1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/KnownBits.h"
68 #include "llvm/Support/MathExtras.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
73 #include <iterator>
74 #include <utility>
75 
76 using namespace llvm;
77 using namespace llvm::PatternMatch;
78 
79 const unsigned MaxDepth = 6;
80 
81 // Controls the number of uses of the value searched for possible
82 // dominating comparisons.
83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                               cl::Hidden, cl::init(20));
85 
86 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
87 /// returns the element type's bitwidth.
88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
89   if (unsigned BitWidth = Ty->getScalarSizeInBits())
90     return BitWidth;
91 
92   return DL.getIndexTypeSizeInBits(Ty);
93 }
94 
95 namespace {
96 
97 // Simplifying using an assume can only be done in a particular control-flow
98 // context (the context instruction provides that context). If an assume and
99 // the context instruction are not in the same block then the DT helps in
100 // figuring out if we can use it.
101 struct Query {
102   const DataLayout &DL;
103   AssumptionCache *AC;
104   const Instruction *CxtI;
105   const DominatorTree *DT;
106 
107   // Unlike the other analyses, this may be a nullptr because not all clients
108   // provide it currently.
109   OptimizationRemarkEmitter *ORE;
110 
111   /// Set of assumptions that should be excluded from further queries.
112   /// This is because of the potential for mutual recursion to cause
113   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114   /// classic case of this is assume(x = y), which will attempt to determine
115   /// bits in x from bits in y, which will attempt to determine bits in y from
116   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
117   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118   /// (all of which can call computeKnownBits), and so on.
119   std::array<const Value *, MaxDepth> Excluded;
120 
121   /// If true, it is safe to use metadata during simplification.
122   InstrInfoQuery IIQ;
123 
124   unsigned NumExcluded = 0;
125 
126   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
127         const DominatorTree *DT, bool UseInstrInfo,
128         OptimizationRemarkEmitter *ORE = nullptr)
129       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
130 
131   Query(const Query &Q, const Value *NewExcl)
132       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
133         NumExcluded(Q.NumExcluded) {
134     Excluded = Q.Excluded;
135     Excluded[NumExcluded++] = NewExcl;
136     assert(NumExcluded <= Excluded.size());
137   }
138 
139   bool isExcluded(const Value *Value) const {
140     if (NumExcluded == 0)
141       return false;
142     auto End = Excluded.begin() + NumExcluded;
143     return std::find(Excluded.begin(), End, Value) != End;
144   }
145 };
146 
147 } // end anonymous namespace
148 
149 // Given the provided Value and, potentially, a context instruction, return
150 // the preferred context instruction (if any).
151 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
152   // If we've been provided with a context instruction, then use that (provided
153   // it has been inserted).
154   if (CxtI && CxtI->getParent())
155     return CxtI;
156 
157   // If the value is really an already-inserted instruction, then use that.
158   CxtI = dyn_cast<Instruction>(V);
159   if (CxtI && CxtI->getParent())
160     return CxtI;
161 
162   return nullptr;
163 }
164 
165 static void computeKnownBits(const Value *V, KnownBits &Known,
166                              unsigned Depth, const Query &Q);
167 
168 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
169                             const DataLayout &DL, unsigned Depth,
170                             AssumptionCache *AC, const Instruction *CxtI,
171                             const DominatorTree *DT,
172                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
173   ::computeKnownBits(V, Known, Depth,
174                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
175 }
176 
177 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
178                                   const Query &Q);
179 
180 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
181                                  unsigned Depth, AssumptionCache *AC,
182                                  const Instruction *CxtI,
183                                  const DominatorTree *DT,
184                                  OptimizationRemarkEmitter *ORE,
185                                  bool UseInstrInfo) {
186   return ::computeKnownBits(
187       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
188 }
189 
190 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
191                                const DataLayout &DL, AssumptionCache *AC,
192                                const Instruction *CxtI, const DominatorTree *DT,
193                                bool UseInstrInfo) {
194   assert(LHS->getType() == RHS->getType() &&
195          "LHS and RHS should have the same type");
196   assert(LHS->getType()->isIntOrIntVectorTy() &&
197          "LHS and RHS should be integers");
198   // Look for an inverted mask: (X & ~M) op (Y & M).
199   Value *M;
200   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
201       match(RHS, m_c_And(m_Specific(M), m_Value())))
202     return true;
203   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
204       match(LHS, m_c_And(m_Specific(M), m_Value())))
205     return true;
206   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
207   KnownBits LHSKnown(IT->getBitWidth());
208   KnownBits RHSKnown(IT->getBitWidth());
209   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
210   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
212 }
213 
214 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
215   for (const User *U : CxtI->users()) {
216     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
217       if (IC->isEquality())
218         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
219           if (C->isNullValue())
220             continue;
221     return false;
222   }
223   return true;
224 }
225 
226 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
227                                    const Query &Q);
228 
229 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
230                                   bool OrZero, unsigned Depth,
231                                   AssumptionCache *AC, const Instruction *CxtI,
232                                   const DominatorTree *DT, bool UseInstrInfo) {
233   return ::isKnownToBeAPowerOfTwo(
234       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
235 }
236 
237 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
238 
239 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
240                           AssumptionCache *AC, const Instruction *CxtI,
241                           const DominatorTree *DT, bool UseInstrInfo) {
242   return ::isKnownNonZero(V, Depth,
243                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
244 }
245 
246 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
247                               unsigned Depth, AssumptionCache *AC,
248                               const Instruction *CxtI, const DominatorTree *DT,
249                               bool UseInstrInfo) {
250   KnownBits Known =
251       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
252   return Known.isNonNegative();
253 }
254 
255 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
256                            AssumptionCache *AC, const Instruction *CxtI,
257                            const DominatorTree *DT, bool UseInstrInfo) {
258   if (auto *CI = dyn_cast<ConstantInt>(V))
259     return CI->getValue().isStrictlyPositive();
260 
261   // TODO: We'd doing two recursive queries here.  We should factor this such
262   // that only a single query is needed.
263   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
264          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
265 }
266 
267 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
268                            AssumptionCache *AC, const Instruction *CxtI,
269                            const DominatorTree *DT, bool UseInstrInfo) {
270   KnownBits Known =
271       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
272   return Known.isNegative();
273 }
274 
275 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
276 
277 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
278                            const DataLayout &DL, AssumptionCache *AC,
279                            const Instruction *CxtI, const DominatorTree *DT,
280                            bool UseInstrInfo) {
281   return ::isKnownNonEqual(V1, V2,
282                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
283                                  UseInstrInfo, /*ORE=*/nullptr));
284 }
285 
286 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
287                               const Query &Q);
288 
289 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
290                              const DataLayout &DL, unsigned Depth,
291                              AssumptionCache *AC, const Instruction *CxtI,
292                              const DominatorTree *DT, bool UseInstrInfo) {
293   return ::MaskedValueIsZero(
294       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
295 }
296 
297 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
298                                    const Query &Q);
299 
300 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
301                                   unsigned Depth, AssumptionCache *AC,
302                                   const Instruction *CxtI,
303                                   const DominatorTree *DT, bool UseInstrInfo) {
304   return ::ComputeNumSignBits(
305       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
306 }
307 
308 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
309                                    bool NSW,
310                                    KnownBits &KnownOut, KnownBits &Known2,
311                                    unsigned Depth, const Query &Q) {
312   unsigned BitWidth = KnownOut.getBitWidth();
313 
314   // If an initial sequence of bits in the result is not needed, the
315   // corresponding bits in the operands are not needed.
316   KnownBits LHSKnown(BitWidth);
317   computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
318   computeKnownBits(Op1, Known2, Depth + 1, Q);
319 
320   KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
321 }
322 
323 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
324                                 KnownBits &Known, KnownBits &Known2,
325                                 unsigned Depth, const Query &Q) {
326   unsigned BitWidth = Known.getBitWidth();
327   computeKnownBits(Op1, Known, Depth + 1, Q);
328   computeKnownBits(Op0, Known2, Depth + 1, Q);
329 
330   bool isKnownNegative = false;
331   bool isKnownNonNegative = false;
332   // If the multiplication is known not to overflow, compute the sign bit.
333   if (NSW) {
334     if (Op0 == Op1) {
335       // The product of a number with itself is non-negative.
336       isKnownNonNegative = true;
337     } else {
338       bool isKnownNonNegativeOp1 = Known.isNonNegative();
339       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
340       bool isKnownNegativeOp1 = Known.isNegative();
341       bool isKnownNegativeOp0 = Known2.isNegative();
342       // The product of two numbers with the same sign is non-negative.
343       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
344         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
345       // The product of a negative number and a non-negative number is either
346       // negative or zero.
347       if (!isKnownNonNegative)
348         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
349                            isKnownNonZero(Op0, Depth, Q)) ||
350                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
351                            isKnownNonZero(Op1, Depth, Q));
352     }
353   }
354 
355   assert(!Known.hasConflict() && !Known2.hasConflict());
356   // Compute a conservative estimate for high known-0 bits.
357   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
358                              Known2.countMinLeadingZeros(),
359                              BitWidth) - BitWidth;
360   LeadZ = std::min(LeadZ, BitWidth);
361 
362   // The result of the bottom bits of an integer multiply can be
363   // inferred by looking at the bottom bits of both operands and
364   // multiplying them together.
365   // We can infer at least the minimum number of known trailing bits
366   // of both operands. Depending on number of trailing zeros, we can
367   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
368   // a and b are divisible by m and n respectively.
369   // We then calculate how many of those bits are inferrable and set
370   // the output. For example, the i8 mul:
371   //  a = XXXX1100 (12)
372   //  b = XXXX1110 (14)
373   // We know the bottom 3 bits are zero since the first can be divided by
374   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
375   // Applying the multiplication to the trimmed arguments gets:
376   //    XX11 (3)
377   //    X111 (7)
378   // -------
379   //    XX11
380   //   XX11
381   //  XX11
382   // XX11
383   // -------
384   // XXXXX01
385   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
386   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
387   // The proof for this can be described as:
388   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
389   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
390   //                    umin(countTrailingZeros(C2), C6) +
391   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
392   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
393   // %aa = shl i8 %a, C5
394   // %bb = shl i8 %b, C6
395   // %aaa = or i8 %aa, C1
396   // %bbb = or i8 %bb, C2
397   // %mul = mul i8 %aaa, %bbb
398   // %mask = and i8 %mul, C7
399   //   =>
400   // %mask = i8 ((C1*C2)&C7)
401   // Where C5, C6 describe the known bits of %a, %b
402   // C1, C2 describe the known bottom bits of %a, %b.
403   // C7 describes the mask of the known bits of the result.
404   APInt Bottom0 = Known.One;
405   APInt Bottom1 = Known2.One;
406 
407   // How many times we'd be able to divide each argument by 2 (shr by 1).
408   // This gives us the number of trailing zeros on the multiplication result.
409   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
410   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
411   unsigned TrailZero0 = Known.countMinTrailingZeros();
412   unsigned TrailZero1 = Known2.countMinTrailingZeros();
413   unsigned TrailZ = TrailZero0 + TrailZero1;
414 
415   // Figure out the fewest known-bits operand.
416   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
417                                       TrailBitsKnown1 - TrailZero1);
418   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
419 
420   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
421                       Bottom1.getLoBits(TrailBitsKnown1);
422 
423   Known.resetAll();
424   Known.Zero.setHighBits(LeadZ);
425   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
426   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
427 
428   // Only make use of no-wrap flags if we failed to compute the sign bit
429   // directly.  This matters if the multiplication always overflows, in
430   // which case we prefer to follow the result of the direct computation,
431   // though as the program is invoking undefined behaviour we can choose
432   // whatever we like here.
433   if (isKnownNonNegative && !Known.isNegative())
434     Known.makeNonNegative();
435   else if (isKnownNegative && !Known.isNonNegative())
436     Known.makeNegative();
437 }
438 
439 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
440                                              KnownBits &Known) {
441   unsigned BitWidth = Known.getBitWidth();
442   unsigned NumRanges = Ranges.getNumOperands() / 2;
443   assert(NumRanges >= 1);
444 
445   Known.Zero.setAllBits();
446   Known.One.setAllBits();
447 
448   for (unsigned i = 0; i < NumRanges; ++i) {
449     ConstantInt *Lower =
450         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
451     ConstantInt *Upper =
452         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
453     ConstantRange Range(Lower->getValue(), Upper->getValue());
454 
455     // The first CommonPrefixBits of all values in Range are equal.
456     unsigned CommonPrefixBits =
457         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
458 
459     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
460     Known.One &= Range.getUnsignedMax() & Mask;
461     Known.Zero &= ~Range.getUnsignedMax() & Mask;
462   }
463 }
464 
465 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
466   SmallVector<const Value *, 16> WorkSet(1, I);
467   SmallPtrSet<const Value *, 32> Visited;
468   SmallPtrSet<const Value *, 16> EphValues;
469 
470   // The instruction defining an assumption's condition itself is always
471   // considered ephemeral to that assumption (even if it has other
472   // non-ephemeral users). See r246696's test case for an example.
473   if (is_contained(I->operands(), E))
474     return true;
475 
476   while (!WorkSet.empty()) {
477     const Value *V = WorkSet.pop_back_val();
478     if (!Visited.insert(V).second)
479       continue;
480 
481     // If all uses of this value are ephemeral, then so is this value.
482     if (llvm::all_of(V->users(), [&](const User *U) {
483                                    return EphValues.count(U);
484                                  })) {
485       if (V == E)
486         return true;
487 
488       if (V == I || isSafeToSpeculativelyExecute(V)) {
489        EphValues.insert(V);
490        if (const User *U = dyn_cast<User>(V))
491          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
492               J != JE; ++J)
493            WorkSet.push_back(*J);
494       }
495     }
496   }
497 
498   return false;
499 }
500 
501 // Is this an intrinsic that cannot be speculated but also cannot trap?
502 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
503   if (const CallInst *CI = dyn_cast<CallInst>(I))
504     if (Function *F = CI->getCalledFunction())
505       switch (F->getIntrinsicID()) {
506       default: break;
507       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
508       case Intrinsic::assume:
509       case Intrinsic::sideeffect:
510       case Intrinsic::dbg_declare:
511       case Intrinsic::dbg_value:
512       case Intrinsic::dbg_label:
513       case Intrinsic::invariant_start:
514       case Intrinsic::invariant_end:
515       case Intrinsic::lifetime_start:
516       case Intrinsic::lifetime_end:
517       case Intrinsic::objectsize:
518       case Intrinsic::ptr_annotation:
519       case Intrinsic::var_annotation:
520         return true;
521       }
522 
523   return false;
524 }
525 
526 bool llvm::isValidAssumeForContext(const Instruction *Inv,
527                                    const Instruction *CxtI,
528                                    const DominatorTree *DT) {
529   // There are two restrictions on the use of an assume:
530   //  1. The assume must dominate the context (or the control flow must
531   //     reach the assume whenever it reaches the context).
532   //  2. The context must not be in the assume's set of ephemeral values
533   //     (otherwise we will use the assume to prove that the condition
534   //     feeding the assume is trivially true, thus causing the removal of
535   //     the assume).
536 
537   if (DT) {
538     if (DT->dominates(Inv, CxtI))
539       return true;
540   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
541     // We don't have a DT, but this trivially dominates.
542     return true;
543   }
544 
545   // With or without a DT, the only remaining case we will check is if the
546   // instructions are in the same BB.  Give up if that is not the case.
547   if (Inv->getParent() != CxtI->getParent())
548     return false;
549 
550   // If we have a dom tree, then we now know that the assume doesn't dominate
551   // the other instruction.  If we don't have a dom tree then we can check if
552   // the assume is first in the BB.
553   if (!DT) {
554     // Search forward from the assume until we reach the context (or the end
555     // of the block); the common case is that the assume will come first.
556     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
557          IE = Inv->getParent()->end(); I != IE; ++I)
558       if (&*I == CxtI)
559         return true;
560   }
561 
562   // The context comes first, but they're both in the same block. Make sure
563   // there is nothing in between that might interrupt the control flow.
564   for (BasicBlock::const_iterator I =
565          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
566        I != IE; ++I)
567     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
568       return false;
569 
570   return !isEphemeralValueOf(Inv, CxtI);
571 }
572 
573 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
574                                        unsigned Depth, const Query &Q) {
575   // Use of assumptions is context-sensitive. If we don't have a context, we
576   // cannot use them!
577   if (!Q.AC || !Q.CxtI)
578     return;
579 
580   unsigned BitWidth = Known.getBitWidth();
581 
582   // Note that the patterns below need to be kept in sync with the code
583   // in AssumptionCache::updateAffectedValues.
584 
585   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
586     if (!AssumeVH)
587       continue;
588     CallInst *I = cast<CallInst>(AssumeVH);
589     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
590            "Got assumption for the wrong function!");
591     if (Q.isExcluded(I))
592       continue;
593 
594     // Warning: This loop can end up being somewhat performance sensitive.
595     // We're running this loop for once for each value queried resulting in a
596     // runtime of ~O(#assumes * #values).
597 
598     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
599            "must be an assume intrinsic");
600 
601     Value *Arg = I->getArgOperand(0);
602 
603     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
604       assert(BitWidth == 1 && "assume operand is not i1?");
605       Known.setAllOnes();
606       return;
607     }
608     if (match(Arg, m_Not(m_Specific(V))) &&
609         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
610       assert(BitWidth == 1 && "assume operand is not i1?");
611       Known.setAllZero();
612       return;
613     }
614 
615     // The remaining tests are all recursive, so bail out if we hit the limit.
616     if (Depth == MaxDepth)
617       continue;
618 
619     Value *A, *B;
620     auto m_V = m_CombineOr(m_Specific(V),
621                            m_CombineOr(m_PtrToInt(m_Specific(V)),
622                            m_BitCast(m_Specific(V))));
623 
624     CmpInst::Predicate Pred;
625     uint64_t C;
626     // assume(v = a)
627     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
628         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
629       KnownBits RHSKnown(BitWidth);
630       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
631       Known.Zero |= RHSKnown.Zero;
632       Known.One  |= RHSKnown.One;
633     // assume(v & b = a)
634     } else if (match(Arg,
635                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
636                Pred == ICmpInst::ICMP_EQ &&
637                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
638       KnownBits RHSKnown(BitWidth);
639       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
640       KnownBits MaskKnown(BitWidth);
641       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
642 
643       // For those bits in the mask that are known to be one, we can propagate
644       // known bits from the RHS to V.
645       Known.Zero |= RHSKnown.Zero & MaskKnown.One;
646       Known.One  |= RHSKnown.One  & MaskKnown.One;
647     // assume(~(v & b) = a)
648     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
649                                    m_Value(A))) &&
650                Pred == ICmpInst::ICMP_EQ &&
651                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
652       KnownBits RHSKnown(BitWidth);
653       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
654       KnownBits MaskKnown(BitWidth);
655       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
656 
657       // For those bits in the mask that are known to be one, we can propagate
658       // inverted known bits from the RHS to V.
659       Known.Zero |= RHSKnown.One  & MaskKnown.One;
660       Known.One  |= RHSKnown.Zero & MaskKnown.One;
661     // assume(v | b = a)
662     } else if (match(Arg,
663                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
664                Pred == ICmpInst::ICMP_EQ &&
665                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
666       KnownBits RHSKnown(BitWidth);
667       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
668       KnownBits BKnown(BitWidth);
669       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
670 
671       // For those bits in B that are known to be zero, we can propagate known
672       // bits from the RHS to V.
673       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
674       Known.One  |= RHSKnown.One  & BKnown.Zero;
675     // assume(~(v | b) = a)
676     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
677                                    m_Value(A))) &&
678                Pred == ICmpInst::ICMP_EQ &&
679                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
680       KnownBits RHSKnown(BitWidth);
681       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
682       KnownBits BKnown(BitWidth);
683       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
684 
685       // For those bits in B that are known to be zero, we can propagate
686       // inverted known bits from the RHS to V.
687       Known.Zero |= RHSKnown.One  & BKnown.Zero;
688       Known.One  |= RHSKnown.Zero & BKnown.Zero;
689     // assume(v ^ b = a)
690     } else if (match(Arg,
691                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
692                Pred == ICmpInst::ICMP_EQ &&
693                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
694       KnownBits RHSKnown(BitWidth);
695       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
696       KnownBits BKnown(BitWidth);
697       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
698 
699       // For those bits in B that are known to be zero, we can propagate known
700       // bits from the RHS to V. For those bits in B that are known to be one,
701       // we can propagate inverted known bits from the RHS to V.
702       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
703       Known.One  |= RHSKnown.One  & BKnown.Zero;
704       Known.Zero |= RHSKnown.One  & BKnown.One;
705       Known.One  |= RHSKnown.Zero & BKnown.One;
706     // assume(~(v ^ b) = a)
707     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
708                                    m_Value(A))) &&
709                Pred == ICmpInst::ICMP_EQ &&
710                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
711       KnownBits RHSKnown(BitWidth);
712       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
713       KnownBits BKnown(BitWidth);
714       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
715 
716       // For those bits in B that are known to be zero, we can propagate
717       // inverted known bits from the RHS to V. For those bits in B that are
718       // known to be one, we can propagate known bits from the RHS to V.
