1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57   if (unsigned BitWidth = Ty->getScalarSizeInBits())
58     return BitWidth;
59 
60   return DL.getPointerTypeSizeInBits(Ty);
61 }
62 
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69   const DataLayout &DL;
70   AssumptionCache *AC;
71   const Instruction *CxtI;
72   const DominatorTree *DT;
73 
74   /// Set of assumptions that should be excluded from further queries.
75   /// This is because of the potential for mutual recursion to cause
76   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77   /// classic case of this is assume(x = y), which will attempt to determine
78   /// bits in x from bits in y, which will attempt to determine bits in y from
79   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82   /// on.
83   std::array<const Value*, MaxDepth> Excluded;
84   unsigned NumExcluded;
85 
86   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87         const DominatorTree *DT)
88       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89 
90   Query(const Query &Q, const Value *NewExcl)
91       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92     Excluded = Q.Excluded;
93     Excluded[NumExcluded++] = NewExcl;
94     assert(NumExcluded <= Excluded.size());
95   }
96 
97   bool isExcluded(const Value *Value) const {
98     if (NumExcluded == 0)
99       return false;
100     auto End = Excluded.begin() + NumExcluded;
101     return std::find(Excluded.begin(), End, Value) != End;
102   }
103 };
104 } // end anonymous namespace
105 
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109   // If we've been provided with a context instruction, then use that (provided
110   // it has been inserted).
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   // If the value is really an already-inserted instruction, then use that.
115   CxtI = dyn_cast<Instruction>(V);
116   if (CxtI && CxtI->getParent())
117     return CxtI;
118 
119   return nullptr;
120 }
121 
122 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
123                              unsigned Depth, const Query &Q);
124 
125 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
126                             const DataLayout &DL, unsigned Depth,
127                             AssumptionCache *AC, const Instruction *CxtI,
128                             const DominatorTree *DT) {
129   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130                      Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132 
133 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
134                                const DataLayout &DL,
135                                AssumptionCache *AC, const Instruction *CxtI,
136                                const DominatorTree *DT) {
137   assert(LHS->getType() == RHS->getType() &&
138          "LHS and RHS should have the same type");
139   assert(LHS->getType()->isIntOrIntVectorTy() &&
140          "LHS and RHS should be integers");
141   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
142   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
143   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
144   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
145   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
146   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
147 }
148 
149 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
150                            unsigned Depth, const Query &Q);
151 
152 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
153                           const DataLayout &DL, unsigned Depth,
154                           AssumptionCache *AC, const Instruction *CxtI,
155                           const DominatorTree *DT) {
156   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
157                    Query(DL, AC, safeCxtI(V, CxtI), DT));
158 }
159 
160 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
161                                    const Query &Q);
162 
163 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
164                                   bool OrZero,
165                                   unsigned Depth, AssumptionCache *AC,
166                                   const Instruction *CxtI,
167                                   const DominatorTree *DT) {
168   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
169                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
170 }
171 
172 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
173 
174 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
175                           AssumptionCache *AC, const Instruction *CxtI,
176                           const DominatorTree *DT) {
177   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
178 }
179 
180 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
181                               unsigned Depth,
182                               AssumptionCache *AC, const Instruction *CxtI,
183                               const DominatorTree *DT) {
184   bool NonNegative, Negative;
185   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
186   return NonNegative;
187 }
188 
189 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
190                            AssumptionCache *AC, const Instruction *CxtI,
191                            const DominatorTree *DT) {
192   if (auto *CI = dyn_cast<ConstantInt>(V))
193     return CI->getValue().isStrictlyPositive();
194 
195   // TODO: We'd doing two recursive queries here.  We should factor this such
196   // that only a single query is needed.
197   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
198     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
199 }
200 
201 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
202                            AssumptionCache *AC, const Instruction *CxtI,
203                            const DominatorTree *DT) {
204   bool NonNegative, Negative;
205   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
206   return Negative;
207 }
208 
209 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
210 
211 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
212                            const DataLayout &DL,
213                            AssumptionCache *AC, const Instruction *CxtI,
214                            const DominatorTree *DT) {
215   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
216                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
217                                          DT));
218 }
219 
220 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
221                               const Query &Q);
222 
223 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
224                              const DataLayout &DL,
225                              unsigned Depth, AssumptionCache *AC,
226                              const Instruction *CxtI, const DominatorTree *DT) {
227   return ::MaskedValueIsZero(V, Mask, Depth,
228                              Query(DL, AC, safeCxtI(V, CxtI), DT));
229 }
230 
231 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
232                                    const Query &Q);
233 
234 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
235                                   unsigned Depth, AssumptionCache *AC,
236                                   const Instruction *CxtI,
237                                   const DominatorTree *DT) {
238   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
239 }
240 
241 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
242                                    bool NSW,
243                                    APInt &KnownZero, APInt &KnownOne,
244                                    APInt &KnownZero2, APInt &KnownOne2,
245                                    unsigned Depth, const Query &Q) {
246   if (!Add) {
247     if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
248       // We know that the top bits of C-X are clear if X contains less bits
249       // than C (i.e. no wrap-around can happen).  For example, 20-X is
250       // positive if we can prove that X is >= 0 and < 16.
251       if (!CLHS->getValue().isNegative()) {
252         unsigned BitWidth = KnownZero.getBitWidth();
253         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
254         // NLZ can't be BitWidth with no sign bit
255         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
256         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
257 
258         // If all of the MaskV bits are known to be zero, then we know the
259         // output top bits are zero, because we now know that the output is
260         // from [0-C].
261         if ((KnownZero2 & MaskV) == MaskV) {
262           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
263           // Top bits known zero.
264           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
265         }
266       }
267     }
268   }
269 
270   unsigned BitWidth = KnownZero.getBitWidth();
271 
272   // If an initial sequence of bits in the result is not needed, the
273   // corresponding bits in the operands are not needed.
274   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
275   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
276   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
277 
278   // Carry in a 1 for a subtract, rather than a 0.
279   APInt CarryIn(BitWidth, 0);
280   if (!Add) {
281     // Sum = LHS + ~RHS + 1
282     std::swap(KnownZero2, KnownOne2);
283     CarryIn.setBit(0);
284   }
285 
286   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
287   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
288 
289   // Compute known bits of the carry.
290   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
291   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
292 
293   // Compute set of known bits (where all three relevant bits are known).
294   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
295   APInt RHSKnown = KnownZero2 | KnownOne2;
296   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
297   APInt Known = LHSKnown & RHSKnown & CarryKnown;
298 
299   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
300          "known bits of sum differ");
301 
302   // Compute known bits of the result.
303   KnownZero = ~PossibleSumOne & Known;
304   KnownOne = PossibleSumOne & Known;
305 
306   // Are we still trying to solve for the sign bit?
307   if (!Known.isNegative()) {
308     if (NSW) {
309       // Adding two non-negative numbers, or subtracting a negative number from
310       // a non-negative one, can't wrap into negative.
311       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
312         KnownZero |= APInt::getSignBit(BitWidth);
313       // Adding two negative numbers, or subtracting a non-negative number from
314       // a negative one, can't wrap into non-negative.
315       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
316         KnownOne |= APInt::getSignBit(BitWidth);
317     }
318   }
319 }
320 
321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
322                                 APInt &KnownZero, APInt &KnownOne,
323                                 APInt &KnownZero2, APInt &KnownOne2,
324                                 unsigned Depth, const Query &Q) {
325   unsigned BitWidth = KnownZero.getBitWidth();
326   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
327   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
328 
329   bool isKnownNegative = false;
330   bool isKnownNonNegative = false;
331   // If the multiplication is known not to overflow, compute the sign bit.
332   if (NSW) {
333     if (Op0 == Op1) {
334       // The product of a number with itself is non-negative.
335       isKnownNonNegative = true;
336     } else {
337       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
338       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
339       bool isKnownNegativeOp1 = KnownOne.isNegative();
340       bool isKnownNegativeOp0 = KnownOne2.isNegative();
341       // The product of two numbers with the same sign is non-negative.
342       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
343         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
344       // The product of a negative number and a non-negative number is either
345       // negative or zero.
346       if (!isKnownNonNegative)
347         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
348                            isKnownNonZero(Op0, Depth, Q)) ||
349                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
350                            isKnownNonZero(Op1, Depth, Q));
351     }
352   }
353 
354   // If low bits are zero in either operand, output low known-0 bits.
355   // Also compute a conservative estimate for high known-0 bits.
356   // More trickiness is possible, but this is sufficient for the
357   // interesting case of alignment computation.
358   KnownOne.clearAllBits();
359   unsigned TrailZ = KnownZero.countTrailingOnes() +
360                     KnownZero2.countTrailingOnes();
361   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
362                              KnownZero2.countLeadingOnes(),
363                              BitWidth) - BitWidth;
364 
365   TrailZ = std::min(TrailZ, BitWidth);
366   LeadZ = std::min(LeadZ, BitWidth);
367   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
368               APInt::getHighBitsSet(BitWidth, LeadZ);
369 
370   // Only make use of no-wrap flags if we failed to compute the sign bit
371   // directly.  This matters if the multiplication always overflows, in
372   // which case we prefer to follow the result of the direct computation,
373   // though as the program is invoking undefined behaviour we can choose
374   // whatever we like here.
375   if (isKnownNonNegative && !KnownOne.isNegative())
376     KnownZero.setBit(BitWidth - 1);
377   else if (isKnownNegative && !KnownZero.isNegative())
378     KnownOne.setBit(BitWidth - 1);
379 }
380 
381 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
382                                              APInt &KnownZero,
383                                              APInt &KnownOne) {
384   unsigned BitWidth = KnownZero.getBitWidth();
385   unsigned NumRanges = Ranges.getNumOperands() / 2;
386   assert(NumRanges >= 1);
387 
388   KnownZero.setAllBits();
389   KnownOne.setAllBits();
390 
391   for (unsigned i = 0; i < NumRanges; ++i) {
392     ConstantInt *Lower =
393         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
394     ConstantInt *Upper =
395         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
396     ConstantRange Range(Lower->getValue(), Upper->getValue());
397 
398     // The first CommonPrefixBits of all values in Range are equal.
399     unsigned CommonPrefixBits =
400         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
401 
402     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
403     KnownOne &= Range.getUnsignedMax() & Mask;
404     KnownZero &= ~Range.getUnsignedMax() & Mask;
405   }
406 }
407 
408 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
409   SmallVector<const Value *, 16> WorkSet(1, I);
410   SmallPtrSet<const Value *, 32> Visited;
411   SmallPtrSet<const Value *, 16> EphValues;
412 
413   // The instruction defining an assumption's condition itself is always
414   // considered ephemeral to that assumption (even if it has other
415   // non-ephemeral users). See r246696's test case for an example.
416   if (is_contained(I->operands(), E))
417     return true;
418 
419   while (!WorkSet.empty()) {
420     const Value *V = WorkSet.pop_back_val();
421     if (!Visited.insert(V).second)
422       continue;
423 
424     // If all uses of this value are ephemeral, then so is this value.
425     if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
426       if (V == E)
427         return true;
428 
429       EphValues.insert(V);
430       if (const User *U = dyn_cast<User>(V))
431         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
432              J != JE; ++J) {
433           if (isSafeToSpeculativelyExecute(*J))
434             WorkSet.push_back(*J);
435         }
436     }
437   }
438 
439   return false;
440 }
441 
442 // Is this an intrinsic that cannot be speculated but also cannot trap?
443 static bool isAssumeLikeIntrinsic(const Instruction *I) {
444   if (const CallInst *CI = dyn_cast<CallInst>(I))
445     if (Function *F = CI->getCalledFunction())
446       switch (F->getIntrinsicID()) {
447       default: break;
448       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
449       case Intrinsic::assume:
450       case Intrinsic::dbg_declare:
451       case Intrinsic::dbg_value:
452       case Intrinsic::invariant_start:
453       case Intrinsic::invariant_end:
454       case Intrinsic::lifetime_start:
455       case Intrinsic::lifetime_end:
456       case Intrinsic::objectsize:
457       case Intrinsic::ptr_annotation:
458       case Intrinsic::var_annotation:
459         return true;
460       }
461 
462   return false;
463 }
464 
465 bool llvm::isValidAssumeForContext(const Instruction *Inv,
466                                    const Instruction *CxtI,
467                                    const DominatorTree *DT) {
468 
469   // There are two restrictions on the use of an assume:
470   //  1. The assume must dominate the context (or the control flow must
471   //     reach the assume whenever it reaches the context).
472   //  2. The context must not be in the assume's set of ephemeral values
473   //     (otherwise we will use the assume to prove that the condition
474   //     feeding the assume is trivially true, thus causing the removal of
475   //     the assume).
476 
477   if (DT) {
478     if (DT->dominates(Inv, CxtI))
479       return true;
480   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
481     // We don't have a DT, but this trivially dominates.
482     return true;
483   }
484 
485   // With or without a DT, the only remaining case we will check is if the
486   // instructions are in the same BB.  Give up if that is not the case.
487   if (Inv->getParent() != CxtI->getParent())
488     return false;
489 
490   // If we have a dom tree, then we now know that the assume doens't dominate
491   // the other instruction.  If we don't have a dom tree then we can check if
492   // the assume is first in the BB.
493   if (!DT) {
494     // Search forward from the assume until we reach the context (or the end
495     // of the block); the common case is that the assume will come first.
496     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
497          IE = Inv->getParent()->end(); I != IE; ++I)
498       if (&*I == CxtI)
499         return true;
500   }
501 
502   // The context comes first, but they're both in the same block. Make sure
503   // there is nothing in between that might interrupt the control flow.
504   for (BasicBlock::const_iterator I =
505          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
506        I != IE; ++I)
507     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
508       return false;
509 
510   return !isEphemeralValueOf(Inv, CxtI);
511 }
512 
513 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
514                                        APInt &KnownOne, unsigned Depth,
515                                        const Query &Q) {
516   // Use of assumptions is context-sensitive. If we don't have a context, we
517   // cannot use them!
518   if (!Q.AC || !Q.CxtI)
519     return;
520 
521   unsigned BitWidth = KnownZero.getBitWidth();
522 
523   for (auto &AssumeVH : Q.AC->assumptions()) {
524     if (!AssumeVH)
525       continue;
526     CallInst *I = cast<CallInst>(AssumeVH);
527     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
528            "Got assumption for the wrong function!");
529     if (Q.isExcluded(I))
530       continue;
531 
532     // Warning: This loop can end up being somewhat performance sensetive.
533     // We're running this loop for once for each value queried resulting in a
534     // runtime of ~O(#assumes * #values).
535 
536     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
537            "must be an assume intrinsic");
538 
539     Value *Arg = I->getArgOperand(0);
540 
541     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
542       assert(BitWidth == 1 && "assume operand is not i1?");
543       KnownZero.clearAllBits();
544       KnownOne.setAllBits();
545       return;
546     }
547 
548     // The remaining tests are all recursive, so bail out if we hit the limit.
549     if (Depth == MaxDepth)
550       continue;
551 
552     Value *A, *B;
553     auto m_V = m_CombineOr(m_Specific(V),
554                            m_CombineOr(m_PtrToInt(m_Specific(V)),
555                            m_BitCast(m_Specific(V))));
556 
557     CmpInst::Predicate Pred;
558     ConstantInt *C;
559     // assume(v = a)
560     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
561         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
562       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
563       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
564       KnownZero |= RHSKnownZero;
565       KnownOne  |= RHSKnownOne;
566     // assume(v & b = a)
567     } else if (match(Arg,
568                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
569                Pred == ICmpInst::ICMP_EQ &&
570                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
571       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
572       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
573       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
574       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
575 
576       // For those bits in the mask that are known to be one, we can propagate
577       // known bits from the RHS to V.
578       KnownZero |= RHSKnownZero & MaskKnownOne;
579       KnownOne  |= RHSKnownOne  & MaskKnownOne;
580     // assume(~(v & b) = a)
581     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
582                                    m_Value(A))) &&
583                Pred == ICmpInst::ICMP_EQ &&
584                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
585       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
586       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
587       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
588       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
589 
590       // For those bits in the mask that are known to be one, we can propagate
591       // inverted known bits from the RHS to V.
