1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 55 /// 0). For vector types, returns the element type's bitwidth. 56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 57 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 58 return BitWidth; 59 60 return DL.getPointerTypeSizeInBits(Ty); 61 } 62 63 namespace { 64 // Simplifying using an assume can only be done in a particular control-flow 65 // context (the context instruction provides that context). If an assume and 66 // the context instruction are not in the same block then the DT helps in 67 // figuring out if we can use it. 68 struct Query { 69 const DataLayout &DL; 70 AssumptionCache *AC; 71 const Instruction *CxtI; 72 const DominatorTree *DT; 73 74 /// Set of assumptions that should be excluded from further queries. 75 /// This is because of the potential for mutual recursion to cause 76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 77 /// classic case of this is assume(x = y), which will attempt to determine 78 /// bits in x from bits in y, which will attempt to determine bits in y from 79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 82 /// on. 83 std::array<const Value*, MaxDepth> Excluded; 84 unsigned NumExcluded; 85 86 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 87 const DominatorTree *DT) 88 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 89 90 Query(const Query &Q, const Value *NewExcl) 91 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 92 Excluded = Q.Excluded; 93 Excluded[NumExcluded++] = NewExcl; 94 assert(NumExcluded <= Excluded.size()); 95 } 96 97 bool isExcluded(const Value *Value) const { 98 if (NumExcluded == 0) 99 return false; 100 auto End = Excluded.begin() + NumExcluded; 101 return std::find(Excluded.begin(), End, Value) != End; 102 } 103 }; 104 } // end anonymous namespace 105 106 // Given the provided Value and, potentially, a context instruction, return 107 // the preferred context instruction (if any). 108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 109 // If we've been provided with a context instruction, then use that (provided 110 // it has been inserted). 111 if (CxtI && CxtI->getParent()) 112 return CxtI; 113 114 // If the value is really an already-inserted instruction, then use that. 115 CxtI = dyn_cast<Instruction>(V); 116 if (CxtI && CxtI->getParent()) 117 return CxtI; 118 119 return nullptr; 120 } 121 122 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 123 unsigned Depth, const Query &Q); 124 125 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 126 const DataLayout &DL, unsigned Depth, 127 AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT) { 129 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 130 Query(DL, AC, safeCxtI(V, CxtI), DT)); 131 } 132 133 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 134 const DataLayout &DL, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 assert(LHS->getType() == RHS->getType() && 138 "LHS and RHS should have the same type"); 139 assert(LHS->getType()->isIntOrIntVectorTy() && 140 "LHS and RHS should be integers"); 141 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 142 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 143 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 144 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 145 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 146 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 147 } 148 149 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 150 unsigned Depth, const Query &Q); 151 152 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 153 const DataLayout &DL, unsigned Depth, 154 AssumptionCache *AC, const Instruction *CxtI, 155 const DominatorTree *DT) { 156 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 157 Query(DL, AC, safeCxtI(V, CxtI), DT)); 158 } 159 160 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 161 const Query &Q); 162 163 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 164 bool OrZero, 165 unsigned Depth, AssumptionCache *AC, 166 const Instruction *CxtI, 167 const DominatorTree *DT) { 168 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 173 174 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 175 AssumptionCache *AC, const Instruction *CxtI, 176 const DominatorTree *DT) { 177 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 178 } 179 180 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 181 unsigned Depth, 182 AssumptionCache *AC, const Instruction *CxtI, 183 const DominatorTree *DT) { 184 bool NonNegative, Negative; 185 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 186 return NonNegative; 187 } 188 189 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 190 AssumptionCache *AC, const Instruction *CxtI, 191 const DominatorTree *DT) { 192 if (auto *CI = dyn_cast<ConstantInt>(V)) 193 return CI->getValue().isStrictlyPositive(); 194 195 // TODO: We'd doing two recursive queries here. We should factor this such 196 // that only a single query is needed. 197 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 198 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 199 } 200 201 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 bool NonNegative, Negative; 205 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 206 return Negative; 207 } 208 209 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 210 211 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 212 const DataLayout &DL, 213 AssumptionCache *AC, const Instruction *CxtI, 214 const DominatorTree *DT) { 215 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 216 safeCxtI(V1, safeCxtI(V2, CxtI)), 217 DT)); 218 } 219 220 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 221 const Query &Q); 222 223 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 224 const DataLayout &DL, 225 unsigned Depth, AssumptionCache *AC, 226 const Instruction *CxtI, const DominatorTree *DT) { 227 return ::MaskedValueIsZero(V, Mask, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT)); 229 } 230 231 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 232 const Query &Q); 233 234 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 242 bool NSW, 243 APInt &KnownZero, APInt &KnownOne, 244 APInt &KnownZero2, APInt &KnownOne2, 245 unsigned Depth, const Query &Q) { 246 if (!Add) { 247 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 248 // We know that the top bits of C-X are clear if X contains less bits 249 // than C (i.e. no wrap-around can happen). For example, 20-X is 250 // positive if we can prove that X is >= 0 and < 16. 251 if (!CLHS->getValue().isNegative()) { 252 unsigned BitWidth = KnownZero.getBitWidth(); 253 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 254 // NLZ can't be BitWidth with no sign bit 255 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 256 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 257 258 // If all of the MaskV bits are known to be zero, then we know the 259 // output top bits are zero, because we now know that the output is 260 // from [0-C]. 261 if ((KnownZero2 & MaskV) == MaskV) { 262 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 263 // Top bits known zero. 264 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 265 } 266 } 267 } 268 } 269 270 unsigned BitWidth = KnownZero.getBitWidth(); 271 272 // If an initial sequence of bits in the result is not needed, the 273 // corresponding bits in the operands are not needed. 274 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 275 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 276 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 277 278 // Carry in a 1 for a subtract, rather than a 0. 279 APInt CarryIn(BitWidth, 0); 280 if (!Add) { 281 // Sum = LHS + ~RHS + 1 282 std::swap(KnownZero2, KnownOne2); 283 CarryIn.setBit(0); 284 } 285 286 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 287 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 288 289 // Compute known bits of the carry. 290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 292 293 // Compute set of known bits (where all three relevant bits are known). 294 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 295 APInt RHSKnown = KnownZero2 | KnownOne2; 296 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 297 APInt Known = LHSKnown & RHSKnown & CarryKnown; 298 299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 300 "known bits of sum differ"); 301 302 // Compute known bits of the result. 303 KnownZero = ~PossibleSumOne & Known; 304 KnownOne = PossibleSumOne & Known; 305 306 // Are we still trying to solve for the sign bit? 307 if (!Known.isNegative()) { 308 if (NSW) { 309 // Adding two non-negative numbers, or subtracting a negative number from 310 // a non-negative one, can't wrap into negative. 311 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 312 KnownZero |= APInt::getSignBit(BitWidth); 313 // Adding two negative numbers, or subtracting a non-negative number from 314 // a negative one, can't wrap into non-negative. 315 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 316 KnownOne |= APInt::getSignBit(BitWidth); 317 } 318 } 319 } 320 321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 322 APInt &KnownZero, APInt &KnownOne, 323 APInt &KnownZero2, APInt &KnownOne2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = KnownZero.getBitWidth(); 326 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 327 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 338 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 339 bool isKnownNegativeOp1 = KnownOne.isNegative(); 340 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 // If low bits are zero in either operand, output low known-0 bits. 355 // Also compute a conservative estimate for high known-0 bits. 356 // More trickiness is possible, but this is sufficient for the 357 // interesting case of alignment computation. 358 KnownOne.clearAllBits(); 359 unsigned TrailZ = KnownZero.countTrailingOnes() + 360 KnownZero2.countTrailingOnes(); 361 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 362 KnownZero2.countLeadingOnes(), 363 BitWidth) - BitWidth; 364 365 TrailZ = std::min(TrailZ, BitWidth); 366 LeadZ = std::min(LeadZ, BitWidth); 367 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 368 APInt::getHighBitsSet(BitWidth, LeadZ); 369 370 // Only make use of no-wrap flags if we failed to compute the sign bit 371 // directly. This matters if the multiplication always overflows, in 372 // which case we prefer to follow the result of the direct computation, 373 // though as the program is invoking undefined behaviour we can choose 374 // whatever we like here. 375 if (isKnownNonNegative && !KnownOne.isNegative()) 376 KnownZero.setBit(BitWidth - 1); 377 else if (isKnownNegative && !KnownZero.isNegative()) 378 KnownOne.setBit(BitWidth - 1); 379 } 380 381 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 382 APInt &KnownZero, 383 APInt &KnownOne) { 384 unsigned BitWidth = KnownZero.getBitWidth(); 385 unsigned NumRanges = Ranges.getNumOperands() / 2; 386 assert(NumRanges >= 1); 387 388 KnownZero.setAllBits(); 389 KnownOne.setAllBits(); 390 391 for (unsigned i = 0; i < NumRanges; ++i) { 392 ConstantInt *Lower = 393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 394 ConstantInt *Upper = 395 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 396 ConstantRange Range(Lower->getValue(), Upper->getValue()); 397 398 // The first CommonPrefixBits of all values in Range are equal. 399 unsigned CommonPrefixBits = 400 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 401 402 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 403 KnownOne &= Range.getUnsignedMax() & Mask; 404 KnownZero &= ~Range.getUnsignedMax() & Mask; 405 } 406 } 407 408 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 409 SmallVector<const Value *, 16> WorkSet(1, I); 410 SmallPtrSet<const Value *, 32> Visited; 411 SmallPtrSet<const Value *, 16> EphValues; 412 413 // The instruction defining an assumption's condition itself is always 414 // considered ephemeral to that assumption (even if it has other 415 // non-ephemeral users). See r246696's test case for an example. 416 if (is_contained(I->operands(), E)) 417 return true; 418 419 while (!WorkSet.empty()) { 420 const Value *V = WorkSet.pop_back_val(); 421 if (!Visited.insert(V).second) 422 continue; 423 424 // If all uses of this value are ephemeral, then so is this value. 425 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 426 if (V == E) 427 return true; 428 429 EphValues.insert(V); 430 if (const User *U = dyn_cast<User>(V)) 431 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 432 J != JE; ++J) { 433 if (isSafeToSpeculativelyExecute(*J)) 434 WorkSet.push_back(*J); 435 } 436 } 437 } 438 439 return false; 440 } 441 442 // Is this an intrinsic that cannot be speculated but also cannot trap? 443 static bool isAssumeLikeIntrinsic(const Instruction *I) { 444 if (const CallInst *CI = dyn_cast<CallInst>(I)) 445 if (Function *F = CI->getCalledFunction()) 446 switch (F->getIntrinsicID()) { 447 default: break; 448 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 449 case Intrinsic::assume: 450 case Intrinsic::dbg_declare: 451 case Intrinsic::dbg_value: 452 case Intrinsic::invariant_start: 453 case Intrinsic::invariant_end: 454 case Intrinsic::lifetime_start: 455 case Intrinsic::lifetime_end: 456 case Intrinsic::objectsize: 457 case Intrinsic::ptr_annotation: 458 case Intrinsic::var_annotation: 459 return true; 460 } 461 462 return false; 463 } 464 465 bool llvm::isValidAssumeForContext(const Instruction *Inv, 466 const Instruction *CxtI, 467 const DominatorTree *DT) { 468 469 // There are two restrictions on the use of an assume: 470 // 1. The assume must dominate the context (or the control flow must 471 // reach the assume whenever it reaches the context). 472 // 2. The context must not be in the assume's set of ephemeral values 473 // (otherwise we will use the assume to prove that the condition 474 // feeding the assume is trivially true, thus causing the removal of 475 // the assume). 476 477 if (DT) { 478 if (DT->dominates(Inv, CxtI)) 479 return true; 480 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 481 // We don't have a DT, but this trivially dominates. 482 return true; 483 } 484 485 // With or without a DT, the only remaining case we will check is if the 486 // instructions are in the same BB. Give up if that is not the case. 487 if (Inv->getParent() != CxtI->getParent()) 488 return false; 489 490 // If we have a dom tree, then we now know that the assume doens't dominate 491 // the other instruction. If we don't have a dom tree then we can check if 492 // the assume is first in the BB. 493 if (!DT) { 494 // Search forward from the assume until we reach the context (or the end 495 // of the block); the common case is that the assume will come first. 496 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 497 IE = Inv->getParent()->end(); I != IE; ++I) 498 if (&*I == CxtI) 499 return true; 500 } 501 502 // The context comes first, but they're both in the same block. Make sure 503 // there is nothing in between that might interrupt the control flow. 504 for (BasicBlock::const_iterator I = 505 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 506 I != IE; ++I) 507 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 508 return false; 509 510 return !isEphemeralValueOf(Inv, CxtI); 511 } 512 513 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 514 APInt &KnownOne, unsigned Depth, 515 const Query &Q) { 516 // Use of assumptions is context-sensitive. If we don't have a context, we 517 // cannot use them! 518 if (!Q.AC || !Q.CxtI) 519 return; 520 521 unsigned BitWidth = KnownZero.getBitWidth(); 522 523 for (auto &AssumeVH : Q.AC->assumptions()) { 524 if (!AssumeVH) 525 continue; 526 CallInst *I = cast<CallInst>(AssumeVH); 527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 528 "Got assumption for the wrong function!"); 529 if (Q.isExcluded(I)) 530 continue; 531 532 // Warning: This loop can end up being somewhat performance sensetive. 533 // We're running this loop for once for each value queried resulting in a 534 // runtime of ~O(#assumes * #values). 535 536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 537 "must be an assume intrinsic"); 538 539 Value *Arg = I->getArgOperand(0); 540 541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 542 assert(BitWidth == 1 && "assume operand is not i1?"); 543 KnownZero.clearAllBits(); 544 KnownOne.setAllBits(); 545 return; 546 } 547 548 // The remaining tests are all recursive, so bail out if we hit the limit. 