719       Known.Zero |= RHSKnown.One  & BKnown.Zero;
720       Known.One  |= RHSKnown.Zero & BKnown.Zero;
721       Known.Zero |= RHSKnown.Zero & BKnown.One;
722       Known.One  |= RHSKnown.One  & BKnown.One;
723     // assume(v << c = a)
724     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
725                                    m_Value(A))) &&
726                Pred == ICmpInst::ICMP_EQ &&
727                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
728                C < BitWidth) {
729       KnownBits RHSKnown(BitWidth);
730       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
731       // For those bits in RHS that are known, we can propagate them to known
732       // bits in V shifted to the right by C.
733       RHSKnown.Zero.lshrInPlace(C);
734       Known.Zero |= RHSKnown.Zero;
735       RHSKnown.One.lshrInPlace(C);
736       Known.One  |= RHSKnown.One;
737     // assume(~(v << c) = a)
738     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
739                                    m_Value(A))) &&
740                Pred == ICmpInst::ICMP_EQ &&
741                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
742                C < BitWidth) {
743       KnownBits RHSKnown(BitWidth);
744       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
745       // For those bits in RHS that are known, we can propagate them inverted
746       // to known bits in V shifted to the right by C.
747       RHSKnown.One.lshrInPlace(C);
748       Known.Zero |= RHSKnown.One;
749       RHSKnown.Zero.lshrInPlace(C);
750       Known.One  |= RHSKnown.Zero;
751     // assume(v >> c = a)
752     } else if (match(Arg,
753                      m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
754                               m_Value(A))) &&
755                Pred == ICmpInst::ICMP_EQ &&
756                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
757                C < BitWidth) {
758       KnownBits RHSKnown(BitWidth);
759       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
760       // For those bits in RHS that are known, we can propagate them to known
761       // bits in V shifted to the right by C.
762       Known.Zero |= RHSKnown.Zero << C;
763       Known.One  |= RHSKnown.One  << C;
764     // assume(~(v >> c) = a)
765     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
766                                    m_Value(A))) &&
767                Pred == ICmpInst::ICMP_EQ &&
768                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
769                C < BitWidth) {
770       KnownBits RHSKnown(BitWidth);
771       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
772       // For those bits in RHS that are known, we can propagate them inverted
773       // to known bits in V shifted to the right by C.
774       Known.Zero |= RHSKnown.One  << C;
775       Known.One  |= RHSKnown.Zero << C;
776     // assume(v >=_s c) where c is non-negative
777     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
778                Pred == ICmpInst::ICMP_SGE &&
779                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
780       KnownBits RHSKnown(BitWidth);
781       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
782 
783       if (RHSKnown.isNonNegative()) {
784         // We know that the sign bit is zero.
785         Known.makeNonNegative();
786       }
787     // assume(v >_s c) where c is at least -1.
788     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
789                Pred == ICmpInst::ICMP_SGT &&
790                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
791       KnownBits RHSKnown(BitWidth);
792       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
793 
794       if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
795         // We know that the sign bit is zero.
796         Known.makeNonNegative();
797       }
798     // assume(v <=_s c) where c is negative
799     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
800                Pred == ICmpInst::ICMP_SLE &&
801                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
802       KnownBits RHSKnown(BitWidth);
803       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
804 
805       if (RHSKnown.isNegative()) {
806         // We know that the sign bit is one.
807         Known.makeNegative();
808       }
809     // assume(v <_s c) where c is non-positive
810     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
811                Pred == ICmpInst::ICMP_SLT &&
812                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
813       KnownBits RHSKnown(BitWidth);
814       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
815 
816       if (RHSKnown.isZero() || RHSKnown.isNegative()) {
817         // We know that the sign bit is one.
818         Known.makeNegative();
819       }
820     // assume(v <=_u c)
821     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
822                Pred == ICmpInst::ICMP_ULE &&
823                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
824       KnownBits RHSKnown(BitWidth);
825       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
826 
827       // Whatever high bits in c are zero are known to be zero.
828       Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
829       // assume(v <_u c)
830     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
831                Pred == ICmpInst::ICMP_ULT &&
832                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
833       KnownBits RHSKnown(BitWidth);
834       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
835 
836       // If the RHS is known zero, then this assumption must be wrong (nothing
837       // is unsigned less than zero). Signal a conflict and get out of here.
838       if (RHSKnown.isZero()) {
839         Known.Zero.setAllBits();
840         Known.One.setAllBits();
841         break;
842       }
843 
844       // Whatever high bits in c are zero are known to be zero (if c is a power
845       // of 2, then one more).
846       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
847         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
848       else
849         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
850     }
851   }
852 
853   // If assumptions conflict with each other or previous known bits, then we
854   // have a logical fallacy. It's possible that the assumption is not reachable,
855   // so this isn't a real bug. On the other hand, the program may have undefined
856   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
857   // clear out the known bits, try to warn the user, and hope for the best.
858   if (Known.Zero.intersects(Known.One)) {
859     Known.resetAll();
860 
861     if (Q.ORE)
862       Q.ORE->emit([&]() {
863         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
864         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
865                                           CxtI)
866                << "Detected conflicting code assumptions. Program may "
867                   "have undefined behavior, or compiler may have "
868                   "internal error.";
869       });
870   }
871 }
872 
873 /// Compute known bits from a shift operator, including those with a
874 /// non-constant shift amount. Known is the output of this function. Known2 is a
875 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
876 /// operator-specific functions that, given the known-zero or known-one bits
877 /// respectively, and a shift amount, compute the implied known-zero or
878 /// known-one bits of the shift operator's result respectively for that shift
879 /// amount. The results from calling KZF and KOF are conservatively combined for
880 /// all permitted shift amounts.
881 static void computeKnownBitsFromShiftOperator(
882     const Operator *I, KnownBits &Known, KnownBits &Known2,
883     unsigned Depth, const Query &Q,
884     function_ref<APInt(const APInt &, unsigned)> KZF,
885     function_ref<APInt(const APInt &, unsigned)> KOF) {
886   unsigned BitWidth = Known.getBitWidth();
887 
888   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
889     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
890 
891     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
892     Known.Zero = KZF(Known.Zero, ShiftAmt);
893     Known.One  = KOF(Known.One, ShiftAmt);
894     // If the known bits conflict, this must be an overflowing left shift, so
895     // the shift result is poison. We can return anything we want. Choose 0 for
896     // the best folding opportunity.
897     if (Known.hasConflict())
898       Known.setAllZero();
899 
900     return;
901   }
902 
903   computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
904 
905   // If the shift amount could be greater than or equal to the bit-width of the
906   // LHS, the value could be poison, but bail out because the check below is
907   // expensive. TODO: Should we just carry on?
908   if ((~Known.Zero).uge(BitWidth)) {
909     Known.resetAll();
910     return;
911   }
912 
913   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
914   // BitWidth > 64 and any upper bits are known, we'll end up returning the
915   // limit value (which implies all bits are known).
916   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
917   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
918 
919   // It would be more-clearly correct to use the two temporaries for this
920   // calculation. Reusing the APInts here to prevent unnecessary allocations.
921   Known.resetAll();
922 
923   // If we know the shifter operand is nonzero, we can sometimes infer more
924   // known bits. However this is expensive to compute, so be lazy about it and
925   // only compute it when absolutely necessary.
926   Optional<bool> ShifterOperandIsNonZero;
927 
928   // Early exit if we can't constrain any well-defined shift amount.
929   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
930       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
931     ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
932     if (!*ShifterOperandIsNonZero)
933       return;
934   }
935 
936   computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
937 
938   Known.Zero.setAllBits();
939   Known.One.setAllBits();
940   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
941     // Combine the shifted known input bits only for those shift amounts
942     // compatible with its known constraints.
943     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
944       continue;
945     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
946       continue;
947     // If we know the shifter is nonzero, we may be able to infer more known
948     // bits. This check is sunk down as far as possible to avoid the expensive
949     // call to isKnownNonZero if the cheaper checks above fail.
950     if (ShiftAmt == 0) {
951       if (!ShifterOperandIsNonZero.hasValue())
952         ShifterOperandIsNonZero =
953             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
954       if (*ShifterOperandIsNonZero)
955         continue;
956     }
957 
958     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
959     Known.One  &= KOF(Known2.One, ShiftAmt);
960   }
961 
962   // If the known bits conflict, the result is poison. Return a 0 and hope the
963   // caller can further optimize that.
964   if (Known.hasConflict())
965     Known.setAllZero();
966 }
967 
968 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
969                                          unsigned Depth, const Query &Q) {
970   unsigned BitWidth = Known.getBitWidth();
971 
972   KnownBits Known2(Known);
973   switch (I->getOpcode()) {
974   default: break;
975   case Instruction::Load:
976     if (MDNode *MD =
977             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
978       computeKnownBitsFromRangeMetadata(*MD, Known);
979     break;
980   case Instruction::And: {
981     // If either the LHS or the RHS are Zero, the result is zero.
982     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
983     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
984 
985     // Output known-1 bits are only known if set in both the LHS & RHS.
986     Known.One &= Known2.One;
987     // Output known-0 are known to be clear if zero in either the LHS | RHS.
988     Known.Zero |= Known2.Zero;
989 
990     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
991     // here we handle the more general case of adding any odd number by
992     // matching the form add(x, add(x, y)) where y is odd.
993     // TODO: This could be generalized to clearing any bit set in y where the
994     // following bit is known to be unset in y.
995     Value *X = nullptr, *Y = nullptr;
996     if (!Known.Zero[0] && !Known.One[0] &&
997         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
998       Known2.resetAll();
999       computeKnownBits(Y, Known2, Depth + 1, Q);
1000       if (Known2.countMinTrailingOnes() > 0)
1001         Known.Zero.setBit(0);
1002     }
1003     break;
1004   }
1005   case Instruction::Or:
1006     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1007     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1008 
1009     // Output known-0 bits are only known if clear in both the LHS & RHS.
1010     Known.Zero &= Known2.Zero;
1011     // Output known-1 are known to be set if set in either the LHS | RHS.
1012     Known.One |= Known2.One;
1013     break;
1014   case Instruction::Xor: {
1015     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1016     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1017 
1018     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1019     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1020     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1021     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1022     Known.Zero = std::move(KnownZeroOut);
1023     break;
1024   }
1025   case Instruction::Mul: {
1026     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1027     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1028                         Known2, Depth, Q);
1029     break;
1030   }
1031   case Instruction::UDiv: {
1032     // For the purposes of computing leading zeros we can conservatively
1033     // treat a udiv as a logical right shift by the power of 2 known to
1034     // be less than the denominator.
1035     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1036     unsigned LeadZ = Known2.countMinLeadingZeros();
1037 
1038     Known2.resetAll();
1039     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1040     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1041     if (RHSMaxLeadingZeros != BitWidth)
1042       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1043 
1044     Known.Zero.setHighBits(LeadZ);
1045     break;
1046   }
1047   case Instruction::Select: {
1048     const Value *LHS, *RHS;
1049     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1050     if (SelectPatternResult::isMinOrMax(SPF)) {
1051       computeKnownBits(RHS, Known, Depth + 1, Q);
1052       computeKnownBits(LHS, Known2, Depth + 1, Q);
1053     } else {
1054       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1055       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1056     }
1057 
1058     unsigned MaxHighOnes = 0;
1059     unsigned MaxHighZeros = 0;
1060     if (SPF == SPF_SMAX) {
1061       // If both sides are negative, the result is negative.
1062       if (Known.isNegative() && Known2.isNegative())
1063         // We can derive a lower bound on the result by taking the max of the
1064         // leading one bits.
1065         MaxHighOnes =
1066             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1067       // If either side is non-negative, the result is non-negative.
1068       else if (Known.isNonNegative() || Known2.isNonNegative())
1069         MaxHighZeros = 1;
1070     } else if (SPF == SPF_SMIN) {
1071       // If both sides are non-negative, the result is non-negative.
1072       if (Known.isNonNegative() && Known2.isNonNegative())
1073         // We can derive an upper bound on the result by taking the max of the
1074         // leading zero bits.
1075         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1076                                 Known2.countMinLeadingZeros());
1077       // If either side is negative, the result is negative.
1078       else if (Known.isNegative() || Known2.isNegative())
1079         MaxHighOnes = 1;
1080     } else if (SPF == SPF_UMAX) {
1081       // We can derive a lower bound on the result by taking the max of the
1082       // leading one bits.
1083       MaxHighOnes =
1084           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1085     } else if (SPF == SPF_UMIN) {
1086       // We can derive an upper bound on the result by taking the max of the
1087       // leading zero bits.
1088       MaxHighZeros =
1089           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1090     } else if (SPF == SPF_ABS) {
1091       // RHS from matchSelectPattern returns the negation part of abs pattern.
1092       // If the negate has an NSW flag we can assume the sign bit of the result
1093       // will be 0 because that makes abs(INT_MIN) undefined.
1094       if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1095         MaxHighZeros = 1;
1096     }
1097 
1098     // Only known if known in both the LHS and RHS.
1099     Known.One &= Known2.One;
1100     Known.Zero &= Known2.Zero;
1101     if (MaxHighOnes > 0)
1102       Known.One.setHighBits(MaxHighOnes);
1103     if (MaxHighZeros > 0)
1104       Known.Zero.setHighBits(MaxHighZeros);
1105     break;
1106   }
1107   case Instruction::FPTrunc:
1108   case Instruction::FPExt:
1109   case Instruction::FPToUI:
1110   case Instruction::FPToSI:
1111   case Instruction::SIToFP:
1112   case Instruction::UIToFP:
1113     break; // Can't work with floating point.
1114   case Instruction::PtrToInt:
1115   case Instruction::IntToPtr:
1116     // Fall through and handle them the same as zext/trunc.
1117     LLVM_FALLTHROUGH;
1118   case Instruction::ZExt:
1119   case Instruction::Trunc: {
1120     Type *SrcTy = I->getOperand(0)->getType();
1121 
1122     unsigned SrcBitWidth;
1123     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1124     // which fall through here.
1125     Type *ScalarTy = SrcTy->getScalarType();
1126     SrcBitWidth = ScalarTy->isPointerTy() ?
1127       Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1128       Q.DL.getTypeSizeInBits(ScalarTy);
1129 
1130     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1131     Known = Known.zextOrTrunc(SrcBitWidth);
1132     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1133     Known = Known.zextOrTrunc(BitWidth);
1134     // Any top bits are known to be zero.
1135     if (BitWidth > SrcBitWidth)
1136       Known.Zero.setBitsFrom(SrcBitWidth);
1137     break;
1138   }
1139   case Instruction::BitCast: {
1140     Type *SrcTy = I->getOperand(0)->getType();
1141     if (SrcTy->isIntOrPtrTy() &&
1142         // TODO: For now, not handling conversions like:
1143         // (bitcast i64 %x to <2 x i32>)
1144         !I->getType()->isVectorTy()) {
1145       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1146       break;
1147     }
1148     break;
1149   }
1150   case Instruction::SExt: {
1151     // Compute the bits in the result that are not present in the input.
1152     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1153 
1154     Known = Known.trunc(SrcBitWidth);
1155     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1156     // If the sign bit of the input is known set or clear, then we know the
1157     // top bits of the result.
1158     Known = Known.sext(BitWidth);
1159     break;
1160   }
1161   case Instruction::Shl: {
1162     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1163     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1164     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1165       APInt KZResult = KnownZero << ShiftAmt;
1166       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1167       // If this shift has "nsw" keyword, then the result is either a poison
1168       // value or has the same sign bit as the first operand.
1169       if (NSW && KnownZero.isSignBitSet())
1170         KZResult.setSignBit();
1171       return KZResult;
1172     };
1173 
1174     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1175       APInt KOResult = KnownOne << ShiftAmt;
1176       if (NSW && KnownOne.isSignBitSet())
1177         KOResult.setSignBit();
1178       return KOResult;
1179     };
1180 
1181     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1182     break;
1183   }
1184   case Instruction::LShr: {
1185     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1186     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1187       APInt KZResult = KnownZero.lshr(ShiftAmt);
1188       // High bits known zero.
1189       KZResult.setHighBits(ShiftAmt);
1190       return KZResult;
1191     };
1192 
1193     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1194       return KnownOne.lshr(ShiftAmt);
1195     };
1196 
1197     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1198     break;
1199   }
1200   case Instruction::AShr: {
1201     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1202     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1203       return KnownZero.ashr(ShiftAmt);
1204     };
1205 
1206     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1207       return KnownOne.ashr(ShiftAmt);
1208     };
1209 
1210     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1211     break;
1212   }
1213   case Instruction::Sub: {
1214     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1215     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1216                            Known, Known2, Depth, Q);
1217     break;
1218   }
1219   case Instruction::Add: {
1220     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1221     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1222                            Known, Known2, Depth, Q);
1223     break;
1224   }
1225   case Instruction::SRem:
1226     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1227       APInt RA = Rem->getValue().abs();
1228       if (RA.isPowerOf2()) {
1229         APInt LowBits = RA - 1;
1230         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1231 
1232         // The low bits of the first operand are unchanged by the srem.
1233         Known.Zero = Known2.Zero & LowBits;
1234         Known.One = Known2.One & LowBits;
1235 
1236         // If the first operand is non-negative or has all low bits zero, then
1237         // the upper bits are all zero.
1238         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1239           Known.Zero |= ~LowBits;
1240 
1241         // If the first operand is negative and not all low bits are zero, then
1242         // the upper bits are all one.
1243         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1244           Known.One |= ~LowBits;
1245 
1246         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1247         break;
1248       }
1249     }
1250 
1251     // The sign bit is the LHS's sign bit, except when the result of the
1252     // remainder is zero.
1253     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1254     // If it's known zero, our sign bit is also zero.
1255     if (Known2.isNonNegative())
1256       Known.makeNonNegative();
1257 
1258     break;
1259   case Instruction::URem: {
1260     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1261       const APInt &RA = Rem->getValue();
1262       if (RA.isPowerOf2()) {
1263         APInt LowBits = (RA - 1);
1264         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1265         Known.Zero |= ~LowBits;
1266         Known.One &= LowBits;
1267         break;
1268       }
1269     }
1270 
1271     // Since the result is less than or equal to either operand, any leading
1272     // zero bits in either operand must also exist in the result.
1273     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1274     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1275 
1276     unsigned Leaders =
1277         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1278     Known.resetAll();
1279     Known.Zero.setHighBits(Leaders);
1280     break;
1281   }
1282 
1283   case Instruction::Alloca: {
1284     const AllocaInst *AI = cast<AllocaInst>(I);
1285     unsigned Align = AI->getAlignment();
1286     if (Align == 0)
1287       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1288 
1289     if (Align > 0)
1290       Known.Zero.setLowBits(countTrailingZeros(Align));
1291     break;
1292   }
1293   case Instruction::GetElementPtr: {
1294     // Analyze all of the subscripts of this getelementptr instruction
1295     // to determine if we can prove known low zero bits.
1296     KnownBits LocalKnown(BitWidth);
1297     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1298     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1299 
1300     gep_type_iterator GTI = gep_type_begin(I);
1301     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1302       Value *Index = I->getOperand(i);
1303       if (StructType *STy = GTI.getStructTypeOrNull()) {
1304         // Handle struct member offset arithmetic.
1305 
1306         // Handle case when index is vector zeroinitializer
1307         Constant *CIndex = cast<Constant>(Index);
1308         if (CIndex->isZeroValue())
1309           continue;
1310 
1311         if (CIndex->getType()->isVectorTy())
1312           Index = CIndex->getSplatValue();
1313 
1314         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1315         const StructLayout *SL = Q.DL.getStructLayout(STy);
1316         uint64_t Offset = SL->getElementOffset(Idx);
1317         TrailZ = std::min<unsigned>(TrailZ,
1318                                     countTrailingZeros(Offset));
1319       } else {
1320         // Handle array index arithmetic.
1321         Type *IndexedTy = GTI.getIndexedType();
1322         if (!IndexedTy->isSized()) {
1323           TrailZ = 0;
1324           break;
1325         }
1326         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1327         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1328         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1329         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1330         TrailZ = std::min(TrailZ,
1331                           unsigned(countTrailingZeros(TypeSize) +
1332                                    LocalKnown.countMinTrailingZeros()));
1333       }
1334     }
1335 
1336     Known.Zero.setLowBits(TrailZ);
1337     break;
1338   }
1339   case Instruction::PHI: {
1340     const PHINode *P = cast<PHINode>(I);
1341     // Handle the case of a simple two-predecessor recurrence PHI.
1342     // There's a lot more that could theoretically be done here, but
1343     // this is sufficient to catch some interesting cases.
1344     if (P->getNumIncomingValues() == 2) {
1345       for (unsigned i = 0; i != 2; ++i) {
1346         Value *L = P->getIncomingValue(i);
1347         Value *R = P->getIncomingValue(!i);
1348         Operator *LU = dyn_cast<Operator>(L);
1349         if (!LU)
1350           continue;
1351         unsigned Opcode = LU->getOpcode();
1352         // Check for operations that have the property that if
1353         // both their operands have low zero bits, the result
1354         // will have low zero bits.
1355         if (Opcode == Instruction::Add ||
1356             Opcode == Instruction::Sub ||
1357             Opcode == Instruction::And ||
1358             Opcode == Instruction::Or ||
1359             Opcode == Instruction::Mul) {
1360           Value *LL = LU->getOperand(0);
1361           Value *LR = LU->getOperand(1);
1362           // Find a recurrence.