592       KnownZero |= RHSKnownOne  & MaskKnownOne;
593       KnownOne  |= RHSKnownZero & MaskKnownOne;
594     // assume(v | b = a)
595     } else if (match(Arg,
596                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
597                Pred == ICmpInst::ICMP_EQ &&
598                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
599       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
600       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
601       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
602       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
603 
604       // For those bits in B that are known to be zero, we can propagate known
605       // bits from the RHS to V.
606       KnownZero |= RHSKnownZero & BKnownZero;
607       KnownOne  |= RHSKnownOne  & BKnownZero;
608     // assume(~(v | b) = a)
609     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
610                                    m_Value(A))) &&
611                Pred == ICmpInst::ICMP_EQ &&
612                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
613       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
614       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
615       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
616       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
617 
618       // For those bits in B that are known to be zero, we can propagate
619       // inverted known bits from the RHS to V.
620       KnownZero |= RHSKnownOne  & BKnownZero;
621       KnownOne  |= RHSKnownZero & BKnownZero;
622     // assume(v ^ b = a)
623     } else if (match(Arg,
624                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
625                Pred == ICmpInst::ICMP_EQ &&
626                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
627       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
628       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
629       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
630       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
631 
632       // For those bits in B that are known to be zero, we can propagate known
633       // bits from the RHS to V. For those bits in B that are known to be one,
634       // we can propagate inverted known bits from the RHS to V.
635       KnownZero |= RHSKnownZero & BKnownZero;
636       KnownOne  |= RHSKnownOne  & BKnownZero;
637       KnownZero |= RHSKnownOne  & BKnownOne;
638       KnownOne  |= RHSKnownZero & BKnownOne;
639     // assume(~(v ^ b) = a)
640     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
641                                    m_Value(A))) &&
642                Pred == ICmpInst::ICMP_EQ &&
643                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
644       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
645       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
646       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
647       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
648 
649       // For those bits in B that are known to be zero, we can propagate
650       // inverted known bits from the RHS to V. For those bits in B that are
651       // known to be one, we can propagate known bits from the RHS to V.
652       KnownZero |= RHSKnownOne  & BKnownZero;
653       KnownOne  |= RHSKnownZero & BKnownZero;
654       KnownZero |= RHSKnownZero & BKnownOne;
655       KnownOne  |= RHSKnownOne  & BKnownOne;
656     // assume(v << c = a)
657     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
658                                    m_Value(A))) &&
659                Pred == ICmpInst::ICMP_EQ &&
660                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
661       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
662       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
663       // For those bits in RHS that are known, we can propagate them to known
664       // bits in V shifted to the right by C.
665       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
666       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
667     // assume(~(v << c) = a)
668     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
669                                    m_Value(A))) &&
670                Pred == ICmpInst::ICMP_EQ &&
671                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
672       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
673       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
674       // For those bits in RHS that are known, we can propagate them inverted
675       // to known bits in V shifted to the right by C.
676       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
677       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
678     // assume(v >> c = a)
679     } else if (match(Arg,
680                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
681                                                 m_AShr(m_V, m_ConstantInt(C))),
682                               m_Value(A))) &&
683                Pred == ICmpInst::ICMP_EQ &&
684                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
685       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
686       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
687       // For those bits in RHS that are known, we can propagate them to known
688       // bits in V shifted to the right by C.
689       KnownZero |= RHSKnownZero << C->getZExtValue();
690       KnownOne  |= RHSKnownOne  << C->getZExtValue();
691     // assume(~(v >> c) = a)
692     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
693                                              m_LShr(m_V, m_ConstantInt(C)),
694                                              m_AShr(m_V, m_ConstantInt(C)))),
695                                    m_Value(A))) &&
696                Pred == ICmpInst::ICMP_EQ &&
697                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
698       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
699       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
700       // For those bits in RHS that are known, we can propagate them inverted
701       // to known bits in V shifted to the right by C.
702       KnownZero |= RHSKnownOne  << C->getZExtValue();
703       KnownOne  |= RHSKnownZero << C->getZExtValue();
704     // assume(v >=_s c) where c is non-negative
705     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
706                Pred == ICmpInst::ICMP_SGE &&
707                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
708       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
709       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
710 
711       if (RHSKnownZero.isNegative()) {
712         // We know that the sign bit is zero.
713         KnownZero |= APInt::getSignBit(BitWidth);
714       }
715     // assume(v >_s c) where c is at least -1.
716     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
717                Pred == ICmpInst::ICMP_SGT &&
718                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
719       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
720       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
721 
722       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
723         // We know that the sign bit is zero.
724         KnownZero |= APInt::getSignBit(BitWidth);
725       }
726     // assume(v <=_s c) where c is negative
727     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
728                Pred == ICmpInst::ICMP_SLE &&
729                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
730       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
731       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
732 
733       if (RHSKnownOne.isNegative()) {
734         // We know that the sign bit is one.
735         KnownOne |= APInt::getSignBit(BitWidth);
736       }
737     // assume(v <_s c) where c is non-positive
738     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
739                Pred == ICmpInst::ICMP_SLT &&
740                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
741       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
742       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
743 
744       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
745         // We know that the sign bit is one.
746         KnownOne |= APInt::getSignBit(BitWidth);
747       }
748     // assume(v <=_u c)
749     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
750                Pred == ICmpInst::ICMP_ULE &&
751                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
752       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
753       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
754 
755       // Whatever high bits in c are zero are known to be zero.
756       KnownZero |=
757         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
758     // assume(v <_u c)
759     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
760                Pred == ICmpInst::ICMP_ULT &&
761                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
762       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
763       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
764 
765       // Whatever high bits in c are zero are known to be zero (if c is a power
766       // of 2, then one more).
767       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
768         KnownZero |=
769           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
770       else
771         KnownZero |=
772           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
773     }
774   }
775 }
776 
777 // Compute known bits from a shift operator, including those with a
778 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
779 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
780 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
781 // functors that, given the known-zero or known-one bits respectively, and a
782 // shift amount, compute the implied known-zero or known-one bits of the shift
783 // operator's result respectively for that shift amount. The results from calling
784 // KZF and KOF are conservatively combined for all permitted shift amounts.
785 static void computeKnownBitsFromShiftOperator(
786     const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
787     APInt &KnownOne2, unsigned Depth, const Query &Q,
788     function_ref<APInt(const APInt &, unsigned)> KZF,
789     function_ref<APInt(const APInt &, unsigned)> KOF) {
790   unsigned BitWidth = KnownZero.getBitWidth();
791 
792   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
793     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
794 
795     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
796     KnownZero = KZF(KnownZero, ShiftAmt);
797     KnownOne  = KOF(KnownOne, ShiftAmt);
798     return;
799   }
800 
801   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
802 
803   // Note: We cannot use KnownZero.getLimitedValue() here, because if
804   // BitWidth > 64 and any upper bits are known, we'll end up returning the
805   // limit value (which implies all bits are known).
806   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
807   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
808 
809   // It would be more-clearly correct to use the two temporaries for this
810   // calculation. Reusing the APInts here to prevent unnecessary allocations.
811   KnownZero.clearAllBits();
812   KnownOne.clearAllBits();
813 
814   // If we know the shifter operand is nonzero, we can sometimes infer more
815   // known bits. However this is expensive to compute, so be lazy about it and
816   // only compute it when absolutely necessary.
817   Optional<bool> ShifterOperandIsNonZero;
818 
819   // Early exit if we can't constrain any well-defined shift amount.
820   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
821     ShifterOperandIsNonZero =
822         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
823     if (!*ShifterOperandIsNonZero)
824       return;
825   }
826 
827   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
828 
829   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
830   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
831     // Combine the shifted known input bits only for those shift amounts
832     // compatible with its known constraints.
833     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
834       continue;
835     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
836       continue;
837     // If we know the shifter is nonzero, we may be able to infer more known
838     // bits. This check is sunk down as far as possible to avoid the expensive
839     // call to isKnownNonZero if the cheaper checks above fail.
840     if (ShiftAmt == 0) {
841       if (!ShifterOperandIsNonZero.hasValue())
842         ShifterOperandIsNonZero =
843             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
844       if (*ShifterOperandIsNonZero)
845         continue;
846     }
847 
848     KnownZero &= KZF(KnownZero2, ShiftAmt);
849     KnownOne  &= KOF(KnownOne2, ShiftAmt);
850   }
851 
852   // If there are no compatible shift amounts, then we've proven that the shift
853   // amount must be >= the BitWidth, and the result is undefined. We could
854   // return anything we'd like, but we need to make sure the sets of known bits
855   // stay disjoint (it should be better for some other code to actually
856   // propagate the undef than to pick a value here using known bits).
857   if ((KnownZero & KnownOne) != 0) {
858     KnownZero.clearAllBits();
859     KnownOne.clearAllBits();
860   }
861 }
862 
863 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
864                                          APInt &KnownOne, unsigned Depth,
865                                          const Query &Q) {
866   unsigned BitWidth = KnownZero.getBitWidth();
867 
868   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
869   switch (I->getOpcode()) {
870   default: break;
871   case Instruction::Load:
872     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
873       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
874     break;
875   case Instruction::And: {
876     // If either the LHS or the RHS are Zero, the result is zero.
877     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
878     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
879 
880     // Output known-1 bits are only known if set in both the LHS & RHS.
881     KnownOne &= KnownOne2;
882     // Output known-0 are known to be clear if zero in either the LHS | RHS.
883     KnownZero |= KnownZero2;
884 
885     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
886     // here we handle the more general case of adding any odd number by
887     // matching the form add(x, add(x, y)) where y is odd.
888     // TODO: This could be generalized to clearing any bit set in y where the
889     // following bit is known to be unset in y.
890     Value *Y = nullptr;
891     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
892                                       m_Value(Y))) ||
893         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
894                                       m_Value(Y)))) {
895       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
896       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
897       if (KnownOne3.countTrailingOnes() > 0)
898         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
899     }
900     break;
901   }
902   case Instruction::Or: {
903     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
904     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
905 
906     // Output known-0 bits are only known if clear in both the LHS & RHS.
907     KnownZero &= KnownZero2;
908     // Output known-1 are known to be set if set in either the LHS | RHS.
909     KnownOne |= KnownOne2;
910     break;
911   }
912   case Instruction::Xor: {
913     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
914     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
915 
916     // Output known-0 bits are known if clear or set in both the LHS & RHS.
917     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
918     // Output known-1 are known to be set if set in only one of the LHS, RHS.
919     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
920     KnownZero = KnownZeroOut;
921     break;
922   }
923   case Instruction::Mul: {
924     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
925     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
926                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
927     break;
928   }
929   case Instruction::UDiv: {
930     // For the purposes of computing leading zeros we can conservatively
931     // treat a udiv as a logical right shift by the power of 2 known to
932     // be less than the denominator.
933     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
934     unsigned LeadZ = KnownZero2.countLeadingOnes();
935 
936     KnownOne2.clearAllBits();
937     KnownZero2.clearAllBits();
938     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
939     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
940     if (RHSUnknownLeadingOnes != BitWidth)
941       LeadZ = std::min(BitWidth,
942                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
943 
944     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
945     break;
946   }
947   case Instruction::Select: {
948     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
949     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
950 
951     const Value *LHS;
952     const Value *RHS;
953     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
954     if (SelectPatternResult::isMinOrMax(SPF)) {
955       computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
956       computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
957     } else {
958       computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
959       computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
960     }
961 
962     unsigned MaxHighOnes = 0;
963     unsigned MaxHighZeros = 0;
964     if (SPF == SPF_SMAX) {
965       // If both sides are negative, the result is negative.
966       if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
967         // We can derive a lower bound on the result by taking the max of the
968         // leading one bits.
969         MaxHighOnes =
970             std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
971       // If either side is non-negative, the result is non-negative.
972       else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
973         MaxHighZeros = 1;
974     } else if (SPF == SPF_SMIN) {
975       // If both sides are non-negative, the result is non-negative.
976       if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
977         // We can derive an upper bound on the result by taking the max of the
978         // leading zero bits.
979         MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
980                                 KnownZero2.countLeadingOnes());
981       // If either side is negative, the result is negative.
982       else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
983         MaxHighOnes = 1;
984     } else if (SPF == SPF_UMAX) {
985       // We can derive a lower bound on the result by taking the max of the
986       // leading one bits.
987       MaxHighOnes =
988           std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
989     } else if (SPF == SPF_UMIN) {
990       // We can derive an upper bound on the result by taking the max of the
991       // leading zero bits.
992       MaxHighZeros =
993           std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
994     }
995 
996     // Only known if known in both the LHS and RHS.
997     KnownOne &= KnownOne2;
998     KnownZero &= KnownZero2;
999     if (MaxHighOnes > 0)
1000       KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1001     if (MaxHighZeros > 0)
1002       KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
1003     break;
1004   }
1005   case Instruction::FPTrunc:
1006   case Instruction::FPExt:
1007   case Instruction::FPToUI:
1008   case Instruction::FPToSI:
1009   case Instruction::SIToFP:
1010   case Instruction::UIToFP:
1011     break; // Can't work with floating point.
1012   case Instruction::PtrToInt:
1013   case Instruction::IntToPtr:
1014   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
1015     // Fall through and handle them the same as zext/trunc.
1016     LLVM_FALLTHROUGH;
1017   case Instruction::ZExt:
1018   case Instruction::Trunc: {
1019     Type *SrcTy = I->getOperand(0)->getType();
1020 
1021     unsigned SrcBitWidth;
1022     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1023     // which fall through here.
1024     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1025 
1026     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1027     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1028     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1029     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1030     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1031     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1032     // Any top bits are known to be zero.
1033     if (BitWidth > SrcBitWidth)
1034       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1035     break;
1036   }
1037   case Instruction::BitCast: {
1038     Type *SrcTy = I->getOperand(0)->getType();
1039     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
1040         // TODO: For now, not handling conversions like:
1041         // (bitcast i64 %x to <2 x i32>)
1042         !I->getType()->isVectorTy()) {
1043       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1044       break;
1045     }
1046     break;
1047   }
1048   case Instruction::SExt: {
1049     // Compute the bits in the result that are not present in the input.
1050     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1051 
1052     KnownZero = KnownZero.trunc(SrcBitWidth);
1053     KnownOne = KnownOne.trunc(SrcBitWidth);
1054     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1055     KnownZero = KnownZero.zext(BitWidth);
1056     KnownOne = KnownOne.zext(BitWidth);
1057 
1058     // If the sign bit of the input is known set or clear, then we know the
1059     // top bits of the result.
1060     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1061       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1062     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1063       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1064     break;
1065   }
1066   case Instruction::Shl: {
1067     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1068     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1069       return (KnownZero << ShiftAmt) |
1070              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1071     };
1072 
1073     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1074       return KnownOne << ShiftAmt;
1075     };
1076 
1077     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1078                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1079                                       KOF);
1080     break;
1081   }
1082   case Instruction::LShr: {
1083     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1084     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1085       return APIntOps::lshr(KnownZero, ShiftAmt) |
1086              // High bits known zero.
1087              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1088     };
1089 
1090     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1091       return APIntOps::lshr(KnownOne, ShiftAmt);
1092     };
1093 
1094     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1095                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1096                                       KOF);
1097     break;
1098   }
1099   case Instruction::AShr: {
1100     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1101     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1102       return APIntOps::ashr(KnownZero, ShiftAmt);
1103     };
1104 
1105     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1106       return APIntOps::ashr(KnownOne, ShiftAmt);
1107     };
1108 
1109     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1110                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1111                                       KOF);
1112     break;
1113   }
1114   case Instruction::Sub: {
1115     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1116     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1117                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1118                            Q);
1119     break;
1120   }
1121   case Instruction::Add: {
1122     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1123     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1124                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1125                            Q);
1126     break;
1127   }
1128   case Instruction::SRem:
1129     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1130       APInt RA = Rem->getValue().abs();
1131       if (RA.isPowerOf2()) {
1132         APInt LowBits = RA - 1;
1133         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1134                          Q);
1135 
1136         // The low bits of the first operand are unchanged by the srem.
