Op0, so return Op0 2994 Multiple = Op0; 2995 return true; 2996 } 2997 } 2998 } 2999 } 3000 3001 // We could not determine if V is a multiple of Base. 3002 return false; 3003 } 3004 3005 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3006 const TargetLibraryInfo *TLI) { 3007 const Function *F = ICS.getCalledFunction(); 3008 if (!F) 3009 return Intrinsic::not_intrinsic; 3010 3011 if (F->isIntrinsic()) 3012 return F->getIntrinsicID(); 3013 3014 if (!TLI) 3015 return Intrinsic::not_intrinsic; 3016 3017 LibFunc Func; 3018 // We're going to make assumptions on the semantics of the functions, check 3019 // that the target knows that it's available in this environment and it does 3020 // not have local linkage. 3021 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3022 return Intrinsic::not_intrinsic; 3023 3024 if (!ICS.onlyReadsMemory()) 3025 return Intrinsic::not_intrinsic; 3026 3027 // Otherwise check if we have a call to a function that can be turned into a 3028 // vector intrinsic. 3029 switch (Func) { 3030 default: 3031 break; 3032 case LibFunc_sin: 3033 case LibFunc_sinf: 3034 case LibFunc_sinl: 3035 return Intrinsic::sin; 3036 case LibFunc_cos: 3037 case LibFunc_cosf: 3038 case LibFunc_cosl: 3039 return Intrinsic::cos; 3040 case LibFunc_exp: 3041 case LibFunc_expf: 3042 case LibFunc_expl: 3043 return Intrinsic::exp; 3044 case LibFunc_exp2: 3045 case LibFunc_exp2f: 3046 case LibFunc_exp2l: 3047 return Intrinsic::exp2; 3048 case LibFunc_log: 3049 case LibFunc_logf: 3050 case LibFunc_logl: 3051 return Intrinsic::log; 3052 case LibFunc_log10: 3053 case LibFunc_log10f: 3054 case LibFunc_log10l: 3055 return Intrinsic::log10; 3056 case LibFunc_log2: 3057 case LibFunc_log2f: 3058 case LibFunc_log2l: 3059 return Intrinsic::log2; 3060 case LibFunc_fabs: 3061 case LibFunc_fabsf: 3062 case LibFunc_fabsl: 3063 return Intrinsic::fabs; 3064 case LibFunc_fmin: 3065 case LibFunc_fminf: 3066 case LibFunc_fminl: 3067 return Intrinsic::minnum; 3068 case LibFunc_fmax: 3069 case LibFunc_fmaxf: 3070 case LibFunc_fmaxl: 3071 return Intrinsic::maxnum; 3072 case LibFunc_copysign: 3073 case LibFunc_copysignf: 3074 case LibFunc_copysignl: 3075 return Intrinsic::copysign; 3076 case LibFunc_floor: 3077 case LibFunc_floorf: 3078 case LibFunc_floorl: 3079 return Intrinsic::floor; 3080 case LibFunc_ceil: 3081 case LibFunc_ceilf: 3082 case LibFunc_ceill: 3083 return Intrinsic::ceil; 3084 case LibFunc_trunc: 3085 case LibFunc_truncf: 3086 case LibFunc_truncl: 3087 return Intrinsic::trunc; 3088 case LibFunc_rint: 3089 case LibFunc_rintf: 3090 case LibFunc_rintl: 3091 return Intrinsic::rint; 3092 case LibFunc_nearbyint: 3093 case LibFunc_nearbyintf: 3094 case LibFunc_nearbyintl: 3095 return Intrinsic::nearbyint; 3096 case LibFunc_round: 3097 case LibFunc_roundf: 3098 case LibFunc_roundl: 3099 return Intrinsic::round; 3100 case LibFunc_pow: 3101 case LibFunc_powf: 3102 case LibFunc_powl: 3103 return Intrinsic::pow; 3104 case LibFunc_sqrt: 3105 case LibFunc_sqrtf: 3106 case LibFunc_sqrtl: 3107 return Intrinsic::sqrt; 3108 } 3109 3110 return Intrinsic::not_intrinsic; 3111 } 3112 3113 /// Return true if we can prove that the specified FP value is never equal to 3114 /// -0.0. 3115 /// 3116 /// NOTE: this function will need to be revisited when we support non-default 3117 /// rounding modes! 3118 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3119 unsigned Depth) { 3120 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3121 return !CFP->getValueAPF().isNegZero(); 3122 3123 // Limit search depth. 3124 if (Depth == MaxDepth) 3125 return false; 3126 3127 auto *Op = dyn_cast<Operator>(V); 3128 if (!Op) 3129 return false; 3130 3131 // Check if the nsz fast-math flag is set. 3132 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3133 if (FPO->hasNoSignedZeros()) 3134 return true; 3135 3136 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3137 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3138 return true; 3139 3140 // sitofp and uitofp turn into +0.0 for zero. 3141 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3142 return true; 3143 3144 if (auto *Call = dyn_cast<CallInst>(Op)) { 3145 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3146 switch (IID) { 3147 default: 3148 break; 3149 // sqrt(-0.0) = -0.0, no other negative results are possible. 3150 case Intrinsic::sqrt: 3151 case Intrinsic::canonicalize: 3152 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3153 // fabs(x) != -0.0 3154 case Intrinsic::fabs: 3155 return true; 3156 } 3157 } 3158 3159 return false; 3160 } 3161 3162 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3163 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3164 /// bit despite comparing equal. 3165 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3166 const TargetLibraryInfo *TLI, 3167 bool SignBitOnly, 3168 unsigned Depth) { 3169 // TODO: This function does not do the right thing when SignBitOnly is true 3170 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3171 // which flips the sign bits of NaNs. See 3172 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3173 3174 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3175 return !CFP->getValueAPF().isNegative() || 3176 (!SignBitOnly && CFP->getValueAPF().isZero()); 3177 } 3178 3179 // Handle vector of constants. 3180 if (auto *CV = dyn_cast<Constant>(V)) { 3181 if (CV->getType()->isVectorTy()) { 3182 unsigned NumElts = CV->getType()->getVectorNumElements(); 3183 for (unsigned i = 0; i != NumElts; ++i) { 3184 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3185 if (!CFP) 3186 return false; 3187 if (CFP->getValueAPF().isNegative() && 3188 (SignBitOnly || !CFP->getValueAPF().isZero())) 3189 return false; 3190 } 3191 3192 // All non-negative ConstantFPs. 3193 return true; 3194 } 3195 } 3196 3197 if (Depth == MaxDepth) 3198 return false; // Limit search depth. 3199 3200 const Operator *I = dyn_cast<Operator>(V); 3201 if (!I) 3202 return false; 3203 3204 switch (I->getOpcode()) { 3205 default: 3206 break; 3207 // Unsigned integers are always nonnegative. 3208 case Instruction::UIToFP: 3209 return true; 3210 case Instruction::FMul: 3211 // x*x is always non-negative or a NaN. 3212 if (I->getOperand(0) == I->getOperand(1) && 3213 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3214 return true; 3215 3216 LLVM_FALLTHROUGH; 3217 case Instruction::FAdd: 3218 case Instruction::FDiv: 3219 case Instruction::FRem: 3220 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3221 Depth + 1) && 3222 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3223 Depth + 1); 3224 case Instruction::Select: 3225 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3226 Depth + 1) && 3227 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3228 Depth + 1); 3229 case Instruction::FPExt: 3230 case Instruction::FPTrunc: 3231 // Widening/narrowing never change sign. 3232 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3233 Depth + 1); 3234 case Instruction::ExtractElement: 3235 // Look through extract element. At the moment we keep this simple and skip 3236 // tracking the specific element. But at least we might find information 3237 // valid for all elements of the vector. 3238 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3239 Depth + 1); 3240 case Instruction::Call: 3241 const auto *CI = cast<CallInst>(I); 3242 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3243 switch (IID) { 3244 default: 3245 break; 3246 case Intrinsic::maxnum: 3247 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3248 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3249 SignBitOnly, Depth + 1)) || 3250 (isKnownNeverNaN(I->getOperand(1), TLI) && 3251 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3252 SignBitOnly, Depth + 1)); 3253 3254 case Intrinsic::maximum: 3255 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3256 Depth + 1) || 3257 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3258 Depth + 1); 3259 case Intrinsic::minnum: 3260 case Intrinsic::minimum: 3261 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3262 Depth + 1) && 3263 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3264 Depth + 1); 3265 case Intrinsic::exp: 3266 case Intrinsic::exp2: 3267 case Intrinsic::fabs: 3268 return true; 3269 3270 case Intrinsic::sqrt: 3271 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3272 if (!SignBitOnly) 3273 return true; 3274 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3275 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3276 3277 case Intrinsic::powi: 3278 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3279 // powi(x,n) is non-negative if n is even. 3280 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3281 return true; 3282 } 3283 // TODO: This is not correct. Given that exp is an integer, here are the 3284 // ways that pow can return a negative value: 3285 // 3286 // pow(x, exp) --> negative if exp is odd and x is negative. 3287 // pow(-0, exp) --> -inf if exp is negative odd. 3288 // pow(-0, exp) --> -0 if exp is positive odd. 3289 // pow(-inf, exp) --> -0 if exp is negative odd. 3290 // pow(-inf, exp) --> -inf if exp is positive odd. 3291 // 3292 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3293 // but we must return false if x == -0. Unfortunately we do not currently 3294 // have a way of expressing this constraint. See details in 3295 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3296 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3297 Depth + 1); 3298 3299 case Intrinsic::fma: 3300 case Intrinsic::fmuladd: 3301 // x*x+y is non-negative if y is non-negative. 3302 return I->getOperand(0) == I->getOperand(1) && 3303 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3304 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3305 Depth + 1); 3306 } 3307 break; 3308 } 3309 return false; 3310 } 3311 3312 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3313 const TargetLibraryInfo *TLI) { 3314 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3315 } 3316 3317 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3318 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3319 } 3320 3321 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3322 unsigned Depth) { 3323 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3324 3325 // If we're told that infinities won't happen, assume they won't. 3326 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3327 if (FPMathOp->hasNoInfs()) 3328 return true; 3329 3330 // Handle scalar constants. 3331 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3332 return !CFP->isInfinity(); 3333 3334 if (Depth == MaxDepth) 3335 return false; 3336 3337 if (auto *Inst = dyn_cast<Instruction>(V)) { 3338 switch (Inst->getOpcode()) { 3339 case Instruction::Select: { 3340 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3341 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3342 } 3343 case Instruction::UIToFP: 3344 // If the input type fits into the floating type the result is finite. 3345 return ilogb(APFloat::getLargest( 3346 Inst->getType()->getScalarType()->getFltSemantics())) >= 3347 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3348 default: 3349 break; 3350 } 3351 } 3352 3353 // Bail out for constant expressions, but try to handle vector constants. 3354 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3355 return false; 3356 3357 // For vectors, verify that each element is not infinity. 3358 unsigned NumElts = V->getType()->getVectorNumElements(); 3359 for (unsigned i = 0; i != NumElts; ++i) { 3360 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3361 if (!Elt) 3362 return false; 3363 if (isa<UndefValue>(Elt)) 3364 continue; 3365 auto *CElt = dyn_cast<ConstantFP>(Elt); 3366 if (!CElt || CElt->isInfinity()) 3367 return false; 3368 } 3369 // All elements were confirmed non-infinity or undefined. 3370 return true; 3371 } 3372 3373 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3374 unsigned Depth) { 3375 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3376 3377 // If we're told that NaNs won't happen, assume they won't. 3378 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3379 if (FPMathOp->hasNoNaNs()) 3380 return true; 3381 3382 // Handle scalar constants. 3383 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3384 return !CFP->isNaN(); 3385 3386 if (Depth == MaxDepth) 3387 return false; 3388 3389 if (auto *Inst = dyn_cast<Instruction>(V)) { 3390 switch (Inst->getOpcode()) { 3391 case Instruction::FAdd: 3392 case Instruction::FSub: 3393 // Adding positive and negative infinity produces NaN. 3394 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3395 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3396 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3397 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3398 3399 case Instruction::FMul: 3400 // Zero multiplied with infinity produces NaN. 3401 // FIXME: If neither side can be zero fmul never produces NaN. 3402 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3403 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3404 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3405 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3406 3407 case Instruction::FDiv: 3408 case Instruction::FRem: 3409 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3410 return false; 3411 3412 case Instruction::Select: { 3413 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3414 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3415 } 3416 case Instruction::SIToFP: 3417 case Instruction::UIToFP: 3418 return true; 3419 case Instruction::FPTrunc: 3420 case Instruction::FPExt: 3421 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3422 default: 3423 break; 3424 } 3425 } 3426 3427 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3428 switch (II->getIntrinsicID()) { 3429 case Intrinsic::canonicalize: 3430 case Intrinsic::fabs: 3431 case Intrinsic::copysign: 3432 case Intrinsic::exp: 3433 case Intrinsic::exp2: 3434 case Intrinsic::floor: 3435 case Intrinsic::ceil: 3436 case Intrinsic::trunc: 3437 case Intrinsic::rint: 3438 case Intrinsic::nearbyint: 3439 case Intrinsic::round: 3440 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3441 case Intrinsic::sqrt: 3442 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3443 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3444 case Intrinsic::minnum: 3445 case Intrinsic::maxnum: 3446 // If either operand is not NaN, the result is not NaN. 3447 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3448 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3449 default: 3450 return false; 3451 } 3452 } 3453 3454 // Bail out for constant expressions, but try to handle vector constants. 