1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getPointerTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 unsigned NumExcluded = 0; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 126 127 Query(const Query &Q, const Value *NewExcl) 128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 129 NumExcluded(Q.NumExcluded) { 130 Excluded = Q.Excluded; 131 Excluded[NumExcluded++] = NewExcl; 132 assert(NumExcluded <= Excluded.size()); 133 } 134 135 bool isExcluded(const Value *Value) const { 136 if (NumExcluded == 0) 137 return false; 138 auto End = Excluded.begin() + NumExcluded; 139 return std::find(Excluded.begin(), End, Value) != End; 140 } 141 }; 142 143 } // end anonymous namespace 144 145 // Given the provided Value and, potentially, a context instruction, return 146 // the preferred context instruction (if any). 147 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 return nullptr; 159 } 160 161 static void computeKnownBits(const Value *V, KnownBits &Known, 162 unsigned Depth, const Query &Q); 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, 168 OptimizationRemarkEmitter *ORE) { 169 ::computeKnownBits(V, Known, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 171 } 172 173 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 174 const Query &Q); 175 176 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT, 180 OptimizationRemarkEmitter *ORE) { 181 return ::computeKnownBits(V, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 183 } 184 185 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 186 const DataLayout &DL, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 assert(LHS->getType() == RHS->getType() && 190 "LHS and RHS should have the same type"); 191 assert(LHS->getType()->isIntOrIntVectorTy() && 192 "LHS and RHS should be integers"); 193 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 194 KnownBits LHSKnown(IT->getBitWidth()); 195 KnownBits RHSKnown(IT->getBitWidth()); 196 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 197 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 198 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 199 } 200 201 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 202 for (const User *U : CxtI->users()) { 203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 204 if (IC->isEquality()) 205 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 206 if (C->isNullValue()) 207 continue; 208 return false; 209 } 210 return true; 211 } 212 213 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 214 const Query &Q); 215 216 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 217 bool OrZero, 218 unsigned Depth, AssumptionCache *AC, 219 const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 222 Query(DL, AC, safeCxtI(V, CxtI), DT)); 223 } 224 225 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 226 227 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 228 AssumptionCache *AC, const Instruction *CxtI, 229 const DominatorTree *DT) { 230 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 231 } 232 233 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 234 unsigned Depth, 235 AssumptionCache *AC, const Instruction *CxtI, 236 const DominatorTree *DT) { 237 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 238 return Known.isNonNegative(); 239 } 240 241 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 242 AssumptionCache *AC, const Instruction *CxtI, 243 const DominatorTree *DT) { 244 if (auto *CI = dyn_cast<ConstantInt>(V)) 245 return CI->getValue().isStrictlyPositive(); 246 247 // TODO: We'd doing two recursive queries here. We should factor this such 248 // that only a single query is needed. 249 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 250 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 251 } 252 253 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 254 AssumptionCache *AC, const Instruction *CxtI, 255 const DominatorTree *DT) { 256 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 257 return Known.isNegative(); 258 } 259 260 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 261 262 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 263 const DataLayout &DL, 264 AssumptionCache *AC, const Instruction *CxtI, 265 const DominatorTree *DT) { 266 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 267 safeCxtI(V1, safeCxtI(V2, CxtI)), 268 DT)); 269 } 270 271 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 272 const Query &Q); 273 274 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 275 const DataLayout &DL, 276 unsigned Depth, AssumptionCache *AC, 277 const Instruction *CxtI, const DominatorTree *DT) { 278 return ::MaskedValueIsZero(V, Mask, Depth, 279 Query(DL, AC, safeCxtI(V, CxtI), DT)); 280 } 281 282 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 283 const Query &Q); 284 285 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 286 unsigned Depth, AssumptionCache *AC, 287 const Instruction *CxtI, 288 const DominatorTree *DT) { 289 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 290 } 291 292 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 293 bool NSW, 294 KnownBits &KnownOut, KnownBits &Known2, 295 unsigned Depth, const Query &Q) { 296 unsigned BitWidth = KnownOut.getBitWidth(); 297 298 // If an initial sequence of bits in the result is not needed, the 299 // corresponding bits in the operands are not needed. 300 KnownBits LHSKnown(BitWidth); 301 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 302 computeKnownBits(Op1, Known2, Depth + 1, Q); 303 304 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 305 } 306 307 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 308 KnownBits &Known, KnownBits &Known2, 309 unsigned Depth, const Query &Q) { 310 unsigned BitWidth = Known.getBitWidth(); 311 computeKnownBits(Op1, Known, Depth + 1, Q); 312 computeKnownBits(Op0, Known2, Depth + 1, Q); 313 314 bool isKnownNegative = false; 315 bool isKnownNonNegative = false; 316 // If the multiplication is known not to overflow, compute the sign bit. 317 if (NSW) { 318 if (Op0 == Op1) { 319 // The product of a number with itself is non-negative. 320 isKnownNonNegative = true; 321 } else { 322 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 323 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 324 bool isKnownNegativeOp1 = Known.isNegative(); 325 bool isKnownNegativeOp0 = Known2.isNegative(); 326 // The product of two numbers with the same sign is non-negative. 327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 329 // The product of a negative number and a non-negative number is either 330 // negative or zero. 331 if (!isKnownNonNegative) 332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 333 isKnownNonZero(Op0, Depth, Q)) || 334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 335 isKnownNonZero(Op1, Depth, Q)); 336 } 337 } 338 339 assert(!Known.hasConflict() && !Known2.hasConflict()); 340 // Compute a conservative estimate for high known-0 bits. 341 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 342 Known2.countMinLeadingZeros(), 343 BitWidth) - BitWidth; 344 LeadZ = std::min(LeadZ, BitWidth); 345 346 // The result of the bottom bits of an integer multiply can be 347 // inferred by looking at the bottom bits of both operands and 348 // multiplying them together. 349 // We can infer at least the minimum number of known trailing bits 350 // of both operands. Depending on number of trailing zeros, we can 351 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 352 // a and b are divisible by m and n respectively. 353 // We then calculate how many of those bits are inferrable and set 354 // the output. For example, the i8 mul: 355 // a = XXXX1100 (12) 356 // b = XXXX1110 (14) 357 // We know the bottom 3 bits are zero since the first can be divided by 358 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 359 // Applying the multiplication to the trimmed arguments gets: 360 // XX11 (3) 361 // X111 (7) 362 // ------- 363 // XX11 364 // XX11 365 // XX11 366 // XX11 367 // ------- 368 // XXXXX01 369 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 370 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 371 // The proof for this can be described as: 372 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 373 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 374 // umin(countTrailingZeros(C2), C6) + 375 // umin(C5 - umin(countTrailingZeros(C1), C5), 376 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 377 // %aa = shl i8 %a, C5 378 // %bb = shl i8 %b, C6 379 // %aaa = or i8 %aa, C1 380 // %bbb = or i8 %bb, C2 381 // %mul = mul i8 %aaa, %bbb 382 // %mask = and i8 %mul, C7 383 // => 384 // %mask = i8 ((C1*C2)&C7) 385 // Where C5, C6 describe the known bits of %a, %b 386 // C1, C2 describe the known bottom bits of %a, %b. 387 // C7 describes the mask of the known bits of the result. 388 APInt Bottom0 = Known.One; 389 APInt Bottom1 = Known2.One; 390 391 // How many times we'd be able to divide each argument by 2 (shr by 1). 392 // This gives us the number of trailing zeros on the multiplication result. 393 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 394 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 395 unsigned TrailZero0 = Known.countMinTrailingZeros(); 396 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 397 unsigned TrailZ = TrailZero0 + TrailZero1; 398 399 // Figure out the fewest known-bits operand. 400 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 401 TrailBitsKnown1 - TrailZero1); 402 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 403 404 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 405 Bottom1.getLoBits(TrailBitsKnown1); 406 407 Known.resetAll(); 408 Known.Zero.setHighBits(LeadZ); 409 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 410 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 411 412 // Only make use of no-wrap flags if we failed to compute the sign bit 413 // directly. This matters if the multiplication always overflows, in 414 // which case we prefer to follow the result of the direct computation, 415 // though as the program is invoking undefined behaviour we can choose 416 // whatever we like here. 417 if (isKnownNonNegative && !Known.isNegative()) 418 Known.makeNonNegative(); 419 else if (isKnownNegative && !Known.isNonNegative()) 420 Known.makeNegative(); 421 } 422 423 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 424 KnownBits &Known) { 425 unsigned BitWidth = Known.getBitWidth(); 426 unsigned NumRanges = Ranges.getNumOperands() / 2; 427 assert(NumRanges >= 1); 428 429 Known.Zero.setAllBits(); 430 Known.One.setAllBits(); 431 432 for (unsigned i = 0; i < NumRanges; ++i) { 433 ConstantInt *Lower = 434 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 435 ConstantInt *Upper = 436 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 437 ConstantRange Range(Lower->getValue(), Upper->getValue()); 438 439 // The first CommonPrefixBits of all values in Range are equal. 440 unsigned CommonPrefixBits = 441 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 442 443 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 444 Known.One &= Range.getUnsignedMax() & Mask; 445 Known.Zero &= ~Range.getUnsignedMax() & Mask; 446 } 447 } 448 449 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 450 SmallVector<const Value *, 16> WorkSet(1, I); 451 SmallPtrSet<const Value *, 32> Visited; 452 SmallPtrSet<const Value *, 16> EphValues; 453 454 // The instruction defining an assumption's condition itself is always 455 // considered ephemeral to that assumption (even if it has other 456 // non-ephemeral users). See r246696's test case for an example. 457 if (is_contained(I->operands(), E)) 458 return true; 459 460 while (!WorkSet.empty()) { 461 const Value *V = WorkSet.pop_back_val(); 462 if (!Visited.insert(V).second) 463 continue; 464 465 // If all uses of this value are ephemeral, then so is this value. 466 if (llvm::all_of(V->users(), [&](const User *U) { 467 return EphValues.count(U); 468 })) { 469 if (V == E) 470 return true; 471 472 if (V == I || isSafeToSpeculativelyExecute(V)) { 473 EphValues.insert(V); 474 if (const User *U = dyn_cast<User>(V)) 475 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 476 J != JE; ++J) 477 WorkSet.push_back(*J); 478 } 479 } 480 } 481 482 return false; 483 } 484 485 // Is this an intrinsic that cannot be speculated but also cannot trap? 486 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 487 if (const CallInst *CI = dyn_cast<CallInst>(I)) 488 if (Function *F = CI->getCalledFunction()) 489 switch (F->getIntrinsicID()) { 490 default: break; 491 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 492 case Intrinsic::assume: 493 case Intrinsic::sideeffect: 494 case Intrinsic::dbg_declare: 495 case Intrinsic::dbg_value: 496 case Intrinsic::invariant_start: 497 case Intrinsic::invariant_end: 498 case Intrinsic::lifetime_start: 499 case Intrinsic::lifetime_end: 500 case Intrinsic::objectsize: 501 case Intrinsic::ptr_annotation: 502 case Intrinsic::var_annotation: 503 return true; 504 } 505 506 return false; 507 } 508 509 bool llvm::isValidAssumeForContext(const Instruction *Inv, 510 const Instruction *CxtI, 511 const DominatorTree *DT) { 512 // There are two restrictions on the use of an assume: 513 // 1. The assume must dominate the context (or the control flow must 514 // reach the assume whenever it reaches the context). 515 // 2. The context must not be in the assume's set of ephemeral values 516 // (otherwise we will use the assume to prove that the condition 517 // feeding the assume is trivially true, thus causing the removal of 518 // the assume). 519 520 if (DT) { 521 if (DT->dominates(Inv, CxtI)) 522 return true; 523 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 524 // We don't have a DT, but this trivially dominates. 525 return true; 526 } 527 528 // With or without a DT, the only remaining case we will check is if the 529 // instructions are in the same BB. Give up if that is not the case. 530 if (Inv->getParent() != CxtI->getParent()) 531 return false; 532 533 // If we have a dom tree, then we now know that the assume doens't dominate 534 // the other instruction. If we don't have a dom tree then we can check if 535 // the assume is first in the BB. 536 if (!DT) { 537 // Search forward from the assume until we reach the context (or the end 538 // of the block); the common case is that the assume will come first. 539 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 540 IE = Inv->getParent()->end(); I != IE; ++I) 541 if (&*I == CxtI) 542 return true; 543 } 544 545 // The context comes first, but they're both in the same block. Make sure 546 // there is nothing in between that might interrupt the control flow. 547 for (BasicBlock::const_iterator I = 548 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 549 I != IE; ++I) 550 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 551 return false; 552 553 return !isEphemeralValueOf(Inv, CxtI); 554 } 555 556 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 557 unsigned Depth, const Query &Q) { 558 // Use of assumptions is context-sensitive. If we don't have a context, we 559 // cannot use them! 560 if (!Q.AC || !Q.CxtI) 561 return; 562 563 unsigned BitWidth = Known.getBitWidth(); 564 565 // Note that the patterns below need to be kept in sync with the code 566 // in AssumptionCache::updateAffectedValues. 567 568 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 569 if (!AssumeVH) 570 continue; 571 CallInst *I = cast<CallInst>(AssumeVH); 572 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 573 "Got assumption for the wrong function!"); 574 if (Q.isExcluded(I)) 575 continue; 576 577 // Warning: This loop can end up being somewhat performance sensetive. 578 // We're running this loop for once for each value queried resulting in a 579 // runtime of ~O(#assumes * #values). 580 581 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 582 "must be an assume intrinsic"); 583 584 Value *Arg = I->getArgOperand(0); 585 586 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 587 assert(BitWidth == 1 && "assume operand is not i1?"); 588 Known.setAllOnes(); 589 return; 590 } 591 if (match(Arg, m_Not(m_Specific(V))) && 592 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 593 assert(BitWidth == 1 && "assume operand is not i1?"); 594 Known.setAllZero(); 595 return; 596 } 597 598 // The remaining tests are all recursive, so bail out if we hit the limit. 599 if (Depth == MaxDepth) 600 continue; 601 602 Value *A, *B; 603 auto m_V = m_CombineOr(m_Specific(V), 604 m_CombineOr(m_PtrToInt(m_Specific(V)), 605 m_BitCast(m_Specific(V)))); 606 607 CmpInst::Predicate Pred; 608 uint64_t C; 609 // assume(v = a) 610 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 611 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 612 KnownBits RHSKnown(BitWidth); 613 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 614 Known.Zero |= RHSKnown.Zero; 615 Known.One |= RHSKnown.One; 616 // assume(v & b = a) 617 } else if (match(Arg, 618 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 619 Pred == ICmpInst::ICMP_EQ && 620 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 KnownBits RHSKnown(BitWidth); 622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 623 KnownBits MaskKnown(BitWidth); 624 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 625 626 // For those bits in the mask that are known to be one, we can propagate 627 // known bits from the RHS to V. 628 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 629 Known.One |= RHSKnown.One & MaskKnown.One; 630 // assume(~(v & b) = a) 631 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 632 m_Value(A))) && 633 Pred == ICmpInst::ICMP_EQ && 634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 635 KnownBits RHSKnown(BitWidth); 636 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 637 KnownBits MaskKnown(BitWidth); 638 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 639 640 // For those bits in the mask that are known to be one, we can propagate 641 // inverted known bits from the RHS to V. 642 Known.Zero |= RHSKnown.One & MaskKnown.One; 643 Known.One |= RHSKnown.Zero & MaskKnown.One; 644 // assume(v | b = a) 645 } else if (match(Arg, 646 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 647 Pred == ICmpInst::ICMP_EQ && 648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 649 KnownBits RHSKnown(BitWidth); 650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 651 KnownBits BKnown(BitWidth); 652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 653 654 // For those bits in B that are known to be zero, we can propagate known 655 // bits from the RHS to V. 656 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 657 Known.One |= RHSKnown.One & BKnown.Zero; 658 // assume(~(v | b) = a) 659 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 660 m_Value(A))) && 661 Pred == ICmpInst::ICMP_EQ && 662 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 663 KnownBits RHSKnown(BitWidth); 664 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 665 KnownBits BKnown(BitWidth); 666 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 667 668 // For those bits in B that are known to be zero, we can propagate 669 // inverted known bits from the RHS to V. 670 Known.Zero |= RHSKnown.One & BKnown.Zero; 671 Known.One |= RHSKnown.Zero & BKnown.Zero; 672 // assume(v ^ b = a) 673 } else if (match(Arg, 674 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 675 Pred == ICmpInst::ICMP_EQ && 676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 677 KnownBits RHSKnown(BitWidth); 678 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 679 KnownBits BKnown(BitWidth); 680 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 681 682 // For those bits in B that are known to be zero, we can propagate known 683 // bits from the RHS to V. For those bits in B that are known to be one, 684 // we can propagate inverted known bits from the RHS to V. 685 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 686 Known.One |= RHSKnown.One & BKnown.Zero; 687 Known.Zero |= RHSKnown.One & BKnown.One; 688 Known.One |= RHSKnown.Zero & BKnown.One; 689 // assume(~(v ^ b) = a) 690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 691 m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 KnownBits RHSKnown(BitWidth); 695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 696 KnownBits BKnown(BitWidth); 697 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 698 699 // For those bits in B that are known to be zero, we can propagate 700 // inverted known bits from the RHS to V. For those bits in B that are 701 // known to be one, we can propagate known bits from the RHS to V. 702 Known.Zero |= RHSKnown.One & BKnown.Zero; 703 Known.One |= RHSKnown.Zero & BKnown.Zero; 704 Known.Zero |= RHSKnown.Zero & BKnown.One; 705 Known.One |= RHSKnown.One & BKnown.One; 706 // assume(v << c = a) 707 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 708 m_Value(A))) && 709 Pred == ICmpInst::ICMP_EQ && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 711 C < BitWidth) { 712 KnownBits RHSKnown(BitWidth); 713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 714 // For those bits in RHS that are known, we can propagate them to known 715 // bits in V shifted to the right by C. 716 RHSKnown.Zero.lshrInPlace(C); 717 Known.Zero |= RHSKnown.Zero; 718 RHSKnown.One.lshrInPlace(C); 719 Known.One |= RHSKnown.One; 720 // assume(~(v << c) = a) 721 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 722 m_Value(A))) && 723 Pred == ICmpInst::ICMP_EQ && 724 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 725 C < BitWidth) { 726 KnownBits RHSKnown(BitWidth); 727 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 728 // For those bits in RHS that are known, we can propagate them inverted 729 // to known bits in V shifted to the right by C. 730 RHSKnown.One.lshrInPlace(C); 731 Known.Zero |= RHSKnown.One; 732 RHSKnown.Zero.lshrInPlace(C); 733 Known.One |= RHSKnown.Zero; 734 // assume(v >> c = a) 735 } else if (match(Arg, 736 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 737 m_Value(A))) && 738 Pred == ICmpInst::ICMP_EQ && 739 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 740 C < BitWidth) { 741 KnownBits RHSKnown(BitWidth); 742 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 743 // For those bits in RHS that are known, we can propagate them to known 744 // bits in V shifted to the right by C. 745 Known.Zero |= RHSKnown.Zero << C; 746 Known.One |= RHSKnown.One << C; 747 // assume(~(v >> c) = a) 748 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 749 m_Value(A))) && 750 Pred == ICmpInst::ICMP_EQ && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 752 C < BitWidth) { 753 KnownBits RHSKnown(BitWidth); 754 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 755 // For those bits in RHS that are known, we can propagate them inverted 756 // to known bits in V shifted to the right by C. 757 Known.Zero |= RHSKnown.One << C; 758 Known.One |= RHSKnown.Zero << C; 759 // assume(v >=_s c) where c is non-negative 760 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 761 Pred == ICmpInst::ICMP_SGE && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown(BitWidth); 764 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 765 766 if (RHSKnown.isNonNegative()) { 767 // We know that the sign bit is zero. 768 Known.makeNonNegative(); 769 } 770 // assume(v >_s c) where c is at least -1. 