1137         KnownZero = KnownZero2 & LowBits;
1138         KnownOne = KnownOne2 & LowBits;
1139 
1140         // If the first operand is non-negative or has all low bits zero, then
1141         // the upper bits are all zero.
1142         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1143           KnownZero |= ~LowBits;
1144 
1145         // If the first operand is negative and not all low bits are zero, then
1146         // the upper bits are all one.
1147         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1148           KnownOne |= ~LowBits;
1149 
1150         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1151       }
1152     }
1153 
1154     // The sign bit is the LHS's sign bit, except when the result of the
1155     // remainder is zero.
1156     if (KnownZero.isNonNegative()) {
1157       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1158       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1159                        Q);
1160       // If it's known zero, our sign bit is also zero.
1161       if (LHSKnownZero.isNegative())
1162         KnownZero.setBit(BitWidth - 1);
1163     }
1164 
1165     break;
1166   case Instruction::URem: {
1167     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1168       const APInt &RA = Rem->getValue();
1169       if (RA.isPowerOf2()) {
1170         APInt LowBits = (RA - 1);
1171         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1172         KnownZero |= ~LowBits;
1173         KnownOne &= LowBits;
1174         break;
1175       }
1176     }
1177 
1178     // Since the result is less than or equal to either operand, any leading
1179     // zero bits in either operand must also exist in the result.
1180     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1181     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1182 
1183     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1184                                 KnownZero2.countLeadingOnes());
1185     KnownOne.clearAllBits();
1186     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1187     break;
1188   }
1189 
1190   case Instruction::Alloca: {
1191     const AllocaInst *AI = cast<AllocaInst>(I);
1192     unsigned Align = AI->getAlignment();
1193     if (Align == 0)
1194       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1195 
1196     if (Align > 0)
1197       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1198     break;
1199   }
1200   case Instruction::GetElementPtr: {
1201     // Analyze all of the subscripts of this getelementptr instruction
1202     // to determine if we can prove known low zero bits.
1203     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1204     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1205                      Q);
1206     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1207 
1208     gep_type_iterator GTI = gep_type_begin(I);
1209     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1210       Value *Index = I->getOperand(i);
1211       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1212         // Handle struct member offset arithmetic.
1213 
1214         // Handle case when index is vector zeroinitializer
1215         Constant *CIndex = cast<Constant>(Index);
1216         if (CIndex->isZeroValue())
1217           continue;
1218 
1219         if (CIndex->getType()->isVectorTy())
1220           Index = CIndex->getSplatValue();
1221 
1222         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1223         const StructLayout *SL = Q.DL.getStructLayout(STy);
1224         uint64_t Offset = SL->getElementOffset(Idx);
1225         TrailZ = std::min<unsigned>(TrailZ,
1226                                     countTrailingZeros(Offset));
1227       } else {
1228         // Handle array index arithmetic.
1229         Type *IndexedTy = GTI.getIndexedType();
1230         if (!IndexedTy->isSized()) {
1231           TrailZ = 0;
1232           break;
1233         }
1234         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1235         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1236         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1237         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1238         TrailZ = std::min(TrailZ,
1239                           unsigned(countTrailingZeros(TypeSize) +
1240                                    LocalKnownZero.countTrailingOnes()));
1241       }
1242     }
1243 
1244     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1245     break;
1246   }
1247   case Instruction::PHI: {
1248     const PHINode *P = cast<PHINode>(I);
1249     // Handle the case of a simple two-predecessor recurrence PHI.
1250     // There's a lot more that could theoretically be done here, but
1251     // this is sufficient to catch some interesting cases.
1252     if (P->getNumIncomingValues() == 2) {
1253       for (unsigned i = 0; i != 2; ++i) {
1254         Value *L = P->getIncomingValue(i);
1255         Value *R = P->getIncomingValue(!i);
1256         Operator *LU = dyn_cast<Operator>(L);
1257         if (!LU)
1258           continue;
1259         unsigned Opcode = LU->getOpcode();
1260         // Check for operations that have the property that if
1261         // both their operands have low zero bits, the result
1262         // will have low zero bits.
1263         if (Opcode == Instruction::Add ||
1264             Opcode == Instruction::Sub ||
1265             Opcode == Instruction::And ||
1266             Opcode == Instruction::Or ||
1267             Opcode == Instruction::Mul) {
1268           Value *LL = LU->getOperand(0);
1269           Value *LR = LU->getOperand(1);
1270           // Find a recurrence.
1271           if (LL == I)
1272             L = LR;
1273           else if (LR == I)
1274             L = LL;
1275           else
1276             break;
1277           // Ok, we have a PHI of the form L op= R. Check for low
1278           // zero bits.
1279           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1280 
1281           // We need to take the minimum number of known bits
1282           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1283           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1284 
1285           KnownZero = APInt::getLowBitsSet(BitWidth,
1286                                            std::min(KnownZero2.countTrailingOnes(),
1287                                                     KnownZero3.countTrailingOnes()));
1288           break;
1289         }
1290       }
1291     }
1292 
1293     // Unreachable blocks may have zero-operand PHI nodes.
1294     if (P->getNumIncomingValues() == 0)
1295       break;
1296 
1297     // Otherwise take the unions of the known bit sets of the operands,
1298     // taking conservative care to avoid excessive recursion.
1299     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1300       // Skip if every incoming value references to ourself.
1301       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1302         break;
1303 
1304       KnownZero = APInt::getAllOnesValue(BitWidth);
1305       KnownOne = APInt::getAllOnesValue(BitWidth);
1306       for (Value *IncValue : P->incoming_values()) {
1307         // Skip direct self references.
1308         if (IncValue == P) continue;
1309 
1310         KnownZero2 = APInt(BitWidth, 0);
1311         KnownOne2 = APInt(BitWidth, 0);
1312         // Recurse, but cap the recursion to one level, because we don't
1313         // want to waste time spinning around in loops.
1314         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1315         KnownZero &= KnownZero2;
1316         KnownOne &= KnownOne2;
1317         // If all bits have been ruled out, there's no need to check
1318         // more operands.
1319         if (!KnownZero && !KnownOne)
1320           break;
1321       }
1322     }
1323     break;
1324   }
1325   case Instruction::Call:
1326   case Instruction::Invoke:
1327     // If range metadata is attached to this call, set known bits from that,
1328     // and then intersect with known bits based on other properties of the
1329     // function.
1330     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1331       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1332     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1333       computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1334       KnownZero |= KnownZero2;
1335       KnownOne |= KnownOne2;
1336     }
1337     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1338       switch (II->getIntrinsicID()) {
1339       default: break;
1340       case Intrinsic::bswap:
1341         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1342         KnownZero |= KnownZero2.byteSwap();
1343         KnownOne |= KnownOne2.byteSwap();
1344         break;
1345       case Intrinsic::ctlz:
1346       case Intrinsic::cttz: {
1347         unsigned LowBits = Log2_32(BitWidth)+1;
1348         // If this call is undefined for 0, the result will be less than 2^n.
1349         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1350           LowBits -= 1;
1351         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1352         break;
1353       }
1354       case Intrinsic::ctpop: {
1355         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1356         // We can bound the space the count needs.  Also, bits known to be zero
1357         // can't contribute to the population.
1358         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1359         unsigned LeadingZeros =
1360           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1361         assert(LeadingZeros <= BitWidth);
1362         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1363         KnownOne &= ~KnownZero;
1364         // TODO: we could bound KnownOne using the lower bound on the number
1365         // of bits which might be set provided by popcnt KnownOne2.
1366         break;
1367       }
1368       case Intrinsic::x86_sse42_crc32_64_64:
1369         KnownZero |= APInt::getHighBitsSet(64, 32);
1370         break;
1371       }
1372     }
1373     break;
1374   case Instruction::ExtractValue:
1375     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1376       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1377       if (EVI->getNumIndices() != 1) break;
1378       if (EVI->getIndices()[0] == 0) {
1379         switch (II->getIntrinsicID()) {
1380         default: break;
1381         case Intrinsic::uadd_with_overflow:
1382         case Intrinsic::sadd_with_overflow:
1383           computeKnownBitsAddSub(true, II->getArgOperand(0),
1384                                  II->getArgOperand(1), false, KnownZero,
1385                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1386           break;
1387         case Intrinsic::usub_with_overflow:
1388         case Intrinsic::ssub_with_overflow:
1389           computeKnownBitsAddSub(false, II->getArgOperand(0),
1390                                  II->getArgOperand(1), false, KnownZero,
1391                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1392           break;
1393         case Intrinsic::umul_with_overflow:
1394         case Intrinsic::smul_with_overflow:
1395           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1396                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1397                               Q);
1398           break;
1399         }
1400       }
1401     }
1402   }
1403 }
1404 
1405 /// Determine which bits of V are known to be either zero or one and return
1406 /// them in the KnownZero/KnownOne bit sets.
1407 ///
1408 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1409 /// we cannot optimize based on the assumption that it is zero without changing
1410 /// it to be an explicit zero.  If we don't change it to zero, other code could
1411 /// optimized based on the contradictory assumption that it is non-zero.
1412 /// Because instcombine aggressively folds operations with undef args anyway,
1413 /// this won't lose us code quality.
1414 ///
1415 /// This function is defined on values with integer type, values with pointer
1416 /// type, and vectors of integers.  In the case
1417 /// where V is a vector, known zero, and known one values are the
1418 /// same width as the vector element, and the bit is set only if it is true
1419 /// for all of the elements in the vector.
1420 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
1421                       unsigned Depth, const Query &Q) {
1422   assert(V && "No Value?");
1423   assert(Depth <= MaxDepth && "Limit Search Depth");
1424   unsigned BitWidth = KnownZero.getBitWidth();
1425 
1426   assert((V->getType()->isIntOrIntVectorTy() ||
1427           V->getType()->getScalarType()->isPointerTy()) &&
1428          "Not integer or pointer type!");
1429   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1430          (!V->getType()->isIntOrIntVectorTy() ||
1431           V->getType()->getScalarSizeInBits() == BitWidth) &&
1432          KnownZero.getBitWidth() == BitWidth &&
1433          KnownOne.getBitWidth() == BitWidth &&
1434          "V, KnownOne and KnownZero should have same BitWidth");
1435 
1436   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1437     // We know all of the bits for a constant!
1438     KnownOne = CI->getValue();
1439     KnownZero = ~KnownOne;
1440     return;
1441   }
1442   // Null and aggregate-zero are all-zeros.
1443   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1444     KnownOne.clearAllBits();
1445     KnownZero = APInt::getAllOnesValue(BitWidth);
1446     return;
1447   }
1448   // Handle a constant vector by taking the intersection of the known bits of
1449   // each element.
1450   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1451     // We know that CDS must be a vector of integers. Take the intersection of
1452     // each element.
1453     KnownZero.setAllBits(); KnownOne.setAllBits();
1454     APInt Elt(KnownZero.getBitWidth(), 0);
1455     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1456       Elt = CDS->getElementAsInteger(i);
1457       KnownZero &= ~Elt;
1458       KnownOne &= Elt;
1459     }
1460     return;
1461   }
1462 
1463   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1464     // We know that CV must be a vector of integers. Take the intersection of
1465     // each element.
1466     KnownZero.setAllBits(); KnownOne.setAllBits();
1467     APInt Elt(KnownZero.getBitWidth(), 0);
1468     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1469       Constant *Element = CV->getAggregateElement(i);
1470       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1471       if (!ElementCI) {
1472         KnownZero.clearAllBits();
1473         KnownOne.clearAllBits();
1474         return;
1475       }
1476       Elt = ElementCI->getValue();
1477       KnownZero &= ~Elt;
1478       KnownOne &= Elt;
1479     }
1480     return;
1481   }
1482 
1483   // Start out not knowing anything.
1484   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1485 
1486   // Limit search depth.
1487   // All recursive calls that increase depth must come after this.
1488   if (Depth == MaxDepth)
1489     return;
1490 
1491   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1492   // the bits of its aliasee.
1493   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1494     if (!GA->isInterposable())
1495       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1496     return;
1497   }
1498 
1499   if (const Operator *I = dyn_cast<Operator>(V))
1500     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1501 
1502   // Aligned pointers have trailing zeros - refine KnownZero set
1503   if (V->getType()->isPointerTy()) {
1504     unsigned Align = V->getPointerAlignment(Q.DL);
1505     if (Align)
1506       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1507   }
1508 
1509   // computeKnownBitsFromAssume strictly refines KnownZero and
1510   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1511 
1512   // Check whether a nearby assume intrinsic can determine some known bits.
1513   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1514 
1515   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1516 }
1517 
1518 /// Determine whether the sign bit is known to be zero or one.
1519 /// Convenience wrapper around computeKnownBits.
1520 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
1521                     unsigned Depth, const Query &Q) {
1522   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1523   if (!BitWidth) {
1524     KnownZero = false;
1525     KnownOne = false;
1526     return;
1527   }
1528   APInt ZeroBits(BitWidth, 0);
1529   APInt OneBits(BitWidth, 0);
1530   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1531   KnownOne = OneBits[BitWidth - 1];
1532   KnownZero = ZeroBits[BitWidth - 1];
1533 }
1534 
1535 /// Return true if the given value is known to have exactly one
1536 /// bit set when defined. For vectors return true if every element is known to
1537 /// be a power of two when defined. Supports values with integer or pointer
1538 /// types and vectors of integers.
1539 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1540                             const Query &Q) {
1541   if (const Constant *C = dyn_cast<Constant>(V)) {
1542     if (C->isNullValue())
1543       return OrZero;
1544 
1545     const APInt *ConstIntOrConstSplatInt;
1546     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1547       return ConstIntOrConstSplatInt->isPowerOf2();
1548   }
1549 
1550   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1551   // it is shifted off the end then the result is undefined.
1552   if (match(V, m_Shl(m_One(), m_Value())))
1553     return true;
1554 
1555   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1556   // bottom.  If it is shifted off the bottom then the result is undefined.
1557   if (match(V, m_LShr(m_SignBit(), m_Value())))
1558     return true;
1559 
1560   // The remaining tests are all recursive, so bail out if we hit the limit.
1561   if (Depth++ == MaxDepth)
1562     return false;
1563 
1564   Value *X = nullptr, *Y = nullptr;
1565   // A shift left or a logical shift right of a power of two is a power of two
1566   // or zero.
1567   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1568                  match(V, m_LShr(m_Value(X), m_Value()))))
1569     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1570 
1571   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1572     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1573 
1574   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1575     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1576            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1577 
1578   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1579     // A power of two and'd with anything is a power of two or zero.
1580     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1581         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1582       return true;
1583     // X & (-X) is always a power of two or zero.
1584     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1585       return true;
1586     return false;
1587   }
1588 
1589   // Adding a power-of-two or zero to the same power-of-two or zero yields
1590   // either the original power-of-two, a larger power-of-two or zero.
1591   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1592     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1593     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1594       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1595           match(X, m_And(m_Value(), m_Specific(Y))))
1596         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1597           return true;
1598       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1599           match(Y, m_And(m_Value(), m_Specific(X))))
1600         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1601           return true;
1602 
1603       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1604       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1605       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1606 
1607       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1608       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1609       // If i8 V is a power of two or zero:
1610       //  ZeroBits: 1 1 1 0 1 1 1 1
1611       // ~ZeroBits: 0 0 0 1 0 0 0 0
1612       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1613         // If OrZero isn't set, we cannot give back a zero result.
1614         // Make sure either the LHS or RHS has a bit set.
1615         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1616           return true;
1617     }
1618   }
1619 
1620   // An exact divide or right shift can only shift off zero bits, so the result
1621   // is a power of two only if the first operand is a power of two and not
1622   // copying a sign bit (sdiv int_min, 2).
1623   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1624       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1625     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1626                                   Depth, Q);
1627   }
1628 
1629   return false;
1630 }
1631 
1632 /// \brief Test whether a GEP's result is known to be non-null.
1633 ///
1634 /// Uses properties inherent in a GEP to try to determine whether it is known
1635 /// to be non-null.
1636 ///
1637 /// Currently this routine does not support vector GEPs.
1638 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1639                               const Query &Q) {
1640   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1641     return false;
1642 
1643   // FIXME: Support vector-GEPs.