3455 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3456 return false; 3457 3458 // For vectors, verify that each element is not NaN. 3459 unsigned NumElts = V->getType()->getVectorNumElements(); 3460 for (unsigned i = 0; i != NumElts; ++i) { 3461 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3462 if (!Elt) 3463 return false; 3464 if (isa<UndefValue>(Elt)) 3465 continue; 3466 auto *CElt = dyn_cast<ConstantFP>(Elt); 3467 if (!CElt || CElt->isNaN()) 3468 return false; 3469 } 3470 // All elements were confirmed not-NaN or undefined. 3471 return true; 3472 } 3473 3474 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3475 3476 // All byte-wide stores are splatable, even of arbitrary variables. 3477 if (V->getType()->isIntegerTy(8)) 3478 return V; 3479 3480 LLVMContext &Ctx = V->getContext(); 3481 3482 // Undef don't care. 3483 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3484 if (isa<UndefValue>(V)) 3485 return UndefInt8; 3486 3487 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3488 if (!Size) 3489 return UndefInt8; 3490 3491 Constant *C = dyn_cast<Constant>(V); 3492 if (!C) { 3493 // Conceptually, we could handle things like: 3494 // %a = zext i8 %X to i16 3495 // %b = shl i16 %a, 8 3496 // %c = or i16 %a, %b 3497 // but until there is an example that actually needs this, it doesn't seem 3498 // worth worrying about. 3499 return nullptr; 3500 } 3501 3502 // Handle 'null' ConstantArrayZero etc. 3503 if (C->isNullValue()) 3504 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3505 3506 // Constant floating-point values can be handled as integer values if the 3507 // corresponding integer value is "byteable". An important case is 0.0. 3508 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3509 Type *Ty = nullptr; 3510 if (CFP->getType()->isHalfTy()) 3511 Ty = Type::getInt16Ty(Ctx); 3512 else if (CFP->getType()->isFloatTy()) 3513 Ty = Type::getInt32Ty(Ctx); 3514 else if (CFP->getType()->isDoubleTy()) 3515 Ty = Type::getInt64Ty(Ctx); 3516 // Don't handle long double formats, which have strange constraints. 3517 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3518 : nullptr; 3519 } 3520 3521 // We can handle constant integers that are multiple of 8 bits. 3522 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3523 if (CI->getBitWidth() % 8 == 0) { 3524 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3525 if (!CI->getValue().isSplat(8)) 3526 return nullptr; 3527 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3528 } 3529 } 3530 3531 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3532 if (CE->getOpcode() == Instruction::IntToPtr) { 3533 auto PS = DL.getPointerSizeInBits( 3534 cast<PointerType>(CE->getType())->getAddressSpace()); 3535 return isBytewiseValue( 3536 ConstantExpr::getIntegerCast(CE->getOperand(0), 3537 Type::getIntNTy(Ctx, PS), false), 3538 DL); 3539 } 3540 } 3541 3542 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3543 if (LHS == RHS) 3544 return LHS; 3545 if (!LHS || !RHS) 3546 return nullptr; 3547 if (LHS == UndefInt8) 3548 return RHS; 3549 if (RHS == UndefInt8) 3550 return LHS; 3551 return nullptr; 3552 }; 3553 3554 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3555 Value *Val = UndefInt8; 3556 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3557 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3558 return nullptr; 3559 return Val; 3560 } 3561 3562 if (isa<ConstantAggregate>(C)) { 3563 Value *Val = UndefInt8; 3564 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3565 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3566 return nullptr; 3567 return Val; 3568 } 3569 3570 // Don't try to handle the handful of other constants. 3571 return nullptr; 3572 } 3573 3574 // This is the recursive version of BuildSubAggregate. It takes a few different 3575 // arguments. Idxs is the index within the nested struct From that we are 3576 // looking at now (which is of type IndexedType). IdxSkip is the number of 3577 // indices from Idxs that should be left out when inserting into the resulting 3578 // struct. To is the result struct built so far, new insertvalue instructions 3579 // build on that. 3580 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3581 SmallVectorImpl<unsigned> &Idxs, 3582 unsigned IdxSkip, 3583 Instruction *InsertBefore) { 3584 StructType *STy = dyn_cast<StructType>(IndexedType); 3585 if (STy) { 3586 // Save the original To argument so we can modify it 3587 Value *OrigTo = To; 3588 // General case, the type indexed by Idxs is a struct 3589 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3590 // Process each struct element recursively 3591 Idxs.push_back(i); 3592 Value *PrevTo = To; 3593 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3594 InsertBefore); 3595 Idxs.pop_back(); 3596 if (!To) { 3597 // Couldn't find any inserted value for this index? Cleanup 3598 while (PrevTo != OrigTo) { 3599 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3600 PrevTo = Del->getAggregateOperand(); 3601 Del->eraseFromParent(); 3602 } 3603 // Stop processing elements 3604 break; 3605 } 3606 } 3607 // If we successfully found a value for each of our subaggregates 3608 if (To) 3609 return To; 3610 } 3611 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3612 // the struct's elements had a value that was inserted directly. In the latter 3613 // case, perhaps we can't determine each of the subelements individually, but 3614 // we might be able to find the complete struct somewhere. 3615 3616 // Find the value that is at that particular spot 3617 Value *V = FindInsertedValue(From, Idxs); 3618 3619 if (!V) 3620 return nullptr; 3621 3622 // Insert the value in the new (sub) aggregate 3623 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3624 "tmp", InsertBefore); 3625 } 3626 3627 // This helper takes a nested struct and extracts a part of it (which is again a 3628 // struct) into a new value. For example, given the struct: 3629 // { a, { b, { c, d }, e } } 3630 // and the indices "1, 1" this returns 3631 // { c, d }. 3632 // 3633 // It does this by inserting an insertvalue for each element in the resulting 3634 // struct, as opposed to just inserting a single struct. This will only work if 3635 // each of the elements of the substruct are known (ie, inserted into From by an 3636 // insertvalue instruction somewhere). 3637 // 3638 // All inserted insertvalue instructions are inserted before InsertBefore 3639 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3640 Instruction *InsertBefore) { 3641 assert(InsertBefore && "Must have someplace to insert!"); 3642 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3643 idx_range); 3644 Value *To = UndefValue::get(IndexedType); 3645 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3646 unsigned IdxSkip = Idxs.size(); 3647 3648 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3649 } 3650 3651 /// Given an aggregate and a sequence of indices, see if the scalar value 3652 /// indexed is already around as a register, for example if it was inserted 3653 /// directly into the aggregate. 3654 /// 3655 /// If InsertBefore is not null, this function will duplicate (modified) 3656 /// insertvalues when a part of a nested struct is extracted. 3657 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3658 Instruction *InsertBefore) { 3659 // Nothing to index? Just return V then (this is useful at the end of our 3660 // recursion). 3661 if (idx_range.empty()) 3662 return V; 3663 // We have indices, so V should have an indexable type. 3664 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3665 "Not looking at a struct or array?"); 3666 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3667 "Invalid indices for type?"); 3668 3669 if (Constant *C = dyn_cast<Constant>(V)) { 3670 C = C->getAggregateElement(idx_range[0]); 3671 if (!C) return nullptr; 3672 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3673 } 3674 3675 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3676 // Loop the indices for the insertvalue instruction in parallel with the 3677 // requested indices 3678 const unsigned *req_idx = idx_range.begin(); 3679 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3680 i != e; ++i, ++req_idx) { 3681 if (req_idx == idx_range.end()) { 3682 // We can't handle this without inserting insertvalues 3683 if (!InsertBefore) 3684 return nullptr; 3685 3686 // The requested index identifies a part of a nested aggregate. Handle 3687 // this specially. For example, 3688 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3689 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3690 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3691 // This can be changed into 3692 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3693 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3694 // which allows the unused 0,0 element from the nested struct to be 3695 // removed. 3696 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3697 InsertBefore); 3698 } 3699 3700 // This insert value inserts something else than what we are looking for. 3701 // See if the (aggregate) value inserted into has the value we are 3702 // looking for, then. 3703 if (*req_idx != *i) 3704 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3705 InsertBefore); 3706 } 3707 // If we end up here, the indices of the insertvalue match with those 3708 // requested (though possibly only partially). Now we recursively look at 3709 // the inserted value, passing any remaining indices. 3710 return FindInsertedValue(I->getInsertedValueOperand(), 3711 makeArrayRef(req_idx, idx_range.end()), 3712 InsertBefore); 3713 } 3714 3715 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3716 // If we're extracting a value from an aggregate that was extracted from 3717 // something else, we can extract from that something else directly instead. 3718 // However, we will need to chain I's indices with the requested indices. 3719 3720 // Calculate the number of indices required 3721 unsigned size = I->getNumIndices() + idx_range.size(); 3722 // Allocate some space to put the new indices in 3723 SmallVector<unsigned, 5> Idxs; 3724 Idxs.reserve(size); 3725 // Add indices from the extract value instruction 3726 Idxs.append(I->idx_begin(), I->idx_end()); 3727 3728 // Add requested indices 3729 Idxs.append(idx_range.begin(), idx_range.end()); 3730 3731 assert(Idxs.size() == size 3732 && "Number of indices added not correct?"); 3733 3734 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3735 } 3736 // Otherwise, we don't know (such as, extracting from a function return value 3737 // or load instruction) 3738 return nullptr; 3739 } 3740 3741 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3742 unsigned CharSize) { 3743 // Make sure the GEP has exactly three arguments. 3744 if (GEP->getNumOperands() != 3) 3745 return false; 3746 3747 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3748 // CharSize. 3749 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3750 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3751 return false; 3752 3753 // Check to make sure that the first operand of the GEP is an integer and 3754 // has value 0 so that we are sure we're indexing into the initializer. 3755 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3756 if (!FirstIdx || !FirstIdx->isZero()) 3757 return false; 3758 3759 return true; 3760 } 3761 3762 bool llvm::getConstantDataArrayInfo(const Value *V, 3763 ConstantDataArraySlice &Slice, 3764 unsigned ElementSize, uint64_t Offset) { 3765 assert(V); 3766 3767 // Look through bitcast instructions and geps. 3768 V = V->stripPointerCasts(); 3769 3770 // If the value is a GEP instruction or constant expression, treat it as an 3771 // offset. 3772 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3773 // The GEP operator should be based on a pointer to string constant, and is 3774 // indexing into the string constant. 3775 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3776 return false; 3777 3778 // If the second index isn't a ConstantInt, then this is a variable index 3779 // into the array. If this occurs, we can't say anything meaningful about 3780 // the string. 3781 uint64_t StartIdx = 0; 3782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3783 StartIdx = CI->getZExtValue(); 3784 else 3785 return false; 3786 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3787 StartIdx + Offset); 3788 } 3789 3790 // The GEP instruction, constant or instruction, must reference a global 3791 // variable that is a constant and is initialized. The referenced constant 3792 // initializer is the array that we'll use for optimization. 3793 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3794 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3795 return false; 3796 3797 const ConstantDataArray *Array; 3798 ArrayType *ArrayTy; 3799 if (GV->getInitializer()->isNullValue()) { 3800 Type *GVTy = GV->getValueType(); 3801 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3802 // A zeroinitializer for the array; there is no ConstantDataArray. 