1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getIndexTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 /// If true, it is safe to use metadata during simplification. 122 InstrInfoQuery IIQ; 123 124 unsigned NumExcluded = 0; 125 126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT, bool UseInstrInfo, 128 OptimizationRemarkEmitter *ORE = nullptr) 129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 130 131 Query(const Query &Q, const Value *NewExcl) 132 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 133 NumExcluded(Q.NumExcluded) { 134 Excluded = Q.Excluded; 135 Excluded[NumExcluded++] = NewExcl; 136 assert(NumExcluded <= Excluded.size()); 137 } 138 139 bool isExcluded(const Value *Value) const { 140 if (NumExcluded == 0) 141 return false; 142 auto End = Excluded.begin() + NumExcluded; 143 return std::find(Excluded.begin(), End, Value) != End; 144 } 145 }; 146 147 } // end anonymous namespace 148 149 // Given the provided Value and, potentially, a context instruction, return 150 // the preferred context instruction (if any). 151 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 152 // If we've been provided with a context instruction, then use that (provided 153 // it has been inserted). 154 if (CxtI && CxtI->getParent()) 155 return CxtI; 156 157 // If the value is really an already-inserted instruction, then use that. 158 CxtI = dyn_cast<Instruction>(V); 159 if (CxtI && CxtI->getParent()) 160 return CxtI; 161 162 return nullptr; 163 } 164 165 static void computeKnownBits(const Value *V, KnownBits &Known, 166 unsigned Depth, const Query &Q); 167 168 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 169 const DataLayout &DL, unsigned Depth, 170 AssumptionCache *AC, const Instruction *CxtI, 171 const DominatorTree *DT, 172 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 173 ::computeKnownBits(V, Known, Depth, 174 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 175 } 176 177 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 178 const Query &Q); 179 180 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 181 unsigned Depth, AssumptionCache *AC, 182 const Instruction *CxtI, 183 const DominatorTree *DT, 184 OptimizationRemarkEmitter *ORE, 185 bool UseInstrInfo) { 186 return ::computeKnownBits( 187 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 188 } 189 190 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 191 const DataLayout &DL, AssumptionCache *AC, 192 const Instruction *CxtI, const DominatorTree *DT, 193 bool UseInstrInfo) { 194 assert(LHS->getType() == RHS->getType() && 195 "LHS and RHS should have the same type"); 196 assert(LHS->getType()->isIntOrIntVectorTy() && 197 "LHS and RHS should be integers"); 198 // Look for an inverted mask: (X & ~M) op (Y & M). 199 Value *M; 200 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 201 match(RHS, m_c_And(m_Specific(M), m_Value()))) 202 return true; 203 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 204 match(LHS, m_c_And(m_Specific(M), m_Value()))) 205 return true; 206 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 207 KnownBits LHSKnown(IT->getBitWidth()); 208 KnownBits RHSKnown(IT->getBitWidth()); 209 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 210 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 211 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 212 } 213 214 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 215 for (const User *U : CxtI->users()) { 216 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 217 if (IC->isEquality()) 218 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 219 if (C->isNullValue()) 220 continue; 221 return false; 222 } 223 return true; 224 } 225 226 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 227 const Query &Q); 228 229 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 230 bool OrZero, unsigned Depth, 231 AssumptionCache *AC, const Instruction *CxtI, 232 const DominatorTree *DT, bool UseInstrInfo) { 233 return ::isKnownToBeAPowerOfTwo( 234 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 235 } 236 237 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 238 239 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, bool UseInstrInfo) { 242 return ::isKnownNonZero(V, Depth, 243 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 244 } 245 246 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, const DominatorTree *DT, 249 bool UseInstrInfo) { 250 KnownBits Known = 251 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 252 return Known.isNonNegative(); 253 } 254 255 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, bool UseInstrInfo) { 258 if (auto *CI = dyn_cast<ConstantInt>(V)) 259 return CI->getValue().isStrictlyPositive(); 260 261 // TODO: We'd doing two recursive queries here. We should factor this such 262 // that only a single query is needed. 263 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 264 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 265 } 266 267 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 268 AssumptionCache *AC, const Instruction *CxtI, 269 const DominatorTree *DT, bool UseInstrInfo) { 270 KnownBits Known = 271 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 272 return Known.isNegative(); 273 } 274 275 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 276 277 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 278 const DataLayout &DL, AssumptionCache *AC, 279 const Instruction *CxtI, const DominatorTree *DT, 280 bool UseInstrInfo) { 281 return ::isKnownNonEqual(V1, V2, 282 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 283 UseInstrInfo, /*ORE=*/nullptr)); 284 } 285 286 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 287 const Query &Q); 288 289 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 290 const DataLayout &DL, unsigned Depth, 291 AssumptionCache *AC, const Instruction *CxtI, 292 const DominatorTree *DT, bool UseInstrInfo) { 293 return ::MaskedValueIsZero( 294 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 295 } 296 297 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 298 const Query &Q); 299 300 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 301 unsigned Depth, AssumptionCache *AC, 302 const Instruction *CxtI, 303 const DominatorTree *DT, bool UseInstrInfo) { 304 return ::ComputeNumSignBits( 305 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 306 } 307 308 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 309 bool NSW, 310 KnownBits &KnownOut, KnownBits &Known2, 311 unsigned Depth, const Query &Q) { 312 unsigned BitWidth = KnownOut.getBitWidth(); 313 314 // If an initial sequence of bits in the result is not needed, the 315 // corresponding bits in the operands are not needed. 316 KnownBits LHSKnown(BitWidth); 317 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 318 computeKnownBits(Op1, Known2, Depth + 1, Q); 319 320 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 321 } 322 323 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 324 KnownBits &Known, KnownBits &Known2, 325 unsigned Depth, const Query &Q) { 326 unsigned BitWidth = Known.getBitWidth(); 327 computeKnownBits(Op1, Known, Depth + 1, Q); 328 computeKnownBits(Op0, Known2, Depth + 1, Q); 329 330 bool isKnownNegative = false; 331 bool isKnownNonNegative = false; 332 // If the multiplication is known not to overflow, compute the sign bit. 333 if (NSW) { 334 if (Op0 == Op1) { 335 // The product of a number with itself is non-negative. 336 isKnownNonNegative = true; 337 } else { 338 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 339 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 340 bool isKnownNegativeOp1 = Known.isNegative(); 341 bool isKnownNegativeOp0 = Known2.isNegative(); 342 // The product of two numbers with the same sign is non-negative. 343 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 344 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 345 // The product of a negative number and a non-negative number is either 346 // negative or zero. 347 if (!isKnownNonNegative) 348 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 349 isKnownNonZero(Op0, Depth, Q)) || 350 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 351 isKnownNonZero(Op1, Depth, Q)); 352 } 353 } 354 355 assert(!Known.hasConflict() && !Known2.hasConflict()); 356 // Compute a conservative estimate for high known-0 bits. 357 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 358 Known2.countMinLeadingZeros(), 359 BitWidth) - BitWidth; 360 LeadZ = std::min(LeadZ, BitWidth); 361 362 // The result of the bottom bits of an integer multiply can be 363 // inferred by looking at the bottom bits of both operands and 364 // multiplying them together. 365 // We can infer at least the minimum number of known trailing bits 366 // of both operands. Depending on number of trailing zeros, we can 367 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 368 // a and b are divisible by m and n respectively. 369 // We then calculate how many of those bits are inferrable and set 370 // the output. For example, the i8 mul: 371 // a = XXXX1100 (12) 372 // b = XXXX1110 (14) 373 // We know the bottom 3 bits are zero since the first can be divided by 374 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 375 // Applying the multiplication to the trimmed arguments gets: 376 // XX11 (3) 377 // X111 (7) 378 // ------- 379 // XX11 380 // XX11 381 // XX11 382 // XX11 383 // ------- 384 // XXXXX01 385 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 386 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 387 // The proof for this can be described as: 388 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 389 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 390 // umin(countTrailingZeros(C2), C6) + 391 // umin(C5 - umin(countTrailingZeros(C1), C5), 392 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 393 // %aa = shl i8 %a, C5 394 // %bb = shl i8 %b, C6 395 // %aaa = or i8 %aa, C1 396 // %bbb = or i8 %bb, C2 397 // %mul = mul i8 %aaa, %bbb 398 // %mask = and i8 %mul, C7 399 // => 400 // %mask = i8 ((C1*C2)&C7) 401 // Where C5, C6 describe the known bits of %a, %b 402 // C1, C2 describe the known bottom bits of %a, %b. 403 // C7 describes the mask of the known bits of the result. 404 APInt Bottom0 = Known.One; 405 APInt Bottom1 = Known2.One; 406 407 // How many times we'd be able to divide each argument by 2 (shr by 1). 408 // This gives us the number of trailing zeros on the multiplication result. 409 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 410 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 411 unsigned TrailZero0 = Known.countMinTrailingZeros(); 412 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 413 unsigned TrailZ = TrailZero0 + TrailZero1; 414 415 // Figure out the fewest known-bits operand. 416 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 417 TrailBitsKnown1 - TrailZero1); 418 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 419 420 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 421 Bottom1.getLoBits(TrailBitsKnown1); 422 423 Known.resetAll(); 424 Known.Zero.setHighBits(LeadZ); 425 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 426 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 427 428 // Only make use of no-wrap flags if we failed to compute the sign bit 429 // directly. This matters if the multiplication always overflows, in 430 // which case we prefer to follow the result of the direct computation, 431 // though as the program is invoking undefined behaviour we can choose 432 // whatever we like here. 433 if (isKnownNonNegative && !Known.isNegative()) 434 Known.makeNonNegative(); 435 else if (isKnownNegative && !Known.isNonNegative()) 436 Known.makeNegative(); 437 } 438 439 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 440 KnownBits &Known) { 441 unsigned BitWidth = Known.getBitWidth(); 442 unsigned NumRanges = Ranges.getNumOperands() / 2; 443 assert(NumRanges >= 1); 444 445 Known.Zero.setAllBits(); 446 Known.One.setAllBits(); 447 448 for (unsigned i = 0; i < NumRanges; ++i) { 449 ConstantInt *Lower = 450 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 451 ConstantInt *Upper = 452 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 453 ConstantRange Range(Lower->getValue(), Upper->getValue()); 454 455 // The first CommonPrefixBits of all values in Range are equal. 456 unsigned CommonPrefixBits = 457 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 458 459 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 460 Known.One &= Range.getUnsignedMax() & Mask; 461 Known.Zero &= ~Range.getUnsignedMax() & Mask; 462 } 463 } 464 465 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 466 SmallVector<const Value *, 16> WorkSet(1, I); 467 SmallPtrSet<const Value *, 32> Visited; 468 SmallPtrSet<const Value *, 16> EphValues; 469 470 // The instruction defining an assumption's condition itself is always 471 // considered ephemeral to that assumption (even if it has other 472 // non-ephemeral users). See r246696's test case for an example. 473 if (is_contained(I->operands(), E)) 474 return true; 475 476 while (!WorkSet.empty()) { 477 const Value *V = WorkSet.pop_back_val(); 478 if (!Visited.insert(V).second) 479 continue; 480 481 // If all uses of this value are ephemeral, then so is this value. 482 if (llvm::all_of(V->users(), [&](const User *U) { 483 return EphValues.count(U); 484 })) { 485 if (V == E) 486 return true; 487 488 if (V == I || isSafeToSpeculativelyExecute(V)) { 489 EphValues.insert(V); 490 if (const User *U = dyn_cast<User>(V)) 491 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 492 J != JE; ++J) 493 WorkSet.push_back(*J); 494 } 495 } 496 } 497 498 return false; 499 } 500 501 // Is this an intrinsic that cannot be speculated but also cannot trap? 502 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 503 if (const CallInst *CI = dyn_cast<CallInst>(I)) 504 if (Function *F = CI->getCalledFunction()) 505 switch (F->getIntrinsicID()) { 506 default: break; 507 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 508 case Intrinsic::assume: 509 case Intrinsic::sideeffect: 510 case Intrinsic::dbg_declare: 511 case Intrinsic::dbg_value: 512 case Intrinsic::dbg_label: 513 case Intrinsic::invariant_start: 514 case Intrinsic::invariant_end: 515 case Intrinsic::lifetime_start: 516 case Intrinsic::lifetime_end: 517 case Intrinsic::objectsize: 518 case Intrinsic::ptr_annotation: 519 case Intrinsic::var_annotation: 520 return true; 521 } 522 523 return false; 524 } 525 526 bool llvm::isValidAssumeForContext(const Instruction *Inv, 527 const Instruction *CxtI, 528 const DominatorTree *DT) { 529 // There are two restrictions on the use of an assume: 530 // 1. The assume must dominate the context (or the control flow must 531 // reach the assume whenever it reaches the context). 532 // 2. The context must not be in the assume's set of ephemeral values 533 // (otherwise we will use the assume to prove that the condition 534 // feeding the assume is trivially true, thus causing the removal of 535 // the assume). 536 537 if (DT) { 538 if (DT->dominates(Inv, CxtI)) 539 return true; 540 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 541 // We don't have a DT, but this trivially dominates. 542 return true; 543 } 544 545 // With or without a DT, the only remaining case we will check is if the 546 // instructions are in the same BB. Give up if that is not the case. 547 if (Inv->getParent() != CxtI->getParent()) 548 return false; 549 550 // If we have a dom tree, then we now know that the assume doesn't dominate 551 // the other instruction. If we don't have a dom tree then we can check if 552 // the assume is first in the BB. 553 if (!DT) { 554 // Search forward from the assume until we reach the context (or the end 555 // of the block); the common case is that the assume will come first. 556 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 557 IE = Inv->getParent()->end(); I != IE; ++I) 558 if (&*I == CxtI) 559 return true; 560 } 561 562 // The context comes first, but they're both in the same block. Make sure 563 // there is nothing in between that might interrupt the control flow. 564 for (BasicBlock::const_iterator I = 565 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 566 I != IE; ++I) 567 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 568 return false; 569 570 return !isEphemeralValueOf(Inv, CxtI); 571 } 572 573 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 574 unsigned Depth, const Query &Q) { 575 // Use of assumptions is context-sensitive. If we don't have a context, we 576 // cannot use them! 577 if (!Q.AC || !Q.CxtI) 578 return; 579 580 unsigned BitWidth = Known.getBitWidth(); 581 582 // Note that the patterns below need to be kept in sync with the code 583 // in AssumptionCache::updateAffectedValues. 584 585 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 586 if (!AssumeVH) 587 continue; 588 CallInst *I = cast<CallInst>(AssumeVH); 589 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 590 "Got assumption for the wrong function!"); 591 if (Q.isExcluded(I)) 592 continue; 593 594 // Warning: This loop can end up being somewhat performance sensitive. 595 // We're running this loop for once for each value queried resulting in a 596 // runtime of ~O(#assumes * #values). 597 598 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 599 "must be an assume intrinsic"); 600 601 Value *Arg = I->getArgOperand(0); 602 603 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 604 assert(BitWidth == 1 && "assume operand is not i1?"); 605 Known.setAllOnes(); 606 return; 607 } 608 if (match(Arg, m_Not(m_Specific(V))) && 609 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 610 assert(BitWidth == 1 && "assume operand is not i1?"); 611 Known.setAllZero(); 612 return; 613 } 614 615 // The remaining tests are all recursive, so bail out if we hit the limit. 616 if (Depth == MaxDepth) 617 continue; 618 619 Value *A, *B; 620 auto m_V = m_CombineOr(m_Specific(V), 621 m_CombineOr(m_PtrToInt(m_Specific(V)), 622 m_BitCast(m_Specific(V)))); 623 624 CmpInst::Predicate Pred; 625 uint64_t C; 626 // assume(v = a) 627 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 628 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 629 KnownBits RHSKnown(BitWidth); 630 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 631 Known.Zero |= RHSKnown.Zero; 632 Known.One |= RHSKnown.One; 633 // assume(v & b = a) 634 } else if (match(Arg, 635 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 636 Pred == ICmpInst::ICMP_EQ && 637 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 638 KnownBits RHSKnown(BitWidth); 639 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 640 KnownBits MaskKnown(BitWidth); 641 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 642 643 // For those bits in the mask that are known to be one, we can propagate 644 // known bits from the RHS to V. 645 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 646 Known.One |= RHSKnown.One & MaskKnown.One; 647 // assume(~(v & b) = a) 648 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 649 m_Value(A))) && 650 Pred == ICmpInst::ICMP_EQ && 651 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 652 KnownBits RHSKnown(BitWidth); 653 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 654 KnownBits MaskKnown(BitWidth); 655 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 656 657 // For those bits in the mask that are known to be one, we can propagate 658 // inverted known bits from the RHS to V. 659 Known.Zero |= RHSKnown.One & MaskKnown.One; 660 Known.One |= RHSKnown.Zero & MaskKnown.One; 661 // assume(v | b = a) 662 } else if (match(Arg, 663 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 664 Pred == ICmpInst::ICMP_EQ && 665 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 666 KnownBits RHSKnown(BitWidth); 667 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 668 KnownBits BKnown(BitWidth); 669 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 670 671 // For those bits in B that are known to be zero, we can propagate known 672 // bits from the RHS to V. 673 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 674 Known.One |= RHSKnown.One & BKnown.Zero; 675 // assume(~(v | b) = a) 676 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 677 m_Value(A))) && 678 Pred == ICmpInst::ICMP_EQ && 679 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 680 KnownBits RHSKnown(BitWidth); 681 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 682 KnownBits BKnown(BitWidth); 683 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 684 685 // For those bits in B that are known to be zero, we can propagate 686 // inverted known bits from the RHS to V. 687 Known.Zero |= RHSKnown.One & BKnown.Zero; 688 Known.One |= RHSKnown.Zero & BKnown.Zero; 689 // assume(v ^ b = a) 690 } else if (match(Arg, 691 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 KnownBits RHSKnown(BitWidth); 695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 696 KnownBits BKnown(BitWidth); 697 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 698 699 // For those bits in B that are known to be zero, we can propagate known 700 // bits from the RHS to V. For those bits in B that are known to be one, 701 // we can propagate inverted known bits from the RHS to V. 702 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 703 Known.One |= RHSKnown.One & BKnown.Zero; 704 Known.Zero |= RHSKnown.One & BKnown.One; 705 Known.One |= RHSKnown.Zero & BKnown.One; 706 // assume(~(v ^ b) = a) 707 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 708 m_Value(A))) && 709 Pred == ICmpInst::ICMP_EQ && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 KnownBits RHSKnown(BitWidth); 712 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 713 KnownBits BKnown(BitWidth); 714 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 715 716 // For those bits in B that are known to be zero, we can propagate 717 // inverted known bits from the RHS to V. For those bits in B that are 718 // known to be one, we can propagate known bits from the RHS to V. 719 Known.Zero |= RHSKnown.One & BKnown.Zero; 720 Known.One |= RHSKnown.Zero & BKnown.Zero; 721 Known.Zero |= RHSKnown.Zero & BKnown.One; 722 Known.One |= RHSKnown.One & BKnown.One; 723 // assume(v << c = a) 724 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 725 m_Value(A))) && 726 Pred == ICmpInst::ICMP_EQ && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 728 C < BitWidth) { 729 KnownBits RHSKnown(BitWidth); 730 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 731 // For those bits in RHS that are known, we can propagate them to known 732 // bits in V shifted to the right by C. 733 RHSKnown.Zero.lshrInPlace(C); 734 Known.Zero |= RHSKnown.Zero; 735 RHSKnown.One.lshrInPlace(C); 736 Known.One |= RHSKnown.One; 737 // assume(~(v << c) = a) 738 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 739 m_Value(A))) && 740 Pred == ICmpInst::ICMP_EQ && 741 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 742 C < BitWidth) { 743 KnownBits RHSKnown(BitWidth); 744 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 745 // For those bits in RHS that are known, we can propagate them inverted 746 // to known bits in V shifted to the right by C. 747 RHSKnown.One.lshrInPlace(C); 748 Known.Zero |= RHSKnown.One; 749 RHSKnown.Zero.lshrInPlace(C); 750 Known.One |= RHSKnown.Zero; 751 // assume(v >> c = a) 752 } else if (match(Arg, 753 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 754 m_Value(A))) && 755 Pred == ICmpInst::ICMP_EQ && 756 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 757 C < BitWidth) { 758 KnownBits RHSKnown(BitWidth); 759 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 760 // For those bits in RHS that are known, we can propagate them to known 761 // bits in V shifted to the right by C. 762 Known.Zero |= RHSKnown.Zero << C; 763 Known.One |= RHSKnown.One << C; 764 // assume(~(v >> c) = a) 765 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 766 m_Value(A))) && 767 Pred == ICmpInst::ICMP_EQ && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 769 C < BitWidth) { 770 KnownBits RHSKnown(BitWidth); 771 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 772 // For those bits in RHS that are known, we can propagate them inverted 773 // to known bits in V shifted to the right by C. 774 Known.Zero |= RHSKnown.One << C; 775 Known.One |= RHSKnown.Zero << C; 776 // assume(v >=_s c) where c is non-negative 777 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 778 Pred == ICmpInst::ICMP_SGE && 779 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 780 KnownBits RHSKnown(BitWidth); 781 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 782 783 if (RHSKnown.isNonNegative()) { 784 // We know that the sign bit is zero. 785 Known.makeNonNegative(); 786 } 787 // assume(v >_s c) where c is at least -1. 