1644   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1645 
1646   // If the base pointer is non-null, we cannot walk to a null address with an
1647   // inbounds GEP in address space zero.
1648   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1649     return true;
1650 
1651   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1652   // If so, then the GEP cannot produce a null pointer, as doing so would
1653   // inherently violate the inbounds contract within address space zero.
1654   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1655        GTI != GTE; ++GTI) {
1656     // Struct types are easy -- they must always be indexed by a constant.
1657     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1658       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1659       unsigned ElementIdx = OpC->getZExtValue();
1660       const StructLayout *SL = Q.DL.getStructLayout(STy);
1661       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1662       if (ElementOffset > 0)
1663         return true;
1664       continue;
1665     }
1666 
1667     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1668     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1669       continue;
1670 
1671     // Fast path the constant operand case both for efficiency and so we don't
1672     // increment Depth when just zipping down an all-constant GEP.
1673     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1674       if (!OpC->isZero())
1675         return true;
1676       continue;
1677     }
1678 
1679     // We post-increment Depth here because while isKnownNonZero increments it
1680     // as well, when we pop back up that increment won't persist. We don't want
1681     // to recurse 10k times just because we have 10k GEP operands. We don't
1682     // bail completely out because we want to handle constant GEPs regardless
1683     // of depth.
1684     if (Depth++ >= MaxDepth)
1685       continue;
1686 
1687     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1688       return true;
1689   }
1690 
1691   return false;
1692 }
1693 
1694 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1695 /// ensure that the value it's attached to is never Value?  'RangeType' is
1696 /// is the type of the value described by the range.
1697 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1698   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1699   assert(NumRanges >= 1);
1700   for (unsigned i = 0; i < NumRanges; ++i) {
1701     ConstantInt *Lower =
1702         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1703     ConstantInt *Upper =
1704         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1705     ConstantRange Range(Lower->getValue(), Upper->getValue());
1706     if (Range.contains(Value))
1707       return false;
1708   }
1709   return true;
1710 }
1711 
1712 /// Return true if the given value is known to be non-zero when defined.
1713 /// For vectors return true if every element is known to be non-zero when
1714 /// defined. Supports values with integer or pointer type and vectors of
1715 /// integers.
1716 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1717   if (auto *C = dyn_cast<Constant>(V)) {
1718     if (C->isNullValue())
1719       return false;
1720     if (isa<ConstantInt>(C))
1721       // Must be non-zero due to null test above.
1722       return true;
1723 
1724     // For constant vectors, check that all elements are undefined or known
1725     // non-zero to determine that the whole vector is known non-zero.
1726     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1727       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1728         Constant *Elt = C->getAggregateElement(i);
1729         if (!Elt || Elt->isNullValue())
1730           return false;
1731         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1732           return false;
1733       }
1734       return true;
1735     }
1736 
1737     return false;
1738   }
1739 
1740   if (auto *I = dyn_cast<Instruction>(V)) {
1741     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1742       // If the possible ranges don't contain zero, then the value is
1743       // definitely non-zero.
1744       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1745         const APInt ZeroValue(Ty->getBitWidth(), 0);
1746         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1747           return true;
1748       }
1749     }
1750   }
1751 
1752   // The remaining tests are all recursive, so bail out if we hit the limit.
1753   if (Depth++ >= MaxDepth)
1754     return false;
1755 
1756   // Check for pointer simplifications.
1757   if (V->getType()->isPointerTy()) {
1758     if (isKnownNonNull(V))
1759       return true;
1760     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1761       if (isGEPKnownNonNull(GEP, Depth, Q))
1762         return true;
1763   }
1764 
1765   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1766 
1767   // X | Y != 0 if X != 0 or Y != 0.
1768   Value *X = nullptr, *Y = nullptr;
1769   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1770     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1771 
1772   // ext X != 0 if X != 0.
1773   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1774     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1775 
1776   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1777   // if the lowest bit is shifted off the end.
1778   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1779     // shl nuw can't remove any non-zero bits.
1780     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1781     if (BO->hasNoUnsignedWrap())
1782       return isKnownNonZero(X, Depth, Q);
1783 
1784     APInt KnownZero(BitWidth, 0);
1785     APInt KnownOne(BitWidth, 0);
1786     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1787     if (KnownOne[0])
1788       return true;
1789   }
1790   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1791   // defined if the sign bit is shifted off the end.
1792   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1793     // shr exact can only shift out zero bits.
1794     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1795     if (BO->isExact())
1796       return isKnownNonZero(X, Depth, Q);
1797 
1798     bool XKnownNonNegative, XKnownNegative;
1799     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1800     if (XKnownNegative)
1801       return true;
1802 
1803     // If the shifter operand is a constant, and all of the bits shifted
1804     // out are known to be zero, and X is known non-zero then at least one
1805     // non-zero bit must remain.
1806     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1807       APInt KnownZero(BitWidth, 0);
1808       APInt KnownOne(BitWidth, 0);
1809       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1810 
1811       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1812       // Is there a known one in the portion not shifted out?
1813       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1814         return true;
1815       // Are all the bits to be shifted out known zero?
1816       if (KnownZero.countTrailingOnes() >= ShiftVal)
1817         return isKnownNonZero(X, Depth, Q);
1818     }
1819   }
1820   // div exact can only produce a zero if the dividend is zero.
1821   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1822     return isKnownNonZero(X, Depth, Q);
1823   }
1824   // X + Y.
1825   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1826     bool XKnownNonNegative, XKnownNegative;
1827     bool YKnownNonNegative, YKnownNegative;
1828     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1829     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1830 
1831     // If X and Y are both non-negative (as signed values) then their sum is not
1832     // zero unless both X and Y are zero.
1833     if (XKnownNonNegative && YKnownNonNegative)
1834       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1835         return true;
1836 
1837     // If X and Y are both negative (as signed values) then their sum is not
1838     // zero unless both X and Y equal INT_MIN.
1839     if (BitWidth && XKnownNegative && YKnownNegative) {
1840       APInt KnownZero(BitWidth, 0);
1841       APInt KnownOne(BitWidth, 0);
1842       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1843       // The sign bit of X is set.  If some other bit is set then X is not equal
1844       // to INT_MIN.
1845       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1846       if ((KnownOne & Mask) != 0)
1847         return true;
1848       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1849       // to INT_MIN.
1850       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1851       if ((KnownOne & Mask) != 0)
1852         return true;
1853     }
1854 
1855     // The sum of a non-negative number and a power of two is not zero.
1856     if (XKnownNonNegative &&
1857         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1858       return true;
1859     if (YKnownNonNegative &&
1860         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1861       return true;
1862   }
1863   // X * Y.
1864   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1865     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1866     // If X and Y are non-zero then so is X * Y as long as the multiplication
1867     // does not overflow.
1868     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1869         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1870       return true;
1871   }
1872   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1873   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
1874     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1875         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1876       return true;
1877   }
1878   // PHI
1879   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
1880     // Try and detect a recurrence that monotonically increases from a
1881     // starting value, as these are common as induction variables.
1882     if (PN->getNumIncomingValues() == 2) {
1883       Value *Start = PN->getIncomingValue(0);
1884       Value *Induction = PN->getIncomingValue(1);
1885       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1886         std::swap(Start, Induction);
1887       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1888         if (!C->isZero() && !C->isNegative()) {
1889           ConstantInt *X;
1890           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1891                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1892               !X->isNegative())
1893             return true;
1894         }
1895       }
1896     }
1897     // Check if all incoming values are non-zero constant.
1898     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1899       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1900     });
1901     if (AllNonZeroConstants)
1902       return true;
1903   }
1904 
1905   if (!BitWidth) return false;
1906   APInt KnownZero(BitWidth, 0);
1907   APInt KnownOne(BitWidth, 0);
1908   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1909   return KnownOne != 0;
1910 }
1911 
1912 /// Return true if V2 == V1 + X, where X is known non-zero.
1913 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1914   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1915   if (!BO || BO->getOpcode() != Instruction::Add)
1916     return false;
1917   Value *Op = nullptr;
1918   if (V2 == BO->getOperand(0))
1919     Op = BO->getOperand(1);
1920   else if (V2 == BO->getOperand(1))
1921     Op = BO->getOperand(0);
1922   else
1923     return false;
1924   return isKnownNonZero(Op, 0, Q);
1925 }
1926 
1927 /// Return true if it is known that V1 != V2.
1928 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
1929   if (V1->getType()->isVectorTy() || V1 == V2)
1930     return false;
1931   if (V1->getType() != V2->getType())
1932     // We can't look through casts yet.
1933     return false;
1934   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1935     return true;
1936 
1937   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1938     // Are any known bits in V1 contradictory to known bits in V2? If V1
1939     // has a known zero where V2 has a known one, they must not be equal.
1940     auto BitWidth = Ty->getBitWidth();
1941     APInt KnownZero1(BitWidth, 0);
1942     APInt KnownOne1(BitWidth, 0);
1943     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1944     APInt KnownZero2(BitWidth, 0);
1945     APInt KnownOne2(BitWidth, 0);
1946     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1947 
1948     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1949     if (OppositeBits.getBoolValue())
1950       return true;
1951   }
1952   return false;
1953 }
1954 
1955 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1956 /// simplify operations downstream. Mask is known to be zero for bits that V
1957 /// cannot have.
1958 ///
1959 /// This function is defined on values with integer type, values with pointer
1960 /// type, and vectors of integers.  In the case
1961 /// where V is a vector, the mask, known zero, and known one values are the
1962 /// same width as the vector element, and the bit is set only if it is true
1963 /// for all of the elements in the vector.
1964 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
1965                        const Query &Q) {
1966   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1967   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1968   return (KnownZero & Mask) == Mask;
1969 }
1970 
1971 /// For vector constants, loop over the elements and find the constant with the
1972 /// minimum number of sign bits. Return 0 if the value is not a vector constant
1973 /// or if any element was not analyzed; otherwise, return the count for the
1974 /// element with the minimum number of sign bits.
1975 static unsigned computeNumSignBitsVectorConstant(const Value *V,
1976                                                  unsigned TyBits) {
1977   const auto *CV = dyn_cast<Constant>(V);
1978   if (!CV || !CV->getType()->isVectorTy())
1979     return 0;
1980 
1981   unsigned MinSignBits = TyBits;
1982   unsigned NumElts = CV->getType()->getVectorNumElements();
1983   for (unsigned i = 0; i != NumElts; ++i) {
1984     // If we find a non-ConstantInt, bail out.
1985     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
1986     if (!Elt)
1987       return 0;
1988 
1989     // If the sign bit is 1, flip the bits, so we always count leading zeros.
1990     APInt EltVal = Elt->getValue();
1991     if (EltVal.isNegative())
1992       EltVal = ~EltVal;
1993     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
1994   }
1995 
1996   return MinSignBits;
1997 }
1998 
1999 /// Return the number of times the sign bit of the register is replicated into
2000 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2001 /// (itself), but other cases can give us information. For example, immediately
2002 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2003 /// other, so we return 3. For vectors, return the number of sign bits for the
2004 /// vector element with the mininum number of known sign bits.
2005 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
2006   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2007   unsigned Tmp, Tmp2;
2008   unsigned FirstAnswer = 1;
2009 
2010   // Note that ConstantInt is handled by the general computeKnownBits case
2011   // below.
2012 
2013   if (Depth == 6)
2014     return 1;  // Limit search depth.
2015 
2016   const Operator *U = dyn_cast<Operator>(V);
2017   switch (Operator::getOpcode(V)) {
2018   default: break;
2019   case Instruction::SExt:
2020     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2021     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2022 
2023   case Instruction::SDiv: {
2024     const APInt *Denominator;
2025     // sdiv X, C -> adds log(C) sign bits.
2026     if (match(U->getOperand(1), m_APInt(Denominator))) {
2027 
2028       // Ignore non-positive denominator.
2029       if (!Denominator->isStrictlyPositive())
2030         break;
2031 
2032       // Calculate the incoming numerator bits.
2033       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2034 
2035       // Add floor(log(C)) bits to the numerator bits.
2036       return std::min(TyBits, NumBits + Denominator->logBase2());
2037     }
2038     break;
2039   }
2040 
2041   case Instruction::SRem: {
2042     const APInt *Denominator;
2043     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2044     // positive constant.  This let us put a lower bound on the number of sign
2045     // bits.
2046     if (match(U->getOperand(1), m_APInt(Denominator))) {
2047 
2048       // Ignore non-positive denominator.
2049       if (!Denominator->isStrictlyPositive())
2050         break;
2051 
2052       // Calculate the incoming numerator bits. SRem by a positive constant
2053       // can't lower the number of sign bits.
2054       unsigned NumrBits =
2055           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2056 
2057       // Calculate the leading sign bit constraints by examining the
2058       // denominator.  Given that the denominator is positive, there are two
2059       // cases:
2060       //
2061       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2062       //     (1 << ceilLogBase2(C)).
2063       //
2064       //  2. the numerator is negative.  Then the result range is (-C,0] and
2065       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2066       //
2067       // Thus a lower bound on the number of sign bits is `TyBits -
2068       // ceilLogBase2(C)`.
2069 
2070       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2071       return std::max(NumrBits, ResBits);
2072     }
2073     break;
2074   }
2075 
2076   case Instruction::AShr: {
2077     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2078     // ashr X, C   -> adds C sign bits.  Vectors too.
2079     const APInt *ShAmt;
2080     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2081       Tmp += ShAmt->getZExtValue();
2082       if (Tmp > TyBits) Tmp = TyBits;
2083     }
2084     return Tmp;
2085   }
2086   case Instruction::Shl: {
2087     const APInt *ShAmt;
2088     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2089       // shl destroys sign bits.
2090       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2091       Tmp2 = ShAmt->getZExtValue();
2092       if (Tmp2 >= TyBits ||      // Bad shift.
2093           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2094       return Tmp - Tmp2;
2095     }
2096     break;
2097   }
2098   case Instruction::And:
2099   case Instruction::Or:
2100   case Instruction::Xor:    // NOT is handled here.
2101     // Logical binary ops preserve the number of sign bits at the worst.
2102     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2103     if (Tmp != 1) {
2104       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2105       FirstAnswer = std::min(Tmp, Tmp2);
2106       // We computed what we know about the sign bits as our first
2107       // answer. Now proceed to the generic code that uses
2108       // computeKnownBits, and pick whichever answer is better.
2109     }
2110     break;
2111 
2112   case Instruction::Select:
2113     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2114     if (Tmp == 1) return 1;  // Early out.
2115     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2116     return std::min(Tmp, Tmp2);
2117 
2118   case Instruction::Add:
2119     // Add can have at most one carry bit.  Thus we know that the output
2120     // is, at worst, one more bit than the inputs.
2121     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2122     if (Tmp == 1) return 1;  // Early out.
2123 
2124     // Special case decrementing a value (ADD X, -1):
2125     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2126       if (CRHS->isAllOnesValue()) {
2127         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2128         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2129 
2130         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2131         // sign bits set.
2132         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2133           return TyBits;
2134 
2135         // If we are subtracting one from a positive number, there is no carry
2136         // out of the result.
2137         if (KnownZero.isNegative())
2138           return Tmp;
2139       }
2140 
2141     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2142     if (Tmp2 == 1) return 1;
2143     return std::min(Tmp, Tmp2)-1;
2144 
2145   case Instruction::Sub:
2146     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2147     if (Tmp2 == 1) return 1;
2148 
2149     // Handle NEG.
2150     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2151       if (CLHS->isNullValue()) {
2152         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2153         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2154         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2155         // sign bits set.
2156         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2157           return TyBits;
2158 
2159         // If the input is known to be positive (the sign bit is known clear),
2160         // the output of the NEG has the same number of sign bits as the input.
2161         if (KnownZero.isNegative())
2162           return Tmp2;
2163 
2164         // Otherwise, we treat this like a SUB.
2165       }
2166 
2167     // Sub can have at most one carry bit.  Thus we know that the output
2168     // is, at worst, one more bit than the inputs.
2169     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2170     if (Tmp == 1) return 1;  // Early out.