3803 Array = nullptr; 3804 } else { 3805 const DataLayout &DL = GV->getParent()->getDataLayout(); 3806 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3807 uint64_t Length = SizeInBytes / (ElementSize / 8); 3808 if (Length <= Offset) 3809 return false; 3810 3811 Slice.Array = nullptr; 3812 Slice.Offset = 0; 3813 Slice.Length = Length - Offset; 3814 return true; 3815 } 3816 } else { 3817 // This must be a ConstantDataArray. 3818 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3819 if (!Array) 3820 return false; 3821 ArrayTy = Array->getType(); 3822 } 3823 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3824 return false; 3825 3826 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3827 if (Offset > NumElts) 3828 return false; 3829 3830 Slice.Array = Array; 3831 Slice.Offset = Offset; 3832 Slice.Length = NumElts - Offset; 3833 return true; 3834 } 3835 3836 /// This function computes the length of a null-terminated C string pointed to 3837 /// by V. If successful, it returns true and returns the string in Str. 3838 /// If unsuccessful, it returns false. 3839 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3840 uint64_t Offset, bool TrimAtNul) { 3841 ConstantDataArraySlice Slice; 3842 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3843 return false; 3844 3845 if (Slice.Array == nullptr) { 3846 if (TrimAtNul) { 3847 Str = StringRef(); 3848 return true; 3849 } 3850 if (Slice.Length == 1) { 3851 Str = StringRef("", 1); 3852 return true; 3853 } 3854 // We cannot instantiate a StringRef as we do not have an appropriate string 3855 // of 0s at hand. 3856 return false; 3857 } 3858 3859 // Start out with the entire array in the StringRef. 3860 Str = Slice.Array->getAsString(); 3861 // Skip over 'offset' bytes. 3862 Str = Str.substr(Slice.Offset); 3863 3864 if (TrimAtNul) { 3865 // Trim off the \0 and anything after it. If the array is not nul 3866 // terminated, we just return the whole end of string. The client may know 3867 // some other way that the string is length-bound. 3868 Str = Str.substr(0, Str.find('\0')); 3869 } 3870 return true; 3871 } 3872 3873 // These next two are very similar to the above, but also look through PHI 3874 // nodes. 3875 // TODO: See if we can integrate these two together. 3876 3877 /// If we can compute the length of the string pointed to by 3878 /// the specified pointer, return 'len+1'. If we can't, return 0. 3879 static uint64_t GetStringLengthH(const Value *V, 3880 SmallPtrSetImpl<const PHINode*> &PHIs, 3881 unsigned CharSize) { 3882 // Look through noop bitcast instructions. 3883 V = V->stripPointerCasts(); 3884 3885 // If this is a PHI node, there are two cases: either we have already seen it 3886 // or we haven't. 3887 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3888 if (!PHIs.insert(PN).second) 3889 return ~0ULL; // already in the set. 3890 3891 // If it was new, see if all the input strings are the same length. 3892 uint64_t LenSoFar = ~0ULL; 3893 for (Value *IncValue : PN->incoming_values()) { 3894 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3895 if (Len == 0) return 0; // Unknown length -> unknown. 3896 3897 if (Len == ~0ULL) continue; 3898 3899 if (Len != LenSoFar && LenSoFar != ~0ULL) 3900 return 0; // Disagree -> unknown. 3901 LenSoFar = Len; 3902 } 3903 3904 // Success, all agree. 3905 return LenSoFar; 3906 } 3907 3908 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3909 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3910 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3911 if (Len1 == 0) return 0; 3912 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3913 if (Len2 == 0) return 0; 3914 if (Len1 == ~0ULL) return Len2; 3915 if (Len2 == ~0ULL) return Len1; 3916 if (Len1 != Len2) return 0; 3917 return Len1; 3918 } 3919 3920 // Otherwise, see if we can read the string. 3921 ConstantDataArraySlice Slice; 3922 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3923 return 0; 3924 3925 if (Slice.Array == nullptr) 3926 return 1; 3927 3928 // Search for nul characters 3929 unsigned NullIndex = 0; 3930 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3931 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3932 break; 3933 } 3934 3935 return NullIndex + 1; 3936 } 3937 3938 /// If we can compute the length of the string pointed to by 3939 /// the specified pointer, return 'len+1'. If we can't, return 0. 3940 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3941 if (!V->getType()->isPointerTy()) 3942 return 0; 3943 3944 SmallPtrSet<const PHINode*, 32> PHIs; 3945 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3946 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3947 // an empty string as a length. 3948 return Len == ~0ULL ? 1 : Len; 3949 } 3950 3951 const Value * 3952 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3953 bool MustPreserveNullness) { 3954 assert(Call && 3955 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3956 if (const Value *RV = Call->getReturnedArgOperand()) 3957 return RV; 3958 // This can be used only as a aliasing property. 3959 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3960 Call, MustPreserveNullness)) 3961 return Call->getArgOperand(0); 3962 return nullptr; 3963 } 3964 3965 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3966 const CallBase *Call, bool MustPreserveNullness) { 3967 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3968 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3969 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3970 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3971 (!MustPreserveNullness && 3972 Call->getIntrinsicID() == Intrinsic::ptrmask); 3973 } 3974 3975 /// \p PN defines a loop-variant pointer to an object. Check if the 3976 /// previous iteration of the loop was referring to the same object as \p PN. 3977 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3978 const LoopInfo *LI) { 3979 // Find the loop-defined value. 3980 Loop *L = LI->getLoopFor(PN->getParent()); 3981 if (PN->getNumIncomingValues() != 2) 3982 return true; 3983 3984 // Find the value from previous iteration. 3985 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3986 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3987 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3988 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3989 return true; 3990 3991 // If a new pointer is loaded in the loop, the pointer references a different 3992 // object in every iteration. E.g.: 3993 // for (i) 3994 // int *p = a[i]; 3995 // ... 3996 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3997 if (!L->isLoopInvariant(Load->getPointerOperand())) 3998 return false; 3999 return true; 4000 } 4001 4002 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4003 unsigned MaxLookup) { 4004 if (!V->getType()->isPointerTy()) 4005 return V; 4006 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4007 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4008 V = GEP->getPointerOperand(); 4009 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4010 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4011 V = cast<Operator>(V)->getOperand(0); 4012 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4013 if (GA->isInterposable()) 4014 return V; 4015 V = GA->getAliasee(); 4016 } else if (isa<AllocaInst>(V)) { 4017 // An alloca can't be further simplified. 4018 return V; 4019 } else { 4020 if (auto *Call = dyn_cast<CallBase>(V)) { 4021 // CaptureTracking can know about special capturing properties of some 4022 // intrinsics like launder.invariant.group, that can't be expressed with 4023 // the attributes, but have properties like returning aliasing pointer. 4024 // Because some analysis may assume that nocaptured pointer is not 4025 // returned from some special intrinsic (because function would have to 4026 // be marked with returns attribute), it is crucial to use this function 4027 // because it should be in sync with CaptureTracking. Not using it may 4028 // cause weird miscompilations where 2 aliasing pointers are assumed to 4029 // noalias. 4030 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4031 V = RP; 4032 continue; 4033 } 4034 } 4035 4036 // See if InstructionSimplify knows any relevant tricks. 4037 if (Instruction *I = dyn_cast<Instruction>(V)) 4038 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4039 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4040 V = Simplified; 4041 continue; 4042 } 4043 4044 return V; 4045 } 4046 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4047 } 4048 return V; 4049 } 4050 4051 void llvm::GetUnderlyingObjects(const Value *V, 4052 SmallVectorImpl<const Value *> &Objects, 4053 const DataLayout &DL, LoopInfo *LI, 4054 unsigned MaxLookup) { 4055 SmallPtrSet<const Value *, 4> Visited; 4056 SmallVector<const Value *, 4> Worklist; 4057 Worklist.push_back(V); 4058 do { 4059 const Value *P = Worklist.pop_back_val(); 4060 P = GetUnderlyingObject(P, DL, MaxLookup); 4061 4062 if (!Visited.insert(P).second) 4063 continue; 4064 4065 if (auto *SI = dyn_cast<SelectInst>(P)) { 4066 Worklist.push_back(SI->getTrueValue()); 4067 Worklist.push_back(SI->getFalseValue()); 4068 continue; 4069 } 4070 4071 if (auto *PN = dyn_cast<PHINode>(P)) { 4072 // If this PHI changes the underlying object in every iteration of the 4073 // loop, don't look through it. Consider: 4074 // int **A; 4075 // for (i) { 4076 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4077 // Curr = A[i]; 4078 // *Prev, *Curr; 4079 // 4080 // Prev is tracking Curr one iteration behind so they refer to different 4081 // underlying objects. 4082 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4083 isSameUnderlyingObjectInLoop(PN, LI)) 4084 for (Value *IncValue : PN->incoming_values()) 4085 Worklist.push_back(IncValue); 4086 continue; 4087 } 4088 4089 Objects.push_back(P); 4090 } while (!Worklist.empty()); 4091 } 4092 4093 /// This is the function that does the work of looking through basic 4094 /// ptrtoint+arithmetic+inttoptr sequences. 4095 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4096 do { 4097 if (const Operator *U = dyn_cast<Operator>(V)) { 4098 // If we find a ptrtoint, we can transfer control back to the 4099 // regular getUnderlyingObjectFromInt. 4100 if (U->getOpcode() == Instruction::PtrToInt) 4101 return U->getOperand(0); 4102 // If we find an add of a constant, a multiplied value, or a phi, it's 4103 // likely that the other operand will lead us to the base 4104 // object. We don't have to worry about the case where the 4105 // object address is somehow being computed by the multiply, 4106 // because our callers only care when the result is an 4107 // identifiable object. 4108 if (U->getOpcode() != Instruction::Add || 4109 (!isa<ConstantInt>(U->getOperand(1)) && 4110 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4111 !isa<PHINode>(U->getOperand(1)))) 4112 return V; 4113 V = U->getOperand(0); 4114 } else { 4115 return V; 4116 } 4117 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4118 } while (true); 4119 } 4120 4121 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4122 /// ptrtoint+arithmetic+inttoptr sequences. 4123 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4124 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4125 SmallVectorImpl<Value *> &Objects, 4126 const DataLayout &DL) { 4127 SmallPtrSet<const Value *, 16> Visited; 4128 SmallVector<const Value *, 4> Working(1, V); 4129 do { 4130 V = Working.pop_back_val(); 4131 4132 SmallVector<const Value *, 4> Objs; 4133 GetUnderlyingObjects(V, Objs, DL); 4134 4135 for (const Value *V : Objs) { 4136 if (!Visited.insert(V).second) 4137 continue; 4138 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4139 const Value *O = 4140 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4141 if (O->getType()->isPointerTy()) { 4142 Working.push_back(O); 4143 continue; 4144 } 4145 } 4146 // If GetUnderlyingObjects fails to find an identifiable object, 4147 // getUnderlyingObjectsForCodeGen also fails for safety. 4148 if (!isIdentifiedObject(V)) { 4149 Objects.clear(); 4150 return false; 4151 } 4152 Objects.push_back(const_cast<Value *>(V)); 4153 } 4154 } while (!Working.empty()); 4155 return true; 4156 } 4157 4158 /// Return true if the only users of this pointer are lifetime markers. 4159 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4160 for (const User *U : V->users()) { 4161 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4162 if (!II) return false; 4163 4164 if (!II->isLifetimeStartOrEnd()) 4165 return false; 4166 } 4167 return true; 4168 } 4169 4170 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4171 if (!LI.isUnordered()) 4172 return true; 4173 const Function &F = *LI.getFunction(); 4174 // Speculative load may create a race that did not exist in the source. 4175 return F.hasFnAttribute(Attribute::SanitizeThread) || 4176 // Speculative load may load data from dirty regions. 4177 F.hasFnAttribute(Attribute::SanitizeAddress) || 4178 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4179 } 4180 4181 4182 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4183 const Instruction *CtxI, 4184 const DominatorTree *DT) { 4185 const Operator *Inst = dyn_cast<Operator>(V); 4186 if (!Inst) 4187 return false; 4188 4189 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4190 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4191 if (C->canTrap()) 4192 return false; 4193 4194 switch (Inst->getOpcode()) { 4195 default: 4196 return true; 4197 case Instruction::UDiv: 4198 case Instruction::URem: { 4199 // x / y is undefined if y == 0. 