788 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 789 Pred == ICmpInst::ICMP_SGT && 790 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 791 KnownBits RHSKnown(BitWidth); 792 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 793 794 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 795 // We know that the sign bit is zero. 796 Known.makeNonNegative(); 797 } 798 // assume(v <=_s c) where c is negative 799 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 800 Pred == ICmpInst::ICMP_SLE && 801 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 802 KnownBits RHSKnown(BitWidth); 803 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 804 805 if (RHSKnown.isNegative()) { 806 // We know that the sign bit is one. 807 Known.makeNegative(); 808 } 809 // assume(v <_s c) where c is non-positive 810 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 811 Pred == ICmpInst::ICMP_SLT && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown(BitWidth); 814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 815 816 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 817 // We know that the sign bit is one. 818 Known.makeNegative(); 819 } 820 // assume(v <=_u c) 821 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 822 Pred == ICmpInst::ICMP_ULE && 823 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 824 KnownBits RHSKnown(BitWidth); 825 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 826 827 // Whatever high bits in c are zero are known to be zero. 828 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 829 // assume(v <_u c) 830 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 831 Pred == ICmpInst::ICMP_ULT && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown(BitWidth); 834 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 835 836 // If the RHS is known zero, then this assumption must be wrong (nothing 837 // is unsigned less than zero). Signal a conflict and get out of here. 838 if (RHSKnown.isZero()) { 839 Known.Zero.setAllBits(); 840 Known.One.setAllBits(); 841 break; 842 } 843 844 // Whatever high bits in c are zero are known to be zero (if c is a power 845 // of 2, then one more). 846 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 847 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 848 else 849 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 850 } 851 } 852 853 // If assumptions conflict with each other or previous known bits, then we 854 // have a logical fallacy. It's possible that the assumption is not reachable, 855 // so this isn't a real bug. On the other hand, the program may have undefined 856 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 857 // clear out the known bits, try to warn the user, and hope for the best. 858 if (Known.Zero.intersects(Known.One)) { 859 Known.resetAll(); 860 861 if (Q.ORE) 862 Q.ORE->emit([&]() { 863 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 864 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 865 CxtI) 866 << "Detected conflicting code assumptions. Program may " 867 "have undefined behavior, or compiler may have " 868 "internal error."; 869 }); 870 } 871 } 872 873 /// Compute known bits from a shift operator, including those with a 874 /// non-constant shift amount. Known is the output of this function. Known2 is a 875 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 876 /// operator-specific functions that, given the known-zero or known-one bits 877 /// respectively, and a shift amount, compute the implied known-zero or 878 /// known-one bits of the shift operator's result respectively for that shift 879 /// amount. The results from calling KZF and KOF are conservatively combined for 880 /// all permitted shift amounts. 881 static void computeKnownBitsFromShiftOperator( 882 const Operator *I, KnownBits &Known, KnownBits &Known2, 883 unsigned Depth, const Query &Q, 884 function_ref<APInt(const APInt &, unsigned)> KZF, 885 function_ref<APInt(const APInt &, unsigned)> KOF) { 886 unsigned BitWidth = Known.getBitWidth(); 887 888 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 889 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 890 891 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 892 Known.Zero = KZF(Known.Zero, ShiftAmt); 893 Known.One = KOF(Known.One, ShiftAmt); 894 // If the known bits conflict, this must be an overflowing left shift, so 895 // the shift result is poison. We can return anything we want. Choose 0 for 896 // the best folding opportunity. 897 if (Known.hasConflict()) 898 Known.setAllZero(); 899 900 return; 901 } 902 903 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 904 905 // If the shift amount could be greater than or equal to the bit-width of the 906 // LHS, the value could be poison, but bail out because the check below is 907 // expensive. TODO: Should we just carry on? 908 if ((~Known.Zero).uge(BitWidth)) { 909 Known.resetAll(); 910 return; 911 } 912 913 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 914 // BitWidth > 64 and any upper bits are known, we'll end up returning the 915 // limit value (which implies all bits are known). 916 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 917 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 918 919 // It would be more-clearly correct to use the two temporaries for this 920 // calculation. Reusing the APInts here to prevent unnecessary allocations. 921 Known.resetAll(); 922 923 // If we know the shifter operand is nonzero, we can sometimes infer more 924 // known bits. However this is expensive to compute, so be lazy about it and 925 // only compute it when absolutely necessary. 926 Optional<bool> ShifterOperandIsNonZero; 927 928 // Early exit if we can't constrain any well-defined shift amount. 929 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 930 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 931 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 932 if (!*ShifterOperandIsNonZero) 933 return; 934 } 935 936 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 937 938 Known.Zero.setAllBits(); 939 Known.One.setAllBits(); 940 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 941 // Combine the shifted known input bits only for those shift amounts 942 // compatible with its known constraints. 943 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 944 continue; 945 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 946 continue; 947 // If we know the shifter is nonzero, we may be able to infer more known 948 // bits. This check is sunk down as far as possible to avoid the expensive 949 // call to isKnownNonZero if the cheaper checks above fail. 950 if (ShiftAmt == 0) { 951 if (!ShifterOperandIsNonZero.hasValue()) 952 ShifterOperandIsNonZero = 953 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 954 if (*ShifterOperandIsNonZero) 955 continue; 956 } 957 958 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 959 Known.One &= KOF(Known2.One, ShiftAmt); 960 } 961 962 // If the known bits conflict, the result is poison. Return a 0 and hope the 963 // caller can further optimize that. 964 if (Known.hasConflict()) 965 Known.setAllZero(); 966 } 967 968 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 969 unsigned Depth, const Query &Q) { 970 unsigned BitWidth = Known.getBitWidth(); 971 972 KnownBits Known2(Known); 973 switch (I->getOpcode()) { 974 default: break; 975 case Instruction::Load: 976 if (MDNode *MD = 977 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 978 computeKnownBitsFromRangeMetadata(*MD, Known); 979 break; 980 case Instruction::And: { 981 // If either the LHS or the RHS are Zero, the result is zero. 982 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 983 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 984 985 // Output known-1 bits are only known if set in both the LHS & RHS. 986 Known.One &= Known2.One; 987 // Output known-0 are known to be clear if zero in either the LHS | RHS. 988 Known.Zero |= Known2.Zero; 989 990 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 991 // here we handle the more general case of adding any odd number by 992 // matching the form add(x, add(x, y)) where y is odd. 993 // TODO: This could be generalized to clearing any bit set in y where the 994 // following bit is known to be unset in y. 995 Value *X = nullptr, *Y = nullptr; 996 if (!Known.Zero[0] && !Known.One[0] && 997 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 998 Known2.resetAll(); 999 computeKnownBits(Y, Known2, Depth + 1, Q); 1000 if (Known2.countMinTrailingOnes() > 0) 1001 Known.Zero.setBit(0); 1002 } 1003 break; 1004 } 1005 case Instruction::Or: 1006 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1007 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1008 1009 // Output known-0 bits are only known if clear in both the LHS & RHS. 1010 Known.Zero &= Known2.Zero; 1011 // Output known-1 are known to be set if set in either the LHS | RHS. 1012 Known.One |= Known2.One; 1013 break; 1014 case Instruction::Xor: { 1015 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1016 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1017 1018 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1019 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1020 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1021 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1022 Known.Zero = std::move(KnownZeroOut); 1023 break; 1024 } 1025 case Instruction::Mul: { 1026 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1027 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1028 Known2, Depth, Q); 1029 break; 1030 } 1031 case Instruction::UDiv: { 1032 // For the purposes of computing leading zeros we can conservatively 1033 // treat a udiv as a logical right shift by the power of 2 known to 1034 // be less than the denominator. 1035 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1036 unsigned LeadZ = Known2.countMinLeadingZeros(); 1037 1038 Known2.resetAll(); 1039 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1040 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1041 if (RHSMaxLeadingZeros != BitWidth) 1042 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1043 1044 Known.Zero.setHighBits(LeadZ); 1045 break; 1046 } 1047 case Instruction::Select: { 1048 const Value *LHS, *RHS; 1049 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1050 if (SelectPatternResult::isMinOrMax(SPF)) { 1051 computeKnownBits(RHS, Known, Depth + 1, Q); 1052 computeKnownBits(LHS, Known2, Depth + 1, Q); 1053 } else { 1054 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1055 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1056 } 1057 1058 unsigned MaxHighOnes = 0; 1059 unsigned MaxHighZeros = 0; 1060 if (SPF == SPF_SMAX) { 1061 // If both sides are negative, the result is negative. 1062 if (Known.isNegative() && Known2.isNegative()) 1063 // We can derive a lower bound on the result by taking the max of the 1064 // leading one bits. 1065 MaxHighOnes = 1066 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1067 // If either side is non-negative, the result is non-negative. 1068 else if (Known.isNonNegative() || Known2.isNonNegative()) 1069 MaxHighZeros = 1; 1070 } else if (SPF == SPF_SMIN) { 1071 // If both sides are non-negative, the result is non-negative. 1072 if (Known.isNonNegative() && Known2.isNonNegative()) 1073 // We can derive an upper bound on the result by taking the max of the 1074 // leading zero bits. 1075 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1076 Known2.countMinLeadingZeros()); 1077 // If either side is negative, the result is negative. 1078 else if (Known.isNegative() || Known2.isNegative()) 1079 MaxHighOnes = 1; 1080 } else if (SPF == SPF_UMAX) { 1081 // We can derive a lower bound on the result by taking the max of the 1082 // leading one bits. 1083 MaxHighOnes = 1084 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1085 } else if (SPF == SPF_UMIN) { 1086 // We can derive an upper bound on the result by taking the max of the 1087 // leading zero bits. 1088 MaxHighZeros = 1089 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1090 } else if (SPF == SPF_ABS) { 1091 // RHS from matchSelectPattern returns the negation part of abs pattern. 1092 // If the negate has an NSW flag we can assume the sign bit of the result 1093 // will be 0 because that makes abs(INT_MIN) undefined. 1094 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1095 MaxHighZeros = 1; 1096 } 1097 1098 // Only known if known in both the LHS and RHS. 1099 Known.One &= Known2.One; 1100 Known.Zero &= Known2.Zero; 1101 if (MaxHighOnes > 0) 1102 Known.One.setHighBits(MaxHighOnes); 1103 if (MaxHighZeros > 0) 1104 Known.Zero.setHighBits(MaxHighZeros); 1105 break; 1106 } 1107 case Instruction::FPTrunc: 1108 case Instruction::FPExt: 1109 case Instruction::FPToUI: 1110 case Instruction::FPToSI: 1111 case Instruction::SIToFP: 1112 case Instruction::UIToFP: 1113 break; // Can't work with floating point. 1114 case Instruction::PtrToInt: 1115 case Instruction::IntToPtr: 1116 // Fall through and handle them the same as zext/trunc. 1117 LLVM_FALLTHROUGH; 1118 case Instruction::ZExt: 1119 case Instruction::Trunc: { 1120 Type *SrcTy = I->getOperand(0)->getType(); 1121 1122 unsigned SrcBitWidth; 1123 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1124 // which fall through here. 1125 Type *ScalarTy = SrcTy->getScalarType(); 1126 SrcBitWidth = ScalarTy->isPointerTy() ? 1127 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1128 Q.DL.getTypeSizeInBits(ScalarTy); 1129 1130 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1131 Known = Known.zextOrTrunc(SrcBitWidth); 1132 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1133 Known = Known.zextOrTrunc(BitWidth); 1134 // Any top bits are known to be zero. 1135 if (BitWidth > SrcBitWidth) 1136 Known.Zero.setBitsFrom(SrcBitWidth); 1137 break; 1138 } 1139 case Instruction::BitCast: { 1140 Type *SrcTy = I->getOperand(0)->getType(); 1141 if (SrcTy->isIntOrPtrTy() && 1142 // TODO: For now, not handling conversions like: 1143 // (bitcast i64 %x to <2 x i32>) 1144 !I->getType()->isVectorTy()) { 1145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1146 break; 1147 } 1148 break; 1149 } 1150 case Instruction::SExt: { 1151 // Compute the bits in the result that are not present in the input. 1152 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1153 1154 Known = Known.trunc(SrcBitWidth); 1155 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1156 // If the sign bit of the input is known set or clear, then we know the 1157 // top bits of the result. 1158 Known = Known.sext(BitWidth); 1159 break; 1160 } 1161 case Instruction::Shl: { 1162 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1163 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1164 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1165 APInt KZResult = KnownZero << ShiftAmt; 1166 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1167 // If this shift has "nsw" keyword, then the result is either a poison 1168 // value or has the same sign bit as the first operand. 1169 if (NSW && KnownZero.isSignBitSet()) 1170 KZResult.setSignBit(); 1171 return KZResult; 1172 }; 1173 1174 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1175 APInt KOResult = KnownOne << ShiftAmt; 1176 if (NSW && KnownOne.isSignBitSet()) 1177 KOResult.setSignBit(); 1178 return KOResult; 1179 }; 1180 1181 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1182 break; 1183 } 1184 case Instruction::LShr: { 1185 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1186 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1187 APInt KZResult = KnownZero.lshr(ShiftAmt); 1188 // High bits known zero. 1189 KZResult.setHighBits(ShiftAmt); 1190 return KZResult; 1191 }; 1192 1193 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1194 return KnownOne.lshr(ShiftAmt); 1195 }; 1196 1197 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1198 break; 1199 } 1200 case Instruction::AShr: { 1201 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1202 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1203 return KnownZero.ashr(ShiftAmt); 1204 }; 1205 1206 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1207 return KnownOne.ashr(ShiftAmt); 1208 }; 1209 1210 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1211 break; 1212 } 1213 case Instruction::Sub: { 1214 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1215 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1216 Known, Known2, Depth, Q); 1217 break; 1218 } 1219 case Instruction::Add: { 1220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1221 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1222 Known, Known2, Depth, Q); 1223 break; 1224 } 1225 case Instruction::SRem: 1226 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1227 APInt RA = Rem->getValue().abs(); 1228 if (RA.isPowerOf2()) { 1229 APInt LowBits = RA - 1; 1230 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1231 1232 // The low bits of the first operand are unchanged by the srem. 1233 Known.Zero = Known2.Zero & LowBits; 1234 Known.One = Known2.One & LowBits; 1235 1236 // If the first operand is non-negative or has all low bits zero, then 1237 // the upper bits are all zero. 1238 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1239 Known.Zero |= ~LowBits; 1240 1241 // If the first operand is negative and not all low bits are zero, then 1242 // the upper bits are all one. 1243 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1244 Known.One |= ~LowBits; 1245 1246 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1247 break; 1248 } 1249 } 1250 1251 // The sign bit is the LHS's sign bit, except when the result of the 1252 // remainder is zero. 1253 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1254 // If it's known zero, our sign bit is also zero. 1255 if (Known2.isNonNegative()) 1256 Known.makeNonNegative(); 1257 1258 break; 1259 case Instruction::URem: { 1260 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1261 const APInt &RA = Rem->getValue(); 1262 if (RA.isPowerOf2()) { 1263 APInt LowBits = (RA - 1); 1264 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1265 Known.Zero |= ~LowBits; 1266 Known.One &= LowBits; 1267 break; 1268 } 1269 } 1270 1271 // Since the result is less than or equal to either operand, any leading 1272 // zero bits in either operand must also exist in the result. 1273 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1274 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1275 1276 unsigned Leaders = 1277 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1278 Known.resetAll(); 1279 Known.Zero.setHighBits(Leaders); 1280 break; 1281 } 1282 1283 case Instruction::Alloca: { 1284 const AllocaInst *AI = cast<AllocaInst>(I); 1285 unsigned Align = AI->getAlignment(); 1286 if (Align == 0) 1287 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1288 1289 if (Align > 0) 1290 Known.Zero.setLowBits(countTrailingZeros(Align)); 1291 break; 1292 } 1293 case Instruction::GetElementPtr: { 1294 // Analyze all of the subscripts of this getelementptr instruction 1295 // to determine if we can prove known low zero bits. 1296 KnownBits LocalKnown(BitWidth); 1297 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1298 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1299 1300 gep_type_iterator GTI = gep_type_begin(I); 1301 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1302 Value *Index = I->getOperand(i); 1303 if (StructType *STy = GTI.getStructTypeOrNull()) { 1304 // Handle struct member offset arithmetic. 1305 1306 // Handle case when index is vector zeroinitializer 1307 Constant *CIndex = cast<Constant>(Index); 1308 if (CIndex->isZeroValue()) 1309 continue; 1310 1311 if (CIndex->getType()->isVectorTy()) 1312 Index = CIndex->getSplatValue(); 1313 1314 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1315 const StructLayout *SL = Q.DL.getStructLayout(STy); 1316 uint64_t Offset = SL->getElementOffset(Idx); 1317 TrailZ = std::min<unsigned>(TrailZ, 1318 countTrailingZeros(Offset)); 1319 } else { 1320 // Handle array index arithmetic. 1321 Type *IndexedTy = GTI.getIndexedType(); 1322 if (!IndexedTy->isSized()) { 1323 TrailZ = 0; 1324 break; 1325 } 1326 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1327 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1328 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1329 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1330 TrailZ = std::min(TrailZ, 1331 unsigned(countTrailingZeros(TypeSize) + 1332 LocalKnown.countMinTrailingZeros())); 1333 } 1334 } 1335 1336 Known.Zero.setLowBits(TrailZ); 1337 break; 1338 } 1339 case Instruction::PHI: { 1340 const PHINode *P = cast<PHINode>(I); 1341 // Handle the case of a simple two-predecessor recurrence PHI. 1342 // There's a lot more that could theoretically be done here, but 1343 // this is sufficient to catch some interesting cases. 1344 if (P->getNumIncomingValues() == 2) { 1345 for (unsigned i = 0; i != 2; ++i) { 1346 Value *L = P->getIncomingValue(i); 1347 Value *R = P->getIncomingValue(!i); 1348 Operator *LU = dyn_cast<Operator>(L); 1349 if (!LU) 1350 continue; 1351 unsigned Opcode = LU->getOpcode(); 1352 // Check for operations that have the property that if 1353 // both their operands have low zero bits, the result 1354 // will have low zero bits. 1355 if (Opcode == Instruction::Add || 1356 Opcode == Instruction::Sub || 1357 Opcode == Instruction::And || 1358 Opcode == Instruction::Or || 1359 Opcode == Instruction::Mul) { 1360 Value *LL = LU->getOperand(0); 1361 Value *LR = LU->getOperand(1); 1362 // Find a recurrence. 1363 if (LL == I) 1364 L = LR; 1365 else if (LR == I) 1366 L = LL; 1367 else 1368 break; 1369 // Ok, we have a PHI of the form L op= R. Check for low 1370 // zero bits. 1371 computeKnownBits(R, Known2, Depth + 1, Q); 1372 1373 // We need to take the minimum number of known bits 1374 KnownBits Known3(Known); 1375 computeKnownBits(L, Known3, Depth + 1, Q); 1376 1377 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1378 Known3.countMinTrailingZeros())); 1379 1380 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1381 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1382 // If initial value of recurrence is nonnegative, and we are adding 1383 // a nonnegative number with nsw, the result can only be nonnegative 1384 // or poison value regardless of the number of times we execute the 1385 // add in phi recurrence. If initial value is negative and we are 1386 // adding a negative number with nsw, the result can only be 1387 // negative or poison value. Similar arguments apply to sub and mul. 1388 // 1389 // (add non-negative, non-negative) --> non-negative 1390 // (add negative, negative) --> negative 1391 if (Opcode == Instruction::Add) { 1392 if (Known2.isNonNegative() && Known3.isNonNegative()) 1393 Known.makeNonNegative(); 1394 else if (Known2.isNegative() && Known3.isNegative()) 1395 Known.makeNegative(); 1396 } 1397 1398 // (sub nsw non-negative, negative) --> non-negative 1399 // (sub nsw negative, non-negative) --> negative 1400 else if (Opcode == Instruction::Sub && LL == I) { 1401 if (Known2.isNonNegative() && Known3.isNegative()) 1402 Known.makeNonNegative(); 1403 else if (Known2.isNegative() && Known3.isNonNegative()) 1404 Known.makeNegative(); 1405 } 1406 1407 // (mul nsw non-negative, non-negative) --> non-negative 1408 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1409 Known3.isNonNegative()) 1410 Known.makeNonNegative(); 1411 } 1412 1413 break; 1414 } 1415 } 1416 } 1417 1418 // Unreachable blocks may have zero-operand PHI nodes. 