1363           if (LL == I)
1364             L = LR;
1365           else if (LR == I)
1366             L = LL;
1367           else
1368             break;
1369           // Ok, we have a PHI of the form L op= R. Check for low
1370           // zero bits.
1371           computeKnownBits(R, Known2, Depth + 1, Q);
1372 
1373           // We need to take the minimum number of known bits
1374           KnownBits Known3(Known);
1375           computeKnownBits(L, Known3, Depth + 1, Q);
1376 
1377           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1378                                          Known3.countMinTrailingZeros()));
1379 
1380           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1381           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1382             // If initial value of recurrence is nonnegative, and we are adding
1383             // a nonnegative number with nsw, the result can only be nonnegative
1384             // or poison value regardless of the number of times we execute the
1385             // add in phi recurrence. If initial value is negative and we are
1386             // adding a negative number with nsw, the result can only be
1387             // negative or poison value. Similar arguments apply to sub and mul.
1388             //
1389             // (add non-negative, non-negative) --> non-negative
1390             // (add negative, negative) --> negative
1391             if (Opcode == Instruction::Add) {
1392               if (Known2.isNonNegative() && Known3.isNonNegative())
1393                 Known.makeNonNegative();
1394               else if (Known2.isNegative() && Known3.isNegative())
1395                 Known.makeNegative();
1396             }
1397 
1398             // (sub nsw non-negative, negative) --> non-negative
1399             // (sub nsw negative, non-negative) --> negative
1400             else if (Opcode == Instruction::Sub && LL == I) {
1401               if (Known2.isNonNegative() && Known3.isNegative())
1402                 Known.makeNonNegative();
1403               else if (Known2.isNegative() && Known3.isNonNegative())
1404                 Known.makeNegative();
1405             }
1406 
1407             // (mul nsw non-negative, non-negative) --> non-negative
1408             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1409                      Known3.isNonNegative())
1410               Known.makeNonNegative();
1411           }
1412 
1413           break;
1414         }
1415       }
1416     }
1417 
1418     // Unreachable blocks may have zero-operand PHI nodes.
1419     if (P->getNumIncomingValues() == 0)
1420       break;
1421 
1422     // Otherwise take the unions of the known bit sets of the operands,
1423     // taking conservative care to avoid excessive recursion.
1424     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1425       // Skip if every incoming value references to ourself.
1426       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1427         break;
1428 
1429       Known.Zero.setAllBits();
1430       Known.One.setAllBits();
1431       for (Value *IncValue : P->incoming_values()) {
1432         // Skip direct self references.
1433         if (IncValue == P) continue;
1434 
1435         Known2 = KnownBits(BitWidth);
1436         // Recurse, but cap the recursion to one level, because we don't
1437         // want to waste time spinning around in loops.
1438         computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1439         Known.Zero &= Known2.Zero;
1440         Known.One &= Known2.One;
1441         // If all bits have been ruled out, there's no need to check
1442         // more operands.
1443         if (!Known.Zero && !Known.One)
1444           break;
1445       }
1446     }
1447     break;
1448   }
1449   case Instruction::Call:
1450   case Instruction::Invoke:
1451     // If range metadata is attached to this call, set known bits from that,
1452     // and then intersect with known bits based on other properties of the
1453     // function.
1454     if (MDNode *MD =
1455             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1456       computeKnownBitsFromRangeMetadata(*MD, Known);
1457     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1458       computeKnownBits(RV, Known2, Depth + 1, Q);
1459       Known.Zero |= Known2.Zero;
1460       Known.One |= Known2.One;
1461     }
1462     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1463       switch (II->getIntrinsicID()) {
1464       default: break;
1465       case Intrinsic::bitreverse:
1466         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1467         Known.Zero |= Known2.Zero.reverseBits();
1468         Known.One |= Known2.One.reverseBits();
1469         break;
1470       case Intrinsic::bswap:
1471         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1472         Known.Zero |= Known2.Zero.byteSwap();
1473         Known.One |= Known2.One.byteSwap();
1474         break;
1475       case Intrinsic::ctlz: {
1476         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1477         // If we have a known 1, its position is our upper bound.
1478         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1479         // If this call is undefined for 0, the result will be less than 2^n.
1480         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1481           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1482         unsigned LowBits = Log2_32(PossibleLZ)+1;
1483         Known.Zero.setBitsFrom(LowBits);
1484         break;
1485       }
1486       case Intrinsic::cttz: {
1487         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1488         // If we have a known 1, its position is our upper bound.
1489         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1490         // If this call is undefined for 0, the result will be less than 2^n.
1491         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1492           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1493         unsigned LowBits = Log2_32(PossibleTZ)+1;
1494         Known.Zero.setBitsFrom(LowBits);
1495         break;
1496       }
1497       case Intrinsic::ctpop: {
1498         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1499         // We can bound the space the count needs.  Also, bits known to be zero
1500         // can't contribute to the population.
1501         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1502         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1503         Known.Zero.setBitsFrom(LowBits);
1504         // TODO: we could bound KnownOne using the lower bound on the number
1505         // of bits which might be set provided by popcnt KnownOne2.
1506         break;
1507       }
1508       case Intrinsic::fshr:
1509       case Intrinsic::fshl: {
1510         const APInt *SA;
1511         if (!match(I->getOperand(2), m_APInt(SA)))
1512           break;
1513 
1514         // Normalize to funnel shift left.
1515         uint64_t ShiftAmt = SA->urem(BitWidth);
1516         if (II->getIntrinsicID() == Intrinsic::fshr)
1517           ShiftAmt = BitWidth - ShiftAmt;
1518 
1519         KnownBits Known3(Known);
1520         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1521         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1522 
1523         Known.Zero =
1524             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1525         Known.One =
1526             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1527         break;
1528       }
1529       case Intrinsic::x86_sse42_crc32_64_64:
1530         Known.Zero.setBitsFrom(32);
1531         break;
1532       }
1533     }
1534     break;
1535   case Instruction::ExtractElement:
1536     // Look through extract element. At the moment we keep this simple and skip
1537     // tracking the specific element. But at least we might find information
1538     // valid for all elements of the vector (for example if vector is sign
1539     // extended, shifted, etc).
1540     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1541     break;
1542   case Instruction::ExtractValue:
1543     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1544       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1545       if (EVI->getNumIndices() != 1) break;
1546       if (EVI->getIndices()[0] == 0) {
1547         switch (II->getIntrinsicID()) {
1548         default: break;
1549         case Intrinsic::uadd_with_overflow:
1550         case Intrinsic::sadd_with_overflow:
1551           computeKnownBitsAddSub(true, II->getArgOperand(0),
1552                                  II->getArgOperand(1), false, Known, Known2,
1553                                  Depth, Q);
1554           break;
1555         case Intrinsic::usub_with_overflow:
1556         case Intrinsic::ssub_with_overflow:
1557           computeKnownBitsAddSub(false, II->getArgOperand(0),
1558                                  II->getArgOperand(1), false, Known, Known2,
1559                                  Depth, Q);
1560           break;
1561         case Intrinsic::umul_with_overflow:
1562         case Intrinsic::smul_with_overflow:
1563           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1564                               Known, Known2, Depth, Q);
1565           break;
1566         }
1567       }
1568     }
1569   }
1570 }
1571 
1572 /// Determine which bits of V are known to be either zero or one and return
1573 /// them.
1574 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1575   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1576   computeKnownBits(V, Known, Depth, Q);
1577   return Known;
1578 }
1579 
1580 /// Determine which bits of V are known to be either zero or one and return
1581 /// them in the Known bit set.
1582 ///
1583 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1584 /// we cannot optimize based on the assumption that it is zero without changing
1585 /// it to be an explicit zero.  If we don't change it to zero, other code could
1586 /// optimized based on the contradictory assumption that it is non-zero.
1587 /// Because instcombine aggressively folds operations with undef args anyway,
1588 /// this won't lose us code quality.
1589 ///
1590 /// This function is defined on values with integer type, values with pointer
1591 /// type, and vectors of integers.  In the case
1592 /// where V is a vector, known zero, and known one values are the
1593 /// same width as the vector element, and the bit is set only if it is true
1594 /// for all of the elements in the vector.
1595 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1596                       const Query &Q) {
1597   assert(V && "No Value?");
1598   assert(Depth <= MaxDepth && "Limit Search Depth");
1599   unsigned BitWidth = Known.getBitWidth();
1600 
1601   assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1602           V->getType()->isPtrOrPtrVectorTy()) &&
1603          "Not integer or pointer type!");
1604 
1605   Type *ScalarTy = V->getType()->getScalarType();
1606   unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1607     Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1608   assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1609   (void)BitWidth;
1610   (void)ExpectedWidth;
1611 
1612   const APInt *C;
1613   if (match(V, m_APInt(C))) {
1614     // We know all of the bits for a scalar constant or a splat vector constant!
1615     Known.One = *C;
1616     Known.Zero = ~Known.One;
1617     return;
1618   }
1619   // Null and aggregate-zero are all-zeros.
1620   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1621     Known.setAllZero();
1622     return;
1623   }
1624   // Handle a constant vector by taking the intersection of the known bits of
1625   // each element.
1626   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1627     // We know that CDS must be a vector of integers. Take the intersection of
1628     // each element.
1629     Known.Zero.setAllBits(); Known.One.setAllBits();
1630     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1631       APInt Elt = CDS->getElementAsAPInt(i);
1632       Known.Zero &= ~Elt;
1633       Known.One &= Elt;
1634     }
1635     return;
1636   }
1637 
1638   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1639     // We know that CV must be a vector of integers. Take the intersection of
1640     // each element.
1641     Known.Zero.setAllBits(); Known.One.setAllBits();
1642     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1643       Constant *Element = CV->getAggregateElement(i);
1644       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1645       if (!ElementCI) {
1646         Known.resetAll();
1647         return;
1648       }
1649       const APInt &Elt = ElementCI->getValue();
1650       Known.Zero &= ~Elt;
1651       Known.One &= Elt;
1652     }
1653     return;
1654   }
1655 
1656   // Start out not knowing anything.
1657   Known.resetAll();
1658 
1659   // We can't imply anything about undefs.
1660   if (isa<UndefValue>(V))
1661     return;
1662 
1663   // There's no point in looking through other users of ConstantData for
1664   // assumptions.  Confirm that we've handled them all.
1665   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1666 
1667   // Limit search depth.
1668   // All recursive calls that increase depth must come after this.
1669   if (Depth == MaxDepth)
1670     return;
1671 
1672   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1673   // the bits of its aliasee.
1674   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1675     if (!GA->isInterposable())
1676       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1677     return;
1678   }
1679 
1680   if (const Operator *I = dyn_cast<Operator>(V))
1681     computeKnownBitsFromOperator(I, Known, Depth, Q);
1682 
1683   // Aligned pointers have trailing zeros - refine Known.Zero set
1684   if (V->getType()->isPointerTy()) {
1685     unsigned Align = V->getPointerAlignment(Q.DL);
1686     if (Align)
1687       Known.Zero.setLowBits(countTrailingZeros(Align));
1688   }
1689 
1690   // computeKnownBitsFromAssume strictly refines Known.
1691   // Therefore, we run them after computeKnownBitsFromOperator.
1692 
1693   // Check whether a nearby assume intrinsic can determine some known bits.
1694   computeKnownBitsFromAssume(V, Known, Depth, Q);
1695 
1696   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1697 }
1698 
1699 /// Return true if the given value is known to have exactly one
1700 /// bit set when defined. For vectors return true if every element is known to
1701 /// be a power of two when defined. Supports values with integer or pointer
1702 /// types and vectors of integers.
1703 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1704                             const Query &Q) {
1705   assert(Depth <= MaxDepth && "Limit Search Depth");
1706 
1707   // Attempt to match against constants.
1708   if (OrZero && match(V, m_Power2OrZero()))
1709       return true;
1710   if (match(V, m_Power2()))
1711       return true;
1712 
1713   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1714   // it is shifted off the end then the result is undefined.
1715   if (match(V, m_Shl(m_One(), m_Value())))
1716     return true;
1717 
1718   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1719   // the bottom.  If it is shifted off the bottom then the result is undefined.
1720   if (match(V, m_LShr(m_SignMask(), m_Value())))
1721     return true;
1722 
1723   // The remaining tests are all recursive, so bail out if we hit the limit.
1724   if (Depth++ == MaxDepth)
1725     return false;
1726 
1727   Value *X = nullptr, *Y = nullptr;
1728   // A shift left or a logical shift right of a power of two is a power of two
1729   // or zero.
1730   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1731                  match(V, m_LShr(m_Value(X), m_Value()))))
1732     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1733 
1734   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1735     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1736 
1737   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1738     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1739            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1740 
1741   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1742     // A power of two and'd with anything is a power of two or zero.
1743     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1744         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1745       return true;
1746     // X & (-X) is always a power of two or zero.
1747     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1748       return true;
1749     return false;
1750   }
1751 
1752   // Adding a power-of-two or zero to the same power-of-two or zero yields
1753   // either the original power-of-two, a larger power-of-two or zero.
1754   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1755     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1756     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1757         Q.IIQ.hasNoSignedWrap(VOBO)) {
1758       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1759           match(X, m_And(m_Value(), m_Specific(Y))))
1760         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1761           return true;
1762       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1763           match(Y, m_And(m_Value(), m_Specific(X))))
1764         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1765           return true;
1766 
1767       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1768       KnownBits LHSBits(BitWidth);
1769       computeKnownBits(X, LHSBits, Depth, Q);
1770 
1771       KnownBits RHSBits(BitWidth);
1772       computeKnownBits(Y, RHSBits, Depth, Q);
1773       // If i8 V is a power of two or zero:
1774       //  ZeroBits: 1 1 1 0 1 1 1 1
1775       // ~ZeroBits: 0 0 0 1 0 0 0 0
1776       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1777         // If OrZero isn't set, we cannot give back a zero result.
1778         // Make sure either the LHS or RHS has a bit set.
1779         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1780           return true;
1781     }
1782   }
1783 
1784   // An exact divide or right shift can only shift off zero bits, so the result
1785   // is a power of two only if the first operand is a power of two and not
1786   // copying a sign bit (sdiv int_min, 2).
1787   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1788       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1789     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1790                                   Depth, Q);
1791   }
1792 
1793   return false;
1794 }
1795 
1796 /// Test whether a GEP's result is known to be non-null.
1797 ///
1798 /// Uses properties inherent in a GEP to try to determine whether it is known
1799 /// to be non-null.
1800 ///
1801 /// Currently this routine does not support vector GEPs.
1802 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1803                               const Query &Q) {
1804   const Function *F = nullptr;
1805   if (const Instruction *I = dyn_cast<Instruction>(GEP))
1806     F = I->getFunction();
1807 
1808   if (!GEP->isInBounds() ||
1809       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1810     return false;
1811 
1812   // FIXME: Support vector-GEPs.
1813   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1814 
1815   // If the base pointer is non-null, we cannot walk to a null address with an
1816   // inbounds GEP in address space zero.
1817   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1818     return true;
1819 
1820   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1821   // If so, then the GEP cannot produce a null pointer, as doing so would
1822   // inherently violate the inbounds contract within address space zero.
1823   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1824        GTI != GTE; ++GTI) {
1825     // Struct types are easy -- they must always be indexed by a constant.
1826     if (StructType *STy = GTI.getStructTypeOrNull()) {
1827       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1828       unsigned ElementIdx = OpC->getZExtValue();
1829       const StructLayout *SL = Q.DL.getStructLayout(STy);
1830       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1831       if (ElementOffset > 0)
1832         return true;
1833       continue;
1834     }
1835 
1836     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1837     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1838       continue;
1839 
1840     // Fast path the constant operand case both for efficiency and so we don't
1841     // increment Depth when just zipping down an all-constant GEP.
1842     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1843       if (!OpC->isZero())
1844         return true;
1845       continue;
1846     }
1847 
1848     // We post-increment Depth here because while isKnownNonZero increments it
1849     // as well, when we pop back up that increment won't persist. We don't want
1850     // to recurse 10k times just because we have 10k GEP operands. We don't
1851     // bail completely out because we want to handle constant GEPs regardless
1852     // of depth.
1853     if (Depth++ >= MaxDepth)
1854       continue;
1855 
1856     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1857       return true;
1858   }
1859 
1860   return false;
1861 }
1862 
1863 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1864                                                   const Instruction *CtxI,
1865                                                   const DominatorTree *DT) {
1866   assert(V->getType()->isPointerTy() && "V must be pointer type");
1867   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1868 
1869   if (!CtxI || !DT)
1870     return false;
1871 
1872   unsigned NumUsesExplored = 0;
1873   for (auto *U : V->users()) {
1874     // Avoid massive lists
1875     if (NumUsesExplored >= DomConditionsMaxUses)
1876       break;
1877     NumUsesExplored++;
1878 
1879     // If the value is used as an argument to a call or invoke, then argument
1880     // attributes may provide an answer about null-ness.
1881     if (auto CS = ImmutableCallSite(U))
1882       if (auto *CalledFunc = CS.getCalledFunction())
1883         for (const Argument &Arg : CalledFunc->args())
1884           if (CS.getArgOperand(Arg.getArgNo()) == V &&
1885               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1886             return true;
1887 
1888     // Consider only compare instructions uniquely controlling a branch
1889     CmpInst::Predicate Pred;
1890     if (!match(const_cast<User *>(U),
1891                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1892         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1893       continue;
1894 
1895     SmallVector<const User *, 4> WorkList;
1896     SmallPtrSet<const User *, 4> Visited;
1897     for (auto *CmpU : U->users()) {
1898       assert(WorkList.empty() && "Should be!");
1899       if (Visited.insert(CmpU).second)
1900         WorkList.push_back(CmpU);
1901 
1902       while (!WorkList.empty()) {
1903         auto *Curr = WorkList.pop_back_val();
1904 
1905         // If a user is an AND, add all its users to the work list. We only
1906         // propagate "pred != null" condition through AND because it is only
1907         // correct to assume that all conditions of AND are met in true branch.
1908         // TODO: Support similar logic of OR and EQ predicate?
1909         if (Pred == ICmpInst::ICMP_NE)
1910           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1911             if (BO->getOpcode() == Instruction::And) {
1912               for (auto *BOU : BO->users())
1913                 if (Visited.insert(BOU).second)
1914                   WorkList.push_back(BOU);
1915               continue;
1916             }
1917 
1918         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1919           assert(BI->isConditional() && "uses a comparison!");
1920 
1921           BasicBlock *NonNullSuccessor =
1922               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1923           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1924           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1925             return true;
1926         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1927                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
1928           return true;
1929         }
1930       }
1931     }
1932   }
1933 
1934   return false;
1935 }
1936 
1937 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1938 /// ensure that the value it's attached to is never Value?  'RangeType' is
1939 /// is the type of the value described by the range.
1940 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1941   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1942   assert(NumRanges >= 1);
1943   for (unsigned i = 0; i < NumRanges; ++i) {
1944     ConstantInt *Lower =
1945         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1946     ConstantInt *Upper =
1947         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1948     ConstantRange Range(Lower->getValue(), Upper->getValue());
1949     if (Range.contains(Value))
1950       return false;
1951   }
1952   return true;
1953 }
1954 
1955 /// Return true if the given value is known to be non-zero when defined. For
1956 /// vectors, return true if every element is known to be non-zero when
1957 /// defined. For pointers, if the context instruction and dominator tree are
1958 /// specified, perform context-sensitive analysis and return true if the
1959 /// pointer couldn't possibly be null at the specified instruction.
1960 /// Supports values with integer or pointer type and vectors of integers.
1961 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1962   if (auto *C = dyn_cast<Constant>(V)) {
1963     if (C->isNullValue())
1964       return false;
1965     if (isa<ConstantInt>(C))
1966       // Must be non-zero due to null test above.
1967       return true;
1968 
1969     // For constant vectors, check that all elements are undefined or known
1970     // non-zero to determine that the whole vector is known non-zero.
1971     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1972       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1973         Constant *Elt = C->getAggregateElement(i);
1974         if (!Elt || Elt->isNullValue())
1975           return false;
1976         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1977           return false;
1978       }
1979       return true;
1980     }
1981 
1982     // A global variable in address space 0 is non null unless extern weak
1983     // or an absolute symbol reference. Other address spaces may have null as a
1984     // valid address for a global, so we can't assume anything.
1985     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1986       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1987           GV->getType()->getAddressSpace() == 0)
1988         return true;
1989     } else
1990       return false;
1991   }
1992 
1993   if (auto *I = dyn_cast<Instruction>(V)) {
1994     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
1995       // If the possible ranges don't contain zero, then the value is
1996       // definitely non-zero.
1997       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1998         const APInt ZeroValue(Ty->getBitWidth(), 0);
1999         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2000           return true;
2001       }
2002     }
2003   }
2004 
2005   // Some of the tests below are recursive, so bail out if we hit the limit.
2006   if (Depth++ >= MaxDepth)
2007     return false;
2008 
2009   // Check for pointer simplifications.
2010   if (V->getType()->isPointerTy()) {
2011     // Alloca never returns null, malloc might.
2012     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2013       return true;
2014 
2015     // A byval, inalloca, or nonnull argument is never null.