4200 const APInt *V; 4201 if (match(Inst->getOperand(1), m_APInt(V))) 4202 return *V != 0; 4203 return false; 4204 } 4205 case Instruction::SDiv: 4206 case Instruction::SRem: { 4207 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4208 const APInt *Numerator, *Denominator; 4209 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4210 return false; 4211 // We cannot hoist this division if the denominator is 0. 4212 if (*Denominator == 0) 4213 return false; 4214 // It's safe to hoist if the denominator is not 0 or -1. 4215 if (*Denominator != -1) 4216 return true; 4217 // At this point we know that the denominator is -1. It is safe to hoist as 4218 // long we know that the numerator is not INT_MIN. 4219 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4220 return !Numerator->isMinSignedValue(); 4221 // The numerator *might* be MinSignedValue. 4222 return false; 4223 } 4224 case Instruction::Load: { 4225 const LoadInst *LI = cast<LoadInst>(Inst); 4226 if (mustSuppressSpeculation(*LI)) 4227 return false; 4228 const DataLayout &DL = LI->getModule()->getDataLayout(); 4229 return isDereferenceableAndAlignedPointer( 4230 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4231 DL, CtxI, DT); 4232 } 4233 case Instruction::Call: { 4234 auto *CI = cast<const CallInst>(Inst); 4235 const Function *Callee = CI->getCalledFunction(); 4236 4237 // The called function could have undefined behavior or side-effects, even 4238 // if marked readnone nounwind. 4239 return Callee && Callee->isSpeculatable(); 4240 } 4241 case Instruction::VAArg: 4242 case Instruction::Alloca: 4243 case Instruction::Invoke: 4244 case Instruction::CallBr: 4245 case Instruction::PHI: 4246 case Instruction::Store: 4247 case Instruction::Ret: 4248 case Instruction::Br: 4249 case Instruction::IndirectBr: 4250 case Instruction::Switch: 4251 case Instruction::Unreachable: 4252 case Instruction::Fence: 4253 case Instruction::AtomicRMW: 4254 case Instruction::AtomicCmpXchg: 4255 case Instruction::LandingPad: 4256 case Instruction::Resume: 4257 case Instruction::CatchSwitch: 4258 case Instruction::CatchPad: 4259 case Instruction::CatchRet: 4260 case Instruction::CleanupPad: 4261 case Instruction::CleanupRet: 4262 return false; // Misc instructions which have effects 4263 } 4264 } 4265 4266 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4267 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4268 } 4269 4270 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4271 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4272 switch (OR) { 4273 case ConstantRange::OverflowResult::MayOverflow: 4274 return OverflowResult::MayOverflow; 4275 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4276 return OverflowResult::AlwaysOverflowsLow; 4277 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4278 return OverflowResult::AlwaysOverflowsHigh; 4279 case ConstantRange::OverflowResult::NeverOverflows: 4280 return OverflowResult::NeverOverflows; 4281 } 4282 llvm_unreachable("Unknown OverflowResult"); 4283 } 4284 4285 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4286 static ConstantRange computeConstantRangeIncludingKnownBits( 4287 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4288 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4289 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4290 KnownBits Known = computeKnownBits( 4291 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4292 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4293 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4294 ConstantRange::PreferredRangeType RangeType = 4295 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4296 return CR1.intersectWith(CR2, RangeType); 4297 } 4298 4299 OverflowResult llvm::computeOverflowForUnsignedMul( 4300 const Value *LHS, const Value *RHS, const DataLayout &DL, 4301 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4302 bool UseInstrInfo) { 4303 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4304 nullptr, UseInstrInfo); 4305 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4306 nullptr, UseInstrInfo); 4307 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4308 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4309 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4310 } 4311 4312 OverflowResult 4313 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4314 const DataLayout &DL, AssumptionCache *AC, 4315 const Instruction *CxtI, 4316 const DominatorTree *DT, bool UseInstrInfo) { 4317 // Multiplying n * m significant bits yields a result of n + m significant 4318 // bits. If the total number of significant bits does not exceed the 4319 // result bit width (minus 1), there is no overflow. 4320 // This means if we have enough leading sign bits in the operands 4321 // we can guarantee that the result does not overflow. 4322 // Ref: "Hacker's Delight" by Henry Warren 4323 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4324 4325 // Note that underestimating the number of sign bits gives a more 4326 // conservative answer. 4327 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4328 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4329 4330 // First handle the easy case: if we have enough sign bits there's 4331 // definitely no overflow. 4332 if (SignBits > BitWidth + 1) 4333 return OverflowResult::NeverOverflows; 4334 4335 // There are two ambiguous cases where there can be no overflow: 4336 // SignBits == BitWidth + 1 and 4337 // SignBits == BitWidth 4338 // The second case is difficult to check, therefore we only handle the 4339 // first case. 4340 if (SignBits == BitWidth + 1) { 4341 // It overflows only when both arguments are negative and the true 4342 // product is exactly the minimum negative number. 4343 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4344 // For simplicity we just check if at least one side is not negative. 4345 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4346 nullptr, UseInstrInfo); 4347 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4348 nullptr, UseInstrInfo); 4349 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4350 return OverflowResult::NeverOverflows; 4351 } 4352 return OverflowResult::MayOverflow; 4353 } 4354 4355 OverflowResult llvm::computeOverflowForUnsignedAdd( 4356 const Value *LHS, const Value *RHS, const DataLayout &DL, 4357 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4358 bool UseInstrInfo) { 4359 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4360 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4361 nullptr, UseInstrInfo); 4362 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4363 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4364 nullptr, UseInstrInfo); 4365 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4366 } 4367 4368 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4369 const Value *RHS, 4370 const AddOperator *Add, 4371 const DataLayout &DL, 4372 AssumptionCache *AC, 4373 const Instruction *CxtI, 4374 const DominatorTree *DT) { 4375 if (Add && Add->hasNoSignedWrap()) { 4376 return OverflowResult::NeverOverflows; 4377 } 4378 4379 // If LHS and RHS each have at least two sign bits, the addition will look 4380 // like 4381 // 4382 // XX..... + 4383 // YY..... 4384 // 4385 // If the carry into the most significant position is 0, X and Y can't both 4386 // be 1 and therefore the carry out of the addition is also 0. 4387 // 4388 // If the carry into the most significant position is 1, X and Y can't both 4389 // be 0 and therefore the carry out of the addition is also 1. 4390 // 4391 // Since the carry into the most significant position is always equal to 4392 // the carry out of the addition, there is no signed overflow. 4393 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4394 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4395 return OverflowResult::NeverOverflows; 4396 4397 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4398 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4399 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4400 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4401 OverflowResult OR = 4402 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4403 if (OR != OverflowResult::MayOverflow) 4404 return OR; 4405 4406 // The remaining code needs Add to be available. Early returns if not so. 4407 if (!Add) 4408 return OverflowResult::MayOverflow; 4409 4410 // If the sign of Add is the same as at least one of the operands, this add 4411 // CANNOT overflow. If this can be determined from the known bits of the 4412 // operands the above signedAddMayOverflow() check will have already done so. 4413 // The only other way to improve on the known bits is from an assumption, so 4414 // call computeKnownBitsFromAssume() directly. 4415 bool LHSOrRHSKnownNonNegative = 4416 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4417 bool LHSOrRHSKnownNegative = 4418 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4419 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4420 KnownBits AddKnown(LHSRange.getBitWidth()); 4421 computeKnownBitsFromAssume( 4422 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4423 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4424 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4425 return OverflowResult::NeverOverflows; 4426 } 4427 4428 return OverflowResult::MayOverflow; 4429 } 4430 4431 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4432 const Value *RHS, 4433 const DataLayout &DL, 4434 AssumptionCache *AC, 4435 const Instruction *CxtI, 4436 const DominatorTree *DT) { 4437 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4438 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4439 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4440 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4441 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4442 } 4443 4444 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4445 const Value *RHS, 4446 const DataLayout &DL, 4447 AssumptionCache *AC, 4448 const Instruction *CxtI, 4449 const DominatorTree *DT) { 4450 // If LHS and RHS each have at least two sign bits, the subtraction 4451 // cannot overflow. 4452 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4453 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4454 return OverflowResult::NeverOverflows; 4455 4456 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4457 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4458 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4459 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4460 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4461 } 4462 4463 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4464 const DominatorTree &DT) { 4465 SmallVector<const BranchInst *, 2> GuardingBranches; 4466 SmallVector<const ExtractValueInst *, 2> Results; 4467 4468 for (const User *U : WO->users()) { 4469 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4470 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4471 4472 if (EVI->getIndices()[0] == 0) 4473 Results.push_back(EVI); 4474 else { 4475 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4476 4477 for (const auto *U : EVI->users()) 4478 if (const auto *B = dyn_cast<BranchInst>(U)) { 4479 assert(B->isConditional() && "How else is it using an i1?"); 4480 GuardingBranches.push_back(B); 4481 } 4482 } 4483 } else { 4484 // We are using the aggregate directly in a way we don't want to analyze 4485 // here (storing it to a global, say). 4486 return false; 4487 } 4488 } 4489 4490 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4491 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4492 if (!NoWrapEdge.isSingleEdge()) 4493 return false; 4494 4495 // Check if all users of the add are provably no-wrap. 4496 for (const auto *Result : Results) { 4497 // If the extractvalue itself is not executed on overflow, the we don't 4498 // need to check each use separately, since domination is transitive. 4499 if (DT.dominates(NoWrapEdge, Result->getParent())) 4500 continue; 4501 4502 for (auto &RU : Result->uses()) 4503 if (!DT.dominates(NoWrapEdge, RU)) 4504 return false; 4505 } 4506 4507 return true; 4508 }; 4509 4510 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4511 } 4512 4513 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V) { 4514 // If the value is a freeze instruction, then it can never 4515 // be undef or poison. 4516 if (isa<FreezeInst>(V)) 4517 return true; 4518 // TODO: Some instructions are guaranteed to return neither undef 4519 // nor poison if their arguments are not poison/undef. 4520 4521 // TODO: Deal with other Constant subclasses. 4522 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4523 return true; 4524 4525 if (auto PN = dyn_cast<PHINode>(V)) { 4526 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4527 return isa<ConstantInt>(U.get()); 4528 })) 4529 return true; 4530 } 4531 4532 if (auto II = dyn_cast<ICmpInst>(V)) { 4533 if (llvm::all_of(II->operands(), [](const Value *V) { 4534 return isGuaranteedNotToBeUndefOrPoison(V); 4535 })) 4536 return true; 4537 } 4538 4539 return false; 4540 } 4541 4542 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4543 const DataLayout &DL, 4544 AssumptionCache *AC, 4545 const Instruction *CxtI, 4546 const DominatorTree *DT) { 4547 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4548 Add, DL, AC, CxtI, DT); 4549 } 4550 4551 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4552 const Value *RHS, 4553 const DataLayout &DL, 4554 AssumptionCache *AC, 4555 const Instruction *CxtI, 4556 const DominatorTree *DT) { 4557 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4558 } 4559 4560 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4561 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4562 // of time because it's possible for another thread to interfere with it for an 4563 // arbitrary length of time, but programs aren't allowed to rely on that. 4564 4565 // If there is no successor, then execution can't transfer to it. 4566 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4567 return !CRI->unwindsToCaller(); 4568 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4569 return !CatchSwitch->unwindsToCaller(); 4570 if (isa<ResumeInst>(I)) 4571 return false; 4572 if (isa<ReturnInst>(I)) 4573 return false; 4574 if (isa<UnreachableInst>(I)) 4575 return false; 4576 4577 // Calls can throw, or contain an infinite loop, or kill the process. 