2171     return std::min(Tmp, Tmp2)-1;
2172 
2173   case Instruction::PHI: {
2174     const PHINode *PN = cast<PHINode>(U);
2175     unsigned NumIncomingValues = PN->getNumIncomingValues();
2176     // Don't analyze large in-degree PHIs.
2177     if (NumIncomingValues > 4) break;
2178     // Unreachable blocks may have zero-operand PHI nodes.
2179     if (NumIncomingValues == 0) break;
2180 
2181     // Take the minimum of all incoming values.  This can't infinitely loop
2182     // because of our depth threshold.
2183     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2184     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2185       if (Tmp == 1) return Tmp;
2186       Tmp = std::min(
2187           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2188     }
2189     return Tmp;
2190   }
2191 
2192   case Instruction::Trunc:
2193     // FIXME: it's tricky to do anything useful for this, but it is an important
2194     // case for targets like X86.
2195     break;
2196   }
2197 
2198   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2199   // use this information.
2200 
2201   // If we can examine all elements of a vector constant successfully, we're
2202   // done (we can't do any better than that). If not, keep trying.
2203   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2204     return VecSignBits;
2205 
2206   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2207   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2208 
2209   // If we know that the sign bit is either zero or one, determine the number of
2210   // identical bits in the top of the input value.
2211   if (KnownZero.isNegative())
2212     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2213 
2214   if (KnownOne.isNegative())
2215     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2216 
2217   // computeKnownBits gave us no extra information about the top bits.
2218   return FirstAnswer;
2219 }
2220 
2221 /// This function computes the integer multiple of Base that equals V.
2222 /// If successful, it returns true and returns the multiple in
2223 /// Multiple. If unsuccessful, it returns false. It looks
2224 /// through SExt instructions only if LookThroughSExt is true.
2225 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2226                            bool LookThroughSExt, unsigned Depth) {
2227   const unsigned MaxDepth = 6;
2228 
2229   assert(V && "No Value?");
2230   assert(Depth <= MaxDepth && "Limit Search Depth");
2231   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2232 
2233   Type *T = V->getType();
2234 
2235   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2236 
2237   if (Base == 0)
2238     return false;
2239 
2240   if (Base == 1) {
2241     Multiple = V;
2242     return true;
2243   }
2244 
2245   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2246   Constant *BaseVal = ConstantInt::get(T, Base);
2247   if (CO && CO == BaseVal) {
2248     // Multiple is 1.
2249     Multiple = ConstantInt::get(T, 1);
2250     return true;
2251   }
2252 
2253   if (CI && CI->getZExtValue() % Base == 0) {
2254     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2255     return true;
2256   }
2257 
2258   if (Depth == MaxDepth) return false;  // Limit search depth.
2259 
2260   Operator *I = dyn_cast<Operator>(V);
2261   if (!I) return false;
2262 
2263   switch (I->getOpcode()) {
2264   default: break;
2265   case Instruction::SExt:
2266     if (!LookThroughSExt) return false;
2267     // otherwise fall through to ZExt
2268   case Instruction::ZExt:
2269     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2270                            LookThroughSExt, Depth+1);
2271   case Instruction::Shl:
2272   case Instruction::Mul: {
2273     Value *Op0 = I->getOperand(0);
2274     Value *Op1 = I->getOperand(1);
2275 
2276     if (I->getOpcode() == Instruction::Shl) {
2277       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2278       if (!Op1CI) return false;
2279       // Turn Op0 << Op1 into Op0 * 2^Op1
2280       APInt Op1Int = Op1CI->getValue();
2281       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2282       APInt API(Op1Int.getBitWidth(), 0);
2283       API.setBit(BitToSet);
2284       Op1 = ConstantInt::get(V->getContext(), API);
2285     }
2286 
2287     Value *Mul0 = nullptr;
2288     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2289       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2290         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2291           if (Op1C->getType()->getPrimitiveSizeInBits() <
2292               MulC->getType()->getPrimitiveSizeInBits())
2293             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2294           if (Op1C->getType()->getPrimitiveSizeInBits() >
2295               MulC->getType()->getPrimitiveSizeInBits())
2296             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2297 
2298           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2299           Multiple = ConstantExpr::getMul(MulC, Op1C);
2300           return true;
2301         }
2302 
2303       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2304         if (Mul0CI->getValue() == 1) {
2305           // V == Base * Op1, so return Op1
2306           Multiple = Op1;
2307           return true;
2308         }
2309     }
2310 
2311     Value *Mul1 = nullptr;
2312     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2313       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2314         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2315           if (Op0C->getType()->getPrimitiveSizeInBits() <
2316               MulC->getType()->getPrimitiveSizeInBits())
2317             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2318           if (Op0C->getType()->getPrimitiveSizeInBits() >
2319               MulC->getType()->getPrimitiveSizeInBits())
2320             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2321 
2322           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2323           Multiple = ConstantExpr::getMul(MulC, Op0C);
2324           return true;
2325         }
2326 
2327       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2328         if (Mul1CI->getValue() == 1) {
2329           // V == Base * Op0, so return Op0
2330           Multiple = Op0;
2331           return true;
2332         }
2333     }
2334   }
2335   }
2336 
2337   // We could not determine if V is a multiple of Base.
2338   return false;
2339 }
2340 
2341 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2342                                             const TargetLibraryInfo *TLI) {
2343   const Function *F = ICS.getCalledFunction();
2344   if (!F)
2345     return Intrinsic::not_intrinsic;
2346 
2347   if (F->isIntrinsic())
2348     return F->getIntrinsicID();
2349 
2350   if (!TLI)
2351     return Intrinsic::not_intrinsic;
2352 
2353   LibFunc::Func Func;
2354   // We're going to make assumptions on the semantics of the functions, check
2355   // that the target knows that it's available in this environment and it does
2356   // not have local linkage.
2357   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2358     return Intrinsic::not_intrinsic;
2359 
2360   if (!ICS.onlyReadsMemory())
2361     return Intrinsic::not_intrinsic;
2362 
2363   // Otherwise check if we have a call to a function that can be turned into a
2364   // vector intrinsic.
2365   switch (Func) {
2366   default:
2367     break;
2368   case LibFunc::sin:
2369   case LibFunc::sinf:
2370   case LibFunc::sinl:
2371     return Intrinsic::sin;
2372   case LibFunc::cos:
2373   case LibFunc::cosf:
2374   case LibFunc::cosl:
2375     return Intrinsic::cos;
2376   case LibFunc::exp:
2377   case LibFunc::expf:
2378   case LibFunc::expl:
2379     return Intrinsic::exp;
2380   case LibFunc::exp2:
2381   case LibFunc::exp2f:
2382   case LibFunc::exp2l:
2383     return Intrinsic::exp2;
2384   case LibFunc::log:
2385   case LibFunc::logf:
2386   case LibFunc::logl:
2387     return Intrinsic::log;
2388   case LibFunc::log10:
2389   case LibFunc::log10f:
2390   case LibFunc::log10l:
2391     return Intrinsic::log10;
2392   case LibFunc::log2:
2393   case LibFunc::log2f:
2394   case LibFunc::log2l:
2395     return Intrinsic::log2;
2396   case LibFunc::fabs:
2397   case LibFunc::fabsf:
2398   case LibFunc::fabsl:
2399     return Intrinsic::fabs;
2400   case LibFunc::fmin:
2401   case LibFunc::fminf:
2402   case LibFunc::fminl:
2403     return Intrinsic::minnum;
2404   case LibFunc::fmax:
2405   case LibFunc::fmaxf:
2406   case LibFunc::fmaxl:
2407     return Intrinsic::maxnum;
2408   case LibFunc::copysign:
2409   case LibFunc::copysignf:
2410   case LibFunc::copysignl:
2411     return Intrinsic::copysign;
2412   case LibFunc::floor:
2413   case LibFunc::floorf:
2414   case LibFunc::floorl:
2415     return Intrinsic::floor;
2416   case LibFunc::ceil:
2417   case LibFunc::ceilf:
2418   case LibFunc::ceill:
2419     return Intrinsic::ceil;
2420   case LibFunc::trunc:
2421   case LibFunc::truncf:
2422   case LibFunc::truncl:
2423     return Intrinsic::trunc;
2424   case LibFunc::rint:
2425   case LibFunc::rintf:
2426   case LibFunc::rintl:
2427     return Intrinsic::rint;
2428   case LibFunc::nearbyint:
2429   case LibFunc::nearbyintf:
2430   case LibFunc::nearbyintl:
2431     return Intrinsic::nearbyint;
2432   case LibFunc::round:
2433   case LibFunc::roundf:
2434   case LibFunc::roundl:
2435     return Intrinsic::round;
2436   case LibFunc::pow:
2437   case LibFunc::powf:
2438   case LibFunc::powl:
2439     return Intrinsic::pow;
2440   case LibFunc::sqrt:
2441   case LibFunc::sqrtf:
2442   case LibFunc::sqrtl:
2443     if (ICS->hasNoNaNs())
2444       return Intrinsic::sqrt;
2445     return Intrinsic::not_intrinsic;
2446   }
2447 
2448   return Intrinsic::not_intrinsic;
2449 }
2450 
2451 /// Return true if we can prove that the specified FP value is never equal to
2452 /// -0.0.
2453 ///
2454 /// NOTE: this function will need to be revisited when we support non-default
2455 /// rounding modes!
2456 ///
2457 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2458                                 unsigned Depth) {
2459   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2460     return !CFP->getValueAPF().isNegZero();
2461 
2462   // FIXME: Magic number! At the least, this should be given a name because it's
2463   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2464   // expose it as a parameter, so it can be used for testing / experimenting.
2465   if (Depth == 6)
2466     return false;  // Limit search depth.
2467 
2468   const Operator *I = dyn_cast<Operator>(V);
2469   if (!I) return false;
2470 
2471   // Check if the nsz fast-math flag is set
2472   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2473     if (FPO->hasNoSignedZeros())
2474       return true;
2475 
2476   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2477   if (I->getOpcode() == Instruction::FAdd)
2478     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2479       if (CFP->isNullValue())
2480         return true;
2481 
2482   // sitofp and uitofp turn into +0.0 for zero.
2483   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2484     return true;
2485 
2486   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2487     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2488     switch (IID) {
2489     default:
2490       break;
2491     // sqrt(-0.0) = -0.0, no other negative results are possible.
2492     case Intrinsic::sqrt:
2493       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2494     // fabs(x) != -0.0
2495     case Intrinsic::fabs:
2496       return true;
2497     }
2498   }
2499 
2500   return false;
2501 }
2502 
2503 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2504                                        const TargetLibraryInfo *TLI,
2505                                        unsigned Depth) {
2506   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2507     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2508 
2509   // FIXME: Magic number! At the least, this should be given a name because it's
2510   // used similarly in CannotBeNegativeZero(). A better fix may be to
2511   // expose it as a parameter, so it can be used for testing / experimenting.
2512   if (Depth == 6)
2513     return false;  // Limit search depth.
2514 
2515   const Operator *I = dyn_cast<Operator>(V);
2516   if (!I) return false;
2517 
2518   switch (I->getOpcode()) {
2519   default: break;
2520   // Unsigned integers are always nonnegative.
2521   case Instruction::UIToFP:
2522     return true;
2523   case Instruction::FMul:
2524     // x*x is always non-negative or a NaN.
2525     if (I->getOperand(0) == I->getOperand(1))
2526       return true;
2527     LLVM_FALLTHROUGH;
2528   case Instruction::FAdd:
2529   case Instruction::FDiv:
2530   case Instruction::FRem:
2531     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2532            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2533   case Instruction::Select:
2534     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2535            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2536   case Instruction::FPExt:
2537   case Instruction::FPTrunc:
2538     // Widening/narrowing never change sign.
2539     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2540   case Instruction::Call:
2541     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2542     switch (IID) {
2543     default:
2544       break;
2545     case Intrinsic::maxnum:
2546       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2547              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2548     case Intrinsic::minnum:
2549       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2550              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2551     case Intrinsic::exp:
2552     case Intrinsic::exp2:
2553     case Intrinsic::fabs:
2554     case Intrinsic::sqrt:
2555       return true;
2556     case Intrinsic::powi:
2557       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2558         // powi(x,n) is non-negative if n is even.
2559         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2560           return true;
2561       }
2562       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2563     case Intrinsic::fma:
2564     case Intrinsic::fmuladd:
2565       // x*x+y is non-negative if y is non-negative.
2566       return I->getOperand(0) == I->getOperand(1) &&
2567              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2568     }
2569     break;
2570   }
2571   return false;
2572 }
2573 
2574 /// If the specified value can be set by repeating the same byte in memory,
2575 /// return the i8 value that it is represented with.  This is
2576 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2577 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2578 /// byte store (e.g. i16 0x1234), return null.
2579 Value *llvm::isBytewiseValue(Value *V) {
2580   // All byte-wide stores are splatable, even of arbitrary variables.
2581   if (V->getType()->isIntegerTy(8)) return V;
2582 
2583   // Handle 'null' ConstantArrayZero etc.
2584   if (Constant *C = dyn_cast<Constant>(V))
2585     if (C->isNullValue())
2586       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2587 
2588   // Constant float and double values can be handled as integer values if the
2589   // corresponding integer value is "byteable".  An important case is 0.0.
2590   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2591     if (CFP->getType()->isFloatTy())
2592       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2593     if (CFP->getType()->isDoubleTy())
2594       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2595     // Don't handle long double formats, which have strange constraints.
2596   }
2597 
2598   // We can handle constant integers that are multiple of 8 bits.
2599   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2600     if (CI->getBitWidth() % 8 == 0) {
2601       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2602 
2603       if (!CI->getValue().isSplat(8))
2604         return nullptr;
2605       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2606     }
2607   }
2608 
2609   // A ConstantDataArray/Vector is splatable if all its members are equal and
2610   // also splatable.
2611   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2612     Value *Elt = CA->getElementAsConstant(0);
2613     Value *Val = isBytewiseValue(Elt);
2614     if (!Val)
2615       return nullptr;
2616 
2617     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2618       if (CA->getElementAsConstant(I) != Elt)
2619         return nullptr;
2620 
2621     return Val;
2622   }
2623 
2624   // Conceptually, we could handle things like:
2625   //   %a = zext i8 %X to i16
2626   //   %b = shl i16 %a, 8
2627   //   %c = or i16 %a, %b
2628   // but until there is an example that actually needs this, it doesn't seem
2629   // worth worrying about.
2630   return nullptr;
2631 }
2632 
2633 
2634 // This is the recursive version of BuildSubAggregate. It takes a few different
2635 // arguments. Idxs is the index within the nested struct From that we are
2636 // looking at now (which is of type IndexedType). IdxSkip is the number of
2637 // indices from Idxs that should be left out when inserting into the resulting
2638 // struct. To is the result struct built so far, new insertvalue instructions
2639 // build on that.
2640 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2641                                 SmallVectorImpl<unsigned> &Idxs,
2642                                 unsigned IdxSkip,
2643                                 Instruction *InsertBefore) {
2644   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2645   if (STy) {
2646     // Save the original To argument so we can modify it
2647     Value *OrigTo = To;
2648     // General case, the type indexed by Idxs is a struct
2649     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2650       // Process each struct element recursively
2651       Idxs.push_back(i);
2652       Value *PrevTo = To;
2653       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2654                              InsertBefore);
2655       Idxs.pop_back();
2656       if (!To) {
2657         // Couldn't find any inserted value for this index? Cleanup
2658         while (PrevTo != OrigTo) {
2659           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2660           PrevTo = Del->getAggregateOperand();
2661           Del->eraseFromParent();
2662         }
2663         // Stop processing elements
2664         break;
2665       }
2666     }
2667     // If we successfully found a value for each of our subaggregates
2668     if (To)
2669       return To;
2670   }
2671   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2672   // the struct's elements had a value that was inserted directly. In the latter
2673   // case, perhaps we can't determine each of the subelements individually, but
2674   // we might be able to find the complete struct somewhere.
2675 
2676   // Find the value that is at that particular spot
2677   Value *V = FindInsertedValue(From, Idxs);
2678 
2679   if (!V)
2680     return nullptr;
2681 
2682   // Insert the value in the new (sub) aggregrate
2683   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2684                                        "tmp", InsertBefore);
2685 }
2686 
2687 // This helper takes a nested struct and extracts a part of it (which is again a
2688 // struct) into a new value. For example, given the struct:
2689 // { a, { b, { c, d }, e } }
2690 // and the indices "1, 1" this returns
2691 // { c, d }.