771 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 772 Pred == ICmpInst::ICMP_SGT && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown(BitWidth); 775 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 776 777 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 778 // We know that the sign bit is zero. 779 Known.makeNonNegative(); 780 } 781 // assume(v <=_s c) where c is negative 782 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 783 Pred == ICmpInst::ICMP_SLE && 784 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 785 KnownBits RHSKnown(BitWidth); 786 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 787 788 if (RHSKnown.isNegative()) { 789 // We know that the sign bit is one. 790 Known.makeNegative(); 791 } 792 // assume(v <_s c) where c is non-positive 793 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 794 Pred == ICmpInst::ICMP_SLT && 795 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 796 KnownBits RHSKnown(BitWidth); 797 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 798 799 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 800 // We know that the sign bit is one. 801 Known.makeNegative(); 802 } 803 // assume(v <=_u c) 804 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 805 Pred == ICmpInst::ICMP_ULE && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown(BitWidth); 808 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 809 810 // Whatever high bits in c are zero are known to be zero. 811 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 812 // assume(v <_u c) 813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 814 Pred == ICmpInst::ICMP_ULT && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown(BitWidth); 817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 818 819 // Whatever high bits in c are zero are known to be zero (if c is a power 820 // of 2, then one more). 821 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 822 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 823 else 824 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 825 } 826 } 827 828 // If assumptions conflict with each other or previous known bits, then we 829 // have a logical fallacy. It's possible that the assumption is not reachable, 830 // so this isn't a real bug. On the other hand, the program may have undefined 831 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 832 // clear out the known bits, try to warn the user, and hope for the best. 833 if (Known.Zero.intersects(Known.One)) { 834 Known.resetAll(); 835 836 if (Q.ORE) 837 Q.ORE->emit([&]() { 838 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 839 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 840 CxtI) 841 << "Detected conflicting code assumptions. Program may " 842 "have undefined behavior, or compiler may have " 843 "internal error."; 844 }); 845 } 846 } 847 848 /// Compute known bits from a shift operator, including those with a 849 /// non-constant shift amount. Known is the output of this function. Known2 is a 850 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 851 /// operator-specific functors that, given the known-zero or known-one bits 852 /// respectively, and a shift amount, compute the implied known-zero or 853 /// known-one bits of the shift operator's result respectively for that shift 854 /// amount. The results from calling KZF and KOF are conservatively combined for 855 /// all permitted shift amounts. 856 static void computeKnownBitsFromShiftOperator( 857 const Operator *I, KnownBits &Known, KnownBits &Known2, 858 unsigned Depth, const Query &Q, 859 function_ref<APInt(const APInt &, unsigned)> KZF, 860 function_ref<APInt(const APInt &, unsigned)> KOF) { 861 unsigned BitWidth = Known.getBitWidth(); 862 863 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 864 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 865 866 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 867 Known.Zero = KZF(Known.Zero, ShiftAmt); 868 Known.One = KOF(Known.One, ShiftAmt); 869 // If the known bits conflict, this must be an overflowing left shift, so 870 // the shift result is poison. We can return anything we want. Choose 0 for 871 // the best folding opportunity. 872 if (Known.hasConflict()) 873 Known.setAllZero(); 874 875 return; 876 } 877 878 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 879 880 // If the shift amount could be greater than or equal to the bit-width of the 881 // LHS, the value could be poison, but bail out because the check below is 882 // expensive. TODO: Should we just carry on? 883 if ((~Known.Zero).uge(BitWidth)) { 884 Known.resetAll(); 885 return; 886 } 887 888 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 889 // BitWidth > 64 and any upper bits are known, we'll end up returning the 890 // limit value (which implies all bits are known). 891 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 892 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 893 894 // It would be more-clearly correct to use the two temporaries for this 895 // calculation. Reusing the APInts here to prevent unnecessary allocations. 896 Known.resetAll(); 897 898 // If we know the shifter operand is nonzero, we can sometimes infer more 899 // known bits. However this is expensive to compute, so be lazy about it and 900 // only compute it when absolutely necessary. 901 Optional<bool> ShifterOperandIsNonZero; 902 903 // Early exit if we can't constrain any well-defined shift amount. 904 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 905 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 906 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 907 if (!*ShifterOperandIsNonZero) 908 return; 909 } 910 911 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 912 913 Known.Zero.setAllBits(); 914 Known.One.setAllBits(); 915 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 916 // Combine the shifted known input bits only for those shift amounts 917 // compatible with its known constraints. 918 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 919 continue; 920 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 921 continue; 922 // If we know the shifter is nonzero, we may be able to infer more known 923 // bits. This check is sunk down as far as possible to avoid the expensive 924 // call to isKnownNonZero if the cheaper checks above fail. 925 if (ShiftAmt == 0) { 926 if (!ShifterOperandIsNonZero.hasValue()) 927 ShifterOperandIsNonZero = 928 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 929 if (*ShifterOperandIsNonZero) 930 continue; 931 } 932 933 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 934 Known.One &= KOF(Known2.One, ShiftAmt); 935 } 936 937 // If the known bits conflict, the result is poison. Return a 0 and hope the 938 // caller can further optimize that. 939 if (Known.hasConflict()) 940 Known.setAllZero(); 941 } 942 943 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 944 unsigned Depth, const Query &Q) { 945 unsigned BitWidth = Known.getBitWidth(); 946 947 KnownBits Known2(Known); 948 switch (I->getOpcode()) { 949 default: break; 950 case Instruction::Load: 951 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 952 computeKnownBitsFromRangeMetadata(*MD, Known); 953 break; 954 case Instruction::And: { 955 // If either the LHS or the RHS are Zero, the result is zero. 956 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 957 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 958 959 // Output known-1 bits are only known if set in both the LHS & RHS. 960 Known.One &= Known2.One; 961 // Output known-0 are known to be clear if zero in either the LHS | RHS. 962 Known.Zero |= Known2.Zero; 963 964 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 965 // here we handle the more general case of adding any odd number by 966 // matching the form add(x, add(x, y)) where y is odd. 967 // TODO: This could be generalized to clearing any bit set in y where the 968 // following bit is known to be unset in y. 969 Value *Y = nullptr; 970 if (!Known.Zero[0] && !Known.One[0] && 971 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 972 m_Value(Y))) || 973 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 974 m_Value(Y))))) { 975 Known2.resetAll(); 976 computeKnownBits(Y, Known2, Depth + 1, Q); 977 if (Known2.countMinTrailingOnes() > 0) 978 Known.Zero.setBit(0); 979 } 980 break; 981 } 982 case Instruction::Or: 983 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 984 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 985 986 // Output known-0 bits are only known if clear in both the LHS & RHS. 987 Known.Zero &= Known2.Zero; 988 // Output known-1 are known to be set if set in either the LHS | RHS. 989 Known.One |= Known2.One; 990 break; 991 case Instruction::Xor: { 992 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 993 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 994 995 // Output known-0 bits are known if clear or set in both the LHS & RHS. 996 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 997 // Output known-1 are known to be set if set in only one of the LHS, RHS. 998 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 999 Known.Zero = std::move(KnownZeroOut); 1000 break; 1001 } 1002 case Instruction::Mul: { 1003 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1004 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1005 Known2, Depth, Q); 1006 break; 1007 } 1008 case Instruction::UDiv: { 1009 // For the purposes of computing leading zeros we can conservatively 1010 // treat a udiv as a logical right shift by the power of 2 known to 1011 // be less than the denominator. 1012 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1013 unsigned LeadZ = Known2.countMinLeadingZeros(); 1014 1015 Known2.resetAll(); 1016 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1017 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1018 if (RHSMaxLeadingZeros != BitWidth) 1019 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1020 1021 Known.Zero.setHighBits(LeadZ); 1022 break; 1023 } 1024 case Instruction::Select: { 1025 const Value *LHS, *RHS; 1026 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1027 if (SelectPatternResult::isMinOrMax(SPF)) { 1028 computeKnownBits(RHS, Known, Depth + 1, Q); 1029 computeKnownBits(LHS, Known2, Depth + 1, Q); 1030 } else { 1031 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1032 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1033 } 1034 1035 unsigned MaxHighOnes = 0; 1036 unsigned MaxHighZeros = 0; 1037 if (SPF == SPF_SMAX) { 1038 // If both sides are negative, the result is negative. 1039 if (Known.isNegative() && Known2.isNegative()) 1040 // We can derive a lower bound on the result by taking the max of the 1041 // leading one bits. 1042 MaxHighOnes = 1043 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1044 // If either side is non-negative, the result is non-negative. 1045 else if (Known.isNonNegative() || Known2.isNonNegative()) 1046 MaxHighZeros = 1; 1047 } else if (SPF == SPF_SMIN) { 1048 // If both sides are non-negative, the result is non-negative. 1049 if (Known.isNonNegative() && Known2.isNonNegative()) 1050 // We can derive an upper bound on the result by taking the max of the 1051 // leading zero bits. 1052 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1053 Known2.countMinLeadingZeros()); 1054 // If either side is negative, the result is negative. 1055 else if (Known.isNegative() || Known2.isNegative()) 1056 MaxHighOnes = 1; 1057 } else if (SPF == SPF_UMAX) { 1058 // We can derive a lower bound on the result by taking the max of the 1059 // leading one bits. 1060 MaxHighOnes = 1061 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1062 } else if (SPF == SPF_UMIN) { 1063 // We can derive an upper bound on the result by taking the max of the 1064 // leading zero bits. 1065 MaxHighZeros = 1066 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1067 } 1068 1069 // Only known if known in both the LHS and RHS. 1070 Known.One &= Known2.One; 1071 Known.Zero &= Known2.Zero; 1072 if (MaxHighOnes > 0) 1073 Known.One.setHighBits(MaxHighOnes); 1074 if (MaxHighZeros > 0) 1075 Known.Zero.setHighBits(MaxHighZeros); 1076 break; 1077 } 1078 case Instruction::FPTrunc: 1079 case Instruction::FPExt: 1080 case Instruction::FPToUI: 1081 case Instruction::FPToSI: 1082 case Instruction::SIToFP: 1083 case Instruction::UIToFP: 1084 break; // Can't work with floating point. 1085 case Instruction::PtrToInt: 1086 case Instruction::IntToPtr: 1087 // Fall through and handle them the same as zext/trunc. 1088 LLVM_FALLTHROUGH; 1089 case Instruction::ZExt: 1090 case Instruction::Trunc: { 1091 Type *SrcTy = I->getOperand(0)->getType(); 1092 1093 unsigned SrcBitWidth; 1094 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1095 // which fall through here. 1096 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1097 1098 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1099 Known = Known.zextOrTrunc(SrcBitWidth); 1100 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1101 Known = Known.zextOrTrunc(BitWidth); 1102 // Any top bits are known to be zero. 1103 if (BitWidth > SrcBitWidth) 1104 Known.Zero.setBitsFrom(SrcBitWidth); 1105 break; 1106 } 1107 case Instruction::BitCast: { 1108 Type *SrcTy = I->getOperand(0)->getType(); 1109 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1110 // TODO: For now, not handling conversions like: 1111 // (bitcast i64 %x to <2 x i32>) 1112 !I->getType()->isVectorTy()) { 1113 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1114 break; 1115 } 1116 break; 1117 } 1118 case Instruction::SExt: { 1119 // Compute the bits in the result that are not present in the input. 1120 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1121 1122 Known = Known.trunc(SrcBitWidth); 1123 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1124 // If the sign bit of the input is known set or clear, then we know the 1125 // top bits of the result. 1126 Known = Known.sext(BitWidth); 1127 break; 1128 } 1129 case Instruction::Shl: { 1130 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1131 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1132 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1133 APInt KZResult = KnownZero << ShiftAmt; 1134 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1135 // If this shift has "nsw" keyword, then the result is either a poison 1136 // value or has the same sign bit as the first operand. 1137 if (NSW && KnownZero.isSignBitSet()) 1138 KZResult.setSignBit(); 1139 return KZResult; 1140 }; 1141 1142 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1143 APInt KOResult = KnownOne << ShiftAmt; 1144 if (NSW && KnownOne.isSignBitSet()) 1145 KOResult.setSignBit(); 1146 return KOResult; 1147 }; 1148 1149 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1150 break; 1151 } 1152 case Instruction::LShr: { 1153 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1154 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1155 APInt KZResult = KnownZero.lshr(ShiftAmt); 1156 // High bits known zero. 1157 KZResult.setHighBits(ShiftAmt); 1158 return KZResult; 1159 }; 1160 1161 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1162 return KnownOne.lshr(ShiftAmt); 1163 }; 1164 1165 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1166 break; 1167 } 1168 case Instruction::AShr: { 1169 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1170 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1171 return KnownZero.ashr(ShiftAmt); 1172 }; 1173 1174 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1175 return KnownOne.ashr(ShiftAmt); 1176 }; 1177 1178 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1179 break; 1180 } 1181 case Instruction::Sub: { 1182 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1183 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1184 Known, Known2, Depth, Q); 1185 break; 1186 } 1187 case Instruction::Add: { 1188 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1189 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::SRem: 1194 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1195 APInt RA = Rem->getValue().abs(); 1196 if (RA.isPowerOf2()) { 1197 APInt LowBits = RA - 1; 1198 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1199 1200 // The low bits of the first operand are unchanged by the srem. 1201 Known.Zero = Known2.Zero & LowBits; 1202 Known.One = Known2.One & LowBits; 1203 1204 // If the first operand is non-negative or has all low bits zero, then 1205 // the upper bits are all zero. 1206 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1207 Known.Zero |= ~LowBits; 1208 1209 // If the first operand is negative and not all low bits are zero, then 1210 // the upper bits are all one. 1211 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1212 Known.One |= ~LowBits; 1213 1214 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1215 break; 1216 } 1217 } 1218 1219 // The sign bit is the LHS's sign bit, except when the result of the 1220 // remainder is zero. 1221 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1222 // If it's known zero, our sign bit is also zero. 1223 if (Known2.isNonNegative()) 1224 Known.makeNonNegative(); 1225 1226 break; 1227 case Instruction::URem: { 1228 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1229 const APInt &RA = Rem->getValue(); 1230 if (RA.isPowerOf2()) { 1231 APInt LowBits = (RA - 1); 1232 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1233 Known.Zero |= ~LowBits; 1234 Known.One &= LowBits; 1235 break; 1236 } 1237 } 1238 1239 // Since the result is less than or equal to either operand, any leading 1240 // zero bits in either operand must also exist in the result. 1241 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1242 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1243 1244 unsigned Leaders = 1245 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1246 Known.resetAll(); 1247 Known.Zero.setHighBits(Leaders); 1248 break; 1249 } 1250 1251 case Instruction::Alloca: { 1252 const AllocaInst *AI = cast<AllocaInst>(I); 1253 unsigned Align = AI->getAlignment(); 1254 if (Align == 0) 1255 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1256 1257 if (Align > 0) 1258 Known.Zero.setLowBits(countTrailingZeros(Align)); 1259 break; 1260 } 1261 case Instruction::GetElementPtr: { 1262 // Analyze all of the subscripts of this getelementptr instruction 1263 // to determine if we can prove known low zero bits. 1264 KnownBits LocalKnown(BitWidth); 1265 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1266 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1267 1268 gep_type_iterator GTI = gep_type_begin(I); 1269 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1270 Value *Index = I->getOperand(i); 1271 if (StructType *STy = GTI.getStructTypeOrNull()) { 1272 // Handle struct member offset arithmetic. 1273 1274 // Handle case when index is vector zeroinitializer 1275 Constant *CIndex = cast<Constant>(Index); 1276 if (CIndex->isZeroValue()) 1277 continue; 1278 1279 if (CIndex->getType()->isVectorTy()) 1280 Index = CIndex->getSplatValue(); 1281 1282 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1283 const StructLayout *SL = Q.DL.getStructLayout(STy); 1284 uint64_t Offset = SL->getElementOffset(Idx); 1285 TrailZ = std::min<unsigned>(TrailZ, 1286 countTrailingZeros(Offset)); 1287 } else { 1288 // Handle array index arithmetic. 