549 if (Depth == MaxDepth) 550 continue; 551 552 Value *A, *B; 553 auto m_V = m_CombineOr(m_Specific(V), 554 m_CombineOr(m_PtrToInt(m_Specific(V)), 555 m_BitCast(m_Specific(V)))); 556 557 CmpInst::Predicate Pred; 558 ConstantInt *C; 559 // assume(v = a) 560 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 564 KnownZero |= RHSKnownZero; 565 KnownOne |= RHSKnownOne; 566 // assume(v & b = a) 567 } else if (match(Arg, 568 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 569 Pred == ICmpInst::ICMP_EQ && 570 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 573 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 574 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 575 576 // For those bits in the mask that are known to be one, we can propagate 577 // known bits from the RHS to V. 578 KnownZero |= RHSKnownZero & MaskKnownOne; 579 KnownOne |= RHSKnownOne & MaskKnownOne; 580 // assume(~(v & b) = a) 581 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 582 m_Value(A))) && 583 Pred == ICmpInst::ICMP_EQ && 584 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 585 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 586 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 587 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 588 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 589 590 // For those bits in the mask that are known to be one, we can propagate 591 // inverted known bits from the RHS to V. 592 KnownZero |= RHSKnownOne & MaskKnownOne; 593 KnownOne |= RHSKnownZero & MaskKnownOne; 594 // assume(v | b = a) 595 } else if (match(Arg, 596 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 597 Pred == ICmpInst::ICMP_EQ && 598 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 599 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 600 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 601 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 602 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 603 604 // For those bits in B that are known to be zero, we can propagate known 605 // bits from the RHS to V. 606 KnownZero |= RHSKnownZero & BKnownZero; 607 KnownOne |= RHSKnownOne & BKnownZero; 608 // assume(~(v | b) = a) 609 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 610 m_Value(A))) && 611 Pred == ICmpInst::ICMP_EQ && 612 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 613 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 614 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 615 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 616 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 617 618 // For those bits in B that are known to be zero, we can propagate 619 // inverted known bits from the RHS to V. 620 KnownZero |= RHSKnownOne & BKnownZero; 621 KnownOne |= RHSKnownZero & BKnownZero; 622 // assume(v ^ b = a) 623 } else if (match(Arg, 624 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 625 Pred == ICmpInst::ICMP_EQ && 626 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 627 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 628 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 629 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 630 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 631 632 // For those bits in B that are known to be zero, we can propagate known 633 // bits from the RHS to V. For those bits in B that are known to be one, 634 // we can propagate inverted known bits from the RHS to V. 635 KnownZero |= RHSKnownZero & BKnownZero; 636 KnownOne |= RHSKnownOne & BKnownZero; 637 KnownZero |= RHSKnownOne & BKnownOne; 638 KnownOne |= RHSKnownZero & BKnownOne; 639 // assume(~(v ^ b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 646 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 647 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 648 649 // For those bits in B that are known to be zero, we can propagate 650 // inverted known bits from the RHS to V. For those bits in B that are 651 // known to be one, we can propagate known bits from the RHS to V. 652 KnownZero |= RHSKnownOne & BKnownZero; 653 KnownOne |= RHSKnownZero & BKnownZero; 654 KnownZero |= RHSKnownZero & BKnownOne; 655 KnownOne |= RHSKnownOne & BKnownOne; 656 // assume(v << c = a) 657 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 658 m_Value(A))) && 659 Pred == ICmpInst::ICMP_EQ && 660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 661 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 662 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 663 // For those bits in RHS that are known, we can propagate them to known 664 // bits in V shifted to the right by C. 665 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 666 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 667 // assume(~(v << c) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 673 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 674 // For those bits in RHS that are known, we can propagate them inverted 675 // to known bits in V shifted to the right by C. 676 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 677 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 678 // assume(v >> c = a) 679 } else if (match(Arg, 680 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 681 m_AShr(m_V, m_ConstantInt(C))), 682 m_Value(A))) && 683 Pred == ICmpInst::ICMP_EQ && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 686 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 687 // For those bits in RHS that are known, we can propagate them to known 688 // bits in V shifted to the right by C. 689 KnownZero |= RHSKnownZero << C->getZExtValue(); 690 KnownOne |= RHSKnownOne << C->getZExtValue(); 691 // assume(~(v >> c) = a) 692 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 693 m_LShr(m_V, m_ConstantInt(C)), 694 m_AShr(m_V, m_ConstantInt(C)))), 695 m_Value(A))) && 696 Pred == ICmpInst::ICMP_EQ && 697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 700 // For those bits in RHS that are known, we can propagate them inverted 701 // to known bits in V shifted to the right by C. 702 KnownZero |= RHSKnownOne << C->getZExtValue(); 703 KnownOne |= RHSKnownZero << C->getZExtValue(); 704 // assume(v >=_s c) where c is non-negative 705 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 706 Pred == ICmpInst::ICMP_SGE && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 709 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 710 711 if (RHSKnownZero.isNegative()) { 712 // We know that the sign bit is zero. 713 KnownZero |= APInt::getSignBit(BitWidth); 714 } 715 // assume(v >_s c) where c is at least -1. 716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 717 Pred == ICmpInst::ICMP_SGT && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 721 722 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 723 // We know that the sign bit is zero. 724 KnownZero |= APInt::getSignBit(BitWidth); 725 } 726 // assume(v <=_s c) where c is negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SLE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 732 733 if (RHSKnownOne.isNegative()) { 734 // We know that the sign bit is one. 735 KnownOne |= APInt::getSignBit(BitWidth); 736 } 737 // assume(v <_s c) where c is non-positive 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SLT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 743 744 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 745 // We know that the sign bit is one. 746 KnownOne |= APInt::getSignBit(BitWidth); 747 } 748 // assume(v <=_u c) 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_ULE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 754 755 // Whatever high bits in c are zero are known to be zero. 756 KnownZero |= 757 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 758 // assume(v <_u c) 759 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 760 Pred == ICmpInst::ICMP_ULT && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 763 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 764 765 // Whatever high bits in c are zero are known to be zero (if c is a power 766 // of 2, then one more). 767 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 768 KnownZero |= 769 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 770 else 771 KnownZero |= 772 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 773 } 774 } 775 } 776 777 // Compute known bits from a shift operator, including those with a 778 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 779 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 780 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 781 // functors that, given the known-zero or known-one bits respectively, and a 782 // shift amount, compute the implied known-zero or known-one bits of the shift 783 // operator's result respectively for that shift amount. The results from calling 784 // KZF and KOF are conservatively combined for all permitted shift amounts. 785 static void computeKnownBitsFromShiftOperator( 786 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 787 APInt &KnownOne2, unsigned Depth, const Query &Q, 788 function_ref<APInt(const APInt &, unsigned)> KZF, 789 function_ref<APInt(const APInt &, unsigned)> KOF) { 790 unsigned BitWidth = KnownZero.getBitWidth(); 791 792 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 793 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 794 795 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 796 KnownZero = KZF(KnownZero, ShiftAmt); 797 KnownOne = KOF(KnownOne, ShiftAmt); 798 return; 799 } 800 801 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 802 803 // Note: We cannot use KnownZero.getLimitedValue() here, because if 804 // BitWidth > 64 and any upper bits are known, we'll end up returning the 805 // limit value (which implies all bits are known). 806 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 807 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 808 809 // It would be more-clearly correct to use the two temporaries for this 810 // calculation. Reusing the APInts here to prevent unnecessary allocations. 811 KnownZero.clearAllBits(); 812 KnownOne.clearAllBits(); 813 814 // If we know the shifter operand is nonzero, we can sometimes infer more 815 // known bits. However this is expensive to compute, so be lazy about it and 816 // only compute it when absolutely necessary. 817 Optional<bool> ShifterOperandIsNonZero; 818 819 // Early exit if we can't constrain any well-defined shift amount. 820 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 821 ShifterOperandIsNonZero = 822 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 823 if (!*ShifterOperandIsNonZero) 824 return; 825 } 826 827 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 828 829 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 830 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 831 // Combine the shifted known input bits only for those shift amounts 832 // compatible with its known constraints. 833 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 834 continue; 835 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 836 continue; 837 // If we know the shifter is nonzero, we may be able to infer more known 838 // bits. This check is sunk down as far as possible to avoid the expensive 839 // call to isKnownNonZero if the cheaper checks above fail. 840 if (ShiftAmt == 0) { 841 if (!ShifterOperandIsNonZero.hasValue()) 842 ShifterOperandIsNonZero = 843 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 844 if (*ShifterOperandIsNonZero) 845 continue; 846 } 847 848 KnownZero &= KZF(KnownZero2, ShiftAmt); 849 KnownOne &= KOF(KnownOne2, ShiftAmt); 850 } 851 852 // If there are no compatible shift amounts, then we've proven that the shift 853 // amount must be >= the BitWidth, and the result is undefined. We could 854 // return anything we'd like, but we need to make sure the sets of known bits 855 // stay disjoint (it should be better for some other code to actually 856 // propagate the undef than to pick a value here using known bits). 857 if ((KnownZero & KnownOne) != 0) { 858 KnownZero.clearAllBits(); 859 KnownOne.clearAllBits(); 860 } 861 } 862 863 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 864 APInt &KnownOne, unsigned Depth, 865 const Query &Q) { 866 unsigned BitWidth = KnownZero.getBitWidth(); 867 868 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 869 switch (I->getOpcode()) { 870 default: break; 871 case Instruction::Load: 872 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 873 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 874 break; 875 case Instruction::And: { 876 // If either the LHS or the RHS are Zero, the result is zero. 877 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 878 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 879 880 // Output known-1 bits are only known if set in both the LHS & RHS. 881 KnownOne &= KnownOne2; 882 // Output known-0 are known to be clear if zero in either the LHS | RHS. 883 KnownZero |= KnownZero2; 884 885 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 886 // here we handle the more general case of adding any odd number by 887 // matching the form add(x, add(x, y)) where y is odd. 888 // TODO: This could be generalized to clearing any bit set in y where the 889 // following bit is known to be unset in y. 890 Value *Y = nullptr; 891 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 892 m_Value(Y))) || 893 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 894 m_Value(Y)))) { 895 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 896 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 897 if (KnownOne3.countTrailingOnes() > 0) 898 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 899 } 900 break; 901 } 902 case Instruction::Or: { 903 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 904 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 905 906 // Output known-0 bits are only known if clear in both the LHS & RHS. 907 KnownZero &= KnownZero2; 908 // Output known-1 are known to be set if set in either the LHS | RHS. 909 KnownOne |= KnownOne2; 910 break; 911 } 912 case Instruction::Xor: { 913 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 914 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 915 916 // Output known-0 bits are known if clear or set in both the LHS & RHS. 917 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 918 // Output known-1 are known to be set if set in only one of the LHS, RHS. 919 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 920 KnownZero = KnownZeroOut; 921 break; 922 } 923 case Instruction::Mul: { 924 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 925 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 926 KnownOne, KnownZero2, KnownOne2, Depth, Q); 927 break; 928 } 929 case Instruction::UDiv: { 930 // For the purposes of computing leading zeros we can conservatively 931 // treat a udiv as a logical right shift by the power of 2 known to 932 // be less than the denominator. 933 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 934 unsigned LeadZ = KnownZero2.countLeadingOnes(); 935 936 KnownOne2.clearAllBits(); 937 KnownZero2.clearAllBits(); 938 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 939 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 940 if (RHSUnknownLeadingOnes != BitWidth) 941 LeadZ = std::min(BitWidth, 942 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 943 944 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 945 break; 946 } 947 case Instruction::Select: { 948 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 949 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 950 951 const Value *LHS; 952 const Value *RHS; 953 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 954 if (SelectPatternResult::isMinOrMax(SPF)) { 955 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 956 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 957 } else { 958 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 959 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 960 } 961 962 unsigned MaxHighOnes = 0; 963 unsigned MaxHighZeros = 0; 964 if (SPF == SPF_SMAX) { 965 // If both sides are negative, the result is negative. 966 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 967 // We can derive a lower bound on the result by taking the max of the 968 // leading one bits. 969 MaxHighOnes = 970 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 971 // If either side is non-negative, the result is non-negative. 972 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 973 MaxHighZeros = 1; 974 } else if (SPF == SPF_SMIN) { 975 // If both sides are non-negative, the result is non-negative. 976 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 977 // We can derive an upper bound on the result by taking the max of the 978 // leading zero bits. 979 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 980 KnownZero2.countLeadingOnes()); 981 // If either side is negative, the result is negative. 982 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 983 MaxHighOnes = 1; 984 } else if (SPF == SPF_UMAX) { 985 // We can derive a lower bound on the result by taking the max of the 986 // leading one bits. 987 MaxHighOnes = 988 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 989 } else if (SPF == SPF_UMIN) { 990 // We can derive an upper bound on the result by taking the max of the 991 // leading zero bits. 992 MaxHighZeros = 993 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 994 } 995 996 // Only known if known in both the LHS and RHS. 997 KnownOne &= KnownOne2; 998 KnownZero &= KnownZero2; 999 if (MaxHighOnes > 0) 1000 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1001 if (MaxHighZeros > 0) 1002 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1003 break; 1004 } 1005 case Instruction::FPTrunc: 1006 case Instruction::FPExt: 1007 case Instruction::FPToUI: 1008 case Instruction::FPToSI: 1009 case Instruction::SIToFP: 1010 case Instruction::UIToFP: 1011 break; // Can't work with floating point. 1012 case Instruction::PtrToInt: 1013 case Instruction::IntToPtr: 1014 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1015 // Fall through and handle them the same as zext/trunc. 1016 LLVM_FALLTHROUGH; 1017 case Instruction::ZExt: 1018 case Instruction::Trunc: { 1019 Type *SrcTy = I->getOperand(0)->getType(); 1020 1021 unsigned SrcBitWidth; 1022 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1023 // which fall through here. 1024 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1025 1026 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1027 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1028 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1029 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1030 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1031 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1032 // Any top bits are known to be zero. 1033 if (BitWidth > SrcBitWidth) 1034 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1035 break; 1036 } 1037 case Instruction::BitCast: { 1038 Type *SrcTy = I->getOperand(0)->getType(); 1039 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1040 // TODO: For now, not handling conversions like: 1041 // (bitcast i64 %x to <2 x i32>) 1042 !I->getType()->isVectorTy()) { 1043 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1044 break; 1045 } 1046 break; 1047 } 1048 case Instruction::SExt: { 1049 // Compute the bits in the result that are not present in the input. 1050 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1051 1052 KnownZero = KnownZero.trunc(SrcBitWidth); 1053 KnownOne = KnownOne.trunc(SrcBitWidth); 1054 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1055 KnownZero = KnownZero.zext(BitWidth); 1056 KnownOne = KnownOne.zext(BitWidth); 1057 1058 // If the sign bit of the input is known set or clear, then we know the 1059 // top bits of the result. 