2016     if (const Argument *A = dyn_cast<Argument>(V))
2017       if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2018         return true;
2019 
2020     // A Load tagged with nonnull metadata is never null.
2021     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2022       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2023         return true;
2024 
2025     if (const auto *Call = dyn_cast<CallBase>(V)) {
2026       if (Call->isReturnNonNull())
2027         return true;
2028       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call))
2029         return isKnownNonZero(RP, Depth, Q);
2030     }
2031   }
2032 
2033 
2034   // Check for recursive pointer simplifications.
2035   if (V->getType()->isPointerTy()) {
2036     if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2037       return true;
2038 
2039     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2040       if (isGEPKnownNonNull(GEP, Depth, Q))
2041         return true;
2042   }
2043 
2044   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2045 
2046   // X | Y != 0 if X != 0 or Y != 0.
2047   Value *X = nullptr, *Y = nullptr;
2048   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2049     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2050 
2051   // ext X != 0 if X != 0.
2052   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2053     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2054 
2055   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2056   // if the lowest bit is shifted off the end.
2057   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2058     // shl nuw can't remove any non-zero bits.
2059     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2060     if (Q.IIQ.hasNoUnsignedWrap(BO))
2061       return isKnownNonZero(X, Depth, Q);
2062 
2063     KnownBits Known(BitWidth);
2064     computeKnownBits(X, Known, Depth, Q);
2065     if (Known.One[0])
2066       return true;
2067   }
2068   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2069   // defined if the sign bit is shifted off the end.
2070   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2071     // shr exact can only shift out zero bits.
2072     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2073     if (BO->isExact())
2074       return isKnownNonZero(X, Depth, Q);
2075 
2076     KnownBits Known = computeKnownBits(X, Depth, Q);
2077     if (Known.isNegative())
2078       return true;
2079 
2080     // If the shifter operand is a constant, and all of the bits shifted
2081     // out are known to be zero, and X is known non-zero then at least one
2082     // non-zero bit must remain.
2083     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2084       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2085       // Is there a known one in the portion not shifted out?
2086       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2087         return true;
2088       // Are all the bits to be shifted out known zero?
2089       if (Known.countMinTrailingZeros() >= ShiftVal)
2090         return isKnownNonZero(X, Depth, Q);
2091     }
2092   }
2093   // div exact can only produce a zero if the dividend is zero.
2094   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2095     return isKnownNonZero(X, Depth, Q);
2096   }
2097   // X + Y.
2098   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2099     KnownBits XKnown = computeKnownBits(X, Depth, Q);
2100     KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2101 
2102     // If X and Y are both non-negative (as signed values) then their sum is not
2103     // zero unless both X and Y are zero.
2104     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2105       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2106         return true;
2107 
2108     // If X and Y are both negative (as signed values) then their sum is not
2109     // zero unless both X and Y equal INT_MIN.
2110     if (XKnown.isNegative() && YKnown.isNegative()) {
2111       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2112       // The sign bit of X is set.  If some other bit is set then X is not equal
2113       // to INT_MIN.
2114       if (XKnown.One.intersects(Mask))
2115         return true;
2116       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2117       // to INT_MIN.
2118       if (YKnown.One.intersects(Mask))
2119         return true;
2120     }
2121 
2122     // The sum of a non-negative number and a power of two is not zero.
2123     if (XKnown.isNonNegative() &&
2124         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2125       return true;
2126     if (YKnown.isNonNegative() &&
2127         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2128       return true;
2129   }
2130   // X * Y.
2131   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2132     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2133     // If X and Y are non-zero then so is X * Y as long as the multiplication
2134     // does not overflow.
2135     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2136         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2137       return true;
2138   }
2139   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2140   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2141     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2142         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2143       return true;
2144   }
2145   // PHI
2146   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2147     // Try and detect a recurrence that monotonically increases from a
2148     // starting value, as these are common as induction variables.
2149     if (PN->getNumIncomingValues() == 2) {
2150       Value *Start = PN->getIncomingValue(0);
2151       Value *Induction = PN->getIncomingValue(1);
2152       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2153         std::swap(Start, Induction);
2154       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2155         if (!C->isZero() && !C->isNegative()) {
2156           ConstantInt *X;
2157           if (Q.IIQ.UseInstrInfo &&
2158               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2159                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2160               !X->isNegative())
2161             return true;
2162         }
2163       }
2164     }
2165     // Check if all incoming values are non-zero constant.
2166     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2167       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2168     });
2169     if (AllNonZeroConstants)
2170       return true;
2171   }
2172 
2173   KnownBits Known(BitWidth);
2174   computeKnownBits(V, Known, Depth, Q);
2175   return Known.One != 0;
2176 }
2177 
2178 /// Return true if V2 == V1 + X, where X is known non-zero.
2179 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2180   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2181   if (!BO || BO->getOpcode() != Instruction::Add)
2182     return false;
2183   Value *Op = nullptr;
2184   if (V2 == BO->getOperand(0))
2185     Op = BO->getOperand(1);
2186   else if (V2 == BO->getOperand(1))
2187     Op = BO->getOperand(0);
2188   else
2189     return false;
2190   return isKnownNonZero(Op, 0, Q);
2191 }
2192 
2193 /// Return true if it is known that V1 != V2.
2194 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2195   if (V1 == V2)
2196     return false;
2197   if (V1->getType() != V2->getType())
2198     // We can't look through casts yet.
2199     return false;
2200   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2201     return true;
2202 
2203   if (V1->getType()->isIntOrIntVectorTy()) {
2204     // Are any known bits in V1 contradictory to known bits in V2? If V1
2205     // has a known zero where V2 has a known one, they must not be equal.
2206     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2207     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2208 
2209     if (Known1.Zero.intersects(Known2.One) ||
2210         Known2.Zero.intersects(Known1.One))
2211       return true;
2212   }
2213   return false;
2214 }
2215 
2216 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2217 /// simplify operations downstream. Mask is known to be zero for bits that V
2218 /// cannot have.
2219 ///
2220 /// This function is defined on values with integer type, values with pointer
2221 /// type, and vectors of integers.  In the case
2222 /// where V is a vector, the mask, known zero, and known one values are the
2223 /// same width as the vector element, and the bit is set only if it is true
2224 /// for all of the elements in the vector.
2225 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2226                        const Query &Q) {
2227   KnownBits Known(Mask.getBitWidth());
2228   computeKnownBits(V, Known, Depth, Q);
2229   return Mask.isSubsetOf(Known.Zero);
2230 }
2231 
2232 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2233 // Returns the input and lower/upper bounds.
2234 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2235                                 const APInt *&CLow, const APInt *&CHigh) {
2236   assert(isa<Operator>(Select) &&
2237          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2238          "Input should be a Select!");
2239 
2240   const Value *LHS, *RHS, *LHS2, *RHS2;
2241   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2242   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2243     return false;
2244 
2245   if (!match(RHS, m_APInt(CLow)))
2246     return false;
2247 
2248   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2249   if (getInverseMinMaxFlavor(SPF) != SPF2)
2250     return false;
2251 
2252   if (!match(RHS2, m_APInt(CHigh)))
2253     return false;
2254 
2255   if (SPF == SPF_SMIN)
2256     std::swap(CLow, CHigh);
2257 
2258   In = LHS2;
2259   return CLow->sle(*CHigh);
2260 }
2261 
2262 /// For vector constants, loop over the elements and find the constant with the
2263 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2264 /// or if any element was not analyzed; otherwise, return the count for the
2265 /// element with the minimum number of sign bits.
2266 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2267                                                  unsigned TyBits) {
2268   const auto *CV = dyn_cast<Constant>(V);
2269   if (!CV || !CV->getType()->isVectorTy())
2270     return 0;
2271 
2272   unsigned MinSignBits = TyBits;
2273   unsigned NumElts = CV->getType()->getVectorNumElements();
2274   for (unsigned i = 0; i != NumElts; ++i) {
2275     // If we find a non-ConstantInt, bail out.
2276     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2277     if (!Elt)
2278       return 0;
2279 
2280     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2281   }
2282 
2283   return MinSignBits;
2284 }
2285 
2286 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2287                                        const Query &Q);
2288 
2289 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2290                                    const Query &Q) {
2291   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2292   assert(Result > 0 && "At least one sign bit needs to be present!");
2293   return Result;
2294 }
2295 
2296 /// Return the number of times the sign bit of the register is replicated into
2297 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2298 /// (itself), but other cases can give us information. For example, immediately
2299 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2300 /// other, so we return 3. For vectors, return the number of sign bits for the
2301 /// vector element with the minimum number of known sign bits.
2302 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2303                                        const Query &Q) {
2304   assert(Depth <= MaxDepth && "Limit Search Depth");
2305 
2306   // We return the minimum number of sign bits that are guaranteed to be present
2307   // in V, so for undef we have to conservatively return 1.  We don't have the
2308   // same behavior for poison though -- that's a FIXME today.
2309 
2310   Type *ScalarTy = V->getType()->getScalarType();
2311   unsigned TyBits = ScalarTy->isPointerTy() ?
2312     Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2313     Q.DL.getTypeSizeInBits(ScalarTy);
2314 
2315   unsigned Tmp, Tmp2;
2316   unsigned FirstAnswer = 1;
2317 
2318   // Note that ConstantInt is handled by the general computeKnownBits case
2319   // below.
2320 
2321   if (Depth == MaxDepth)
2322     return 1;  // Limit search depth.
2323 
2324   const Operator *U = dyn_cast<Operator>(V);
2325   switch (Operator::getOpcode(V)) {
2326   default: break;
2327   case Instruction::SExt:
2328     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2329     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2330 
2331   case Instruction::SDiv: {
2332     const APInt *Denominator;
2333     // sdiv X, C -> adds log(C) sign bits.
2334     if (match(U->getOperand(1), m_APInt(Denominator))) {
2335 
2336       // Ignore non-positive denominator.
2337       if (!Denominator->isStrictlyPositive())
2338         break;
2339 
2340       // Calculate the incoming numerator bits.
2341       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2342 
2343       // Add floor(log(C)) bits to the numerator bits.
2344       return std::min(TyBits, NumBits + Denominator->logBase2());
2345     }
2346     break;
2347   }
2348 
2349   case Instruction::SRem: {
2350     const APInt *Denominator;
2351     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2352     // positive constant.  This let us put a lower bound on the number of sign
2353     // bits.
2354     if (match(U->getOperand(1), m_APInt(Denominator))) {
2355 
2356       // Ignore non-positive denominator.
2357       if (!Denominator->isStrictlyPositive())
2358         break;
2359 
2360       // Calculate the incoming numerator bits. SRem by a positive constant
2361       // can't lower the number of sign bits.
2362       unsigned NumrBits =
2363           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2364 
2365       // Calculate the leading sign bit constraints by examining the
2366       // denominator.  Given that the denominator is positive, there are two
2367       // cases:
2368       //
2369       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2370       //     (1 << ceilLogBase2(C)).
2371       //
2372       //  2. the numerator is negative.  Then the result range is (-C,0] and
2373       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2374       //
2375       // Thus a lower bound on the number of sign bits is `TyBits -
2376       // ceilLogBase2(C)`.
2377 
2378       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2379       return std::max(NumrBits, ResBits);
2380     }
2381     break;
2382   }
2383 
2384   case Instruction::AShr: {
2385     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2386     // ashr X, C   -> adds C sign bits.  Vectors too.
2387     const APInt *ShAmt;
2388     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2389       if (ShAmt->uge(TyBits))
2390         break;  // Bad shift.
2391       unsigned ShAmtLimited = ShAmt->getZExtValue();
2392       Tmp += ShAmtLimited;
2393       if (Tmp > TyBits) Tmp = TyBits;
2394     }
2395     return Tmp;
2396   }
2397   case Instruction::Shl: {
2398     const APInt *ShAmt;
2399     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2400       // shl destroys sign bits.
2401       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2402       if (ShAmt->uge(TyBits) ||      // Bad shift.
2403           ShAmt->uge(Tmp)) break;    // Shifted all sign bits out.
2404       Tmp2 = ShAmt->getZExtValue();
2405       return Tmp - Tmp2;
2406     }
2407     break;
2408   }
2409   case Instruction::And:
2410   case Instruction::Or:
2411   case Instruction::Xor:    // NOT is handled here.
2412     // Logical binary ops preserve the number of sign bits at the worst.
2413     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2414     if (Tmp != 1) {
2415       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2416       FirstAnswer = std::min(Tmp, Tmp2);
2417       // We computed what we know about the sign bits as our first
2418       // answer. Now proceed to the generic code that uses
2419       // computeKnownBits, and pick whichever answer is better.
2420     }
2421     break;
2422 
2423   case Instruction::Select: {
2424     // If we have a clamp pattern, we know that the number of sign bits will be
2425     // the minimum of the clamp min/max range.
2426     const Value *X;
2427     const APInt *CLow, *CHigh;
2428     if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2429       return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2430 
2431     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2432     if (Tmp == 1) break;
2433     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2434     return std::min(Tmp, Tmp2);
2435   }
2436 
2437   case Instruction::Add:
2438     // Add can have at most one carry bit.  Thus we know that the output
2439     // is, at worst, one more bit than the inputs.
2440     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2441     if (Tmp == 1) break;
2442 
2443     // Special case decrementing a value (ADD X, -1):
2444     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2445       if (CRHS->isAllOnesValue()) {
2446         KnownBits Known(TyBits);
2447         computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2448 
2449         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2450         // sign bits set.
2451         if ((Known.Zero | 1).isAllOnesValue())
2452           return TyBits;
2453 
2454         // If we are subtracting one from a positive number, there is no carry
2455         // out of the result.
2456         if (Known.isNonNegative())
2457           return Tmp;
2458       }
2459 
2460     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2461     if (Tmp2 == 1) break;
2462     return std::min(Tmp, Tmp2)-1;
2463 
2464   case Instruction::Sub:
2465     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2466     if (Tmp2 == 1) break;
2467 
2468     // Handle NEG.
2469     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2470       if (CLHS->isNullValue()) {
2471         KnownBits Known(TyBits);
2472         computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2473         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2474         // sign bits set.
2475         if ((Known.Zero | 1).isAllOnesValue())
2476           return TyBits;
2477 
2478         // If the input is known to be positive (the sign bit is known clear),
2479         // the output of the NEG has the same number of sign bits as the input.
2480         if (Known.isNonNegative())
2481           return Tmp2;
2482 
2483         // Otherwise, we treat this like a SUB.
2484       }
2485 
2486     // Sub can have at most one carry bit.  Thus we know that the output
2487     // is, at worst, one more bit than the inputs.
2488     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2489     if (Tmp == 1) break;
2490     return std::min(Tmp, Tmp2)-1;
2491 
2492   case Instruction::Mul: {
2493     // The output of the Mul can be at most twice the valid bits in the inputs.
2494     unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2495     if (SignBitsOp0 == 1) break;
2496     unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2497     if (SignBitsOp1 == 1) break;
2498     unsigned OutValidBits =
2499         (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2500     return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2501   }
2502 
2503   case Instruction::PHI: {
2504     const PHINode *PN = cast<PHINode>(U);
2505     unsigned NumIncomingValues = PN->getNumIncomingValues();
2506     // Don't analyze large in-degree PHIs.
2507     if (NumIncomingValues > 4) break;
2508     // Unreachable blocks may have zero-operand PHI nodes.
2509     if (NumIncomingValues == 0) break;
2510 
2511     // Take the minimum of all incoming values.  This can't infinitely loop
2512     // because of our depth threshold.
2513     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2514     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2515       if (Tmp == 1) return Tmp;
2516       Tmp = std::min(
2517           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2518     }
2519     return Tmp;
2520   }
2521 
2522   case Instruction::Trunc:
2523     // FIXME: it's tricky to do anything useful for this, but it is an important
2524     // case for targets like X86.
2525     break;
2526 
2527   case Instruction::ExtractElement:
2528     // Look through extract element. At the moment we keep this simple and skip
2529     // tracking the specific element. But at least we might find information
2530     // valid for all elements of the vector (for example if vector is sign
2531     // extended, shifted, etc).
2532     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2533 
2534   case Instruction::ShuffleVector: {
2535     // TODO: This is copied almost directly from the SelectionDAG version of
2536     //       ComputeNumSignBits. It would be better if we could share common
2537     //       code. If not, make sure that changes are translated to the DAG.
2538 
2539     // Collect the minimum number of sign bits that are shared by every vector
2540     // element referenced by the shuffle.
2541     auto *Shuf = cast<ShuffleVectorInst>(U);
2542     int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2543     int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2544     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2545     for (int i = 0; i != NumMaskElts; ++i) {
2546       int M = Shuf->getMaskValue(i);
2547       assert(M < NumElts * 2 && "Invalid shuffle mask constant");
2548       // For undef elements, we don't know anything about the common state of
2549       // the shuffle result.
2550       if (M == -1)
2551         return 1;
2552       if (M < NumElts)
2553         DemandedLHS.setBit(M % NumElts);
2554       else
2555         DemandedRHS.setBit(M % NumElts);
2556     }
2557     Tmp = std::numeric_limits<unsigned>::max();
2558     if (!!DemandedLHS)
2559       Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2560     if (!!DemandedRHS) {
2561       Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2562       Tmp = std::min(Tmp, Tmp2);
2563     }
2564     // If we don't know anything, early out and try computeKnownBits fall-back.
2565     if (Tmp == 1)
2566       break;
2567     assert(Tmp <= V->getType()->getScalarSizeInBits() &&
2568            "Failed to determine minimum sign bits");
2569     return Tmp;
2570   }
2571   }
2572 
2573   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2574   // use this information.
2575 
2576   // If we can examine all elements of a vector constant successfully, we're
2577   // done (we can't do any better than that). If not, keep trying.
2578   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2579     return VecSignBits;
2580 
2581   KnownBits Known(TyBits);
2582   computeKnownBits(V, Known, Depth, Q);
2583 
2584   // If we know that the sign bit is either zero or one, determine the number of
2585   // identical bits in the top of the input value.
2586   return std::max(FirstAnswer, Known.countMinSignBits());
2587 }
2588 
2589 /// This function computes the integer multiple of Base that equals V.
2590 /// If successful, it returns true and returns the multiple in
2591 /// Multiple. If unsuccessful, it returns false. It looks
2592 /// through SExt instructions only if LookThroughSExt is true.
2593 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2594                            bool LookThroughSExt, unsigned Depth) {
2595   const unsigned MaxDepth = 6;
2596 
2597   assert(V && "No Value?");
2598   assert(Depth <= MaxDepth && "Limit Search Depth");
2599   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2600 
2601   Type *T = V->getType();
2602 
2603   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2604 
2605   if (Base == 0)
2606     return false;
2607 
2608   if (Base == 1) {
2609     Multiple = V;
2610     return true;
2611   }
2612 
2613   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2614   Constant *BaseVal = ConstantInt::get(T, Base);
2615   if (CO && CO == BaseVal) {
2616     // Multiple is 1.
2617     Multiple = ConstantInt::get(T, 1);
2618     return true;
2619   }
2620 
2621   if (CI && CI->getZExtValue() % Base == 0) {
2622     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2623     return true;
2624   }
2625 
2626   if (Depth == MaxDepth) return false;  // Limit search depth.
2627 
2628   Operator *I = dyn_cast<Operator>(V);
2629   if (!I) return false;
2630 
2631   switch (I->getOpcode()) {
2632   default: break;
2633   case Instruction::SExt:
2634     if (!LookThroughSExt) return false;
2635     // otherwise fall through to ZExt
2636     LLVM_FALLTHROUGH;
2637   case Instruction::ZExt:
2638     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2639                            LookThroughSExt, Depth+1);
2640   case Instruction::Shl:
2641   case Instruction::Mul: {
2642     Value *Op0 = I->getOperand(0);
2643     Value *Op1 = I->getOperand(1);
2644 
2645     if (I->getOpcode() == Instruction::Shl) {
2646       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2647       if (!Op1CI) return false;
2648       // Turn Op0 << Op1 into Op0 * 2^Op1
2649       APInt Op1Int = Op1CI->getValue();
2650       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2651       APInt API(Op1Int.getBitWidth(), 0);
2652       API.setBit(BitToSet);
2653       Op1 = ConstantInt::get(V->getContext(), API);
2654     }
2655 
2656     Value *Mul0 = nullptr;
2657     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2658       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2659         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2660           if (Op1C->getType()->getPrimitiveSizeInBits() <
2661               MulC->getType()->getPrimitiveSizeInBits())
2662             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2663           if (Op1C->getType()->getPrimitiveSizeInBits() >
2664               MulC->getType()->getPrimitiveSizeInBits())
2665             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2666 
2667           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2668           Multiple = ConstantExpr::getMul(MulC, Op1C);
2669           return true;
2670         }
2671 
2672       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2673         if (Mul0CI->getValue() == 1) {
2674           // V == Base * Op1, so return Op1
2675           Multiple = Op1;
2676           return true;
2677         }
2678     }
2679 
2680     Value *Mul1 = nullptr;
2681     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2682       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2683         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2684           if (Op0C->getType()->getPrimitiveSizeInBits() <
2685               MulC->getType()->getPrimitiveSizeInBits())
2686             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2687           if (Op0C->getType()->getPrimitiveSizeInBits() >
2688               MulC->getType()->getPrimitiveSizeInBits())
2689             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2690 
2691           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2692           Multiple = ConstantExpr::getMul(MulC, Op0C);
2693           return true;
2694         }
2695 
2696       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2697         if (Mul1CI->getValue() == 1) {
2698           // V == Base * Op0, so return Op0
2699           Multiple = Op0;
2700           return true;
2701         }
2702     }
2703   }
2704   }
2705 
2706   // We could not determine if V is a multiple of Base.