1419 if (P->getNumIncomingValues() == 0) 1420 break; 1421 1422 // Otherwise take the unions of the known bit sets of the operands, 1423 // taking conservative care to avoid excessive recursion. 1424 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1425 // Skip if every incoming value references to ourself. 1426 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1427 break; 1428 1429 Known.Zero.setAllBits(); 1430 Known.One.setAllBits(); 1431 for (Value *IncValue : P->incoming_values()) { 1432 // Skip direct self references. 1433 if (IncValue == P) continue; 1434 1435 Known2 = KnownBits(BitWidth); 1436 // Recurse, but cap the recursion to one level, because we don't 1437 // want to waste time spinning around in loops. 1438 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1439 Known.Zero &= Known2.Zero; 1440 Known.One &= Known2.One; 1441 // If all bits have been ruled out, there's no need to check 1442 // more operands. 1443 if (!Known.Zero && !Known.One) 1444 break; 1445 } 1446 } 1447 break; 1448 } 1449 case Instruction::Call: 1450 case Instruction::Invoke: 1451 // If range metadata is attached to this call, set known bits from that, 1452 // and then intersect with known bits based on other properties of the 1453 // function. 1454 if (MDNode *MD = 1455 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1456 computeKnownBitsFromRangeMetadata(*MD, Known); 1457 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1458 computeKnownBits(RV, Known2, Depth + 1, Q); 1459 Known.Zero |= Known2.Zero; 1460 Known.One |= Known2.One; 1461 } 1462 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1463 switch (II->getIntrinsicID()) { 1464 default: break; 1465 case Intrinsic::bitreverse: 1466 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1467 Known.Zero |= Known2.Zero.reverseBits(); 1468 Known.One |= Known2.One.reverseBits(); 1469 break; 1470 case Intrinsic::bswap: 1471 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1472 Known.Zero |= Known2.Zero.byteSwap(); 1473 Known.One |= Known2.One.byteSwap(); 1474 break; 1475 case Intrinsic::ctlz: { 1476 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1477 // If we have a known 1, its position is our upper bound. 1478 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1479 // If this call is undefined for 0, the result will be less than 2^n. 1480 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1481 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1482 unsigned LowBits = Log2_32(PossibleLZ)+1; 1483 Known.Zero.setBitsFrom(LowBits); 1484 break; 1485 } 1486 case Intrinsic::cttz: { 1487 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1488 // If we have a known 1, its position is our upper bound. 1489 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1490 // If this call is undefined for 0, the result will be less than 2^n. 1491 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1492 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1493 unsigned LowBits = Log2_32(PossibleTZ)+1; 1494 Known.Zero.setBitsFrom(LowBits); 1495 break; 1496 } 1497 case Intrinsic::ctpop: { 1498 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1499 // We can bound the space the count needs. Also, bits known to be zero 1500 // can't contribute to the population. 1501 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1502 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1503 Known.Zero.setBitsFrom(LowBits); 1504 // TODO: we could bound KnownOne using the lower bound on the number 1505 // of bits which might be set provided by popcnt KnownOne2. 1506 break; 1507 } 1508 case Intrinsic::fshr: 1509 case Intrinsic::fshl: { 1510 const APInt *SA; 1511 if (!match(I->getOperand(2), m_APInt(SA))) 1512 break; 1513 1514 // Normalize to funnel shift left. 1515 uint64_t ShiftAmt = SA->urem(BitWidth); 1516 if (II->getIntrinsicID() == Intrinsic::fshr) 1517 ShiftAmt = BitWidth - ShiftAmt; 1518 1519 KnownBits Known3(Known); 1520 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1521 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1522 1523 Known.Zero = 1524 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1525 Known.One = 1526 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1527 break; 1528 } 1529 case Intrinsic::x86_sse42_crc32_64_64: 1530 Known.Zero.setBitsFrom(32); 1531 break; 1532 } 1533 } 1534 break; 1535 case Instruction::ExtractElement: 1536 // Look through extract element. At the moment we keep this simple and skip 1537 // tracking the specific element. But at least we might find information 1538 // valid for all elements of the vector (for example if vector is sign 1539 // extended, shifted, etc). 1540 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1541 break; 1542 case Instruction::ExtractValue: 1543 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1544 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1545 if (EVI->getNumIndices() != 1) break; 1546 if (EVI->getIndices()[0] == 0) { 1547 switch (II->getIntrinsicID()) { 1548 default: break; 1549 case Intrinsic::uadd_with_overflow: 1550 case Intrinsic::sadd_with_overflow: 1551 computeKnownBitsAddSub(true, II->getArgOperand(0), 1552 II->getArgOperand(1), false, Known, Known2, 1553 Depth, Q); 1554 break; 1555 case Intrinsic::usub_with_overflow: 1556 case Intrinsic::ssub_with_overflow: 1557 computeKnownBitsAddSub(false, II->getArgOperand(0), 1558 II->getArgOperand(1), false, Known, Known2, 1559 Depth, Q); 1560 break; 1561 case Intrinsic::umul_with_overflow: 1562 case Intrinsic::smul_with_overflow: 1563 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1564 Known, Known2, Depth, Q); 1565 break; 1566 } 1567 } 1568 } 1569 } 1570 } 1571 1572 /// Determine which bits of V are known to be either zero or one and return 1573 /// them. 1574 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1575 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1576 computeKnownBits(V, Known, Depth, Q); 1577 return Known; 1578 } 1579 1580 /// Determine which bits of V are known to be either zero or one and return 1581 /// them in the Known bit set. 1582 /// 1583 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1584 /// we cannot optimize based on the assumption that it is zero without changing 1585 /// it to be an explicit zero. If we don't change it to zero, other code could 1586 /// optimized based on the contradictory assumption that it is non-zero. 1587 /// Because instcombine aggressively folds operations with undef args anyway, 1588 /// this won't lose us code quality. 1589 /// 1590 /// This function is defined on values with integer type, values with pointer 1591 /// type, and vectors of integers. In the case 1592 /// where V is a vector, known zero, and known one values are the 1593 /// same width as the vector element, and the bit is set only if it is true 1594 /// for all of the elements in the vector. 1595 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1596 const Query &Q) { 1597 assert(V && "No Value?"); 1598 assert(Depth <= MaxDepth && "Limit Search Depth"); 1599 unsigned BitWidth = Known.getBitWidth(); 1600 1601 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1602 V->getType()->isPtrOrPtrVectorTy()) && 1603 "Not integer or pointer type!"); 1604 1605 Type *ScalarTy = V->getType()->getScalarType(); 1606 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1607 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1608 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1609 (void)BitWidth; 1610 (void)ExpectedWidth; 1611 1612 const APInt *C; 1613 if (match(V, m_APInt(C))) { 1614 // We know all of the bits for a scalar constant or a splat vector constant! 1615 Known.One = *C; 1616 Known.Zero = ~Known.One; 1617 return; 1618 } 1619 // Null and aggregate-zero are all-zeros. 1620 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1621 Known.setAllZero(); 1622 return; 1623 } 1624 // Handle a constant vector by taking the intersection of the known bits of 1625 // each element. 1626 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1627 // We know that CDS must be a vector of integers. Take the intersection of 1628 // each element. 1629 Known.Zero.setAllBits(); Known.One.setAllBits(); 1630 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1631 APInt Elt = CDS->getElementAsAPInt(i); 1632 Known.Zero &= ~Elt; 1633 Known.One &= Elt; 1634 } 1635 return; 1636 } 1637 1638 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1639 // We know that CV must be a vector of integers. Take the intersection of 1640 // each element. 1641 Known.Zero.setAllBits(); Known.One.setAllBits(); 1642 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1643 Constant *Element = CV->getAggregateElement(i); 1644 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1645 if (!ElementCI) { 1646 Known.resetAll(); 1647 return; 1648 } 1649 const APInt &Elt = ElementCI->getValue(); 1650 Known.Zero &= ~Elt; 1651 Known.One &= Elt; 1652 } 1653 return; 1654 } 1655 1656 // Start out not knowing anything. 1657 Known.resetAll(); 1658 1659 // We can't imply anything about undefs. 1660 if (isa<UndefValue>(V)) 1661 return; 1662 1663 // There's no point in looking through other users of ConstantData for 1664 // assumptions. Confirm that we've handled them all. 1665 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1666 1667 // Limit search depth. 1668 // All recursive calls that increase depth must come after this. 1669 if (Depth == MaxDepth) 1670 return; 1671 1672 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1673 // the bits of its aliasee. 1674 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1675 if (!GA->isInterposable()) 1676 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1677 return; 1678 } 1679 1680 if (const Operator *I = dyn_cast<Operator>(V)) 1681 computeKnownBitsFromOperator(I, Known, Depth, Q); 1682 1683 // Aligned pointers have trailing zeros - refine Known.Zero set 1684 if (V->getType()->isPointerTy()) { 1685 unsigned Align = V->getPointerAlignment(Q.DL); 1686 if (Align) 1687 Known.Zero.setLowBits(countTrailingZeros(Align)); 1688 } 1689 1690 // computeKnownBitsFromAssume strictly refines Known. 1691 // Therefore, we run them after computeKnownBitsFromOperator. 1692 1693 // Check whether a nearby assume intrinsic can determine some known bits. 1694 computeKnownBitsFromAssume(V, Known, Depth, Q); 1695 1696 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1697 } 1698 1699 /// Return true if the given value is known to have exactly one 1700 /// bit set when defined. For vectors return true if every element is known to 1701 /// be a power of two when defined. Supports values with integer or pointer 1702 /// types and vectors of integers. 1703 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1704 const Query &Q) { 1705 assert(Depth <= MaxDepth && "Limit Search Depth"); 1706 1707 // Attempt to match against constants. 1708 if (OrZero && match(V, m_Power2OrZero())) 1709 return true; 1710 if (match(V, m_Power2())) 1711 return true; 1712 1713 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1714 // it is shifted off the end then the result is undefined. 1715 if (match(V, m_Shl(m_One(), m_Value()))) 1716 return true; 1717 1718 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1719 // the bottom. If it is shifted off the bottom then the result is undefined. 1720 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1721 return true; 1722 1723 // The remaining tests are all recursive, so bail out if we hit the limit. 1724 if (Depth++ == MaxDepth) 1725 return false; 1726 1727 Value *X = nullptr, *Y = nullptr; 1728 // A shift left or a logical shift right of a power of two is a power of two 1729 // or zero. 1730 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1731 match(V, m_LShr(m_Value(X), m_Value())))) 1732 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1733 1734 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1735 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1736 1737 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1738 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1739 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1740 1741 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1742 // A power of two and'd with anything is a power of two or zero. 1743 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1744 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1745 return true; 1746 // X & (-X) is always a power of two or zero. 1747 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1748 return true; 1749 return false; 1750 } 1751 1752 // Adding a power-of-two or zero to the same power-of-two or zero yields 1753 // either the original power-of-two, a larger power-of-two or zero. 1754 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1755 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1756 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1757 Q.IIQ.hasNoSignedWrap(VOBO)) { 1758 if (match(X, m_And(m_Specific(Y), m_Value())) || 1759 match(X, m_And(m_Value(), m_Specific(Y)))) 1760 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1761 return true; 1762 if (match(Y, m_And(m_Specific(X), m_Value())) || 1763 match(Y, m_And(m_Value(), m_Specific(X)))) 1764 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1765 return true; 1766 1767 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1768 KnownBits LHSBits(BitWidth); 1769 computeKnownBits(X, LHSBits, Depth, Q); 1770 1771 KnownBits RHSBits(BitWidth); 1772 computeKnownBits(Y, RHSBits, Depth, Q); 1773 // If i8 V is a power of two or zero: 1774 // ZeroBits: 1 1 1 0 1 1 1 1 1775 // ~ZeroBits: 0 0 0 1 0 0 0 0 1776 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1777 // If OrZero isn't set, we cannot give back a zero result. 1778 // Make sure either the LHS or RHS has a bit set. 1779 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1780 return true; 1781 } 1782 } 1783 1784 // An exact divide or right shift can only shift off zero bits, so the result 1785 // is a power of two only if the first operand is a power of two and not 1786 // copying a sign bit (sdiv int_min, 2). 1787 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1788 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1789 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1790 Depth, Q); 1791 } 1792 1793 return false; 1794 } 1795 1796 /// Test whether a GEP's result is known to be non-null. 1797 /// 1798 /// Uses properties inherent in a GEP to try to determine whether it is known 1799 /// to be non-null. 1800 /// 1801 /// Currently this routine does not support vector GEPs. 1802 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1803 const Query &Q) { 1804 const Function *F = nullptr; 1805 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1806 F = I->getFunction(); 1807 1808 if (!GEP->isInBounds() || 1809 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1810 return false; 1811 1812 // FIXME: Support vector-GEPs. 1813 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1814 1815 // If the base pointer is non-null, we cannot walk to a null address with an 1816 // inbounds GEP in address space zero. 1817 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1818 return true; 1819 1820 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1821 // If so, then the GEP cannot produce a null pointer, as doing so would 1822 // inherently violate the inbounds contract within address space zero. 1823 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1824 GTI != GTE; ++GTI) { 1825 // Struct types are easy -- they must always be indexed by a constant. 1826 if (StructType *STy = GTI.getStructTypeOrNull()) { 1827 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1828 unsigned ElementIdx = OpC->getZExtValue(); 1829 const StructLayout *SL = Q.DL.getStructLayout(STy); 1830 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1831 if (ElementOffset > 0) 1832 return true; 1833 continue; 1834 } 1835 1836 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1837 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1838 continue; 1839 1840 // Fast path the constant operand case both for efficiency and so we don't 1841 // increment Depth when just zipping down an all-constant GEP. 1842 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1843 if (!OpC->isZero()) 1844 return true; 1845 continue; 1846 } 1847 1848 // We post-increment Depth here because while isKnownNonZero increments it 1849 // as well, when we pop back up that increment won't persist. We don't want 1850 // to recurse 10k times just because we have 10k GEP operands. We don't 1851 // bail completely out because we want to handle constant GEPs regardless 1852 // of depth. 1853 if (Depth++ >= MaxDepth) 1854 continue; 1855 1856 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1857 return true; 1858 } 1859 1860 return false; 1861 } 1862 1863 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1864 const Instruction *CtxI, 1865 const DominatorTree *DT) { 1866 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1867 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1868 1869 if (!CtxI || !DT) 1870 return false; 1871 1872 unsigned NumUsesExplored = 0; 1873 for (auto *U : V->users()) { 1874 // Avoid massive lists 1875 if (NumUsesExplored >= DomConditionsMaxUses) 1876 break; 1877 NumUsesExplored++; 1878 1879 // If the value is used as an argument to a call or invoke, then argument 1880 // attributes may provide an answer about null-ness. 1881 if (auto CS = ImmutableCallSite(U)) 1882 if (auto *CalledFunc = CS.getCalledFunction()) 1883 for (const Argument &Arg : CalledFunc->args()) 1884 if (CS.getArgOperand(Arg.getArgNo()) == V && 1885 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1886 return true; 1887 1888 // Consider only compare instructions uniquely controlling a branch 1889 CmpInst::Predicate Pred; 1890 if (!match(const_cast<User *>(U), 1891 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1892 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1893 continue; 1894 1895 SmallVector<const User *, 4> WorkList; 1896 SmallPtrSet<const User *, 4> Visited; 1897 for (auto *CmpU : U->users()) { 1898 assert(WorkList.empty() && "Should be!"); 1899 if (Visited.insert(CmpU).second) 1900 WorkList.push_back(CmpU); 1901 1902 while (!WorkList.empty()) { 1903 auto *Curr = WorkList.pop_back_val(); 1904 1905 // If a user is an AND, add all its users to the work list. We only 1906 // propagate "pred != null" condition through AND because it is only 1907 // correct to assume that all conditions of AND are met in true branch. 1908 // TODO: Support similar logic of OR and EQ predicate? 1909 if (Pred == ICmpInst::ICMP_NE) 1910 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1911 if (BO->getOpcode() == Instruction::And) { 1912 for (auto *BOU : BO->users()) 1913 if (Visited.insert(BOU).second) 1914 WorkList.push_back(BOU); 1915 continue; 1916 } 1917 1918 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1919 assert(BI->isConditional() && "uses a comparison!"); 1920 1921 BasicBlock *NonNullSuccessor = 1922 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1923 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1924 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1925 return true; 1926 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 1927 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1928 return true; 1929 } 1930 } 1931 } 1932 } 1933 1934 return false; 1935 } 1936 1937 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1938 /// ensure that the value it's attached to is never Value? 'RangeType' is 1939 /// is the type of the value described by the range. 1940 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1941 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1942 assert(NumRanges >= 1); 1943 for (unsigned i = 0; i < NumRanges; ++i) { 1944 ConstantInt *Lower = 1945 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1946 ConstantInt *Upper = 1947 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1948 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1949 if (Range.contains(Value)) 1950 return false; 1951 } 1952 return true; 1953 } 1954 1955 /// Return true if the given value is known to be non-zero when defined. For 1956 /// vectors, return true if every element is known to be non-zero when 1957 /// defined. For pointers, if the context instruction and dominator tree are 1958 /// specified, perform context-sensitive analysis and return true if the 1959 /// pointer couldn't possibly be null at the specified instruction. 1960 /// Supports values with integer or pointer type and vectors of integers. 1961 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1962 if (auto *C = dyn_cast<Constant>(V)) { 1963 if (C->isNullValue()) 1964 return false; 1965 if (isa<ConstantInt>(C)) 1966 // Must be non-zero due to null test above. 1967 return true; 1968 1969 // For constant vectors, check that all elements are undefined or known 1970 // non-zero to determine that the whole vector is known non-zero. 1971 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1972 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1973 Constant *Elt = C->getAggregateElement(i); 1974 if (!Elt || Elt->isNullValue()) 1975 return false; 1976 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1977 return false; 1978 } 1979 return true; 1980 } 1981 1982 // A global variable in address space 0 is non null unless extern weak 1983 // or an absolute symbol reference. Other address spaces may have null as a 1984 // valid address for a global, so we can't assume anything. 1985 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1986 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1987 GV->getType()->getAddressSpace() == 0) 1988 return true; 1989 } else 1990 return false; 1991 } 1992 1993 if (auto *I = dyn_cast<Instruction>(V)) { 1994 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 1995 // If the possible ranges don't contain zero, then the value is 1996 // definitely non-zero. 1997 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1998 const APInt ZeroValue(Ty->getBitWidth(), 0); 1999 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2000 return true; 2001 } 2002 } 2003 } 2004 2005 // Some of the tests below are recursive, so bail out if we hit the limit. 2006 if (Depth++ >= MaxDepth) 2007 return false; 2008 2009 // Check for pointer simplifications. 2010 if (V->getType()->isPointerTy()) { 2011 // Alloca never returns null, malloc might. 2012 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2013 return true; 2014 2015 // A byval, inalloca, or nonnull argument is never null. 2016 if (const Argument *A = dyn_cast<Argument>(V)) 2017 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2018 return true; 2019 2020 // A Load tagged with nonnull metadata is never null. 2021 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2022 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2023 return true; 2024 2025 if (const auto *Call = dyn_cast<CallBase>(V)) { 2026 if (Call->isReturnNonNull()) 2027 return true; 2028 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call)) 2029 return isKnownNonZero(RP, Depth, Q); 2030 } 2031 } 2032 2033 2034 // Check for recursive pointer simplifications. 2035 if (V->getType()->isPointerTy()) { 2036 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2037 return true; 2038 2039 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2040 if (isGEPKnownNonNull(GEP, Depth, Q)) 2041 return true; 2042 } 2043 2044 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2045 2046 // X | Y != 0 if X != 0 or Y != 0. 2047 Value *X = nullptr, *Y = nullptr; 2048 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2049 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2050 2051 // ext X != 0 if X != 0. 