4578 if (auto CS = ImmutableCallSite(I)) { 4579 // Call sites that throw have implicit non-local control flow. 4580 if (!CS.doesNotThrow()) 4581 return false; 4582 4583 // A function which doens't throw and has "willreturn" attribute will 4584 // always return. 4585 if (CS.hasFnAttr(Attribute::WillReturn)) 4586 return true; 4587 4588 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4589 // etc. and thus not return. However, LLVM already assumes that 4590 // 4591 // - Thread exiting actions are modeled as writes to memory invisible to 4592 // the program. 4593 // 4594 // - Loops that don't have side effects (side effects are volatile/atomic 4595 // stores and IO) always terminate (see http://llvm.org/PR965). 4596 // Furthermore IO itself is also modeled as writes to memory invisible to 4597 // the program. 4598 // 4599 // We rely on those assumptions here, and use the memory effects of the call 4600 // target as a proxy for checking that it always returns. 4601 4602 // FIXME: This isn't aggressive enough; a call which only writes to a global 4603 // is guaranteed to return. 4604 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4605 } 4606 4607 // Other instructions return normally. 4608 return true; 4609 } 4610 4611 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4612 // TODO: This is slightly conservative for invoke instruction since exiting 4613 // via an exception *is* normal control for them. 4614 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4615 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4616 return false; 4617 return true; 4618 } 4619 4620 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4621 const Loop *L) { 4622 // The loop header is guaranteed to be executed for every iteration. 4623 // 4624 // FIXME: Relax this constraint to cover all basic blocks that are 4625 // guaranteed to be executed at every iteration. 4626 if (I->getParent() != L->getHeader()) return false; 4627 4628 for (const Instruction &LI : *L->getHeader()) { 4629 if (&LI == I) return true; 4630 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4631 } 4632 llvm_unreachable("Instruction not contained in its own parent basic block."); 4633 } 4634 4635 bool llvm::propagatesFullPoison(const Instruction *I) { 4636 // TODO: This should include all instructions apart from phis, selects and 4637 // call-like instructions. 4638 switch (I->getOpcode()) { 4639 case Instruction::Add: 4640 case Instruction::Sub: 4641 case Instruction::Xor: 4642 case Instruction::Trunc: 4643 case Instruction::BitCast: 4644 case Instruction::AddrSpaceCast: 4645 case Instruction::Mul: 4646 case Instruction::Shl: 4647 case Instruction::GetElementPtr: 4648 // These operations all propagate poison unconditionally. Note that poison 4649 // is not any particular value, so xor or subtraction of poison with 4650 // itself still yields poison, not zero. 4651 return true; 4652 4653 case Instruction::AShr: 4654 case Instruction::SExt: 4655 // For these operations, one bit of the input is replicated across 4656 // multiple output bits. A replicated poison bit is still poison. 4657 return true; 4658 4659 case Instruction::ICmp: 4660 // Comparing poison with any value yields poison. This is why, for 4661 // instance, x s< (x +nsw 1) can be folded to true. 4662 return true; 4663 4664 default: 4665 return false; 4666 } 4667 } 4668 4669 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4670 switch (I->getOpcode()) { 4671 case Instruction::Store: 4672 return cast<StoreInst>(I)->getPointerOperand(); 4673 4674 case Instruction::Load: 4675 return cast<LoadInst>(I)->getPointerOperand(); 4676 4677 case Instruction::AtomicCmpXchg: 4678 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4679 4680 case Instruction::AtomicRMW: 4681 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4682 4683 case Instruction::UDiv: 4684 case Instruction::SDiv: 4685 case Instruction::URem: 4686 case Instruction::SRem: 4687 return I->getOperand(1); 4688 4689 default: 4690 // Note: It's really tempting to think that a conditional branch or 4691 // switch should be listed here, but that's incorrect. It's not 4692 // branching off of poison which is UB, it is executing a side effecting 4693 // instruction which follows the branch. 4694 return nullptr; 4695 } 4696 } 4697 4698 bool llvm::mustTriggerUB(const Instruction *I, 4699 const SmallSet<const Value *, 16>& KnownPoison) { 4700 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4701 return (NotPoison && KnownPoison.count(NotPoison)); 4702 } 4703 4704 4705 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4706 // We currently only look for uses of poison values within the same basic 4707 // block, as that makes it easier to guarantee that the uses will be 4708 // executed given that PoisonI is executed. 4709 // 4710 // FIXME: Expand this to consider uses beyond the same basic block. To do 4711 // this, look out for the distinction between post-dominance and strong 4712 // post-dominance. 4713 const BasicBlock *BB = PoisonI->getParent(); 4714 4715 // Set of instructions that we have proved will yield poison if PoisonI 4716 // does. 4717 SmallSet<const Value *, 16> YieldsPoison; 4718 SmallSet<const BasicBlock *, 4> Visited; 4719 YieldsPoison.insert(PoisonI); 4720 Visited.insert(PoisonI->getParent()); 4721 4722 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4723 4724 unsigned Iter = 0; 4725 while (Iter++ < MaxDepth) { 4726 for (auto &I : make_range(Begin, End)) { 4727 if (&I != PoisonI) { 4728 if (mustTriggerUB(&I, YieldsPoison)) 4729 return true; 4730 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4731 return false; 4732 } 4733 4734 // Mark poison that propagates from I through uses of I. 4735 if (YieldsPoison.count(&I)) { 4736 for (const User *User : I.users()) { 4737 const Instruction *UserI = cast<Instruction>(User); 4738 if (propagatesFullPoison(UserI)) 4739 YieldsPoison.insert(User); 4740 } 4741 } 4742 } 4743 4744 if (auto *NextBB = BB->getSingleSuccessor()) { 4745 if (Visited.insert(NextBB).second) { 4746 BB = NextBB; 4747 Begin = BB->getFirstNonPHI()->getIterator(); 4748 End = BB->end(); 4749 continue; 4750 } 4751 } 4752 4753 break; 4754 } 4755 return false; 4756 } 4757 4758 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4759 if (FMF.noNaNs()) 4760 return true; 4761 4762 if (auto *C = dyn_cast<ConstantFP>(V)) 4763 return !C->isNaN(); 4764 4765 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4766 if (!C->getElementType()->isFloatingPointTy()) 4767 return false; 4768 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4769 if (C->getElementAsAPFloat(I).isNaN()) 4770 return false; 4771 } 4772 return true; 4773 } 4774 4775 return false; 4776 } 4777 4778 static bool isKnownNonZero(const Value *V) { 4779 if (auto *C = dyn_cast<ConstantFP>(V)) 4780 return !C->isZero(); 4781 4782 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4783 if (!C->getElementType()->isFloatingPointTy()) 4784 return false; 4785 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4786 if (C->getElementAsAPFloat(I).isZero()) 4787 return false; 4788 } 4789 return true; 4790 } 4791 4792 return false; 4793 } 4794 4795 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4796 /// Given non-min/max outer cmp/select from the clamp pattern this 4797 /// function recognizes if it can be substitued by a "canonical" min/max 4798 /// pattern. 4799 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4800 Value *CmpLHS, Value *CmpRHS, 4801 Value *TrueVal, Value *FalseVal, 4802 Value *&LHS, Value *&RHS) { 4803 // Try to match 4804 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4805 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4806 // and return description of the outer Max/Min. 4807 4808 // First, check if select has inverse order: 4809 if (CmpRHS == FalseVal) { 4810 std::swap(TrueVal, FalseVal); 4811 Pred = CmpInst::getInversePredicate(Pred); 4812 } 4813 4814 // Assume success now. If there's no match, callers should not use these anyway. 4815 LHS = TrueVal; 4816 RHS = FalseVal; 4817 4818 const APFloat *FC1; 4819 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4820 return {SPF_UNKNOWN, SPNB_NA, false}; 4821 4822 const APFloat *FC2; 4823 switch (Pred) { 4824 case CmpInst::FCMP_OLT: 4825 case CmpInst::FCMP_OLE: 4826 case CmpInst::FCMP_ULT: 4827 case CmpInst::FCMP_ULE: 4828 if (match(FalseVal, 4829 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4830 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4831 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4832 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4833 break; 4834 case CmpInst::FCMP_OGT: 4835 case CmpInst::FCMP_OGE: 4836 case CmpInst::FCMP_UGT: 4837 case CmpInst::FCMP_UGE: 4838 if (match(FalseVal, 4839 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4840 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4841 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4842 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4843 break; 4844 default: 4845 break; 4846 } 4847 4848 return {SPF_UNKNOWN, SPNB_NA, false}; 4849 } 4850 4851 /// Recognize variations of: 4852 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4853 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4854 Value *CmpLHS, Value *CmpRHS, 4855 Value *TrueVal, Value *FalseVal) { 4856 // Swap the select operands and predicate to match the patterns below. 4857 if (CmpRHS != TrueVal) { 4858 Pred = ICmpInst::getSwappedPredicate(Pred); 4859 std::swap(TrueVal, FalseVal); 4860 } 4861 const APInt *C1; 4862 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4863 const APInt *C2; 4864 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4865 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4866 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4867 return {SPF_SMAX, SPNB_NA, false}; 4868 4869 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4870 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4871 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4872 return {SPF_SMIN, SPNB_NA, false}; 4873 4874 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4875 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4876 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4877 return {SPF_UMAX, SPNB_NA, false}; 4878 4879 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4880 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4881 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4882 return {SPF_UMIN, SPNB_NA, false}; 4883 } 4884 return {SPF_UNKNOWN, SPNB_NA, false}; 4885 } 4886 4887 /// Recognize variations of: 4888 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4889 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4890 Value *CmpLHS, Value *CmpRHS, 4891 Value *TVal, Value *FVal, 4892 unsigned Depth) { 4893 // TODO: Allow FP min/max with nnan/nsz. 4894 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4895 4896 Value *A = nullptr, *B = nullptr; 4897 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4898 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4899 return {SPF_UNKNOWN, SPNB_NA, false}; 4900 4901 Value *C = nullptr, *D = nullptr; 4902 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4903 if (L.Flavor != R.Flavor) 4904 return {SPF_UNKNOWN, SPNB_NA, false}; 4905 4906 // We have something like: x Pred y ? min(a, b) : min(c, d). 4907 // Try to match the compare to the min/max operations of the select operands. 4908 // First, make sure we have the right compare predicate. 4909 switch (L.Flavor) { 4910 case SPF_SMIN: 4911 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4912 Pred = ICmpInst::getSwappedPredicate(Pred); 4913 std::swap(CmpLHS, CmpRHS); 4914 } 4915 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4916 break; 4917 return {SPF_UNKNOWN, SPNB_NA, false}; 4918 case SPF_SMAX: 4919 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4920 Pred = ICmpInst::getSwappedPredicate(Pred); 4921 std::swap(CmpLHS, CmpRHS); 4922 } 4923 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4924 break; 4925 return {SPF_UNKNOWN, SPNB_NA, false}; 4926 case SPF_UMIN: 4927 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4928 Pred = ICmpInst::getSwappedPredicate(Pred); 4929 std::swap(CmpLHS, CmpRHS); 4930 } 4931 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4932 break; 4933 return {SPF_UNKNOWN, SPNB_NA, false}; 4934 case SPF_UMAX: 4935 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4936 Pred = ICmpInst::getSwappedPredicate(Pred); 4937 std::swap(CmpLHS, CmpRHS); 4938 } 4939 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4940 break; 4941 return {SPF_UNKNOWN, SPNB_NA, false}; 4942 default: 4943 return {SPF_UNKNOWN, SPNB_NA, false}; 4944 } 4945 4946 // If there is a common operand in the already matched min/max and the other 4947 // min/max operands match the compare operands (either directly or inverted), 4948 // then this is min/max of the same flavor. 