2707   return false;
2708 }
2709 
2710 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2711                                             const TargetLibraryInfo *TLI) {
2712   const Function *F = ICS.getCalledFunction();
2713   if (!F)
2714     return Intrinsic::not_intrinsic;
2715 
2716   if (F->isIntrinsic())
2717     return F->getIntrinsicID();
2718 
2719   if (!TLI)
2720     return Intrinsic::not_intrinsic;
2721 
2722   LibFunc Func;
2723   // We're going to make assumptions on the semantics of the functions, check
2724   // that the target knows that it's available in this environment and it does
2725   // not have local linkage.
2726   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2727     return Intrinsic::not_intrinsic;
2728 
2729   if (!ICS.onlyReadsMemory())
2730     return Intrinsic::not_intrinsic;
2731 
2732   // Otherwise check if we have a call to a function that can be turned into a
2733   // vector intrinsic.
2734   switch (Func) {
2735   default:
2736     break;
2737   case LibFunc_sin:
2738   case LibFunc_sinf:
2739   case LibFunc_sinl:
2740     return Intrinsic::sin;
2741   case LibFunc_cos:
2742   case LibFunc_cosf:
2743   case LibFunc_cosl:
2744     return Intrinsic::cos;
2745   case LibFunc_exp:
2746   case LibFunc_expf:
2747   case LibFunc_expl:
2748     return Intrinsic::exp;
2749   case LibFunc_exp2:
2750   case LibFunc_exp2f:
2751   case LibFunc_exp2l:
2752     return Intrinsic::exp2;
2753   case LibFunc_log:
2754   case LibFunc_logf:
2755   case LibFunc_logl:
2756     return Intrinsic::log;
2757   case LibFunc_log10:
2758   case LibFunc_log10f:
2759   case LibFunc_log10l:
2760     return Intrinsic::log10;
2761   case LibFunc_log2:
2762   case LibFunc_log2f:
2763   case LibFunc_log2l:
2764     return Intrinsic::log2;
2765   case LibFunc_fabs:
2766   case LibFunc_fabsf:
2767   case LibFunc_fabsl:
2768     return Intrinsic::fabs;
2769   case LibFunc_fmin:
2770   case LibFunc_fminf:
2771   case LibFunc_fminl:
2772     return Intrinsic::minnum;
2773   case LibFunc_fmax:
2774   case LibFunc_fmaxf:
2775   case LibFunc_fmaxl:
2776     return Intrinsic::maxnum;
2777   case LibFunc_copysign:
2778   case LibFunc_copysignf:
2779   case LibFunc_copysignl:
2780     return Intrinsic::copysign;
2781   case LibFunc_floor:
2782   case LibFunc_floorf:
2783   case LibFunc_floorl:
2784     return Intrinsic::floor;
2785   case LibFunc_ceil:
2786   case LibFunc_ceilf:
2787   case LibFunc_ceill:
2788     return Intrinsic::ceil;
2789   case LibFunc_trunc:
2790   case LibFunc_truncf:
2791   case LibFunc_truncl:
2792     return Intrinsic::trunc;
2793   case LibFunc_rint:
2794   case LibFunc_rintf:
2795   case LibFunc_rintl:
2796     return Intrinsic::rint;
2797   case LibFunc_nearbyint:
2798   case LibFunc_nearbyintf:
2799   case LibFunc_nearbyintl:
2800     return Intrinsic::nearbyint;
2801   case LibFunc_round:
2802   case LibFunc_roundf:
2803   case LibFunc_roundl:
2804     return Intrinsic::round;
2805   case LibFunc_pow:
2806   case LibFunc_powf:
2807   case LibFunc_powl:
2808     return Intrinsic::pow;
2809   case LibFunc_sqrt:
2810   case LibFunc_sqrtf:
2811   case LibFunc_sqrtl:
2812     return Intrinsic::sqrt;
2813   }
2814 
2815   return Intrinsic::not_intrinsic;
2816 }
2817 
2818 /// Return true if we can prove that the specified FP value is never equal to
2819 /// -0.0.
2820 ///
2821 /// NOTE: this function will need to be revisited when we support non-default
2822 /// rounding modes!
2823 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2824                                 unsigned Depth) {
2825   if (auto *CFP = dyn_cast<ConstantFP>(V))
2826     return !CFP->getValueAPF().isNegZero();
2827 
2828   // Limit search depth.
2829   if (Depth == MaxDepth)
2830     return false;
2831 
2832   auto *Op = dyn_cast<Operator>(V);
2833   if (!Op)
2834     return false;
2835 
2836   // Check if the nsz fast-math flag is set.
2837   if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2838     if (FPO->hasNoSignedZeros())
2839       return true;
2840 
2841   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2842   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2843     return true;
2844 
2845   // sitofp and uitofp turn into +0.0 for zero.
2846   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2847     return true;
2848 
2849   if (auto *Call = dyn_cast<CallInst>(Op)) {
2850     Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2851     switch (IID) {
2852     default:
2853       break;
2854     // sqrt(-0.0) = -0.0, no other negative results are possible.
2855     case Intrinsic::sqrt:
2856     case Intrinsic::canonicalize:
2857       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2858     // fabs(x) != -0.0
2859     case Intrinsic::fabs:
2860       return true;
2861     }
2862   }
2863 
2864   return false;
2865 }
2866 
2867 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2868 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2869 /// bit despite comparing equal.
2870 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2871                                             const TargetLibraryInfo *TLI,
2872                                             bool SignBitOnly,
2873                                             unsigned Depth) {
2874   // TODO: This function does not do the right thing when SignBitOnly is true
2875   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2876   // which flips the sign bits of NaNs.  See
2877   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2878 
2879   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2880     return !CFP->getValueAPF().isNegative() ||
2881            (!SignBitOnly && CFP->getValueAPF().isZero());
2882   }
2883 
2884   // Handle vector of constants.
2885   if (auto *CV = dyn_cast<Constant>(V)) {
2886     if (CV->getType()->isVectorTy()) {
2887       unsigned NumElts = CV->getType()->getVectorNumElements();
2888       for (unsigned i = 0; i != NumElts; ++i) {
2889         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2890         if (!CFP)
2891           return false;
2892         if (CFP->getValueAPF().isNegative() &&
2893             (SignBitOnly || !CFP->getValueAPF().isZero()))
2894           return false;
2895       }
2896 
2897       // All non-negative ConstantFPs.
2898       return true;
2899     }
2900   }
2901 
2902   if (Depth == MaxDepth)
2903     return false; // Limit search depth.
2904 
2905   const Operator *I = dyn_cast<Operator>(V);
2906   if (!I)
2907     return false;
2908 
2909   switch (I->getOpcode()) {
2910   default:
2911     break;
2912   // Unsigned integers are always nonnegative.
2913   case Instruction::UIToFP:
2914     return true;
2915   case Instruction::FMul:
2916     // x*x is always non-negative or a NaN.
2917     if (I->getOperand(0) == I->getOperand(1) &&
2918         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2919       return true;
2920 
2921     LLVM_FALLTHROUGH;
2922   case Instruction::FAdd:
2923   case Instruction::FDiv:
2924   case Instruction::FRem:
2925     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2926                                            Depth + 1) &&
2927            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2928                                            Depth + 1);
2929   case Instruction::Select:
2930     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2931                                            Depth + 1) &&
2932            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2933                                            Depth + 1);
2934   case Instruction::FPExt:
2935   case Instruction::FPTrunc:
2936     // Widening/narrowing never change sign.
2937     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2938                                            Depth + 1);
2939   case Instruction::ExtractElement:
2940     // Look through extract element. At the moment we keep this simple and skip
2941     // tracking the specific element. But at least we might find information
2942     // valid for all elements of the vector.
2943     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2944                                            Depth + 1);
2945   case Instruction::Call:
2946     const auto *CI = cast<CallInst>(I);
2947     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2948     switch (IID) {
2949     default:
2950       break;
2951     case Intrinsic::maxnum:
2952       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
2953               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2954                                               SignBitOnly, Depth + 1)) ||
2955             (isKnownNeverNaN(I->getOperand(1), TLI) &&
2956               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2957                                               SignBitOnly, Depth + 1));
2958 
2959     case Intrinsic::maximum:
2960       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2961                                              Depth + 1) ||
2962              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2963                                              Depth + 1);
2964     case Intrinsic::minnum:
2965     case Intrinsic::minimum:
2966       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2967                                              Depth + 1) &&
2968              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2969                                              Depth + 1);
2970     case Intrinsic::exp:
2971     case Intrinsic::exp2:
2972     case Intrinsic::fabs:
2973       return true;
2974 
2975     case Intrinsic::sqrt:
2976       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
2977       if (!SignBitOnly)
2978         return true;
2979       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2980                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
2981 
2982     case Intrinsic::powi:
2983       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
2984         // powi(x,n) is non-negative if n is even.
2985         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
2986           return true;
2987       }
2988       // TODO: This is not correct.  Given that exp is an integer, here are the
2989       // ways that pow can return a negative value:
2990       //
2991       //   pow(x, exp)    --> negative if exp is odd and x is negative.
2992       //   pow(-0, exp)   --> -inf if exp is negative odd.
2993       //   pow(-0, exp)   --> -0 if exp is positive odd.
2994       //   pow(-inf, exp) --> -0 if exp is negative odd.
2995       //   pow(-inf, exp) --> -inf if exp is positive odd.
2996       //
2997       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2998       // but we must return false if x == -0.  Unfortunately we do not currently
2999       // have a way of expressing this constraint.  See details in
3000       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3001       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3002                                              Depth + 1);
3003 
3004     case Intrinsic::fma:
3005     case Intrinsic::fmuladd:
3006       // x*x+y is non-negative if y is non-negative.
3007       return I->getOperand(0) == I->getOperand(1) &&
3008              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3009              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3010                                              Depth + 1);
3011     }
3012     break;
3013   }
3014   return false;
3015 }
3016 
3017 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3018                                        const TargetLibraryInfo *TLI) {
3019   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3020 }
3021 
3022 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3023   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3024 }
3025 
3026 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3027                            unsigned Depth) {
3028   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3029 
3030   // If we're told that NaNs won't happen, assume they won't.
3031   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3032     if (FPMathOp->hasNoNaNs())
3033       return true;
3034 
3035   // Handle scalar constants.
3036   if (auto *CFP = dyn_cast<ConstantFP>(V))
3037     return !CFP->isNaN();
3038 
3039   if (Depth == MaxDepth)
3040     return false;
3041 
3042   if (auto *Inst = dyn_cast<Instruction>(V)) {
3043     switch (Inst->getOpcode()) {
3044     case Instruction::FAdd:
3045     case Instruction::FMul:
3046     case Instruction::FSub:
3047     case Instruction::FDiv:
3048     case Instruction::FRem: {
3049       // TODO: Need isKnownNeverInfinity
3050       return false;
3051     }
3052     case Instruction::Select: {
3053       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3054              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3055     }
3056     case Instruction::SIToFP:
3057     case Instruction::UIToFP:
3058       return true;
3059     case Instruction::FPTrunc:
3060     case Instruction::FPExt:
3061       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3062     default:
3063       break;
3064     }
3065   }
3066 
3067   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3068     switch (II->getIntrinsicID()) {
3069     case Intrinsic::canonicalize:
3070     case Intrinsic::fabs:
3071     case Intrinsic::copysign:
3072     case Intrinsic::exp:
3073     case Intrinsic::exp2:
3074     case Intrinsic::floor:
3075     case Intrinsic::ceil:
3076     case Intrinsic::trunc:
3077     case Intrinsic::rint:
3078     case Intrinsic::nearbyint:
3079     case Intrinsic::round:
3080       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3081     case Intrinsic::sqrt:
3082       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3083              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3084     default:
3085       return false;
3086     }
3087   }
3088 
3089   // Bail out for constant expressions, but try to handle vector constants.
3090   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3091     return false;
3092 
3093   // For vectors, verify that each element is not NaN.
3094   unsigned NumElts = V->getType()->getVectorNumElements();
3095   for (unsigned i = 0; i != NumElts; ++i) {
3096     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3097     if (!Elt)
3098       return false;
3099     if (isa<UndefValue>(Elt))
3100       continue;
3101     auto *CElt = dyn_cast<ConstantFP>(Elt);
3102     if (!CElt || CElt->isNaN())
3103       return false;
3104   }
3105   // All elements were confirmed not-NaN or undefined.
3106   return true;
3107 }
3108 
3109 Value *llvm::isBytewiseValue(Value *V) {
3110 
3111   // All byte-wide stores are splatable, even of arbitrary variables.
3112   if (V->getType()->isIntegerTy(8))
3113     return V;
3114 
3115   LLVMContext &Ctx = V->getContext();
3116 
3117   // Undef don't care.
3118   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3119   if (isa<UndefValue>(V))
3120     return UndefInt8;
3121 
3122   Constant *C = dyn_cast<Constant>(V);
3123   if (!C) {
3124     // Conceptually, we could handle things like:
3125     //   %a = zext i8 %X to i16
3126     //   %b = shl i16 %a, 8
3127     //   %c = or i16 %a, %b
3128     // but until there is an example that actually needs this, it doesn't seem
3129     // worth worrying about.
3130     return nullptr;
3131   }
3132 
3133   // Handle 'null' ConstantArrayZero etc.
3134   if (C->isNullValue())
3135     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3136 
3137   // Constant floating-point values can be handled as integer values if the
3138   // corresponding integer value is "byteable".  An important case is 0.0.
3139   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3140     Type *Ty = nullptr;
3141     if (CFP->getType()->isHalfTy())
3142       Ty = Type::getInt16Ty(Ctx);
3143     else if (CFP->getType()->isFloatTy())
3144       Ty = Type::getInt32Ty(Ctx);
3145     else if (CFP->getType()->isDoubleTy())
3146       Ty = Type::getInt64Ty(Ctx);
3147     // Don't handle long double formats, which have strange constraints.
3148     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
3149   }
3150 
3151   // We can handle constant integers that are multiple of 8 bits.
3152   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3153     if (CI->getBitWidth() % 8 == 0) {
3154       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3155       if (!CI->getValue().isSplat(8))
3156         return nullptr;
3157       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3158     }
3159   }
3160 
3161   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3162     if (LHS == RHS)
3163       return LHS;
3164     if (!LHS || !RHS)
3165       return nullptr;
3166     if (LHS == UndefInt8)
3167       return RHS;
3168     if (RHS == UndefInt8)
3169       return LHS;
3170     return nullptr;
3171   };
3172 
3173   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3174     Value *Val = UndefInt8;
3175     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3176       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
3177         return nullptr;
3178     return Val;
3179   }
3180 
3181   if (isa<ConstantVector>(C)) {
3182     Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3183     return Splat ? isBytewiseValue(Splat) : nullptr;
3184   }
3185 
3186   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3187     Value *Val = UndefInt8;
3188     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3189       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3190         return nullptr;
3191     return Val;
3192   }
3193 
3194   // Don't try to handle the handful of other constants.
3195   return nullptr;
3196 }
3197 
3198 // This is the recursive version of BuildSubAggregate. It takes a few different
3199 // arguments. Idxs is the index within the nested struct From that we are
3200 // looking at now (which is of type IndexedType). IdxSkip is the number of
3201 // indices from Idxs that should be left out when inserting into the resulting
3202 // struct. To is the result struct built so far, new insertvalue instructions
3203 // build on that.
3204 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3205                                 SmallVectorImpl<unsigned> &Idxs,
3206                                 unsigned IdxSkip,
3207                                 Instruction *InsertBefore) {
3208   StructType *STy = dyn_cast<StructType>(IndexedType);
3209   if (STy) {
3210     // Save the original To argument so we can modify it
3211     Value *OrigTo = To;
3212     // General case, the type indexed by Idxs is a struct
3213     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3214       // Process each struct element recursively
3215       Idxs.push_back(i);
3216       Value *PrevTo = To;
3217       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3218                              InsertBefore);
3219       Idxs.pop_back();
3220       if (!To) {
3221         // Couldn't find any inserted value for this index? Cleanup
3222         while (PrevTo != OrigTo) {
3223           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3224           PrevTo = Del->getAggregateOperand();
3225           Del->eraseFromParent();
3226         }
3227         // Stop processing elements
3228         break;
3229       }
3230     }
3231     // If we successfully found a value for each of our subaggregates
3232     if (To)
3233       return To;
3234   }
3235   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3236   // the struct's elements had a value that was inserted directly. In the latter
3237   // case, perhaps we can't determine each of the subelements individually, but
3238   // we might be able to find the complete struct somewhere.
3239 
3240   // Find the value that is at that particular spot
3241   Value *V = FindInsertedValue(From, Idxs);
3242 
3243   if (!V)
3244     return nullptr;
3245 
3246   // Insert the value in the new (sub) aggregate
3247   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3248                                  "tmp", InsertBefore);
3249 }
3250 
3251 // This helper takes a nested struct and extracts a part of it (which is again a
3252 // struct) into a new value. For example, given the struct:
3253 // { a, { b, { c, d }, e } }
3254 // and the indices "1, 1" this returns
3255 // { c, d }.
3256 //
3257 // It does this by inserting an insertvalue for each element in the resulting
3258 // struct, as opposed to just inserting a single struct. This will only work if
3259 // each of the elements of the substruct are known (ie, inserted into From by an
3260 // insertvalue instruction somewhere).
3261 //
3262 // All inserted insertvalue instructions are inserted before InsertBefore
3263 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3264                                 Instruction *InsertBefore) {
3265   assert(InsertBefore && "Must have someplace to insert!");
3266   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3267                                                              idx_range);
3268   Value *To = UndefValue::get(IndexedType);
3269   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3270   unsigned IdxSkip = Idxs.size();
3271 
3272   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3273 }
3274 
3275 /// Given an aggregate and a sequence of indices, see if the scalar value
3276 /// indexed is already around as a register, for example if it was inserted
3277 /// directly into the aggregate.
3278 ///
3279 /// If InsertBefore is not null, this function will duplicate (modified)
3280 /// insertvalues when a part of a nested struct is extracted.
3281 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3282                                Instruction *InsertBefore) {
3283   // Nothing to index? Just return V then (this is useful at the end of our
3284   // recursion).
3285   if (idx_range.empty())
3286     return V;
3287   // We have indices, so V should have an indexable type.
3288   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3289          "Not looking at a struct or array?");
3290   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3291          "Invalid indices for type?");
3292 
3293   if (Constant *C = dyn_cast<Constant>(V)) {
3294     C = C->getAggregateElement(idx_range[0]);
3295     if (!C) return nullptr;
3296     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3297   }
3298 
3299   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3300     // Loop the indices for the insertvalue instruction in parallel with the
3301     // requested indices
3302     const unsigned *req_idx = idx_range.begin();
3303     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3304          i != e; ++i, ++req_idx) {
3305       if (req_idx == idx_range.end()) {
3306         // We can't handle this without inserting insertvalues
3307         if (!InsertBefore)
3308           return nullptr;
3309 
3310         // The requested index identifies a part of a nested aggregate. Handle
3311         // this specially. For example,
3312         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3313         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3314         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3315         // This can be changed into
3316         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3317         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3318         // which allows the unused 0,0 element from the nested struct to be
3319         // removed.
3320         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3321                                  InsertBefore);
3322       }
3323 
3324       // This insert value inserts something else than what we are looking for.
3325       // See if the (aggregate) value inserted into has the value we are
3326       // looking for, then.
3327       if (*req_idx != *i)
3328         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3329                                  InsertBefore);
3330     }
3331     // If we end up here, the indices of the insertvalue match with those
3332     // requested (though possibly only partially). Now we recursively look at
3333     // the inserted value, passing any remaining indices.
3334     return FindInsertedValue(I->getInsertedValueOperand(),
3335                              makeArrayRef(req_idx, idx_range.end()),
3336                              InsertBefore);
3337   }
3338 
3339   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3340     // If we're extracting a value from an aggregate that was extracted from
3341     // something else, we can extract from that something else directly instead.
3342     // However, we will need to chain I's indices with the requested indices.
3343 
3344     // Calculate the number of indices required
3345     unsigned size = I->getNumIndices() + idx_range.size();
3346     // Allocate some space to put the new indices in
3347     SmallVector<unsigned, 5> Idxs;
3348     Idxs.reserve(size);
3349     // Add indices from the extract value instruction
3350     Idxs.append(I->idx_begin(), I->idx_end());
3351 
3352     // Add requested indices
3353     Idxs.append(idx_range.begin(), idx_range.end());
3354 
3355     assert(Idxs.size() == size
3356            && "Number of indices added not correct?");
3357 
3358     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3359   }
3360   // Otherwise, we don't know (such as, extracting from a function return value
3361   // or load instruction)
3362   return nullptr;
3363 }
3364 
3365 /// Analyze the specified pointer to see if it can be expressed as a base
3366 /// pointer plus a constant offset. Return the base and offset to the caller.