2052 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2053 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2054 2055 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2056 // if the lowest bit is shifted off the end. 2057 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2058 // shl nuw can't remove any non-zero bits. 2059 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2060 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2061 return isKnownNonZero(X, Depth, Q); 2062 2063 KnownBits Known(BitWidth); 2064 computeKnownBits(X, Known, Depth, Q); 2065 if (Known.One[0]) 2066 return true; 2067 } 2068 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2069 // defined if the sign bit is shifted off the end. 2070 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2071 // shr exact can only shift out zero bits. 2072 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2073 if (BO->isExact()) 2074 return isKnownNonZero(X, Depth, Q); 2075 2076 KnownBits Known = computeKnownBits(X, Depth, Q); 2077 if (Known.isNegative()) 2078 return true; 2079 2080 // If the shifter operand is a constant, and all of the bits shifted 2081 // out are known to be zero, and X is known non-zero then at least one 2082 // non-zero bit must remain. 2083 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2084 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2085 // Is there a known one in the portion not shifted out? 2086 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2087 return true; 2088 // Are all the bits to be shifted out known zero? 2089 if (Known.countMinTrailingZeros() >= ShiftVal) 2090 return isKnownNonZero(X, Depth, Q); 2091 } 2092 } 2093 // div exact can only produce a zero if the dividend is zero. 2094 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2095 return isKnownNonZero(X, Depth, Q); 2096 } 2097 // X + Y. 2098 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2099 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2100 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2101 2102 // If X and Y are both non-negative (as signed values) then their sum is not 2103 // zero unless both X and Y are zero. 2104 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2105 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2106 return true; 2107 2108 // If X and Y are both negative (as signed values) then their sum is not 2109 // zero unless both X and Y equal INT_MIN. 2110 if (XKnown.isNegative() && YKnown.isNegative()) { 2111 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2112 // The sign bit of X is set. If some other bit is set then X is not equal 2113 // to INT_MIN. 2114 if (XKnown.One.intersects(Mask)) 2115 return true; 2116 // The sign bit of Y is set. If some other bit is set then Y is not equal 2117 // to INT_MIN. 2118 if (YKnown.One.intersects(Mask)) 2119 return true; 2120 } 2121 2122 // The sum of a non-negative number and a power of two is not zero. 2123 if (XKnown.isNonNegative() && 2124 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2125 return true; 2126 if (YKnown.isNonNegative() && 2127 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2128 return true; 2129 } 2130 // X * Y. 2131 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2132 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2133 // If X and Y are non-zero then so is X * Y as long as the multiplication 2134 // does not overflow. 2135 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2136 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2137 return true; 2138 } 2139 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2140 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2141 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2142 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2143 return true; 2144 } 2145 // PHI 2146 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2147 // Try and detect a recurrence that monotonically increases from a 2148 // starting value, as these are common as induction variables. 2149 if (PN->getNumIncomingValues() == 2) { 2150 Value *Start = PN->getIncomingValue(0); 2151 Value *Induction = PN->getIncomingValue(1); 2152 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2153 std::swap(Start, Induction); 2154 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2155 if (!C->isZero() && !C->isNegative()) { 2156 ConstantInt *X; 2157 if (Q.IIQ.UseInstrInfo && 2158 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2159 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2160 !X->isNegative()) 2161 return true; 2162 } 2163 } 2164 } 2165 // Check if all incoming values are non-zero constant. 2166 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2167 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2168 }); 2169 if (AllNonZeroConstants) 2170 return true; 2171 } 2172 2173 KnownBits Known(BitWidth); 2174 computeKnownBits(V, Known, Depth, Q); 2175 return Known.One != 0; 2176 } 2177 2178 /// Return true if V2 == V1 + X, where X is known non-zero. 2179 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2180 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2181 if (!BO || BO->getOpcode() != Instruction::Add) 2182 return false; 2183 Value *Op = nullptr; 2184 if (V2 == BO->getOperand(0)) 2185 Op = BO->getOperand(1); 2186 else if (V2 == BO->getOperand(1)) 2187 Op = BO->getOperand(0); 2188 else 2189 return false; 2190 return isKnownNonZero(Op, 0, Q); 2191 } 2192 2193 /// Return true if it is known that V1 != V2. 2194 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2195 if (V1 == V2) 2196 return false; 2197 if (V1->getType() != V2->getType()) 2198 // We can't look through casts yet. 2199 return false; 2200 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2201 return true; 2202 2203 if (V1->getType()->isIntOrIntVectorTy()) { 2204 // Are any known bits in V1 contradictory to known bits in V2? If V1 2205 // has a known zero where V2 has a known one, they must not be equal. 2206 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2207 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2208 2209 if (Known1.Zero.intersects(Known2.One) || 2210 Known2.Zero.intersects(Known1.One)) 2211 return true; 2212 } 2213 return false; 2214 } 2215 2216 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2217 /// simplify operations downstream. Mask is known to be zero for bits that V 2218 /// cannot have. 2219 /// 2220 /// This function is defined on values with integer type, values with pointer 2221 /// type, and vectors of integers. In the case 2222 /// where V is a vector, the mask, known zero, and known one values are the 2223 /// same width as the vector element, and the bit is set only if it is true 2224 /// for all of the elements in the vector. 2225 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2226 const Query &Q) { 2227 KnownBits Known(Mask.getBitWidth()); 2228 computeKnownBits(V, Known, Depth, Q); 2229 return Mask.isSubsetOf(Known.Zero); 2230 } 2231 2232 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2233 // Returns the input and lower/upper bounds. 2234 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2235 const APInt *&CLow, const APInt *&CHigh) { 2236 assert(isa<Operator>(Select) && 2237 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2238 "Input should be a Select!"); 2239 2240 const Value *LHS, *RHS, *LHS2, *RHS2; 2241 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2242 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2243 return false; 2244 2245 if (!match(RHS, m_APInt(CLow))) 2246 return false; 2247 2248 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2249 if (getInverseMinMaxFlavor(SPF) != SPF2) 2250 return false; 2251 2252 if (!match(RHS2, m_APInt(CHigh))) 2253 return false; 2254 2255 if (SPF == SPF_SMIN) 2256 std::swap(CLow, CHigh); 2257 2258 In = LHS2; 2259 return CLow->sle(*CHigh); 2260 } 2261 2262 /// For vector constants, loop over the elements and find the constant with the 2263 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2264 /// or if any element was not analyzed; otherwise, return the count for the 2265 /// element with the minimum number of sign bits. 2266 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2267 unsigned TyBits) { 2268 const auto *CV = dyn_cast<Constant>(V); 2269 if (!CV || !CV->getType()->isVectorTy()) 2270 return 0; 2271 2272 unsigned MinSignBits = TyBits; 2273 unsigned NumElts = CV->getType()->getVectorNumElements(); 2274 for (unsigned i = 0; i != NumElts; ++i) { 2275 // If we find a non-ConstantInt, bail out. 2276 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2277 if (!Elt) 2278 return 0; 2279 2280 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2281 } 2282 2283 return MinSignBits; 2284 } 2285 2286 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2287 const Query &Q); 2288 2289 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2290 const Query &Q) { 2291 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2292 assert(Result > 0 && "At least one sign bit needs to be present!"); 2293 return Result; 2294 } 2295 2296 /// Return the number of times the sign bit of the register is replicated into 2297 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2298 /// (itself), but other cases can give us information. For example, immediately 2299 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2300 /// other, so we return 3. For vectors, return the number of sign bits for the 2301 /// vector element with the minimum number of known sign bits. 2302 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2303 const Query &Q) { 2304 assert(Depth <= MaxDepth && "Limit Search Depth"); 2305 2306 // We return the minimum number of sign bits that are guaranteed to be present 2307 // in V, so for undef we have to conservatively return 1. We don't have the 2308 // same behavior for poison though -- that's a FIXME today. 2309 2310 Type *ScalarTy = V->getType()->getScalarType(); 2311 unsigned TyBits = ScalarTy->isPointerTy() ? 2312 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2313 Q.DL.getTypeSizeInBits(ScalarTy); 2314 2315 unsigned Tmp, Tmp2; 2316 unsigned FirstAnswer = 1; 2317 2318 // Note that ConstantInt is handled by the general computeKnownBits case 2319 // below. 2320 2321 if (Depth == MaxDepth) 2322 return 1; // Limit search depth. 2323 2324 const Operator *U = dyn_cast<Operator>(V); 2325 switch (Operator::getOpcode(V)) { 2326 default: break; 2327 case Instruction::SExt: 2328 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2329 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2330 2331 case Instruction::SDiv: { 2332 const APInt *Denominator; 2333 // sdiv X, C -> adds log(C) sign bits. 2334 if (match(U->getOperand(1), m_APInt(Denominator))) { 2335 2336 // Ignore non-positive denominator. 2337 if (!Denominator->isStrictlyPositive()) 2338 break; 2339 2340 // Calculate the incoming numerator bits. 2341 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2342 2343 // Add floor(log(C)) bits to the numerator bits. 2344 return std::min(TyBits, NumBits + Denominator->logBase2()); 2345 } 2346 break; 2347 } 2348 2349 case Instruction::SRem: { 2350 const APInt *Denominator; 2351 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2352 // positive constant. This let us put a lower bound on the number of sign 2353 // bits. 2354 if (match(U->getOperand(1), m_APInt(Denominator))) { 2355 2356 // Ignore non-positive denominator. 2357 if (!Denominator->isStrictlyPositive()) 2358 break; 2359 2360 // Calculate the incoming numerator bits. SRem by a positive constant 2361 // can't lower the number of sign bits. 2362 unsigned NumrBits = 2363 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2364 2365 // Calculate the leading sign bit constraints by examining the 2366 // denominator. Given that the denominator is positive, there are two 2367 // cases: 2368 // 2369 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2370 // (1 << ceilLogBase2(C)). 2371 // 2372 // 2. the numerator is negative. Then the result range is (-C,0] and 2373 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2374 // 2375 // Thus a lower bound on the number of sign bits is `TyBits - 2376 // ceilLogBase2(C)`. 2377 2378 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2379 return std::max(NumrBits, ResBits); 2380 } 2381 break; 2382 } 2383 2384 case Instruction::AShr: { 2385 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2386 // ashr X, C -> adds C sign bits. Vectors too. 2387 const APInt *ShAmt; 2388 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2389 if (ShAmt->uge(TyBits)) 2390 break; // Bad shift. 2391 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2392 Tmp += ShAmtLimited; 2393 if (Tmp > TyBits) Tmp = TyBits; 2394 } 2395 return Tmp; 2396 } 2397 case Instruction::Shl: { 2398 const APInt *ShAmt; 2399 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2400 // shl destroys sign bits. 2401 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2402 if (ShAmt->uge(TyBits) || // Bad shift. 2403 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2404 Tmp2 = ShAmt->getZExtValue(); 2405 return Tmp - Tmp2; 2406 } 2407 break; 2408 } 2409 case Instruction::And: 2410 case Instruction::Or: 2411 case Instruction::Xor: // NOT is handled here. 2412 // Logical binary ops preserve the number of sign bits at the worst. 2413 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2414 if (Tmp != 1) { 2415 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2416 FirstAnswer = std::min(Tmp, Tmp2); 2417 // We computed what we know about the sign bits as our first 2418 // answer. Now proceed to the generic code that uses 2419 // computeKnownBits, and pick whichever answer is better. 2420 } 2421 break; 2422 2423 case Instruction::Select: { 2424 // If we have a clamp pattern, we know that the number of sign bits will be 2425 // the minimum of the clamp min/max range. 2426 const Value *X; 2427 const APInt *CLow, *CHigh; 2428 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2429 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2430 2431 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2432 if (Tmp == 1) break; 2433 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2434 return std::min(Tmp, Tmp2); 2435 } 2436 2437 case Instruction::Add: 2438 // Add can have at most one carry bit. Thus we know that the output 2439 // is, at worst, one more bit than the inputs. 2440 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2441 if (Tmp == 1) break; 2442 2443 // Special case decrementing a value (ADD X, -1): 2444 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2445 if (CRHS->isAllOnesValue()) { 2446 KnownBits Known(TyBits); 2447 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2448 2449 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2450 // sign bits set. 2451 if ((Known.Zero | 1).isAllOnesValue()) 2452 return TyBits; 2453 2454 // If we are subtracting one from a positive number, there is no carry 2455 // out of the result. 2456 if (Known.isNonNegative()) 2457 return Tmp; 2458 } 2459 2460 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2461 if (Tmp2 == 1) break; 2462 return std::min(Tmp, Tmp2)-1; 2463 2464 case Instruction::Sub: 2465 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2466 if (Tmp2 == 1) break; 2467 2468 // Handle NEG. 2469 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2470 if (CLHS->isNullValue()) { 2471 KnownBits Known(TyBits); 2472 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2473 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2474 // sign bits set. 2475 if ((Known.Zero | 1).isAllOnesValue()) 2476 return TyBits; 2477 2478 // If the input is known to be positive (the sign bit is known clear), 2479 // the output of the NEG has the same number of sign bits as the input. 2480 if (Known.isNonNegative()) 2481 return Tmp2; 2482 2483 // Otherwise, we treat this like a SUB. 2484 } 2485 2486 // Sub can have at most one carry bit. Thus we know that the output 2487 // is, at worst, one more bit than the inputs. 2488 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2489 if (Tmp == 1) break; 2490 return std::min(Tmp, Tmp2)-1; 2491 2492 case Instruction::Mul: { 2493 // The output of the Mul can be at most twice the valid bits in the inputs. 2494 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2495 if (SignBitsOp0 == 1) break; 2496 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2497 if (SignBitsOp1 == 1) break; 2498 unsigned OutValidBits = 2499 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2500 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2501 } 2502 2503 case Instruction::PHI: { 2504 const PHINode *PN = cast<PHINode>(U); 2505 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2506 // Don't analyze large in-degree PHIs. 2507 if (NumIncomingValues > 4) break; 2508 // Unreachable blocks may have zero-operand PHI nodes. 2509 if (NumIncomingValues == 0) break; 2510 2511 // Take the minimum of all incoming values. This can't infinitely loop 2512 // because of our depth threshold. 2513 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2514 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2515 if (Tmp == 1) return Tmp; 2516 Tmp = std::min( 2517 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2518 } 2519 return Tmp; 2520 } 2521 2522 case Instruction::Trunc: 2523 // FIXME: it's tricky to do anything useful for this, but it is an important 2524 // case for targets like X86. 2525 break; 2526 2527 case Instruction::ExtractElement: 2528 // Look through extract element. At the moment we keep this simple and skip 2529 // tracking the specific element. But at least we might find information 2530 // valid for all elements of the vector (for example if vector is sign 2531 // extended, shifted, etc). 2532 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2533 2534 case Instruction::ShuffleVector: { 2535 // TODO: This is copied almost directly from the SelectionDAG version of 2536 // ComputeNumSignBits. It would be better if we could share common 2537 // code. If not, make sure that changes are translated to the DAG. 2538 2539 // Collect the minimum number of sign bits that are shared by every vector 2540 // element referenced by the shuffle. 2541 auto *Shuf = cast<ShuffleVectorInst>(U); 2542 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 2543 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 2544 APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); 2545 for (int i = 0; i != NumMaskElts; ++i) { 2546 int M = Shuf->getMaskValue(i); 2547 assert(M < NumElts * 2 && "Invalid shuffle mask constant"); 2548 // For undef elements, we don't know anything about the common state of 2549 // the shuffle result. 2550 if (M == -1) 2551 return 1; 2552 if (M < NumElts) 2553 DemandedLHS.setBit(M % NumElts); 2554 else 2555 DemandedRHS.setBit(M % NumElts); 2556 } 2557 Tmp = std::numeric_limits<unsigned>::max(); 2558 if (!!DemandedLHS) 2559 Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); 2560 if (!!DemandedRHS) { 2561 Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); 2562 Tmp = std::min(Tmp, Tmp2); 2563 } 2564 // If we don't know anything, early out and try computeKnownBits fall-back. 2565 if (Tmp == 1) 2566 break; 2567 assert(Tmp <= V->getType()->getScalarSizeInBits() && 2568 "Failed to determine minimum sign bits"); 2569 return Tmp; 2570 } 2571 } 2572 2573 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2574 // use this information. 2575 2576 // If we can examine all elements of a vector constant successfully, we're 2577 // done (we can't do any better than that). If not, keep trying. 2578 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2579 return VecSignBits; 2580 2581 KnownBits Known(TyBits); 2582 computeKnownBits(V, Known, Depth, Q); 2583 2584 // If we know that the sign bit is either zero or one, determine the number of 2585 // identical bits in the top of the input value. 2586 return std::max(FirstAnswer, Known.countMinSignBits()); 2587 } 2588 2589 /// This function computes the integer multiple of Base that equals V. 2590 /// If successful, it returns true and returns the multiple in 2591 /// Multiple. If unsuccessful, it returns false. It looks 2592 /// through SExt instructions only if LookThroughSExt is true. 2593 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2594 bool LookThroughSExt, unsigned Depth) { 2595 const unsigned MaxDepth = 6; 2596 2597 assert(V && "No Value?"); 2598 assert(Depth <= MaxDepth && "Limit Search Depth"); 2599 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2600 2601 Type *T = V->getType(); 2602 2603 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2604 2605 if (Base == 0) 2606 return false; 2607 2608 if (Base == 1) { 2609 Multiple = V; 2610 return true; 2611 } 2612 2613 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2614 Constant *BaseVal = ConstantInt::get(T, Base); 2615 if (CO && CO == BaseVal) { 2616 // Multiple is 1. 2617 Multiple = ConstantInt::get(T, 1); 2618 return true; 2619 } 2620 2621 if (CI && CI->getZExtValue() % Base == 0) { 2622 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2623 return true; 2624 } 2625 2626 if (Depth == MaxDepth) return false; // Limit search depth. 2627 2628 Operator *I = dyn_cast<Operator>(V); 2629 if (!I) return false; 2630 2631 switch (I->getOpcode()) { 2632 default: break; 2633 case Instruction::SExt: 2634 if (!LookThroughSExt) return false; 2635 // otherwise fall through to ZExt 2636 LLVM_FALLTHROUGH; 2637 case Instruction::ZExt: 2638 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2639 LookThroughSExt, Depth+1); 2640 case Instruction::Shl: 2641 case Instruction::Mul: { 2642 Value *Op0 = I->getOperand(0); 2643 Value *Op1 = I->getOperand(1); 2644 2645 if (I->getOpcode() == Instruction::Shl) { 2646 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2647 if (!Op1CI) return false; 2648 // Turn Op0 << Op1 into Op0 * 2^Op1 2649 APInt Op1Int = Op1CI->getValue(); 2650 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2651 APInt API(Op1Int.getBitWidth(), 0); 2652 API.setBit(BitToSet); 2653 Op1 = ConstantInt::get(V->getContext(), API); 2654 } 2655 2656 Value *Mul0 = nullptr; 2657 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2658 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2659 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2660 if (Op1C->getType()->getPrimitiveSizeInBits() < 2661 MulC->getType()->getPrimitiveSizeInBits()) 2662 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2663 if (Op1C->getType()->getPrimitiveSizeInBits() > 2664 MulC->getType()->getPrimitiveSizeInBits()) 2665 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2666 2667 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2668 Multiple = ConstantExpr::getMul(MulC, Op1C); 2669 return true; 2670 } 2671 2672 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2673 if (Mul0CI->getValue() == 1) { 2674 // V == Base * Op1, so return Op1 2675 Multiple = Op1; 2676 return true; 2677 } 2678 } 2679 2680 Value *Mul1 = nullptr; 2681 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2682 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2683 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2684 if (Op0C->getType()->getPrimitiveSizeInBits() < 2685 MulC->getType()->getPrimitiveSizeInBits()) 2686 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2687 if (Op0C->getType()->getPrimitiveSizeInBits() > 2688 MulC->getType()->getPrimitiveSizeInBits()) 2689 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2690 2691 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2692 Multiple = ConstantExpr::getMul(MulC, Op0C); 2693 return true; 2694 } 2695 2696 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2697 if (Mul1CI->getValue() == 1) { 2698 // V == Base * Op0, so return Op0 2699 Multiple = Op0; 2700 return true; 2701 } 2702 } 2703 } 2704 } 2705 2706 // We could not determine if V is a multiple of Base. 2707 return false; 2708 } 2709 2710 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2711 const TargetLibraryInfo *TLI) { 2712 const Function *F = ICS.getCalledFunction(); 2713 if (!F) 2714 return Intrinsic::not_intrinsic; 2715 2716 if (F->isIntrinsic()) 2717 return F->getIntrinsicID(); 2718 2719 if (!TLI) 2720 return Intrinsic::not_intrinsic; 2721 2722 LibFunc Func; 2723 // We're going to make assumptions on the semantics of the functions, check 2724 // that the target knows that it's available in this environment and it does 2725 // not have local linkage. 