4949 4950 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4951 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4952 if (D == B) { 4953 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4954 match(A, m_Not(m_Specific(CmpRHS))))) 4955 return {L.Flavor, SPNB_NA, false}; 4956 } 4957 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4958 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4959 if (C == B) { 4960 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4961 match(A, m_Not(m_Specific(CmpRHS))))) 4962 return {L.Flavor, SPNB_NA, false}; 4963 } 4964 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4965 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4966 if (D == A) { 4967 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4968 match(B, m_Not(m_Specific(CmpRHS))))) 4969 return {L.Flavor, SPNB_NA, false}; 4970 } 4971 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4972 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4973 if (C == A) { 4974 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4975 match(B, m_Not(m_Specific(CmpRHS))))) 4976 return {L.Flavor, SPNB_NA, false}; 4977 } 4978 4979 return {SPF_UNKNOWN, SPNB_NA, false}; 4980 } 4981 4982 /// Match non-obvious integer minimum and maximum sequences. 4983 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4984 Value *CmpLHS, Value *CmpRHS, 4985 Value *TrueVal, Value *FalseVal, 4986 Value *&LHS, Value *&RHS, 4987 unsigned Depth) { 4988 // Assume success. If there's no match, callers should not use these anyway. 4989 LHS = TrueVal; 4990 RHS = FalseVal; 4991 4992 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4993 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4994 return SPR; 4995 4996 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4997 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4998 return SPR; 4999 5000 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5001 return {SPF_UNKNOWN, SPNB_NA, false}; 5002 5003 // Z = X -nsw Y 5004 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5005 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5006 if (match(TrueVal, m_Zero()) && 5007 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5008 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5009 5010 // Z = X -nsw Y 5011 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5012 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5013 if (match(FalseVal, m_Zero()) && 5014 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5015 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5016 5017 const APInt *C1; 5018 if (!match(CmpRHS, m_APInt(C1))) 5019 return {SPF_UNKNOWN, SPNB_NA, false}; 5020 5021 // An unsigned min/max can be written with a signed compare. 5022 const APInt *C2; 5023 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5024 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5025 // Is the sign bit set? 5026 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5027 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5028 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5029 C2->isMaxSignedValue()) 5030 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5031 5032 // Is the sign bit clear? 5033 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5034 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5035 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5036 C2->isMinSignedValue()) 5037 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5038 } 5039 5040 // Look through 'not' ops to find disguised signed min/max. 5041 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 5042 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 5043 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 5044 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 5045 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5046 5047 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 5048 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 5049 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 5050 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 5051 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5052 5053 return {SPF_UNKNOWN, SPNB_NA, false}; 5054 } 5055 5056 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5057 assert(X && Y && "Invalid operand"); 5058 5059 // X = sub (0, Y) || X = sub nsw (0, Y) 5060 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5061 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5062 return true; 5063 5064 // Y = sub (0, X) || Y = sub nsw (0, X) 5065 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5066 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5067 return true; 5068 5069 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5070 Value *A, *B; 5071 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5072 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5073 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5074 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5075 } 5076 5077 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5078 FastMathFlags FMF, 5079 Value *CmpLHS, Value *CmpRHS, 5080 Value *TrueVal, Value *FalseVal, 5081 Value *&LHS, Value *&RHS, 5082 unsigned Depth) { 5083 if (CmpInst::isFPPredicate(Pred)) { 5084 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5085 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5086 // purpose of identifying min/max. Disregard vector constants with undefined 5087 // elements because those can not be back-propagated for analysis. 5088 Value *OutputZeroVal = nullptr; 5089 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5090 !cast<Constant>(TrueVal)->containsUndefElement()) 5091 OutputZeroVal = TrueVal; 5092 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5093 !cast<Constant>(FalseVal)->containsUndefElement()) 5094 OutputZeroVal = FalseVal; 5095 5096 if (OutputZeroVal) { 5097 if (match(CmpLHS, m_AnyZeroFP())) 5098 CmpLHS = OutputZeroVal; 5099 if (match(CmpRHS, m_AnyZeroFP())) 5100 CmpRHS = OutputZeroVal; 5101 } 5102 } 5103 5104 LHS = CmpLHS; 5105 RHS = CmpRHS; 5106 5107 // Signed zero may return inconsistent results between implementations. 5108 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5109 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5110 // Therefore, we behave conservatively and only proceed if at least one of the 5111 // operands is known to not be zero or if we don't care about signed zero. 5112 switch (Pred) { 5113 default: break; 5114 // FIXME: Include OGT/OLT/UGT/ULT. 5115 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5116 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5117 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5118 !isKnownNonZero(CmpRHS)) 5119 return {SPF_UNKNOWN, SPNB_NA, false}; 5120 } 5121 5122 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5123 bool Ordered = false; 5124 5125 // When given one NaN and one non-NaN input: 5126 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5127 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5128 // ordered comparison fails), which could be NaN or non-NaN. 5129 // so here we discover exactly what NaN behavior is required/accepted. 5130 if (CmpInst::isFPPredicate(Pred)) { 5131 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5132 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5133 5134 if (LHSSafe && RHSSafe) { 5135 // Both operands are known non-NaN. 5136 NaNBehavior = SPNB_RETURNS_ANY; 5137 } else if (CmpInst::isOrdered(Pred)) { 5138 // An ordered comparison will return false when given a NaN, so it 5139 // returns the RHS. 5140 Ordered = true; 5141 if (LHSSafe) 5142 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5143 NaNBehavior = SPNB_RETURNS_NAN; 5144 else if (RHSSafe) 5145 NaNBehavior = SPNB_RETURNS_OTHER; 5146 else 5147 // Completely unsafe. 5148 return {SPF_UNKNOWN, SPNB_NA, false}; 5149 } else { 5150 Ordered = false; 5151 // An unordered comparison will return true when given a NaN, so it 5152 // returns the LHS. 5153 if (LHSSafe) 5154 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5155 NaNBehavior = SPNB_RETURNS_OTHER; 5156 else if (RHSSafe) 5157 NaNBehavior = SPNB_RETURNS_NAN; 5158 else 5159 // Completely unsafe. 5160 return {SPF_UNKNOWN, SPNB_NA, false}; 5161 } 5162 } 5163 5164 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5165 std::swap(CmpLHS, CmpRHS); 5166 Pred = CmpInst::getSwappedPredicate(Pred); 5167 if (NaNBehavior == SPNB_RETURNS_NAN) 5168 NaNBehavior = SPNB_RETURNS_OTHER; 5169 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5170 NaNBehavior = SPNB_RETURNS_NAN; 5171 Ordered = !Ordered; 5172 } 5173 5174 // ([if]cmp X, Y) ? X : Y 5175 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5176 switch (Pred) { 5177 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5178 case ICmpInst::ICMP_UGT: 5179 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5180 case ICmpInst::ICMP_SGT: 5181 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5182 case ICmpInst::ICMP_ULT: 5183 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5184 case ICmpInst::ICMP_SLT: 5185 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5186 case FCmpInst::FCMP_UGT: 5187 case FCmpInst::FCMP_UGE: 5188 case FCmpInst::FCMP_OGT: 5189 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5190 case FCmpInst::FCMP_ULT: 5191 case FCmpInst::FCMP_ULE: 5192 case FCmpInst::FCMP_OLT: 5193 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5194 } 5195 } 5196 5197 if (isKnownNegation(TrueVal, FalseVal)) { 5198 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5199 // match against either LHS or sext(LHS). 5200 auto MaybeSExtCmpLHS = 5201 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5202 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5203 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5204 if (match(TrueVal, MaybeSExtCmpLHS)) { 5205 // Set the return values. If the compare uses the negated value (-X >s 0), 5206 // swap the return values because the negated value is always 'RHS'. 5207 LHS = TrueVal; 5208 RHS = FalseVal; 5209 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5210 std::swap(LHS, RHS); 5211 5212 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5213 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5214 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5215 return {SPF_ABS, SPNB_NA, false}; 5216 5217 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5218 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5219 return {SPF_ABS, SPNB_NA, false}; 5220 5221 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5222 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5223 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5224 return {SPF_NABS, SPNB_NA, false}; 5225 } 5226 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5227 // Set the return values. If the compare uses the negated value (-X >s 0), 5228 // swap the return values because the negated value is always 'RHS'. 5229 LHS = FalseVal; 5230 RHS = TrueVal; 5231 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5232 std::swap(LHS, RHS); 5233 5234 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5235 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5236 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5237 return {SPF_NABS, SPNB_NA, false}; 5238 5239 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5240 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5241 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5242 return {SPF_ABS, SPNB_NA, false}; 5243 } 5244 } 5245 5246 if (CmpInst::isIntPredicate(Pred)) 5247 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5248 5249 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5250 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5251 // semantics than minNum. Be conservative in such case. 5252 if (NaNBehavior != SPNB_RETURNS_ANY || 5253 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5254 !isKnownNonZero(CmpRHS))) 5255 return {SPF_UNKNOWN, SPNB_NA, false}; 5256 5257 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5258 } 5259 5260 /// Helps to match a select pattern in case of a type mismatch. 5261 /// 5262 /// The function processes the case when type of true and false values of a 5263 /// select instruction differs from type of the cmp instruction operands because 5264 /// of a cast instruction. The function checks if it is legal to move the cast 5265 /// operation after "select". If yes, it returns the new second value of 5266 /// "select" (with the assumption that cast is moved): 5267 /// 1. As operand of cast instruction when both values of "select" are same cast 5268 /// instructions. 5269 /// 2. As restored constant (by applying reverse cast operation) when the first 5270 /// value of the "select" is a cast operation and the second value is a 5271 /// constant. 5272 /// NOTE: We return only the new second value because the first value could be 5273 /// accessed as operand of cast instruction. 5274 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5275 Instruction::CastOps *CastOp) { 5276 auto *Cast1 = dyn_cast<CastInst>(V1); 5277 if (!Cast1) 5278 return nullptr; 5279 5280 *CastOp = Cast1->getOpcode(); 5281 Type *SrcTy = Cast1->getSrcTy(); 5282 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5283 // If V1 and V2 are both the same cast from the same type, look through V1. 5284 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5285 return Cast2->getOperand(0); 5286 return nullptr; 5287 } 5288 5289 auto *C = dyn_cast<Constant>(V2); 5290 if (!C) 5291 return nullptr; 5292 5293 Constant *CastedTo = nullptr; 5294 switch (*CastOp) { 5295 case Instruction::ZExt: 5296 if (CmpI->isUnsigned()) 5297 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5298 break; 5299 case Instruction::SExt: 5300 if (CmpI->isSigned()) 5301 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5302 break; 5303 case Instruction::Trunc: 5304 Constant *CmpConst; 5305 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5306 CmpConst->getType() == SrcTy) { 5307 // Here we have the following case: 5308 // 5309 // %cond = cmp iN %x, CmpConst 5310 // %tr = trunc iN %x to iK 5311 // %narrowsel = select i1 %cond, iK %t, iK C 5312 // 5313 // We can always move trunc after select operation: 5314 // 5315 // %cond = cmp iN %x, CmpConst 5316 // %widesel = select i1 %cond, iN %x, iN CmpConst 5317 // %tr = trunc iN %widesel to iK 5318 // 5319 // Note that C could be extended in any way because we don't care about 5320 // upper bits after truncation. It can't be abs pattern, because it would 5321 // look like: 5322 // 5323 // select i1 %cond, x, -x. 5324 // 5325 // So only min/max pattern could be matched. Such match requires widened C 5326 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5327 // CmpConst == C is checked below. 