1060 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1061 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1062 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1063 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1064 break; 1065 } 1066 case Instruction::Shl: { 1067 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1068 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1069 return (KnownZero << ShiftAmt) | 1070 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1071 }; 1072 1073 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1074 return KnownOne << ShiftAmt; 1075 }; 1076 1077 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1078 KnownZero2, KnownOne2, Depth, Q, KZF, 1079 KOF); 1080 break; 1081 } 1082 case Instruction::LShr: { 1083 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1084 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1085 return APIntOps::lshr(KnownZero, ShiftAmt) | 1086 // High bits known zero. 1087 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1088 }; 1089 1090 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1091 return APIntOps::lshr(KnownOne, ShiftAmt); 1092 }; 1093 1094 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1095 KnownZero2, KnownOne2, Depth, Q, KZF, 1096 KOF); 1097 break; 1098 } 1099 case Instruction::AShr: { 1100 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1101 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1102 return APIntOps::ashr(KnownZero, ShiftAmt); 1103 }; 1104 1105 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1106 return APIntOps::ashr(KnownOne, ShiftAmt); 1107 }; 1108 1109 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1110 KnownZero2, KnownOne2, Depth, Q, KZF, 1111 KOF); 1112 break; 1113 } 1114 case Instruction::Sub: { 1115 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1116 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1117 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1118 Q); 1119 break; 1120 } 1121 case Instruction::Add: { 1122 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1123 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1124 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1125 Q); 1126 break; 1127 } 1128 case Instruction::SRem: 1129 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1130 APInt RA = Rem->getValue().abs(); 1131 if (RA.isPowerOf2()) { 1132 APInt LowBits = RA - 1; 1133 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1134 Q); 1135 1136 // The low bits of the first operand are unchanged by the srem. 1137 KnownZero = KnownZero2 & LowBits; 1138 KnownOne = KnownOne2 & LowBits; 1139 1140 // If the first operand is non-negative or has all low bits zero, then 1141 // the upper bits are all zero. 1142 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1143 KnownZero |= ~LowBits; 1144 1145 // If the first operand is negative and not all low bits are zero, then 1146 // the upper bits are all one. 1147 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1148 KnownOne |= ~LowBits; 1149 1150 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1151 } 1152 } 1153 1154 // The sign bit is the LHS's sign bit, except when the result of the 1155 // remainder is zero. 1156 if (KnownZero.isNonNegative()) { 1157 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1158 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1159 Q); 1160 // If it's known zero, our sign bit is also zero. 1161 if (LHSKnownZero.isNegative()) 1162 KnownZero.setBit(BitWidth - 1); 1163 } 1164 1165 break; 1166 case Instruction::URem: { 1167 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1168 const APInt &RA = Rem->getValue(); 1169 if (RA.isPowerOf2()) { 1170 APInt LowBits = (RA - 1); 1171 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1172 KnownZero |= ~LowBits; 1173 KnownOne &= LowBits; 1174 break; 1175 } 1176 } 1177 1178 // Since the result is less than or equal to either operand, any leading 1179 // zero bits in either operand must also exist in the result. 1180 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1181 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1182 1183 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1184 KnownZero2.countLeadingOnes()); 1185 KnownOne.clearAllBits(); 1186 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1187 break; 1188 } 1189 1190 case Instruction::Alloca: { 1191 const AllocaInst *AI = cast<AllocaInst>(I); 1192 unsigned Align = AI->getAlignment(); 1193 if (Align == 0) 1194 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1195 1196 if (Align > 0) 1197 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1198 break; 1199 } 1200 case Instruction::GetElementPtr: { 1201 // Analyze all of the subscripts of this getelementptr instruction 1202 // to determine if we can prove known low zero bits. 1203 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1204 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1205 Q); 1206 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1207 1208 gep_type_iterator GTI = gep_type_begin(I); 1209 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1210 Value *Index = I->getOperand(i); 1211 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1212 // Handle struct member offset arithmetic. 1213 1214 // Handle case when index is vector zeroinitializer 1215 Constant *CIndex = cast<Constant>(Index); 1216 if (CIndex->isZeroValue()) 1217 continue; 1218 1219 if (CIndex->getType()->isVectorTy()) 1220 Index = CIndex->getSplatValue(); 1221 1222 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1223 const StructLayout *SL = Q.DL.getStructLayout(STy); 1224 uint64_t Offset = SL->getElementOffset(Idx); 1225 TrailZ = std::min<unsigned>(TrailZ, 1226 countTrailingZeros(Offset)); 1227 } else { 1228 // Handle array index arithmetic. 1229 Type *IndexedTy = GTI.getIndexedType(); 1230 if (!IndexedTy->isSized()) { 1231 TrailZ = 0; 1232 break; 1233 } 1234 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1235 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1236 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1237 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1238 TrailZ = std::min(TrailZ, 1239 unsigned(countTrailingZeros(TypeSize) + 1240 LocalKnownZero.countTrailingOnes())); 1241 } 1242 } 1243 1244 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1245 break; 1246 } 1247 case Instruction::PHI: { 1248 const PHINode *P = cast<PHINode>(I); 1249 // Handle the case of a simple two-predecessor recurrence PHI. 1250 // There's a lot more that could theoretically be done here, but 1251 // this is sufficient to catch some interesting cases. 1252 if (P->getNumIncomingValues() == 2) { 1253 for (unsigned i = 0; i != 2; ++i) { 1254 Value *L = P->getIncomingValue(i); 1255 Value *R = P->getIncomingValue(!i); 1256 Operator *LU = dyn_cast<Operator>(L); 1257 if (!LU) 1258 continue; 1259 unsigned Opcode = LU->getOpcode(); 1260 // Check for operations that have the property that if 1261 // both their operands have low zero bits, the result 1262 // will have low zero bits. 1263 if (Opcode == Instruction::Add || 1264 Opcode == Instruction::Sub || 1265 Opcode == Instruction::And || 1266 Opcode == Instruction::Or || 1267 Opcode == Instruction::Mul) { 1268 Value *LL = LU->getOperand(0); 1269 Value *LR = LU->getOperand(1); 1270 // Find a recurrence. 1271 if (LL == I) 1272 L = LR; 1273 else if (LR == I) 1274 L = LL; 1275 else 1276 break; 1277 // Ok, we have a PHI of the form L op= R. Check for low 1278 // zero bits. 1279 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1280 1281 // We need to take the minimum number of known bits 1282 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1283 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1284 1285 KnownZero = APInt::getLowBitsSet(BitWidth, 1286 std::min(KnownZero2.countTrailingOnes(), 1287 KnownZero3.countTrailingOnes())); 1288 break; 1289 } 1290 } 1291 } 1292 1293 // Unreachable blocks may have zero-operand PHI nodes. 1294 if (P->getNumIncomingValues() == 0) 1295 break; 1296 1297 // Otherwise take the unions of the known bit sets of the operands, 1298 // taking conservative care to avoid excessive recursion. 1299 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1300 // Skip if every incoming value references to ourself. 1301 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1302 break; 1303 1304 KnownZero = APInt::getAllOnesValue(BitWidth); 1305 KnownOne = APInt::getAllOnesValue(BitWidth); 1306 for (Value *IncValue : P->incoming_values()) { 1307 // Skip direct self references. 1308 if (IncValue == P) continue; 1309 1310 KnownZero2 = APInt(BitWidth, 0); 1311 KnownOne2 = APInt(BitWidth, 0); 1312 // Recurse, but cap the recursion to one level, because we don't 1313 // want to waste time spinning around in loops. 1314 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1315 KnownZero &= KnownZero2; 1316 KnownOne &= KnownOne2; 1317 // If all bits have been ruled out, there's no need to check 1318 // more operands. 1319 if (!KnownZero && !KnownOne) 1320 break; 1321 } 1322 } 1323 break; 1324 } 1325 case Instruction::Call: 1326 case Instruction::Invoke: 1327 // If range metadata is attached to this call, set known bits from that, 1328 // and then intersect with known bits based on other properties of the 1329 // function. 1330 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1331 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1332 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1333 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1334 KnownZero |= KnownZero2; 1335 KnownOne |= KnownOne2; 1336 } 1337 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1338 switch (II->getIntrinsicID()) { 1339 default: break; 1340 case Intrinsic::bswap: 1341 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1342 KnownZero |= KnownZero2.byteSwap(); 1343 KnownOne |= KnownOne2.byteSwap(); 1344 break; 1345 case Intrinsic::ctlz: 1346 case Intrinsic::cttz: { 1347 unsigned LowBits = Log2_32(BitWidth)+1; 1348 // If this call is undefined for 0, the result will be less than 2^n. 1349 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1350 LowBits -= 1; 1351 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1352 break; 1353 } 1354 case Intrinsic::ctpop: { 1355 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1356 // We can bound the space the count needs. Also, bits known to be zero 1357 // can't contribute to the population. 1358 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1359 unsigned LeadingZeros = 1360 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1361 assert(LeadingZeros <= BitWidth); 1362 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1363 KnownOne &= ~KnownZero; 1364 // TODO: we could bound KnownOne using the lower bound on the number 1365 // of bits which might be set provided by popcnt KnownOne2. 1366 break; 1367 } 1368 case Intrinsic::x86_sse42_crc32_64_64: 1369 KnownZero |= APInt::getHighBitsSet(64, 32); 1370 break; 1371 } 1372 } 1373 break; 1374 case Instruction::ExtractValue: 1375 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1376 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1377 if (EVI->getNumIndices() != 1) break; 1378 if (EVI->getIndices()[0] == 0) { 1379 switch (II->getIntrinsicID()) { 1380 default: break; 1381 case Intrinsic::uadd_with_overflow: 1382 case Intrinsic::sadd_with_overflow: 1383 computeKnownBitsAddSub(true, II->getArgOperand(0), 1384 II->getArgOperand(1), false, KnownZero, 1385 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1386 break; 1387 case Intrinsic::usub_with_overflow: 1388 case Intrinsic::ssub_with_overflow: 1389 computeKnownBitsAddSub(false, II->getArgOperand(0), 1390 II->getArgOperand(1), false, KnownZero, 1391 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1392 break; 1393 case Intrinsic::umul_with_overflow: 1394 case Intrinsic::smul_with_overflow: 1395 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1396 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1397 Q); 1398 break; 1399 } 1400 } 1401 } 1402 } 1403 } 1404 1405 /// Determine which bits of V are known to be either zero or one and return 1406 /// them in the KnownZero/KnownOne bit sets. 1407 /// 1408 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1409 /// we cannot optimize based on the assumption that it is zero without changing 1410 /// it to be an explicit zero. If we don't change it to zero, other code could 1411 /// optimized based on the contradictory assumption that it is non-zero. 1412 /// Because instcombine aggressively folds operations with undef args anyway, 1413 /// this won't lose us code quality. 1414 /// 1415 /// This function is defined on values with integer type, values with pointer 1416 /// type, and vectors of integers. In the case 1417 /// where V is a vector, known zero, and known one values are the 1418 /// same width as the vector element, and the bit is set only if it is true 1419 /// for all of the elements in the vector. 1420 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1421 unsigned Depth, const Query &Q) { 1422 assert(V && "No Value?"); 1423 assert(Depth <= MaxDepth && "Limit Search Depth"); 1424 unsigned BitWidth = KnownZero.getBitWidth(); 1425 1426 assert((V->getType()->isIntOrIntVectorTy() || 1427 V->getType()->getScalarType()->isPointerTy()) && 1428 "Not integer or pointer type!"); 1429 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1430 (!V->getType()->isIntOrIntVectorTy() || 1431 V->getType()->getScalarSizeInBits() == BitWidth) && 1432 KnownZero.getBitWidth() == BitWidth && 1433 KnownOne.getBitWidth() == BitWidth && 1434 "V, KnownOne and KnownZero should have same BitWidth"); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1437 // We know all of the bits for a constant! 1438 KnownOne = CI->getValue(); 1439 KnownZero = ~KnownOne; 1440 return; 1441 } 1442 // Null and aggregate-zero are all-zeros. 1443 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1444 KnownOne.clearAllBits(); 1445 KnownZero = APInt::getAllOnesValue(BitWidth); 1446 return; 1447 } 1448 // Handle a constant vector by taking the intersection of the known bits of 1449 // each element. 1450 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1451 // We know that CDS must be a vector of integers. Take the intersection of 1452 // each element. 1453 KnownZero.setAllBits(); KnownOne.setAllBits(); 1454 APInt Elt(KnownZero.getBitWidth(), 0); 1455 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1456 Elt = CDS->getElementAsInteger(i); 1457 KnownZero &= ~Elt; 1458 KnownOne &= Elt; 1459 } 1460 return; 1461 } 1462 1463 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1464 // We know that CV must be a vector of integers. Take the intersection of 1465 // each element. 1466 KnownZero.setAllBits(); KnownOne.setAllBits(); 1467 APInt Elt(KnownZero.getBitWidth(), 0); 1468 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1469 Constant *Element = CV->getAggregateElement(i); 1470 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1471 if (!ElementCI) { 1472 KnownZero.clearAllBits(); 1473 KnownOne.clearAllBits(); 1474 return; 1475 } 1476 Elt = ElementCI->getValue(); 1477 KnownZero &= ~Elt; 1478 KnownOne &= Elt; 1479 } 1480 return; 1481 } 1482 1483 // Start out not knowing anything. 1484 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1485 1486 // Limit search depth. 1487 // All recursive calls that increase depth must come after this. 1488 if (Depth == MaxDepth) 1489 return; 1490 1491 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1492 // the bits of its aliasee. 1493 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1494 if (!GA->isInterposable()) 1495 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1496 return; 1497 } 1498 1499 if (const Operator *I = dyn_cast<Operator>(V)) 1500 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1501 1502 // Aligned pointers have trailing zeros - refine KnownZero set 1503 if (V->getType()->isPointerTy()) { 1504 unsigned Align = V->getPointerAlignment(Q.DL); 1505 if (Align) 1506 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1507 } 1508 1509 // computeKnownBitsFromAssume strictly refines KnownZero and 1510 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1511 1512 // Check whether a nearby assume intrinsic can determine some known bits. 1513 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1514 1515 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1516 } 1517 1518 /// Determine whether the sign bit is known to be zero or one. 1519 /// Convenience wrapper around computeKnownBits. 1520 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1521 unsigned Depth, const Query &Q) { 1522 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1523 if (!BitWidth) { 1524 KnownZero = false; 1525 KnownOne = false; 1526 return; 1527 } 1528 APInt ZeroBits(BitWidth, 0); 1529 APInt OneBits(BitWidth, 0); 1530 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1531 KnownOne = OneBits[BitWidth - 1]; 1532 KnownZero = ZeroBits[BitWidth - 1]; 1533 } 1534 1535 /// Return true if the given value is known to have exactly one 1536 /// bit set when defined. For vectors return true if every element is known to 1537 /// be a power of two when defined. Supports values with integer or pointer 1538 /// types and vectors of integers. 1539 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1540 const Query &Q) { 1541 if (const Constant *C = dyn_cast<Constant>(V)) { 1542 if (C->isNullValue()) 1543 return OrZero; 1544 1545 const APInt *ConstIntOrConstSplatInt; 1546 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1547 return ConstIntOrConstSplatInt->isPowerOf2(); 1548 } 1549 1550 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1551 // it is shifted off the end then the result is undefined. 1552 if (match(V, m_Shl(m_One(), m_Value()))) 1553 return true; 1554 1555 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1556 // bottom. If it is shifted off the bottom then the result is undefined. 1557 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1558 return true; 1559 1560 // The remaining tests are all recursive, so bail out if we hit the limit. 1561 if (Depth++ == MaxDepth) 1562 return false; 1563 1564 Value *X = nullptr, *Y = nullptr; 1565 // A shift left or a logical shift right of a power of two is a power of two 1566 // or zero. 1567 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1568 match(V, m_LShr(m_Value(X), m_Value())))) 1569 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1570 1571 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1572 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1573 1574 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1575 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1576 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1577 1578 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1579 // A power of two and'd with anything is a power of two or zero. 1580 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1581 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1582 return true; 1583 // X & (-X) is always a power of two or zero. 1584 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1585 return true; 1586 return false; 1587 } 1588 1589 // Adding a power-of-two or zero to the same power-of-two or zero yields 1590 // either the original power-of-two, a larger power-of-two or zero. 1591 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1592 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1593 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1594 if (match(X, m_And(m_Specific(Y), m_Value())) || 1595 match(X, m_And(m_Value(), m_Specific(Y)))) 1596 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1597 return true; 1598 if (match(Y, m_And(m_Specific(X), m_Value())) || 1599 match(Y, m_And(m_Value(), m_Specific(X)))) 1600 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1601 return true; 1602 1603 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1604 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1605 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1606 1607 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1608 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1609 // If i8 V is a power of two or zero: 1610 // ZeroBits: 1 1 1 0 1 1 1 1 1611 // ~ZeroBits: 0 0 0 1 0 0 0 0 1612 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1613 // If OrZero isn't set, we cannot give back a zero result. 