2726 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2727 return Intrinsic::not_intrinsic; 2728 2729 if (!ICS.onlyReadsMemory()) 2730 return Intrinsic::not_intrinsic; 2731 2732 // Otherwise check if we have a call to a function that can be turned into a 2733 // vector intrinsic. 2734 switch (Func) { 2735 default: 2736 break; 2737 case LibFunc_sin: 2738 case LibFunc_sinf: 2739 case LibFunc_sinl: 2740 return Intrinsic::sin; 2741 case LibFunc_cos: 2742 case LibFunc_cosf: 2743 case LibFunc_cosl: 2744 return Intrinsic::cos; 2745 case LibFunc_exp: 2746 case LibFunc_expf: 2747 case LibFunc_expl: 2748 return Intrinsic::exp; 2749 case LibFunc_exp2: 2750 case LibFunc_exp2f: 2751 case LibFunc_exp2l: 2752 return Intrinsic::exp2; 2753 case LibFunc_log: 2754 case LibFunc_logf: 2755 case LibFunc_logl: 2756 return Intrinsic::log; 2757 case LibFunc_log10: 2758 case LibFunc_log10f: 2759 case LibFunc_log10l: 2760 return Intrinsic::log10; 2761 case LibFunc_log2: 2762 case LibFunc_log2f: 2763 case LibFunc_log2l: 2764 return Intrinsic::log2; 2765 case LibFunc_fabs: 2766 case LibFunc_fabsf: 2767 case LibFunc_fabsl: 2768 return Intrinsic::fabs; 2769 case LibFunc_fmin: 2770 case LibFunc_fminf: 2771 case LibFunc_fminl: 2772 return Intrinsic::minnum; 2773 case LibFunc_fmax: 2774 case LibFunc_fmaxf: 2775 case LibFunc_fmaxl: 2776 return Intrinsic::maxnum; 2777 case LibFunc_copysign: 2778 case LibFunc_copysignf: 2779 case LibFunc_copysignl: 2780 return Intrinsic::copysign; 2781 case LibFunc_floor: 2782 case LibFunc_floorf: 2783 case LibFunc_floorl: 2784 return Intrinsic::floor; 2785 case LibFunc_ceil: 2786 case LibFunc_ceilf: 2787 case LibFunc_ceill: 2788 return Intrinsic::ceil; 2789 case LibFunc_trunc: 2790 case LibFunc_truncf: 2791 case LibFunc_truncl: 2792 return Intrinsic::trunc; 2793 case LibFunc_rint: 2794 case LibFunc_rintf: 2795 case LibFunc_rintl: 2796 return Intrinsic::rint; 2797 case LibFunc_nearbyint: 2798 case LibFunc_nearbyintf: 2799 case LibFunc_nearbyintl: 2800 return Intrinsic::nearbyint; 2801 case LibFunc_round: 2802 case LibFunc_roundf: 2803 case LibFunc_roundl: 2804 return Intrinsic::round; 2805 case LibFunc_pow: 2806 case LibFunc_powf: 2807 case LibFunc_powl: 2808 return Intrinsic::pow; 2809 case LibFunc_sqrt: 2810 case LibFunc_sqrtf: 2811 case LibFunc_sqrtl: 2812 return Intrinsic::sqrt; 2813 } 2814 2815 return Intrinsic::not_intrinsic; 2816 } 2817 2818 /// Return true if we can prove that the specified FP value is never equal to 2819 /// -0.0. 2820 /// 2821 /// NOTE: this function will need to be revisited when we support non-default 2822 /// rounding modes! 2823 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2824 unsigned Depth) { 2825 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2826 return !CFP->getValueAPF().isNegZero(); 2827 2828 // Limit search depth. 2829 if (Depth == MaxDepth) 2830 return false; 2831 2832 auto *Op = dyn_cast<Operator>(V); 2833 if (!Op) 2834 return false; 2835 2836 // Check if the nsz fast-math flag is set. 2837 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2838 if (FPO->hasNoSignedZeros()) 2839 return true; 2840 2841 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2842 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2843 return true; 2844 2845 // sitofp and uitofp turn into +0.0 for zero. 2846 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2847 return true; 2848 2849 if (auto *Call = dyn_cast<CallInst>(Op)) { 2850 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2851 switch (IID) { 2852 default: 2853 break; 2854 // sqrt(-0.0) = -0.0, no other negative results are possible. 2855 case Intrinsic::sqrt: 2856 case Intrinsic::canonicalize: 2857 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2858 // fabs(x) != -0.0 2859 case Intrinsic::fabs: 2860 return true; 2861 } 2862 } 2863 2864 return false; 2865 } 2866 2867 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2868 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2869 /// bit despite comparing equal. 2870 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2871 const TargetLibraryInfo *TLI, 2872 bool SignBitOnly, 2873 unsigned Depth) { 2874 // TODO: This function does not do the right thing when SignBitOnly is true 2875 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2876 // which flips the sign bits of NaNs. See 2877 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2878 2879 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2880 return !CFP->getValueAPF().isNegative() || 2881 (!SignBitOnly && CFP->getValueAPF().isZero()); 2882 } 2883 2884 // Handle vector of constants. 2885 if (auto *CV = dyn_cast<Constant>(V)) { 2886 if (CV->getType()->isVectorTy()) { 2887 unsigned NumElts = CV->getType()->getVectorNumElements(); 2888 for (unsigned i = 0; i != NumElts; ++i) { 2889 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2890 if (!CFP) 2891 return false; 2892 if (CFP->getValueAPF().isNegative() && 2893 (SignBitOnly || !CFP->getValueAPF().isZero())) 2894 return false; 2895 } 2896 2897 // All non-negative ConstantFPs. 2898 return true; 2899 } 2900 } 2901 2902 if (Depth == MaxDepth) 2903 return false; // Limit search depth. 2904 2905 const Operator *I = dyn_cast<Operator>(V); 2906 if (!I) 2907 return false; 2908 2909 switch (I->getOpcode()) { 2910 default: 2911 break; 2912 // Unsigned integers are always nonnegative. 2913 case Instruction::UIToFP: 2914 return true; 2915 case Instruction::FMul: 2916 // x*x is always non-negative or a NaN. 2917 if (I->getOperand(0) == I->getOperand(1) && 2918 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2919 return true; 2920 2921 LLVM_FALLTHROUGH; 2922 case Instruction::FAdd: 2923 case Instruction::FDiv: 2924 case Instruction::FRem: 2925 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2926 Depth + 1) && 2927 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2928 Depth + 1); 2929 case Instruction::Select: 2930 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2931 Depth + 1) && 2932 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2933 Depth + 1); 2934 case Instruction::FPExt: 2935 case Instruction::FPTrunc: 2936 // Widening/narrowing never change sign. 2937 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2938 Depth + 1); 2939 case Instruction::ExtractElement: 2940 // Look through extract element. At the moment we keep this simple and skip 2941 // tracking the specific element. But at least we might find information 2942 // valid for all elements of the vector. 2943 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2944 Depth + 1); 2945 case Instruction::Call: 2946 const auto *CI = cast<CallInst>(I); 2947 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2948 switch (IID) { 2949 default: 2950 break; 2951 case Intrinsic::maxnum: 2952 return (isKnownNeverNaN(I->getOperand(0), TLI) && 2953 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 2954 SignBitOnly, Depth + 1)) || 2955 (isKnownNeverNaN(I->getOperand(1), TLI) && 2956 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 2957 SignBitOnly, Depth + 1)); 2958 2959 case Intrinsic::maximum: 2960 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2961 Depth + 1) || 2962 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2963 Depth + 1); 2964 case Intrinsic::minnum: 2965 case Intrinsic::minimum: 2966 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2967 Depth + 1) && 2968 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2969 Depth + 1); 2970 case Intrinsic::exp: 2971 case Intrinsic::exp2: 2972 case Intrinsic::fabs: 2973 return true; 2974 2975 case Intrinsic::sqrt: 2976 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2977 if (!SignBitOnly) 2978 return true; 2979 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2980 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2981 2982 case Intrinsic::powi: 2983 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2984 // powi(x,n) is non-negative if n is even. 2985 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2986 return true; 2987 } 2988 // TODO: This is not correct. Given that exp is an integer, here are the 2989 // ways that pow can return a negative value: 2990 // 2991 // pow(x, exp) --> negative if exp is odd and x is negative. 2992 // pow(-0, exp) --> -inf if exp is negative odd. 2993 // pow(-0, exp) --> -0 if exp is positive odd. 2994 // pow(-inf, exp) --> -0 if exp is negative odd. 2995 // pow(-inf, exp) --> -inf if exp is positive odd. 2996 // 2997 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2998 // but we must return false if x == -0. Unfortunately we do not currently 2999 // have a way of expressing this constraint. See details in 3000 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3001 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3002 Depth + 1); 3003 3004 case Intrinsic::fma: 3005 case Intrinsic::fmuladd: 3006 // x*x+y is non-negative if y is non-negative. 3007 return I->getOperand(0) == I->getOperand(1) && 3008 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3009 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3010 Depth + 1); 3011 } 3012 break; 3013 } 3014 return false; 3015 } 3016 3017 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3018 const TargetLibraryInfo *TLI) { 3019 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3020 } 3021 3022 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3023 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3024 } 3025 3026 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3027 unsigned Depth) { 3028 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3029 3030 // If we're told that NaNs won't happen, assume they won't. 3031 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3032 if (FPMathOp->hasNoNaNs()) 3033 return true; 3034 3035 // Handle scalar constants. 3036 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3037 return !CFP->isNaN(); 3038 3039 if (Depth == MaxDepth) 3040 return false; 3041 3042 if (auto *Inst = dyn_cast<Instruction>(V)) { 3043 switch (Inst->getOpcode()) { 3044 case Instruction::FAdd: 3045 case Instruction::FMul: 3046 case Instruction::FSub: 3047 case Instruction::FDiv: 3048 case Instruction::FRem: { 3049 // TODO: Need isKnownNeverInfinity 3050 return false; 3051 } 3052 case Instruction::Select: { 3053 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3054 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3055 } 3056 case Instruction::SIToFP: 3057 case Instruction::UIToFP: 3058 return true; 3059 case Instruction::FPTrunc: 3060 case Instruction::FPExt: 3061 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3062 default: 3063 break; 3064 } 3065 } 3066 3067 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3068 switch (II->getIntrinsicID()) { 3069 case Intrinsic::canonicalize: 3070 case Intrinsic::fabs: 3071 case Intrinsic::copysign: 3072 case Intrinsic::exp: 3073 case Intrinsic::exp2: 3074 case Intrinsic::floor: 3075 case Intrinsic::ceil: 3076 case Intrinsic::trunc: 3077 case Intrinsic::rint: 3078 case Intrinsic::nearbyint: 3079 case Intrinsic::round: 3080 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3081 case Intrinsic::sqrt: 3082 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3083 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3084 default: 3085 return false; 3086 } 3087 } 3088 3089 // Bail out for constant expressions, but try to handle vector constants. 3090 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3091 return false; 3092 3093 // For vectors, verify that each element is not NaN. 3094 unsigned NumElts = V->getType()->getVectorNumElements(); 3095 for (unsigned i = 0; i != NumElts; ++i) { 3096 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3097 if (!Elt) 3098 return false; 3099 if (isa<UndefValue>(Elt)) 3100 continue; 3101 auto *CElt = dyn_cast<ConstantFP>(Elt); 3102 if (!CElt || CElt->isNaN()) 3103 return false; 3104 } 3105 // All elements were confirmed not-NaN or undefined. 3106 return true; 3107 } 3108 3109 Value *llvm::isBytewiseValue(Value *V) { 3110 3111 // All byte-wide stores are splatable, even of arbitrary variables. 3112 if (V->getType()->isIntegerTy(8)) 3113 return V; 3114 3115 LLVMContext &Ctx = V->getContext(); 3116 3117 // Undef don't care. 3118 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3119 if (isa<UndefValue>(V)) 3120 return UndefInt8; 3121 3122 Constant *C = dyn_cast<Constant>(V); 3123 if (!C) { 3124 // Conceptually, we could handle things like: 3125 // %a = zext i8 %X to i16 3126 // %b = shl i16 %a, 8 3127 // %c = or i16 %a, %b 3128 // but until there is an example that actually needs this, it doesn't seem 3129 // worth worrying about. 3130 return nullptr; 3131 } 3132 3133 // Handle 'null' ConstantArrayZero etc. 3134 if (C->isNullValue()) 3135 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3136 3137 // Constant floating-point values can be handled as integer values if the 3138 // corresponding integer value is "byteable". An important case is 0.0. 3139 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3140 Type *Ty = nullptr; 3141 if (CFP->getType()->isHalfTy()) 3142 Ty = Type::getInt16Ty(Ctx); 3143 else if (CFP->getType()->isFloatTy()) 3144 Ty = Type::getInt32Ty(Ctx); 3145 else if (CFP->getType()->isDoubleTy()) 3146 Ty = Type::getInt64Ty(Ctx); 3147 // Don't handle long double formats, which have strange constraints. 3148 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr; 3149 } 3150 3151 // We can handle constant integers that are multiple of 8 bits. 3152 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3153 if (CI->getBitWidth() % 8 == 0) { 3154 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3155 if (!CI->getValue().isSplat(8)) 3156 return nullptr; 3157 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3158 } 3159 } 3160 3161 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3162 if (LHS == RHS) 3163 return LHS; 3164 if (!LHS || !RHS) 3165 return nullptr; 3166 if (LHS == UndefInt8) 3167 return RHS; 3168 if (RHS == UndefInt8) 3169 return LHS; 3170 return nullptr; 3171 }; 3172 3173 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3174 Value *Val = UndefInt8; 3175 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3176 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I))))) 3177 return nullptr; 3178 return Val; 3179 } 3180 3181 if (isa<ConstantVector>(C)) { 3182 Constant *Splat = cast<ConstantVector>(C)->getSplatValue(); 3183 return Splat ? isBytewiseValue(Splat) : nullptr; 3184 } 3185 3186 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { 3187 Value *Val = UndefInt8; 3188 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3189 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I))))) 3190 return nullptr; 3191 return Val; 3192 } 3193 3194 // Don't try to handle the handful of other constants. 3195 return nullptr; 3196 } 3197 3198 // This is the recursive version of BuildSubAggregate. It takes a few different 3199 // arguments. Idxs is the index within the nested struct From that we are 3200 // looking at now (which is of type IndexedType). IdxSkip is the number of 3201 // indices from Idxs that should be left out when inserting into the resulting 3202 // struct. To is the result struct built so far, new insertvalue instructions 3203 // build on that. 3204 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3205 SmallVectorImpl<unsigned> &Idxs, 3206 unsigned IdxSkip, 3207 Instruction *InsertBefore) { 3208 StructType *STy = dyn_cast<StructType>(IndexedType); 3209 if (STy) { 3210 // Save the original To argument so we can modify it 3211 Value *OrigTo = To; 3212 // General case, the type indexed by Idxs is a struct 3213 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3214 // Process each struct element recursively 3215 Idxs.push_back(i); 3216 Value *PrevTo = To; 3217 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3218 InsertBefore); 3219 Idxs.pop_back(); 3220 if (!To) { 3221 // Couldn't find any inserted value for this index? Cleanup 3222 while (PrevTo != OrigTo) { 3223 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3224 PrevTo = Del->getAggregateOperand(); 3225 Del->eraseFromParent(); 3226 } 3227 // Stop processing elements 3228 break; 3229 } 3230 } 3231 // If we successfully found a value for each of our subaggregates 3232 if (To) 3233 return To; 3234 } 3235 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3236 // the struct's elements had a value that was inserted directly. In the latter 3237 // case, perhaps we can't determine each of the subelements individually, but 3238 // we might be able to find the complete struct somewhere. 3239 3240 // Find the value that is at that particular spot 3241 Value *V = FindInsertedValue(From, Idxs); 3242 3243 if (!V) 3244 return nullptr; 3245 3246 // Insert the value in the new (sub) aggregate 3247 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3248 "tmp", InsertBefore); 3249 } 3250 3251 // This helper takes a nested struct and extracts a part of it (which is again a 3252 // struct) into a new value. For example, given the struct: 3253 // { a, { b, { c, d }, e } } 3254 // and the indices "1, 1" this returns 3255 // { c, d }. 3256 // 3257 // It does this by inserting an insertvalue for each element in the resulting 3258 // struct, as opposed to just inserting a single struct. This will only work if 3259 // each of the elements of the substruct are known (ie, inserted into From by an 3260 // insertvalue instruction somewhere). 3261 // 3262 // All inserted insertvalue instructions are inserted before InsertBefore 3263 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3264 Instruction *InsertBefore) { 3265 assert(InsertBefore && "Must have someplace to insert!"); 3266 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3267 idx_range); 3268 Value *To = UndefValue::get(IndexedType); 3269 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3270 unsigned IdxSkip = Idxs.size(); 3271 3272 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3273 } 3274 3275 /// Given an aggregate and a sequence of indices, see if the scalar value 3276 /// indexed is already around as a register, for example if it was inserted 3277 /// directly into the aggregate. 3278 /// 3279 /// If InsertBefore is not null, this function will duplicate (modified) 3280 /// insertvalues when a part of a nested struct is extracted. 3281 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3282 Instruction *InsertBefore) { 3283 // Nothing to index? Just return V then (this is useful at the end of our 3284 // recursion). 3285 if (idx_range.empty()) 3286 return V; 3287 // We have indices, so V should have an indexable type. 3288 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3289 "Not looking at a struct or array?"); 3290 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3291 "Invalid indices for type?"); 3292 3293 if (Constant *C = dyn_cast<Constant>(V)) { 3294 C = C->getAggregateElement(idx_range[0]); 3295 if (!C) return nullptr; 3296 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3297 } 3298 3299 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3300 // Loop the indices for the insertvalue instruction in parallel with the 3301 // requested indices 3302 const unsigned *req_idx = idx_range.begin(); 3303 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3304 i != e; ++i, ++req_idx) { 3305 if (req_idx == idx_range.end()) { 3306 // We can't handle this without inserting insertvalues 3307 if (!InsertBefore) 3308 return nullptr; 3309 3310 // The requested index identifies a part of a nested aggregate. Handle 3311 // this specially. For example, 3312 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3313 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3314 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3315 // This can be changed into 3316 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3317 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3318 // which allows the unused 0,0 element from the nested struct to be 3319 // removed. 3320 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3321 InsertBefore); 3322 } 3323 3324 // This insert value inserts something else than what we are looking for. 3325 // See if the (aggregate) value inserted into has the value we are 3326 // looking for, then. 3327 if (*req_idx != *i) 3328 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3329 InsertBefore); 3330 } 3331 // If we end up here, the indices of the insertvalue match with those 3332 // requested (though possibly only partially). Now we recursively look at 3333 // the inserted value, passing any remaining indices. 3334 return FindInsertedValue(I->getInsertedValueOperand(), 3335 makeArrayRef(req_idx, idx_range.end()), 3336 InsertBefore); 3337 } 3338 3339 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3340 // If we're extracting a value from an aggregate that was extracted from 3341 // something else, we can extract from that something else directly instead. 3342 // However, we will need to chain I's indices with the requested indices. 3343 3344 // Calculate the number of indices required 3345 unsigned size = I->getNumIndices() + idx_range.size(); 3346 // Allocate some space to put the new indices in 3347 SmallVector<unsigned, 5> Idxs; 3348 Idxs.reserve(size); 3349 // Add indices from the extract value instruction 3350 Idxs.append(I->idx_begin(), I->idx_end()); 3351 3352 // Add requested indices 3353 Idxs.append(idx_range.begin(), idx_range.end()); 3354 3355 assert(Idxs.size() == size 3356 && "Number of indices added not correct?"); 3357 3358 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3359 } 3360 // Otherwise, we don't know (such as, extracting from a function return value 3361 // or load instruction) 3362 return nullptr; 3363 } 3364 3365 /// Analyze the specified pointer to see if it can be expressed as a base 3366 /// pointer plus a constant offset. Return the base and offset to the caller. 3367 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3368 const DataLayout &DL) { 3369 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3370 APInt ByteOffset(BitWidth, 0); 3371 3372 // We walk up the defs but use a visited set to handle unreachable code. In 3373 // that case, we stop after accumulating the cycle once (not that it 3374 // matters). 3375 SmallPtrSet<Value *, 16> Visited; 3376 while (Visited.insert(Ptr).second) { 3377 if (Ptr->getType()->isVectorTy()) 3378 break; 3379 3380 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3381 // If one of the values we have visited is an addrspacecast, then 3382 // the pointer type of this GEP may be different from the type 3383 // of the Ptr parameter which was passed to this function. This 3384 // means when we construct GEPOffset, we need to use the size 3385 // of GEP's pointer type rather than the size of the original 3386 // pointer type. 3387 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3388 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3389 break; 3390 3391 APInt OrigByteOffset(ByteOffset); 3392 ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth()); 3393 if (ByteOffset.getMinSignedBits() > 64) { 3394 // Stop traversal if the pointer offset wouldn't fit into int64_t 3395 // (this should be removed if Offset is updated to an APInt) 3396 ByteOffset = OrigByteOffset; 3397 break; 3398 } 3399 3400 Ptr = GEP->getPointerOperand(); 3401 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3402 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3403 Ptr = cast<Operator>(Ptr)->getOperand(0); 3404 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3405 if (GA->isInterposable()) 3406 break; 3407 Ptr = GA->getAliasee(); 3408 } else { 3409 break; 3410 } 3411 } 3412 Offset = ByteOffset.getSExtValue(); 3413 return Ptr; 3414 } 3415 3416 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3417 unsigned CharSize) { 3418 // Make sure the GEP has exactly three arguments. 3419 if (GEP->getNumOperands() != 3) 3420 return false; 3421 3422 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3423 // CharSize. 3424 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3425 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3426 return false; 3427 3428 // Check to make sure that the first operand of the GEP is an integer and 3429 // has value 0 so that we are sure we're indexing into the initializer. 