1289 Type *IndexedTy = GTI.getIndexedType(); 1290 if (!IndexedTy->isSized()) { 1291 TrailZ = 0; 1292 break; 1293 } 1294 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1295 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1296 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1297 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1298 TrailZ = std::min(TrailZ, 1299 unsigned(countTrailingZeros(TypeSize) + 1300 LocalKnown.countMinTrailingZeros())); 1301 } 1302 } 1303 1304 Known.Zero.setLowBits(TrailZ); 1305 break; 1306 } 1307 case Instruction::PHI: { 1308 const PHINode *P = cast<PHINode>(I); 1309 // Handle the case of a simple two-predecessor recurrence PHI. 1310 // There's a lot more that could theoretically be done here, but 1311 // this is sufficient to catch some interesting cases. 1312 if (P->getNumIncomingValues() == 2) { 1313 for (unsigned i = 0; i != 2; ++i) { 1314 Value *L = P->getIncomingValue(i); 1315 Value *R = P->getIncomingValue(!i); 1316 Operator *LU = dyn_cast<Operator>(L); 1317 if (!LU) 1318 continue; 1319 unsigned Opcode = LU->getOpcode(); 1320 // Check for operations that have the property that if 1321 // both their operands have low zero bits, the result 1322 // will have low zero bits. 1323 if (Opcode == Instruction::Add || 1324 Opcode == Instruction::Sub || 1325 Opcode == Instruction::And || 1326 Opcode == Instruction::Or || 1327 Opcode == Instruction::Mul) { 1328 Value *LL = LU->getOperand(0); 1329 Value *LR = LU->getOperand(1); 1330 // Find a recurrence. 1331 if (LL == I) 1332 L = LR; 1333 else if (LR == I) 1334 L = LL; 1335 else 1336 break; 1337 // Ok, we have a PHI of the form L op= R. Check for low 1338 // zero bits. 1339 computeKnownBits(R, Known2, Depth + 1, Q); 1340 1341 // We need to take the minimum number of known bits 1342 KnownBits Known3(Known); 1343 computeKnownBits(L, Known3, Depth + 1, Q); 1344 1345 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1346 Known3.countMinTrailingZeros())); 1347 1348 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1349 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1350 // If initial value of recurrence is nonnegative, and we are adding 1351 // a nonnegative number with nsw, the result can only be nonnegative 1352 // or poison value regardless of the number of times we execute the 1353 // add in phi recurrence. If initial value is negative and we are 1354 // adding a negative number with nsw, the result can only be 1355 // negative or poison value. Similar arguments apply to sub and mul. 1356 // 1357 // (add non-negative, non-negative) --> non-negative 1358 // (add negative, negative) --> negative 1359 if (Opcode == Instruction::Add) { 1360 if (Known2.isNonNegative() && Known3.isNonNegative()) 1361 Known.makeNonNegative(); 1362 else if (Known2.isNegative() && Known3.isNegative()) 1363 Known.makeNegative(); 1364 } 1365 1366 // (sub nsw non-negative, negative) --> non-negative 1367 // (sub nsw negative, non-negative) --> negative 1368 else if (Opcode == Instruction::Sub && LL == I) { 1369 if (Known2.isNonNegative() && Known3.isNegative()) 1370 Known.makeNonNegative(); 1371 else if (Known2.isNegative() && Known3.isNonNegative()) 1372 Known.makeNegative(); 1373 } 1374 1375 // (mul nsw non-negative, non-negative) --> non-negative 1376 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1377 Known3.isNonNegative()) 1378 Known.makeNonNegative(); 1379 } 1380 1381 break; 1382 } 1383 } 1384 } 1385 1386 // Unreachable blocks may have zero-operand PHI nodes. 1387 if (P->getNumIncomingValues() == 0) 1388 break; 1389 1390 // Otherwise take the unions of the known bit sets of the operands, 1391 // taking conservative care to avoid excessive recursion. 1392 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1393 // Skip if every incoming value references to ourself. 1394 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1395 break; 1396 1397 Known.Zero.setAllBits(); 1398 Known.One.setAllBits(); 1399 for (Value *IncValue : P->incoming_values()) { 1400 // Skip direct self references. 1401 if (IncValue == P) continue; 1402 1403 Known2 = KnownBits(BitWidth); 1404 // Recurse, but cap the recursion to one level, because we don't 1405 // want to waste time spinning around in loops. 1406 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1407 Known.Zero &= Known2.Zero; 1408 Known.One &= Known2.One; 1409 // If all bits have been ruled out, there's no need to check 1410 // more operands. 1411 if (!Known.Zero && !Known.One) 1412 break; 1413 } 1414 } 1415 break; 1416 } 1417 case Instruction::Call: 1418 case Instruction::Invoke: 1419 // If range metadata is attached to this call, set known bits from that, 1420 // and then intersect with known bits based on other properties of the 1421 // function. 1422 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1423 computeKnownBitsFromRangeMetadata(*MD, Known); 1424 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1425 computeKnownBits(RV, Known2, Depth + 1, Q); 1426 Known.Zero |= Known2.Zero; 1427 Known.One |= Known2.One; 1428 } 1429 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1430 switch (II->getIntrinsicID()) { 1431 default: break; 1432 case Intrinsic::bitreverse: 1433 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1434 Known.Zero |= Known2.Zero.reverseBits(); 1435 Known.One |= Known2.One.reverseBits(); 1436 break; 1437 case Intrinsic::bswap: 1438 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1439 Known.Zero |= Known2.Zero.byteSwap(); 1440 Known.One |= Known2.One.byteSwap(); 1441 break; 1442 case Intrinsic::ctlz: { 1443 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1444 // If we have a known 1, its position is our upper bound. 1445 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1446 // If this call is undefined for 0, the result will be less than 2^n. 1447 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1448 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1449 unsigned LowBits = Log2_32(PossibleLZ)+1; 1450 Known.Zero.setBitsFrom(LowBits); 1451 break; 1452 } 1453 case Intrinsic::cttz: { 1454 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1455 // If we have a known 1, its position is our upper bound. 1456 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1457 // If this call is undefined for 0, the result will be less than 2^n. 1458 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1459 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1460 unsigned LowBits = Log2_32(PossibleTZ)+1; 1461 Known.Zero.setBitsFrom(LowBits); 1462 break; 1463 } 1464 case Intrinsic::ctpop: { 1465 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1466 // We can bound the space the count needs. Also, bits known to be zero 1467 // can't contribute to the population. 1468 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1469 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1470 Known.Zero.setBitsFrom(LowBits); 1471 // TODO: we could bound KnownOne using the lower bound on the number 1472 // of bits which might be set provided by popcnt KnownOne2. 1473 break; 1474 } 1475 case Intrinsic::x86_sse42_crc32_64_64: 1476 Known.Zero.setBitsFrom(32); 1477 break; 1478 } 1479 } 1480 break; 1481 case Instruction::ExtractElement: 1482 // Look through extract element. At the moment we keep this simple and skip 1483 // tracking the specific element. But at least we might find information 1484 // valid for all elements of the vector (for example if vector is sign 1485 // extended, shifted, etc). 1486 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1487 break; 1488 case Instruction::ExtractValue: 1489 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1490 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1491 if (EVI->getNumIndices() != 1) break; 1492 if (EVI->getIndices()[0] == 0) { 1493 switch (II->getIntrinsicID()) { 1494 default: break; 1495 case Intrinsic::uadd_with_overflow: 1496 case Intrinsic::sadd_with_overflow: 1497 computeKnownBitsAddSub(true, II->getArgOperand(0), 1498 II->getArgOperand(1), false, Known, Known2, 1499 Depth, Q); 1500 break; 1501 case Intrinsic::usub_with_overflow: 1502 case Intrinsic::ssub_with_overflow: 1503 computeKnownBitsAddSub(false, II->getArgOperand(0), 1504 II->getArgOperand(1), false, Known, Known2, 1505 Depth, Q); 1506 break; 1507 case Intrinsic::umul_with_overflow: 1508 case Intrinsic::smul_with_overflow: 1509 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1510 Known, Known2, Depth, Q); 1511 break; 1512 } 1513 } 1514 } 1515 } 1516 } 1517 1518 /// Determine which bits of V are known to be either zero or one and return 1519 /// them. 1520 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1521 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1522 computeKnownBits(V, Known, Depth, Q); 1523 return Known; 1524 } 1525 1526 /// Determine which bits of V are known to be either zero or one and return 1527 /// them in the Known bit set. 1528 /// 1529 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1530 /// we cannot optimize based on the assumption that it is zero without changing 1531 /// it to be an explicit zero. If we don't change it to zero, other code could 1532 /// optimized based on the contradictory assumption that it is non-zero. 1533 /// Because instcombine aggressively folds operations with undef args anyway, 1534 /// this won't lose us code quality. 1535 /// 1536 /// This function is defined on values with integer type, values with pointer 1537 /// type, and vectors of integers. In the case 1538 /// where V is a vector, known zero, and known one values are the 1539 /// same width as the vector element, and the bit is set only if it is true 1540 /// for all of the elements in the vector. 1541 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1542 const Query &Q) { 1543 assert(V && "No Value?"); 1544 assert(Depth <= MaxDepth && "Limit Search Depth"); 1545 unsigned BitWidth = Known.getBitWidth(); 1546 1547 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1548 V->getType()->isPtrOrPtrVectorTy()) && 1549 "Not integer or pointer type!"); 1550 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth && 1551 "V and Known should have same BitWidth"); 1552 (void)BitWidth; 1553 1554 const APInt *C; 1555 if (match(V, m_APInt(C))) { 1556 // We know all of the bits for a scalar constant or a splat vector constant! 1557 Known.One = *C; 1558 Known.Zero = ~Known.One; 1559 return; 1560 } 1561 // Null and aggregate-zero are all-zeros. 1562 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1563 Known.setAllZero(); 1564 return; 1565 } 1566 // Handle a constant vector by taking the intersection of the known bits of 1567 // each element. 1568 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1569 // We know that CDS must be a vector of integers. Take the intersection of 1570 // each element. 1571 Known.Zero.setAllBits(); Known.One.setAllBits(); 1572 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1573 APInt Elt = CDS->getElementAsAPInt(i); 1574 Known.Zero &= ~Elt; 1575 Known.One &= Elt; 1576 } 1577 return; 1578 } 1579 1580 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1581 // We know that CV must be a vector of integers. Take the intersection of 1582 // each element. 1583 Known.Zero.setAllBits(); Known.One.setAllBits(); 1584 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1585 Constant *Element = CV->getAggregateElement(i); 1586 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1587 if (!ElementCI) { 1588 Known.resetAll(); 1589 return; 1590 } 1591 const APInt &Elt = ElementCI->getValue(); 1592 Known.Zero &= ~Elt; 1593 Known.One &= Elt; 1594 } 1595 return; 1596 } 1597 1598 // Start out not knowing anything. 1599 Known.resetAll(); 1600 1601 // We can't imply anything about undefs. 1602 if (isa<UndefValue>(V)) 1603 return; 1604 1605 // There's no point in looking through other users of ConstantData for 1606 // assumptions. Confirm that we've handled them all. 1607 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1608 1609 // Limit search depth. 1610 // All recursive calls that increase depth must come after this. 1611 if (Depth == MaxDepth) 1612 return; 1613 1614 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1615 // the bits of its aliasee. 1616 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1617 if (!GA->isInterposable()) 1618 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1619 return; 1620 } 1621 1622 if (const Operator *I = dyn_cast<Operator>(V)) 1623 computeKnownBitsFromOperator(I, Known, Depth, Q); 1624 1625 // Aligned pointers have trailing zeros - refine Known.Zero set 1626 if (V->getType()->isPointerTy()) { 1627 unsigned Align = V->getPointerAlignment(Q.DL); 1628 if (Align) 1629 Known.Zero.setLowBits(countTrailingZeros(Align)); 1630 } 1631 1632 // computeKnownBitsFromAssume strictly refines Known. 1633 // Therefore, we run them after computeKnownBitsFromOperator. 1634 1635 // Check whether a nearby assume intrinsic can determine some known bits. 1636 computeKnownBitsFromAssume(V, Known, Depth, Q); 1637 1638 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1639 } 1640 1641 /// Return true if the given value is known to have exactly one 1642 /// bit set when defined. For vectors return true if every element is known to 1643 /// be a power of two when defined. Supports values with integer or pointer 1644 /// types and vectors of integers. 1645 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1646 const Query &Q) { 1647 assert(Depth <= MaxDepth && "Limit Search Depth"); 1648 1649 // Attempt to match against constants. 1650 if (OrZero && match(V, m_Power2OrZero())) 1651 return true; 1652 if (match(V, m_Power2())) 1653 return true; 1654 1655 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1656 // it is shifted off the end then the result is undefined. 1657 if (match(V, m_Shl(m_One(), m_Value()))) 1658 return true; 1659 1660 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1661 // the bottom. If it is shifted off the bottom then the result is undefined. 1662 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1663 return true; 1664 1665 // The remaining tests are all recursive, so bail out if we hit the limit. 1666 if (Depth++ == MaxDepth) 1667 return false; 1668 1669 Value *X = nullptr, *Y = nullptr; 1670 // A shift left or a logical shift right of a power of two is a power of two 1671 // or zero. 1672 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1673 match(V, m_LShr(m_Value(X), m_Value())))) 1674 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1675 1676 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1677 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1678 1679 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1680 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1681 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1682 1683 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1684 // A power of two and'd with anything is a power of two or zero. 1685 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1686 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1687 return true; 1688 // X & (-X) is always a power of two or zero. 1689 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1690 return true; 1691 return false; 1692 } 1693 1694 // Adding a power-of-two or zero to the same power-of-two or zero yields 1695 // either the original power-of-two, a larger power-of-two or zero. 1696 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1697 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1698 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1699 if (match(X, m_And(m_Specific(Y), m_Value())) || 1700 match(X, m_And(m_Value(), m_Specific(Y)))) 1701 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1702 return true; 1703 if (match(Y, m_And(m_Specific(X), m_Value())) || 1704 match(Y, m_And(m_Value(), m_Specific(X)))) 1705 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1706 return true; 1707 1708 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1709 KnownBits LHSBits(BitWidth); 1710 computeKnownBits(X, LHSBits, Depth, Q); 1711 1712 KnownBits RHSBits(BitWidth); 1713 computeKnownBits(Y, RHSBits, Depth, Q); 1714 // If i8 V is a power of two or zero: 1715 // ZeroBits: 1 1 1 0 1 1 1 1 1716 // ~ZeroBits: 0 0 0 1 0 0 0 0 1717 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1718 // If OrZero isn't set, we cannot give back a zero result. 1719 // Make sure either the LHS or RHS has a bit set. 1720 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1721 return true; 1722 } 1723 } 1724 1725 // An exact divide or right shift can only shift off zero bits, so the result 1726 // is a power of two only if the first operand is a power of two and not 1727 // copying a sign bit (sdiv int_min, 2). 1728 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1729 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1730 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1731 Depth, Q); 1732 } 1733 1734 return false; 1735 } 1736 1737 /// \brief Test whether a GEP's result is known to be non-null. 1738 /// 1739 /// Uses properties inherent in a GEP to try to determine whether it is known 1740 /// to be non-null. 1741 /// 1742 /// Currently this routine does not support vector GEPs. 1743 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1744 const Query &Q) { 1745 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1746 return false; 1747 1748 // FIXME: Support vector-GEPs. 1749 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1750 1751 // If the base pointer is non-null, we cannot walk to a null address with an 1752 // inbounds GEP in address space zero. 1753 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1754 return true; 1755 1756 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1757 // If so, then the GEP cannot produce a null pointer, as doing so would 1758 // inherently violate the inbounds contract within address space zero. 1759 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1760 GTI != GTE; ++GTI) { 1761 // Struct types are easy -- they must always be indexed by a constant. 1762 if (StructType *STy = GTI.getStructTypeOrNull()) { 1763 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1764 unsigned ElementIdx = OpC->getZExtValue(); 1765 const StructLayout *SL = Q.DL.getStructLayout(STy); 1766 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1767 if (ElementOffset > 0) 1768 return true; 1769 continue; 1770 } 1771 1772 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1773 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1774 continue; 1775 1776 // Fast path the constant operand case both for efficiency and so we don't 1777 // increment Depth when just zipping down an all-constant GEP. 1778 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1779 if (!OpC->isZero()) 1780 return true; 1781 continue; 1782 } 1783 1784 // We post-increment Depth here because while isKnownNonZero increments it 1785 // as well, when we pop back up that increment won't persist. We don't want 1786 // to recurse 10k times just because we have 10k GEP operands. We don't 1787 // bail completely out because we want to handle constant GEPs regardless 1788 // of depth. 1789 if (Depth++ >= MaxDepth) 1790 continue; 1791 1792 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1793 return true; 1794 } 1795 1796 return false; 1797 } 1798 1799 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1800 const Instruction *CtxI, 1801 const DominatorTree *DT) { 1802 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1803 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1804 1805 if (!CtxI || !DT) 1806 return false; 1807 1808 unsigned NumUsesExplored = 0; 1809 for (auto *U : V->users()) { 1810 // Avoid massive lists 1811 if (NumUsesExplored >= DomConditionsMaxUses) 1812 break; 1813 NumUsesExplored++; 1814 1815 // If the value is used as an argument to a call or invoke, then argument 1816 // attributes may provide an answer about null-ness. 1817 if (auto CS = ImmutableCallSite(U)) 1818 if (auto *CalledFunc = CS.getCalledFunction()) 1819 for (const Argument &Arg : CalledFunc->args()) 1820 if (CS.getArgOperand(Arg.getArgNo()) == V && 1821 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1822 return true; 1823 1824 // Consider only compare instructions uniquely controlling a branch 1825 CmpInst::Predicate Pred; 1826 if (!match(const_cast<User *>(U), 1827 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1828 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1829 continue; 1830 1831 for (auto *CmpU : U->users()) { 1832 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 1833 assert(BI->isConditional() && "uses a comparison!"); 1834 1835 BasicBlock *NonNullSuccessor = 1836 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1837 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1838 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1839 return true; 1840 } else if (Pred == ICmpInst::ICMP_NE && 1841 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 1842 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 1843 return true; 1844 } 1845 } 1846 } 1847 1848 return false; 1849 } 1850 1851 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1852 /// ensure that the value it's attached to is never Value? 'RangeType' is 1853 /// is the type of the value described by the range. 1854 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1855 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1856 assert(NumRanges >= 1); 1857 for (unsigned i = 0; i < NumRanges; ++i) { 1858 ConstantInt *Lower = 1859 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1860 ConstantInt *Upper = 1861 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1862 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1863 if (Range.contains(Value)) 1864 return false; 1865 } 1866 return true; 1867 } 1868 1869 /// Return true if the given value is known to be non-zero when defined. For 1870 /// vectors, return true if every element is known to be non-zero when 1871 /// defined. For pointers, if the context instruction and dominator tree are 1872 /// specified, perform context-sensitive analysis and return true if the 1873 /// pointer couldn't possibly be null at the specified instruction. 