5328 CastedTo = CmpConst; 5329 } else { 5330 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5331 } 5332 break; 5333 case Instruction::FPTrunc: 5334 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5335 break; 5336 case Instruction::FPExt: 5337 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5338 break; 5339 case Instruction::FPToUI: 5340 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5341 break; 5342 case Instruction::FPToSI: 5343 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5344 break; 5345 case Instruction::UIToFP: 5346 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5347 break; 5348 case Instruction::SIToFP: 5349 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5350 break; 5351 default: 5352 break; 5353 } 5354 5355 if (!CastedTo) 5356 return nullptr; 5357 5358 // Make sure the cast doesn't lose any information. 5359 Constant *CastedBack = 5360 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5361 if (CastedBack != C) 5362 return nullptr; 5363 5364 return CastedTo; 5365 } 5366 5367 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5368 Instruction::CastOps *CastOp, 5369 unsigned Depth) { 5370 if (Depth >= MaxDepth) 5371 return {SPF_UNKNOWN, SPNB_NA, false}; 5372 5373 SelectInst *SI = dyn_cast<SelectInst>(V); 5374 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5375 5376 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5377 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5378 5379 Value *TrueVal = SI->getTrueValue(); 5380 Value *FalseVal = SI->getFalseValue(); 5381 5382 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5383 CastOp, Depth); 5384 } 5385 5386 SelectPatternResult llvm::matchDecomposedSelectPattern( 5387 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5388 Instruction::CastOps *CastOp, unsigned Depth) { 5389 CmpInst::Predicate Pred = CmpI->getPredicate(); 5390 Value *CmpLHS = CmpI->getOperand(0); 5391 Value *CmpRHS = CmpI->getOperand(1); 5392 FastMathFlags FMF; 5393 if (isa<FPMathOperator>(CmpI)) 5394 FMF = CmpI->getFastMathFlags(); 5395 5396 // Bail out early. 5397 if (CmpI->isEquality()) 5398 return {SPF_UNKNOWN, SPNB_NA, false}; 5399 5400 // Deal with type mismatches. 5401 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5402 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5403 // If this is a potential fmin/fmax with a cast to integer, then ignore 5404 // -0.0 because there is no corresponding integer value. 5405 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5406 FMF.setNoSignedZeros(); 5407 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5408 cast<CastInst>(TrueVal)->getOperand(0), C, 5409 LHS, RHS, Depth); 5410 } 5411 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5412 // If this is a potential fmin/fmax with a cast to integer, then ignore 5413 // -0.0 because there is no corresponding integer value. 5414 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5415 FMF.setNoSignedZeros(); 5416 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5417 C, cast<CastInst>(FalseVal)->getOperand(0), 5418 LHS, RHS, Depth); 5419 } 5420 } 5421 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5422 LHS, RHS, Depth); 5423 } 5424 5425 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5426 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5427 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5428 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5429 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5430 if (SPF == SPF_FMINNUM) 5431 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5432 if (SPF == SPF_FMAXNUM) 5433 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5434 llvm_unreachable("unhandled!"); 5435 } 5436 5437 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5438 if (SPF == SPF_SMIN) return SPF_SMAX; 5439 if (SPF == SPF_UMIN) return SPF_UMAX; 5440 if (SPF == SPF_SMAX) return SPF_SMIN; 5441 if (SPF == SPF_UMAX) return SPF_UMIN; 5442 llvm_unreachable("unhandled!"); 5443 } 5444 5445 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5446 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5447 } 5448 5449 /// Return true if "icmp Pred LHS RHS" is always true. 5450 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5451 const Value *RHS, const DataLayout &DL, 5452 unsigned Depth) { 5453 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5454 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5455 return true; 5456 5457 switch (Pred) { 5458 default: 5459 return false; 5460 5461 case CmpInst::ICMP_SLE: { 5462 const APInt *C; 5463 5464 // LHS s<= LHS +_{nsw} C if C >= 0 5465 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5466 return !C->isNegative(); 5467 return false; 5468 } 5469 5470 case CmpInst::ICMP_ULE: { 5471 const APInt *C; 5472 5473 // LHS u<= LHS +_{nuw} C for any C 5474 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5475 return true; 5476 5477 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5478 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5479 const Value *&X, 5480 const APInt *&CA, const APInt *&CB) { 5481 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5482 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5483 return true; 5484 5485 // If X & C == 0 then (X | C) == X +_{nuw} C 5486 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5487 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5488 KnownBits Known(CA->getBitWidth()); 5489 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5490 /*CxtI*/ nullptr, /*DT*/ nullptr); 5491 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5492 return true; 5493 } 5494 5495 return false; 5496 }; 5497 5498 const Value *X; 5499 const APInt *CLHS, *CRHS; 5500 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5501 return CLHS->ule(*CRHS); 5502 5503 return false; 5504 } 5505 } 5506 } 5507 5508 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5509 /// ALHS ARHS" is true. Otherwise, return None. 5510 static Optional<bool> 5511 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5512 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5513 const DataLayout &DL, unsigned Depth) { 5514 switch (Pred) { 5515 default: 5516 return None; 5517 5518 case CmpInst::ICMP_SLT: 5519 case CmpInst::ICMP_SLE: 5520 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5521 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5522 return true; 5523 return None; 5524 5525 case CmpInst::ICMP_ULT: 5526 case CmpInst::ICMP_ULE: 5527 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5528 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5529 return true; 5530 return None; 5531 } 5532 } 5533 5534 /// Return true if the operands of the two compares match. IsSwappedOps is true 5535 /// when the operands match, but are swapped. 5536 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5537 const Value *BLHS, const Value *BRHS, 5538 bool &IsSwappedOps) { 5539 5540 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5541 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5542 return IsMatchingOps || IsSwappedOps; 5543 } 5544 5545 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5546 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5547 /// Otherwise, return None if we can't infer anything. 5548 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5549 CmpInst::Predicate BPred, 5550 bool AreSwappedOps) { 5551 // Canonicalize the predicate as if the operands were not commuted. 5552 if (AreSwappedOps) 5553 BPred = ICmpInst::getSwappedPredicate(BPred); 5554 5555 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5556 return true; 5557 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5558 return false; 5559 5560 return None; 5561 } 5562 5563 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5564 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5565 /// Otherwise, return None if we can't infer anything. 5566 static Optional<bool> 5567 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5568 const ConstantInt *C1, 5569 CmpInst::Predicate BPred, 5570 const ConstantInt *C2) { 5571 ConstantRange DomCR = 5572 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5573 ConstantRange CR = 5574 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5575 ConstantRange Intersection = DomCR.intersectWith(CR); 5576 ConstantRange Difference = DomCR.difference(CR); 5577 if (Intersection.isEmptySet()) 5578 return false; 5579 if (Difference.isEmptySet()) 5580 return true; 5581 return None; 5582 } 5583 5584 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5585 /// false. Otherwise, return None if we can't infer anything. 5586 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5587 const ICmpInst *RHS, 5588 const DataLayout &DL, bool LHSIsTrue, 5589 unsigned Depth) { 5590 Value *ALHS = LHS->getOperand(0); 5591 Value *ARHS = LHS->getOperand(1); 5592 // The rest of the logic assumes the LHS condition is true. If that's not the 5593 // case, invert the predicate to make it so. 5594 ICmpInst::Predicate APred = 5595 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5596 5597 Value *BLHS = RHS->getOperand(0); 5598 Value *BRHS = RHS->getOperand(1); 5599 ICmpInst::Predicate BPred = RHS->getPredicate(); 5600 5601 // Can we infer anything when the two compares have matching operands? 5602 bool AreSwappedOps; 5603 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5604 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5605 APred, BPred, AreSwappedOps)) 5606 return Implication; 5607 // No amount of additional analysis will infer the second condition, so 5608 // early exit. 5609 return None; 5610 } 5611 5612 // Can we infer anything when the LHS operands match and the RHS operands are 5613 // constants (not necessarily matching)? 5614 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5615 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5616 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5617 return Implication; 5618 // No amount of additional analysis will infer the second condition, so 5619 // early exit. 5620 return None; 5621 } 5622 5623 if (APred == BPred) 5624 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5625 return None; 5626 } 5627 5628 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5629 /// false. Otherwise, return None if we can't infer anything. We expect the 5630 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5631 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5632 const ICmpInst *RHS, 5633 const DataLayout &DL, bool LHSIsTrue, 5634 unsigned Depth) { 5635 // The LHS must be an 'or' or an 'and' instruction. 5636 assert((LHS->getOpcode() == Instruction::And || 5637 LHS->getOpcode() == Instruction::Or) && 5638 "Expected LHS to be 'and' or 'or'."); 5639 5640 assert(Depth <= MaxDepth && "Hit recursion limit"); 5641 5642 // If the result of an 'or' is false, then we know both legs of the 'or' are 5643 // false. Similarly, if the result of an 'and' is true, then we know both 5644 // legs of the 'and' are true. 5645 Value *ALHS, *ARHS; 5646 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5647 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5648 // FIXME: Make this non-recursion. 5649 if (Optional<bool> Implication = 5650 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5651 return Implication; 5652 if (Optional<bool> Implication = 5653 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5654 return Implication; 5655 return None; 5656 } 5657 return None; 5658 } 5659 5660 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5661 const DataLayout &DL, bool LHSIsTrue, 5662 unsigned Depth) { 5663 // Bail out when we hit the limit. 5664 if (Depth == MaxDepth) 5665 return None; 5666 5667 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5668 // example. 5669 if (LHS->getType() != RHS->getType()) 5670 return None; 5671 5672 Type *OpTy = LHS->getType(); 5673 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5674 5675 // LHS ==> RHS by definition 5676 if (LHS == RHS) 5677 return LHSIsTrue; 5678 5679 // FIXME: Extending the code below to handle vectors. 5680 if (OpTy->isVectorTy()) 5681 return None; 5682 5683 assert(OpTy->isIntegerTy(1) && "implied by above"); 5684 5685 // Both LHS and RHS are icmps. 5686 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5687 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5688 if (LHSCmp && RHSCmp) 5689 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5690 5691 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5692 // an icmp. FIXME: Add support for and/or on the RHS. 5693 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5694 if (LHSBO && RHSCmp) { 5695 if ((LHSBO->getOpcode() == Instruction::And || 5696 LHSBO->getOpcode() == Instruction::Or)) 5697 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5698 } 5699 return None; 5700 } 5701 5702 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5703 const Instruction *ContextI, 5704 const DataLayout &DL) { 5705 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5706 if (!ContextI || !ContextI->getParent()) 5707 return None; 5708 5709 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5710 // dominator tree (eg, from a SimplifyQuery) instead? 5711 const BasicBlock *ContextBB = ContextI->getParent(); 5712 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5713 if (!PredBB) 5714 return None; 5715 5716 // We need a conditional branch in the predecessor. 