3430 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3431 if (!FirstIdx || !FirstIdx->isZero()) 3432 return false; 3433 3434 return true; 3435 } 3436 3437 bool llvm::getConstantDataArrayInfo(const Value *V, 3438 ConstantDataArraySlice &Slice, 3439 unsigned ElementSize, uint64_t Offset) { 3440 assert(V); 3441 3442 // Look through bitcast instructions and geps. 3443 V = V->stripPointerCasts(); 3444 3445 // If the value is a GEP instruction or constant expression, treat it as an 3446 // offset. 3447 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3448 // The GEP operator should be based on a pointer to string constant, and is 3449 // indexing into the string constant. 3450 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3451 return false; 3452 3453 // If the second index isn't a ConstantInt, then this is a variable index 3454 // into the array. If this occurs, we can't say anything meaningful about 3455 // the string. 3456 uint64_t StartIdx = 0; 3457 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3458 StartIdx = CI->getZExtValue(); 3459 else 3460 return false; 3461 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3462 StartIdx + Offset); 3463 } 3464 3465 // The GEP instruction, constant or instruction, must reference a global 3466 // variable that is a constant and is initialized. The referenced constant 3467 // initializer is the array that we'll use for optimization. 3468 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3469 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3470 return false; 3471 3472 const ConstantDataArray *Array; 3473 ArrayType *ArrayTy; 3474 if (GV->getInitializer()->isNullValue()) { 3475 Type *GVTy = GV->getValueType(); 3476 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3477 // A zeroinitializer for the array; there is no ConstantDataArray. 3478 Array = nullptr; 3479 } else { 3480 const DataLayout &DL = GV->getParent()->getDataLayout(); 3481 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3482 uint64_t Length = SizeInBytes / (ElementSize / 8); 3483 if (Length <= Offset) 3484 return false; 3485 3486 Slice.Array = nullptr; 3487 Slice.Offset = 0; 3488 Slice.Length = Length - Offset; 3489 return true; 3490 } 3491 } else { 3492 // This must be a ConstantDataArray. 3493 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3494 if (!Array) 3495 return false; 3496 ArrayTy = Array->getType(); 3497 } 3498 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3499 return false; 3500 3501 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3502 if (Offset > NumElts) 3503 return false; 3504 3505 Slice.Array = Array; 3506 Slice.Offset = Offset; 3507 Slice.Length = NumElts - Offset; 3508 return true; 3509 } 3510 3511 /// This function computes the length of a null-terminated C string pointed to 3512 /// by V. If successful, it returns true and returns the string in Str. 3513 /// If unsuccessful, it returns false. 3514 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3515 uint64_t Offset, bool TrimAtNul) { 3516 ConstantDataArraySlice Slice; 3517 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3518 return false; 3519 3520 if (Slice.Array == nullptr) { 3521 if (TrimAtNul) { 3522 Str = StringRef(); 3523 return true; 3524 } 3525 if (Slice.Length == 1) { 3526 Str = StringRef("", 1); 3527 return true; 3528 } 3529 // We cannot instantiate a StringRef as we do not have an appropriate string 3530 // of 0s at hand. 3531 return false; 3532 } 3533 3534 // Start out with the entire array in the StringRef. 3535 Str = Slice.Array->getAsString(); 3536 // Skip over 'offset' bytes. 3537 Str = Str.substr(Slice.Offset); 3538 3539 if (TrimAtNul) { 3540 // Trim off the \0 and anything after it. If the array is not nul 3541 // terminated, we just return the whole end of string. The client may know 3542 // some other way that the string is length-bound. 3543 Str = Str.substr(0, Str.find('\0')); 3544 } 3545 return true; 3546 } 3547 3548 // These next two are very similar to the above, but also look through PHI 3549 // nodes. 3550 // TODO: See if we can integrate these two together. 3551 3552 /// If we can compute the length of the string pointed to by 3553 /// the specified pointer, return 'len+1'. If we can't, return 0. 3554 static uint64_t GetStringLengthH(const Value *V, 3555 SmallPtrSetImpl<const PHINode*> &PHIs, 3556 unsigned CharSize) { 3557 // Look through noop bitcast instructions. 3558 V = V->stripPointerCasts(); 3559 3560 // If this is a PHI node, there are two cases: either we have already seen it 3561 // or we haven't. 3562 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3563 if (!PHIs.insert(PN).second) 3564 return ~0ULL; // already in the set. 3565 3566 // If it was new, see if all the input strings are the same length. 3567 uint64_t LenSoFar = ~0ULL; 3568 for (Value *IncValue : PN->incoming_values()) { 3569 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3570 if (Len == 0) return 0; // Unknown length -> unknown. 3571 3572 if (Len == ~0ULL) continue; 3573 3574 if (Len != LenSoFar && LenSoFar != ~0ULL) 3575 return 0; // Disagree -> unknown. 3576 LenSoFar = Len; 3577 } 3578 3579 // Success, all agree. 3580 return LenSoFar; 3581 } 3582 3583 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3584 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3585 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3586 if (Len1 == 0) return 0; 3587 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3588 if (Len2 == 0) return 0; 3589 if (Len1 == ~0ULL) return Len2; 3590 if (Len2 == ~0ULL) return Len1; 3591 if (Len1 != Len2) return 0; 3592 return Len1; 3593 } 3594 3595 // Otherwise, see if we can read the string. 3596 ConstantDataArraySlice Slice; 3597 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3598 return 0; 3599 3600 if (Slice.Array == nullptr) 3601 return 1; 3602 3603 // Search for nul characters 3604 unsigned NullIndex = 0; 3605 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3606 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3607 break; 3608 } 3609 3610 return NullIndex + 1; 3611 } 3612 3613 /// If we can compute the length of the string pointed to by 3614 /// the specified pointer, return 'len+1'. If we can't, return 0. 3615 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3616 if (!V->getType()->isPointerTy()) 3617 return 0; 3618 3619 SmallPtrSet<const PHINode*, 32> PHIs; 3620 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3621 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3622 // an empty string as a length. 3623 return Len == ~0ULL ? 1 : Len; 3624 } 3625 3626 const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) { 3627 assert(Call && 3628 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3629 if (const Value *RV = Call->getReturnedArgOperand()) 3630 return RV; 3631 // This can be used only as a aliasing property. 3632 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call)) 3633 return Call->getArgOperand(0); 3634 return nullptr; 3635 } 3636 3637 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3638 const CallBase *Call) { 3639 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3640 Call->getIntrinsicID() == Intrinsic::strip_invariant_group; 3641 } 3642 3643 /// \p PN defines a loop-variant pointer to an object. Check if the 3644 /// previous iteration of the loop was referring to the same object as \p PN. 3645 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3646 const LoopInfo *LI) { 3647 // Find the loop-defined value. 3648 Loop *L = LI->getLoopFor(PN->getParent()); 3649 if (PN->getNumIncomingValues() != 2) 3650 return true; 3651 3652 // Find the value from previous iteration. 3653 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3654 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3655 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3656 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3657 return true; 3658 3659 // If a new pointer is loaded in the loop, the pointer references a different 3660 // object in every iteration. E.g.: 3661 // for (i) 3662 // int *p = a[i]; 3663 // ... 3664 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3665 if (!L->isLoopInvariant(Load->getPointerOperand())) 3666 return false; 3667 return true; 3668 } 3669 3670 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3671 unsigned MaxLookup) { 3672 if (!V->getType()->isPointerTy()) 3673 return V; 3674 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3675 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3676 V = GEP->getPointerOperand(); 3677 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3678 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3679 V = cast<Operator>(V)->getOperand(0); 3680 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3681 if (GA->isInterposable()) 3682 return V; 3683 V = GA->getAliasee(); 3684 } else if (isa<AllocaInst>(V)) { 3685 // An alloca can't be further simplified. 3686 return V; 3687 } else { 3688 if (auto *Call = dyn_cast<CallBase>(V)) { 3689 // CaptureTracking can know about special capturing properties of some 3690 // intrinsics like launder.invariant.group, that can't be expressed with 3691 // the attributes, but have properties like returning aliasing pointer. 3692 // Because some analysis may assume that nocaptured pointer is not 3693 // returned from some special intrinsic (because function would have to 3694 // be marked with returns attribute), it is crucial to use this function 3695 // because it should be in sync with CaptureTracking. Not using it may 3696 // cause weird miscompilations where 2 aliasing pointers are assumed to 3697 // noalias. 3698 if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) { 3699 V = RP; 3700 continue; 3701 } 3702 } 3703 3704 // See if InstructionSimplify knows any relevant tricks. 3705 if (Instruction *I = dyn_cast<Instruction>(V)) 3706 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3707 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3708 V = Simplified; 3709 continue; 3710 } 3711 3712 return V; 3713 } 3714 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3715 } 3716 return V; 3717 } 3718 3719 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3720 const DataLayout &DL, LoopInfo *LI, 3721 unsigned MaxLookup) { 3722 SmallPtrSet<Value *, 4> Visited; 3723 SmallVector<Value *, 4> Worklist; 3724 Worklist.push_back(V); 3725 do { 3726 Value *P = Worklist.pop_back_val(); 3727 P = GetUnderlyingObject(P, DL, MaxLookup); 3728 3729 if (!Visited.insert(P).second) 3730 continue; 3731 3732 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3733 Worklist.push_back(SI->getTrueValue()); 3734 Worklist.push_back(SI->getFalseValue()); 3735 continue; 3736 } 3737 3738 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3739 // If this PHI changes the underlying object in every iteration of the 3740 // loop, don't look through it. Consider: 3741 // int **A; 3742 // for (i) { 3743 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3744 // Curr = A[i]; 3745 // *Prev, *Curr; 3746 // 3747 // Prev is tracking Curr one iteration behind so they refer to different 3748 // underlying objects. 3749 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3750 isSameUnderlyingObjectInLoop(PN, LI)) 3751 for (Value *IncValue : PN->incoming_values()) 3752 Worklist.push_back(IncValue); 3753 continue; 3754 } 3755 3756 Objects.push_back(P); 3757 } while (!Worklist.empty()); 3758 } 3759 3760 /// This is the function that does the work of looking through basic 3761 /// ptrtoint+arithmetic+inttoptr sequences. 3762 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3763 do { 3764 if (const Operator *U = dyn_cast<Operator>(V)) { 3765 // If we find a ptrtoint, we can transfer control back to the 3766 // regular getUnderlyingObjectFromInt. 3767 if (U->getOpcode() == Instruction::PtrToInt) 3768 return U->getOperand(0); 3769 // If we find an add of a constant, a multiplied value, or a phi, it's 3770 // likely that the other operand will lead us to the base 3771 // object. We don't have to worry about the case where the 3772 // object address is somehow being computed by the multiply, 3773 // because our callers only care when the result is an 3774 // identifiable object. 3775 if (U->getOpcode() != Instruction::Add || 3776 (!isa<ConstantInt>(U->getOperand(1)) && 3777 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3778 !isa<PHINode>(U->getOperand(1)))) 3779 return V; 3780 V = U->getOperand(0); 3781 } else { 3782 return V; 3783 } 3784 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3785 } while (true); 3786 } 3787 3788 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3789 /// ptrtoint+arithmetic+inttoptr sequences. 3790 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3791 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3792 SmallVectorImpl<Value *> &Objects, 3793 const DataLayout &DL) { 3794 SmallPtrSet<const Value *, 16> Visited; 3795 SmallVector<const Value *, 4> Working(1, V); 3796 do { 3797 V = Working.pop_back_val(); 3798 3799 SmallVector<Value *, 4> Objs; 3800 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3801 3802 for (Value *V : Objs) { 3803 if (!Visited.insert(V).second) 3804 continue; 3805 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3806 const Value *O = 3807 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3808 if (O->getType()->isPointerTy()) { 3809 Working.push_back(O); 3810 continue; 3811 } 3812 } 3813 // If GetUnderlyingObjects fails to find an identifiable object, 3814 // getUnderlyingObjectsForCodeGen also fails for safety. 3815 if (!isIdentifiedObject(V)) { 3816 Objects.clear(); 3817 return false; 3818 } 3819 Objects.push_back(const_cast<Value *>(V)); 3820 } 3821 } while (!Working.empty()); 3822 return true; 3823 } 3824 3825 /// Return true if the only users of this pointer are lifetime markers. 3826 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3827 for (const User *U : V->users()) { 3828 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3829 if (!II) return false; 3830 3831 if (!II->isLifetimeStartOrEnd()) 3832 return false; 3833 } 3834 return true; 3835 } 3836 3837 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3838 const Instruction *CtxI, 3839 const DominatorTree *DT) { 3840 const Operator *Inst = dyn_cast<Operator>(V); 3841 if (!Inst) 3842 return false; 3843 3844 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3845 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3846 if (C->canTrap()) 3847 return false; 3848 3849 switch (Inst->getOpcode()) { 3850 default: 3851 return true; 3852 case Instruction::UDiv: 3853 case Instruction::URem: { 3854 // x / y is undefined if y == 0. 3855 const APInt *V; 3856 if (match(Inst->getOperand(1), m_APInt(V))) 3857 return *V != 0; 3858 return false; 3859 } 3860 case Instruction::SDiv: 3861 case Instruction::SRem: { 3862 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3863 const APInt *Numerator, *Denominator; 3864 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3865 return false; 3866 // We cannot hoist this division if the denominator is 0. 3867 if (*Denominator == 0) 3868 return false; 3869 // It's safe to hoist if the denominator is not 0 or -1. 3870 if (*Denominator != -1) 3871 return true; 3872 // At this point we know that the denominator is -1. It is safe to hoist as 3873 // long we know that the numerator is not INT_MIN. 3874 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3875 return !Numerator->isMinSignedValue(); 3876 // The numerator *might* be MinSignedValue. 3877 return false; 3878 } 3879 case Instruction::Load: { 3880 const LoadInst *LI = cast<LoadInst>(Inst); 3881 if (!LI->isUnordered() || 3882 // Speculative load may create a race that did not exist in the source. 3883 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3884 // Speculative load may load data from dirty regions. 3885 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3886 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3887 return false; 3888 const DataLayout &DL = LI->getModule()->getDataLayout(); 3889 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3890 LI->getAlignment(), DL, CtxI, DT); 3891 } 3892 case Instruction::Call: { 3893 auto *CI = cast<const CallInst>(Inst); 3894 const Function *Callee = CI->getCalledFunction(); 3895 3896 // The called function could have undefined behavior or side-effects, even 3897 // if marked readnone nounwind. 3898 return Callee && Callee->isSpeculatable(); 3899 } 3900 case Instruction::VAArg: 3901 case Instruction::Alloca: 3902 case Instruction::Invoke: 3903 case Instruction::PHI: 3904 case Instruction::Store: 3905 case Instruction::Ret: 3906 case Instruction::Br: 3907 case Instruction::IndirectBr: 3908 case Instruction::Switch: 3909 case Instruction::Unreachable: 3910 case Instruction::Fence: 3911 case Instruction::AtomicRMW: 3912 case Instruction::AtomicCmpXchg: 3913 case Instruction::LandingPad: 3914 case Instruction::Resume: 3915 case Instruction::CatchSwitch: 3916 case Instruction::CatchPad: 3917 case Instruction::CatchRet: 3918 case Instruction::CleanupPad: 3919 case Instruction::CleanupRet: 3920 return false; // Misc instructions which have effects 3921 } 3922 } 3923 3924 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3925 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3926 } 3927 3928 OverflowResult llvm::computeOverflowForUnsignedMul( 3929 const Value *LHS, const Value *RHS, const DataLayout &DL, 3930 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 3931 bool UseInstrInfo) { 3932 // Multiplying n * m significant bits yields a result of n + m significant 3933 // bits. If the total number of significant bits does not exceed the 3934 // result bit width (minus 1), there is no overflow. 3935 // This means if we have enough leading zero bits in the operands 3936 // we can guarantee that the result does not overflow. 3937 // Ref: "Hacker's Delight" by Henry Warren 3938 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3939 KnownBits LHSKnown(BitWidth); 3940 KnownBits RHSKnown(BitWidth); 3941 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, 3942 UseInstrInfo); 3943 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, 3944 UseInstrInfo); 3945 // Note that underestimating the number of zero bits gives a more 3946 // conservative answer. 3947 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3948 RHSKnown.countMinLeadingZeros(); 3949 // First handle the easy case: if we have enough zero bits there's 3950 // definitely no overflow. 3951 if (ZeroBits >= BitWidth) 3952 return OverflowResult::NeverOverflows; 3953 3954 // Get the largest possible values for each operand. 3955 APInt LHSMax = ~LHSKnown.Zero; 3956 APInt RHSMax = ~RHSKnown.Zero; 3957 3958 // We know the multiply operation doesn't overflow if the maximum values for 3959 // each operand will not overflow after we multiply them together. 3960 bool MaxOverflow; 3961 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3962 if (!MaxOverflow) 3963 return OverflowResult::NeverOverflows; 3964 3965 // We know it always overflows if multiplying the smallest possible values for 3966 // the operands also results in overflow. 3967 bool MinOverflow; 3968 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3969 if (MinOverflow) 3970 return OverflowResult::AlwaysOverflows; 3971 3972 return OverflowResult::MayOverflow; 3973 } 3974 3975 OverflowResult 3976 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 3977 const DataLayout &DL, AssumptionCache *AC, 3978 const Instruction *CxtI, 3979 const DominatorTree *DT, bool UseInstrInfo) { 3980 // Multiplying n * m significant bits yields a result of n + m significant 3981 // bits. If the total number of significant bits does not exceed the 3982 // result bit width (minus 1), there is no overflow. 3983 // This means if we have enough leading sign bits in the operands 3984 // we can guarantee that the result does not overflow. 3985 // Ref: "Hacker's Delight" by Henry Warren 3986 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3987 3988 // Note that underestimating the number of sign bits gives a more 3989 // conservative answer. 3990 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 3991 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 3992 3993 // First handle the easy case: if we have enough sign bits there's 3994 // definitely no overflow. 3995 if (SignBits > BitWidth + 1) 3996 return OverflowResult::NeverOverflows; 3997 3998 // There are two ambiguous cases where there can be no overflow: 3999 // SignBits == BitWidth + 1 and 4000 // SignBits == BitWidth 4001 // The second case is difficult to check, therefore we only handle the 4002 // first case. 4003 if (SignBits == BitWidth + 1) { 4004 // It overflows only when both arguments are negative and the true 4005 // product is exactly the minimum negative number. 4006 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4007 // For simplicity we just check if at least one side is not negative. 4008 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4009 nullptr, UseInstrInfo); 4010 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4011 nullptr, UseInstrInfo); 4012 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4013 return OverflowResult::NeverOverflows; 4014 } 4015 return OverflowResult::MayOverflow; 4016 } 4017 4018 OverflowResult llvm::computeOverflowForUnsignedAdd( 4019 const Value *LHS, const Value *RHS, const DataLayout &DL, 4020 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4021 bool UseInstrInfo) { 4022 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4023 nullptr, UseInstrInfo); 4024 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 4025 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4026 nullptr, UseInstrInfo); 4027 4028 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 4029 // The sign bit is set in both cases: this MUST overflow. 4030 return OverflowResult::AlwaysOverflows; 4031 } 4032 4033 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 4034 // The sign bit is clear in both cases: this CANNOT overflow. 4035 return OverflowResult::NeverOverflows; 4036 } 4037 } 4038 4039 return OverflowResult::MayOverflow; 4040 } 4041 4042 /// Return true if we can prove that adding the two values of the 4043 /// knownbits will not overflow. 4044 /// Otherwise return false. 4045 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 4046 const KnownBits &RHSKnown) { 4047 // Addition of two 2's complement numbers having opposite signs will never 4048 // overflow. 4049 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 4050 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 4051 return true; 4052 4053 // If either of the values is known to be non-negative, adding them can only 4054 // overflow if the second is also non-negative, so we can assume that. 4055 // Two non-negative numbers will only overflow if there is a carry to the 4056 // sign bit, so we can check if even when the values are as big as possible 4057 // there is no overflow to the sign bit. 4058 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 4059 APInt MaxLHS = ~LHSKnown.Zero; 4060 MaxLHS.clearSignBit(); 4061 APInt MaxRHS = ~RHSKnown.Zero; 4062 MaxRHS.clearSignBit(); 4063 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 4064 return Result.isSignBitClear(); 4065 } 4066 4067 // If either of the values is known to be negative, adding them can only 4068 // overflow if the second is also negative, so we can assume that. 4069 // Two negative number will only overflow if there is no carry to the sign 4070 // bit, so we can check if even when the values are as small as possible 4071 // there is overflow to the sign bit. 4072 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 4073 APInt MinLHS = LHSKnown.One; 4074 MinLHS.clearSignBit(); 4075 APInt MinRHS = RHSKnown.One; 4076 MinRHS.clearSignBit(); 4077 APInt Result = std::move(MinLHS) + std::move(MinRHS); 4078 return Result.isSignBitSet(); 4079 } 4080 4081 // If we reached here it means that we know nothing about the sign bits. 4082 // In this case we can't know if there will be an overflow, since by 4083 // changing the sign bits any two values can be made to overflow. 