1614 // Make sure either the LHS or RHS has a bit set. 1615 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1616 return true; 1617 } 1618 } 1619 1620 // An exact divide or right shift can only shift off zero bits, so the result 1621 // is a power of two only if the first operand is a power of two and not 1622 // copying a sign bit (sdiv int_min, 2). 1623 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1624 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1625 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1626 Depth, Q); 1627 } 1628 1629 return false; 1630 } 1631 1632 /// \brief Test whether a GEP's result is known to be non-null. 1633 /// 1634 /// Uses properties inherent in a GEP to try to determine whether it is known 1635 /// to be non-null. 1636 /// 1637 /// Currently this routine does not support vector GEPs. 1638 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1639 const Query &Q) { 1640 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1641 return false; 1642 1643 // FIXME: Support vector-GEPs. 1644 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1645 1646 // If the base pointer is non-null, we cannot walk to a null address with an 1647 // inbounds GEP in address space zero. 1648 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1649 return true; 1650 1651 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1652 // If so, then the GEP cannot produce a null pointer, as doing so would 1653 // inherently violate the inbounds contract within address space zero. 1654 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1655 GTI != GTE; ++GTI) { 1656 // Struct types are easy -- they must always be indexed by a constant. 1657 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1658 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1659 unsigned ElementIdx = OpC->getZExtValue(); 1660 const StructLayout *SL = Q.DL.getStructLayout(STy); 1661 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1662 if (ElementOffset > 0) 1663 return true; 1664 continue; 1665 } 1666 1667 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1668 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1669 continue; 1670 1671 // Fast path the constant operand case both for efficiency and so we don't 1672 // increment Depth when just zipping down an all-constant GEP. 1673 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1674 if (!OpC->isZero()) 1675 return true; 1676 continue; 1677 } 1678 1679 // We post-increment Depth here because while isKnownNonZero increments it 1680 // as well, when we pop back up that increment won't persist. We don't want 1681 // to recurse 10k times just because we have 10k GEP operands. We don't 1682 // bail completely out because we want to handle constant GEPs regardless 1683 // of depth. 1684 if (Depth++ >= MaxDepth) 1685 continue; 1686 1687 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1688 return true; 1689 } 1690 1691 return false; 1692 } 1693 1694 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1695 /// ensure that the value it's attached to is never Value? 'RangeType' is 1696 /// is the type of the value described by the range. 1697 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1698 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1699 assert(NumRanges >= 1); 1700 for (unsigned i = 0; i < NumRanges; ++i) { 1701 ConstantInt *Lower = 1702 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1703 ConstantInt *Upper = 1704 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1705 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1706 if (Range.contains(Value)) 1707 return false; 1708 } 1709 return true; 1710 } 1711 1712 /// Return true if the given value is known to be non-zero when defined. 1713 /// For vectors return true if every element is known to be non-zero when 1714 /// defined. Supports values with integer or pointer type and vectors of 1715 /// integers. 1716 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1717 if (auto *C = dyn_cast<Constant>(V)) { 1718 if (C->isNullValue()) 1719 return false; 1720 if (isa<ConstantInt>(C)) 1721 // Must be non-zero due to null test above. 1722 return true; 1723 1724 // For constant vectors, check that all elements are undefined or known 1725 // non-zero to determine that the whole vector is known non-zero. 1726 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1727 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1728 Constant *Elt = C->getAggregateElement(i); 1729 if (!Elt || Elt->isNullValue()) 1730 return false; 1731 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1732 return false; 1733 } 1734 return true; 1735 } 1736 1737 return false; 1738 } 1739 1740 if (auto *I = dyn_cast<Instruction>(V)) { 1741 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1742 // If the possible ranges don't contain zero, then the value is 1743 // definitely non-zero. 1744 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1745 const APInt ZeroValue(Ty->getBitWidth(), 0); 1746 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1747 return true; 1748 } 1749 } 1750 } 1751 1752 // The remaining tests are all recursive, so bail out if we hit the limit. 1753 if (Depth++ >= MaxDepth) 1754 return false; 1755 1756 // Check for pointer simplifications. 1757 if (V->getType()->isPointerTy()) { 1758 if (isKnownNonNull(V)) 1759 return true; 1760 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1761 if (isGEPKnownNonNull(GEP, Depth, Q)) 1762 return true; 1763 } 1764 1765 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1766 1767 // X | Y != 0 if X != 0 or Y != 0. 1768 Value *X = nullptr, *Y = nullptr; 1769 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1770 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1771 1772 // ext X != 0 if X != 0. 1773 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1774 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1775 1776 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1777 // if the lowest bit is shifted off the end. 1778 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1779 // shl nuw can't remove any non-zero bits. 1780 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1781 if (BO->hasNoUnsignedWrap()) 1782 return isKnownNonZero(X, Depth, Q); 1783 1784 APInt KnownZero(BitWidth, 0); 1785 APInt KnownOne(BitWidth, 0); 1786 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1787 if (KnownOne[0]) 1788 return true; 1789 } 1790 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1791 // defined if the sign bit is shifted off the end. 1792 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1793 // shr exact can only shift out zero bits. 1794 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1795 if (BO->isExact()) 1796 return isKnownNonZero(X, Depth, Q); 1797 1798 bool XKnownNonNegative, XKnownNegative; 1799 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1800 if (XKnownNegative) 1801 return true; 1802 1803 // If the shifter operand is a constant, and all of the bits shifted 1804 // out are known to be zero, and X is known non-zero then at least one 1805 // non-zero bit must remain. 1806 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1807 APInt KnownZero(BitWidth, 0); 1808 APInt KnownOne(BitWidth, 0); 1809 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1810 1811 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1812 // Is there a known one in the portion not shifted out? 1813 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1814 return true; 1815 // Are all the bits to be shifted out known zero? 1816 if (KnownZero.countTrailingOnes() >= ShiftVal) 1817 return isKnownNonZero(X, Depth, Q); 1818 } 1819 } 1820 // div exact can only produce a zero if the dividend is zero. 1821 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1822 return isKnownNonZero(X, Depth, Q); 1823 } 1824 // X + Y. 1825 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1826 bool XKnownNonNegative, XKnownNegative; 1827 bool YKnownNonNegative, YKnownNegative; 1828 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1829 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1830 1831 // If X and Y are both non-negative (as signed values) then their sum is not 1832 // zero unless both X and Y are zero. 1833 if (XKnownNonNegative && YKnownNonNegative) 1834 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1835 return true; 1836 1837 // If X and Y are both negative (as signed values) then their sum is not 1838 // zero unless both X and Y equal INT_MIN. 1839 if (BitWidth && XKnownNegative && YKnownNegative) { 1840 APInt KnownZero(BitWidth, 0); 1841 APInt KnownOne(BitWidth, 0); 1842 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1843 // The sign bit of X is set. If some other bit is set then X is not equal 1844 // to INT_MIN. 1845 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1846 if ((KnownOne & Mask) != 0) 1847 return true; 1848 // The sign bit of Y is set. If some other bit is set then Y is not equal 1849 // to INT_MIN. 1850 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1851 if ((KnownOne & Mask) != 0) 1852 return true; 1853 } 1854 1855 // The sum of a non-negative number and a power of two is not zero. 1856 if (XKnownNonNegative && 1857 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1858 return true; 1859 if (YKnownNonNegative && 1860 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1861 return true; 1862 } 1863 // X * Y. 1864 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1865 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1866 // If X and Y are non-zero then so is X * Y as long as the multiplication 1867 // does not overflow. 1868 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1869 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1870 return true; 1871 } 1872 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1873 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1874 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1875 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1876 return true; 1877 } 1878 // PHI 1879 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1880 // Try and detect a recurrence that monotonically increases from a 1881 // starting value, as these are common as induction variables. 1882 if (PN->getNumIncomingValues() == 2) { 1883 Value *Start = PN->getIncomingValue(0); 1884 Value *Induction = PN->getIncomingValue(1); 1885 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1886 std::swap(Start, Induction); 1887 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1888 if (!C->isZero() && !C->isNegative()) { 1889 ConstantInt *X; 1890 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1891 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1892 !X->isNegative()) 1893 return true; 1894 } 1895 } 1896 } 1897 // Check if all incoming values are non-zero constant. 1898 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1899 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1900 }); 1901 if (AllNonZeroConstants) 1902 return true; 1903 } 1904 1905 if (!BitWidth) return false; 1906 APInt KnownZero(BitWidth, 0); 1907 APInt KnownOne(BitWidth, 0); 1908 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1909 return KnownOne != 0; 1910 } 1911 1912 /// Return true if V2 == V1 + X, where X is known non-zero. 1913 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1914 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1915 if (!BO || BO->getOpcode() != Instruction::Add) 1916 return false; 1917 Value *Op = nullptr; 1918 if (V2 == BO->getOperand(0)) 1919 Op = BO->getOperand(1); 1920 else if (V2 == BO->getOperand(1)) 1921 Op = BO->getOperand(0); 1922 else 1923 return false; 1924 return isKnownNonZero(Op, 0, Q); 1925 } 1926 1927 /// Return true if it is known that V1 != V2. 1928 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1929 if (V1->getType()->isVectorTy() || V1 == V2) 1930 return false; 1931 if (V1->getType() != V2->getType()) 1932 // We can't look through casts yet. 1933 return false; 1934 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1935 return true; 1936 1937 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1938 // Are any known bits in V1 contradictory to known bits in V2? If V1 1939 // has a known zero where V2 has a known one, they must not be equal. 1940 auto BitWidth = Ty->getBitWidth(); 1941 APInt KnownZero1(BitWidth, 0); 1942 APInt KnownOne1(BitWidth, 0); 1943 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1944 APInt KnownZero2(BitWidth, 0); 1945 APInt KnownOne2(BitWidth, 0); 1946 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1947 1948 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1949 if (OppositeBits.getBoolValue()) 1950 return true; 1951 } 1952 return false; 1953 } 1954 1955 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1956 /// simplify operations downstream. Mask is known to be zero for bits that V 1957 /// cannot have. 1958 /// 1959 /// This function is defined on values with integer type, values with pointer 1960 /// type, and vectors of integers. In the case 1961 /// where V is a vector, the mask, known zero, and known one values are the 1962 /// same width as the vector element, and the bit is set only if it is true 1963 /// for all of the elements in the vector. 1964 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 1965 const Query &Q) { 1966 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1967 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1968 return (KnownZero & Mask) == Mask; 1969 } 1970 1971 /// For vector constants, loop over the elements and find the constant with the 1972 /// minimum number of sign bits. Return 0 if the value is not a vector constant 1973 /// or if any element was not analyzed; otherwise, return the count for the 1974 /// element with the minimum number of sign bits. 1975 static unsigned computeNumSignBitsVectorConstant(const Value *V, 1976 unsigned TyBits) { 1977 const auto *CV = dyn_cast<Constant>(V); 1978 if (!CV || !CV->getType()->isVectorTy()) 1979 return 0; 1980 1981 unsigned MinSignBits = TyBits; 1982 unsigned NumElts = CV->getType()->getVectorNumElements(); 1983 for (unsigned i = 0; i != NumElts; ++i) { 1984 // If we find a non-ConstantInt, bail out. 1985 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 1986 if (!Elt) 1987 return 0; 1988 1989 // If the sign bit is 1, flip the bits, so we always count leading zeros. 1990 APInt EltVal = Elt->getValue(); 1991 if (EltVal.isNegative()) 1992 EltVal = ~EltVal; 1993 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 1994 } 1995 1996 return MinSignBits; 1997 } 1998 1999 /// Return the number of times the sign bit of the register is replicated into 2000 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2001 /// (itself), but other cases can give us information. For example, immediately 2002 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2003 /// other, so we return 3. For vectors, return the number of sign bits for the 2004 /// vector element with the mininum number of known sign bits. 2005 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2006 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2007 unsigned Tmp, Tmp2; 2008 unsigned FirstAnswer = 1; 2009 2010 // Note that ConstantInt is handled by the general computeKnownBits case 2011 // below. 2012 2013 if (Depth == 6) 2014 return 1; // Limit search depth. 2015 2016 const Operator *U = dyn_cast<Operator>(V); 2017 switch (Operator::getOpcode(V)) { 2018 default: break; 2019 case Instruction::SExt: 2020 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2021 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2022 2023 case Instruction::SDiv: { 2024 const APInt *Denominator; 2025 // sdiv X, C -> adds log(C) sign bits. 2026 if (match(U->getOperand(1), m_APInt(Denominator))) { 2027 2028 // Ignore non-positive denominator. 2029 if (!Denominator->isStrictlyPositive()) 2030 break; 2031 2032 // Calculate the incoming numerator bits. 2033 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2034 2035 // Add floor(log(C)) bits to the numerator bits. 2036 return std::min(TyBits, NumBits + Denominator->logBase2()); 2037 } 2038 break; 2039 } 2040 2041 case Instruction::SRem: { 2042 const APInt *Denominator; 2043 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2044 // positive constant. This let us put a lower bound on the number of sign 2045 // bits. 2046 if (match(U->getOperand(1), m_APInt(Denominator))) { 2047 2048 // Ignore non-positive denominator. 2049 if (!Denominator->isStrictlyPositive()) 2050 break; 2051 2052 // Calculate the incoming numerator bits. SRem by a positive constant 2053 // can't lower the number of sign bits. 2054 unsigned NumrBits = 2055 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2056 2057 // Calculate the leading sign bit constraints by examining the 2058 // denominator. Given that the denominator is positive, there are two 2059 // cases: 2060 // 2061 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2062 // (1 << ceilLogBase2(C)). 2063 // 2064 // 2. the numerator is negative. Then the result range is (-C,0] and 2065 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2066 // 2067 // Thus a lower bound on the number of sign bits is `TyBits - 2068 // ceilLogBase2(C)`. 2069 2070 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2071 return std::max(NumrBits, ResBits); 2072 } 2073 break; 2074 } 2075 2076 case Instruction::AShr: { 2077 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2078 // ashr X, C -> adds C sign bits. Vectors too. 2079 const APInt *ShAmt; 2080 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2081 Tmp += ShAmt->getZExtValue(); 2082 if (Tmp > TyBits) Tmp = TyBits; 2083 } 2084 return Tmp; 2085 } 2086 case Instruction::Shl: { 2087 const APInt *ShAmt; 2088 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2089 // shl destroys sign bits. 2090 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2091 Tmp2 = ShAmt->getZExtValue(); 2092 if (Tmp2 >= TyBits || // Bad shift. 