1874 /// Supports values with integer or pointer type and vectors of integers. 1875 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1876 if (auto *C = dyn_cast<Constant>(V)) { 1877 if (C->isNullValue()) 1878 return false; 1879 if (isa<ConstantInt>(C)) 1880 // Must be non-zero due to null test above. 1881 return true; 1882 1883 // For constant vectors, check that all elements are undefined or known 1884 // non-zero to determine that the whole vector is known non-zero. 1885 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1886 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1887 Constant *Elt = C->getAggregateElement(i); 1888 if (!Elt || Elt->isNullValue()) 1889 return false; 1890 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1891 return false; 1892 } 1893 return true; 1894 } 1895 1896 // A global variable in address space 0 is non null unless extern weak 1897 // or an absolute symbol reference. Other address spaces may have null as a 1898 // valid address for a global, so we can't assume anything. 1899 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1900 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1901 GV->getType()->getAddressSpace() == 0) 1902 return true; 1903 } else 1904 return false; 1905 } 1906 1907 if (auto *I = dyn_cast<Instruction>(V)) { 1908 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1909 // If the possible ranges don't contain zero, then the value is 1910 // definitely non-zero. 1911 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1912 const APInt ZeroValue(Ty->getBitWidth(), 0); 1913 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1914 return true; 1915 } 1916 } 1917 } 1918 1919 // Check for pointer simplifications. 1920 if (V->getType()->isPointerTy()) { 1921 // Alloca never returns null, malloc might. 1922 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1923 return true; 1924 1925 // A byval, inalloca, or nonnull argument is never null. 1926 if (const Argument *A = dyn_cast<Argument>(V)) 1927 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1928 return true; 1929 1930 // A Load tagged with nonnull metadata is never null. 1931 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1932 if (LI->getMetadata(LLVMContext::MD_nonnull)) 1933 return true; 1934 1935 if (auto CS = ImmutableCallSite(V)) 1936 if (CS.isReturnNonNull()) 1937 return true; 1938 } 1939 1940 // The remaining tests are all recursive, so bail out if we hit the limit. 1941 if (Depth++ >= MaxDepth) 1942 return false; 1943 1944 // Check for recursive pointer simplifications. 1945 if (V->getType()->isPointerTy()) { 1946 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 1947 return true; 1948 1949 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1950 if (isGEPKnownNonNull(GEP, Depth, Q)) 1951 return true; 1952 } 1953 1954 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1955 1956 // X | Y != 0 if X != 0 or Y != 0. 1957 Value *X = nullptr, *Y = nullptr; 1958 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1959 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1960 1961 // ext X != 0 if X != 0. 1962 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1963 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1964 1965 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1966 // if the lowest bit is shifted off the end. 1967 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1968 // shl nuw can't remove any non-zero bits. 1969 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1970 if (BO->hasNoUnsignedWrap()) 1971 return isKnownNonZero(X, Depth, Q); 1972 1973 KnownBits Known(BitWidth); 1974 computeKnownBits(X, Known, Depth, Q); 1975 if (Known.One[0]) 1976 return true; 1977 } 1978 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1979 // defined if the sign bit is shifted off the end. 1980 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1981 // shr exact can only shift out zero bits. 1982 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1983 if (BO->isExact()) 1984 return isKnownNonZero(X, Depth, Q); 1985 1986 KnownBits Known = computeKnownBits(X, Depth, Q); 1987 if (Known.isNegative()) 1988 return true; 1989 1990 // If the shifter operand is a constant, and all of the bits shifted 1991 // out are known to be zero, and X is known non-zero then at least one 1992 // non-zero bit must remain. 1993 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1994 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1995 // Is there a known one in the portion not shifted out? 1996 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 1997 return true; 1998 // Are all the bits to be shifted out known zero? 1999 if (Known.countMinTrailingZeros() >= ShiftVal) 2000 return isKnownNonZero(X, Depth, Q); 2001 } 2002 } 2003 // div exact can only produce a zero if the dividend is zero. 2004 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2005 return isKnownNonZero(X, Depth, Q); 2006 } 2007 // X + Y. 2008 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2009 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2010 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2011 2012 // If X and Y are both non-negative (as signed values) then their sum is not 2013 // zero unless both X and Y are zero. 2014 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2015 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2016 return true; 2017 2018 // If X and Y are both negative (as signed values) then their sum is not 2019 // zero unless both X and Y equal INT_MIN. 2020 if (XKnown.isNegative() && YKnown.isNegative()) { 2021 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2022 // The sign bit of X is set. If some other bit is set then X is not equal 2023 // to INT_MIN. 2024 if (XKnown.One.intersects(Mask)) 2025 return true; 2026 // The sign bit of Y is set. If some other bit is set then Y is not equal 2027 // to INT_MIN. 2028 if (YKnown.One.intersects(Mask)) 2029 return true; 2030 } 2031 2032 // The sum of a non-negative number and a power of two is not zero. 2033 if (XKnown.isNonNegative() && 2034 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2035 return true; 2036 if (YKnown.isNonNegative() && 2037 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2038 return true; 2039 } 2040 // X * Y. 2041 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2042 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2043 // If X and Y are non-zero then so is X * Y as long as the multiplication 2044 // does not overflow. 2045 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2046 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2047 return true; 2048 } 2049 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2050 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2051 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2052 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2053 return true; 2054 } 2055 // PHI 2056 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2057 // Try and detect a recurrence that monotonically increases from a 2058 // starting value, as these are common as induction variables. 2059 if (PN->getNumIncomingValues() == 2) { 2060 Value *Start = PN->getIncomingValue(0); 2061 Value *Induction = PN->getIncomingValue(1); 2062 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2063 std::swap(Start, Induction); 2064 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2065 if (!C->isZero() && !C->isNegative()) { 2066 ConstantInt *X; 2067 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2068 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2069 !X->isNegative()) 2070 return true; 2071 } 2072 } 2073 } 2074 // Check if all incoming values are non-zero constant. 2075 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2076 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2077 }); 2078 if (AllNonZeroConstants) 2079 return true; 2080 } 2081 2082 KnownBits Known(BitWidth); 2083 computeKnownBits(V, Known, Depth, Q); 2084 return Known.One != 0; 2085 } 2086 2087 /// Return true if V2 == V1 + X, where X is known non-zero. 2088 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2089 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2090 if (!BO || BO->getOpcode() != Instruction::Add) 2091 return false; 2092 Value *Op = nullptr; 2093 if (V2 == BO->getOperand(0)) 2094 Op = BO->getOperand(1); 2095 else if (V2 == BO->getOperand(1)) 2096 Op = BO->getOperand(0); 2097 else 2098 return false; 2099 return isKnownNonZero(Op, 0, Q); 2100 } 2101 2102 /// Return true if it is known that V1 != V2. 2103 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2104 if (V1 == V2) 2105 return false; 2106 if (V1->getType() != V2->getType()) 2107 // We can't look through casts yet. 2108 return false; 2109 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2110 return true; 2111 2112 if (V1->getType()->isIntOrIntVectorTy()) { 2113 // Are any known bits in V1 contradictory to known bits in V2? If V1 2114 // has a known zero where V2 has a known one, they must not be equal. 2115 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2116 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2117 2118 if (Known1.Zero.intersects(Known2.One) || 2119 Known2.Zero.intersects(Known1.One)) 2120 return true; 2121 } 2122 return false; 2123 } 2124 2125 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2126 /// simplify operations downstream. Mask is known to be zero for bits that V 2127 /// cannot have. 2128 /// 2129 /// This function is defined on values with integer type, values with pointer 2130 /// type, and vectors of integers. In the case 2131 /// where V is a vector, the mask, known zero, and known one values are the 2132 /// same width as the vector element, and the bit is set only if it is true 2133 /// for all of the elements in the vector. 2134 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2135 const Query &Q) { 2136 KnownBits Known(Mask.getBitWidth()); 2137 computeKnownBits(V, Known, Depth, Q); 2138 return Mask.isSubsetOf(Known.Zero); 2139 } 2140 2141 /// For vector constants, loop over the elements and find the constant with the 2142 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2143 /// or if any element was not analyzed; otherwise, return the count for the 2144 /// element with the minimum number of sign bits. 2145 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2146 unsigned TyBits) { 2147 const auto *CV = dyn_cast<Constant>(V); 2148 if (!CV || !CV->getType()->isVectorTy()) 2149 return 0; 2150 2151 unsigned MinSignBits = TyBits; 2152 unsigned NumElts = CV->getType()->getVectorNumElements(); 2153 for (unsigned i = 0; i != NumElts; ++i) { 2154 // If we find a non-ConstantInt, bail out. 2155 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2156 if (!Elt) 2157 return 0; 2158 2159 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2160 } 2161 2162 return MinSignBits; 2163 } 2164 2165 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2166 const Query &Q); 2167 2168 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2169 const Query &Q) { 2170 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2171 assert(Result > 0 && "At least one sign bit needs to be present!"); 2172 return Result; 2173 } 2174 2175 /// Return the number of times the sign bit of the register is replicated into 2176 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2177 /// (itself), but other cases can give us information. For example, immediately 2178 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2179 /// other, so we return 3. For vectors, return the number of sign bits for the 2180 /// vector element with the mininum number of known sign bits. 2181 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2182 const Query &Q) { 2183 assert(Depth <= MaxDepth && "Limit Search Depth"); 2184 2185 // We return the minimum number of sign bits that are guaranteed to be present 2186 // in V, so for undef we have to conservatively return 1. We don't have the 2187 // same behavior for poison though -- that's a FIXME today. 2188 2189 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2190 unsigned Tmp, Tmp2; 2191 unsigned FirstAnswer = 1; 2192 2193 // Note that ConstantInt is handled by the general computeKnownBits case 2194 // below. 2195 2196 if (Depth == MaxDepth) 2197 return 1; // Limit search depth. 2198 2199 const Operator *U = dyn_cast<Operator>(V); 2200 switch (Operator::getOpcode(V)) { 2201 default: break; 2202 case Instruction::SExt: 2203 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2204 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2205 2206 case Instruction::SDiv: { 2207 const APInt *Denominator; 2208 // sdiv X, C -> adds log(C) sign bits. 2209 if (match(U->getOperand(1), m_APInt(Denominator))) { 2210 2211 // Ignore non-positive denominator. 2212 if (!Denominator->isStrictlyPositive()) 2213 break; 2214 2215 // Calculate the incoming numerator bits. 2216 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2217 2218 // Add floor(log(C)) bits to the numerator bits. 2219 return std::min(TyBits, NumBits + Denominator->logBase2()); 2220 } 2221 break; 2222 } 2223 2224 case Instruction::SRem: { 2225 const APInt *Denominator; 2226 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2227 // positive constant. This let us put a lower bound on the number of sign 2228 // bits. 2229 if (match(U->getOperand(1), m_APInt(Denominator))) { 2230 2231 // Ignore non-positive denominator. 2232 if (!Denominator->isStrictlyPositive()) 2233 break; 2234 2235 // Calculate the incoming numerator bits. SRem by a positive constant 2236 // can't lower the number of sign bits. 2237 unsigned NumrBits = 2238 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2239 2240 // Calculate the leading sign bit constraints by examining the 2241 // denominator. Given that the denominator is positive, there are two 2242 // cases: 2243 // 2244 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2245 // (1 << ceilLogBase2(C)). 2246 // 2247 // 2. the numerator is negative. Then the result range is (-C,0] and 2248 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2249 // 2250 // Thus a lower bound on the number of sign bits is `TyBits - 2251 // ceilLogBase2(C)`. 2252 2253 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2254 return std::max(NumrBits, ResBits); 2255 } 2256 break; 2257 } 2258 2259 case Instruction::AShr: { 2260 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2261 // ashr X, C -> adds C sign bits. Vectors too. 2262 const APInt *ShAmt; 2263 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2264 if (ShAmt->uge(TyBits)) 2265 break; // Bad shift. 2266 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2267 Tmp += ShAmtLimited; 2268 if (Tmp > TyBits) Tmp = TyBits; 2269 } 2270 return Tmp; 2271 } 2272 case Instruction::Shl: { 2273 const APInt *ShAmt; 2274 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2275 // shl destroys sign bits. 2276 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2277 if (ShAmt->uge(TyBits) || // Bad shift. 2278 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2279 Tmp2 = ShAmt->getZExtValue(); 2280 return Tmp - Tmp2; 2281 } 2282 break; 2283 } 2284 case Instruction::And: 2285 case Instruction::Or: 2286 case Instruction::Xor: // NOT is handled here. 2287 // Logical binary ops preserve the number of sign bits at the worst. 2288 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2289 if (Tmp != 1) { 2290 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2291 FirstAnswer = std::min(Tmp, Tmp2); 2292 // We computed what we know about the sign bits as our first 2293 // answer. Now proceed to the generic code that uses 2294 // computeKnownBits, and pick whichever answer is better. 2295 } 2296 break; 2297 2298 case Instruction::Select: 2299 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2300 if (Tmp == 1) return 1; // Early out. 2301 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2302 return std::min(Tmp, Tmp2); 2303 2304 case Instruction::Add: 2305 // Add can have at most one carry bit. Thus we know that the output 2306 // is, at worst, one more bit than the inputs. 2307 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2308 if (Tmp == 1) return 1; // Early out. 2309 2310 // Special case decrementing a value (ADD X, -1): 2311 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2312 if (CRHS->isAllOnesValue()) { 2313 KnownBits Known(TyBits); 2314 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2315 2316 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2317 // sign bits set. 2318 if ((Known.Zero | 1).isAllOnesValue()) 2319 return TyBits; 2320 2321 // If we are subtracting one from a positive number, there is no carry 2322 // out of the result. 2323 if (Known.isNonNegative()) 2324 return Tmp; 2325 } 2326 2327 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2328 if (Tmp2 == 1) return 1; 2329 return std::min(Tmp, Tmp2)-1; 2330 2331 case Instruction::Sub: 2332 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2333 if (Tmp2 == 1) return 1; 2334 2335 // Handle NEG. 2336 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2337 if (CLHS->isNullValue()) { 2338 KnownBits Known(TyBits); 2339 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2340 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2341 // sign bits set. 2342 if ((Known.Zero | 1).isAllOnesValue()) 2343 return TyBits; 2344 2345 // If the input is known to be positive (the sign bit is known clear), 2346 // the output of the NEG has the same number of sign bits as the input. 2347 if (Known.isNonNegative()) 2348 return Tmp2; 2349 2350 // Otherwise, we treat this like a SUB. 2351 } 2352 2353 // Sub can have at most one carry bit. Thus we know that the output 2354 // is, at worst, one more bit than the inputs. 2355 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2356 if (Tmp == 1) return 1; // Early out. 2357 return std::min(Tmp, Tmp2)-1; 2358 2359 case Instruction::Mul: { 2360 // The output of the Mul can be at most twice the valid bits in the inputs. 2361 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2362 if (SignBitsOp0 == 1) return 1; // Early out. 2363 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2364 if (SignBitsOp1 == 1) return 1; 2365 unsigned OutValidBits = 2366 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2367 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2368 } 2369 2370 case Instruction::PHI: { 2371 const PHINode *PN = cast<PHINode>(U); 2372 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2373 // Don't analyze large in-degree PHIs. 2374 if (NumIncomingValues > 4) break; 2375 // Unreachable blocks may have zero-operand PHI nodes. 2376 if (NumIncomingValues == 0) break; 2377 2378 // Take the minimum of all incoming values. This can't infinitely loop 2379 // because of our depth threshold. 2380 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2381 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2382 if (Tmp == 1) return Tmp; 2383 Tmp = std::min( 2384 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2385 } 2386 return Tmp; 2387 } 2388 2389 case Instruction::Trunc: 2390 // FIXME: it's tricky to do anything useful for this, but it is an important 2391 // case for targets like X86. 2392 break; 2393 2394 case Instruction::ExtractElement: 2395 // Look through extract element. At the moment we keep this simple and skip 2396 // tracking the specific element. But at least we might find information 2397 // valid for all elements of the vector (for example if vector is sign 2398 // extended, shifted, etc). 2399 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2400 } 2401 2402 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2403 // use this information. 2404 2405 // If we can examine all elements of a vector constant successfully, we're 2406 // done (we can't do any better than that). If not, keep trying. 2407 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2408 return VecSignBits; 2409 2410 KnownBits Known(TyBits); 2411 computeKnownBits(V, Known, Depth, Q); 2412 2413 // If we know that the sign bit is either zero or one, determine the number of 2414 // identical bits in the top of the input value. 2415 return std::max(FirstAnswer, Known.countMinSignBits()); 2416 } 2417 2418 /// This function computes the integer multiple of Base that equals V. 2419 /// If successful, it returns true and returns the multiple in 2420 /// Multiple. If unsuccessful, it returns false. It looks 2421 /// through SExt instructions only if LookThroughSExt is true. 2422 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2423 bool LookThroughSExt, unsigned Depth) { 2424 const unsigned MaxDepth = 6; 2425 2426 assert(V && "No Value?"); 2427 assert(Depth <= MaxDepth && "Limit Search Depth"); 2428 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2429 2430 Type *T = V->getType(); 2431 2432 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2433 2434 if (Base == 0) 2435 return false; 2436 2437 if (Base == 1) { 2438 Multiple = V; 2439 return true; 2440 } 2441 2442 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2443 Constant *BaseVal = ConstantInt::get(T, Base); 2444 if (CO && CO == BaseVal) { 2445 // Multiple is 1. 