3367 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3368                                               const DataLayout &DL) {
3369   unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
3370   APInt ByteOffset(BitWidth, 0);
3371 
3372   // We walk up the defs but use a visited set to handle unreachable code. In
3373   // that case, we stop after accumulating the cycle once (not that it
3374   // matters).
3375   SmallPtrSet<Value *, 16> Visited;
3376   while (Visited.insert(Ptr).second) {
3377     if (Ptr->getType()->isVectorTy())
3378       break;
3379 
3380     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3381       // If one of the values we have visited is an addrspacecast, then
3382       // the pointer type of this GEP may be different from the type
3383       // of the Ptr parameter which was passed to this function.  This
3384       // means when we construct GEPOffset, we need to use the size
3385       // of GEP's pointer type rather than the size of the original
3386       // pointer type.
3387       APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
3388       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3389         break;
3390 
3391       APInt OrigByteOffset(ByteOffset);
3392       ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
3393       if (ByteOffset.getMinSignedBits() > 64) {
3394         // Stop traversal if the pointer offset wouldn't fit into int64_t
3395         // (this should be removed if Offset is updated to an APInt)
3396         ByteOffset = OrigByteOffset;
3397         break;
3398       }
3399 
3400       Ptr = GEP->getPointerOperand();
3401     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3402                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3403       Ptr = cast<Operator>(Ptr)->getOperand(0);
3404     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3405       if (GA->isInterposable())
3406         break;
3407       Ptr = GA->getAliasee();
3408     } else {
3409       break;
3410     }
3411   }
3412   Offset = ByteOffset.getSExtValue();
3413   return Ptr;
3414 }
3415 
3416 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3417                                        unsigned CharSize) {
3418   // Make sure the GEP has exactly three arguments.
3419   if (GEP->getNumOperands() != 3)
3420     return false;
3421 
3422   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3423   // CharSize.
3424   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3425   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3426     return false;
3427 
3428   // Check to make sure that the first operand of the GEP is an integer and
3429   // has value 0 so that we are sure we're indexing into the initializer.
3430   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3431   if (!FirstIdx || !FirstIdx->isZero())
3432     return false;
3433 
3434   return true;
3435 }
3436 
3437 bool llvm::getConstantDataArrayInfo(const Value *V,
3438                                     ConstantDataArraySlice &Slice,
3439                                     unsigned ElementSize, uint64_t Offset) {
3440   assert(V);
3441 
3442   // Look through bitcast instructions and geps.
3443   V = V->stripPointerCasts();
3444 
3445   // If the value is a GEP instruction or constant expression, treat it as an
3446   // offset.
3447   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3448     // The GEP operator should be based on a pointer to string constant, and is
3449     // indexing into the string constant.
3450     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3451       return false;
3452 
3453     // If the second index isn't a ConstantInt, then this is a variable index
3454     // into the array.  If this occurs, we can't say anything meaningful about
3455     // the string.
3456     uint64_t StartIdx = 0;
3457     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3458       StartIdx = CI->getZExtValue();
3459     else
3460       return false;
3461     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3462                                     StartIdx + Offset);
3463   }
3464 
3465   // The GEP instruction, constant or instruction, must reference a global
3466   // variable that is a constant and is initialized. The referenced constant
3467   // initializer is the array that we'll use for optimization.
3468   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3469   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3470     return false;
3471 
3472   const ConstantDataArray *Array;
3473   ArrayType *ArrayTy;
3474   if (GV->getInitializer()->isNullValue()) {
3475     Type *GVTy = GV->getValueType();
3476     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3477       // A zeroinitializer for the array; there is no ConstantDataArray.
3478       Array = nullptr;
3479     } else {
3480       const DataLayout &DL = GV->getParent()->getDataLayout();
3481       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3482       uint64_t Length = SizeInBytes / (ElementSize / 8);
3483       if (Length <= Offset)
3484         return false;
3485 
3486       Slice.Array = nullptr;
3487       Slice.Offset = 0;
3488       Slice.Length = Length - Offset;
3489       return true;
3490     }
3491   } else {
3492     // This must be a ConstantDataArray.
3493     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3494     if (!Array)
3495       return false;
3496     ArrayTy = Array->getType();
3497   }
3498   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3499     return false;
3500 
3501   uint64_t NumElts = ArrayTy->getArrayNumElements();
3502   if (Offset > NumElts)
3503     return false;
3504 
3505   Slice.Array = Array;
3506   Slice.Offset = Offset;
3507   Slice.Length = NumElts - Offset;
3508   return true;
3509 }
3510 
3511 /// This function computes the length of a null-terminated C string pointed to
3512 /// by V. If successful, it returns true and returns the string in Str.
3513 /// If unsuccessful, it returns false.
3514 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3515                                  uint64_t Offset, bool TrimAtNul) {
3516   ConstantDataArraySlice Slice;
3517   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3518     return false;
3519 
3520   if (Slice.Array == nullptr) {
3521     if (TrimAtNul) {
3522       Str = StringRef();
3523       return true;
3524     }
3525     if (Slice.Length == 1) {
3526       Str = StringRef("", 1);
3527       return true;
3528     }
3529     // We cannot instantiate a StringRef as we do not have an appropriate string
3530     // of 0s at hand.
3531     return false;
3532   }
3533 
3534   // Start out with the entire array in the StringRef.
3535   Str = Slice.Array->getAsString();
3536   // Skip over 'offset' bytes.
3537   Str = Str.substr(Slice.Offset);
3538 
3539   if (TrimAtNul) {
3540     // Trim off the \0 and anything after it.  If the array is not nul
3541     // terminated, we just return the whole end of string.  The client may know
3542     // some other way that the string is length-bound.
3543     Str = Str.substr(0, Str.find('\0'));
3544   }
3545   return true;
3546 }
3547 
3548 // These next two are very similar to the above, but also look through PHI
3549 // nodes.
3550 // TODO: See if we can integrate these two together.
3551 
3552 /// If we can compute the length of the string pointed to by
3553 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3554 static uint64_t GetStringLengthH(const Value *V,
3555                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3556                                  unsigned CharSize) {
3557   // Look through noop bitcast instructions.
3558   V = V->stripPointerCasts();
3559 
3560   // If this is a PHI node, there are two cases: either we have already seen it
3561   // or we haven't.
3562   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3563     if (!PHIs.insert(PN).second)
3564       return ~0ULL;  // already in the set.
3565 
3566     // If it was new, see if all the input strings are the same length.
3567     uint64_t LenSoFar = ~0ULL;
3568     for (Value *IncValue : PN->incoming_values()) {
3569       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3570       if (Len == 0) return 0; // Unknown length -> unknown.
3571 
3572       if (Len == ~0ULL) continue;
3573 
3574       if (Len != LenSoFar && LenSoFar != ~0ULL)
3575         return 0;    // Disagree -> unknown.
3576       LenSoFar = Len;
3577     }
3578 
3579     // Success, all agree.
3580     return LenSoFar;
3581   }
3582 
3583   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3584   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3585     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3586     if (Len1 == 0) return 0;
3587     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3588     if (Len2 == 0) return 0;
3589     if (Len1 == ~0ULL) return Len2;
3590     if (Len2 == ~0ULL) return Len1;
3591     if (Len1 != Len2) return 0;
3592     return Len1;
3593   }
3594 
3595   // Otherwise, see if we can read the string.
3596   ConstantDataArraySlice Slice;
3597   if (!getConstantDataArrayInfo(V, Slice, CharSize))
3598     return 0;
3599 
3600   if (Slice.Array == nullptr)
3601     return 1;
3602 
3603   // Search for nul characters
3604   unsigned NullIndex = 0;
3605   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3606     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3607       break;
3608   }
3609 
3610   return NullIndex + 1;
3611 }
3612 
3613 /// If we can compute the length of the string pointed to by
3614 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3615 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3616   if (!V->getType()->isPointerTy())
3617     return 0;
3618 
3619   SmallPtrSet<const PHINode*, 32> PHIs;
3620   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3621   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3622   // an empty string as a length.
3623   return Len == ~0ULL ? 1 : Len;
3624 }
3625 
3626 const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) {
3627   assert(Call &&
3628          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
3629   if (const Value *RV = Call->getReturnedArgOperand())
3630     return RV;
3631   // This can be used only as a aliasing property.
3632   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call))
3633     return Call->getArgOperand(0);
3634   return nullptr;
3635 }
3636 
3637 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3638     const CallBase *Call) {
3639   return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
3640          Call->getIntrinsicID() == Intrinsic::strip_invariant_group;
3641 }
3642 
3643 /// \p PN defines a loop-variant pointer to an object.  Check if the
3644 /// previous iteration of the loop was referring to the same object as \p PN.
3645 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3646                                          const LoopInfo *LI) {
3647   // Find the loop-defined value.
3648   Loop *L = LI->getLoopFor(PN->getParent());
3649   if (PN->getNumIncomingValues() != 2)
3650     return true;
3651 
3652   // Find the value from previous iteration.
3653   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3654   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3655     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3656   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3657     return true;
3658 
3659   // If a new pointer is loaded in the loop, the pointer references a different
3660   // object in every iteration.  E.g.:
3661   //    for (i)
3662   //       int *p = a[i];
3663   //       ...
3664   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3665     if (!L->isLoopInvariant(Load->getPointerOperand()))
3666       return false;
3667   return true;
3668 }
3669 
3670 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3671                                  unsigned MaxLookup) {
3672   if (!V->getType()->isPointerTy())
3673     return V;
3674   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3675     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3676       V = GEP->getPointerOperand();
3677     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3678                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3679       V = cast<Operator>(V)->getOperand(0);
3680     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3681       if (GA->isInterposable())
3682         return V;
3683       V = GA->getAliasee();
3684     } else if (isa<AllocaInst>(V)) {
3685       // An alloca can't be further simplified.
3686       return V;
3687     } else {
3688       if (auto *Call = dyn_cast<CallBase>(V)) {
3689         // CaptureTracking can know about special capturing properties of some
3690         // intrinsics like launder.invariant.group, that can't be expressed with
3691         // the attributes, but have properties like returning aliasing pointer.
3692         // Because some analysis may assume that nocaptured pointer is not
3693         // returned from some special intrinsic (because function would have to
3694         // be marked with returns attribute), it is crucial to use this function
3695         // because it should be in sync with CaptureTracking. Not using it may
3696         // cause weird miscompilations where 2 aliasing pointers are assumed to
3697         // noalias.
3698         if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
3699           V = RP;
3700           continue;
3701         }
3702       }
3703 
3704       // See if InstructionSimplify knows any relevant tricks.
3705       if (Instruction *I = dyn_cast<Instruction>(V))
3706         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3707         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3708           V = Simplified;
3709           continue;
3710         }
3711 
3712       return V;
3713     }
3714     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3715   }
3716   return V;
3717 }
3718 
3719 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3720                                 const DataLayout &DL, LoopInfo *LI,
3721                                 unsigned MaxLookup) {
3722   SmallPtrSet<Value *, 4> Visited;
3723   SmallVector<Value *, 4> Worklist;
3724   Worklist.push_back(V);
3725   do {
3726     Value *P = Worklist.pop_back_val();
3727     P = GetUnderlyingObject(P, DL, MaxLookup);
3728 
3729     if (!Visited.insert(P).second)
3730       continue;
3731 
3732     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3733       Worklist.push_back(SI->getTrueValue());
3734       Worklist.push_back(SI->getFalseValue());
3735       continue;
3736     }
3737 
3738     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3739       // If this PHI changes the underlying object in every iteration of the
3740       // loop, don't look through it.  Consider:
3741       //   int **A;
3742       //   for (i) {
3743       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3744       //     Curr = A[i];
3745       //     *Prev, *Curr;
3746       //
3747       // Prev is tracking Curr one iteration behind so they refer to different
3748       // underlying objects.
3749       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3750           isSameUnderlyingObjectInLoop(PN, LI))
3751         for (Value *IncValue : PN->incoming_values())
3752           Worklist.push_back(IncValue);
3753       continue;
3754     }
3755 
3756     Objects.push_back(P);
3757   } while (!Worklist.empty());
3758 }
3759 
3760 /// This is the function that does the work of looking through basic
3761 /// ptrtoint+arithmetic+inttoptr sequences.
3762 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3763   do {
3764     if (const Operator *U = dyn_cast<Operator>(V)) {
3765       // If we find a ptrtoint, we can transfer control back to the
3766       // regular getUnderlyingObjectFromInt.
3767       if (U->getOpcode() == Instruction::PtrToInt)
3768         return U->getOperand(0);
3769       // If we find an add of a constant, a multiplied value, or a phi, it's
3770       // likely that the other operand will lead us to the base
3771       // object. We don't have to worry about the case where the
3772       // object address is somehow being computed by the multiply,
3773       // because our callers only care when the result is an
3774       // identifiable object.
3775       if (U->getOpcode() != Instruction::Add ||
3776           (!isa<ConstantInt>(U->getOperand(1)) &&
3777            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3778            !isa<PHINode>(U->getOperand(1))))
3779         return V;
3780       V = U->getOperand(0);
3781     } else {
3782       return V;
3783     }
3784     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3785   } while (true);
3786 }
3787 
3788 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3789 /// ptrtoint+arithmetic+inttoptr sequences.
3790 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3791 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3792                           SmallVectorImpl<Value *> &Objects,
3793                           const DataLayout &DL) {
3794   SmallPtrSet<const Value *, 16> Visited;
3795   SmallVector<const Value *, 4> Working(1, V);
3796   do {
3797     V = Working.pop_back_val();
3798 
3799     SmallVector<Value *, 4> Objs;
3800     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3801 
3802     for (Value *V : Objs) {
3803       if (!Visited.insert(V).second)
3804         continue;
3805       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3806         const Value *O =
3807           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3808         if (O->getType()->isPointerTy()) {
3809           Working.push_back(O);
3810           continue;
3811         }
3812       }
3813       // If GetUnderlyingObjects fails to find an identifiable object,
3814       // getUnderlyingObjectsForCodeGen also fails for safety.
3815       if (!isIdentifiedObject(V)) {
3816         Objects.clear();
3817         return false;
3818       }
3819       Objects.push_back(const_cast<Value *>(V));
3820     }
3821   } while (!Working.empty());
3822   return true;
3823 }
3824 
3825 /// Return true if the only users of this pointer are lifetime markers.
3826 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3827   for (const User *U : V->users()) {
3828     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3829     if (!II) return false;
3830 
3831     if (!II->isLifetimeStartOrEnd())
3832       return false;
3833   }
3834   return true;
3835 }
3836 
3837 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3838                                         const Instruction *CtxI,
3839                                         const DominatorTree *DT) {
3840   const Operator *Inst = dyn_cast<Operator>(V);
3841   if (!Inst)
3842     return false;
3843 
3844   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3845     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3846       if (C->canTrap())
3847         return false;
3848 
3849   switch (Inst->getOpcode()) {
3850   default:
3851     return true;
3852   case Instruction::UDiv:
3853   case Instruction::URem: {
3854     // x / y is undefined if y == 0.
3855     const APInt *V;
3856     if (match(Inst->getOperand(1), m_APInt(V)))
3857       return *V != 0;
3858     return false;
3859   }
3860   case Instruction::SDiv:
3861   case Instruction::SRem: {
3862     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3863     const APInt *Numerator, *Denominator;
3864     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3865       return false;
3866     // We cannot hoist this division if the denominator is 0.
3867     if (*Denominator == 0)
3868       return false;
3869     // It's safe to hoist if the denominator is not 0 or -1.
3870     if (*Denominator != -1)
3871       return true;
3872     // At this point we know that the denominator is -1.  It is safe to hoist as
3873     // long we know that the numerator is not INT_MIN.
3874     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3875       return !Numerator->isMinSignedValue();
3876     // The numerator *might* be MinSignedValue.
3877     return false;
3878   }
3879   case Instruction::Load: {
3880     const LoadInst *LI = cast<LoadInst>(Inst);
3881     if (!LI->isUnordered() ||
3882         // Speculative load may create a race that did not exist in the source.
3883         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3884         // Speculative load may load data from dirty regions.
3885         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3886         LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3887       return false;
3888     const DataLayout &DL = LI->getModule()->getDataLayout();
3889     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3890                                               LI->getAlignment(), DL, CtxI, DT);
3891   }
3892   case Instruction::Call: {
3893     auto *CI = cast<const CallInst>(Inst);
3894     const Function *Callee = CI->getCalledFunction();
3895 
3896     // The called function could have undefined behavior or side-effects, even
3897     // if marked readnone nounwind.
3898     return Callee && Callee->isSpeculatable();
3899   }
3900   case Instruction::VAArg:
3901   case Instruction::Alloca:
3902   case Instruction::Invoke:
3903   case Instruction::PHI:
3904   case Instruction::Store:
3905   case Instruction::Ret:
3906   case Instruction::Br:
3907   case Instruction::IndirectBr:
3908   case Instruction::Switch:
3909   case Instruction::Unreachable:
3910   case Instruction::Fence:
3911   case Instruction::AtomicRMW:
3912   case Instruction::AtomicCmpXchg:
3913   case Instruction::LandingPad:
3914   case Instruction::Resume:
3915   case Instruction::CatchSwitch:
3916   case Instruction::CatchPad:
3917   case Instruction::CatchRet:
3918   case Instruction::CleanupPad:
3919   case Instruction::CleanupRet:
3920     return false; // Misc instructions which have effects
3921   }
3922 }
3923 
3924 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3925   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3926 }
3927 
3928 OverflowResult llvm::computeOverflowForUnsignedMul(
3929     const Value *LHS, const Value *RHS, const DataLayout &DL,
3930     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3931     bool UseInstrInfo) {
3932   // Multiplying n * m significant bits yields a result of n + m significant
3933   // bits. If the total number of significant bits does not exceed the
3934   // result bit width (minus 1), there is no overflow.
3935   // This means if we have enough leading zero bits in the operands
3936   // we can guarantee that the result does not overflow.
3937   // Ref: "Hacker's Delight" by Henry Warren
3938   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3939   KnownBits LHSKnown(BitWidth);
3940   KnownBits RHSKnown(BitWidth);
3941   computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3942                    UseInstrInfo);
3943   computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3944                    UseInstrInfo);
3945   // Note that underestimating the number of zero bits gives a more
3946   // conservative answer.
3947   unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3948                       RHSKnown.countMinLeadingZeros();
3949   // First handle the easy case: if we have enough zero bits there's
3950   // definitely no overflow.
3951   if (ZeroBits >= BitWidth)
3952     return OverflowResult::NeverOverflows;
3953 
3954   // Get the largest possible values for each operand.
3955   APInt LHSMax = ~LHSKnown.Zero;
3956   APInt RHSMax = ~RHSKnown.Zero;
3957 
3958   // We know the multiply operation doesn't overflow if the maximum values for
3959   // each operand will not overflow after we multiply them together.
3960   bool MaxOverflow;
3961   (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
3962   if (!MaxOverflow)
3963     return OverflowResult::NeverOverflows;
3964 
3965   // We know it always overflows if multiplying the smallest possible values for
3966   // the operands also results in overflow.
3967   bool MinOverflow;
3968   (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
3969   if (MinOverflow)
3970     return OverflowResult::AlwaysOverflows;
3971 
3972   return OverflowResult::MayOverflow;
3973 }
3974 
3975 OverflowResult
3976 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
3977                                   const DataLayout &DL, AssumptionCache *AC,
3978                                   const Instruction *CxtI,
3979                                   const DominatorTree *DT, bool UseInstrInfo) {
3980   // Multiplying n * m significant bits yields a result of n + m significant
3981   // bits. If the total number of significant bits does not exceed the
3982   // result bit width (minus 1), there is no overflow.
3983   // This means if we have enough leading sign bits in the operands
3984   // we can guarantee that the result does not overflow.
3985   // Ref: "Hacker's Delight" by Henry Warren
3986   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3987 
3988   // Note that underestimating the number of sign bits gives a more
3989   // conservative answer.
3990   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
3991                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
3992 
3993   // First handle the easy case: if we have enough sign bits there's
3994   // definitely no overflow.
3995   if (SignBits > BitWidth + 1)
3996     return OverflowResult::NeverOverflows;
3997 
3998   // There are two ambiguous cases where there can be no overflow:
3999   //   SignBits == BitWidth + 1    and
4000   //   SignBits == BitWidth
4001   // The second case is difficult to check, therefore we only handle the
4002   // first case.
4003   if (SignBits == BitWidth + 1) {
4004     // It overflows only when both arguments are negative and the true
4005     // product is exactly the minimum negative number.
4006     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4007     // For simplicity we just check if at least one side is not negative.
4008     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4009                                           nullptr, UseInstrInfo);
4010     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4011                                           nullptr, UseInstrInfo);
4012     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4013       return OverflowResult::NeverOverflows;
4014   }
4015   return OverflowResult::MayOverflow;
4016 }
4017 
4018 OverflowResult llvm::computeOverflowForUnsignedAdd(
4019     const Value *LHS, const Value *RHS, const DataLayout &DL,
4020     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4021     bool UseInstrInfo) {
4022   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4023                                         nullptr, UseInstrInfo);
4024   if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
4025     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4026                                           nullptr, UseInstrInfo);
4027 
4028     if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
4029       // The sign bit is set in both cases: this MUST overflow.