2692 //
2693 // It does this by inserting an insertvalue for each element in the resulting
2694 // struct, as opposed to just inserting a single struct. This will only work if
2695 // each of the elements of the substruct are known (ie, inserted into From by an
2696 // insertvalue instruction somewhere).
2697 //
2698 // All inserted insertvalue instructions are inserted before InsertBefore
2699 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2700                                 Instruction *InsertBefore) {
2701   assert(InsertBefore && "Must have someplace to insert!");
2702   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2703                                                              idx_range);
2704   Value *To = UndefValue::get(IndexedType);
2705   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2706   unsigned IdxSkip = Idxs.size();
2707 
2708   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2709 }
2710 
2711 /// Given an aggregrate and an sequence of indices, see if
2712 /// the scalar value indexed is already around as a register, for example if it
2713 /// were inserted directly into the aggregrate.
2714 ///
2715 /// If InsertBefore is not null, this function will duplicate (modified)
2716 /// insertvalues when a part of a nested struct is extracted.
2717 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2718                                Instruction *InsertBefore) {
2719   // Nothing to index? Just return V then (this is useful at the end of our
2720   // recursion).
2721   if (idx_range.empty())
2722     return V;
2723   // We have indices, so V should have an indexable type.
2724   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2725          "Not looking at a struct or array?");
2726   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2727          "Invalid indices for type?");
2728 
2729   if (Constant *C = dyn_cast<Constant>(V)) {
2730     C = C->getAggregateElement(idx_range[0]);
2731     if (!C) return nullptr;
2732     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2733   }
2734 
2735   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2736     // Loop the indices for the insertvalue instruction in parallel with the
2737     // requested indices
2738     const unsigned *req_idx = idx_range.begin();
2739     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2740          i != e; ++i, ++req_idx) {
2741       if (req_idx == idx_range.end()) {
2742         // We can't handle this without inserting insertvalues
2743         if (!InsertBefore)
2744           return nullptr;
2745 
2746         // The requested index identifies a part of a nested aggregate. Handle
2747         // this specially. For example,
2748         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2749         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2750         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2751         // This can be changed into
2752         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2753         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2754         // which allows the unused 0,0 element from the nested struct to be
2755         // removed.
2756         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2757                                  InsertBefore);
2758       }
2759 
2760       // This insert value inserts something else than what we are looking for.
2761       // See if the (aggregate) value inserted into has the value we are
2762       // looking for, then.
2763       if (*req_idx != *i)
2764         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2765                                  InsertBefore);
2766     }
2767     // If we end up here, the indices of the insertvalue match with those
2768     // requested (though possibly only partially). Now we recursively look at
2769     // the inserted value, passing any remaining indices.
2770     return FindInsertedValue(I->getInsertedValueOperand(),
2771                              makeArrayRef(req_idx, idx_range.end()),
2772                              InsertBefore);
2773   }
2774 
2775   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2776     // If we're extracting a value from an aggregate that was extracted from
2777     // something else, we can extract from that something else directly instead.
2778     // However, we will need to chain I's indices with the requested indices.
2779 
2780     // Calculate the number of indices required
2781     unsigned size = I->getNumIndices() + idx_range.size();
2782     // Allocate some space to put the new indices in
2783     SmallVector<unsigned, 5> Idxs;
2784     Idxs.reserve(size);
2785     // Add indices from the extract value instruction
2786     Idxs.append(I->idx_begin(), I->idx_end());
2787 
2788     // Add requested indices
2789     Idxs.append(idx_range.begin(), idx_range.end());
2790 
2791     assert(Idxs.size() == size
2792            && "Number of indices added not correct?");
2793 
2794     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2795   }
2796   // Otherwise, we don't know (such as, extracting from a function return value
2797   // or load instruction)
2798   return nullptr;
2799 }
2800 
2801 /// Analyze the specified pointer to see if it can be expressed as a base
2802 /// pointer plus a constant offset. Return the base and offset to the caller.
2803 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2804                                               const DataLayout &DL) {
2805   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2806   APInt ByteOffset(BitWidth, 0);
2807 
2808   // We walk up the defs but use a visited set to handle unreachable code. In
2809   // that case, we stop after accumulating the cycle once (not that it
2810   // matters).
2811   SmallPtrSet<Value *, 16> Visited;
2812   while (Visited.insert(Ptr).second) {
2813     if (Ptr->getType()->isVectorTy())
2814       break;
2815 
2816     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2817       APInt GEPOffset(BitWidth, 0);
2818       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2819         break;
2820 
2821       ByteOffset += GEPOffset;
2822 
2823       Ptr = GEP->getPointerOperand();
2824     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2825                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2826       Ptr = cast<Operator>(Ptr)->getOperand(0);
2827     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2828       if (GA->isInterposable())
2829         break;
2830       Ptr = GA->getAliasee();
2831     } else {
2832       break;
2833     }
2834   }
2835   Offset = ByteOffset.getSExtValue();
2836   return Ptr;
2837 }
2838 
2839 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2840   // Make sure the GEP has exactly three arguments.
2841   if (GEP->getNumOperands() != 3)
2842     return false;
2843 
2844   // Make sure the index-ee is a pointer to array of i8.
2845   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2846   if (!AT || !AT->getElementType()->isIntegerTy(8))
2847     return false;
2848 
2849   // Check to make sure that the first operand of the GEP is an integer and
2850   // has value 0 so that we are sure we're indexing into the initializer.
2851   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2852   if (!FirstIdx || !FirstIdx->isZero())
2853     return false;
2854 
2855   return true;
2856 }
2857 
2858 /// This function computes the length of a null-terminated C string pointed to
2859 /// by V. If successful, it returns true and returns the string in Str.
2860 /// If unsuccessful, it returns false.
2861 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2862                                  uint64_t Offset, bool TrimAtNul) {
2863   assert(V);
2864 
2865   // Look through bitcast instructions and geps.
2866   V = V->stripPointerCasts();
2867 
2868   // If the value is a GEP instruction or constant expression, treat it as an
2869   // offset.
2870   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2871     // The GEP operator should be based on a pointer to string constant, and is
2872     // indexing into the string constant.
2873     if (!isGEPBasedOnPointerToString(GEP))
2874       return false;
2875 
2876     // If the second index isn't a ConstantInt, then this is a variable index
2877     // into the array.  If this occurs, we can't say anything meaningful about
2878     // the string.
2879     uint64_t StartIdx = 0;
2880     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2881       StartIdx = CI->getZExtValue();
2882     else
2883       return false;
2884     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2885                                  TrimAtNul);
2886   }
2887 
2888   // The GEP instruction, constant or instruction, must reference a global
2889   // variable that is a constant and is initialized. The referenced constant
2890   // initializer is the array that we'll use for optimization.
2891   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2892   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2893     return false;
2894 
2895   // Handle the all-zeros case.
2896   if (GV->getInitializer()->isNullValue()) {
2897     // This is a degenerate case. The initializer is constant zero so the
2898     // length of the string must be zero.
2899     Str = "";
2900     return true;
2901   }
2902 
2903   // This must be a ConstantDataArray.
2904   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
2905   if (!Array || !Array->isString())
2906     return false;
2907 
2908   // Get the number of elements in the array.
2909   uint64_t NumElts = Array->getType()->getArrayNumElements();
2910 
2911   // Start out with the entire array in the StringRef.
2912   Str = Array->getAsString();
2913 
2914   if (Offset > NumElts)
2915     return false;
2916 
2917   // Skip over 'offset' bytes.
2918   Str = Str.substr(Offset);
2919 
2920   if (TrimAtNul) {
2921     // Trim off the \0 and anything after it.  If the array is not nul
2922     // terminated, we just return the whole end of string.  The client may know
2923     // some other way that the string is length-bound.
2924     Str = Str.substr(0, Str.find('\0'));
2925   }
2926   return true;
2927 }
2928 
2929 // These next two are very similar to the above, but also look through PHI
2930 // nodes.
2931 // TODO: See if we can integrate these two together.
2932 
2933 /// If we can compute the length of the string pointed to by
2934 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2935 static uint64_t GetStringLengthH(const Value *V,
2936                                  SmallPtrSetImpl<const PHINode*> &PHIs) {
2937   // Look through noop bitcast instructions.
2938   V = V->stripPointerCasts();
2939 
2940   // If this is a PHI node, there are two cases: either we have already seen it
2941   // or we haven't.
2942   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2943     if (!PHIs.insert(PN).second)
2944       return ~0ULL;  // already in the set.
2945 
2946     // If it was new, see if all the input strings are the same length.
2947     uint64_t LenSoFar = ~0ULL;
2948     for (Value *IncValue : PN->incoming_values()) {
2949       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2950       if (Len == 0) return 0; // Unknown length -> unknown.
2951 
2952       if (Len == ~0ULL) continue;
2953 
2954       if (Len != LenSoFar && LenSoFar != ~0ULL)
2955         return 0;    // Disagree -> unknown.
2956       LenSoFar = Len;
2957     }
2958 
2959     // Success, all agree.
2960     return LenSoFar;
2961   }
2962 
2963   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2964   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2965     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2966     if (Len1 == 0) return 0;
2967     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2968     if (Len2 == 0) return 0;
2969     if (Len1 == ~0ULL) return Len2;
2970     if (Len2 == ~0ULL) return Len1;
2971     if (Len1 != Len2) return 0;
2972     return Len1;
2973   }
2974 
2975   // Otherwise, see if we can read the string.
2976   StringRef StrData;
2977   if (!getConstantStringInfo(V, StrData))
2978     return 0;
2979 
2980   return StrData.size()+1;
2981 }
2982 
2983 /// If we can compute the length of the string pointed to by
2984 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2985 uint64_t llvm::GetStringLength(const Value *V) {
2986   if (!V->getType()->isPointerTy()) return 0;
2987 
2988   SmallPtrSet<const PHINode*, 32> PHIs;
2989   uint64_t Len = GetStringLengthH(V, PHIs);
2990   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2991   // an empty string as a length.
2992   return Len == ~0ULL ? 1 : Len;
2993 }
2994 
2995 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
2996 /// previous iteration of the loop was referring to the same object as \p PN.
2997 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
2998                                          const LoopInfo *LI) {
2999   // Find the loop-defined value.
3000   Loop *L = LI->getLoopFor(PN->getParent());
3001   if (PN->getNumIncomingValues() != 2)
3002     return true;
3003 
3004   // Find the value from previous iteration.
3005   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3006   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3007     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3008   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3009     return true;
3010 
3011   // If a new pointer is loaded in the loop, the pointer references a different
3012   // object in every iteration.  E.g.:
3013   //    for (i)
3014   //       int *p = a[i];
3015   //       ...
3016   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3017     if (!L->isLoopInvariant(Load->getPointerOperand()))
3018       return false;
3019   return true;
3020 }
3021 
3022 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3023                                  unsigned MaxLookup) {
3024   if (!V->getType()->isPointerTy())
3025     return V;
3026   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3027     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3028       V = GEP->getPointerOperand();
3029     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3030                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3031       V = cast<Operator>(V)->getOperand(0);
3032     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3033       if (GA->isInterposable())
3034         return V;
3035       V = GA->getAliasee();
3036     } else {
3037       if (auto CS = CallSite(V))
3038         if (Value *RV = CS.getReturnedArgOperand()) {
3039           V = RV;
3040           continue;
3041         }
3042 
3043       // See if InstructionSimplify knows any relevant tricks.
3044       if (Instruction *I = dyn_cast<Instruction>(V))
3045         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3046         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3047           V = Simplified;
3048           continue;
3049         }
3050 
3051       return V;
3052     }
3053     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3054   }
3055   return V;
3056 }
3057 
3058 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3059                                 const DataLayout &DL, LoopInfo *LI,
3060                                 unsigned MaxLookup) {
3061   SmallPtrSet<Value *, 4> Visited;
3062   SmallVector<Value *, 4> Worklist;
3063   Worklist.push_back(V);
3064   do {
3065     Value *P = Worklist.pop_back_val();
3066     P = GetUnderlyingObject(P, DL, MaxLookup);
3067 
3068     if (!Visited.insert(P).second)
3069       continue;
3070 
3071     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3072       Worklist.push_back(SI->getTrueValue());
3073       Worklist.push_back(SI->getFalseValue());
3074       continue;
3075     }
3076 
3077     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3078       // If this PHI changes the underlying object in every iteration of the
3079       // loop, don't look through it.  Consider:
3080       //   int **A;
3081       //   for (i) {
3082       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3083       //     Curr = A[i];
3084       //     *Prev, *Curr;
3085       //
3086       // Prev is tracking Curr one iteration behind so they refer to different
3087       // underlying objects.
3088       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3089           isSameUnderlyingObjectInLoop(PN, LI))
3090         for (Value *IncValue : PN->incoming_values())
3091           Worklist.push_back(IncValue);
3092       continue;
3093     }
3094 
3095     Objects.push_back(P);
3096   } while (!Worklist.empty());
3097 }
3098 
3099 /// Return true if the only users of this pointer are lifetime markers.
3100 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3101   for (const User *U : V->users()) {
3102     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3103     if (!II) return false;
3104 
3105     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3106         II->getIntrinsicID() != Intrinsic::lifetime_end)
3107       return false;
3108   }
3109   return true;
3110 }
3111 
3112 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3113                                         const Instruction *CtxI,
3114                                         const DominatorTree *DT) {
3115   const Operator *Inst = dyn_cast<Operator>(V);
3116   if (!Inst)
3117     return false;
3118 
3119   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3120     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3121       if (C->canTrap())
3122         return false;
3123 
3124   switch (Inst->getOpcode()) {
3125   default:
3126     return true;
3127   case Instruction::UDiv:
3128   case Instruction::URem: {
3129     // x / y is undefined if y == 0.
3130     const APInt *V;
3131     if (match(Inst->getOperand(1), m_APInt(V)))
3132       return *V != 0;
3133     return false;
3134   }
3135   case Instruction::SDiv:
3136   case Instruction::SRem: {
3137     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3138     const APInt *Numerator, *Denominator;
3139     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3140       return false;
3141     // We cannot hoist this division if the denominator is 0.
3142     if (*Denominator == 0)
3143       return false;
3144     // It's safe to hoist if the denominator is not 0 or -1.
3145     if (*Denominator != -1)
3146       return true;
3147     // At this point we know that the denominator is -1.  It is safe to hoist as
3148     // long we know that the numerator is not INT_MIN.
3149     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3150       return !Numerator->isMinSignedValue();
3151     // The numerator *might* be MinSignedValue.
3152     return false;
3153   }
3154   case Instruction::Load: {
3155     const LoadInst *LI = cast<LoadInst>(Inst);
3156     if (!LI->isUnordered() ||
3157         // Speculative load may create a race that did not exist in the source.
3158         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3159         // Speculative load may load data from dirty regions.
3160         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3161       return false;
3162     const DataLayout &DL = LI->getModule()->getDataLayout();
3163     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3164                                               LI->getAlignment(), DL, CtxI, DT);
3165   }
3166   case Instruction::Call: {
3167     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3168       switch (II->getIntrinsicID()) {
3169       // These synthetic intrinsics have no side-effects and just mark
3170       // information about their operands.
3171       // FIXME: There are other no-op synthetic instructions that potentially
3172       // should be considered at least *safe* to speculate...
3173       case Intrinsic::dbg_declare:
3174       case Intrinsic::dbg_value:
3175         return true;
3176 
3177       case Intrinsic::bswap:
3178       case Intrinsic::ctlz:
3179       case Intrinsic::ctpop:
3180       case Intrinsic::cttz:
3181       case Intrinsic::objectsize:
3182       case Intrinsic::sadd_with_overflow:
3183       case Intrinsic::smul_with_overflow:
3184       case Intrinsic::ssub_with_overflow:
3185       case Intrinsic::uadd_with_overflow:
3186       case Intrinsic::umul_with_overflow:
3187       case Intrinsic::usub_with_overflow:
3188         return true;
3189       // These intrinsics are defined to have the same behavior as libm
3190       // functions except for setting errno.