2446 Multiple = ConstantInt::get(T, 1); 2447 return true; 2448 } 2449 2450 if (CI && CI->getZExtValue() % Base == 0) { 2451 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2452 return true; 2453 } 2454 2455 if (Depth == MaxDepth) return false; // Limit search depth. 2456 2457 Operator *I = dyn_cast<Operator>(V); 2458 if (!I) return false; 2459 2460 switch (I->getOpcode()) { 2461 default: break; 2462 case Instruction::SExt: 2463 if (!LookThroughSExt) return false; 2464 // otherwise fall through to ZExt 2465 LLVM_FALLTHROUGH; 2466 case Instruction::ZExt: 2467 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2468 LookThroughSExt, Depth+1); 2469 case Instruction::Shl: 2470 case Instruction::Mul: { 2471 Value *Op0 = I->getOperand(0); 2472 Value *Op1 = I->getOperand(1); 2473 2474 if (I->getOpcode() == Instruction::Shl) { 2475 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2476 if (!Op1CI) return false; 2477 // Turn Op0 << Op1 into Op0 * 2^Op1 2478 APInt Op1Int = Op1CI->getValue(); 2479 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2480 APInt API(Op1Int.getBitWidth(), 0); 2481 API.setBit(BitToSet); 2482 Op1 = ConstantInt::get(V->getContext(), API); 2483 } 2484 2485 Value *Mul0 = nullptr; 2486 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2487 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2488 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2489 if (Op1C->getType()->getPrimitiveSizeInBits() < 2490 MulC->getType()->getPrimitiveSizeInBits()) 2491 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2492 if (Op1C->getType()->getPrimitiveSizeInBits() > 2493 MulC->getType()->getPrimitiveSizeInBits()) 2494 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2495 2496 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2497 Multiple = ConstantExpr::getMul(MulC, Op1C); 2498 return true; 2499 } 2500 2501 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2502 if (Mul0CI->getValue() == 1) { 2503 // V == Base * Op1, so return Op1 2504 Multiple = Op1; 2505 return true; 2506 } 2507 } 2508 2509 Value *Mul1 = nullptr; 2510 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2511 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2512 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2513 if (Op0C->getType()->getPrimitiveSizeInBits() < 2514 MulC->getType()->getPrimitiveSizeInBits()) 2515 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2516 if (Op0C->getType()->getPrimitiveSizeInBits() > 2517 MulC->getType()->getPrimitiveSizeInBits()) 2518 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2519 2520 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2521 Multiple = ConstantExpr::getMul(MulC, Op0C); 2522 return true; 2523 } 2524 2525 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2526 if (Mul1CI->getValue() == 1) { 2527 // V == Base * Op0, so return Op0 2528 Multiple = Op0; 2529 return true; 2530 } 2531 } 2532 } 2533 } 2534 2535 // We could not determine if V is a multiple of Base. 2536 return false; 2537 } 2538 2539 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2540 const TargetLibraryInfo *TLI) { 2541 const Function *F = ICS.getCalledFunction(); 2542 if (!F) 2543 return Intrinsic::not_intrinsic; 2544 2545 if (F->isIntrinsic()) 2546 return F->getIntrinsicID(); 2547 2548 if (!TLI) 2549 return Intrinsic::not_intrinsic; 2550 2551 LibFunc Func; 2552 // We're going to make assumptions on the semantics of the functions, check 2553 // that the target knows that it's available in this environment and it does 2554 // not have local linkage. 2555 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2556 return Intrinsic::not_intrinsic; 2557 2558 if (!ICS.onlyReadsMemory()) 2559 return Intrinsic::not_intrinsic; 2560 2561 // Otherwise check if we have a call to a function that can be turned into a 2562 // vector intrinsic. 2563 switch (Func) { 2564 default: 2565 break; 2566 case LibFunc_sin: 2567 case LibFunc_sinf: 2568 case LibFunc_sinl: 2569 return Intrinsic::sin; 2570 case LibFunc_cos: 2571 case LibFunc_cosf: 2572 case LibFunc_cosl: 2573 return Intrinsic::cos; 2574 case LibFunc_exp: 2575 case LibFunc_expf: 2576 case LibFunc_expl: 2577 return Intrinsic::exp; 2578 case LibFunc_exp2: 2579 case LibFunc_exp2f: 2580 case LibFunc_exp2l: 2581 return Intrinsic::exp2; 2582 case LibFunc_log: 2583 case LibFunc_logf: 2584 case LibFunc_logl: 2585 return Intrinsic::log; 2586 case LibFunc_log10: 2587 case LibFunc_log10f: 2588 case LibFunc_log10l: 2589 return Intrinsic::log10; 2590 case LibFunc_log2: 2591 case LibFunc_log2f: 2592 case LibFunc_log2l: 2593 return Intrinsic::log2; 2594 case LibFunc_fabs: 2595 case LibFunc_fabsf: 2596 case LibFunc_fabsl: 2597 return Intrinsic::fabs; 2598 case LibFunc_fmin: 2599 case LibFunc_fminf: 2600 case LibFunc_fminl: 2601 return Intrinsic::minnum; 2602 case LibFunc_fmax: 2603 case LibFunc_fmaxf: 2604 case LibFunc_fmaxl: 2605 return Intrinsic::maxnum; 2606 case LibFunc_copysign: 2607 case LibFunc_copysignf: 2608 case LibFunc_copysignl: 2609 return Intrinsic::copysign; 2610 case LibFunc_floor: 2611 case LibFunc_floorf: 2612 case LibFunc_floorl: 2613 return Intrinsic::floor; 2614 case LibFunc_ceil: 2615 case LibFunc_ceilf: 2616 case LibFunc_ceill: 2617 return Intrinsic::ceil; 2618 case LibFunc_trunc: 2619 case LibFunc_truncf: 2620 case LibFunc_truncl: 2621 return Intrinsic::trunc; 2622 case LibFunc_rint: 2623 case LibFunc_rintf: 2624 case LibFunc_rintl: 2625 return Intrinsic::rint; 2626 case LibFunc_nearbyint: 2627 case LibFunc_nearbyintf: 2628 case LibFunc_nearbyintl: 2629 return Intrinsic::nearbyint; 2630 case LibFunc_round: 2631 case LibFunc_roundf: 2632 case LibFunc_roundl: 2633 return Intrinsic::round; 2634 case LibFunc_pow: 2635 case LibFunc_powf: 2636 case LibFunc_powl: 2637 return Intrinsic::pow; 2638 case LibFunc_sqrt: 2639 case LibFunc_sqrtf: 2640 case LibFunc_sqrtl: 2641 return Intrinsic::sqrt; 2642 } 2643 2644 return Intrinsic::not_intrinsic; 2645 } 2646 2647 /// Return true if we can prove that the specified FP value is never equal to 2648 /// -0.0. 2649 /// 2650 /// NOTE: this function will need to be revisited when we support non-default 2651 /// rounding modes! 2652 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2653 unsigned Depth) { 2654 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2655 return !CFP->getValueAPF().isNegZero(); 2656 2657 // Limit search depth. 2658 if (Depth == MaxDepth) 2659 return false; 2660 2661 auto *Op = dyn_cast<Operator>(V); 2662 if (!Op) 2663 return false; 2664 2665 // Check if the nsz fast-math flag is set. 2666 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2667 if (FPO->hasNoSignedZeros()) 2668 return true; 2669 2670 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2671 if (match(Op, m_FAdd(m_Value(), m_Zero()))) 2672 return true; 2673 2674 // sitofp and uitofp turn into +0.0 for zero. 2675 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2676 return true; 2677 2678 if (auto *Call = dyn_cast<CallInst>(Op)) { 2679 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2680 switch (IID) { 2681 default: 2682 break; 2683 // sqrt(-0.0) = -0.0, no other negative results are possible. 2684 case Intrinsic::sqrt: 2685 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2686 // fabs(x) != -0.0 2687 case Intrinsic::fabs: 2688 return true; 2689 } 2690 } 2691 2692 return false; 2693 } 2694 2695 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2696 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2697 /// bit despite comparing equal. 2698 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2699 const TargetLibraryInfo *TLI, 2700 bool SignBitOnly, 2701 unsigned Depth) { 2702 // TODO: This function does not do the right thing when SignBitOnly is true 2703 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2704 // which flips the sign bits of NaNs. See 2705 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2706 2707 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2708 return !CFP->getValueAPF().isNegative() || 2709 (!SignBitOnly && CFP->getValueAPF().isZero()); 2710 } 2711 2712 if (Depth == MaxDepth) 2713 return false; // Limit search depth. 2714 2715 const Operator *I = dyn_cast<Operator>(V); 2716 if (!I) 2717 return false; 2718 2719 switch (I->getOpcode()) { 2720 default: 2721 break; 2722 // Unsigned integers are always nonnegative. 2723 case Instruction::UIToFP: 2724 return true; 2725 case Instruction::FMul: 2726 // x*x is always non-negative or a NaN. 2727 if (I->getOperand(0) == I->getOperand(1) && 2728 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2729 return true; 2730 2731 LLVM_FALLTHROUGH; 2732 case Instruction::FAdd: 2733 case Instruction::FDiv: 2734 case Instruction::FRem: 2735 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2736 Depth + 1) && 2737 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2738 Depth + 1); 2739 case Instruction::Select: 2740 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2741 Depth + 1) && 2742 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2743 Depth + 1); 2744 case Instruction::FPExt: 2745 case Instruction::FPTrunc: 2746 // Widening/narrowing never change sign. 2747 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2748 Depth + 1); 2749 case Instruction::Call: 2750 const auto *CI = cast<CallInst>(I); 2751 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2752 switch (IID) { 2753 default: 2754 break; 2755 case Intrinsic::maxnum: 2756 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2757 Depth + 1) || 2758 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2759 Depth + 1); 2760 case Intrinsic::minnum: 2761 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2762 Depth + 1) && 2763 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2764 Depth + 1); 2765 case Intrinsic::exp: 2766 case Intrinsic::exp2: 2767 case Intrinsic::fabs: 2768 return true; 2769 2770 case Intrinsic::sqrt: 2771 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2772 if (!SignBitOnly) 2773 return true; 2774 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2775 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2776 2777 case Intrinsic::powi: 2778 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2779 // powi(x,n) is non-negative if n is even. 2780 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2781 return true; 2782 } 2783 // TODO: This is not correct. Given that exp is an integer, here are the 2784 // ways that pow can return a negative value: 2785 // 2786 // pow(x, exp) --> negative if exp is odd and x is negative. 2787 // pow(-0, exp) --> -inf if exp is negative odd. 2788 // pow(-0, exp) --> -0 if exp is positive odd. 2789 // pow(-inf, exp) --> -0 if exp is negative odd. 2790 // pow(-inf, exp) --> -inf if exp is positive odd. 2791 // 2792 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2793 // but we must return false if x == -0. Unfortunately we do not currently 2794 // have a way of expressing this constraint. See details in 2795 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2796 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2797 Depth + 1); 2798 2799 case Intrinsic::fma: 2800 case Intrinsic::fmuladd: 2801 // x*x+y is non-negative if y is non-negative. 2802 return I->getOperand(0) == I->getOperand(1) && 2803 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2804 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2805 Depth + 1); 2806 } 2807 break; 2808 } 2809 return false; 2810 } 2811 2812 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2813 const TargetLibraryInfo *TLI) { 2814 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2815 } 2816 2817 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2818 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2819 } 2820 2821 bool llvm::isKnownNeverNaN(const Value *V) { 2822 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2823 2824 // If we're told that NaNs won't happen, assume they won't. 2825 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2826 if (FPMathOp->hasNoNaNs()) 2827 return true; 2828 2829 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2830 // functions. For example, the result of sitofp is never NaN. 2831 2832 // Handle scalar constants. 2833 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2834 return !CFP->isNaN(); 2835 2836 // Bail out for constant expressions, but try to handle vector constants. 2837 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2838 return false; 2839 2840 // For vectors, verify that each element is not NaN. 2841 unsigned NumElts = V->getType()->getVectorNumElements(); 2842 for (unsigned i = 0; i != NumElts; ++i) { 2843 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2844 if (!Elt) 2845 return false; 2846 if (isa<UndefValue>(Elt)) 2847 continue; 2848 auto *CElt = dyn_cast<ConstantFP>(Elt); 2849 if (!CElt || CElt->isNaN()) 2850 return false; 2851 } 2852 // All elements were confirmed not-NaN or undefined. 2853 return true; 2854 } 2855 2856 /// If the specified value can be set by repeating the same byte in memory, 2857 /// return the i8 value that it is represented with. This is 2858 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2859 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2860 /// byte store (e.g. i16 0x1234), return null. 2861 Value *llvm::isBytewiseValue(Value *V) { 2862 // All byte-wide stores are splatable, even of arbitrary variables. 2863 if (V->getType()->isIntegerTy(8)) return V; 2864 2865 // Handle 'null' ConstantArrayZero etc. 2866 if (Constant *C = dyn_cast<Constant>(V)) 2867 if (C->isNullValue()) 2868 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2869 2870 // Constant float and double values can be handled as integer values if the 2871 // corresponding integer value is "byteable". An important case is 0.0. 2872 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2873 if (CFP->getType()->isFloatTy()) 2874 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2875 if (CFP->getType()->isDoubleTy()) 2876 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2877 // Don't handle long double formats, which have strange constraints. 2878 } 2879 2880 // We can handle constant integers that are multiple of 8 bits. 2881 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2882 if (CI->getBitWidth() % 8 == 0) { 2883 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2884 2885 if (!CI->getValue().isSplat(8)) 2886 return nullptr; 2887 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2888 } 2889 } 2890 2891 // A ConstantDataArray/Vector is splatable if all its members are equal and 2892 // also splatable. 2893 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2894 Value *Elt = CA->getElementAsConstant(0); 2895 Value *Val = isBytewiseValue(Elt); 2896 if (!Val) 2897 return nullptr; 2898 2899 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2900 if (CA->getElementAsConstant(I) != Elt) 2901 return nullptr; 2902 2903 return Val; 2904 } 2905 2906 // Conceptually, we could handle things like: 2907 // %a = zext i8 %X to i16 2908 // %b = shl i16 %a, 8 2909 // %c = or i16 %a, %b 2910 // but until there is an example that actually needs this, it doesn't seem 2911 // worth worrying about. 2912 return nullptr; 2913 } 2914 2915 // This is the recursive version of BuildSubAggregate. It takes a few different 2916 // arguments. Idxs is the index within the nested struct From that we are 2917 // looking at now (which is of type IndexedType). IdxSkip is the number of 2918 // indices from Idxs that should be left out when inserting into the resulting 2919 // struct. To is the result struct built so far, new insertvalue instructions 2920 // build on that. 2921 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2922 SmallVectorImpl<unsigned> &Idxs, 2923 unsigned IdxSkip, 2924 Instruction *InsertBefore) { 2925 StructType *STy = dyn_cast<StructType>(IndexedType); 2926 if (STy) { 2927 // Save the original To argument so we can modify it 2928 Value *OrigTo = To; 2929 // General case, the type indexed by Idxs is a struct 2930 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2931 // Process each struct element recursively 2932 Idxs.push_back(i); 2933 Value *PrevTo = To; 2934 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2935 InsertBefore); 2936 Idxs.pop_back(); 2937 if (!To) { 2938 // Couldn't find any inserted value for this index? Cleanup 2939 while (PrevTo != OrigTo) { 2940 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2941 PrevTo = Del->getAggregateOperand(); 2942 Del->eraseFromParent(); 2943 } 2944 // Stop processing elements 2945 break; 2946 } 2947 } 2948 // If we successfully found a value for each of our subaggregates 2949 if (To) 2950 return To; 2951 } 2952 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2953 // the struct's elements had a value that was inserted directly. In the latter 2954 // case, perhaps we can't determine each of the subelements individually, but 2955 // we might be able to find the complete struct somewhere. 2956 2957 // Find the value that is at that particular spot 2958 Value *V = FindInsertedValue(From, Idxs); 2959 2960 if (!V) 2961 return nullptr; 2962 2963 // Insert the value in the new (sub) aggregrate 2964 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2965 "tmp", InsertBefore); 2966 } 2967 2968 // This helper takes a nested struct and extracts a part of it (which is again a 2969 // struct) into a new value. For example, given the struct: 2970 // { a, { b, { c, d }, e } } 2971 // and the indices "1, 1" this returns 2972 // { c, d }. 2973 // 2974 // It does this by inserting an insertvalue for each element in the resulting 2975 // struct, as opposed to just inserting a single struct. This will only work if 2976 // each of the elements of the substruct are known (ie, inserted into From by an 2977 // insertvalue instruction somewhere). 2978 // 2979 // All inserted insertvalue instructions are inserted before InsertBefore 2980 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2981 Instruction *InsertBefore) { 2982 assert(InsertBefore && "Must have someplace to insert!"); 2983 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2984 idx_range); 2985 Value *To = UndefValue::get(IndexedType); 2986 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2987 unsigned IdxSkip = Idxs.size(); 2988 2989 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2990 } 2991 2992 /// Given an aggregrate and an sequence of indices, see if 2993 /// the scalar value indexed is already around as a register, for example if it 2994 /// were inserted directly into the aggregrate. 2995 /// 2996 /// If InsertBefore is not null, this function will duplicate (modified) 2997 /// insertvalues when a part of a nested struct is extracted. 2998 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2999 Instruction *InsertBefore) { 3000 // Nothing to index? Just return V then (this is useful at the end of our 3001 // recursion). 3002 if (idx_range.empty()) 3003 return V; 3004 // We have indices, so V should have an indexable type. 3005 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3006 "Not looking at a struct or array?"); 3007 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3008 "Invalid indices for type?"); 3009 3010 if (Constant *C = dyn_cast<Constant>(V)) { 3011 C = C->getAggregateElement(idx_range[0]); 3012 if (!C) return nullptr; 3013 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3014 } 3015 3016 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3017 // Loop the indices for the insertvalue instruction in parallel with the 3018 // requested indices 3019 const unsigned *req_idx = idx_range.begin(); 3020 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3021 i != e; ++i, ++req_idx) { 3022 if (req_idx == idx_range.end()) { 3023 // We can't handle this without inserting insertvalues 3024 if (!InsertBefore) 3025 return nullptr; 3026 3027 // The requested index identifies a part of a nested aggregate. Handle 3028 // this specially. For example, 3029 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3030 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3031 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3032 // This can be changed into 3033 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3034 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3035 // which allows the unused 0,0 element from the nested struct to be 3036 // removed. 3037 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3038 InsertBefore); 3039 } 3040 3041 // This insert value inserts something else than what we are looking for. 3042 // See if the (aggregate) value inserted into has the value we are 3043 // looking for, then. 3044 if (*req_idx != *i) 3045 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3046 InsertBefore); 3047 } 3048 // If we end up here, the indices of the insertvalue match with those 3049 // requested (though possibly only partially). Now we recursively look at 3050 // the inserted value, passing any remaining indices. 3051 return FindInsertedValue(I->getInsertedValueOperand(), 3052 makeArrayRef(req_idx, idx_range.end()), 3053 InsertBefore); 3054 } 3055 3056 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3057 // If we're extracting a value from an aggregate that was extracted from 3058 // something else, we can extract from that something else directly instead. 3059 // However, we will need to chain I's indices with the requested indices. 