2093 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2094 return Tmp - Tmp2; 2095 } 2096 break; 2097 } 2098 case Instruction::And: 2099 case Instruction::Or: 2100 case Instruction::Xor: // NOT is handled here. 2101 // Logical binary ops preserve the number of sign bits at the worst. 2102 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2103 if (Tmp != 1) { 2104 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2105 FirstAnswer = std::min(Tmp, Tmp2); 2106 // We computed what we know about the sign bits as our first 2107 // answer. Now proceed to the generic code that uses 2108 // computeKnownBits, and pick whichever answer is better. 2109 } 2110 break; 2111 2112 case Instruction::Select: 2113 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2114 if (Tmp == 1) return 1; // Early out. 2115 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2116 return std::min(Tmp, Tmp2); 2117 2118 case Instruction::Add: 2119 // Add can have at most one carry bit. Thus we know that the output 2120 // is, at worst, one more bit than the inputs. 2121 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2122 if (Tmp == 1) return 1; // Early out. 2123 2124 // Special case decrementing a value (ADD X, -1): 2125 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2126 if (CRHS->isAllOnesValue()) { 2127 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2128 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2129 2130 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2131 // sign bits set. 2132 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2133 return TyBits; 2134 2135 // If we are subtracting one from a positive number, there is no carry 2136 // out of the result. 2137 if (KnownZero.isNegative()) 2138 return Tmp; 2139 } 2140 2141 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2142 if (Tmp2 == 1) return 1; 2143 return std::min(Tmp, Tmp2)-1; 2144 2145 case Instruction::Sub: 2146 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2147 if (Tmp2 == 1) return 1; 2148 2149 // Handle NEG. 2150 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2151 if (CLHS->isNullValue()) { 2152 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2153 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2154 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2155 // sign bits set. 2156 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2157 return TyBits; 2158 2159 // If the input is known to be positive (the sign bit is known clear), 2160 // the output of the NEG has the same number of sign bits as the input. 2161 if (KnownZero.isNegative()) 2162 return Tmp2; 2163 2164 // Otherwise, we treat this like a SUB. 2165 } 2166 2167 // Sub can have at most one carry bit. Thus we know that the output 2168 // is, at worst, one more bit than the inputs. 2169 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2170 if (Tmp == 1) return 1; // Early out. 2171 return std::min(Tmp, Tmp2)-1; 2172 2173 case Instruction::PHI: { 2174 const PHINode *PN = cast<PHINode>(U); 2175 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2176 // Don't analyze large in-degree PHIs. 2177 if (NumIncomingValues > 4) break; 2178 // Unreachable blocks may have zero-operand PHI nodes. 2179 if (NumIncomingValues == 0) break; 2180 2181 // Take the minimum of all incoming values. This can't infinitely loop 2182 // because of our depth threshold. 2183 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2184 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2185 if (Tmp == 1) return Tmp; 2186 Tmp = std::min( 2187 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2188 } 2189 return Tmp; 2190 } 2191 2192 case Instruction::Trunc: 2193 // FIXME: it's tricky to do anything useful for this, but it is an important 2194 // case for targets like X86. 2195 break; 2196 } 2197 2198 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2199 // use this information. 2200 2201 // If we can examine all elements of a vector constant successfully, we're 2202 // done (we can't do any better than that). If not, keep trying. 2203 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2204 return VecSignBits; 2205 2206 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2207 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2208 2209 // If we know that the sign bit is either zero or one, determine the number of 2210 // identical bits in the top of the input value. 2211 if (KnownZero.isNegative()) 2212 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2213 2214 if (KnownOne.isNegative()) 2215 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2216 2217 // computeKnownBits gave us no extra information about the top bits. 2218 return FirstAnswer; 2219 } 2220 2221 /// This function computes the integer multiple of Base that equals V. 2222 /// If successful, it returns true and returns the multiple in 2223 /// Multiple. If unsuccessful, it returns false. It looks 2224 /// through SExt instructions only if LookThroughSExt is true. 2225 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2226 bool LookThroughSExt, unsigned Depth) { 2227 const unsigned MaxDepth = 6; 2228 2229 assert(V && "No Value?"); 2230 assert(Depth <= MaxDepth && "Limit Search Depth"); 2231 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2232 2233 Type *T = V->getType(); 2234 2235 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2236 2237 if (Base == 0) 2238 return false; 2239 2240 if (Base == 1) { 2241 Multiple = V; 2242 return true; 2243 } 2244 2245 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2246 Constant *BaseVal = ConstantInt::get(T, Base); 2247 if (CO && CO == BaseVal) { 2248 // Multiple is 1. 2249 Multiple = ConstantInt::get(T, 1); 2250 return true; 2251 } 2252 2253 if (CI && CI->getZExtValue() % Base == 0) { 2254 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2255 return true; 2256 } 2257 2258 if (Depth == MaxDepth) return false; // Limit search depth. 2259 2260 Operator *I = dyn_cast<Operator>(V); 2261 if (!I) return false; 2262 2263 switch (I->getOpcode()) { 2264 default: break; 2265 case Instruction::SExt: 2266 if (!LookThroughSExt) return false; 2267 // otherwise fall through to ZExt 2268 case Instruction::ZExt: 2269 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2270 LookThroughSExt, Depth+1); 2271 case Instruction::Shl: 2272 case Instruction::Mul: { 2273 Value *Op0 = I->getOperand(0); 2274 Value *Op1 = I->getOperand(1); 2275 2276 if (I->getOpcode() == Instruction::Shl) { 2277 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2278 if (!Op1CI) return false; 2279 // Turn Op0 << Op1 into Op0 * 2^Op1 2280 APInt Op1Int = Op1CI->getValue(); 2281 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2282 APInt API(Op1Int.getBitWidth(), 0); 2283 API.setBit(BitToSet); 2284 Op1 = ConstantInt::get(V->getContext(), API); 2285 } 2286 2287 Value *Mul0 = nullptr; 2288 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2289 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2290 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2291 if (Op1C->getType()->getPrimitiveSizeInBits() < 2292 MulC->getType()->getPrimitiveSizeInBits()) 2293 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2294 if (Op1C->getType()->getPrimitiveSizeInBits() > 2295 MulC->getType()->getPrimitiveSizeInBits()) 2296 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2297 2298 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2299 Multiple = ConstantExpr::getMul(MulC, Op1C); 2300 return true; 2301 } 2302 2303 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2304 if (Mul0CI->getValue() == 1) { 2305 // V == Base * Op1, so return Op1 2306 Multiple = Op1; 2307 return true; 2308 } 2309 } 2310 2311 Value *Mul1 = nullptr; 2312 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2313 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2314 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2315 if (Op0C->getType()->getPrimitiveSizeInBits() < 2316 MulC->getType()->getPrimitiveSizeInBits()) 2317 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2318 if (Op0C->getType()->getPrimitiveSizeInBits() > 2319 MulC->getType()->getPrimitiveSizeInBits()) 2320 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2321 2322 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2323 Multiple = ConstantExpr::getMul(MulC, Op0C); 2324 return true; 2325 } 2326 2327 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2328 if (Mul1CI->getValue() == 1) { 2329 // V == Base * Op0, so return Op0 2330 Multiple = Op0; 2331 return true; 2332 } 2333 } 2334 } 2335 } 2336 2337 // We could not determine if V is a multiple of Base. 2338 return false; 2339 } 2340 2341 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2342 const TargetLibraryInfo *TLI) { 2343 const Function *F = ICS.getCalledFunction(); 2344 if (!F) 2345 return Intrinsic::not_intrinsic; 2346 2347 if (F->isIntrinsic()) 2348 return F->getIntrinsicID(); 2349 2350 if (!TLI) 2351 return Intrinsic::not_intrinsic; 2352 2353 LibFunc::Func Func; 2354 // We're going to make assumptions on the semantics of the functions, check 2355 // that the target knows that it's available in this environment and it does 2356 // not have local linkage. 2357 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2358 return Intrinsic::not_intrinsic; 2359 2360 if (!ICS.onlyReadsMemory()) 2361 return Intrinsic::not_intrinsic; 2362 2363 // Otherwise check if we have a call to a function that can be turned into a 2364 // vector intrinsic. 2365 switch (Func) { 2366 default: 2367 break; 2368 case LibFunc::sin: 2369 case LibFunc::sinf: 2370 case LibFunc::sinl: 2371 return Intrinsic::sin; 2372 case LibFunc::cos: 2373 case LibFunc::cosf: 2374 case LibFunc::cosl: 2375 return Intrinsic::cos; 2376 case LibFunc::exp: 2377 case LibFunc::expf: 2378 case LibFunc::expl: 2379 return Intrinsic::exp; 2380 case LibFunc::exp2: 2381 case LibFunc::exp2f: 2382 case LibFunc::exp2l: 2383 return Intrinsic::exp2; 2384 case LibFunc::log: 2385 case LibFunc::logf: 2386 case LibFunc::logl: 2387 return Intrinsic::log; 2388 case LibFunc::log10: 2389 case LibFunc::log10f: 2390 case LibFunc::log10l: 2391 return Intrinsic::log10; 2392 case LibFunc::log2: 2393 case LibFunc::log2f: 2394 case LibFunc::log2l: 2395 return Intrinsic::log2; 2396 case LibFunc::fabs: 2397 case LibFunc::fabsf: 2398 case LibFunc::fabsl: 2399 return Intrinsic::fabs; 2400 case LibFunc::fmin: 2401 case LibFunc::fminf: 2402 case LibFunc::fminl: 2403 return Intrinsic::minnum; 2404 case LibFunc::fmax: 2405 case LibFunc::fmaxf: 2406 case LibFunc::fmaxl: 2407 return Intrinsic::maxnum; 2408 case LibFunc::copysign: 2409 case LibFunc::copysignf: 2410 case LibFunc::copysignl: 2411 return Intrinsic::copysign; 2412 case LibFunc::floor: 2413 case LibFunc::floorf: 2414 case LibFunc::floorl: 2415 return Intrinsic::floor; 2416 case LibFunc::ceil: 2417 case LibFunc::ceilf: 2418 case LibFunc::ceill: 2419 return Intrinsic::ceil; 2420 case LibFunc::trunc: 2421 case LibFunc::truncf: 2422 case LibFunc::truncl: 2423 return Intrinsic::trunc; 2424 case LibFunc::rint: 2425 case LibFunc::rintf: 2426 case LibFunc::rintl: 2427 return Intrinsic::rint; 2428 case LibFunc::nearbyint: 2429 case LibFunc::nearbyintf: 2430 case LibFunc::nearbyintl: 2431 return Intrinsic::nearbyint; 2432 case LibFunc::round: 2433 case LibFunc::roundf: 2434 case LibFunc::roundl: 2435 return Intrinsic::round; 2436 case LibFunc::pow: 2437 case LibFunc::powf: 2438 case LibFunc::powl: 2439 return Intrinsic::pow; 2440 case LibFunc::sqrt: 2441 case LibFunc::sqrtf: 2442 case LibFunc::sqrtl: 2443 if (ICS->hasNoNaNs()) 2444 return Intrinsic::sqrt; 2445 return Intrinsic::not_intrinsic; 2446 } 2447 2448 return Intrinsic::not_intrinsic; 2449 } 2450 2451 /// Return true if we can prove that the specified FP value is never equal to 2452 /// -0.0. 2453 /// 2454 /// NOTE: this function will need to be revisited when we support non-default 2455 /// rounding modes! 2456 /// 2457 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2458 unsigned Depth) { 2459 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2460 return !CFP->getValueAPF().isNegZero(); 2461 2462 // FIXME: Magic number! At the least, this should be given a name because it's 2463 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2464 // expose it as a parameter, so it can be used for testing / experimenting. 2465 if (Depth == 6) 2466 return false; // Limit search depth. 2467 2468 const Operator *I = dyn_cast<Operator>(V); 2469 if (!I) return false; 2470 2471 // Check if the nsz fast-math flag is set 2472 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2473 if (FPO->hasNoSignedZeros()) 2474 return true; 2475 2476 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2477 if (I->getOpcode() == Instruction::FAdd) 2478 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2479 if (CFP->isNullValue()) 2480 return true; 2481 2482 // sitofp and uitofp turn into +0.0 for zero. 2483 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2484 return true; 2485 2486 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2487 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2488 switch (IID) { 2489 default: 2490 break; 2491 // sqrt(-0.0) = -0.0, no other negative results are possible. 2492 case Intrinsic::sqrt: 2493 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2494 // fabs(x) != -0.0 2495 case Intrinsic::fabs: 2496 return true; 2497 } 2498 } 2499 2500 return false; 2501 } 2502 2503 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2504 const TargetLibraryInfo *TLI, 2505 unsigned Depth) { 2506 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2507 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2508 2509 // FIXME: Magic number! At the least, this should be given a name because it's 2510 // used similarly in CannotBeNegativeZero(). A better fix may be to 2511 // expose it as a parameter, so it can be used for testing / experimenting. 2512 if (Depth == 6) 2513 return false; // Limit search depth. 2514 2515 const Operator *I = dyn_cast<Operator>(V); 2516 if (!I) return false; 2517 2518 switch (I->getOpcode()) { 2519 default: break; 2520 // Unsigned integers are always nonnegative. 2521 case Instruction::UIToFP: 2522 return true; 2523 case Instruction::FMul: 2524 // x*x is always non-negative or a NaN. 2525 if (I->getOperand(0) == I->getOperand(1)) 2526 return true; 2527 LLVM_FALLTHROUGH; 2528 case Instruction::FAdd: 2529 case Instruction::FDiv: 2530 case Instruction::FRem: 2531 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2532 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2533 case Instruction::Select: 2534 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && 2535 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2536 case Instruction::FPExt: 2537 case Instruction::FPTrunc: 2538 // Widening/narrowing never change sign. 2539 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2540 case Instruction::Call: 2541 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2542 switch (IID) { 2543 default: 2544 break; 2545 case Intrinsic::maxnum: 2546 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || 2547 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2548 case Intrinsic::minnum: 2549 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2550 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2551 case Intrinsic::exp: 2552 case Intrinsic::exp2: 2553 case Intrinsic::fabs: 2554 case Intrinsic::sqrt: 2555 return true; 2556 case Intrinsic::powi: 2557 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2558 // powi(x,n) is non-negative if n is even. 2559 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2560 return true; 2561 } 2562 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2563 case Intrinsic::fma: 2564 case Intrinsic::fmuladd: 2565 // x*x+y is non-negative if y is non-negative. 2566 return I->getOperand(0) == I->getOperand(1) && 2567 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2568 } 2569 break; 2570 } 2571 return false; 2572 } 2573 2574 /// If the specified value can be set by repeating the same byte in memory, 2575 /// return the i8 value that it is represented with. This is 2576 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2577 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2578 /// byte store (e.g. i16 0x1234), return null. 2579 Value *llvm::isBytewiseValue(Value *V) { 2580 // All byte-wide stores are splatable, even of arbitrary variables. 2581 if (V->getType()->isIntegerTy(8)) return V; 2582 2583 // Handle 'null' ConstantArrayZero etc. 2584 if (Constant *C = dyn_cast<Constant>(V)) 2585 if (C->isNullValue()) 2586 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2587 2588 // Constant float and double values can be handled as integer values if the 2589 // corresponding integer value is "byteable". An important case is 0.0. 2590 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2591 if (CFP->getType()->isFloatTy()) 2592 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2593 if (CFP->getType()->isDoubleTy()) 2594 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2595 // Don't handle long double formats, which have strange constraints. 2596 } 2597 2598 // We can handle constant integers that are multiple of 8 bits. 2599 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2600 if (CI->getBitWidth() % 8 == 0) { 2601 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2602 2603 if (!CI->getValue().isSplat(8)) 2604 return nullptr; 2605 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2606 } 2607 } 2608 2609 // A ConstantDataArray/Vector is splatable if all its members are equal and 2610 // also splatable. 2611 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2612 Value *Elt = CA->getElementAsConstant(0); 2613 Value *Val = isBytewiseValue(Elt); 2614 if (!Val) 2615 return nullptr; 2616 2617 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2618 if (CA->getElementAsConstant(I) != Elt) 2619 return nullptr; 2620 2621 return Val; 2622 } 2623 2624 // Conceptually, we could handle things like: 2625 // %a = zext i8 %X to i16 2626 // %b = shl i16 %a, 8 2627 // %c = or i16 %a, %b 2628 // but until there is an example that actually needs this, it doesn't seem 2629 // worth worrying about. 