3191       case Intrinsic::sqrt:
3192       case Intrinsic::fma:
3193       case Intrinsic::fmuladd:
3194         return true;
3195       // These intrinsics are defined to have the same behavior as libm
3196       // functions, and the corresponding libm functions never set errno.
3197       case Intrinsic::trunc:
3198       case Intrinsic::copysign:
3199       case Intrinsic::fabs:
3200       case Intrinsic::minnum:
3201       case Intrinsic::maxnum:
3202         return true;
3203       // These intrinsics are defined to have the same behavior as libm
3204       // functions, which never overflow when operating on the IEEE754 types
3205       // that we support, and never set errno otherwise.
3206       case Intrinsic::ceil:
3207       case Intrinsic::floor:
3208       case Intrinsic::nearbyint:
3209       case Intrinsic::rint:
3210       case Intrinsic::round:
3211         return true;
3212       // TODO: are convert_{from,to}_fp16 safe?
3213       // TODO: can we list target-specific intrinsics here?
3214       default: break;
3215       }
3216     }
3217     return false; // The called function could have undefined behavior or
3218                   // side-effects, even if marked readnone nounwind.
3219   }
3220   case Instruction::VAArg:
3221   case Instruction::Alloca:
3222   case Instruction::Invoke:
3223   case Instruction::PHI:
3224   case Instruction::Store:
3225   case Instruction::Ret:
3226   case Instruction::Br:
3227   case Instruction::IndirectBr:
3228   case Instruction::Switch:
3229   case Instruction::Unreachable:
3230   case Instruction::Fence:
3231   case Instruction::AtomicRMW:
3232   case Instruction::AtomicCmpXchg:
3233   case Instruction::LandingPad:
3234   case Instruction::Resume:
3235   case Instruction::CatchSwitch:
3236   case Instruction::CatchPad:
3237   case Instruction::CatchRet:
3238   case Instruction::CleanupPad:
3239   case Instruction::CleanupRet:
3240     return false; // Misc instructions which have effects
3241   }
3242 }
3243 
3244 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3245   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3246 }
3247 
3248 /// Return true if we know that the specified value is never null.
3249 bool llvm::isKnownNonNull(const Value *V) {
3250   assert(V->getType()->isPointerTy() && "V must be pointer type");
3251 
3252   // Alloca never returns null, malloc might.
3253   if (isa<AllocaInst>(V)) return true;
3254 
3255   // A byval, inalloca, or nonnull argument is never null.
3256   if (const Argument *A = dyn_cast<Argument>(V))
3257     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3258 
3259   // A global variable in address space 0 is non null unless extern weak.
3260   // Other address spaces may have null as a valid address for a global,
3261   // so we can't assume anything.
3262   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3263     return !GV->hasExternalWeakLinkage() &&
3264            GV->getType()->getAddressSpace() == 0;
3265 
3266   // A Load tagged with nonnull metadata is never null.
3267   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3268     return LI->getMetadata(LLVMContext::MD_nonnull);
3269 
3270   if (auto CS = ImmutableCallSite(V))
3271     if (CS.isReturnNonNull())
3272       return true;
3273 
3274   return false;
3275 }
3276 
3277 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3278                                                   const Instruction *CtxI,
3279                                                   const DominatorTree *DT) {
3280   assert(V->getType()->isPointerTy() && "V must be pointer type");
3281 
3282   unsigned NumUsesExplored = 0;
3283   for (auto *U : V->users()) {
3284     // Avoid massive lists
3285     if (NumUsesExplored >= DomConditionsMaxUses)
3286       break;
3287     NumUsesExplored++;
3288     // Consider only compare instructions uniquely controlling a branch
3289     CmpInst::Predicate Pred;
3290     if (!match(const_cast<User *>(U),
3291                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3292         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3293       continue;
3294 
3295     for (auto *CmpU : U->users()) {
3296       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3297         assert(BI->isConditional() && "uses a comparison!");
3298 
3299         BasicBlock *NonNullSuccessor =
3300             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3301         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3302         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3303           return true;
3304       } else if (Pred == ICmpInst::ICMP_NE &&
3305                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3306                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3307         return true;
3308       }
3309     }
3310   }
3311 
3312   return false;
3313 }
3314 
3315 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3316                             const DominatorTree *DT) {
3317   if (isKnownNonNull(V))
3318     return true;
3319 
3320   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3321 }
3322 
3323 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3324                                                    const Value *RHS,
3325                                                    const DataLayout &DL,
3326                                                    AssumptionCache *AC,
3327                                                    const Instruction *CxtI,
3328                                                    const DominatorTree *DT) {
3329   // Multiplying n * m significant bits yields a result of n + m significant
3330   // bits. If the total number of significant bits does not exceed the
3331   // result bit width (minus 1), there is no overflow.
3332   // This means if we have enough leading zero bits in the operands
3333   // we can guarantee that the result does not overflow.
3334   // Ref: "Hacker's Delight" by Henry Warren
3335   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3336   APInt LHSKnownZero(BitWidth, 0);
3337   APInt LHSKnownOne(BitWidth, 0);
3338   APInt RHSKnownZero(BitWidth, 0);
3339   APInt RHSKnownOne(BitWidth, 0);
3340   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3341                    DT);
3342   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3343                    DT);
3344   // Note that underestimating the number of zero bits gives a more
3345   // conservative answer.
3346   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3347                       RHSKnownZero.countLeadingOnes();
3348   // First handle the easy case: if we have enough zero bits there's
3349   // definitely no overflow.
3350   if (ZeroBits >= BitWidth)
3351     return OverflowResult::NeverOverflows;
3352 
3353   // Get the largest possible values for each operand.
3354   APInt LHSMax = ~LHSKnownZero;
3355   APInt RHSMax = ~RHSKnownZero;
3356 
3357   // We know the multiply operation doesn't overflow if the maximum values for
3358   // each operand will not overflow after we multiply them together.
3359   bool MaxOverflow;
3360   LHSMax.umul_ov(RHSMax, MaxOverflow);
3361   if (!MaxOverflow)
3362     return OverflowResult::NeverOverflows;
3363 
3364   // We know it always overflows if multiplying the smallest possible values for
3365   // the operands also results in overflow.
3366   bool MinOverflow;
3367   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3368   if (MinOverflow)
3369     return OverflowResult::AlwaysOverflows;
3370 
3371   return OverflowResult::MayOverflow;
3372 }
3373 
3374 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3375                                                    const Value *RHS,
3376                                                    const DataLayout &DL,
3377                                                    AssumptionCache *AC,
3378                                                    const Instruction *CxtI,
3379                                                    const DominatorTree *DT) {
3380   bool LHSKnownNonNegative, LHSKnownNegative;
3381   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3382                  AC, CxtI, DT);
3383   if (LHSKnownNonNegative || LHSKnownNegative) {
3384     bool RHSKnownNonNegative, RHSKnownNegative;
3385     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3386                    AC, CxtI, DT);
3387 
3388     if (LHSKnownNegative && RHSKnownNegative) {
3389       // The sign bit is set in both cases: this MUST overflow.
3390       // Create a simple add instruction, and insert it into the struct.
3391       return OverflowResult::AlwaysOverflows;
3392     }
3393 
3394     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3395       // The sign bit is clear in both cases: this CANNOT overflow.
3396       // Create a simple add instruction, and insert it into the struct.
3397       return OverflowResult::NeverOverflows;
3398     }
3399   }
3400 
3401   return OverflowResult::MayOverflow;
3402 }
3403 
3404 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3405                                                   const Value *RHS,
3406                                                   const AddOperator *Add,
3407                                                   const DataLayout &DL,
3408                                                   AssumptionCache *AC,
3409                                                   const Instruction *CxtI,
3410                                                   const DominatorTree *DT) {
3411   if (Add && Add->hasNoSignedWrap()) {
3412     return OverflowResult::NeverOverflows;
3413   }
3414 
3415   bool LHSKnownNonNegative, LHSKnownNegative;
3416   bool RHSKnownNonNegative, RHSKnownNegative;
3417   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3418                  AC, CxtI, DT);
3419   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3420                  AC, CxtI, DT);
3421 
3422   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3423       (LHSKnownNegative && RHSKnownNonNegative)) {
3424     // The sign bits are opposite: this CANNOT overflow.
3425     return OverflowResult::NeverOverflows;
3426   }
3427 
3428   // The remaining code needs Add to be available. Early returns if not so.
3429   if (!Add)
3430     return OverflowResult::MayOverflow;
3431 
3432   // If the sign of Add is the same as at least one of the operands, this add
3433   // CANNOT overflow. This is particularly useful when the sum is
3434   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3435   // operands.
3436   bool LHSOrRHSKnownNonNegative =
3437       (LHSKnownNonNegative || RHSKnownNonNegative);
3438   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3439   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3440     bool AddKnownNonNegative, AddKnownNegative;
3441     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3442                    /*Depth=*/0, AC, CxtI, DT);
3443     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3444         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3445       return OverflowResult::NeverOverflows;
3446     }
3447   }
3448 
3449   return OverflowResult::MayOverflow;
3450 }
3451 
3452 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3453                                      const DominatorTree &DT) {
3454 #ifndef NDEBUG
3455   auto IID = II->getIntrinsicID();
3456   assert((IID == Intrinsic::sadd_with_overflow ||
3457           IID == Intrinsic::uadd_with_overflow ||
3458           IID == Intrinsic::ssub_with_overflow ||
3459           IID == Intrinsic::usub_with_overflow ||
3460           IID == Intrinsic::smul_with_overflow ||
3461           IID == Intrinsic::umul_with_overflow) &&
3462          "Not an overflow intrinsic!");
3463 #endif
3464 
3465   SmallVector<const BranchInst *, 2> GuardingBranches;
3466   SmallVector<const ExtractValueInst *, 2> Results;
3467 
3468   for (const User *U : II->users()) {
3469     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3470       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3471 
3472       if (EVI->getIndices()[0] == 0)
3473         Results.push_back(EVI);
3474       else {
3475         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3476 
3477         for (const auto *U : EVI->users())
3478           if (const auto *B = dyn_cast<BranchInst>(U)) {
3479             assert(B->isConditional() && "How else is it using an i1?");
3480             GuardingBranches.push_back(B);
3481           }
3482       }
3483     } else {
3484       // We are using the aggregate directly in a way we don't want to analyze
3485       // here (storing it to a global, say).
3486       return false;
3487     }
3488   }
3489 
3490   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
3491     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3492     if (!NoWrapEdge.isSingleEdge())
3493       return false;
3494 
3495     // Check if all users of the add are provably no-wrap.
3496     for (const auto *Result : Results) {
3497       // If the extractvalue itself is not executed on overflow, the we don't
3498       // need to check each use separately, since domination is transitive.
3499       if (DT.dominates(NoWrapEdge, Result->getParent()))
3500         continue;
3501 
3502       for (auto &RU : Result->uses())
3503         if (!DT.dominates(NoWrapEdge, RU))
3504           return false;
3505     }
3506 
3507     return true;
3508   };
3509 
3510   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3511 }
3512 
3513 
3514 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
3515                                                  const DataLayout &DL,
3516                                                  AssumptionCache *AC,
3517                                                  const Instruction *CxtI,
3518                                                  const DominatorTree *DT) {
3519   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3520                                        Add, DL, AC, CxtI, DT);
3521 }
3522 
3523 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3524                                                  const Value *RHS,
3525                                                  const DataLayout &DL,
3526                                                  AssumptionCache *AC,
3527                                                  const Instruction *CxtI,
3528                                                  const DominatorTree *DT) {
3529   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3530 }
3531 
3532 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3533   // A memory operation returns normally if it isn't volatile. A volatile
3534   // operation is allowed to trap.
3535   //
3536   // An atomic operation isn't guaranteed to return in a reasonable amount of
3537   // time because it's possible for another thread to interfere with it for an
3538   // arbitrary length of time, but programs aren't allowed to rely on that.
3539   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3540     return !LI->isVolatile();
3541   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3542     return !SI->isVolatile();
3543   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3544     return !CXI->isVolatile();
3545   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3546     return !RMWI->isVolatile();
3547   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3548     return !MII->isVolatile();
3549 
3550   // If there is no successor, then execution can't transfer to it.
3551   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3552     return !CRI->unwindsToCaller();
3553   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3554     return !CatchSwitch->unwindsToCaller();
3555   if (isa<ResumeInst>(I))
3556     return false;
3557   if (isa<ReturnInst>(I))
3558     return false;
3559 
3560   // Calls can throw, or contain an infinite loop, or kill the process.
3561   if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3562     // Calls which don't write to arbitrary memory are safe.
3563     // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3564     // but it's consistent with other passes. See http://llvm.org/PR965 .
3565     // FIXME: This isn't aggressive enough; a call which only writes to a
3566     // global is guaranteed to return.
3567     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3568            match(I, m_Intrinsic<Intrinsic::assume>());
3569   }
3570 
3571   // Other instructions return normally.
3572   return true;
3573 }
3574 
3575 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3576                                                   const Loop *L) {
3577   // The loop header is guaranteed to be executed for every iteration.
3578   //
3579   // FIXME: Relax this constraint to cover all basic blocks that are
3580   // guaranteed to be executed at every iteration.
3581   if (I->getParent() != L->getHeader()) return false;
3582 
3583   for (const Instruction &LI : *L->getHeader()) {
3584     if (&LI == I) return true;
3585     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3586   }
3587   llvm_unreachable("Instruction not contained in its own parent basic block.");
3588 }
3589 
3590 bool llvm::propagatesFullPoison(const Instruction *I) {
3591   switch (I->getOpcode()) {
3592     case Instruction::Add:
3593     case Instruction::Sub:
3594     case Instruction::Xor:
3595     case Instruction::Trunc:
3596     case Instruction::BitCast:
3597     case Instruction::AddrSpaceCast:
3598       // These operations all propagate poison unconditionally. Note that poison
3599       // is not any particular value, so xor or subtraction of poison with
3600       // itself still yields poison, not zero.
3601       return true;
3602 
3603     case Instruction::AShr:
3604     case Instruction::SExt:
3605       // For these operations, one bit of the input is replicated across
3606       // multiple output bits. A replicated poison bit is still poison.
3607       return true;
3608 
3609     case Instruction::Shl: {
3610       // Left shift *by* a poison value is poison. The number of
3611       // positions to shift is unsigned, so no negative values are
3612       // possible there. Left shift by zero places preserves poison. So
3613       // it only remains to consider left shift of poison by a positive
3614       // number of places.
3615       //
3616       // A left shift by a positive number of places leaves the lowest order bit
3617       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3618       // make the poison operand violate that flag, yielding a fresh full-poison
3619       // value.
3620       auto *OBO = cast<OverflowingBinaryOperator>(I);
3621       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3622     }
3623 
3624     case Instruction::Mul: {
3625       // A multiplication by zero yields a non-poison zero result, so we need to
3626       // rule out zero as an operand. Conservatively, multiplication by a
3627       // non-zero constant is not multiplication by zero.
3628       //
3629       // Multiplication by a non-zero constant can leave some bits
3630       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3631       // order bit unpoisoned. So we need to consider that.
3632       //
3633       // Multiplication by 1 preserves poison. If the multiplication has a
3634       // no-wrap flag, then we can make the poison operand violate that flag
3635       // when multiplied by any integer other than 0 and 1.
3636       auto *OBO = cast<OverflowingBinaryOperator>(I);
3637       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3638         for (Value *V : OBO->operands()) {
3639           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3640             // A ConstantInt cannot yield poison, so we can assume that it is
3641             // the other operand that is poison.
3642             return !CI->isZero();
3643           }
3644         }
3645       }
3646       return false;
3647     }
3648 
3649     case Instruction::ICmp:
3650       // Comparing poison with any value yields poison.  This is why, for
3651       // instance, x s< (x +nsw 1) can be folded to true.