4030       return OverflowResult::AlwaysOverflows;
4031     }
4032 
4033     if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
4034       // The sign bit is clear in both cases: this CANNOT overflow.
4035       return OverflowResult::NeverOverflows;
4036     }
4037   }
4038 
4039   return OverflowResult::MayOverflow;
4040 }
4041 
4042 /// Return true if we can prove that adding the two values of the
4043 /// knownbits will not overflow.
4044 /// Otherwise return false.
4045 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
4046                                     const KnownBits &RHSKnown) {
4047   // Addition of two 2's complement numbers having opposite signs will never
4048   // overflow.
4049   if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
4050       (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
4051     return true;
4052 
4053   // If either of the values is known to be non-negative, adding them can only
4054   // overflow if the second is also non-negative, so we can assume that.
4055   // Two non-negative numbers will only overflow if there is a carry to the
4056   // sign bit, so we can check if even when the values are as big as possible
4057   // there is no overflow to the sign bit.
4058   if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
4059     APInt MaxLHS = ~LHSKnown.Zero;
4060     MaxLHS.clearSignBit();
4061     APInt MaxRHS = ~RHSKnown.Zero;
4062     MaxRHS.clearSignBit();
4063     APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
4064     return Result.isSignBitClear();
4065   }
4066 
4067   // If either of the values is known to be negative, adding them can only
4068   // overflow if the second is also negative, so we can assume that.
4069   // Two negative number will only overflow if there is no carry to the sign
4070   // bit, so we can check if even when the values are as small as possible
4071   // there is overflow to the sign bit.
4072   if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
4073     APInt MinLHS = LHSKnown.One;
4074     MinLHS.clearSignBit();
4075     APInt MinRHS = RHSKnown.One;
4076     MinRHS.clearSignBit();
4077     APInt Result = std::move(MinLHS) + std::move(MinRHS);
4078     return Result.isSignBitSet();
4079   }
4080 
4081   // If we reached here it means that we know nothing about the sign bits.
4082   // In this case we can't know if there will be an overflow, since by
4083   // changing the sign bits any two values can be made to overflow.
4084   return false;
4085 }
4086 
4087 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4088                                                   const Value *RHS,
4089                                                   const AddOperator *Add,
4090                                                   const DataLayout &DL,
4091                                                   AssumptionCache *AC,
4092                                                   const Instruction *CxtI,
4093                                                   const DominatorTree *DT) {
4094   if (Add && Add->hasNoSignedWrap()) {
4095     return OverflowResult::NeverOverflows;
4096   }
4097 
4098   // If LHS and RHS each have at least two sign bits, the addition will look
4099   // like
4100   //
4101   // XX..... +
4102   // YY.....
4103   //
4104   // If the carry into the most significant position is 0, X and Y can't both
4105   // be 1 and therefore the carry out of the addition is also 0.
4106   //
4107   // If the carry into the most significant position is 1, X and Y can't both
4108   // be 0 and therefore the carry out of the addition is also 1.
4109   //
4110   // Since the carry into the most significant position is always equal to
4111   // the carry out of the addition, there is no signed overflow.
4112   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4113       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4114     return OverflowResult::NeverOverflows;
4115 
4116   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4117   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4118 
4119   if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
4120     return OverflowResult::NeverOverflows;
4121 
4122   // The remaining code needs Add to be available. Early returns if not so.
4123   if (!Add)
4124     return OverflowResult::MayOverflow;
4125 
4126   // If the sign of Add is the same as at least one of the operands, this add
4127   // CANNOT overflow. This is particularly useful when the sum is
4128   // @llvm.assume'ed non-negative rather than proved so from analyzing its
4129   // operands.
4130   bool LHSOrRHSKnownNonNegative =
4131       (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
4132   bool LHSOrRHSKnownNegative =
4133       (LHSKnown.isNegative() || RHSKnown.isNegative());
4134   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4135     KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
4136     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4137         (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
4138       return OverflowResult::NeverOverflows;
4139     }
4140   }
4141 
4142   return OverflowResult::MayOverflow;
4143 }
4144 
4145 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4146                                                    const Value *RHS,
4147                                                    const DataLayout &DL,
4148                                                    AssumptionCache *AC,
4149                                                    const Instruction *CxtI,
4150                                                    const DominatorTree *DT) {
4151   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4152   if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
4153     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4154 
4155     // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
4156     if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
4157       return OverflowResult::NeverOverflows;
4158 
4159     // If the LHS is non-negative and the RHS negative, we always wrap.
4160     if (LHSKnown.isNonNegative() && RHSKnown.isNegative())
4161       return OverflowResult::AlwaysOverflows;
4162   }
4163 
4164   return OverflowResult::MayOverflow;
4165 }
4166 
4167 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4168                                                  const Value *RHS,
4169                                                  const DataLayout &DL,
4170                                                  AssumptionCache *AC,
4171                                                  const Instruction *CxtI,
4172                                                  const DominatorTree *DT) {
4173   // If LHS and RHS each have at least two sign bits, the subtraction
4174   // cannot overflow.
4175   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4176       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4177     return OverflowResult::NeverOverflows;
4178 
4179   KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4180 
4181   KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4182 
4183   // Subtraction of two 2's complement numbers having identical signs will
4184   // never overflow.
4185   if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
4186       (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
4187     return OverflowResult::NeverOverflows;
4188 
4189   // TODO: implement logic similar to checkRippleForAdd
4190   return OverflowResult::MayOverflow;
4191 }
4192 
4193 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4194                                      const DominatorTree &DT) {
4195 #ifndef NDEBUG
4196   auto IID = II->getIntrinsicID();
4197   assert((IID == Intrinsic::sadd_with_overflow ||
4198           IID == Intrinsic::uadd_with_overflow ||
4199           IID == Intrinsic::ssub_with_overflow ||
4200           IID == Intrinsic::usub_with_overflow ||
4201           IID == Intrinsic::smul_with_overflow ||
4202           IID == Intrinsic::umul_with_overflow) &&
4203          "Not an overflow intrinsic!");
4204 #endif
4205 
4206   SmallVector<const BranchInst *, 2> GuardingBranches;
4207   SmallVector<const ExtractValueInst *, 2> Results;
4208 
4209   for (const User *U : II->users()) {
4210     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4211       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4212 
4213       if (EVI->getIndices()[0] == 0)
4214         Results.push_back(EVI);
4215       else {
4216         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4217 
4218         for (const auto *U : EVI->users())
4219           if (const auto *B = dyn_cast<BranchInst>(U)) {
4220             assert(B->isConditional() && "How else is it using an i1?");
4221             GuardingBranches.push_back(B);
4222           }
4223       }
4224     } else {
4225       // We are using the aggregate directly in a way we don't want to analyze
4226       // here (storing it to a global, say).
4227       return false;
4228     }
4229   }
4230 
4231   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4232     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4233     if (!NoWrapEdge.isSingleEdge())
4234       return false;
4235 
4236     // Check if all users of the add are provably no-wrap.
4237     for (const auto *Result : Results) {
4238       // If the extractvalue itself is not executed on overflow, the we don't
4239       // need to check each use separately, since domination is transitive.
4240       if (DT.dominates(NoWrapEdge, Result->getParent()))
4241         continue;
4242 
4243       for (auto &RU : Result->uses())
4244         if (!DT.dominates(NoWrapEdge, RU))
4245           return false;
4246     }
4247 
4248     return true;
4249   };
4250 
4251   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4252 }
4253 
4254 
4255 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4256                                                  const DataLayout &DL,
4257                                                  AssumptionCache *AC,
4258                                                  const Instruction *CxtI,
4259                                                  const DominatorTree *DT) {
4260   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4261                                        Add, DL, AC, CxtI, DT);
4262 }
4263 
4264 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4265                                                  const Value *RHS,
4266                                                  const DataLayout &DL,
4267                                                  AssumptionCache *AC,
4268                                                  const Instruction *CxtI,
4269                                                  const DominatorTree *DT) {
4270   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4271 }
4272 
4273 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4274   // A memory operation returns normally if it isn't volatile. A volatile
4275   // operation is allowed to trap.
4276   //
4277   // An atomic operation isn't guaranteed to return in a reasonable amount of
4278   // time because it's possible for another thread to interfere with it for an
4279   // arbitrary length of time, but programs aren't allowed to rely on that.
4280   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4281     return !LI->isVolatile();
4282   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4283     return !SI->isVolatile();
4284   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4285     return !CXI->isVolatile();
4286   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4287     return !RMWI->isVolatile();
4288   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4289     return !MII->isVolatile();
4290 
4291   // If there is no successor, then execution can't transfer to it.
4292   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4293     return !CRI->unwindsToCaller();
4294   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4295     return !CatchSwitch->unwindsToCaller();
4296   if (isa<ResumeInst>(I))
4297     return false;
4298   if (isa<ReturnInst>(I))
4299     return false;
4300   if (isa<UnreachableInst>(I))
4301     return false;
4302 
4303   // Calls can throw, or contain an infinite loop, or kill the process.
4304   if (auto CS = ImmutableCallSite(I)) {
4305     // Call sites that throw have implicit non-local control flow.
4306     if (!CS.doesNotThrow())
4307       return false;
4308 
4309     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4310     // etc. and thus not return.  However, LLVM already assumes that
4311     //
4312     //  - Thread exiting actions are modeled as writes to memory invisible to
4313     //    the program.
4314     //
4315     //  - Loops that don't have side effects (side effects are volatile/atomic
4316     //    stores and IO) always terminate (see http://llvm.org/PR965).
4317     //    Furthermore IO itself is also modeled as writes to memory invisible to
4318     //    the program.
4319     //
4320     // We rely on those assumptions here, and use the memory effects of the call
4321     // target as a proxy for checking that it always returns.
4322 
4323     // FIXME: This isn't aggressive enough; a call which only writes to a global
4324     // is guaranteed to return.
4325     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
4326            match(I, m_Intrinsic<Intrinsic::assume>()) ||
4327            match(I, m_Intrinsic<Intrinsic::sideeffect>());
4328   }
4329 
4330   // Other instructions return normally.
4331   return true;
4332 }
4333 
4334 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4335   // TODO: This is slightly consdervative for invoke instruction since exiting
4336   // via an exception *is* normal control for them.
4337   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4338     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4339       return false;
4340   return true;
4341 }
4342 
4343 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4344                                                   const Loop *L) {
4345   // The loop header is guaranteed to be executed for every iteration.
4346   //
4347   // FIXME: Relax this constraint to cover all basic blocks that are
4348   // guaranteed to be executed at every iteration.
4349   if (I->getParent() != L->getHeader()) return false;
4350 
4351   for (const Instruction &LI : *L->getHeader()) {
4352     if (&LI == I) return true;
4353     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4354   }
4355   llvm_unreachable("Instruction not contained in its own parent basic block.");
4356 }
4357 
4358 bool llvm::propagatesFullPoison(const Instruction *I) {
4359   switch (I->getOpcode()) {
4360   case Instruction::Add:
4361   case Instruction::Sub:
4362   case Instruction::Xor:
4363   case Instruction::Trunc:
4364   case Instruction::BitCast:
4365   case Instruction::AddrSpaceCast:
4366   case Instruction::Mul:
4367   case Instruction::Shl:
4368   case Instruction::GetElementPtr:
4369     // These operations all propagate poison unconditionally. Note that poison
4370     // is not any particular value, so xor or subtraction of poison with
4371     // itself still yields poison, not zero.
4372     return true;
4373 
4374   case Instruction::AShr:
4375   case Instruction::SExt:
4376     // For these operations, one bit of the input is replicated across
4377     // multiple output bits. A replicated poison bit is still poison.
4378     return true;
4379 
4380   case Instruction::ICmp:
4381     // Comparing poison with any value yields poison.  This is why, for
4382     // instance, x s< (x +nsw 1) can be folded to true.
4383     return true;
4384 
4385   default:
4386     return false;
4387   }
4388 }
4389 
4390 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4391   switch (I->getOpcode()) {
4392     case Instruction::Store:
4393       return cast<StoreInst>(I)->getPointerOperand();
4394 
4395     case Instruction::Load:
4396       return cast<LoadInst>(I)->getPointerOperand();
4397 
4398     case Instruction::AtomicCmpXchg:
4399       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4400 
4401     case Instruction::AtomicRMW:
4402       return cast<AtomicRMWInst>(I)->getPointerOperand();
4403 
4404     case Instruction::UDiv:
4405     case Instruction::SDiv:
4406     case Instruction::URem:
4407     case Instruction::SRem:
4408       return I->getOperand(1);
4409 
4410     default:
4411       return nullptr;
4412   }
4413 }
4414 
4415 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4416   // We currently only look for uses of poison values within the same basic
4417   // block, as that makes it easier to guarantee that the uses will be
4418   // executed given that PoisonI is executed.
4419   //
4420   // FIXME: Expand this to consider uses beyond the same basic block. To do
4421   // this, look out for the distinction between post-dominance and strong
4422   // post-dominance.
4423   const BasicBlock *BB = PoisonI->getParent();
4424 
4425   // Set of instructions that we have proved will yield poison if PoisonI
4426   // does.
4427   SmallSet<const Value *, 16> YieldsPoison;
4428   SmallSet<const BasicBlock *, 4> Visited;
4429   YieldsPoison.insert(PoisonI);
4430   Visited.insert(PoisonI->getParent());
4431 
4432   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4433 
4434   unsigned Iter = 0;
4435   while (Iter++ < MaxDepth) {
4436     for (auto &I : make_range(Begin, End)) {
4437       if (&I != PoisonI) {
4438         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4439         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4440           return true;
4441         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4442           return false;
4443       }
4444 
4445       // Mark poison that propagates from I through uses of I.
4446       if (YieldsPoison.count(&I)) {
4447         for (const User *User : I.users()) {
4448           const Instruction *UserI = cast<Instruction>(User);
4449           if (propagatesFullPoison(UserI))
4450             YieldsPoison.insert(User);
4451         }
4452       }
4453     }
4454 
4455     if (auto *NextBB = BB->getSingleSuccessor()) {
4456       if (Visited.insert(NextBB).second) {
4457         BB = NextBB;
4458         Begin = BB->getFirstNonPHI()->getIterator();
4459         End = BB->end();
4460         continue;
4461       }
4462     }
4463 
4464     break;
4465   }
4466   return false;
4467 }
4468 
4469 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4470   if (FMF.noNaNs())
4471     return true;
4472 
4473   if (auto *C = dyn_cast<ConstantFP>(V))
4474     return !C->isNaN();
4475 
4476   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4477     if (!C->getElementType()->isFloatingPointTy())
4478       return false;
4479     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4480       if (C->getElementAsAPFloat(I).isNaN())
4481         return false;
4482     }
4483     return true;
4484   }
4485 
4486   return false;
4487 }
4488 
4489 static bool isKnownNonZero(const Value *V) {
4490   if (auto *C = dyn_cast<ConstantFP>(V))
4491     return !C->isZero();
4492 
4493   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4494     if (!C->getElementType()->isFloatingPointTy())
4495       return false;
4496     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4497       if (C->getElementAsAPFloat(I).isZero())
4498         return false;
4499     }
4500     return true;
4501   }
4502 
4503   return false;
4504 }
4505 
4506 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4507 /// Given non-min/max outer cmp/select from the clamp pattern this
4508 /// function recognizes if it can be substitued by a "canonical" min/max
4509 /// pattern.
4510 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4511                                                Value *CmpLHS, Value *CmpRHS,
4512                                                Value *TrueVal, Value *FalseVal,
4513                                                Value *&LHS, Value *&RHS) {
4514   // Try to match
4515   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4516   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4517   // and return description of the outer Max/Min.
4518 
4519   // First, check if select has inverse order:
4520   if (CmpRHS == FalseVal) {
4521     std::swap(TrueVal, FalseVal);
4522     Pred = CmpInst::getInversePredicate(Pred);
4523   }
4524 
4525   // Assume success now. If there's no match, callers should not use these anyway.
4526   LHS = TrueVal;
4527   RHS = FalseVal;
4528 
4529   const APFloat *FC1;
4530   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4531     return {SPF_UNKNOWN, SPNB_NA, false};
4532 
4533   const APFloat *FC2;
4534   switch (Pred) {
4535   case CmpInst::FCMP_OLT:
4536   case CmpInst::FCMP_OLE:
4537   case CmpInst::FCMP_ULT:
4538   case CmpInst::FCMP_ULE:
4539     if (match(FalseVal,
4540               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4541                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4542         FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4543       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4544     break;
4545   case CmpInst::FCMP_OGT:
4546   case CmpInst::FCMP_OGE:
4547   case CmpInst::FCMP_UGT:
4548   case CmpInst::FCMP_UGE:
4549     if (match(FalseVal,
4550               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4551                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4552         FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4553       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4554     break;
4555   default:
4556     break;
4557   }
4558 
4559   return {SPF_UNKNOWN, SPNB_NA, false};
4560 }
4561 
4562 /// Recognize variations of:
4563 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4564 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4565                                       Value *CmpLHS, Value *CmpRHS,
4566                                       Value *TrueVal, Value *FalseVal) {
4567   // Swap the select operands and predicate to match the patterns below.
4568   if (CmpRHS != TrueVal) {
4569     Pred = ICmpInst::getSwappedPredicate(Pred);
4570     std::swap(TrueVal, FalseVal);
4571   }
4572   const APInt *C1;
4573   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4574     const APInt *C2;
4575     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4576     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4577         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4578       return {SPF_SMAX, SPNB_NA, false};
4579 
4580     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4581     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4582         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4583       return {SPF_SMIN, SPNB_NA, false};
4584 
4585     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4586     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4587         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4588       return {SPF_UMAX, SPNB_NA, false};
4589 
4590     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4591     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4592         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4593       return {SPF_UMIN, SPNB_NA, false};
4594   }
4595   return {SPF_UNKNOWN, SPNB_NA, false};
4596 }
4597 
4598 /// Recognize variations of:
4599 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4600 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4601                                                Value *CmpLHS, Value *CmpRHS,
4602                                                Value *TVal, Value *FVal,
4603                                                unsigned Depth) {
4604   // TODO: Allow FP min/max with nnan/nsz.
4605   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4606 
4607   Value *A, *B;
4608   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4609   if (!SelectPatternResult::isMinOrMax(L.Flavor))
4610     return {SPF_UNKNOWN, SPNB_NA, false};
4611 
4612   Value *C, *D;
4613   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4614   if (L.Flavor != R.Flavor)
4615     return {SPF_UNKNOWN, SPNB_NA, false};
4616 
4617   // We have something like: x Pred y ? min(a, b) : min(c, d).
4618   // Try to match the compare to the min/max operations of the select operands.
4619   // First, make sure we have the right compare predicate.
4620   switch (L.Flavor) {
4621   case SPF_SMIN:
4622     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4623       Pred = ICmpInst::getSwappedPredicate(Pred);
4624       std::swap(CmpLHS, CmpRHS);
4625     }
4626     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4627       break;
4628     return {SPF_UNKNOWN, SPNB_NA, false};
4629   case SPF_SMAX:
4630     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4631       Pred = ICmpInst::getSwappedPredicate(Pred);
4632       std::swap(CmpLHS, CmpRHS);
4633     }
4634     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4635       break;
4636     return {SPF_UNKNOWN, SPNB_NA, false};
4637   case SPF_UMIN:
4638     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4639       Pred = ICmpInst::getSwappedPredicate(Pred);
4640       std::swap(CmpLHS, CmpRHS);
4641     }
4642     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4643       break;
4644     return {SPF_UNKNOWN, SPNB_NA, false};
4645   case SPF_UMAX:
4646     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4647       Pred = ICmpInst::getSwappedPredicate(Pred);
4648       std::swap(CmpLHS, CmpRHS);
4649     }
4650     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4651       break;
4652     return {SPF_UNKNOWN, SPNB_NA, false};
4653   default:
4654     return {SPF_UNKNOWN, SPNB_NA, false};
4655   }
4656 
4657   // If there is a common operand in the already matched min/max and the other
4658   // min/max operands match the compare operands (either directly or inverted),
4659   // then this is min/max of the same flavor.
4660 
4661   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4662   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4663   if (D == B) {
4664     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4665                                          match(A, m_Not(m_Specific(CmpRHS)))))
4666       return {L.Flavor, SPNB_NA, false};
4667   }
4668   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4669   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4670   if (C == B) {
4671     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4672                                          match(A, m_Not(m_Specific(CmpRHS)))))
4673       return {L.Flavor, SPNB_NA, false};
4674   }
4675   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4676   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4677   if (D == A) {
4678     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4679                                          match(B, m_Not(m_Specific(CmpRHS)))))
4680       return {L.Flavor, SPNB_NA, false};
4681   }
4682   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4683   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4684   if (C == A) {
4685     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4686                                          match(B, m_Not(m_Specific(CmpRHS)))))
4687       return {L.Flavor, SPNB_NA, false};
4688   }
4689 
4690   return {SPF_UNKNOWN, SPNB_NA, false};
4691 }
4692 
4693 /// Match non-obvious integer minimum and maximum sequences.
4694 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4695                                        Value *CmpLHS, Value *CmpRHS,
4696                                        Value *TrueVal, Value *FalseVal,
4697                                        Value *&LHS, Value *&RHS,
4698                                        unsigned Depth) {
4699   // Assume success. If there's no match, callers should not use these anyway.