2630 return nullptr; 2631 } 2632 2633 2634 // This is the recursive version of BuildSubAggregate. It takes a few different 2635 // arguments. Idxs is the index within the nested struct From that we are 2636 // looking at now (which is of type IndexedType). IdxSkip is the number of 2637 // indices from Idxs that should be left out when inserting into the resulting 2638 // struct. To is the result struct built so far, new insertvalue instructions 2639 // build on that. 2640 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2641 SmallVectorImpl<unsigned> &Idxs, 2642 unsigned IdxSkip, 2643 Instruction *InsertBefore) { 2644 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2645 if (STy) { 2646 // Save the original To argument so we can modify it 2647 Value *OrigTo = To; 2648 // General case, the type indexed by Idxs is a struct 2649 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2650 // Process each struct element recursively 2651 Idxs.push_back(i); 2652 Value *PrevTo = To; 2653 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2654 InsertBefore); 2655 Idxs.pop_back(); 2656 if (!To) { 2657 // Couldn't find any inserted value for this index? Cleanup 2658 while (PrevTo != OrigTo) { 2659 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2660 PrevTo = Del->getAggregateOperand(); 2661 Del->eraseFromParent(); 2662 } 2663 // Stop processing elements 2664 break; 2665 } 2666 } 2667 // If we successfully found a value for each of our subaggregates 2668 if (To) 2669 return To; 2670 } 2671 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2672 // the struct's elements had a value that was inserted directly. In the latter 2673 // case, perhaps we can't determine each of the subelements individually, but 2674 // we might be able to find the complete struct somewhere. 2675 2676 // Find the value that is at that particular spot 2677 Value *V = FindInsertedValue(From, Idxs); 2678 2679 if (!V) 2680 return nullptr; 2681 2682 // Insert the value in the new (sub) aggregrate 2683 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2684 "tmp", InsertBefore); 2685 } 2686 2687 // This helper takes a nested struct and extracts a part of it (which is again a 2688 // struct) into a new value. For example, given the struct: 2689 // { a, { b, { c, d }, e } } 2690 // and the indices "1, 1" this returns 2691 // { c, d }. 2692 // 2693 // It does this by inserting an insertvalue for each element in the resulting 2694 // struct, as opposed to just inserting a single struct. This will only work if 2695 // each of the elements of the substruct are known (ie, inserted into From by an 2696 // insertvalue instruction somewhere). 2697 // 2698 // All inserted insertvalue instructions are inserted before InsertBefore 2699 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2700 Instruction *InsertBefore) { 2701 assert(InsertBefore && "Must have someplace to insert!"); 2702 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2703 idx_range); 2704 Value *To = UndefValue::get(IndexedType); 2705 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2706 unsigned IdxSkip = Idxs.size(); 2707 2708 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2709 } 2710 2711 /// Given an aggregrate and an sequence of indices, see if 2712 /// the scalar value indexed is already around as a register, for example if it 2713 /// were inserted directly into the aggregrate. 2714 /// 2715 /// If InsertBefore is not null, this function will duplicate (modified) 2716 /// insertvalues when a part of a nested struct is extracted. 2717 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2718 Instruction *InsertBefore) { 2719 // Nothing to index? Just return V then (this is useful at the end of our 2720 // recursion). 2721 if (idx_range.empty()) 2722 return V; 2723 // We have indices, so V should have an indexable type. 2724 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2725 "Not looking at a struct or array?"); 2726 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2727 "Invalid indices for type?"); 2728 2729 if (Constant *C = dyn_cast<Constant>(V)) { 2730 C = C->getAggregateElement(idx_range[0]); 2731 if (!C) return nullptr; 2732 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2733 } 2734 2735 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2736 // Loop the indices for the insertvalue instruction in parallel with the 2737 // requested indices 2738 const unsigned *req_idx = idx_range.begin(); 2739 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2740 i != e; ++i, ++req_idx) { 2741 if (req_idx == idx_range.end()) { 2742 // We can't handle this without inserting insertvalues 2743 if (!InsertBefore) 2744 return nullptr; 2745 2746 // The requested index identifies a part of a nested aggregate. Handle 2747 // this specially. For example, 2748 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2749 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2750 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2751 // This can be changed into 2752 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2753 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2754 // which allows the unused 0,0 element from the nested struct to be 2755 // removed. 2756 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2757 InsertBefore); 2758 } 2759 2760 // This insert value inserts something else than what we are looking for. 2761 // See if the (aggregate) value inserted into has the value we are 2762 // looking for, then. 2763 if (*req_idx != *i) 2764 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2765 InsertBefore); 2766 } 2767 // If we end up here, the indices of the insertvalue match with those 2768 // requested (though possibly only partially). Now we recursively look at 2769 // the inserted value, passing any remaining indices. 2770 return FindInsertedValue(I->getInsertedValueOperand(), 2771 makeArrayRef(req_idx, idx_range.end()), 2772 InsertBefore); 2773 } 2774 2775 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2776 // If we're extracting a value from an aggregate that was extracted from 2777 // something else, we can extract from that something else directly instead. 2778 // However, we will need to chain I's indices with the requested indices. 2779 2780 // Calculate the number of indices required 2781 unsigned size = I->getNumIndices() + idx_range.size(); 2782 // Allocate some space to put the new indices in 2783 SmallVector<unsigned, 5> Idxs; 2784 Idxs.reserve(size); 2785 // Add indices from the extract value instruction 2786 Idxs.append(I->idx_begin(), I->idx_end()); 2787 2788 // Add requested indices 2789 Idxs.append(idx_range.begin(), idx_range.end()); 2790 2791 assert(Idxs.size() == size 2792 && "Number of indices added not correct?"); 2793 2794 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2795 } 2796 // Otherwise, we don't know (such as, extracting from a function return value 2797 // or load instruction) 2798 return nullptr; 2799 } 2800 2801 /// Analyze the specified pointer to see if it can be expressed as a base 2802 /// pointer plus a constant offset. Return the base and offset to the caller. 2803 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2804 const DataLayout &DL) { 2805 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2806 APInt ByteOffset(BitWidth, 0); 2807 2808 // We walk up the defs but use a visited set to handle unreachable code. In 2809 // that case, we stop after accumulating the cycle once (not that it 2810 // matters). 2811 SmallPtrSet<Value *, 16> Visited; 2812 while (Visited.insert(Ptr).second) { 2813 if (Ptr->getType()->isVectorTy()) 2814 break; 2815 2816 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2817 APInt GEPOffset(BitWidth, 0); 2818 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2819 break; 2820 2821 ByteOffset += GEPOffset; 2822 2823 Ptr = GEP->getPointerOperand(); 2824 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2825 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2826 Ptr = cast<Operator>(Ptr)->getOperand(0); 2827 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2828 if (GA->isInterposable()) 2829 break; 2830 Ptr = GA->getAliasee(); 2831 } else { 2832 break; 2833 } 2834 } 2835 Offset = ByteOffset.getSExtValue(); 2836 return Ptr; 2837 } 2838 2839 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2840 // Make sure the GEP has exactly three arguments. 2841 if (GEP->getNumOperands() != 3) 2842 return false; 2843 2844 // Make sure the index-ee is a pointer to array of i8. 2845 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2846 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2847 return false; 2848 2849 // Check to make sure that the first operand of the GEP is an integer and 2850 // has value 0 so that we are sure we're indexing into the initializer. 2851 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2852 if (!FirstIdx || !FirstIdx->isZero()) 2853 return false; 2854 2855 return true; 2856 } 2857 2858 /// This function computes the length of a null-terminated C string pointed to 2859 /// by V. If successful, it returns true and returns the string in Str. 2860 /// If unsuccessful, it returns false. 2861 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2862 uint64_t Offset, bool TrimAtNul) { 2863 assert(V); 2864 2865 // Look through bitcast instructions and geps. 2866 V = V->stripPointerCasts(); 2867 2868 // If the value is a GEP instruction or constant expression, treat it as an 2869 // offset. 2870 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2871 // The GEP operator should be based on a pointer to string constant, and is 2872 // indexing into the string constant. 2873 if (!isGEPBasedOnPointerToString(GEP)) 2874 return false; 2875 2876 // If the second index isn't a ConstantInt, then this is a variable index 2877 // into the array. If this occurs, we can't say anything meaningful about 2878 // the string. 2879 uint64_t StartIdx = 0; 2880 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2881 StartIdx = CI->getZExtValue(); 2882 else 2883 return false; 2884 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2885 TrimAtNul); 2886 } 2887 2888 // The GEP instruction, constant or instruction, must reference a global 2889 // variable that is a constant and is initialized. The referenced constant 2890 // initializer is the array that we'll use for optimization. 2891 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2892 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2893 return false; 2894 2895 // Handle the all-zeros case. 2896 if (GV->getInitializer()->isNullValue()) { 2897 // This is a degenerate case. The initializer is constant zero so the 2898 // length of the string must be zero. 2899 Str = ""; 2900 return true; 2901 } 2902 2903 // This must be a ConstantDataArray. 2904 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 2905 if (!Array || !Array->isString()) 2906 return false; 2907 2908 // Get the number of elements in the array. 2909 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2910 2911 // Start out with the entire array in the StringRef. 2912 Str = Array->getAsString(); 2913 2914 if (Offset > NumElts) 2915 return false; 2916 2917 // Skip over 'offset' bytes. 2918 Str = Str.substr(Offset); 2919 2920 if (TrimAtNul) { 2921 // Trim off the \0 and anything after it. If the array is not nul 2922 // terminated, we just return the whole end of string. The client may know 2923 // some other way that the string is length-bound. 2924 Str = Str.substr(0, Str.find('\0')); 2925 } 2926 return true; 2927 } 2928 2929 // These next two are very similar to the above, but also look through PHI 2930 // nodes. 2931 // TODO: See if we can integrate these two together. 2932 2933 /// If we can compute the length of the string pointed to by 2934 /// the specified pointer, return 'len+1'. If we can't, return 0. 2935 static uint64_t GetStringLengthH(const Value *V, 2936 SmallPtrSetImpl<const PHINode*> &PHIs) { 2937 // Look through noop bitcast instructions. 2938 V = V->stripPointerCasts(); 2939 2940 // If this is a PHI node, there are two cases: either we have already seen it 2941 // or we haven't. 2942 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2943 if (!PHIs.insert(PN).second) 2944 return ~0ULL; // already in the set. 2945 2946 // If it was new, see if all the input strings are the same length. 2947 uint64_t LenSoFar = ~0ULL; 2948 for (Value *IncValue : PN->incoming_values()) { 2949 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2950 if (Len == 0) return 0; // Unknown length -> unknown. 2951 2952 if (Len == ~0ULL) continue; 2953 2954 if (Len != LenSoFar && LenSoFar != ~0ULL) 2955 return 0; // Disagree -> unknown. 2956 LenSoFar = Len; 2957 } 2958 2959 // Success, all agree. 2960 return LenSoFar; 2961 } 2962 2963 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2964 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2965 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2966 if (Len1 == 0) return 0; 2967 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2968 if (Len2 == 0) return 0; 2969 if (Len1 == ~0ULL) return Len2; 2970 if (Len2 == ~0ULL) return Len1; 2971 if (Len1 != Len2) return 0; 2972 return Len1; 2973 } 2974 2975 // Otherwise, see if we can read the string. 2976 StringRef StrData; 2977 if (!getConstantStringInfo(V, StrData)) 2978 return 0; 2979 2980 return StrData.size()+1; 2981 } 2982 2983 /// If we can compute the length of the string pointed to by 2984 /// the specified pointer, return 'len+1'. If we can't, return 0. 2985 uint64_t llvm::GetStringLength(const Value *V) { 2986 if (!V->getType()->isPointerTy()) return 0; 2987 2988 SmallPtrSet<const PHINode*, 32> PHIs; 2989 uint64_t Len = GetStringLengthH(V, PHIs); 2990 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2991 // an empty string as a length. 2992 return Len == ~0ULL ? 1 : Len; 2993 } 2994 2995 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2996 /// previous iteration of the loop was referring to the same object as \p PN. 2997 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 2998 const LoopInfo *LI) { 2999 // Find the loop-defined value. 3000 Loop *L = LI->getLoopFor(PN->getParent()); 3001 if (PN->getNumIncomingValues() != 2) 3002 return true; 3003 3004 // Find the value from previous iteration. 3005 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3006 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3007 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3008 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3009 return true; 3010 3011 // If a new pointer is loaded in the loop, the pointer references a different 3012 // object in every iteration. E.g.: 3013 // for (i) 3014 // int *p = a[i]; 3015 // ... 3016 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3017 if (!L->isLoopInvariant(Load->getPointerOperand())) 3018 return false; 3019 return true; 3020 } 3021 3022 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3023 unsigned MaxLookup) { 3024 if (!V->getType()->isPointerTy()) 3025 return V; 3026 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3027 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3028 V = GEP->getPointerOperand(); 3029 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3030 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3031 V = cast<Operator>(V)->getOperand(0); 3032 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3033 if (GA->isInterposable()) 3034 return V; 3035 V = GA->getAliasee(); 3036 } else { 3037 if (auto CS = CallSite(V)) 3038 if (Value *RV = CS.getReturnedArgOperand()) { 3039 V = RV; 3040 continue; 3041 } 3042 3043 // See if InstructionSimplify knows any relevant tricks. 3044 if (Instruction *I = dyn_cast<Instruction>(V)) 3045 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3046 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3047 V = Simplified; 3048 continue; 3049 } 3050 3051 return V; 3052 } 3053 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3054 } 3055 return V; 3056 } 3057 3058 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3059 const DataLayout &DL, LoopInfo *LI, 3060 unsigned MaxLookup) { 3061 SmallPtrSet<Value *, 4> Visited; 3062 SmallVector<Value *, 4> Worklist; 3063 Worklist.push_back(V); 3064 do { 3065 Value *P = Worklist.pop_back_val(); 3066 P = GetUnderlyingObject(P, DL, MaxLookup); 3067 3068 if (!Visited.insert(P).second) 3069 continue; 3070 3071 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3072 Worklist.push_back(SI->getTrueValue()); 3073 Worklist.push_back(SI->getFalseValue()); 3074 continue; 3075 } 3076 3077 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3078 // If this PHI changes the underlying object in every iteration of the 3079 // loop, don't look through it. Consider: 3080 // int **A; 3081 // for (i) { 3082 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3083 // Curr = A[i]; 3084 // *Prev, *Curr; 3085 // 3086 // Prev is tracking Curr one iteration behind so they refer to different 3087 // underlying objects. 3088 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3089 isSameUnderlyingObjectInLoop(PN, LI)) 3090 for (Value *IncValue : PN->incoming_values()) 3091 Worklist.push_back(IncValue); 3092 continue; 3093 } 3094 3095 Objects.push_back(P); 3096 } while (!Worklist.empty()); 3097 } 3098 3099 /// Return true if the only users of this pointer are lifetime markers. 3100 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3101 for (const User *U : V->users()) { 3102 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3103 if (!II) return false; 3104 3105 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3106 II->getIntrinsicID() != Intrinsic::lifetime_end) 3107 return false; 3108 } 3109 return true; 3110 } 3111 3112 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3113 const Instruction *CtxI, 3114 const DominatorTree *DT) { 3115 const Operator *Inst = dyn_cast<Operator>(V); 3116 if (!Inst) 3117 return false; 3118 3119 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3120 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3121 if (C->canTrap()) 3122 return false; 3123 3124 switch (Inst->getOpcode()) { 3125 default: 3126 return true; 3127 case Instruction::UDiv: 3128 case Instruction::URem: { 3129 // x / y is undefined if y == 0. 3130 const APInt *V; 3131 if (match(Inst->getOperand(1), m_APInt(V))) 3132 return *V != 0; 3133 return false; 3134 } 3135 case Instruction::SDiv: 3136 case Instruction::SRem: { 3137 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3138 const APInt *Numerator, *Denominator; 3139 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3140 return false; 3141 // We cannot hoist this division if the denominator is 0. 3142 if (*Denominator == 0) 3143 return false; 3144 // It's safe to hoist if the denominator is not 0 or -1. 3145 if (*Denominator != -1) 3146 return true; 3147 // At this point we know that the denominator is -1. It is safe to hoist as 3148 // long we know that the numerator is not INT_MIN. 3149 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3150 return !Numerator->isMinSignedValue(); 3151 // The numerator *might* be MinSignedValue. 3152 return false; 3153 } 3154 case Instruction::Load: { 3155 const LoadInst *LI = cast<LoadInst>(Inst); 3156 if (!LI->isUnordered() || 3157 // Speculative load may create a race that did not exist in the source. 