3652       return true;
3653 
3654     case Instruction::GetElementPtr:
3655       // A GEP implicitly represents a sequence of additions, subtractions,
3656       // truncations, sign extensions and multiplications. The multiplications
3657       // are by the non-zero sizes of some set of types, so we do not have to be
3658       // concerned with multiplication by zero. If the GEP is in-bounds, then
3659       // these operations are implicitly no-signed-wrap so poison is propagated
3660       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3661       return cast<GEPOperator>(I)->isInBounds();
3662 
3663     default:
3664       return false;
3665   }
3666 }
3667 
3668 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3669   switch (I->getOpcode()) {
3670     case Instruction::Store:
3671       return cast<StoreInst>(I)->getPointerOperand();
3672 
3673     case Instruction::Load:
3674       return cast<LoadInst>(I)->getPointerOperand();
3675 
3676     case Instruction::AtomicCmpXchg:
3677       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3678 
3679     case Instruction::AtomicRMW:
3680       return cast<AtomicRMWInst>(I)->getPointerOperand();
3681 
3682     case Instruction::UDiv:
3683     case Instruction::SDiv:
3684     case Instruction::URem:
3685     case Instruction::SRem:
3686       return I->getOperand(1);
3687 
3688     default:
3689       return nullptr;
3690   }
3691 }
3692 
3693 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3694   // We currently only look for uses of poison values within the same basic
3695   // block, as that makes it easier to guarantee that the uses will be
3696   // executed given that PoisonI is executed.
3697   //
3698   // FIXME: Expand this to consider uses beyond the same basic block. To do
3699   // this, look out for the distinction between post-dominance and strong
3700   // post-dominance.
3701   const BasicBlock *BB = PoisonI->getParent();
3702 
3703   // Set of instructions that we have proved will yield poison if PoisonI
3704   // does.
3705   SmallSet<const Value *, 16> YieldsPoison;
3706   SmallSet<const BasicBlock *, 4> Visited;
3707   YieldsPoison.insert(PoisonI);
3708   Visited.insert(PoisonI->getParent());
3709 
3710   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3711 
3712   unsigned Iter = 0;
3713   while (Iter++ < MaxDepth) {
3714     for (auto &I : make_range(Begin, End)) {
3715       if (&I != PoisonI) {
3716         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3717         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3718           return true;
3719         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3720           return false;
3721       }
3722 
3723       // Mark poison that propagates from I through uses of I.
3724       if (YieldsPoison.count(&I)) {
3725         for (const User *User : I.users()) {
3726           const Instruction *UserI = cast<Instruction>(User);
3727           if (propagatesFullPoison(UserI))
3728             YieldsPoison.insert(User);
3729         }
3730       }
3731     }
3732 
3733     if (auto *NextBB = BB->getSingleSuccessor()) {
3734       if (Visited.insert(NextBB).second) {
3735         BB = NextBB;
3736         Begin = BB->getFirstNonPHI()->getIterator();
3737         End = BB->end();
3738         continue;
3739       }
3740     }
3741 
3742     break;
3743   };
3744   return false;
3745 }
3746 
3747 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
3748   if (FMF.noNaNs())
3749     return true;
3750 
3751   if (auto *C = dyn_cast<ConstantFP>(V))
3752     return !C->isNaN();
3753   return false;
3754 }
3755 
3756 static bool isKnownNonZero(const Value *V) {
3757   if (auto *C = dyn_cast<ConstantFP>(V))
3758     return !C->isZero();
3759   return false;
3760 }
3761 
3762 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3763                                               FastMathFlags FMF,
3764                                               Value *CmpLHS, Value *CmpRHS,
3765                                               Value *TrueVal, Value *FalseVal,
3766                                               Value *&LHS, Value *&RHS) {
3767   LHS = CmpLHS;
3768   RHS = CmpRHS;
3769 
3770   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3771   // return inconsistent results between implementations.
3772   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3773   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3774   // Therefore we behave conservatively and only proceed if at least one of the
3775   // operands is known to not be zero, or if we don't care about signed zeroes.
3776   switch (Pred) {
3777   default: break;
3778   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3779   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3780     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3781         !isKnownNonZero(CmpRHS))
3782       return {SPF_UNKNOWN, SPNB_NA, false};
3783   }
3784 
3785   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3786   bool Ordered = false;
3787 
3788   // When given one NaN and one non-NaN input:
3789   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3790   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3791   //     ordered comparison fails), which could be NaN or non-NaN.
3792   // so here we discover exactly what NaN behavior is required/accepted.
3793   if (CmpInst::isFPPredicate(Pred)) {
3794     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3795     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3796 
3797     if (LHSSafe && RHSSafe) {
3798       // Both operands are known non-NaN.
3799       NaNBehavior = SPNB_RETURNS_ANY;
3800     } else if (CmpInst::isOrdered(Pred)) {
3801       // An ordered comparison will return false when given a NaN, so it
3802       // returns the RHS.
3803       Ordered = true;
3804       if (LHSSafe)
3805         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3806         NaNBehavior = SPNB_RETURNS_NAN;
3807       else if (RHSSafe)
3808         NaNBehavior = SPNB_RETURNS_OTHER;
3809       else
3810         // Completely unsafe.
3811         return {SPF_UNKNOWN, SPNB_NA, false};
3812     } else {
3813       Ordered = false;
3814       // An unordered comparison will return true when given a NaN, so it
3815       // returns the LHS.
3816       if (LHSSafe)
3817         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3818         NaNBehavior = SPNB_RETURNS_OTHER;
3819       else if (RHSSafe)
3820         NaNBehavior = SPNB_RETURNS_NAN;
3821       else
3822         // Completely unsafe.
3823         return {SPF_UNKNOWN, SPNB_NA, false};
3824     }
3825   }
3826 
3827   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3828     std::swap(CmpLHS, CmpRHS);
3829     Pred = CmpInst::getSwappedPredicate(Pred);
3830     if (NaNBehavior == SPNB_RETURNS_NAN)
3831       NaNBehavior = SPNB_RETURNS_OTHER;
3832     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3833       NaNBehavior = SPNB_RETURNS_NAN;
3834     Ordered = !Ordered;
3835   }
3836 
3837   // ([if]cmp X, Y) ? X : Y
3838   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3839     switch (Pred) {
3840     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3841     case ICmpInst::ICMP_UGT:
3842     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3843     case ICmpInst::ICMP_SGT:
3844     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3845     case ICmpInst::ICMP_ULT:
3846     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3847     case ICmpInst::ICMP_SLT:
3848     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3849     case FCmpInst::FCMP_UGT:
3850     case FCmpInst::FCMP_UGE:
3851     case FCmpInst::FCMP_OGT:
3852     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3853     case FCmpInst::FCMP_ULT:
3854     case FCmpInst::FCMP_ULE:
3855     case FCmpInst::FCMP_OLT:
3856     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3857     }
3858   }
3859 
3860   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3861     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3862         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3863 
3864       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3865       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3866       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3867         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3868       }
3869 
3870       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3871       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3872       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3873         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3874       }
3875     }
3876 
3877     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3878     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3879       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3880           ~C1->getValue() == C2->getValue() &&
3881           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3882            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3883         LHS = TrueVal;
3884         RHS = FalseVal;
3885         return {SPF_SMIN, SPNB_NA, false};
3886       }
3887     }
3888   }
3889 
3890   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3891 
3892   return {SPF_UNKNOWN, SPNB_NA, false};
3893 }
3894 
3895 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3896                               Instruction::CastOps *CastOp) {
3897   CastInst *CI = dyn_cast<CastInst>(V1);
3898   Constant *C = dyn_cast<Constant>(V2);
3899   if (!CI)
3900     return nullptr;
3901   *CastOp = CI->getOpcode();
3902 
3903   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3904     // If V1 and V2 are both the same cast from the same type, we can look
3905     // through V1.
3906     if (CI2->getOpcode() == CI->getOpcode() &&
3907         CI2->getSrcTy() == CI->getSrcTy())
3908       return CI2->getOperand(0);
3909     return nullptr;
3910   } else if (!C) {
3911     return nullptr;
3912   }
3913 
3914   Constant *CastedTo = nullptr;
3915 
3916   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3917     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3918 
3919   if (isa<SExtInst>(CI) && CmpI->isSigned())
3920     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3921 
3922   if (isa<TruncInst>(CI))
3923     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3924 
3925   if (isa<FPTruncInst>(CI))
3926     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3927 
3928   if (isa<FPExtInst>(CI))
3929     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3930 
3931   if (isa<FPToUIInst>(CI))
3932     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3933 
3934   if (isa<FPToSIInst>(CI))
3935     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3936 
3937   if (isa<UIToFPInst>(CI))
3938     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3939 
3940   if (isa<SIToFPInst>(CI))
3941     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3942 
3943   if (!CastedTo)
3944     return nullptr;
3945 
3946   Constant *CastedBack =
3947       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3948   // Make sure the cast doesn't lose any information.
3949   if (CastedBack != C)
3950     return nullptr;
3951 
3952   return CastedTo;
3953 }
3954 
3955 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
3956                                              Instruction::CastOps *CastOp) {
3957   SelectInst *SI = dyn_cast<SelectInst>(V);
3958   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3959 
3960   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3961   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3962 
3963   CmpInst::Predicate Pred = CmpI->getPredicate();
3964   Value *CmpLHS = CmpI->getOperand(0);
3965   Value *CmpRHS = CmpI->getOperand(1);
3966   Value *TrueVal = SI->getTrueValue();
3967   Value *FalseVal = SI->getFalseValue();
3968   FastMathFlags FMF;
3969   if (isa<FPMathOperator>(CmpI))
3970     FMF = CmpI->getFastMathFlags();
3971 
3972   // Bail out early.
3973   if (CmpI->isEquality())
3974     return {SPF_UNKNOWN, SPNB_NA, false};
3975 
3976   // Deal with type mismatches.
3977   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
3978     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
3979       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3980                                   cast<CastInst>(TrueVal)->getOperand(0), C,
3981                                   LHS, RHS);
3982     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
3983       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3984                                   C, cast<CastInst>(FalseVal)->getOperand(0),
3985                                   LHS, RHS);
3986   }
3987   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
3988                               LHS, RHS);
3989 }
3990 
3991 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
3992   const unsigned NumRanges = Ranges.getNumOperands() / 2;
3993   assert(NumRanges >= 1 && "Must have at least one range!");
3994   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3995 
3996   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3997   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3998 
3999   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4000 
4001   for (unsigned i = 1; i < NumRanges; ++i) {
4002     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4003     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4004 
4005     // Note: unionWith will potentially create a range that contains values not
4006     // contained in any of the original N ranges.
4007     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4008   }
4009 
4010   return CR;
4011 }
4012 
4013 /// Return true if "icmp Pred LHS RHS" is always true.
4014 static bool isTruePredicate(CmpInst::Predicate Pred,
4015                             const Value *LHS, const Value *RHS,
4016                             const DataLayout &DL, unsigned Depth,
4017                             AssumptionCache *AC, const Instruction *CxtI,
4018                             const DominatorTree *DT) {
4019   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4020   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4021     return true;
4022 
4023   switch (Pred) {
4024   default:
4025     return false;
4026 
4027   case CmpInst::ICMP_SLE: {
4028     const APInt *C;
4029 
4030     // LHS s<= LHS +_{nsw} C   if C >= 0
4031     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4032       return !C->isNegative();
4033     return false;
4034   }
4035 
4036   case CmpInst::ICMP_ULE: {
4037     const APInt *C;
4038 
4039     // LHS u<= LHS +_{nuw} C   for any C
4040     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4041       return true;
4042 
4043     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4044     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4045                                        const Value *&X,
4046                                        const APInt *&CA, const APInt *&CB) {
4047       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4048           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4049         return true;
4050 
4051       // If X & C == 0 then (X | C) == X +_{nuw} C
4052       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4053           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4054         unsigned BitWidth = CA->getBitWidth();
4055         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4056         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4057 
4058         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4059           return true;
4060       }
4061 
4062       return false;
4063     };
4064 
4065     const Value *X;
4066     const APInt *CLHS, *CRHS;
4067     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4068       return CLHS->ule(*CRHS);
4069 
4070     return false;
4071   }
4072   }
4073 }
4074 
4075 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4076 /// ALHS ARHS" is true.  Otherwise, return None.
4077 static Optional<bool>
4078 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4079                       const Value *ARHS, const Value *BLHS,
4080                       const Value *BRHS, const DataLayout &DL,
4081                       unsigned Depth, AssumptionCache *AC,
4082                       const Instruction *CxtI, const DominatorTree *DT) {
4083   switch (Pred) {
4084   default:
4085     return None;
4086 
4087   case CmpInst::ICMP_SLT:
4088   case CmpInst::ICMP_SLE:
4089     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4090                         DT) &&
4091         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4092       return true;
4093     return None;
4094 
4095   case CmpInst::ICMP_ULT:
4096   case CmpInst::ICMP_ULE:
4097     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4098                         DT) &&
4099         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4100       return true;
4101     return None;
4102   }
4103 }
4104 
4105 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4106 /// when the operands match, but are swapped.
4107 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4108                           const Value *BLHS, const Value *BRHS,
4109                           bool &IsSwappedOps) {
4110 
4111   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4112   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4113   return IsMatchingOps || IsSwappedOps;
4114 }
4115 
4116 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4117 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4118 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4119 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4120                                                     const Value *ALHS,
4121                                                     const Value *ARHS,
4122                                                     CmpInst::Predicate BPred,
4123                                                     const Value *BLHS,
4124                                                     const Value *BRHS,
4125                                                     bool IsSwappedOps) {
4126   // Canonicalize the operands so they're matching.
4127   if (IsSwappedOps) {
4128     std::swap(BLHS, BRHS);
4129     BPred = ICmpInst::getSwappedPredicate(BPred);
4130   }
4131   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4132     return true;
4133   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4134     return false;
4135 
4136   return None;
4137 }
4138 
4139 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4140 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4141 /// C2" is false.  Otherwise, return None if we can't infer anything.
4142 static Optional<bool>
4143 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4144                                  const ConstantInt *C1,
4145                                  CmpInst::Predicate BPred,
4146                                  const Value *BLHS, const ConstantInt *C2) {
4147   assert(ALHS == BLHS && "LHS operands must match.");
4148   ConstantRange DomCR =
4149       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4150   ConstantRange CR =
4151       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4152   ConstantRange Intersection = DomCR.intersectWith(CR);
4153   ConstantRange Difference = DomCR.difference(CR);
4154   if (Intersection.isEmptySet())
4155     return false;
4156   if (Difference.isEmptySet())
4157     return true;
4158   return None;
4159 }
4160 
4161 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
4162                                         const DataLayout &DL, bool InvertAPred,
4163                                         unsigned Depth, AssumptionCache *AC,
4164                                         const Instruction *CxtI,
4165                                         const DominatorTree *DT) {
4166   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4167   if (LHS->getType() != RHS->getType())
4168     return None;
4169 
4170   Type *OpTy = LHS->getType();
4171   assert(OpTy->getScalarType()->isIntegerTy(1));
4172 
4173   // LHS ==> RHS by definition
4174   if (!InvertAPred && LHS == RHS)
4175     return true;
4176 
4177   if (OpTy->isVectorTy())
4178     // TODO: extending the code below to handle vectors
4179     return None;
4180   assert(OpTy->isIntegerTy(1) && "implied by above");
4181 
4182   ICmpInst::Predicate APred, BPred;
4183   Value *ALHS, *ARHS;
4184   Value *BLHS, *BRHS;
4185 
4186   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4187       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4188     return None;
4189 
4190   if (InvertAPred)
4191     APred = CmpInst::getInversePredicate(APred);
4192 
4193   // Can we infer anything when the two compares have matching operands?
4194   bool IsSwappedOps;
4195   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4196     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4197             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4198       return Implication;
4199     // No amount of additional analysis will infer the second condition, so
4200     // early exit.
4201     return None;
4202   }
4203 
4204   // Can we infer anything when the LHS operands match and the RHS operands are
4205   // constants (not necessarily matching)?
4206   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4207     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4208             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4209             cast<ConstantInt>(BRHS)))
4210       return Implication;
4211     // No amount of additional analysis will infer the second condition, so
4212     // early exit.
4213     return None;
4214   }
4215 
4216   if (APred == BPred)
4217     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4218                                  CxtI, DT);
4219 
4220   return None;
4221 }
4222