5717 Value *PredCond; 5718 BasicBlock *TrueBB, *FalseBB; 5719 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5720 return None; 5721 5722 // The branch should get simplified. Don't bother simplifying this condition. 5723 if (TrueBB == FalseBB) 5724 return None; 5725 5726 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5727 "Predecessor block does not point to successor?"); 5728 5729 // Is this condition implied by the predecessor condition? 5730 bool CondIsTrue = TrueBB == ContextBB; 5731 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5732 } 5733 5734 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5735 APInt &Upper, const InstrInfoQuery &IIQ) { 5736 unsigned Width = Lower.getBitWidth(); 5737 const APInt *C; 5738 switch (BO.getOpcode()) { 5739 case Instruction::Add: 5740 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5741 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5742 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5743 // 'add nuw x, C' produces [C, UINT_MAX]. 5744 Lower = *C; 5745 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5746 if (C->isNegative()) { 5747 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5748 Lower = APInt::getSignedMinValue(Width); 5749 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5750 } else { 5751 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5752 Lower = APInt::getSignedMinValue(Width) + *C; 5753 Upper = APInt::getSignedMaxValue(Width) + 1; 5754 } 5755 } 5756 } 5757 break; 5758 5759 case Instruction::And: 5760 if (match(BO.getOperand(1), m_APInt(C))) 5761 // 'and x, C' produces [0, C]. 5762 Upper = *C + 1; 5763 break; 5764 5765 case Instruction::Or: 5766 if (match(BO.getOperand(1), m_APInt(C))) 5767 // 'or x, C' produces [C, UINT_MAX]. 5768 Lower = *C; 5769 break; 5770 5771 case Instruction::AShr: 5772 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5773 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5774 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5775 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5776 } else if (match(BO.getOperand(0), m_APInt(C))) { 5777 unsigned ShiftAmount = Width - 1; 5778 if (!C->isNullValue() && IIQ.isExact(&BO)) 5779 ShiftAmount = C->countTrailingZeros(); 5780 if (C->isNegative()) { 5781 // 'ashr C, x' produces [C, C >> (Width-1)] 5782 Lower = *C; 5783 Upper = C->ashr(ShiftAmount) + 1; 5784 } else { 5785 // 'ashr C, x' produces [C >> (Width-1), C] 5786 Lower = C->ashr(ShiftAmount); 5787 Upper = *C + 1; 5788 } 5789 } 5790 break; 5791 5792 case Instruction::LShr: 5793 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5794 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5795 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5796 } else if (match(BO.getOperand(0), m_APInt(C))) { 5797 // 'lshr C, x' produces [C >> (Width-1), C]. 5798 unsigned ShiftAmount = Width - 1; 5799 if (!C->isNullValue() && IIQ.isExact(&BO)) 5800 ShiftAmount = C->countTrailingZeros(); 5801 Lower = C->lshr(ShiftAmount); 5802 Upper = *C + 1; 5803 } 5804 break; 5805 5806 case Instruction::Shl: 5807 if (match(BO.getOperand(0), m_APInt(C))) { 5808 if (IIQ.hasNoUnsignedWrap(&BO)) { 5809 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5810 Lower = *C; 5811 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5812 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5813 if (C->isNegative()) { 5814 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5815 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5816 Lower = C->shl(ShiftAmount); 5817 Upper = *C + 1; 5818 } else { 5819 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5820 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5821 Lower = *C; 5822 Upper = C->shl(ShiftAmount) + 1; 5823 } 5824 } 5825 } 5826 break; 5827 5828 case Instruction::SDiv: 5829 if (match(BO.getOperand(1), m_APInt(C))) { 5830 APInt IntMin = APInt::getSignedMinValue(Width); 5831 APInt IntMax = APInt::getSignedMaxValue(Width); 5832 if (C->isAllOnesValue()) { 5833 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5834 // where C != -1 and C != 0 and C != 1 5835 Lower = IntMin + 1; 5836 Upper = IntMax + 1; 5837 } else if (C->countLeadingZeros() < Width - 1) { 5838 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5839 // where C != -1 and C != 0 and C != 1 5840 Lower = IntMin.sdiv(*C); 5841 Upper = IntMax.sdiv(*C); 5842 if (Lower.sgt(Upper)) 5843 std::swap(Lower, Upper); 5844 Upper = Upper + 1; 5845 assert(Upper != Lower && "Upper part of range has wrapped!"); 5846 } 5847 } else if (match(BO.getOperand(0), m_APInt(C))) { 5848 if (C->isMinSignedValue()) { 5849 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5850 Lower = *C; 5851 Upper = Lower.lshr(1) + 1; 5852 } else { 5853 // 'sdiv C, x' produces [-|C|, |C|]. 5854 Upper = C->abs() + 1; 5855 Lower = (-Upper) + 1; 5856 } 5857 } 5858 break; 5859 5860 case Instruction::UDiv: 5861 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5862 // 'udiv x, C' produces [0, UINT_MAX / C]. 5863 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5864 } else if (match(BO.getOperand(0), m_APInt(C))) { 5865 // 'udiv C, x' produces [0, C]. 5866 Upper = *C + 1; 5867 } 5868 break; 5869 5870 case Instruction::SRem: 5871 if (match(BO.getOperand(1), m_APInt(C))) { 5872 // 'srem x, C' produces (-|C|, |C|). 5873 Upper = C->abs(); 5874 Lower = (-Upper) + 1; 5875 } 5876 break; 5877 5878 case Instruction::URem: 5879 if (match(BO.getOperand(1), m_APInt(C))) 5880 // 'urem x, C' produces [0, C). 5881 Upper = *C; 5882 break; 5883 5884 default: 5885 break; 5886 } 5887 } 5888 5889 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5890 APInt &Upper) { 5891 unsigned Width = Lower.getBitWidth(); 5892 const APInt *C; 5893 switch (II.getIntrinsicID()) { 5894 case Intrinsic::uadd_sat: 5895 // uadd.sat(x, C) produces [C, UINT_MAX]. 5896 if (match(II.getOperand(0), m_APInt(C)) || 5897 match(II.getOperand(1), m_APInt(C))) 5898 Lower = *C; 5899 break; 5900 case Intrinsic::sadd_sat: 5901 if (match(II.getOperand(0), m_APInt(C)) || 5902 match(II.getOperand(1), m_APInt(C))) { 5903 if (C->isNegative()) { 5904 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5905 Lower = APInt::getSignedMinValue(Width); 5906 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5907 } else { 5908 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5909 Lower = APInt::getSignedMinValue(Width) + *C; 5910 Upper = APInt::getSignedMaxValue(Width) + 1; 5911 } 5912 } 5913 break; 5914 case Intrinsic::usub_sat: 5915 // usub.sat(C, x) produces [0, C]. 5916 if (match(II.getOperand(0), m_APInt(C))) 5917 Upper = *C + 1; 5918 // usub.sat(x, C) produces [0, UINT_MAX - C]. 5919 else if (match(II.getOperand(1), m_APInt(C))) 5920 Upper = APInt::getMaxValue(Width) - *C + 1; 5921 break; 5922 case Intrinsic::ssub_sat: 5923 if (match(II.getOperand(0), m_APInt(C))) { 5924 if (C->isNegative()) { 5925 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 5926 Lower = APInt::getSignedMinValue(Width); 5927 Upper = *C - APInt::getSignedMinValue(Width) + 1; 5928 } else { 5929 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 5930 Lower = *C - APInt::getSignedMaxValue(Width); 5931 Upper = APInt::getSignedMaxValue(Width) + 1; 5932 } 5933 } else if (match(II.getOperand(1), m_APInt(C))) { 5934 if (C->isNegative()) { 5935 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 5936 Lower = APInt::getSignedMinValue(Width) - *C; 5937 Upper = APInt::getSignedMaxValue(Width) + 1; 5938 } else { 5939 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 5940 Lower = APInt::getSignedMinValue(Width); 5941 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 5942 } 5943 } 5944 break; 5945 default: 5946 break; 5947 } 5948 } 5949 5950 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 5951 APInt &Upper, const InstrInfoQuery &IIQ) { 5952 const Value *LHS = nullptr, *RHS = nullptr; 5953 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 5954 if (R.Flavor == SPF_UNKNOWN) 5955 return; 5956 5957 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 5958 5959 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 5960 // If the negation part of the abs (in RHS) has the NSW flag, 5961 // then the result of abs(X) is [0..SIGNED_MAX], 5962 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 5963 Lower = APInt::getNullValue(BitWidth); 5964 if (match(RHS, m_Neg(m_Specific(LHS))) && 5965 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 5966 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5967 else 5968 Upper = APInt::getSignedMinValue(BitWidth) + 1; 5969 return; 5970 } 5971 5972 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 5973 // The result of -abs(X) is <= 0. 5974 Lower = APInt::getSignedMinValue(BitWidth); 5975 Upper = APInt(BitWidth, 1); 5976 return; 5977 } 5978 5979 const APInt *C; 5980 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 5981 return; 5982 5983 switch (R.Flavor) { 5984 case SPF_UMIN: 5985 Upper = *C + 1; 5986 break; 5987 case SPF_UMAX: 5988 Lower = *C; 5989 break; 5990 case SPF_SMIN: 5991 Lower = APInt::getSignedMinValue(BitWidth); 5992 Upper = *C + 1; 5993 break; 5994 case SPF_SMAX: 5995 Lower = *C; 5996 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 5997 break; 5998 default: 5999 break; 6000 } 6001 } 6002 6003 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6004 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6005 6006 const APInt *C; 6007 if (match(V, m_APInt(C))) 6008 return ConstantRange(*C); 6009 6010 InstrInfoQuery IIQ(UseInstrInfo); 6011 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6012 APInt Lower = APInt(BitWidth, 0); 6013 APInt Upper = APInt(BitWidth, 0); 6014 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6015 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6016 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6017 setLimitsForIntrinsic(*II, Lower, Upper); 6018 else if (auto *SI = dyn_cast<SelectInst>(V)) 6019 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6020 6021 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6022 6023 if (auto *I = dyn_cast<Instruction>(V)) 6024 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6025 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6026 6027 return CR; 6028 } 6029 6030 static Optional<int64_t> 6031 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6032 // Skip over the first indices. 6033 gep_type_iterator GTI = gep_type_begin(GEP); 6034 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6035 /*skip along*/; 6036 6037 // Compute the offset implied by the rest of the indices. 6038 int64_t Offset = 0; 6039 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6040 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6041 if (!OpC) 6042 return None; 6043 if (OpC->isZero()) 6044 continue; // No offset. 6045 6046 // Handle struct indices, which add their field offset to the pointer. 6047 if (StructType *STy = GTI.getStructTypeOrNull()) { 6048 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6049 continue; 6050 } 6051 6052 // Otherwise, we have a sequential type like an array or vector. Multiply 6053 // the index by the ElementSize. 6054 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6055 Offset += Size * OpC->getSExtValue(); 6056 } 6057 6058 return Offset; 6059 } 6060 6061 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6062 const DataLayout &DL) { 6063 Ptr1 = Ptr1->stripPointerCasts(); 6064 Ptr2 = Ptr2->stripPointerCasts(); 6065 6066 // Handle the trivial case first. 6067 if (Ptr1 == Ptr2) { 6068 return 0; 6069 } 6070 6071 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6072 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6073 6074 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6075 // as in "P" and "gep P, 1". 6076 // Also do this iteratively to handle the the following case: 6077 // Ptr_t1 = GEP Ptr1, c1 6078 // Ptr_t2 = GEP Ptr_t1, c2 6079 // Ptr2 = GEP Ptr_t2, c3 6080 // where we will return c1+c2+c3. 6081 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6082 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6083 // are the same, and return the difference between offsets. 6084 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6085 const Value *Ptr) -> Optional<int64_t> { 6086 const GEPOperator *GEP_T = GEP; 6087 int64_t OffsetVal = 0; 6088 bool HasSameBase = false; 6089 while (GEP_T) { 6090 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6091 if (!Offset) 6092 return None; 6093 OffsetVal += *Offset; 6094 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6095 if (Op0 == Ptr) { 6096 HasSameBase = true; 6097 break; 6098 } 6099 GEP_T = dyn_cast<GEPOperator>(Op0); 6100 } 6101 if (!HasSameBase) 6102 return None; 6103 return OffsetVal; 6104 }; 6105 6106 if (GEP1) { 6107 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6108 if (Offset) 6109 return -*Offset; 6110 } 6111 if (GEP2) { 6112 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6113 if (Offset) 6114 return Offset; 6115 } 6116 6117 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6118 // base. After that base, they may have some number of common (and 6119 // potentially variable) indices. After that they handle some constant 6120 // offset, which determines their offset from each other. At this point, we 6121 // handle no other case. 6122 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6123 return None; 6124 6125 // Skip any common indices and track the GEP types. 6126 unsigned Idx = 1; 6127 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6128 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6129 break; 6130 6131 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6132 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6133 if (!Offset1 || !Offset2) 6134 return None; 6135 return *Offset2 - *Offset1; 6136 } 6137