3158 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3159 // Speculative load may load data from dirty regions. 3160 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3161 return false; 3162 const DataLayout &DL = LI->getModule()->getDataLayout(); 3163 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3164 LI->getAlignment(), DL, CtxI, DT); 3165 } 3166 case Instruction::Call: { 3167 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3168 switch (II->getIntrinsicID()) { 3169 // These synthetic intrinsics have no side-effects and just mark 3170 // information about their operands. 3171 // FIXME: There are other no-op synthetic instructions that potentially 3172 // should be considered at least *safe* to speculate... 3173 case Intrinsic::dbg_declare: 3174 case Intrinsic::dbg_value: 3175 return true; 3176 3177 case Intrinsic::bswap: 3178 case Intrinsic::ctlz: 3179 case Intrinsic::ctpop: 3180 case Intrinsic::cttz: 3181 case Intrinsic::objectsize: 3182 case Intrinsic::sadd_with_overflow: 3183 case Intrinsic::smul_with_overflow: 3184 case Intrinsic::ssub_with_overflow: 3185 case Intrinsic::uadd_with_overflow: 3186 case Intrinsic::umul_with_overflow: 3187 case Intrinsic::usub_with_overflow: 3188 return true; 3189 // These intrinsics are defined to have the same behavior as libm 3190 // functions except for setting errno. 3191 case Intrinsic::sqrt: 3192 case Intrinsic::fma: 3193 case Intrinsic::fmuladd: 3194 return true; 3195 // These intrinsics are defined to have the same behavior as libm 3196 // functions, and the corresponding libm functions never set errno. 3197 case Intrinsic::trunc: 3198 case Intrinsic::copysign: 3199 case Intrinsic::fabs: 3200 case Intrinsic::minnum: 3201 case Intrinsic::maxnum: 3202 return true; 3203 // These intrinsics are defined to have the same behavior as libm 3204 // functions, which never overflow when operating on the IEEE754 types 3205 // that we support, and never set errno otherwise. 3206 case Intrinsic::ceil: 3207 case Intrinsic::floor: 3208 case Intrinsic::nearbyint: 3209 case Intrinsic::rint: 3210 case Intrinsic::round: 3211 return true; 3212 // TODO: are convert_{from,to}_fp16 safe? 3213 // TODO: can we list target-specific intrinsics here? 3214 default: break; 3215 } 3216 } 3217 return false; // The called function could have undefined behavior or 3218 // side-effects, even if marked readnone nounwind. 3219 } 3220 case Instruction::VAArg: 3221 case Instruction::Alloca: 3222 case Instruction::Invoke: 3223 case Instruction::PHI: 3224 case Instruction::Store: 3225 case Instruction::Ret: 3226 case Instruction::Br: 3227 case Instruction::IndirectBr: 3228 case Instruction::Switch: 3229 case Instruction::Unreachable: 3230 case Instruction::Fence: 3231 case Instruction::AtomicRMW: 3232 case Instruction::AtomicCmpXchg: 3233 case Instruction::LandingPad: 3234 case Instruction::Resume: 3235 case Instruction::CatchSwitch: 3236 case Instruction::CatchPad: 3237 case Instruction::CatchRet: 3238 case Instruction::CleanupPad: 3239 case Instruction::CleanupRet: 3240 return false; // Misc instructions which have effects 3241 } 3242 } 3243 3244 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3245 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3246 } 3247 3248 /// Return true if we know that the specified value is never null. 3249 bool llvm::isKnownNonNull(const Value *V) { 3250 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3251 3252 // Alloca never returns null, malloc might. 3253 if (isa<AllocaInst>(V)) return true; 3254 3255 // A byval, inalloca, or nonnull argument is never null. 3256 if (const Argument *A = dyn_cast<Argument>(V)) 3257 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3258 3259 // A global variable in address space 0 is non null unless extern weak. 3260 // Other address spaces may have null as a valid address for a global, 3261 // so we can't assume anything. 3262 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3263 return !GV->hasExternalWeakLinkage() && 3264 GV->getType()->getAddressSpace() == 0; 3265 3266 // A Load tagged with nonnull metadata is never null. 3267 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3268 return LI->getMetadata(LLVMContext::MD_nonnull); 3269 3270 if (auto CS = ImmutableCallSite(V)) 3271 if (CS.isReturnNonNull()) 3272 return true; 3273 3274 return false; 3275 } 3276 3277 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3278 const Instruction *CtxI, 3279 const DominatorTree *DT) { 3280 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3281 3282 unsigned NumUsesExplored = 0; 3283 for (auto *U : V->users()) { 3284 // Avoid massive lists 3285 if (NumUsesExplored >= DomConditionsMaxUses) 3286 break; 3287 NumUsesExplored++; 3288 // Consider only compare instructions uniquely controlling a branch 3289 CmpInst::Predicate Pred; 3290 if (!match(const_cast<User *>(U), 3291 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3292 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3293 continue; 3294 3295 for (auto *CmpU : U->users()) { 3296 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3297 assert(BI->isConditional() && "uses a comparison!"); 3298 3299 BasicBlock *NonNullSuccessor = 3300 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3301 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3302 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3303 return true; 3304 } else if (Pred == ICmpInst::ICMP_NE && 3305 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3306 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3307 return true; 3308 } 3309 } 3310 } 3311 3312 return false; 3313 } 3314 3315 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3316 const DominatorTree *DT) { 3317 if (isKnownNonNull(V)) 3318 return true; 3319 3320 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3321 } 3322 3323 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3324 const Value *RHS, 3325 const DataLayout &DL, 3326 AssumptionCache *AC, 3327 const Instruction *CxtI, 3328 const DominatorTree *DT) { 3329 // Multiplying n * m significant bits yields a result of n + m significant 3330 // bits. If the total number of significant bits does not exceed the 3331 // result bit width (minus 1), there is no overflow. 3332 // This means if we have enough leading zero bits in the operands 3333 // we can guarantee that the result does not overflow. 3334 // Ref: "Hacker's Delight" by Henry Warren 3335 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3336 APInt LHSKnownZero(BitWidth, 0); 3337 APInt LHSKnownOne(BitWidth, 0); 3338 APInt RHSKnownZero(BitWidth, 0); 3339 APInt RHSKnownOne(BitWidth, 0); 3340 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3341 DT); 3342 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3343 DT); 3344 // Note that underestimating the number of zero bits gives a more 3345 // conservative answer. 3346 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3347 RHSKnownZero.countLeadingOnes(); 3348 // First handle the easy case: if we have enough zero bits there's 3349 // definitely no overflow. 3350 if (ZeroBits >= BitWidth) 3351 return OverflowResult::NeverOverflows; 3352 3353 // Get the largest possible values for each operand. 3354 APInt LHSMax = ~LHSKnownZero; 3355 APInt RHSMax = ~RHSKnownZero; 3356 3357 // We know the multiply operation doesn't overflow if the maximum values for 3358 // each operand will not overflow after we multiply them together. 3359 bool MaxOverflow; 3360 LHSMax.umul_ov(RHSMax, MaxOverflow); 3361 if (!MaxOverflow) 3362 return OverflowResult::NeverOverflows; 3363 3364 // We know it always overflows if multiplying the smallest possible values for 3365 // the operands also results in overflow. 3366 bool MinOverflow; 3367 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3368 if (MinOverflow) 3369 return OverflowResult::AlwaysOverflows; 3370 3371 return OverflowResult::MayOverflow; 3372 } 3373 3374 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3375 const Value *RHS, 3376 const DataLayout &DL, 3377 AssumptionCache *AC, 3378 const Instruction *CxtI, 3379 const DominatorTree *DT) { 3380 bool LHSKnownNonNegative, LHSKnownNegative; 3381 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3382 AC, CxtI, DT); 3383 if (LHSKnownNonNegative || LHSKnownNegative) { 3384 bool RHSKnownNonNegative, RHSKnownNegative; 3385 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3386 AC, CxtI, DT); 3387 3388 if (LHSKnownNegative && RHSKnownNegative) { 3389 // The sign bit is set in both cases: this MUST overflow. 3390 // Create a simple add instruction, and insert it into the struct. 3391 return OverflowResult::AlwaysOverflows; 3392 } 3393 3394 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3395 // The sign bit is clear in both cases: this CANNOT overflow. 3396 // Create a simple add instruction, and insert it into the struct. 3397 return OverflowResult::NeverOverflows; 3398 } 3399 } 3400 3401 return OverflowResult::MayOverflow; 3402 } 3403 3404 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3405 const Value *RHS, 3406 const AddOperator *Add, 3407 const DataLayout &DL, 3408 AssumptionCache *AC, 3409 const Instruction *CxtI, 3410 const DominatorTree *DT) { 3411 if (Add && Add->hasNoSignedWrap()) { 3412 return OverflowResult::NeverOverflows; 3413 } 3414 3415 bool LHSKnownNonNegative, LHSKnownNegative; 3416 bool RHSKnownNonNegative, RHSKnownNegative; 3417 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3418 AC, CxtI, DT); 3419 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3420 AC, CxtI, DT); 3421 3422 if ((LHSKnownNonNegative && RHSKnownNegative) || 3423 (LHSKnownNegative && RHSKnownNonNegative)) { 3424 // The sign bits are opposite: this CANNOT overflow. 3425 return OverflowResult::NeverOverflows; 3426 } 3427 3428 // The remaining code needs Add to be available. Early returns if not so. 3429 if (!Add) 3430 return OverflowResult::MayOverflow; 3431 3432 // If the sign of Add is the same as at least one of the operands, this add 3433 // CANNOT overflow. This is particularly useful when the sum is 3434 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3435 // operands. 3436 bool LHSOrRHSKnownNonNegative = 3437 (LHSKnownNonNegative || RHSKnownNonNegative); 3438 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3439 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3440 bool AddKnownNonNegative, AddKnownNegative; 3441 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3442 /*Depth=*/0, AC, CxtI, DT); 3443 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3444 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3445 return OverflowResult::NeverOverflows; 3446 } 3447 } 3448 3449 return OverflowResult::MayOverflow; 3450 } 3451 3452 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3453 const DominatorTree &DT) { 3454 #ifndef NDEBUG 3455 auto IID = II->getIntrinsicID(); 3456 assert((IID == Intrinsic::sadd_with_overflow || 3457 IID == Intrinsic::uadd_with_overflow || 3458 IID == Intrinsic::ssub_with_overflow || 3459 IID == Intrinsic::usub_with_overflow || 3460 IID == Intrinsic::smul_with_overflow || 3461 IID == Intrinsic::umul_with_overflow) && 3462 "Not an overflow intrinsic!"); 3463 #endif 3464 3465 SmallVector<const BranchInst *, 2> GuardingBranches; 3466 SmallVector<const ExtractValueInst *, 2> Results; 3467 3468 for (const User *U : II->users()) { 3469 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3470 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3471 3472 if (EVI->getIndices()[0] == 0) 3473 Results.push_back(EVI); 3474 else { 3475 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3476 3477 for (const auto *U : EVI->users()) 3478 if (const auto *B = dyn_cast<BranchInst>(U)) { 3479 assert(B->isConditional() && "How else is it using an i1?"); 3480 GuardingBranches.push_back(B); 3481 } 3482 } 3483 } else { 3484 // We are using the aggregate directly in a way we don't want to analyze 3485 // here (storing it to a global, say). 3486 return false; 3487 } 3488 } 3489 3490 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3491 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3492 if (!NoWrapEdge.isSingleEdge()) 3493 return false; 3494 3495 // Check if all users of the add are provably no-wrap. 3496 for (const auto *Result : Results) { 3497 // If the extractvalue itself is not executed on overflow, the we don't 3498 // need to check each use separately, since domination is transitive. 3499 if (DT.dominates(NoWrapEdge, Result->getParent())) 3500 continue; 3501 3502 for (auto &RU : Result->uses()) 3503 if (!DT.dominates(NoWrapEdge, RU)) 3504 return false; 3505 } 3506 3507 return true; 3508 }; 3509 3510 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3511 } 3512 3513 3514 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3515 const DataLayout &DL, 3516 AssumptionCache *AC, 3517 const Instruction *CxtI, 3518 const DominatorTree *DT) { 3519 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3520 Add, DL, AC, CxtI, DT); 3521 } 3522 3523 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3524 const Value *RHS, 3525 const DataLayout &DL, 3526 AssumptionCache *AC, 3527 const Instruction *CxtI, 3528 const DominatorTree *DT) { 3529 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3530 } 3531 3532 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3533 // A memory operation returns normally if it isn't volatile. A volatile 3534 // operation is allowed to trap. 3535 // 3536 // An atomic operation isn't guaranteed to return in a reasonable amount of 3537 // time because it's possible for another thread to interfere with it for an 3538 // arbitrary length of time, but programs aren't allowed to rely on that. 3539 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3540 return !LI->isVolatile(); 3541 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3542 return !SI->isVolatile(); 3543 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3544 return !CXI->isVolatile(); 3545 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3546 return !RMWI->isVolatile(); 3547 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3548 return !MII->isVolatile(); 3549 3550 // If there is no successor, then execution can't transfer to it. 3551 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3552 return !CRI->unwindsToCaller(); 3553 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3554 return !CatchSwitch->unwindsToCaller(); 3555 if (isa<ResumeInst>(I)) 3556 return false; 3557 if (isa<ReturnInst>(I)) 3558 return false; 3559 3560 // Calls can throw, or contain an infinite loop, or kill the process. 3561 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) { 3562 // Calls which don't write to arbitrary memory are safe. 3563 // FIXME: Ignoring infinite loops without any side-effects is too aggressive, 3564 // but it's consistent with other passes. See http://llvm.org/PR965 . 3565 // FIXME: This isn't aggressive enough; a call which only writes to a 3566 // global is guaranteed to return. 3567 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3568 match(I, m_Intrinsic<Intrinsic::assume>()); 3569 } 3570 3571 // Other instructions return normally. 3572 return true; 3573 } 3574 3575 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3576 const Loop *L) { 3577 // The loop header is guaranteed to be executed for every iteration. 3578 // 3579 // FIXME: Relax this constraint to cover all basic blocks that are 3580 // guaranteed to be executed at every iteration. 3581 if (I->getParent() != L->getHeader()) return false; 3582 3583 for (const Instruction &LI : *L->getHeader()) { 3584 if (&LI == I) return true; 3585 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3586 } 3587 llvm_unreachable("Instruction not contained in its own parent basic block."); 3588 } 3589 3590 bool llvm::propagatesFullPoison(const Instruction *I) { 3591 switch (I->getOpcode()) { 3592 case Instruction::Add: 3593 case Instruction::Sub: 3594 case Instruction::Xor: 3595 case Instruction::Trunc: 3596 case Instruction::BitCast: 3597 case Instruction::AddrSpaceCast: 3598 // These operations all propagate poison unconditionally. Note that poison 3599 // is not any particular value, so xor or subtraction of poison with 3600 // itself still yields poison, not zero. 3601 return true; 3602 3603 case Instruction::AShr: 3604 case Instruction::SExt: 3605 // For these operations, one bit of the input is replicated across 3606 // multiple output bits. A replicated poison bit is still poison. 3607 return true; 3608 3609 case Instruction::Shl: { 3610 // Left shift *by* a poison value is poison. The number of 3611 // positions to shift is unsigned, so no negative values are 3612 // possible there. Left shift by zero places preserves poison. So 3613 // it only remains to consider left shift of poison by a positive 3614 // number of places. 3615 // 3616 // A left shift by a positive number of places leaves the lowest order bit 3617 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3618 // make the poison operand violate that flag, yielding a fresh full-poison 3619 // value. 3620 auto *OBO = cast<OverflowingBinaryOperator>(I); 3621 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3622 } 3623 3624 case Instruction::Mul: { 3625 // A multiplication by zero yields a non-poison zero result, so we need to 3626 // rule out zero as an operand. Conservatively, multiplication by a 3627 // non-zero constant is not multiplication by zero. 3628 // 3629 // Multiplication by a non-zero constant can leave some bits 3630 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3631 // order bit unpoisoned. So we need to consider that. 3632 // 3633 // Multiplication by 1 preserves poison. If the multiplication has a 3634 // no-wrap flag, then we can make the poison operand violate that flag 3635 // when multiplied by any integer other than 0 and 1. 3636 auto *OBO = cast<OverflowingBinaryOperator>(I); 3637 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3638 for (Value *V : OBO->operands()) { 3639 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3640 // A ConstantInt cannot yield poison, so we can assume that it is 3641 // the other operand that is poison. 