4084 return false; 4085 } 4086 4087 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4088 const Value *RHS, 4089 const AddOperator *Add, 4090 const DataLayout &DL, 4091 AssumptionCache *AC, 4092 const Instruction *CxtI, 4093 const DominatorTree *DT) { 4094 if (Add && Add->hasNoSignedWrap()) { 4095 return OverflowResult::NeverOverflows; 4096 } 4097 4098 // If LHS and RHS each have at least two sign bits, the addition will look 4099 // like 4100 // 4101 // XX..... + 4102 // YY..... 4103 // 4104 // If the carry into the most significant position is 0, X and Y can't both 4105 // be 1 and therefore the carry out of the addition is also 0. 4106 // 4107 // If the carry into the most significant position is 1, X and Y can't both 4108 // be 0 and therefore the carry out of the addition is also 1. 4109 // 4110 // Since the carry into the most significant position is always equal to 4111 // the carry out of the addition, there is no signed overflow. 4112 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4113 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4114 return OverflowResult::NeverOverflows; 4115 4116 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 4117 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 4118 4119 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 4120 return OverflowResult::NeverOverflows; 4121 4122 // The remaining code needs Add to be available. Early returns if not so. 4123 if (!Add) 4124 return OverflowResult::MayOverflow; 4125 4126 // If the sign of Add is the same as at least one of the operands, this add 4127 // CANNOT overflow. This is particularly useful when the sum is 4128 // @llvm.assume'ed non-negative rather than proved so from analyzing its 4129 // operands. 4130 bool LHSOrRHSKnownNonNegative = 4131 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 4132 bool LHSOrRHSKnownNegative = 4133 (LHSKnown.isNegative() || RHSKnown.isNegative()); 4134 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4135 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 4136 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4137 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 4138 return OverflowResult::NeverOverflows; 4139 } 4140 } 4141 4142 return OverflowResult::MayOverflow; 4143 } 4144 4145 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4146 const Value *RHS, 4147 const DataLayout &DL, 4148 AssumptionCache *AC, 4149 const Instruction *CxtI, 4150 const DominatorTree *DT) { 4151 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 4152 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 4153 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 4154 4155 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 4156 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 4157 return OverflowResult::NeverOverflows; 4158 4159 // If the LHS is non-negative and the RHS negative, we always wrap. 4160 if (LHSKnown.isNonNegative() && RHSKnown.isNegative()) 4161 return OverflowResult::AlwaysOverflows; 4162 } 4163 4164 return OverflowResult::MayOverflow; 4165 } 4166 4167 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4168 const Value *RHS, 4169 const DataLayout &DL, 4170 AssumptionCache *AC, 4171 const Instruction *CxtI, 4172 const DominatorTree *DT) { 4173 // If LHS and RHS each have at least two sign bits, the subtraction 4174 // cannot overflow. 4175 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4176 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4177 return OverflowResult::NeverOverflows; 4178 4179 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); 4180 4181 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); 4182 4183 // Subtraction of two 2's complement numbers having identical signs will 4184 // never overflow. 4185 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 4186 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 4187 return OverflowResult::NeverOverflows; 4188 4189 // TODO: implement logic similar to checkRippleForAdd 4190 return OverflowResult::MayOverflow; 4191 } 4192 4193 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 4194 const DominatorTree &DT) { 4195 #ifndef NDEBUG 4196 auto IID = II->getIntrinsicID(); 4197 assert((IID == Intrinsic::sadd_with_overflow || 4198 IID == Intrinsic::uadd_with_overflow || 4199 IID == Intrinsic::ssub_with_overflow || 4200 IID == Intrinsic::usub_with_overflow || 4201 IID == Intrinsic::smul_with_overflow || 4202 IID == Intrinsic::umul_with_overflow) && 4203 "Not an overflow intrinsic!"); 4204 #endif 4205 4206 SmallVector<const BranchInst *, 2> GuardingBranches; 4207 SmallVector<const ExtractValueInst *, 2> Results; 4208 4209 for (const User *U : II->users()) { 4210 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4211 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4212 4213 if (EVI->getIndices()[0] == 0) 4214 Results.push_back(EVI); 4215 else { 4216 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4217 4218 for (const auto *U : EVI->users()) 4219 if (const auto *B = dyn_cast<BranchInst>(U)) { 4220 assert(B->isConditional() && "How else is it using an i1?"); 4221 GuardingBranches.push_back(B); 4222 } 4223 } 4224 } else { 4225 // We are using the aggregate directly in a way we don't want to analyze 4226 // here (storing it to a global, say). 4227 return false; 4228 } 4229 } 4230 4231 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4232 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4233 if (!NoWrapEdge.isSingleEdge()) 4234 return false; 4235 4236 // Check if all users of the add are provably no-wrap. 4237 for (const auto *Result : Results) { 4238 // If the extractvalue itself is not executed on overflow, the we don't 4239 // need to check each use separately, since domination is transitive. 4240 if (DT.dominates(NoWrapEdge, Result->getParent())) 4241 continue; 4242 4243 for (auto &RU : Result->uses()) 4244 if (!DT.dominates(NoWrapEdge, RU)) 4245 return false; 4246 } 4247 4248 return true; 4249 }; 4250 4251 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4252 } 4253 4254 4255 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4256 const DataLayout &DL, 4257 AssumptionCache *AC, 4258 const Instruction *CxtI, 4259 const DominatorTree *DT) { 4260 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4261 Add, DL, AC, CxtI, DT); 4262 } 4263 4264 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4265 const Value *RHS, 4266 const DataLayout &DL, 4267 AssumptionCache *AC, 4268 const Instruction *CxtI, 4269 const DominatorTree *DT) { 4270 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4271 } 4272 4273 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4274 // A memory operation returns normally if it isn't volatile. A volatile 4275 // operation is allowed to trap. 4276 // 4277 // An atomic operation isn't guaranteed to return in a reasonable amount of 4278 // time because it's possible for another thread to interfere with it for an 4279 // arbitrary length of time, but programs aren't allowed to rely on that. 4280 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4281 return !LI->isVolatile(); 4282 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4283 return !SI->isVolatile(); 4284 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4285 return !CXI->isVolatile(); 4286 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4287 return !RMWI->isVolatile(); 4288 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4289 return !MII->isVolatile(); 4290 4291 // If there is no successor, then execution can't transfer to it. 4292 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4293 return !CRI->unwindsToCaller(); 4294 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4295 return !CatchSwitch->unwindsToCaller(); 4296 if (isa<ResumeInst>(I)) 4297 return false; 4298 if (isa<ReturnInst>(I)) 4299 return false; 4300 if (isa<UnreachableInst>(I)) 4301 return false; 4302 4303 // Calls can throw, or contain an infinite loop, or kill the process. 4304 if (auto CS = ImmutableCallSite(I)) { 4305 // Call sites that throw have implicit non-local control flow. 4306 if (!CS.doesNotThrow()) 4307 return false; 4308 4309 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4310 // etc. and thus not return. However, LLVM already assumes that 4311 // 4312 // - Thread exiting actions are modeled as writes to memory invisible to 4313 // the program. 4314 // 4315 // - Loops that don't have side effects (side effects are volatile/atomic 4316 // stores and IO) always terminate (see http://llvm.org/PR965). 4317 // Furthermore IO itself is also modeled as writes to memory invisible to 4318 // the program. 4319 // 4320 // We rely on those assumptions here, and use the memory effects of the call 4321 // target as a proxy for checking that it always returns. 4322 4323 // FIXME: This isn't aggressive enough; a call which only writes to a global 4324 // is guaranteed to return. 4325 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4326 match(I, m_Intrinsic<Intrinsic::assume>()) || 4327 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 4328 } 4329 4330 // Other instructions return normally. 4331 return true; 4332 } 4333 4334 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4335 // TODO: This is slightly consdervative for invoke instruction since exiting 4336 // via an exception *is* normal control for them. 4337 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4338 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4339 return false; 4340 return true; 4341 } 4342 4343 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4344 const Loop *L) { 4345 // The loop header is guaranteed to be executed for every iteration. 4346 // 4347 // FIXME: Relax this constraint to cover all basic blocks that are 4348 // guaranteed to be executed at every iteration. 4349 if (I->getParent() != L->getHeader()) return false; 4350 4351 for (const Instruction &LI : *L->getHeader()) { 4352 if (&LI == I) return true; 4353 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4354 } 4355 llvm_unreachable("Instruction not contained in its own parent basic block."); 4356 } 4357 4358 bool llvm::propagatesFullPoison(const Instruction *I) { 4359 switch (I->getOpcode()) { 4360 case Instruction::Add: 4361 case Instruction::Sub: 4362 case Instruction::Xor: 4363 case Instruction::Trunc: 4364 case Instruction::BitCast: 4365 case Instruction::AddrSpaceCast: 4366 case Instruction::Mul: 4367 case Instruction::Shl: 4368 case Instruction::GetElementPtr: 4369 // These operations all propagate poison unconditionally. Note that poison 4370 // is not any particular value, so xor or subtraction of poison with 4371 // itself still yields poison, not zero. 4372 return true; 4373 4374 case Instruction::AShr: 4375 case Instruction::SExt: 4376 // For these operations, one bit of the input is replicated across 4377 // multiple output bits. A replicated poison bit is still poison. 4378 return true; 4379 4380 case Instruction::ICmp: 4381 // Comparing poison with any value yields poison. This is why, for 4382 // instance, x s< (x +nsw 1) can be folded to true. 4383 return true; 4384 4385 default: 4386 return false; 4387 } 4388 } 4389 4390 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4391 switch (I->getOpcode()) { 4392 case Instruction::Store: 4393 return cast<StoreInst>(I)->getPointerOperand(); 4394 4395 case Instruction::Load: 4396 return cast<LoadInst>(I)->getPointerOperand(); 4397 4398 case Instruction::AtomicCmpXchg: 4399 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4400 4401 case Instruction::AtomicRMW: 4402 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4403 4404 case Instruction::UDiv: 4405 case Instruction::SDiv: 4406 case Instruction::URem: 4407 case Instruction::SRem: 4408 return I->getOperand(1); 4409 4410 default: 4411 return nullptr; 4412 } 4413 } 4414 4415 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4416 // We currently only look for uses of poison values within the same basic 4417 // block, as that makes it easier to guarantee that the uses will be 4418 // executed given that PoisonI is executed. 4419 // 4420 // FIXME: Expand this to consider uses beyond the same basic block. To do 4421 // this, look out for the distinction between post-dominance and strong 4422 // post-dominance. 4423 const BasicBlock *BB = PoisonI->getParent(); 4424 4425 // Set of instructions that we have proved will yield poison if PoisonI 4426 // does. 4427 SmallSet<const Value *, 16> YieldsPoison; 4428 SmallSet<const BasicBlock *, 4> Visited; 4429 YieldsPoison.insert(PoisonI); 4430 Visited.insert(PoisonI->getParent()); 4431 4432 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4433 4434 unsigned Iter = 0; 4435 while (Iter++ < MaxDepth) { 4436 for (auto &I : make_range(Begin, End)) { 4437 if (&I != PoisonI) { 4438 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4439 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4440 return true; 4441 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4442 return false; 4443 } 4444 4445 // Mark poison that propagates from I through uses of I. 4446 if (YieldsPoison.count(&I)) { 4447 for (const User *User : I.users()) { 4448 const Instruction *UserI = cast<Instruction>(User); 4449 if (propagatesFullPoison(UserI)) 4450 YieldsPoison.insert(User); 4451 } 4452 } 4453 } 4454 4455 if (auto *NextBB = BB->getSingleSuccessor()) { 4456 if (Visited.insert(NextBB).second) { 4457 BB = NextBB; 4458 Begin = BB->getFirstNonPHI()->getIterator(); 4459 End = BB->end(); 4460 continue; 4461 } 4462 } 4463 4464 break; 4465 } 4466 return false; 4467 } 4468 4469 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4470 if (FMF.noNaNs()) 4471 return true; 4472 4473 if (auto *C = dyn_cast<ConstantFP>(V)) 4474 return !C->isNaN(); 4475 4476 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4477 if (!C->getElementType()->isFloatingPointTy()) 4478 return false; 4479 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4480 if (C->getElementAsAPFloat(I).isNaN()) 4481 return false; 4482 } 4483 return true; 4484 } 4485 4486 return false; 4487 } 4488 4489 static bool isKnownNonZero(const Value *V) { 4490 if (auto *C = dyn_cast<ConstantFP>(V)) 4491 return !C->isZero(); 4492 4493 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4494 if (!C->getElementType()->isFloatingPointTy()) 4495 return false; 4496 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4497 if (C->getElementAsAPFloat(I).isZero()) 4498 return false; 4499 } 4500 return true; 4501 } 4502 4503 return false; 4504 } 4505 4506 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4507 /// Given non-min/max outer cmp/select from the clamp pattern this 4508 /// function recognizes if it can be substitued by a "canonical" min/max 4509 /// pattern. 4510 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4511 Value *CmpLHS, Value *CmpRHS, 4512 Value *TrueVal, Value *FalseVal, 4513 Value *&LHS, Value *&RHS) { 4514 // Try to match 4515 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4516 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4517 // and return description of the outer Max/Min. 4518 4519 // First, check if select has inverse order: 4520 if (CmpRHS == FalseVal) { 4521 std::swap(TrueVal, FalseVal); 4522 Pred = CmpInst::getInversePredicate(Pred); 4523 } 4524 4525 // Assume success now. If there's no match, callers should not use these anyway. 4526 LHS = TrueVal; 4527 RHS = FalseVal; 4528 4529 const APFloat *FC1; 4530 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4531 return {SPF_UNKNOWN, SPNB_NA, false}; 4532 4533 const APFloat *FC2; 4534 switch (Pred) { 4535 case CmpInst::FCMP_OLT: 4536 case CmpInst::FCMP_OLE: 4537 case CmpInst::FCMP_ULT: 4538 case CmpInst::FCMP_ULE: 4539 if (match(FalseVal, 4540 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4541 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4542 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4543 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4544 break; 4545 case CmpInst::FCMP_OGT: 4546 case CmpInst::FCMP_OGE: 4547 case CmpInst::FCMP_UGT: 4548 case CmpInst::FCMP_UGE: 4549 if (match(FalseVal, 4550 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4551 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4552 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4553 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4554 break; 4555 default: 4556 break; 4557 } 4558 4559 return {SPF_UNKNOWN, SPNB_NA, false}; 4560 } 4561 4562 /// Recognize variations of: 4563 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4564 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4565 Value *CmpLHS, Value *CmpRHS, 4566 Value *TrueVal, Value *FalseVal) { 4567 // Swap the select operands and predicate to match the patterns below. 4568 if (CmpRHS != TrueVal) { 4569 Pred = ICmpInst::getSwappedPredicate(Pred); 4570 std::swap(TrueVal, FalseVal); 4571 } 4572 const APInt *C1; 4573 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4574 const APInt *C2; 4575 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4576 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4577 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4578 return {SPF_SMAX, SPNB_NA, false}; 4579 4580 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4581 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4582 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4583 return {SPF_SMIN, SPNB_NA, false}; 4584 4585 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4586 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4587 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4588 return {SPF_UMAX, SPNB_NA, false}; 4589 4590 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4591 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4592 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4593 return {SPF_UMIN, SPNB_NA, false}; 4594 } 4595 return {SPF_UNKNOWN, SPNB_NA, false}; 4596 } 4597 4598 /// Recognize variations of: 4599 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4600 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4601 Value *CmpLHS, Value *CmpRHS, 4602 Value *TVal, Value *FVal, 4603 unsigned Depth) { 4604 // TODO: Allow FP min/max with nnan/nsz. 4605 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4606 4607 Value *A, *B; 4608 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4609 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4610 return {SPF_UNKNOWN, SPNB_NA, false}; 4611 4612 Value *C, *D; 4613 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4614 if (L.Flavor != R.Flavor) 4615 return {SPF_UNKNOWN, SPNB_NA, false}; 4616 4617 // We have something like: x Pred y ? min(a, b) : min(c, d). 4618 // Try to match the compare to the min/max operations of the select operands. 4619 // First, make sure we have the right compare predicate. 4620 switch (L.Flavor) { 4621 case SPF_SMIN: 4622 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4623 Pred = ICmpInst::getSwappedPredicate(Pred); 4624 std::swap(CmpLHS, CmpRHS); 4625 } 4626 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4627 break; 4628 return {SPF_UNKNOWN, SPNB_NA, false}; 4629 case SPF_SMAX: 4630 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4631 Pred = ICmpInst::getSwappedPredicate(Pred); 4632 std::swap(CmpLHS, CmpRHS); 4633 } 4634 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4635 break; 4636 return {SPF_UNKNOWN, SPNB_NA, false}; 4637 case SPF_UMIN: 4638 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4639 Pred = ICmpInst::getSwappedPredicate(Pred); 4640 std::swap(CmpLHS, CmpRHS); 4641 } 4642 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4643 break; 4644 return {SPF_UNKNOWN, SPNB_NA, false}; 4645 case SPF_UMAX: 4646 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4647 Pred = ICmpInst::getSwappedPredicate(Pred); 4648 std::swap(CmpLHS, CmpRHS); 4649 } 4650 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4651 break; 4652 return {SPF_UNKNOWN, SPNB_NA, false}; 4653 default: 4654 return {SPF_UNKNOWN, SPNB_NA, false}; 4655 } 4656 4657 // If there is a common operand in the already matched min/max and the other 4658 // min/max operands match the compare operands (either directly or inverted), 4659 // then this is min/max of the same flavor. 4660 4661 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4662 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4663 if (D == B) { 4664 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4665 match(A, m_Not(m_Specific(CmpRHS))))) 4666 return {L.Flavor, SPNB_NA, false}; 4667 } 4668 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4669 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4670 if (C == B) { 4671 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4672 match(A, m_Not(m_Specific(CmpRHS))))) 4673 return {L.Flavor, SPNB_NA, false}; 4674 } 4675 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4676 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4677 if (D == A) { 4678 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4679 match(B, m_Not(m_Specific(CmpRHS))))) 4680 return {L.Flavor, SPNB_NA, false}; 4681 } 4682 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4683 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4684 if (C == A) { 4685 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4686 match(B, m_Not(m_Specific(CmpRHS))))) 4687 return {L.Flavor, SPNB_NA, false}; 4688 } 4689 4690 return {SPF_UNKNOWN, SPNB_NA, false}; 4691 } 4692 4693 /// Match non-obvious integer minimum and maximum sequences. 4694 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4695 Value *CmpLHS, Value *CmpRHS, 4696 Value *TrueVal, Value *FalseVal, 4697 Value *&LHS, Value *&RHS, 4698 unsigned Depth) { 4699 // Assume success. If there's no match, callers should not use these anyway. 4700 LHS = TrueVal; 4701 RHS = FalseVal; 4702 4703 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4704 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4705 return SPR; 4706 4707 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4708 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4709 return SPR; 4710 4711 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4712 return {SPF_UNKNOWN, SPNB_NA, false}; 4713 4714 // Z = X -nsw Y 4715 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4716 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4717 if (match(TrueVal, m_Zero()) && 4718 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4719 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4720 4721 // Z = X -nsw Y 4722 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4723 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4724 if (match(FalseVal, m_Zero()) && 4725 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4726 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4727 4728 const APInt *C1; 4729 if (!match(CmpRHS, m_APInt(C1))) 4730 return {SPF_UNKNOWN, SPNB_NA, false}; 4731 4732 // An unsigned min/max can be written with a signed compare. 4733 const APInt *C2; 4734 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4735 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4736 // Is the sign bit set? 4737 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4738 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4739 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4740 C2->isMaxSignedValue()) 4741 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4742 4743 // Is the sign bit clear? 