4700   LHS = TrueVal;
4701   RHS = FalseVal;
4702 
4703   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4704   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4705     return SPR;
4706 
4707   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4708   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4709     return SPR;
4710 
4711   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4712     return {SPF_UNKNOWN, SPNB_NA, false};
4713 
4714   // Z = X -nsw Y
4715   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4716   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4717   if (match(TrueVal, m_Zero()) &&
4718       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4719     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4720 
4721   // Z = X -nsw Y
4722   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4723   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4724   if (match(FalseVal, m_Zero()) &&
4725       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4726     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4727 
4728   const APInt *C1;
4729   if (!match(CmpRHS, m_APInt(C1)))
4730     return {SPF_UNKNOWN, SPNB_NA, false};
4731 
4732   // An unsigned min/max can be written with a signed compare.
4733   const APInt *C2;
4734   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4735       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4736     // Is the sign bit set?
4737     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4738     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4739     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4740         C2->isMaxSignedValue())
4741       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4742 
4743     // Is the sign bit clear?
4744     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4745     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4746     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4747         C2->isMinSignedValue())
4748       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4749   }
4750 
4751   // Look through 'not' ops to find disguised signed min/max.
4752   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4753   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4754   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4755       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4756     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4757 
4758   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4759   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4760   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4761       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4762     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4763 
4764   return {SPF_UNKNOWN, SPNB_NA, false};
4765 }
4766 
4767 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4768   assert(X && Y && "Invalid operand");
4769 
4770   // X = sub (0, Y) || X = sub nsw (0, Y)
4771   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4772       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4773     return true;
4774 
4775   // Y = sub (0, X) || Y = sub nsw (0, X)
4776   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4777       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4778     return true;
4779 
4780   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4781   Value *A, *B;
4782   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4783                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4784          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4785                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4786 }
4787 
4788 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4789                                               FastMathFlags FMF,
4790                                               Value *CmpLHS, Value *CmpRHS,
4791                                               Value *TrueVal, Value *FalseVal,
4792                                               Value *&LHS, Value *&RHS,
4793                                               unsigned Depth) {
4794   if (CmpInst::isFPPredicate(Pred)) {
4795     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4796     // 0.0 operand, set the compare's 0.0 operands to that same value for the
4797     // purpose of identifying min/max. Disregard vector constants with undefined
4798     // elements because those can not be back-propagated for analysis.
4799     Value *OutputZeroVal = nullptr;
4800     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4801         !cast<Constant>(TrueVal)->containsUndefElement())
4802       OutputZeroVal = TrueVal;
4803     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4804              !cast<Constant>(FalseVal)->containsUndefElement())
4805       OutputZeroVal = FalseVal;
4806 
4807     if (OutputZeroVal) {
4808       if (match(CmpLHS, m_AnyZeroFP()))
4809         CmpLHS = OutputZeroVal;
4810       if (match(CmpRHS, m_AnyZeroFP()))
4811         CmpRHS = OutputZeroVal;
4812     }
4813   }
4814 
4815   LHS = CmpLHS;
4816   RHS = CmpRHS;
4817 
4818   // Signed zero may return inconsistent results between implementations.
4819   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4820   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4821   // Therefore, we behave conservatively and only proceed if at least one of the
4822   // operands is known to not be zero or if we don't care about signed zero.
4823   switch (Pred) {
4824   default: break;
4825   // FIXME: Include OGT/OLT/UGT/ULT.
4826   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4827   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4828     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4829         !isKnownNonZero(CmpRHS))
4830       return {SPF_UNKNOWN, SPNB_NA, false};
4831   }
4832 
4833   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4834   bool Ordered = false;
4835 
4836   // When given one NaN and one non-NaN input:
4837   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4838   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4839   //     ordered comparison fails), which could be NaN or non-NaN.
4840   // so here we discover exactly what NaN behavior is required/accepted.
4841   if (CmpInst::isFPPredicate(Pred)) {
4842     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4843     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4844 
4845     if (LHSSafe && RHSSafe) {
4846       // Both operands are known non-NaN.
4847       NaNBehavior = SPNB_RETURNS_ANY;
4848     } else if (CmpInst::isOrdered(Pred)) {
4849       // An ordered comparison will return false when given a NaN, so it
4850       // returns the RHS.
4851       Ordered = true;
4852       if (LHSSafe)
4853         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4854         NaNBehavior = SPNB_RETURNS_NAN;
4855       else if (RHSSafe)
4856         NaNBehavior = SPNB_RETURNS_OTHER;
4857       else
4858         // Completely unsafe.
4859         return {SPF_UNKNOWN, SPNB_NA, false};
4860     } else {
4861       Ordered = false;
4862       // An unordered comparison will return true when given a NaN, so it
4863       // returns the LHS.
4864       if (LHSSafe)
4865         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4866         NaNBehavior = SPNB_RETURNS_OTHER;
4867       else if (RHSSafe)
4868         NaNBehavior = SPNB_RETURNS_NAN;
4869       else
4870         // Completely unsafe.
4871         return {SPF_UNKNOWN, SPNB_NA, false};
4872     }
4873   }
4874 
4875   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4876     std::swap(CmpLHS, CmpRHS);
4877     Pred = CmpInst::getSwappedPredicate(Pred);
4878     if (NaNBehavior == SPNB_RETURNS_NAN)
4879       NaNBehavior = SPNB_RETURNS_OTHER;
4880     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4881       NaNBehavior = SPNB_RETURNS_NAN;
4882     Ordered = !Ordered;
4883   }
4884 
4885   // ([if]cmp X, Y) ? X : Y
4886   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4887     switch (Pred) {
4888     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4889     case ICmpInst::ICMP_UGT:
4890     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4891     case ICmpInst::ICMP_SGT:
4892     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4893     case ICmpInst::ICMP_ULT:
4894     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4895     case ICmpInst::ICMP_SLT:
4896     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4897     case FCmpInst::FCMP_UGT:
4898     case FCmpInst::FCMP_UGE:
4899     case FCmpInst::FCMP_OGT:
4900     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4901     case FCmpInst::FCMP_ULT:
4902     case FCmpInst::FCMP_ULE:
4903     case FCmpInst::FCMP_OLT:
4904     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4905     }
4906   }
4907 
4908   if (isKnownNegation(TrueVal, FalseVal)) {
4909     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4910     // match against either LHS or sext(LHS).
4911     auto MaybeSExtCmpLHS =
4912         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4913     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4914     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4915     if (match(TrueVal, MaybeSExtCmpLHS)) {
4916       // Set the return values. If the compare uses the negated value (-X >s 0),
4917       // swap the return values because the negated value is always 'RHS'.
4918       LHS = TrueVal;
4919       RHS = FalseVal;
4920       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4921         std::swap(LHS, RHS);
4922 
4923       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4924       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4925       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4926         return {SPF_ABS, SPNB_NA, false};
4927 
4928       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4929       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4930       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4931         return {SPF_NABS, SPNB_NA, false};
4932     }
4933     else if (match(FalseVal, MaybeSExtCmpLHS)) {
4934       // Set the return values. If the compare uses the negated value (-X >s 0),
4935       // swap the return values because the negated value is always 'RHS'.
4936       LHS = FalseVal;
4937       RHS = TrueVal;
4938       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4939         std::swap(LHS, RHS);
4940 
4941       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4942       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4943       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4944         return {SPF_NABS, SPNB_NA, false};
4945 
4946       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4947       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4948       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4949         return {SPF_ABS, SPNB_NA, false};
4950     }
4951   }
4952 
4953   if (CmpInst::isIntPredicate(Pred))
4954     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4955 
4956   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4957   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4958   // semantics than minNum. Be conservative in such case.
4959   if (NaNBehavior != SPNB_RETURNS_ANY ||
4960       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4961        !isKnownNonZero(CmpRHS)))
4962     return {SPF_UNKNOWN, SPNB_NA, false};
4963 
4964   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4965 }
4966 
4967 /// Helps to match a select pattern in case of a type mismatch.
4968 ///
4969 /// The function processes the case when type of true and false values of a
4970 /// select instruction differs from type of the cmp instruction operands because
4971 /// of a cast instruction. The function checks if it is legal to move the cast
4972 /// operation after "select". If yes, it returns the new second value of
4973 /// "select" (with the assumption that cast is moved):
4974 /// 1. As operand of cast instruction when both values of "select" are same cast
4975 /// instructions.
4976 /// 2. As restored constant (by applying reverse cast operation) when the first
4977 /// value of the "select" is a cast operation and the second value is a
4978 /// constant.
4979 /// NOTE: We return only the new second value because the first value could be
4980 /// accessed as operand of cast instruction.
4981 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4982                               Instruction::CastOps *CastOp) {
4983   auto *Cast1 = dyn_cast<CastInst>(V1);
4984   if (!Cast1)
4985     return nullptr;
4986 
4987   *CastOp = Cast1->getOpcode();
4988   Type *SrcTy = Cast1->getSrcTy();
4989   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4990     // If V1 and V2 are both the same cast from the same type, look through V1.
4991     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4992       return Cast2->getOperand(0);
4993     return nullptr;
4994   }
4995 
4996   auto *C = dyn_cast<Constant>(V2);
4997   if (!C)
4998     return nullptr;
4999 
5000   Constant *CastedTo = nullptr;
5001   switch (*CastOp) {
5002   case Instruction::ZExt:
5003     if (CmpI->isUnsigned())
5004       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5005     break;
5006   case Instruction::SExt:
5007     if (CmpI->isSigned())
5008       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5009     break;
5010   case Instruction::Trunc:
5011     Constant *CmpConst;
5012     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5013         CmpConst->getType() == SrcTy) {
5014       // Here we have the following case:
5015       //
5016       //   %cond = cmp iN %x, CmpConst
5017       //   %tr = trunc iN %x to iK
5018       //   %narrowsel = select i1 %cond, iK %t, iK C
5019       //
5020       // We can always move trunc after select operation:
5021       //
5022       //   %cond = cmp iN %x, CmpConst
5023       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5024       //   %tr = trunc iN %widesel to iK
5025       //
5026       // Note that C could be extended in any way because we don't care about
5027       // upper bits after truncation. It can't be abs pattern, because it would
5028       // look like:
5029       //
5030       //   select i1 %cond, x, -x.
5031       //
5032       // So only min/max pattern could be matched. Such match requires widened C
5033       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5034       // CmpConst == C is checked below.
5035       CastedTo = CmpConst;
5036     } else {
5037       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5038     }
5039     break;
5040   case Instruction::FPTrunc:
5041     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5042     break;
5043   case Instruction::FPExt:
5044     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5045     break;
5046   case Instruction::FPToUI:
5047     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5048     break;
5049   case Instruction::FPToSI:
5050     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5051     break;
5052   case Instruction::UIToFP:
5053     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5054     break;
5055   case Instruction::SIToFP:
5056     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5057     break;
5058   default:
5059     break;
5060   }
5061 
5062   if (!CastedTo)
5063     return nullptr;
5064 
5065   // Make sure the cast doesn't lose any information.
5066   Constant *CastedBack =
5067       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5068   if (CastedBack != C)
5069     return nullptr;
5070 
5071   return CastedTo;
5072 }
5073 
5074 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5075                                              Instruction::CastOps *CastOp,
5076                                              unsigned Depth) {
5077   if (Depth >= MaxDepth)
5078     return {SPF_UNKNOWN, SPNB_NA, false};
5079 
5080   SelectInst *SI = dyn_cast<SelectInst>(V);
5081   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5082 
5083   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5084   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5085 
5086   CmpInst::Predicate Pred = CmpI->getPredicate();
5087   Value *CmpLHS = CmpI->getOperand(0);
5088   Value *CmpRHS = CmpI->getOperand(1);
5089   Value *TrueVal = SI->getTrueValue();
5090   Value *FalseVal = SI->getFalseValue();
5091   FastMathFlags FMF;
5092   if (isa<FPMathOperator>(CmpI))
5093     FMF = CmpI->getFastMathFlags();
5094 
5095   // Bail out early.
5096   if (CmpI->isEquality())
5097     return {SPF_UNKNOWN, SPNB_NA, false};
5098 
5099   // Deal with type mismatches.
5100   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5101     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5102       // If this is a potential fmin/fmax with a cast to integer, then ignore
5103       // -0.0 because there is no corresponding integer value.
5104       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5105         FMF.setNoSignedZeros();
5106       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5107                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5108                                   LHS, RHS, Depth);
5109     }
5110     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5111       // If this is a potential fmin/fmax with a cast to integer, then ignore
5112       // -0.0 because there is no corresponding integer value.
5113       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5114         FMF.setNoSignedZeros();
5115       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5116                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5117                                   LHS, RHS, Depth);
5118     }
5119   }
5120   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5121                               LHS, RHS, Depth);
5122 }
5123 
5124 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5125   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5126   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5127   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5128   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5129   if (SPF == SPF_FMINNUM)
5130     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5131   if (SPF == SPF_FMAXNUM)
5132     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5133   llvm_unreachable("unhandled!");
5134 }
5135 
5136 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5137   if (SPF == SPF_SMIN) return SPF_SMAX;
5138   if (SPF == SPF_UMIN) return SPF_UMAX;
5139   if (SPF == SPF_SMAX) return SPF_SMIN;
5140   if (SPF == SPF_UMAX) return SPF_UMIN;
5141   llvm_unreachable("unhandled!");
5142 }
5143 
5144 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5145   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5146 }
5147 
5148 /// Return true if "icmp Pred LHS RHS" is always true.
5149 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5150                             const Value *RHS, const DataLayout &DL,
5151                             unsigned Depth) {
5152   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5153   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5154     return true;
5155 
5156   switch (Pred) {
5157   default:
5158     return false;
5159 
5160   case CmpInst::ICMP_SLE: {
5161     const APInt *C;
5162 
5163     // LHS s<= LHS +_{nsw} C   if C >= 0
5164     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5165       return !C->isNegative();
5166     return false;
5167   }
5168 
5169   case CmpInst::ICMP_ULE: {
5170     const APInt *C;
5171 
5172     // LHS u<= LHS +_{nuw} C   for any C
5173     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5174       return true;
5175 
5176     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5177     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5178                                        const Value *&X,
5179                                        const APInt *&CA, const APInt *&CB) {
5180       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5181           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5182         return true;
5183 
5184       // If X & C == 0 then (X | C) == X +_{nuw} C
5185       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5186           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5187         KnownBits Known(CA->getBitWidth());
5188         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5189                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5190         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5191           return true;
5192       }
5193 
5194       return false;
5195     };
5196 
5197     const Value *X;
5198     const APInt *CLHS, *CRHS;
5199     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5200       return CLHS->ule(*CRHS);
5201 
5202     return false;
5203   }
5204   }
5205 }
5206 
5207 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5208 /// ALHS ARHS" is true.  Otherwise, return None.
5209 static Optional<bool>
5210 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5211                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5212                       const DataLayout &DL, unsigned Depth) {
5213   switch (Pred) {
5214   default:
5215     return None;
5216 
5217   case CmpInst::ICMP_SLT:
5218   case CmpInst::ICMP_SLE:
5219     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5220         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5221       return true;
5222     return None;
5223 
5224   case CmpInst::ICMP_ULT:
5225   case CmpInst::ICMP_ULE:
5226     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5227         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5228       return true;
5229     return None;
5230   }
5231 }
5232 
5233 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5234 /// when the operands match, but are swapped.
5235 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5236                           const Value *BLHS, const Value *BRHS,
5237                           bool &IsSwappedOps) {
5238 
5239   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5240   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5241   return IsMatchingOps || IsSwappedOps;
5242 }
5243 
5244 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5245 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5246 /// Otherwise, return None if we can't infer anything.
5247 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5248                                                     CmpInst::Predicate BPred,
5249                                                     bool AreSwappedOps) {
5250   // Canonicalize the predicate as if the operands were not commuted.
5251   if (AreSwappedOps)
5252     BPred = ICmpInst::getSwappedPredicate(BPred);
5253 
5254   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5255     return true;
5256   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5257     return false;
5258 
5259   return None;
5260 }
5261 
5262 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5263 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5264 /// Otherwise, return None if we can't infer anything.
5265 static Optional<bool>
5266 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
5267                                  const ConstantInt *C1,
5268                                  CmpInst::Predicate BPred,
5269                                  const ConstantInt *C2) {
5270   ConstantRange DomCR =
5271       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5272   ConstantRange CR =
5273       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5274   ConstantRange Intersection = DomCR.intersectWith(CR);
5275   ConstantRange Difference = DomCR.difference(CR);
5276   if (Intersection.isEmptySet())
5277     return false;
5278   if (Difference.isEmptySet())
5279     return true;
5280   return None;
5281 }
5282 
5283 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5284 /// false.  Otherwise, return None if we can't infer anything.
5285 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5286                                          const ICmpInst *RHS,
5287                                          const DataLayout &DL, bool LHSIsTrue,
5288                                          unsigned Depth) {
5289   Value *ALHS = LHS->getOperand(0);
5290   Value *ARHS = LHS->getOperand(1);
5291   // The rest of the logic assumes the LHS condition is true.  If that's not the
5292   // case, invert the predicate to make it so.
5293   ICmpInst::Predicate APred =
5294       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5295 
5296   Value *BLHS = RHS->getOperand(0);
5297   Value *BRHS = RHS->getOperand(1);
5298   ICmpInst::Predicate BPred = RHS->getPredicate();
5299 
5300   // Can we infer anything when the two compares have matching operands?
5301   bool AreSwappedOps;
5302   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
5303     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5304             APred, BPred, AreSwappedOps))
5305       return Implication;
5306     // No amount of additional analysis will infer the second condition, so
5307     // early exit.
5308     return None;
5309   }
5310 
5311   // Can we infer anything when the LHS operands match and the RHS operands are
5312   // constants (not necessarily matching)?
5313   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5314     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5315             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
5316       return Implication;
5317     // No amount of additional analysis will infer the second condition, so
5318     // early exit.
5319     return None;
5320   }
5321 
5322   if (APred == BPred)
5323     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5324   return None;
5325 }
5326 
5327 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5328 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5329 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5330 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5331                                          const ICmpInst *RHS,
5332                                          const DataLayout &DL, bool LHSIsTrue,
5333                                          unsigned Depth) {
5334   // The LHS must be an 'or' or an 'and' instruction.
5335   assert((LHS->getOpcode() == Instruction::And ||
5336           LHS->getOpcode() == Instruction::Or) &&
5337          "Expected LHS to be 'and' or 'or'.");
5338 
5339   assert(Depth <= MaxDepth && "Hit recursion limit");
5340 
5341   // If the result of an 'or' is false, then we know both legs of the 'or' are
5342   // false.  Similarly, if the result of an 'and' is true, then we know both
5343   // legs of the 'and' are true.
5344   Value *ALHS, *ARHS;
5345   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5346       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5347     // FIXME: Make this non-recursion.
5348     if (Optional<bool> Implication =
5349             isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5350       return Implication;
5351     if (Optional<bool> Implication =
5352             isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5353       return Implication;
5354     return None;
5355   }
5356   return None;
5357 }
5358 
5359 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5360                                         const DataLayout &DL, bool LHSIsTrue,
5361                                         unsigned Depth) {
5362   // Bail out when we hit the limit.
5363   if (Depth == MaxDepth)
5364     return None;
5365 
5366   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5367   // example.
5368   if (LHS->getType() != RHS->getType())
5369     return None;
5370 
5371   Type *OpTy = LHS->getType();
5372   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5373 
5374   // LHS ==> RHS by definition
5375   if (LHS == RHS)
5376     return LHSIsTrue;
5377 
5378   // FIXME: Extending the code below to handle vectors.
5379   if (OpTy->isVectorTy())
5380     return None;
5381 
5382   assert(OpTy->isIntegerTy(1) && "implied by above");
5383 
5384   // Both LHS and RHS are icmps.
5385   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5386   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5387   if (LHSCmp && RHSCmp)
5388     return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5389 
5390   // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
5391   // an icmp. FIXME: Add support for and/or on the RHS.
5392   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5393   if (LHSBO && RHSCmp) {
5394     if ((LHSBO->getOpcode() == Instruction::And ||
5395          LHSBO->getOpcode() == Instruction::Or))
5396       return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5397   }
5398   return None;
5399 }
5400 
5401 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5402                                              const Instruction *ContextI,
5403                                              const DataLayout &DL) {
5404   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
5405   if (!ContextI || !ContextI->getParent())
5406     return None;
5407 
5408   // TODO: This is a poor/cheap way to determine dominance. Should we use a
5409   // dominator tree (eg, from a SimplifyQuery) instead?
5410   const BasicBlock *ContextBB = ContextI->getParent();
5411   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5412   if (!PredBB)
5413     return None;
5414 
5415   // We need a conditional branch in the predecessor.
5416   Value *PredCond;
5417   BasicBlock *TrueBB, *FalseBB;
5418   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5419     return None;
5420 
5421   // The branch should get simplified. Don't bother simplifying this condition.
5422   if (TrueBB == FalseBB)
5423     return None;
5424 
5425   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
5426          "Predecessor block does not point to successor?");
5427 
5428   // Is this condition implied by the predecessor condition?
5429   bool CondIsTrue = TrueBB == ContextBB;
5430   return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5431 }
5432