3642 return !CI->isZero(); 3643 } 3644 } 3645 } 3646 return false; 3647 } 3648 3649 case Instruction::ICmp: 3650 // Comparing poison with any value yields poison. This is why, for 3651 // instance, x s< (x +nsw 1) can be folded to true. 3652 return true; 3653 3654 case Instruction::GetElementPtr: 3655 // A GEP implicitly represents a sequence of additions, subtractions, 3656 // truncations, sign extensions and multiplications. The multiplications 3657 // are by the non-zero sizes of some set of types, so we do not have to be 3658 // concerned with multiplication by zero. If the GEP is in-bounds, then 3659 // these operations are implicitly no-signed-wrap so poison is propagated 3660 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3661 return cast<GEPOperator>(I)->isInBounds(); 3662 3663 default: 3664 return false; 3665 } 3666 } 3667 3668 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3669 switch (I->getOpcode()) { 3670 case Instruction::Store: 3671 return cast<StoreInst>(I)->getPointerOperand(); 3672 3673 case Instruction::Load: 3674 return cast<LoadInst>(I)->getPointerOperand(); 3675 3676 case Instruction::AtomicCmpXchg: 3677 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3678 3679 case Instruction::AtomicRMW: 3680 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3681 3682 case Instruction::UDiv: 3683 case Instruction::SDiv: 3684 case Instruction::URem: 3685 case Instruction::SRem: 3686 return I->getOperand(1); 3687 3688 default: 3689 return nullptr; 3690 } 3691 } 3692 3693 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3694 // We currently only look for uses of poison values within the same basic 3695 // block, as that makes it easier to guarantee that the uses will be 3696 // executed given that PoisonI is executed. 3697 // 3698 // FIXME: Expand this to consider uses beyond the same basic block. To do 3699 // this, look out for the distinction between post-dominance and strong 3700 // post-dominance. 3701 const BasicBlock *BB = PoisonI->getParent(); 3702 3703 // Set of instructions that we have proved will yield poison if PoisonI 3704 // does. 3705 SmallSet<const Value *, 16> YieldsPoison; 3706 SmallSet<const BasicBlock *, 4> Visited; 3707 YieldsPoison.insert(PoisonI); 3708 Visited.insert(PoisonI->getParent()); 3709 3710 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3711 3712 unsigned Iter = 0; 3713 while (Iter++ < MaxDepth) { 3714 for (auto &I : make_range(Begin, End)) { 3715 if (&I != PoisonI) { 3716 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3717 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3718 return true; 3719 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3720 return false; 3721 } 3722 3723 // Mark poison that propagates from I through uses of I. 3724 if (YieldsPoison.count(&I)) { 3725 for (const User *User : I.users()) { 3726 const Instruction *UserI = cast<Instruction>(User); 3727 if (propagatesFullPoison(UserI)) 3728 YieldsPoison.insert(User); 3729 } 3730 } 3731 } 3732 3733 if (auto *NextBB = BB->getSingleSuccessor()) { 3734 if (Visited.insert(NextBB).second) { 3735 BB = NextBB; 3736 Begin = BB->getFirstNonPHI()->getIterator(); 3737 End = BB->end(); 3738 continue; 3739 } 3740 } 3741 3742 break; 3743 }; 3744 return false; 3745 } 3746 3747 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3748 if (FMF.noNaNs()) 3749 return true; 3750 3751 if (auto *C = dyn_cast<ConstantFP>(V)) 3752 return !C->isNaN(); 3753 return false; 3754 } 3755 3756 static bool isKnownNonZero(const Value *V) { 3757 if (auto *C = dyn_cast<ConstantFP>(V)) 3758 return !C->isZero(); 3759 return false; 3760 } 3761 3762 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3763 FastMathFlags FMF, 3764 Value *CmpLHS, Value *CmpRHS, 3765 Value *TrueVal, Value *FalseVal, 3766 Value *&LHS, Value *&RHS) { 3767 LHS = CmpLHS; 3768 RHS = CmpRHS; 3769 3770 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3771 // return inconsistent results between implementations. 3772 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3773 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3774 // Therefore we behave conservatively and only proceed if at least one of the 3775 // operands is known to not be zero, or if we don't care about signed zeroes. 3776 switch (Pred) { 3777 default: break; 3778 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3779 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3780 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3781 !isKnownNonZero(CmpRHS)) 3782 return {SPF_UNKNOWN, SPNB_NA, false}; 3783 } 3784 3785 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3786 bool Ordered = false; 3787 3788 // When given one NaN and one non-NaN input: 3789 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3790 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3791 // ordered comparison fails), which could be NaN or non-NaN. 3792 // so here we discover exactly what NaN behavior is required/accepted. 3793 if (CmpInst::isFPPredicate(Pred)) { 3794 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3795 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3796 3797 if (LHSSafe && RHSSafe) { 3798 // Both operands are known non-NaN. 3799 NaNBehavior = SPNB_RETURNS_ANY; 3800 } else if (CmpInst::isOrdered(Pred)) { 3801 // An ordered comparison will return false when given a NaN, so it 3802 // returns the RHS. 3803 Ordered = true; 3804 if (LHSSafe) 3805 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3806 NaNBehavior = SPNB_RETURNS_NAN; 3807 else if (RHSSafe) 3808 NaNBehavior = SPNB_RETURNS_OTHER; 3809 else 3810 // Completely unsafe. 3811 return {SPF_UNKNOWN, SPNB_NA, false}; 3812 } else { 3813 Ordered = false; 3814 // An unordered comparison will return true when given a NaN, so it 3815 // returns the LHS. 3816 if (LHSSafe) 3817 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3818 NaNBehavior = SPNB_RETURNS_OTHER; 3819 else if (RHSSafe) 3820 NaNBehavior = SPNB_RETURNS_NAN; 3821 else 3822 // Completely unsafe. 3823 return {SPF_UNKNOWN, SPNB_NA, false}; 3824 } 3825 } 3826 3827 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3828 std::swap(CmpLHS, CmpRHS); 3829 Pred = CmpInst::getSwappedPredicate(Pred); 3830 if (NaNBehavior == SPNB_RETURNS_NAN) 3831 NaNBehavior = SPNB_RETURNS_OTHER; 3832 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3833 NaNBehavior = SPNB_RETURNS_NAN; 3834 Ordered = !Ordered; 3835 } 3836 3837 // ([if]cmp X, Y) ? X : Y 3838 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3839 switch (Pred) { 3840 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3841 case ICmpInst::ICMP_UGT: 3842 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3843 case ICmpInst::ICMP_SGT: 3844 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3845 case ICmpInst::ICMP_ULT: 3846 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3847 case ICmpInst::ICMP_SLT: 3848 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3849 case FCmpInst::FCMP_UGT: 3850 case FCmpInst::FCMP_UGE: 3851 case FCmpInst::FCMP_OGT: 3852 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3853 case FCmpInst::FCMP_ULT: 3854 case FCmpInst::FCMP_ULE: 3855 case FCmpInst::FCMP_OLT: 3856 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3857 } 3858 } 3859 3860 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3861 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3862 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3863 3864 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3865 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3866 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3867 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3868 } 3869 3870 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3871 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3872 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3873 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3874 } 3875 } 3876 3877 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3878 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3879 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3880 ~C1->getValue() == C2->getValue() && 3881 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3882 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3883 LHS = TrueVal; 3884 RHS = FalseVal; 3885 return {SPF_SMIN, SPNB_NA, false}; 3886 } 3887 } 3888 } 3889 3890 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3891 3892 return {SPF_UNKNOWN, SPNB_NA, false}; 3893 } 3894 3895 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3896 Instruction::CastOps *CastOp) { 3897 CastInst *CI = dyn_cast<CastInst>(V1); 3898 Constant *C = dyn_cast<Constant>(V2); 3899 if (!CI) 3900 return nullptr; 3901 *CastOp = CI->getOpcode(); 3902 3903 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 3904 // If V1 and V2 are both the same cast from the same type, we can look 3905 // through V1. 3906 if (CI2->getOpcode() == CI->getOpcode() && 3907 CI2->getSrcTy() == CI->getSrcTy()) 3908 return CI2->getOperand(0); 3909 return nullptr; 3910 } else if (!C) { 3911 return nullptr; 3912 } 3913 3914 Constant *CastedTo = nullptr; 3915 3916 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3917 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3918 3919 if (isa<SExtInst>(CI) && CmpI->isSigned()) 3920 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 3921 3922 if (isa<TruncInst>(CI)) 3923 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3924 3925 if (isa<FPTruncInst>(CI)) 3926 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3927 3928 if (isa<FPExtInst>(CI)) 3929 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3930 3931 if (isa<FPToUIInst>(CI)) 3932 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3933 3934 if (isa<FPToSIInst>(CI)) 3935 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3936 3937 if (isa<UIToFPInst>(CI)) 3938 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3939 3940 if (isa<SIToFPInst>(CI)) 3941 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3942 3943 if (!CastedTo) 3944 return nullptr; 3945 3946 Constant *CastedBack = 3947 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 3948 // Make sure the cast doesn't lose any information. 3949 if (CastedBack != C) 3950 return nullptr; 3951 3952 return CastedTo; 3953 } 3954 3955 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 3956 Instruction::CastOps *CastOp) { 3957 SelectInst *SI = dyn_cast<SelectInst>(V); 3958 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3959 3960 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3961 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3962 3963 CmpInst::Predicate Pred = CmpI->getPredicate(); 3964 Value *CmpLHS = CmpI->getOperand(0); 3965 Value *CmpRHS = CmpI->getOperand(1); 3966 Value *TrueVal = SI->getTrueValue(); 3967 Value *FalseVal = SI->getFalseValue(); 3968 FastMathFlags FMF; 3969 if (isa<FPMathOperator>(CmpI)) 3970 FMF = CmpI->getFastMathFlags(); 3971 3972 // Bail out early. 3973 if (CmpI->isEquality()) 3974 return {SPF_UNKNOWN, SPNB_NA, false}; 3975 3976 // Deal with type mismatches. 3977 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3978 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3979 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3980 cast<CastInst>(TrueVal)->getOperand(0), C, 3981 LHS, RHS); 3982 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3983 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3984 C, cast<CastInst>(FalseVal)->getOperand(0), 3985 LHS, RHS); 3986 } 3987 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3988 LHS, RHS); 3989 } 3990 3991 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 3992 const unsigned NumRanges = Ranges.getNumOperands() / 2; 3993 assert(NumRanges >= 1 && "Must have at least one range!"); 3994 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 3995 3996 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 3997 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 3998 3999 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4000 4001 for (unsigned i = 1; i < NumRanges; ++i) { 4002 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4003 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4004 4005 // Note: unionWith will potentially create a range that contains values not 4006 // contained in any of the original N ranges. 4007 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4008 } 4009 4010 return CR; 4011 } 4012 4013 /// Return true if "icmp Pred LHS RHS" is always true. 4014 static bool isTruePredicate(CmpInst::Predicate Pred, 4015 const Value *LHS, const Value *RHS, 4016 const DataLayout &DL, unsigned Depth, 4017 AssumptionCache *AC, const Instruction *CxtI, 4018 const DominatorTree *DT) { 4019 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4020 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4021 return true; 4022 4023 switch (Pred) { 4024 default: 4025 return false; 4026 4027 case CmpInst::ICMP_SLE: { 4028 const APInt *C; 4029 4030 // LHS s<= LHS +_{nsw} C if C >= 0 4031 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4032 return !C->isNegative(); 4033 return false; 4034 } 4035 4036 case CmpInst::ICMP_ULE: { 4037 const APInt *C; 4038 4039 // LHS u<= LHS +_{nuw} C for any C 4040 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4041 return true; 4042 4043 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4044 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4045 const Value *&X, 4046 const APInt *&CA, const APInt *&CB) { 4047 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4048 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4049 return true; 4050 4051 // If X & C == 0 then (X | C) == X +_{nuw} C 4052 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4053 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4054 unsigned BitWidth = CA->getBitWidth(); 4055 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4056 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4057 4058 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4059 return true; 4060 } 4061 4062 return false; 4063 }; 4064 4065 const Value *X; 4066 const APInt *CLHS, *CRHS; 4067 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4068 return CLHS->ule(*CRHS); 4069 4070 return false; 4071 } 4072 } 4073 } 4074 4075 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4076 /// ALHS ARHS" is true. Otherwise, return None. 4077 static Optional<bool> 4078 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4079 const Value *ARHS, const Value *BLHS, 4080 const Value *BRHS, const DataLayout &DL, 4081 unsigned Depth, AssumptionCache *AC, 4082 const Instruction *CxtI, const DominatorTree *DT) { 4083 switch (Pred) { 4084 default: 4085 return None; 4086 4087 case CmpInst::ICMP_SLT: 4088 case CmpInst::ICMP_SLE: 4089 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4090 DT) && 4091 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4092 return true; 4093 return None; 4094 4095 case CmpInst::ICMP_ULT: 4096 case CmpInst::ICMP_ULE: 4097 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4098 DT) && 4099 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4100 return true; 4101 return None; 4102 } 4103 } 4104 4105 /// Return true if the operands of the two compares match. IsSwappedOps is true 4106 /// when the operands match, but are swapped. 4107 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4108 const Value *BLHS, const Value *BRHS, 4109 bool &IsSwappedOps) { 4110 4111 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4112 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4113 return IsMatchingOps || IsSwappedOps; 4114 } 4115 4116 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4117 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4118 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4119 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4120 const Value *ALHS, 4121 const Value *ARHS, 4122 CmpInst::Predicate BPred, 4123 const Value *BLHS, 4124 const Value *BRHS, 4125 bool IsSwappedOps) { 4126 // Canonicalize the operands so they're matching. 4127 if (IsSwappedOps) { 4128 std::swap(BLHS, BRHS); 4129 BPred = ICmpInst::getSwappedPredicate(BPred); 4130 } 4131 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4132 return true; 4133 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4134 return false; 4135 4136 return None; 4137 } 4138 4139 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4140 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4141 /// C2" is false. Otherwise, return None if we can't infer anything. 4142 static Optional<bool> 4143 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4144 const ConstantInt *C1, 4145 CmpInst::Predicate BPred, 4146 const Value *BLHS, const ConstantInt *C2) { 4147 assert(ALHS == BLHS && "LHS operands must match."); 4148 ConstantRange DomCR = 4149 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4150 ConstantRange CR = 4151 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4152 ConstantRange Intersection = DomCR.intersectWith(CR); 4153 ConstantRange Difference = DomCR.difference(CR); 4154 if (Intersection.isEmptySet()) 4155 return false; 4156 if (Difference.isEmptySet()) 4157 return true; 4158 return None; 4159 } 4160 4161 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4162 const DataLayout &DL, bool InvertAPred, 4163 unsigned Depth, AssumptionCache *AC, 4164 const Instruction *CxtI, 4165 const DominatorTree *DT) { 4166 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4167 if (LHS->getType() != RHS->getType()) 4168 return None; 4169 4170 Type *OpTy = LHS->getType(); 4171 assert(OpTy->getScalarType()->isIntegerTy(1)); 4172 4173 // LHS ==> RHS by definition 4174 if (!InvertAPred && LHS == RHS) 4175 return true; 4176 4177 if (OpTy->isVectorTy()) 4178 // TODO: extending the code below to handle vectors 4179 return None; 4180 assert(OpTy->isIntegerTy(1) && "implied by above"); 4181 4182 ICmpInst::Predicate APred, BPred; 4183 Value *ALHS, *ARHS; 4184 Value *BLHS, *BRHS; 4185 4186 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4187 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4188 return None; 4189 4190 if (InvertAPred) 4191 APred = CmpInst::getInversePredicate(APred); 4192 4193 // Can we infer anything when the two compares have matching operands? 4194 bool IsSwappedOps; 4195 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4196 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4197 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4198 return Implication; 4199 // No amount of additional analysis will infer the second condition, so 4200 // early exit. 4201 return None; 4202 } 4203 4204 // Can we infer anything when the LHS operands match and the RHS operands are 4205 // constants (not necessarily matching)? 4206 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4207 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4208 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4209 cast<ConstantInt>(BRHS))) 4210 return Implication; 4211 // No amount of additional analysis will infer the second condition, so 4212 // early exit. 4213 return None; 4214 } 4215 4216 if (APred == BPred) 4217 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4218 CxtI, DT); 4219 4220 return None; 4221 } 4222