4744 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4745 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4746 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4747 C2->isMinSignedValue()) 4748 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4749 } 4750 4751 // Look through 'not' ops to find disguised signed min/max. 4752 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4753 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4754 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4755 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4756 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4757 4758 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4759 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4760 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4761 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4762 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4763 4764 return {SPF_UNKNOWN, SPNB_NA, false}; 4765 } 4766 4767 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4768 assert(X && Y && "Invalid operand"); 4769 4770 // X = sub (0, Y) || X = sub nsw (0, Y) 4771 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4772 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4773 return true; 4774 4775 // Y = sub (0, X) || Y = sub nsw (0, X) 4776 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4777 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4778 return true; 4779 4780 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4781 Value *A, *B; 4782 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4783 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4784 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4785 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4786 } 4787 4788 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4789 FastMathFlags FMF, 4790 Value *CmpLHS, Value *CmpRHS, 4791 Value *TrueVal, Value *FalseVal, 4792 Value *&LHS, Value *&RHS, 4793 unsigned Depth) { 4794 if (CmpInst::isFPPredicate(Pred)) { 4795 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 4796 // 0.0 operand, set the compare's 0.0 operands to that same value for the 4797 // purpose of identifying min/max. Disregard vector constants with undefined 4798 // elements because those can not be back-propagated for analysis. 4799 Value *OutputZeroVal = nullptr; 4800 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 4801 !cast<Constant>(TrueVal)->containsUndefElement()) 4802 OutputZeroVal = TrueVal; 4803 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 4804 !cast<Constant>(FalseVal)->containsUndefElement()) 4805 OutputZeroVal = FalseVal; 4806 4807 if (OutputZeroVal) { 4808 if (match(CmpLHS, m_AnyZeroFP())) 4809 CmpLHS = OutputZeroVal; 4810 if (match(CmpRHS, m_AnyZeroFP())) 4811 CmpRHS = OutputZeroVal; 4812 } 4813 } 4814 4815 LHS = CmpLHS; 4816 RHS = CmpRHS; 4817 4818 // Signed zero may return inconsistent results between implementations. 4819 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4820 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4821 // Therefore, we behave conservatively and only proceed if at least one of the 4822 // operands is known to not be zero or if we don't care about signed zero. 4823 switch (Pred) { 4824 default: break; 4825 // FIXME: Include OGT/OLT/UGT/ULT. 4826 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4827 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4828 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4829 !isKnownNonZero(CmpRHS)) 4830 return {SPF_UNKNOWN, SPNB_NA, false}; 4831 } 4832 4833 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4834 bool Ordered = false; 4835 4836 // When given one NaN and one non-NaN input: 4837 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4838 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4839 // ordered comparison fails), which could be NaN or non-NaN. 4840 // so here we discover exactly what NaN behavior is required/accepted. 4841 if (CmpInst::isFPPredicate(Pred)) { 4842 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4843 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4844 4845 if (LHSSafe && RHSSafe) { 4846 // Both operands are known non-NaN. 4847 NaNBehavior = SPNB_RETURNS_ANY; 4848 } else if (CmpInst::isOrdered(Pred)) { 4849 // An ordered comparison will return false when given a NaN, so it 4850 // returns the RHS. 4851 Ordered = true; 4852 if (LHSSafe) 4853 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4854 NaNBehavior = SPNB_RETURNS_NAN; 4855 else if (RHSSafe) 4856 NaNBehavior = SPNB_RETURNS_OTHER; 4857 else 4858 // Completely unsafe. 4859 return {SPF_UNKNOWN, SPNB_NA, false}; 4860 } else { 4861 Ordered = false; 4862 // An unordered comparison will return true when given a NaN, so it 4863 // returns the LHS. 4864 if (LHSSafe) 4865 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4866 NaNBehavior = SPNB_RETURNS_OTHER; 4867 else if (RHSSafe) 4868 NaNBehavior = SPNB_RETURNS_NAN; 4869 else 4870 // Completely unsafe. 4871 return {SPF_UNKNOWN, SPNB_NA, false}; 4872 } 4873 } 4874 4875 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4876 std::swap(CmpLHS, CmpRHS); 4877 Pred = CmpInst::getSwappedPredicate(Pred); 4878 if (NaNBehavior == SPNB_RETURNS_NAN) 4879 NaNBehavior = SPNB_RETURNS_OTHER; 4880 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4881 NaNBehavior = SPNB_RETURNS_NAN; 4882 Ordered = !Ordered; 4883 } 4884 4885 // ([if]cmp X, Y) ? X : Y 4886 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4887 switch (Pred) { 4888 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4889 case ICmpInst::ICMP_UGT: 4890 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4891 case ICmpInst::ICMP_SGT: 4892 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4893 case ICmpInst::ICMP_ULT: 4894 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4895 case ICmpInst::ICMP_SLT: 4896 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4897 case FCmpInst::FCMP_UGT: 4898 case FCmpInst::FCMP_UGE: 4899 case FCmpInst::FCMP_OGT: 4900 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4901 case FCmpInst::FCMP_ULT: 4902 case FCmpInst::FCMP_ULE: 4903 case FCmpInst::FCMP_OLT: 4904 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4905 } 4906 } 4907 4908 if (isKnownNegation(TrueVal, FalseVal)) { 4909 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4910 // match against either LHS or sext(LHS). 4911 auto MaybeSExtCmpLHS = 4912 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4913 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4914 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4915 if (match(TrueVal, MaybeSExtCmpLHS)) { 4916 // Set the return values. If the compare uses the negated value (-X >s 0), 4917 // swap the return values because the negated value is always 'RHS'. 4918 LHS = TrueVal; 4919 RHS = FalseVal; 4920 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4921 std::swap(LHS, RHS); 4922 4923 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4924 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4925 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4926 return {SPF_ABS, SPNB_NA, false}; 4927 4928 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 4929 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 4930 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4931 return {SPF_NABS, SPNB_NA, false}; 4932 } 4933 else if (match(FalseVal, MaybeSExtCmpLHS)) { 4934 // Set the return values. If the compare uses the negated value (-X >s 0), 4935 // swap the return values because the negated value is always 'RHS'. 4936 LHS = FalseVal; 4937 RHS = TrueVal; 4938 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 4939 std::swap(LHS, RHS); 4940 4941 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 4942 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 4943 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4944 return {SPF_NABS, SPNB_NA, false}; 4945 4946 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 4947 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 4948 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4949 return {SPF_ABS, SPNB_NA, false}; 4950 } 4951 } 4952 4953 if (CmpInst::isIntPredicate(Pred)) 4954 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4955 4956 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4957 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4958 // semantics than minNum. Be conservative in such case. 4959 if (NaNBehavior != SPNB_RETURNS_ANY || 4960 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4961 !isKnownNonZero(CmpRHS))) 4962 return {SPF_UNKNOWN, SPNB_NA, false}; 4963 4964 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4965 } 4966 4967 /// Helps to match a select pattern in case of a type mismatch. 4968 /// 4969 /// The function processes the case when type of true and false values of a 4970 /// select instruction differs from type of the cmp instruction operands because 4971 /// of a cast instruction. The function checks if it is legal to move the cast 4972 /// operation after "select". If yes, it returns the new second value of 4973 /// "select" (with the assumption that cast is moved): 4974 /// 1. As operand of cast instruction when both values of "select" are same cast 4975 /// instructions. 4976 /// 2. As restored constant (by applying reverse cast operation) when the first 4977 /// value of the "select" is a cast operation and the second value is a 4978 /// constant. 4979 /// NOTE: We return only the new second value because the first value could be 4980 /// accessed as operand of cast instruction. 4981 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4982 Instruction::CastOps *CastOp) { 4983 auto *Cast1 = dyn_cast<CastInst>(V1); 4984 if (!Cast1) 4985 return nullptr; 4986 4987 *CastOp = Cast1->getOpcode(); 4988 Type *SrcTy = Cast1->getSrcTy(); 4989 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4990 // If V1 and V2 are both the same cast from the same type, look through V1. 4991 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4992 return Cast2->getOperand(0); 4993 return nullptr; 4994 } 4995 4996 auto *C = dyn_cast<Constant>(V2); 4997 if (!C) 4998 return nullptr; 4999 5000 Constant *CastedTo = nullptr; 5001 switch (*CastOp) { 5002 case Instruction::ZExt: 5003 if (CmpI->isUnsigned()) 5004 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5005 break; 5006 case Instruction::SExt: 5007 if (CmpI->isSigned()) 5008 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5009 break; 5010 case Instruction::Trunc: 5011 Constant *CmpConst; 5012 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5013 CmpConst->getType() == SrcTy) { 5014 // Here we have the following case: 5015 // 5016 // %cond = cmp iN %x, CmpConst 5017 // %tr = trunc iN %x to iK 5018 // %narrowsel = select i1 %cond, iK %t, iK C 5019 // 5020 // We can always move trunc after select operation: 5021 // 5022 // %cond = cmp iN %x, CmpConst 5023 // %widesel = select i1 %cond, iN %x, iN CmpConst 5024 // %tr = trunc iN %widesel to iK 5025 // 5026 // Note that C could be extended in any way because we don't care about 5027 // upper bits after truncation. It can't be abs pattern, because it would 5028 // look like: 5029 // 5030 // select i1 %cond, x, -x. 5031 // 5032 // So only min/max pattern could be matched. Such match requires widened C 5033 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5034 // CmpConst == C is checked below. 5035 CastedTo = CmpConst; 5036 } else { 5037 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5038 } 5039 break; 5040 case Instruction::FPTrunc: 5041 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5042 break; 5043 case Instruction::FPExt: 5044 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5045 break; 5046 case Instruction::FPToUI: 5047 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5048 break; 5049 case Instruction::FPToSI: 5050 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5051 break; 5052 case Instruction::UIToFP: 5053 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5054 break; 5055 case Instruction::SIToFP: 5056 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5057 break; 5058 default: 5059 break; 5060 } 5061 5062 if (!CastedTo) 5063 return nullptr; 5064 5065 // Make sure the cast doesn't lose any information. 5066 Constant *CastedBack = 5067 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5068 if (CastedBack != C) 5069 return nullptr; 5070 5071 return CastedTo; 5072 } 5073 5074 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5075 Instruction::CastOps *CastOp, 5076 unsigned Depth) { 5077 if (Depth >= MaxDepth) 5078 return {SPF_UNKNOWN, SPNB_NA, false}; 5079 5080 SelectInst *SI = dyn_cast<SelectInst>(V); 5081 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5082 5083 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5084 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5085 5086 CmpInst::Predicate Pred = CmpI->getPredicate(); 5087 Value *CmpLHS = CmpI->getOperand(0); 5088 Value *CmpRHS = CmpI->getOperand(1); 5089 Value *TrueVal = SI->getTrueValue(); 5090 Value *FalseVal = SI->getFalseValue(); 5091 FastMathFlags FMF; 5092 if (isa<FPMathOperator>(CmpI)) 5093 FMF = CmpI->getFastMathFlags(); 5094 5095 // Bail out early. 5096 if (CmpI->isEquality()) 5097 return {SPF_UNKNOWN, SPNB_NA, false}; 5098 5099 // Deal with type mismatches. 5100 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5101 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5102 // If this is a potential fmin/fmax with a cast to integer, then ignore 5103 // -0.0 because there is no corresponding integer value. 5104 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5105 FMF.setNoSignedZeros(); 5106 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5107 cast<CastInst>(TrueVal)->getOperand(0), C, 5108 LHS, RHS, Depth); 5109 } 5110 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5111 // If this is a potential fmin/fmax with a cast to integer, then ignore 5112 // -0.0 because there is no corresponding integer value. 5113 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5114 FMF.setNoSignedZeros(); 5115 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5116 C, cast<CastInst>(FalseVal)->getOperand(0), 5117 LHS, RHS, Depth); 5118 } 5119 } 5120 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5121 LHS, RHS, Depth); 5122 } 5123 5124 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5125 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5126 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5127 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5128 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5129 if (SPF == SPF_FMINNUM) 5130 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5131 if (SPF == SPF_FMAXNUM) 5132 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5133 llvm_unreachable("unhandled!"); 5134 } 5135 5136 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5137 if (SPF == SPF_SMIN) return SPF_SMAX; 5138 if (SPF == SPF_UMIN) return SPF_UMAX; 5139 if (SPF == SPF_SMAX) return SPF_SMIN; 5140 if (SPF == SPF_UMAX) return SPF_UMIN; 5141 llvm_unreachable("unhandled!"); 5142 } 5143 5144 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5145 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5146 } 5147 5148 /// Return true if "icmp Pred LHS RHS" is always true. 5149 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5150 const Value *RHS, const DataLayout &DL, 5151 unsigned Depth) { 5152 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5153 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5154 return true; 5155 5156 switch (Pred) { 5157 default: 5158 return false; 5159 5160 case CmpInst::ICMP_SLE: { 5161 const APInt *C; 5162 5163 // LHS s<= LHS +_{nsw} C if C >= 0 5164 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5165 return !C->isNegative(); 5166 return false; 5167 } 5168 5169 case CmpInst::ICMP_ULE: { 5170 const APInt *C; 5171 5172 // LHS u<= LHS +_{nuw} C for any C 5173 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5174 return true; 5175 5176 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5177 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5178 const Value *&X, 5179 const APInt *&CA, const APInt *&CB) { 5180 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5181 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5182 return true; 5183 5184 // If X & C == 0 then (X | C) == X +_{nuw} C 5185 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5186 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5187 KnownBits Known(CA->getBitWidth()); 5188 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5189 /*CxtI*/ nullptr, /*DT*/ nullptr); 5190 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5191 return true; 5192 } 5193 5194 return false; 5195 }; 5196 5197 const Value *X; 5198 const APInt *CLHS, *CRHS; 5199 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5200 return CLHS->ule(*CRHS); 5201 5202 return false; 5203 } 5204 } 5205 } 5206 5207 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5208 /// ALHS ARHS" is true. Otherwise, return None. 5209 static Optional<bool> 5210 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5211 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5212 const DataLayout &DL, unsigned Depth) { 5213 switch (Pred) { 5214 default: 5215 return None; 5216 5217 case CmpInst::ICMP_SLT: 5218 case CmpInst::ICMP_SLE: 5219 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5220 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5221 return true; 5222 return None; 5223 5224 case CmpInst::ICMP_ULT: 5225 case CmpInst::ICMP_ULE: 5226 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5227 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5228 return true; 5229 return None; 5230 } 5231 } 5232 5233 /// Return true if the operands of the two compares match. IsSwappedOps is true 5234 /// when the operands match, but are swapped. 5235 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5236 const Value *BLHS, const Value *BRHS, 5237 bool &IsSwappedOps) { 5238 5239 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5240 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5241 return IsMatchingOps || IsSwappedOps; 5242 } 5243 5244 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5245 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5246 /// Otherwise, return None if we can't infer anything. 5247 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5248 CmpInst::Predicate BPred, 5249 bool AreSwappedOps) { 5250 // Canonicalize the predicate as if the operands were not commuted. 5251 if (AreSwappedOps) 5252 BPred = ICmpInst::getSwappedPredicate(BPred); 5253 5254 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5255 return true; 5256 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5257 return false; 5258 5259 return None; 5260 } 5261 5262 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5263 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5264 /// Otherwise, return None if we can't infer anything. 5265 static Optional<bool> 5266 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5267 const ConstantInt *C1, 5268 CmpInst::Predicate BPred, 5269 const ConstantInt *C2) { 5270 ConstantRange DomCR = 5271 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5272 ConstantRange CR = 5273 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5274 ConstantRange Intersection = DomCR.intersectWith(CR); 5275 ConstantRange Difference = DomCR.difference(CR); 5276 if (Intersection.isEmptySet()) 5277 return false; 5278 if (Difference.isEmptySet()) 5279 return true; 5280 return None; 5281 } 5282 5283 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5284 /// false. Otherwise, return None if we can't infer anything. 5285 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5286 const ICmpInst *RHS, 5287 const DataLayout &DL, bool LHSIsTrue, 5288 unsigned Depth) { 5289 Value *ALHS = LHS->getOperand(0); 5290 Value *ARHS = LHS->getOperand(1); 5291 // The rest of the logic assumes the LHS condition is true. If that's not the 5292 // case, invert the predicate to make it so. 5293 ICmpInst::Predicate APred = 5294 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5295 5296 Value *BLHS = RHS->getOperand(0); 5297 Value *BRHS = RHS->getOperand(1); 5298 ICmpInst::Predicate BPred = RHS->getPredicate(); 5299 5300 // Can we infer anything when the two compares have matching operands? 5301 bool AreSwappedOps; 5302 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5303 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5304 APred, BPred, AreSwappedOps)) 5305 return Implication; 5306 // No amount of additional analysis will infer the second condition, so 5307 // early exit. 5308 return None; 5309 } 5310 5311 // Can we infer anything when the LHS operands match and the RHS operands are 5312 // constants (not necessarily matching)? 5313 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5314 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5315 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5316 return Implication; 5317 // No amount of additional analysis will infer the second condition, so 5318 // early exit. 5319 return None; 5320 } 5321 5322 if (APred == BPred) 5323 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5324 return None; 5325 } 5326 5327 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5328 /// false. Otherwise, return None if we can't infer anything. We expect the 5329 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5330 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5331 const ICmpInst *RHS, 5332 const DataLayout &DL, bool LHSIsTrue, 5333 unsigned Depth) { 5334 // The LHS must be an 'or' or an 'and' instruction. 5335 assert((LHS->getOpcode() == Instruction::And || 5336 LHS->getOpcode() == Instruction::Or) && 5337 "Expected LHS to be 'and' or 'or'."); 5338 5339 assert(Depth <= MaxDepth && "Hit recursion limit"); 5340 5341 // If the result of an 'or' is false, then we know both legs of the 'or' are 5342 // false. Similarly, if the result of an 'and' is true, then we know both 5343 // legs of the 'and' are true. 5344 Value *ALHS, *ARHS; 5345 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5346 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5347 // FIXME: Make this non-recursion. 5348 if (Optional<bool> Implication = 5349 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5350 return Implication; 5351 if (Optional<bool> Implication = 5352 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5353 return Implication; 5354 return None; 5355 } 5356 return None; 5357 } 5358 5359 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5360 const DataLayout &DL, bool LHSIsTrue, 5361 unsigned Depth) { 5362 // Bail out when we hit the limit. 5363 if (Depth == MaxDepth) 5364 return None; 5365 5366 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5367 // example. 5368 if (LHS->getType() != RHS->getType()) 5369 return None; 5370 5371 Type *OpTy = LHS->getType(); 5372 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5373 5374 // LHS ==> RHS by definition 5375 if (LHS == RHS) 5376 return LHSIsTrue; 5377 5378 // FIXME: Extending the code below to handle vectors. 5379 if (OpTy->isVectorTy()) 5380 return None; 5381 5382 assert(OpTy->isIntegerTy(1) && "implied by above"); 5383 5384 // Both LHS and RHS are icmps. 5385 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5386 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5387 if (LHSCmp && RHSCmp) 5388 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5389 5390 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5391 // an icmp. FIXME: Add support for and/or on the RHS. 5392 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5393 if (LHSBO && RHSCmp) { 5394 if ((LHSBO->getOpcode() == Instruction::And || 5395 LHSBO->getOpcode() == Instruction::Or)) 5396 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5397 } 5398 return None; 5399 } 5400 5401 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5402 const Instruction *ContextI, 5403 const DataLayout &DL) { 5404 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5405 if (!ContextI || !ContextI->getParent()) 5406 return None; 5407 5408 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5409 // dominator tree (eg, from a SimplifyQuery) instead? 5410 const BasicBlock *ContextBB = ContextI->getParent(); 5411 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5412 if (!PredBB) 5413 return None; 5414 5415 // We need a conditional branch in the predecessor. 5416 Value *PredCond; 5417 BasicBlock *TrueBB, *FalseBB; 5418 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5419 return None; 5420 5421 // The branch should get simplified. Don't bother simplifying this condition. 5422 if (TrueBB == FalseBB) 5423 return None; 5424 5425 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5426 "Predecessor block does not point to successor?"); 5427 5428 // Is this condition implied by the predecessor condition? 5429 bool CondIsTrue = TrueBB == ContextBB; 5430 return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); 5431 } 5432