3060 3061 // Calculate the number of indices required 3062 unsigned size = I->getNumIndices() + idx_range.size(); 3063 // Allocate some space to put the new indices in 3064 SmallVector<unsigned, 5> Idxs; 3065 Idxs.reserve(size); 3066 // Add indices from the extract value instruction 3067 Idxs.append(I->idx_begin(), I->idx_end()); 3068 3069 // Add requested indices 3070 Idxs.append(idx_range.begin(), idx_range.end()); 3071 3072 assert(Idxs.size() == size 3073 && "Number of indices added not correct?"); 3074 3075 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3076 } 3077 // Otherwise, we don't know (such as, extracting from a function return value 3078 // or load instruction) 3079 return nullptr; 3080 } 3081 3082 /// Analyze the specified pointer to see if it can be expressed as a base 3083 /// pointer plus a constant offset. Return the base and offset to the caller. 3084 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3085 const DataLayout &DL) { 3086 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 3087 APInt ByteOffset(BitWidth, 0); 3088 3089 // We walk up the defs but use a visited set to handle unreachable code. In 3090 // that case, we stop after accumulating the cycle once (not that it 3091 // matters). 3092 SmallPtrSet<Value *, 16> Visited; 3093 while (Visited.insert(Ptr).second) { 3094 if (Ptr->getType()->isVectorTy()) 3095 break; 3096 3097 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3098 // If one of the values we have visited is an addrspacecast, then 3099 // the pointer type of this GEP may be different from the type 3100 // of the Ptr parameter which was passed to this function. This 3101 // means when we construct GEPOffset, we need to use the size 3102 // of GEP's pointer type rather than the size of the original 3103 // pointer type. 3104 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 3105 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3106 break; 3107 3108 ByteOffset += GEPOffset.getSExtValue(); 3109 3110 Ptr = GEP->getPointerOperand(); 3111 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3112 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3113 Ptr = cast<Operator>(Ptr)->getOperand(0); 3114 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3115 if (GA->isInterposable()) 3116 break; 3117 Ptr = GA->getAliasee(); 3118 } else { 3119 break; 3120 } 3121 } 3122 Offset = ByteOffset.getSExtValue(); 3123 return Ptr; 3124 } 3125 3126 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3127 unsigned CharSize) { 3128 // Make sure the GEP has exactly three arguments. 3129 if (GEP->getNumOperands() != 3) 3130 return false; 3131 3132 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3133 // CharSize. 3134 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3135 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3136 return false; 3137 3138 // Check to make sure that the first operand of the GEP is an integer and 3139 // has value 0 so that we are sure we're indexing into the initializer. 3140 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3141 if (!FirstIdx || !FirstIdx->isZero()) 3142 return false; 3143 3144 return true; 3145 } 3146 3147 bool llvm::getConstantDataArrayInfo(const Value *V, 3148 ConstantDataArraySlice &Slice, 3149 unsigned ElementSize, uint64_t Offset) { 3150 assert(V); 3151 3152 // Look through bitcast instructions and geps. 3153 V = V->stripPointerCasts(); 3154 3155 // If the value is a GEP instruction or constant expression, treat it as an 3156 // offset. 3157 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3158 // The GEP operator should be based on a pointer to string constant, and is 3159 // indexing into the string constant. 3160 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3161 return false; 3162 3163 // If the second index isn't a ConstantInt, then this is a variable index 3164 // into the array. If this occurs, we can't say anything meaningful about 3165 // the string. 3166 uint64_t StartIdx = 0; 3167 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3168 StartIdx = CI->getZExtValue(); 3169 else 3170 return false; 3171 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3172 StartIdx + Offset); 3173 } 3174 3175 // The GEP instruction, constant or instruction, must reference a global 3176 // variable that is a constant and is initialized. The referenced constant 3177 // initializer is the array that we'll use for optimization. 3178 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3179 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3180 return false; 3181 3182 const ConstantDataArray *Array; 3183 ArrayType *ArrayTy; 3184 if (GV->getInitializer()->isNullValue()) { 3185 Type *GVTy = GV->getValueType(); 3186 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3187 // A zeroinitializer for the array; there is no ConstantDataArray. 3188 Array = nullptr; 3189 } else { 3190 const DataLayout &DL = GV->getParent()->getDataLayout(); 3191 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3192 uint64_t Length = SizeInBytes / (ElementSize / 8); 3193 if (Length <= Offset) 3194 return false; 3195 3196 Slice.Array = nullptr; 3197 Slice.Offset = 0; 3198 Slice.Length = Length - Offset; 3199 return true; 3200 } 3201 } else { 3202 // This must be a ConstantDataArray. 3203 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3204 if (!Array) 3205 return false; 3206 ArrayTy = Array->getType(); 3207 } 3208 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3209 return false; 3210 3211 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3212 if (Offset > NumElts) 3213 return false; 3214 3215 Slice.Array = Array; 3216 Slice.Offset = Offset; 3217 Slice.Length = NumElts - Offset; 3218 return true; 3219 } 3220 3221 /// This function computes the length of a null-terminated C string pointed to 3222 /// by V. If successful, it returns true and returns the string in Str. 3223 /// If unsuccessful, it returns false. 3224 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3225 uint64_t Offset, bool TrimAtNul) { 3226 ConstantDataArraySlice Slice; 3227 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3228 return false; 3229 3230 if (Slice.Array == nullptr) { 3231 if (TrimAtNul) { 3232 Str = StringRef(); 3233 return true; 3234 } 3235 if (Slice.Length == 1) { 3236 Str = StringRef("", 1); 3237 return true; 3238 } 3239 // We cannot instantiate a StringRef as we do not have an appropriate string 3240 // of 0s at hand. 3241 return false; 3242 } 3243 3244 // Start out with the entire array in the StringRef. 3245 Str = Slice.Array->getAsString(); 3246 // Skip over 'offset' bytes. 3247 Str = Str.substr(Slice.Offset); 3248 3249 if (TrimAtNul) { 3250 // Trim off the \0 and anything after it. If the array is not nul 3251 // terminated, we just return the whole end of string. The client may know 3252 // some other way that the string is length-bound. 3253 Str = Str.substr(0, Str.find('\0')); 3254 } 3255 return true; 3256 } 3257 3258 // These next two are very similar to the above, but also look through PHI 3259 // nodes. 3260 // TODO: See if we can integrate these two together. 3261 3262 /// If we can compute the length of the string pointed to by 3263 /// the specified pointer, return 'len+1'. If we can't, return 0. 3264 static uint64_t GetStringLengthH(const Value *V, 3265 SmallPtrSetImpl<const PHINode*> &PHIs, 3266 unsigned CharSize) { 3267 // Look through noop bitcast instructions. 3268 V = V->stripPointerCasts(); 3269 3270 // If this is a PHI node, there are two cases: either we have already seen it 3271 // or we haven't. 3272 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3273 if (!PHIs.insert(PN).second) 3274 return ~0ULL; // already in the set. 3275 3276 // If it was new, see if all the input strings are the same length. 3277 uint64_t LenSoFar = ~0ULL; 3278 for (Value *IncValue : PN->incoming_values()) { 3279 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3280 if (Len == 0) return 0; // Unknown length -> unknown. 3281 3282 if (Len == ~0ULL) continue; 3283 3284 if (Len != LenSoFar && LenSoFar != ~0ULL) 3285 return 0; // Disagree -> unknown. 3286 LenSoFar = Len; 3287 } 3288 3289 // Success, all agree. 3290 return LenSoFar; 3291 } 3292 3293 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3294 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3295 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3296 if (Len1 == 0) return 0; 3297 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3298 if (Len2 == 0) return 0; 3299 if (Len1 == ~0ULL) return Len2; 3300 if (Len2 == ~0ULL) return Len1; 3301 if (Len1 != Len2) return 0; 3302 return Len1; 3303 } 3304 3305 // Otherwise, see if we can read the string. 3306 ConstantDataArraySlice Slice; 3307 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3308 return 0; 3309 3310 if (Slice.Array == nullptr) 3311 return 1; 3312 3313 // Search for nul characters 3314 unsigned NullIndex = 0; 3315 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3316 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3317 break; 3318 } 3319 3320 return NullIndex + 1; 3321 } 3322 3323 /// If we can compute the length of the string pointed to by 3324 /// the specified pointer, return 'len+1'. If we can't, return 0. 3325 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3326 if (!V->getType()->isPointerTy()) return 0; 3327 3328 SmallPtrSet<const PHINode*, 32> PHIs; 3329 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3330 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3331 // an empty string as a length. 3332 return Len == ~0ULL ? 1 : Len; 3333 } 3334 3335 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3336 /// previous iteration of the loop was referring to the same object as \p PN. 3337 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3338 const LoopInfo *LI) { 3339 // Find the loop-defined value. 3340 Loop *L = LI->getLoopFor(PN->getParent()); 3341 if (PN->getNumIncomingValues() != 2) 3342 return true; 3343 3344 // Find the value from previous iteration. 3345 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3346 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3347 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3348 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3349 return true; 3350 3351 // If a new pointer is loaded in the loop, the pointer references a different 3352 // object in every iteration. E.g.: 3353 // for (i) 3354 // int *p = a[i]; 3355 // ... 3356 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3357 if (!L->isLoopInvariant(Load->getPointerOperand())) 3358 return false; 3359 return true; 3360 } 3361 3362 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3363 unsigned MaxLookup) { 3364 if (!V->getType()->isPointerTy()) 3365 return V; 3366 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3367 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3368 V = GEP->getPointerOperand(); 3369 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3370 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3371 V = cast<Operator>(V)->getOperand(0); 3372 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3373 if (GA->isInterposable()) 3374 return V; 3375 V = GA->getAliasee(); 3376 } else if (isa<AllocaInst>(V)) { 3377 // An alloca can't be further simplified. 3378 return V; 3379 } else { 3380 if (auto CS = CallSite(V)) 3381 if (Value *RV = CS.getReturnedArgOperand()) { 3382 V = RV; 3383 continue; 3384 } 3385 3386 // See if InstructionSimplify knows any relevant tricks. 3387 if (Instruction *I = dyn_cast<Instruction>(V)) 3388 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3389 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3390 V = Simplified; 3391 continue; 3392 } 3393 3394 return V; 3395 } 3396 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3397 } 3398 return V; 3399 } 3400 3401 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3402 const DataLayout &DL, LoopInfo *LI, 3403 unsigned MaxLookup) { 3404 SmallPtrSet<Value *, 4> Visited; 3405 SmallVector<Value *, 4> Worklist; 3406 Worklist.push_back(V); 3407 do { 3408 Value *P = Worklist.pop_back_val(); 3409 P = GetUnderlyingObject(P, DL, MaxLookup); 3410 3411 if (!Visited.insert(P).second) 3412 continue; 3413 3414 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3415 Worklist.push_back(SI->getTrueValue()); 3416 Worklist.push_back(SI->getFalseValue()); 3417 continue; 3418 } 3419 3420 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3421 // If this PHI changes the underlying object in every iteration of the 3422 // loop, don't look through it. Consider: 3423 // int **A; 3424 // for (i) { 3425 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3426 // Curr = A[i]; 3427 // *Prev, *Curr; 3428 // 3429 // Prev is tracking Curr one iteration behind so they refer to different 3430 // underlying objects. 3431 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3432 isSameUnderlyingObjectInLoop(PN, LI)) 3433 for (Value *IncValue : PN->incoming_values()) 3434 Worklist.push_back(IncValue); 3435 continue; 3436 } 3437 3438 Objects.push_back(P); 3439 } while (!Worklist.empty()); 3440 } 3441 3442 /// This is the function that does the work of looking through basic 3443 /// ptrtoint+arithmetic+inttoptr sequences. 3444 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3445 do { 3446 if (const Operator *U = dyn_cast<Operator>(V)) { 3447 // If we find a ptrtoint, we can transfer control back to the 3448 // regular getUnderlyingObjectFromInt. 3449 if (U->getOpcode() == Instruction::PtrToInt) 3450 return U->getOperand(0); 3451 // If we find an add of a constant, a multiplied value, or a phi, it's 3452 // likely that the other operand will lead us to the base 3453 // object. We don't have to worry about the case where the 3454 // object address is somehow being computed by the multiply, 3455 // because our callers only care when the result is an 3456 // identifiable object. 3457 if (U->getOpcode() != Instruction::Add || 3458 (!isa<ConstantInt>(U->getOperand(1)) && 3459 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3460 !isa<PHINode>(U->getOperand(1)))) 3461 return V; 3462 V = U->getOperand(0); 3463 } else { 3464 return V; 3465 } 3466 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3467 } while (true); 3468 } 3469 3470 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3471 /// ptrtoint+arithmetic+inttoptr sequences. 3472 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3473 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3474 SmallVectorImpl<Value *> &Objects, 3475 const DataLayout &DL) { 3476 SmallPtrSet<const Value *, 16> Visited; 3477 SmallVector<const Value *, 4> Working(1, V); 3478 do { 3479 V = Working.pop_back_val(); 3480 3481 SmallVector<Value *, 4> Objs; 3482 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3483 3484 for (Value *V : Objs) { 3485 if (!Visited.insert(V).second) 3486 continue; 3487 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3488 const Value *O = 3489 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3490 if (O->getType()->isPointerTy()) { 3491 Working.push_back(O); 3492 continue; 3493 } 3494 } 3495 // If GetUnderlyingObjects fails to find an identifiable object, 3496 // getUnderlyingObjectsForCodeGen also fails for safety. 3497 if (!isIdentifiedObject(V)) { 3498 Objects.clear(); 3499 return false; 3500 } 3501 Objects.push_back(const_cast<Value *>(V)); 3502 } 3503 } while (!Working.empty()); 3504 return true; 3505 } 3506 3507 /// Return true if the only users of this pointer are lifetime markers. 3508 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3509 for (const User *U : V->users()) { 3510 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3511 if (!II) return false; 3512 3513 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3514 II->getIntrinsicID() != Intrinsic::lifetime_end) 3515 return false; 3516 } 3517 return true; 3518 } 3519 3520 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3521 const Instruction *CtxI, 3522 const DominatorTree *DT) { 3523 const Operator *Inst = dyn_cast<Operator>(V); 3524 if (!Inst) 3525 return false; 3526 3527 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3528 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3529 if (C->canTrap()) 3530 return false; 3531 3532 switch (Inst->getOpcode()) { 3533 default: 3534 return true; 3535 case Instruction::UDiv: 3536 case Instruction::URem: { 3537 // x / y is undefined if y == 0. 3538 const APInt *V; 3539 if (match(Inst->getOperand(1), m_APInt(V))) 3540 return *V != 0; 3541 return false; 3542 } 3543 case Instruction::SDiv: 3544 case Instruction::SRem: { 3545 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3546 const APInt *Numerator, *Denominator; 3547 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3548 return false; 3549 // We cannot hoist this division if the denominator is 0. 3550 if (*Denominator == 0) 3551 return false; 3552 // It's safe to hoist if the denominator is not 0 or -1. 3553 if (*Denominator != -1) 3554 return true; 3555 // At this point we know that the denominator is -1. It is safe to hoist as 3556 // long we know that the numerator is not INT_MIN. 3557 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3558 return !Numerator->isMinSignedValue(); 3559 // The numerator *might* be MinSignedValue. 3560 return false; 3561 } 3562 case Instruction::Load: { 3563 const LoadInst *LI = cast<LoadInst>(Inst); 3564 if (!LI->isUnordered() || 3565 // Speculative load may create a race that did not exist in the source. 3566 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3567 // Speculative load may load data from dirty regions. 3568 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3569 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3570 return false; 3571 const DataLayout &DL = LI->getModule()->getDataLayout(); 3572 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3573 LI->getAlignment(), DL, CtxI, DT); 3574 } 3575 case Instruction::Call: { 3576 auto *CI = cast<const CallInst>(Inst); 3577 const Function *Callee = CI->getCalledFunction(); 3578 3579 // The called function could have undefined behavior or side-effects, even 3580 // if marked readnone nounwind. 3581 return Callee && Callee->isSpeculatable(); 3582 } 3583 case Instruction::VAArg: 3584 case Instruction::Alloca: 3585 case Instruction::Invoke: 3586 case Instruction::PHI: 3587 case Instruction::Store: 3588 case Instruction::Ret: 3589 case Instruction::Br: 3590 case Instruction::IndirectBr: 3591 case Instruction::Switch: 3592 case Instruction::Unreachable: 3593 case Instruction::Fence: 3594 case Instruction::AtomicRMW: 3595 case Instruction::AtomicCmpXchg: 3596 case Instruction::LandingPad: 3597 case Instruction::Resume: 3598 case Instruction::CatchSwitch: 3599 case Instruction::CatchPad: 3600 case Instruction::CatchRet: 3601 case Instruction::CleanupPad: 3602 case Instruction::CleanupRet: 3603 return false; // Misc instructions which have effects 3604 } 3605 } 3606 3607 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3608 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3609 } 3610 3611 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3612 const Value *RHS, 3613 const DataLayout &DL, 3614 AssumptionCache *AC, 3615 const Instruction *CxtI, 3616 const DominatorTree *DT) { 3617 // Multiplying n * m significant bits yields a result of n + m significant 3618 // bits. If the total number of significant bits does not exceed the 3619 // result bit width (minus 1), there is no overflow. 3620 // This means if we have enough leading zero bits in the operands 3621 // we can guarantee that the result does not overflow. 3622 // Ref: "Hacker's Delight" by Henry Warren 3623 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3624 KnownBits LHSKnown(BitWidth); 3625 KnownBits RHSKnown(BitWidth); 3626 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3627 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3628 // Note that underestimating the number of zero bits gives a more 3629 // conservative answer. 3630 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3631 RHSKnown.countMinLeadingZeros(); 3632 // First handle the easy case: if we have enough zero bits there's 3633 // definitely no overflow. 3634 if (ZeroBits >= BitWidth) 3635 return OverflowResult::NeverOverflows; 3636 3637 // Get the largest possible values for each operand. 3638 APInt LHSMax = ~LHSKnown.Zero; 3639 APInt RHSMax = ~RHSKnown.Zero; 3640 3641 // We know the multiply operation doesn't overflow if the maximum values for 3642 // each operand will not overflow after we multiply them together. 3643 bool MaxOverflow; 3644 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3645 if (!MaxOverflow) 3646 return OverflowResult::NeverOverflows; 3647 3648 // We know it always overflows if multiplying the smallest possible values for 3649 // the operands also results in overflow. 3650 bool MinOverflow; 3651 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3652 if (MinOverflow) 3653 return OverflowResult::AlwaysOverflows; 3654 3655 return OverflowResult::MayOverflow; 3656 } 3657 3658 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3659 const Value *RHS, 3660 const DataLayout &DL, 3661 AssumptionCache *AC, 3662 const Instruction *CxtI, 3663 const DominatorTree *DT) { 3664 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3665 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3666 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3667 3668 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3669 // The sign bit is set in both cases: this MUST overflow. 3670 // Create a simple add instruction, and insert it into the struct. 3671 return OverflowResult::AlwaysOverflows; 3672 } 3673 3674 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3675 // The sign bit is clear in both cases: this CANNOT overflow. 3676 // Create a simple add instruction, and insert it into the struct. 3677 return OverflowResult::NeverOverflows; 3678 } 3679 } 3680 3681 return OverflowResult::MayOverflow; 3682 } 3683 3684 /// \brief Return true if we can prove that adding the two values of the 3685 /// knownbits will not overflow. 3686 /// Otherwise return false. 3687 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3688 const KnownBits &RHSKnown) { 3689 // Addition of two 2's complement numbers having opposite signs will never 3690 // overflow. 3691 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3692 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3693 return true; 3694 3695 // If either of the values is known to be non-negative, adding them can only 3696 // overflow if the second is also non-negative, so we can assume that. 3697 // Two non-negative numbers will only overflow if there is a carry to the 3698 // sign bit, so we can check if even when the values are as big as possible 3699 // there is no overflow to the sign bit. 3700 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3701 APInt MaxLHS = ~LHSKnown.Zero; 3702 MaxLHS.clearSignBit(); 3703 APInt MaxRHS = ~RHSKnown.Zero; 3704 MaxRHS.clearSignBit(); 3705 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3706 return Result.isSignBitClear(); 3707 } 3708 3709 // If either of the values is known to be negative, adding them can only 3710 // overflow if the second is also negative, so we can assume that. 3711 // Two negative number will only overflow if there is no carry to the sign 3712 // bit, so we can check if even when the values are as small as possible 3713 // there is overflow to the sign bit. 3714 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3715 APInt MinLHS = LHSKnown.One; 3716 MinLHS.clearSignBit(); 3717 APInt MinRHS = RHSKnown.One; 3718 MinRHS.clearSignBit(); 3719 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3720 return Result.isSignBitSet(); 3721 } 3722 3723 // If we reached here it means that we know nothing about the sign bits. 3724 // In this case we can't know if there will be an overflow, since by 3725 // changing the sign bits any two values can be made to overflow. 3726 return false; 3727 } 3728 3729 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3730 const Value *RHS, 3731 const AddOperator *Add, 3732 const DataLayout &DL, 3733 AssumptionCache *AC, 3734 const Instruction *CxtI, 3735 const DominatorTree *DT) { 3736 if (Add && Add->hasNoSignedWrap()) { 3737 return OverflowResult::NeverOverflows; 3738 } 3739 3740 // If LHS and RHS each have at least two sign bits, the addition will look 3741 // like 3742 // 3743 // XX..... + 3744 // YY..... 3745 // 3746 // If the carry into the most significant position is 0, X and Y can't both 3747 // be 1 and therefore the carry out of the addition is also 0. 3748 // 3749 // If the carry into the most significant position is 1, X and Y can't both 3750 // be 0 and therefore the carry out of the addition is also 1. 3751 // 3752 // Since the carry into the most significant position is always equal to 3753 // the carry out of the addition, there is no signed overflow. 3754 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3755 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3756 return OverflowResult::NeverOverflows; 3757 3758 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3759 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3760 3761 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3762 return OverflowResult::NeverOverflows; 3763 3764 // The remaining code needs Add to be available. Early returns if not so. 3765 if (!Add) 3766 return OverflowResult::MayOverflow; 3767 3768 // If the sign of Add is the same as at least one of the operands, this add 3769 // CANNOT overflow. This is particularly useful when the sum is 3770 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3771 // operands. 3772 bool LHSOrRHSKnownNonNegative = 3773 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3774 bool LHSOrRHSKnownNegative = 3775 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3776 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3777 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3778 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3779 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3780 return OverflowResult::NeverOverflows; 3781 } 3782 } 3783 3784 return OverflowResult::MayOverflow; 3785 } 3786 3787 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3788 const DominatorTree &DT) { 3789 #ifndef NDEBUG 3790 auto IID = II->getIntrinsicID(); 3791 assert((IID == Intrinsic::sadd_with_overflow || 3792 IID == Intrinsic::uadd_with_overflow || 3793 IID == Intrinsic::ssub_with_overflow || 3794 IID == Intrinsic::usub_with_overflow || 3795 IID == Intrinsic::smul_with_overflow || 3796 IID == Intrinsic::umul_with_overflow) && 3797 "Not an overflow intrinsic!"); 3798 #endif 3799 3800 SmallVector<const BranchInst *, 2> GuardingBranches; 3801 SmallVector<const ExtractValueInst *, 2> Results; 3802 3803 for (const User *U : II->users()) { 3804 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3805 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3806 3807 if (EVI->getIndices()[0] == 0) 3808 Results.push_back(EVI); 3809 else { 3810 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3811 3812 for (const auto *U : EVI->users()) 3813 if (const auto *B = dyn_cast<BranchInst>(U)) { 3814 assert(B->isConditional() && "How else is it using an i1?"); 3815 GuardingBranches.push_back(B); 3816 } 3817 } 3818 } else { 3819 // We are using the aggregate directly in a way we don't want to analyze 3820 // here (storing it to a global, say). 3821 return false; 3822 } 3823 } 3824 3825 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3826 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3827 if (!NoWrapEdge.isSingleEdge()) 3828 return false; 3829 3830 // Check if all users of the add are provably no-wrap. 3831 for (const auto *Result : Results) { 3832 // If the extractvalue itself is not executed on overflow, the we don't 3833 // need to check each use separately, since domination is transitive. 3834 if (DT.dominates(NoWrapEdge, Result->getParent())) 3835 continue; 3836 3837 for (auto &RU : Result->uses()) 3838 if (!DT.dominates(NoWrapEdge, RU)) 3839 return false; 3840 } 3841 3842 return true; 3843 }; 3844 3845 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 3846 } 3847 3848 3849 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3850 const DataLayout &DL, 3851 AssumptionCache *AC, 3852 const Instruction *CxtI, 3853 const DominatorTree *DT) { 3854 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3855 Add, DL, AC, CxtI, DT); 3856 } 3857 3858 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3859 const Value *RHS, 3860 const DataLayout &DL, 3861 AssumptionCache *AC, 3862 const Instruction *CxtI, 3863 const DominatorTree *DT) { 3864 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3865 } 3866 3867 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3868 // A memory operation returns normally if it isn't volatile. A volatile 3869 // operation is allowed to trap. 3870 // 3871 // An atomic operation isn't guaranteed to return in a reasonable amount of 3872 // time because it's possible for another thread to interfere with it for an 3873 // arbitrary length of time, but programs aren't allowed to rely on that. 3874 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3875 return !LI->isVolatile(); 3876 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3877 return !SI->isVolatile(); 3878 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3879 return !CXI->isVolatile(); 3880 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3881 return !RMWI->isVolatile(); 3882 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3883 return !MII->isVolatile(); 3884 3885 // If there is no successor, then execution can't transfer to it. 3886 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3887 return !CRI->unwindsToCaller(); 3888 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3889 return !CatchSwitch->unwindsToCaller(); 3890 if (isa<ResumeInst>(I)) 3891 return false; 3892 if (isa<ReturnInst>(I)) 3893 return false; 3894 if (isa<UnreachableInst>(I)) 3895 return false; 3896 3897 // Calls can throw, or contain an infinite loop, or kill the process. 3898 if (auto CS = ImmutableCallSite(I)) { 3899 // Call sites that throw have implicit non-local control flow. 3900 if (!CS.doesNotThrow()) 3901 return false; 3902 3903 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3904 // etc. and thus not return. However, LLVM already assumes that 3905 // 3906 // - Thread exiting actions are modeled as writes to memory invisible to 3907 // the program. 3908 // 3909 // - Loops that don't have side effects (side effects are volatile/atomic 3910 // stores and IO) always terminate (see http://llvm.org/PR965). 3911 // Furthermore IO itself is also modeled as writes to memory invisible to 3912 // the program. 3913 // 3914 // We rely on those assumptions here, and use the memory effects of the call 3915 // target as a proxy for checking that it always returns. 3916 3917 // FIXME: This isn't aggressive enough; a call which only writes to a global 3918 // is guaranteed to return. 3919 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3920 match(I, m_Intrinsic<Intrinsic::assume>()) || 3921 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 3922 } 3923 3924 // Other instructions return normally. 3925 return true; 3926 } 3927 3928 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3929 const Loop *L) { 3930 // The loop header is guaranteed to be executed for every iteration. 3931 // 3932 // FIXME: Relax this constraint to cover all basic blocks that are 3933 // guaranteed to be executed at every iteration. 3934 if (I->getParent() != L->getHeader()) return false; 3935 3936 for (const Instruction &LI : *L->getHeader()) { 3937 if (&LI == I) return true; 3938 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3939 } 3940 llvm_unreachable("Instruction not contained in its own parent basic block."); 3941 } 3942 3943 bool llvm::propagatesFullPoison(const Instruction *I) { 3944 switch (I->getOpcode()) { 3945 case Instruction::Add: 3946 case Instruction::Sub: 3947 case Instruction::Xor: 3948 case Instruction::Trunc: 3949 case Instruction::BitCast: 3950 case Instruction::AddrSpaceCast: 3951 case Instruction::Mul: 3952 case Instruction::Shl: 3953 case Instruction::GetElementPtr: 3954 // These operations all propagate poison unconditionally. Note that poison 3955 // is not any particular value, so xor or subtraction of poison with 3956 // itself still yields poison, not zero. 3957 return true; 3958 3959 case Instruction::AShr: 3960 case Instruction::SExt: 3961 // For these operations, one bit of the input is replicated across 3962 // multiple output bits. A replicated poison bit is still poison. 3963 return true; 3964 3965 case Instruction::ICmp: 3966 // Comparing poison with any value yields poison. This is why, for 3967 // instance, x s< (x +nsw 1) can be folded to true. 3968 return true; 3969 3970 default: 3971 return false; 3972 } 3973 } 3974 3975 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3976 switch (I->getOpcode()) { 3977 case Instruction::Store: 3978 return cast<StoreInst>(I)->getPointerOperand(); 3979 3980 case Instruction::Load: 3981 return cast<LoadInst>(I)->getPointerOperand(); 3982 3983 case Instruction::AtomicCmpXchg: 3984 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3985 3986 case Instruction::AtomicRMW: 3987 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3988 3989 case Instruction::UDiv: 3990 case Instruction::SDiv: 3991 case Instruction::URem: 3992 case Instruction::SRem: 3993 return I->getOperand(1); 3994 3995 default: 3996 return nullptr; 3997 } 3998 } 3999 4000 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4001 // We currently only look for uses of poison values within the same basic 4002 // block, as that makes it easier to guarantee that the uses will be 4003 // executed given that PoisonI is executed. 4004 // 4005 // FIXME: Expand this to consider uses beyond the same basic block. To do 4006 // this, look out for the distinction between post-dominance and strong 4007 // post-dominance. 4008 const BasicBlock *BB = PoisonI->getParent(); 4009 4010 // Set of instructions that we have proved will yield poison if PoisonI 4011 // does. 4012 SmallSet<const Value *, 16> YieldsPoison; 4013 SmallSet<const BasicBlock *, 4> Visited; 4014 YieldsPoison.insert(PoisonI); 4015 Visited.insert(PoisonI->getParent()); 4016 4017 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4018 4019 unsigned Iter = 0; 4020 while (Iter++ < MaxDepth) { 4021 for (auto &I : make_range(Begin, End)) { 4022 if (&I != PoisonI) { 4023 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4024 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4025 return true; 4026 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4027 return false; 4028 } 4029 4030 // Mark poison that propagates from I through uses of I. 4031 if (YieldsPoison.count(&I)) { 4032 for (const User *User : I.users()) { 4033 const Instruction *UserI = cast<Instruction>(User); 4034 if (propagatesFullPoison(UserI)) 4035 YieldsPoison.insert(User); 4036 } 4037 } 4038 } 4039 4040 if (auto *NextBB = BB->getSingleSuccessor()) { 4041 if (Visited.insert(NextBB).second) { 4042 BB = NextBB; 4043 Begin = BB->getFirstNonPHI()->getIterator(); 4044 End = BB->end(); 4045 continue; 4046 } 4047 } 4048 4049 break; 4050 } 4051 return false; 4052 } 4053 4054 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4055 if (FMF.noNaNs()) 4056 return true; 4057 4058 if (auto *C = dyn_cast<ConstantFP>(V)) 4059 return !C->isNaN(); 4060 return false; 4061 } 4062 4063 static bool isKnownNonZero(const Value *V) { 4064 if (auto *C = dyn_cast<ConstantFP>(V)) 4065 return !C->isZero(); 4066 return false; 4067 } 4068 4069 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4070 /// Given non-min/max outer cmp/select from the clamp pattern this 4071 /// function recognizes if it can be substitued by a "canonical" min/max 4072 /// pattern. 4073 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4074 Value *CmpLHS, Value *CmpRHS, 4075 Value *TrueVal, Value *FalseVal, 4076 Value *&LHS, Value *&RHS) { 4077 // Try to match 4078 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4079 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4080 // and return description of the outer Max/Min. 4081 4082 // First, check if select has inverse order: 4083 if (CmpRHS == FalseVal) { 4084 std::swap(TrueVal, FalseVal); 4085 Pred = CmpInst::getInversePredicate(Pred); 4086 } 4087 4088 // Assume success now. If there's no match, callers should not use these anyway. 4089 LHS = TrueVal; 4090 RHS = FalseVal; 4091 4092 const APFloat *FC1; 4093 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4094 return {SPF_UNKNOWN, SPNB_NA, false}; 4095 4096 const APFloat *FC2; 4097 switch (Pred) { 4098 case CmpInst::FCMP_OLT: 4099 case CmpInst::FCMP_OLE: 4100 case CmpInst::FCMP_ULT: 4101 case CmpInst::FCMP_ULE: 4102 if (match(FalseVal, 4103 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4104 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4105 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4106 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4107 break; 4108 case CmpInst::FCMP_OGT: 4109 case CmpInst::FCMP_OGE: 4110 case CmpInst::FCMP_UGT: 4111 case CmpInst::FCMP_UGE: 4112 if (match(FalseVal, 4113 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4114 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4115 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4116 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4117 break; 4118 default: 4119 break; 4120 } 4121 4122 return {SPF_UNKNOWN, SPNB_NA, false}; 4123 } 4124 4125 /// Recognize variations of: 4126 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4127 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4128 Value *CmpLHS, Value *CmpRHS, 4129 Value *TrueVal, Value *FalseVal) { 4130 // Swap the select operands and predicate to match the patterns below. 4131 if (CmpRHS != TrueVal) { 4132 Pred = ICmpInst::getSwappedPredicate(Pred); 4133 std::swap(TrueVal, FalseVal); 4134 } 4135 const APInt *C1; 4136 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4137 const APInt *C2; 4138 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4139 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4140 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4141 return {SPF_SMAX, SPNB_NA, false}; 4142 4143 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4144 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4145 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4146 return {SPF_SMIN, SPNB_NA, false}; 4147 4148 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4149 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4150 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4151 return {SPF_UMAX, SPNB_NA, false}; 4152 4153 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4154 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4155 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4156 return {SPF_UMIN, SPNB_NA, false}; 4157 } 4158 return {SPF_UNKNOWN, SPNB_NA, false}; 4159 } 4160 4161 /// Recognize variations of: 4162 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4163 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4164 Value *CmpLHS, Value *CmpRHS, 4165 Value *TVal, Value *FVal, 4166 unsigned Depth) { 4167 // TODO: Allow FP min/max with nnan/nsz. 4168 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4169 4170 Value *A, *B; 4171 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4172 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4173 return {SPF_UNKNOWN, SPNB_NA, false}; 4174 4175 Value *C, *D; 4176 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4177 if (L.Flavor != R.Flavor) 4178 return {SPF_UNKNOWN, SPNB_NA, false}; 4179 4180 // We have something like: x Pred y ? min(a, b) : min(c, d). 4181 // Try to match the compare to the min/max operations of the select operands. 4182 // First, make sure we have the right compare predicate. 4183 switch (L.Flavor) { 4184 case SPF_SMIN: 4185 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4186 Pred = ICmpInst::getSwappedPredicate(Pred); 4187 std::swap(CmpLHS, CmpRHS); 4188 } 4189 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4190 break; 4191 return {SPF_UNKNOWN, SPNB_NA, false}; 4192 case SPF_SMAX: 4193 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4194 Pred = ICmpInst::getSwappedPredicate(Pred); 4195 std::swap(CmpLHS, CmpRHS); 4196 } 4197 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4198 break; 4199 return {SPF_UNKNOWN, SPNB_NA, false}; 4200 case SPF_UMIN: 4201 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4202 Pred = ICmpInst::getSwappedPredicate(Pred); 4203 std::swap(CmpLHS, CmpRHS); 4204 } 4205 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4206 break; 4207 return {SPF_UNKNOWN, SPNB_NA, false}; 4208 case SPF_UMAX: 4209 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4210 Pred = ICmpInst::getSwappedPredicate(Pred); 4211 std::swap(CmpLHS, CmpRHS); 4212 } 4213 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4214 break; 4215 return {SPF_UNKNOWN, SPNB_NA, false}; 4216 default: 4217 return {SPF_UNKNOWN, SPNB_NA, false}; 4218 } 4219 4220 // If there is a common operand in the already matched min/max and the other 4221 // min/max operands match the compare operands (either directly or inverted), 4222 // then this is min/max of the same flavor. 4223 4224 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4225 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4226 if (D == B) { 4227 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4228 match(A, m_Not(m_Specific(CmpRHS))))) 4229 return {L.Flavor, SPNB_NA, false}; 4230 } 4231 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4232 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4233 if (C == B) { 4234 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4235 match(A, m_Not(m_Specific(CmpRHS))))) 4236 return {L.Flavor, SPNB_NA, false}; 4237 } 4238 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4239 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4240 if (D == A) { 4241 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4242 match(B, m_Not(m_Specific(CmpRHS))))) 4243 return {L.Flavor, SPNB_NA, false}; 4244 } 4245 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4246 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4247 if (C == A) { 4248 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4249 match(B, m_Not(m_Specific(CmpRHS))))) 4250 return {L.Flavor, SPNB_NA, false}; 4251 } 4252 4253 return {SPF_UNKNOWN, SPNB_NA, false}; 4254 } 4255 4256 /// Match non-obvious integer minimum and maximum sequences. 4257 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4258 Value *CmpLHS, Value *CmpRHS, 4259 Value *TrueVal, Value *FalseVal, 4260 Value *&LHS, Value *&RHS, 4261 unsigned Depth) { 4262 // Assume success. If there's no match, callers should not use these anyway. 4263 LHS = TrueVal; 4264 RHS = FalseVal; 4265 4266 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4267 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4268 return SPR; 4269 4270 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4271 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4272 return SPR; 4273 4274 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4275 return {SPF_UNKNOWN, SPNB_NA, false}; 4276 4277 // Z = X -nsw Y 4278 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4279 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4280 if (match(TrueVal, m_Zero()) && 4281 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4282 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4283 4284 // Z = X -nsw Y 4285 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4286 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4287 if (match(FalseVal, m_Zero()) && 4288 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4289 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4290 4291 const APInt *C1; 4292 if (!match(CmpRHS, m_APInt(C1))) 4293 return {SPF_UNKNOWN, SPNB_NA, false}; 4294 4295 // An unsigned min/max can be written with a signed compare. 4296 const APInt *C2; 4297 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4298 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4299 // Is the sign bit set? 4300 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4301 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4302 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4303 C2->isMaxSignedValue()) 4304 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4305 4306 // Is the sign bit clear? 4307 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4308 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4309 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4310 C2->isMinSignedValue()) 4311 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4312 } 4313 4314 // Look through 'not' ops to find disguised signed min/max. 4315 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4316 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4317 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4318 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4319 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4320 4321 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4322 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4323 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4324 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4325 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4326 4327 return {SPF_UNKNOWN, SPNB_NA, false}; 4328 } 4329 4330 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4331 FastMathFlags FMF, 4332 Value *CmpLHS, Value *CmpRHS, 4333 Value *TrueVal, Value *FalseVal, 4334 Value *&LHS, Value *&RHS, 4335 unsigned Depth) { 4336 LHS = CmpLHS; 4337 RHS = CmpRHS; 4338 4339 // Signed zero may return inconsistent results between implementations. 4340 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4341 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4342 // Therefore, we behave conservatively and only proceed if at least one of the 4343 // operands is known to not be zero or if we don't care about signed zero. 4344 switch (Pred) { 4345 default: break; 4346 // FIXME: Include OGT/OLT/UGT/ULT. 4347 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4348 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4349 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4350 !isKnownNonZero(CmpRHS)) 4351 return {SPF_UNKNOWN, SPNB_NA, false}; 4352 } 4353 4354 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4355 bool Ordered = false; 4356 4357 // When given one NaN and one non-NaN input: 4358 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4359 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4360 // ordered comparison fails), which could be NaN or non-NaN. 4361 // so here we discover exactly what NaN behavior is required/accepted. 4362 if (CmpInst::isFPPredicate(Pred)) { 4363 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4364 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4365 4366 if (LHSSafe && RHSSafe) { 4367 // Both operands are known non-NaN. 4368 NaNBehavior = SPNB_RETURNS_ANY; 4369 } else if (CmpInst::isOrdered(Pred)) { 4370 // An ordered comparison will return false when given a NaN, so it 4371 // returns the RHS. 4372 Ordered = true; 4373 if (LHSSafe) 4374 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4375 NaNBehavior = SPNB_RETURNS_NAN; 4376 else if (RHSSafe) 4377 NaNBehavior = SPNB_RETURNS_OTHER; 4378 else 4379 // Completely unsafe. 4380 return {SPF_UNKNOWN, SPNB_NA, false}; 4381 } else { 4382 Ordered = false; 4383 // An unordered comparison will return true when given a NaN, so it 4384 // returns the LHS. 4385 if (LHSSafe) 4386 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4387 NaNBehavior = SPNB_RETURNS_OTHER; 4388 else if (RHSSafe) 4389 NaNBehavior = SPNB_RETURNS_NAN; 4390 else 4391 // Completely unsafe. 4392 return {SPF_UNKNOWN, SPNB_NA, false}; 4393 } 4394 } 4395 4396 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4397 std::swap(CmpLHS, CmpRHS); 4398 Pred = CmpInst::getSwappedPredicate(Pred); 4399 if (NaNBehavior == SPNB_RETURNS_NAN) 4400 NaNBehavior = SPNB_RETURNS_OTHER; 4401 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4402 NaNBehavior = SPNB_RETURNS_NAN; 4403 Ordered = !Ordered; 4404 } 4405 4406 // ([if]cmp X, Y) ? X : Y 4407 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4408 switch (Pred) { 4409 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4410 case ICmpInst::ICMP_UGT: 4411 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4412 case ICmpInst::ICMP_SGT: 4413 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4414 case ICmpInst::ICMP_ULT: 4415 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4416 case ICmpInst::ICMP_SLT: 4417 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4418 case FCmpInst::FCMP_UGT: 4419 case FCmpInst::FCMP_UGE: 4420 case FCmpInst::FCMP_OGT: 4421 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4422 case FCmpInst::FCMP_ULT: 4423 case FCmpInst::FCMP_ULE: 4424 case FCmpInst::FCMP_OLT: 4425 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4426 } 4427 } 4428 4429 const APInt *C1; 4430 if (match(CmpRHS, m_APInt(C1))) { 4431 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4432 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4433 4434 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4435 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4436 if (Pred == ICmpInst::ICMP_SGT && 4437 (C1->isNullValue() || C1->isAllOnesValue())) { 4438 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4439 } 4440 4441 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4442 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4443 if (Pred == ICmpInst::ICMP_SLT && 4444 (C1->isNullValue() || C1->isOneValue())) { 4445 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4446 } 4447 } 4448 } 4449 4450 if (CmpInst::isIntPredicate(Pred)) 4451 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4452 4453 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4454 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4455 // semantics than minNum. Be conservative in such case. 4456 if (NaNBehavior != SPNB_RETURNS_ANY || 4457 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4458 !isKnownNonZero(CmpRHS))) 4459 return {SPF_UNKNOWN, SPNB_NA, false}; 4460 4461 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4462 } 4463 4464 /// Helps to match a select pattern in case of a type mismatch. 4465 /// 4466 /// The function processes the case when type of true and false values of a 4467 /// select instruction differs from type of the cmp instruction operands because 4468 /// of a cast instructon. The function checks if it is legal to move the cast 4469 /// operation after "select". If yes, it returns the new second value of 4470 /// "select" (with the assumption that cast is moved): 4471 /// 1. As operand of cast instruction when both values of "select" are same cast 4472 /// instructions. 4473 /// 2. As restored constant (by applying reverse cast operation) when the first 4474 /// value of the "select" is a cast operation and the second value is a 4475 /// constant. 4476 /// NOTE: We return only the new second value because the first value could be 4477 /// accessed as operand of cast instruction. 4478 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4479 Instruction::CastOps *CastOp) { 4480 auto *Cast1 = dyn_cast<CastInst>(V1); 4481 if (!Cast1) 4482 return nullptr; 4483 4484 *CastOp = Cast1->getOpcode(); 4485 Type *SrcTy = Cast1->getSrcTy(); 4486 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4487 // If V1 and V2 are both the same cast from the same type, look through V1. 4488 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4489 return Cast2->getOperand(0); 4490 return nullptr; 4491 } 4492 4493 auto *C = dyn_cast<Constant>(V2); 4494 if (!C) 4495 return nullptr; 4496 4497 Constant *CastedTo = nullptr; 4498 switch (*CastOp) { 4499 case Instruction::ZExt: 4500 if (CmpI->isUnsigned()) 4501 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4502 break; 4503 case Instruction::SExt: 4504 if (CmpI->isSigned()) 4505 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4506 break; 4507 case Instruction::Trunc: 4508 Constant *CmpConst; 4509 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4510 CmpConst->getType() == SrcTy) { 4511 // Here we have the following case: 4512 // 4513 // %cond = cmp iN %x, CmpConst 4514 // %tr = trunc iN %x to iK 4515 // %narrowsel = select i1 %cond, iK %t, iK C 4516 // 4517 // We can always move trunc after select operation: 4518 // 4519 // %cond = cmp iN %x, CmpConst 4520 // %widesel = select i1 %cond, iN %x, iN CmpConst 4521 // %tr = trunc iN %widesel to iK 4522 // 4523 // Note that C could be extended in any way because we don't care about 4524 // upper bits after truncation. It can't be abs pattern, because it would 4525 // look like: 4526 // 4527 // select i1 %cond, x, -x. 4528 // 4529 // So only min/max pattern could be matched. Such match requires widened C 4530 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4531 // CmpConst == C is checked below. 4532 CastedTo = CmpConst; 4533 } else { 4534 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4535 } 4536 break; 4537 case Instruction::FPTrunc: 4538 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4539 break; 4540 case Instruction::FPExt: 4541 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4542 break; 4543 case Instruction::FPToUI: 4544 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4545 break; 4546 case Instruction::FPToSI: 4547 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4548 break; 4549 case Instruction::UIToFP: 4550 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4551 break; 4552 case Instruction::SIToFP: 4553 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4554 break; 4555 default: 4556 break; 4557 } 4558 4559 if (!CastedTo) 4560 return nullptr; 4561 4562 // Make sure the cast doesn't lose any information. 4563 Constant *CastedBack = 4564 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4565 if (CastedBack != C) 4566 return nullptr; 4567 4568 return CastedTo; 4569 } 4570 4571 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4572 Instruction::CastOps *CastOp, 4573 unsigned Depth) { 4574 if (Depth >= MaxDepth) 4575 return {SPF_UNKNOWN, SPNB_NA, false}; 4576 4577 SelectInst *SI = dyn_cast<SelectInst>(V); 4578 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4579 4580 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4581 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4582 4583 CmpInst::Predicate Pred = CmpI->getPredicate(); 4584 Value *CmpLHS = CmpI->getOperand(0); 4585 Value *CmpRHS = CmpI->getOperand(1); 4586 Value *TrueVal = SI->getTrueValue(); 4587 Value *FalseVal = SI->getFalseValue(); 4588 FastMathFlags FMF; 4589 if (isa<FPMathOperator>(CmpI)) 4590 FMF = CmpI->getFastMathFlags(); 4591 4592 // Bail out early. 4593 if (CmpI->isEquality()) 4594 return {SPF_UNKNOWN, SPNB_NA, false}; 4595 4596 // Deal with type mismatches. 4597 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4598 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4599 // If this is a potential fmin/fmax with a cast to integer, then ignore 4600 // -0.0 because there is no corresponding integer value. 4601 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4602 FMF.setNoSignedZeros(); 4603 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4604 cast<CastInst>(TrueVal)->getOperand(0), C, 4605 LHS, RHS, Depth); 4606 } 4607 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4608 // If this is a potential fmin/fmax with a cast to integer, then ignore 4609 // -0.0 because there is no corresponding integer value. 4610 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4611 FMF.setNoSignedZeros(); 4612 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4613 C, cast<CastInst>(FalseVal)->getOperand(0), 4614 LHS, RHS, Depth); 4615 } 4616 } 4617 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4618 LHS, RHS, Depth); 4619 } 4620 4621 /// Return true if "icmp Pred LHS RHS" is always true. 4622 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4623 const Value *RHS, const DataLayout &DL, 4624 unsigned Depth) { 4625 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4626 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4627 return true; 4628 4629 switch (Pred) { 4630 default: 4631 return false; 4632 4633 case CmpInst::ICMP_SLE: { 4634 const APInt *C; 4635 4636 // LHS s<= LHS +_{nsw} C if C >= 0 4637 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4638 return !C->isNegative(); 4639 return false; 4640 } 4641 4642 case CmpInst::ICMP_ULE: { 4643 const APInt *C; 4644 4645 // LHS u<= LHS +_{nuw} C for any C 4646 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4647 return true; 4648 4649 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4650 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4651 const Value *&X, 4652 const APInt *&CA, const APInt *&CB) { 4653 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4654 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4655 return true; 4656 4657 // If X & C == 0 then (X | C) == X +_{nuw} C 4658 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4659 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4660 KnownBits Known(CA->getBitWidth()); 4661 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4662 /*CxtI*/ nullptr, /*DT*/ nullptr); 4663 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4664 return true; 4665 } 4666 4667 return false; 4668 }; 4669 4670 const Value *X; 4671 const APInt *CLHS, *CRHS; 4672 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4673 return CLHS->ule(*CRHS); 4674 4675 return false; 4676 } 4677 } 4678 } 4679 4680 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4681 /// ALHS ARHS" is true. Otherwise, return None. 4682 static Optional<bool> 4683 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4684 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4685 const DataLayout &DL, unsigned Depth) { 4686 switch (Pred) { 4687 default: 4688 return None; 4689 4690 case CmpInst::ICMP_SLT: 4691 case CmpInst::ICMP_SLE: 4692 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4693 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4694 return true; 4695 return None; 4696 4697 case CmpInst::ICMP_ULT: 4698 case CmpInst::ICMP_ULE: 4699 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4700 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4701 return true; 4702 return None; 4703 } 4704 } 4705 4706 /// Return true if the operands of the two compares match. IsSwappedOps is true 4707 /// when the operands match, but are swapped. 4708 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4709 const Value *BLHS, const Value *BRHS, 4710 bool &IsSwappedOps) { 4711 4712 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4713 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4714 return IsMatchingOps || IsSwappedOps; 4715 } 4716 4717 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4718 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4719 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4720 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4721 const Value *ALHS, 4722 const Value *ARHS, 4723 CmpInst::Predicate BPred, 4724 const Value *BLHS, 4725 const Value *BRHS, 4726 bool IsSwappedOps) { 4727 // Canonicalize the operands so they're matching. 4728 if (IsSwappedOps) { 4729 std::swap(BLHS, BRHS); 4730 BPred = ICmpInst::getSwappedPredicate(BPred); 4731 } 4732 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4733 return true; 4734 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4735 return false; 4736 4737 return None; 4738 } 4739 4740 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4741 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4742 /// C2" is false. Otherwise, return None if we can't infer anything. 4743 static Optional<bool> 4744 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4745 const ConstantInt *C1, 4746 CmpInst::Predicate BPred, 4747 const Value *BLHS, const ConstantInt *C2) { 4748 assert(ALHS == BLHS && "LHS operands must match."); 4749 ConstantRange DomCR = 4750 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4751 ConstantRange CR = 4752 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4753 ConstantRange Intersection = DomCR.intersectWith(CR); 4754 ConstantRange Difference = DomCR.difference(CR); 4755 if (Intersection.isEmptySet()) 4756 return false; 4757 if (Difference.isEmptySet()) 4758 return true; 4759 return None; 4760 } 4761 4762 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4763 /// false. Otherwise, return None if we can't infer anything. 4764 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4765 const ICmpInst *RHS, 4766 const DataLayout &DL, bool LHSIsTrue, 4767 unsigned Depth) { 4768 Value *ALHS = LHS->getOperand(0); 4769 Value *ARHS = LHS->getOperand(1); 4770 // The rest of the logic assumes the LHS condition is true. If that's not the 4771 // case, invert the predicate to make it so. 4772 ICmpInst::Predicate APred = 4773 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4774 4775 Value *BLHS = RHS->getOperand(0); 4776 Value *BRHS = RHS->getOperand(1); 4777 ICmpInst::Predicate BPred = RHS->getPredicate(); 4778 4779 // Can we infer anything when the two compares have matching operands? 4780 bool IsSwappedOps; 4781 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4782 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4783 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4784 return Implication; 4785 // No amount of additional analysis will infer the second condition, so 4786 // early exit. 4787 return None; 4788 } 4789 4790 // Can we infer anything when the LHS operands match and the RHS operands are 4791 // constants (not necessarily matching)? 4792 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4793 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4794 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4795 cast<ConstantInt>(BRHS))) 4796 return Implication; 4797 // No amount of additional analysis will infer the second condition, so 4798 // early exit. 4799 return None; 4800 } 4801 4802 if (APred == BPred) 4803 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4804 return None; 4805 } 4806 4807 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4808 /// false. Otherwise, return None if we can't infer anything. We expect the 4809 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 4810 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 4811 const ICmpInst *RHS, 4812 const DataLayout &DL, bool LHSIsTrue, 4813 unsigned Depth) { 4814 // The LHS must be an 'or' or an 'and' instruction. 4815 assert((LHS->getOpcode() == Instruction::And || 4816 LHS->getOpcode() == Instruction::Or) && 4817 "Expected LHS to be 'and' or 'or'."); 4818 4819 assert(Depth <= MaxDepth && "Hit recursion limit"); 4820 4821 // If the result of an 'or' is false, then we know both legs of the 'or' are 4822 // false. Similarly, if the result of an 'and' is true, then we know both 4823 // legs of the 'and' are true. 4824 Value *ALHS, *ARHS; 4825 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 4826 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 4827 // FIXME: Make this non-recursion. 4828 if (Optional<bool> Implication = 4829 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 4830 return Implication; 4831 if (Optional<bool> Implication = 4832 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 4833 return Implication; 4834 return None; 4835 } 4836 return None; 4837 } 4838 4839 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4840 const DataLayout &DL, bool LHSIsTrue, 4841 unsigned Depth) { 4842 // Bail out when we hit the limit. 4843 if (Depth == MaxDepth) 4844 return None; 4845 4846 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 4847 // example. 4848 if (LHS->getType() != RHS->getType()) 4849 return None; 4850 4851 Type *OpTy = LHS->getType(); 4852 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 4853 4854 // LHS ==> RHS by definition 4855 if (LHS == RHS) 4856 return LHSIsTrue; 4857 4858 // FIXME: Extending the code below to handle vectors. 4859 if (OpTy->isVectorTy()) 4860 return None; 4861 4862 assert(OpTy->isIntegerTy(1) && "implied by above"); 4863 4864 // Both LHS and RHS are icmps. 4865 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 4866 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 4867 if (LHSCmp && RHSCmp) 4868 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 4869 4870 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 4871 // an icmp. FIXME: Add support for and/or on the RHS. 4872 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 4873 if (LHSBO && RHSCmp) { 4874 if ((LHSBO->getOpcode() == Instruction::And || 4875 LHSBO->getOpcode() == Instruction::Or)) 4876 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 4877 } 4878 return None; 4879 } 4880